Sample records for v-akt murine thymoma

  1. V-akt murine thymoma viral oncogene homolog 3 (AKT3) contributes to poor disease outcome in humans and mice with pneumococcal meningitis.

    PubMed

    Valls Serón, Mercedes; Ferwerda, Bart; Engelen-Lee, JooYeon; Geldhoff, Madelijn; Jaspers, Valery; Zwinderman, Aeilko H; Tanck, Michael W; Baas, Frank; van der Ende, Arie; Brouwer, Matthijs C; van de Beek, Diederik

    2016-05-18

    Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Here, we have performed a prospective nationwide genetic association study using the Human Exome BeadChip and identified gene variants in encoding dynactin 4 (DCTN4), retinoic acid early transcript 1E (RAET1E), and V-akt murine thymoma viral oncogene homolog 3 (AKT3) to be associated with unfavourable outcome in patients with pneumococcal meningitis. No clinical replication cohort is available, so we validated the role of one of these targets, AKT3, in a pneumococcal meningitis mouse model. Akt3 deficient mice had worse survival and increased histopathology scores for parenchymal damage (infiltration) and vascular infiltration (large meningeal artery inflammation) but similar bacterial loads, cytokine responses, compared to wild-type mice. We found no differences in cerebrospinal fluid cytokine levels between patients with risk or non-risk alleles. Patients with the risk genotype (rs10157763, AA) presented with low scores on the Glasgow Coma Scale and high rate of epileptic seizures. Thus, our results show that AKT3 influences outcome of pneumococcal meningitis.

  2. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis.

    PubMed

    Naeem, Aishath S; Tommasi, Cristina; Cole, Christian; Brown, Stuart J; Zhu, Yanan; Way, Benjamin; Willis Owen, Saffron A G; Moffatt, Miriam; Cookson, William O; Harper, John I; Di, Wei-Li; Brown, Sara J; Reinheckel, Thomas; O'Shaughnessy, Ryan F L

    2017-04-01

    Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Disruption of PH–kinase domain interactions leads to oncogenic activation of AKT in human cancers

    PubMed Central

    Parikh, Chaitali; Janakiraman, Vasantharajan; Wu, Wen-I; Foo, Catherine K.; Kljavin, Noelyn M.; Chaudhuri, Subhra; Stawiski, Eric; Lee, Brian; Lin, Jie; Li, Hong; Lorenzo, Maria N.; Yuan, Wenlin; Guillory, Joseph; Jackson, Marlena; Rondon, Jesus; Franke, Yvonne; Bowman, Krista K.; Sagolla, Meredith; Stinson, Jeremy; Wu, Thomas D.; Wu, Jiansheng; Stokoe, David; Stern, Howard M.; Brandhuber, Barbara J.; Lin, Kui; Skelton, Nicholas J.; Seshagiri, Somasekar

    2012-01-01

    The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain–kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH–KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH–KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH–KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH–KD interface. PMID:23134728

  4. Comparative Analysis of V-Akt Murine Thymoma Viral Oncogene Homolog 3 (AKT3) Gene between Cow and Buffalo Reveals Substantial Differences for Mastitis.

    PubMed

    Ullah, Farman; Bhattarai, Dinesh; Cheng, Zhangrui; Liang, Xianwei; Deng, Tingxian; Rehman, Zia Ur; Talpur, Hira Sajjad; Worku, Tesfaye; Brohi, Rahim Dad; Safdar, Muhammad; Ahmad, Muhammad Jamil; Salim, Mohammad; Khan, Momen; Ahmad, Hafiz Ishfaq; Zhang, Shujun

    2018-01-01

    AKT3 gene is a constituent of the serine/threonine protein kinase family and plays a crucial role in synthesis of milk fats and cholesterol by regulating activity of the sterol regulatory element binding protein (SREBP). AKT3 is highly conserved in mammals and its expression levels during the lactation periods of cattle are markedly increased. AKT3 is highly expressed in the intestine followed by mammary gland and it is also expressed in immune cells. It is involved in the TLR pathways as effectively as proinflammatory cytokines. The aims of this study were to investigate the sequences differences between buffalo and cow. Our results showed that there were substantial differences between buffalo and cow in some exons and noteworthy differences of the gene size in different regions. We also identified the important consensus sequence motifs, variation in 2000 upstream of ATG, substantial difference in the "3'UTR" region, and miRNA association in the buffalo sequences compared with the cow. In addition, genetic analyses, such as gene structure, phylogenetic tree, position of different motifs, and functional domains, were performed to establish their correlation with other species. This may indicate that a buffalo breed has potential resistance to disease, environment changes, and airborne microorganisms and some good production and reproductive traits.

  5. Comparative Analysis of V-Akt Murine Thymoma Viral Oncogene Homolog 3 (AKT3) Gene between Cow and Buffalo Reveals Substantial Differences for Mastitis

    PubMed Central

    Bhattarai, Dinesh; Cheng, Zhangrui; Liang, Xianwei; Deng, Tingxian; Rehman, Zia Ur; Talpur, Hira Sajjad; Worku, Tesfaye; Brohi, Rahim Dad; Safdar, Muhammad; Ahmad, Muhammad Jamil; Salim, Mohammad; Khan, Momen; Ahmad, Hafiz Ishfaq

    2018-01-01

    AKT3 gene is a constituent of the serine/threonine protein kinase family and plays a crucial role in synthesis of milk fats and cholesterol by regulating activity of the sterol regulatory element binding protein (SREBP). AKT3 is highly conserved in mammals and its expression levels during the lactation periods of cattle are markedly increased. AKT3 is highly expressed in the intestine followed by mammary gland and it is also expressed in immune cells. It is involved in the TLR pathways as effectively as proinflammatory cytokines. The aims of this study were to investigate the sequences differences between buffalo and cow. Our results showed that there were substantial differences between buffalo and cow in some exons and noteworthy differences of the gene size in different regions. We also identified the important consensus sequence motifs, variation in 2000 upstream of ATG, substantial difference in the “3′UTR” region, and miRNA association in the buffalo sequences compared with the cow. In addition, genetic analyses, such as gene structure, phylogenetic tree, position of different motifs, and functional domains, were performed to establish their correlation with other species. This may indicate that a buffalo breed has potential resistance to disease, environment changes, and airborne microorganisms and some good production and reproductive traits. PMID:29862252

  6. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways ledmore » to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.« less

  7. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt.

    PubMed

    Bai, Dong; Ueno, Lynn; Vogt, Peter K

    2009-12-15

    The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-kappaB (NFkappaB) by inducing phosphorylation and subsequent degradation of inhibitor of kappaB (IkappaB). We show here that NFkappaB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFkappaB-dependent transcription. The degradation of the IkappaB protein is strongly enhanced in Akt-transformed cells, and the loss of NFkappaB activity by introduction of a super-repressor of NFkappaB, IkappaBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFkappaB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFkappaB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IkappaB kinase) alpha and beta. Akt phosphorylates IKKalpha on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKalpha and beta. Our results demonstrate two separate functions of the IKK complex in NFkappaB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IkappaB and the phosphorylation of p65. The data further support the conclusion that NFkappaB activity is essential for PI3K- and Akt-induced oncogenic transformation. Copyright (c) 2009 UICC.

  8. AKT capture by feline leukemia virus.

    PubMed

    Kawamura, Maki; Umehara, Daigo; Odahara, Yuka; Miyake, Ariko; Ngo, Minh Ha; Ohsato, Yoshiharu; Hisasue, Masaharu; Nakaya, Masa-Aki; Watanabe, Shinya; Nishigaki, Kazuo

    2017-04-01

    Oncogene-containing retroviruses are generated by recombination events between viral and cellular sequences, a phenomenon called "oncogene capture". The captured cellular genes, referred to as "v-onc" genes, then acquire new oncogenic properties. We report a novel feline leukemia virus (FeLV), designated "FeLV-AKT", that has captured feline c-AKT1 in feline lymphoma. FeLV-AKT contains a gag-AKT fusion gene that encodes the myristoylated Gag matrix protein and the kinase domain of feline c-AKT1, but not its pleckstrin homology domain. Therefore, it differs structurally from the v-Akt gene of murine retrovirus AKT8. AKT may be involved in the mechanisms underlying malignant diseases in cats.

  9. A large microRNA cluster on chromosome 19 is a transcriptional hallmark of WHO type A and AB thymomas.

    PubMed

    Radovich, Milan; Solzak, Jeffrey P; Hancock, Bradley A; Conces, Madison L; Atale, Rutuja; Porter, Ryan F; Zhu, Jin; Glasscock, Jarret; Kesler, Kenneth A; Badve, Sunil S; Schneider, Bryan P; Loehrer, Patrick J

    2016-02-16

    Thymomas are one of the most rarely diagnosed malignancies. To better understand its biology and to identify therapeutic targets, we performed next-generation RNA sequencing. The RNA was sequenced from 13 thymic malignancies and 3 normal thymus glands. Validation of microRNA expression was performed on a separate set of 35 thymic malignancies. For cell-based studies, a thymoma cell line was used. Hierarchical clustering revealed 100% concordance between gene expression clusters and WHO subtype. A substantial differentiator was a large microRNA cluster on chr19q13.42 that was significantly overexpressed in all A and AB tumours and whose expression was virtually absent in the other thymomas and normal tissues. Overexpression of this microRNA cluster activates the PI3K/AKT/mTOR pathway. Treatment of a thymoma AB cell line with a panel of PI3K/AKT/mTOR inhibitors resulted in marked reduction of cell viability. A large microRNA cluster on chr19q13.42 is a transcriptional hallmark of type A and AB thymomas. Furthermore, this cluster activates the PI3K pathway, suggesting the possible exploration of PI3K inhibitors in patients with these subtypes of tumour. This work has led to the initiation of a phase II clinical trial of PI3K inhibition in relapsed or refractory thymomas (http://clinicaltrials.gov/ct2/show/NCT02220855).

  10. Cancer Associated E17K Mutation Causes Rapid Conformational Drift in AKT1 Pleckstrin Homology (PH) Domain

    PubMed Central

    Kumar, Ambuj; Purohit, Rituraj

    2013-01-01

    Background AKT1 (v-akt murine thymoma viral oncogene homologue 1) kinase is one of the most frequently activated proliferated and survival pathway of cancer. Recently it has been shown that E17K mutation in the Pleckstrin Homology (PH) domain of AKT1 protein leads to cancer by amplifying the phosphorylation and membrane localization of protein. The mutant has shown resistance to AKT1/2 inhibitor VIII drug molecule. In this study we have demonstrated the detailed structural and molecular consequences associated with the activity regulation of mutant protein. Methods The docking score exhibited significant loss in the interaction affinity to AKT1/2 inhibitor VIII drug molecule. Furthermore, the molecular dynamics simulation studies presented an evidence of rapid conformational drift observed in mutant structure. Results There was no stability loss in mutant as compared to native structure and the major cation–π interactions were also shown to be retained. Moreover, the active residues involved in membrane localization of protein exhibited significant rise in NHbonds formation in mutant. The rise in NHbond formation in active residues accounts for the 4-fold increase in the membrane localization potential of protein. Conclusion The overall result suggested that, although the mutation did not induce any stability loss in structure, the associated pathological consequences might have occurred due to the rapid conformational drifts observed in the mutant AKT1 PH domain. General Significance The methodology implemented and the results obtained in this work will facilitate in determining the core molecular mechanisms of cancer-associated mutations and in designing their potential drug inhibitors. PMID:23741320

  11. Concurrent Targeting of KRAS and AKT by MiR-4689 Is a Novel Treatment Against Mutant KRAS Colorectal Cancer

    PubMed Central

    Hiraki, Masayuki; Nishimura, Junichi; Takahashi, Hidekazu; Wu, Xin; Takahashi, Yusuke; Miyo, Masaaki; Nishida, Naohiro; Uemura, Mamoru; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Soh, Jae-Won; Doki, Yuichiro; Mori, Masaki; Yamamoto, Hirofumi

    2015-01-01

    KRAS mutations are a major cause of drug resistance to molecular-targeted therapies. Aberrant epidermal growth factor receptor (EGFR) signaling may cause dysregulation of microRNA (miRNA) and gene regulatory networks, which leads to cancer initiation and progression. To address the functional relevance of miRNAs in mutant KRAS cancers, we transfected exogenous KRASG12V into human embryonic kidney 293 and MRC5 cells with wild-type KRAS and BRAF genes, and we comprehensively profiled the dysregulated miRNAs. The result showed that mature miRNA oligonucleotide (miR)-4689, one of the significantly down-regulated miRNAs in KRASG12V overexpressed cells, was found to exhibit a potent growth-inhibitory and proapoptotic effect both in vitro and in vivo. miR-4689 expression was significantly down-regulated in cancer tissues compared to normal mucosa, and it was particularly decreased in mutant KRAS CRC tissues. miR-4689 directly targets v-ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS) and v-akt murine thymoma viral oncogene homolog 1(AKT1), key components of two major branches in EGFR pathway, suggesting KRAS overdrives this signaling pathway through inhibition of miR-4689. Overall, this study provided additional evidence that mutant KRAS functions as a broad regulator of the EGFR signaling cascade by inhibiting miR-4689, which negatively regulates both RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways. These activities indicated that miR-4689 may be a promising therapeutic agent in mutant KRAS CRC. PMID:25756961

  12. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders.

    PubMed

    Chen, Jianling; Alberts, Ian; Li, Xiaohong

    2014-06-01

    The IGF-I/PI3K/AKT/mTOR signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, motility, survival, metabolism and protein synthesis. Insulin-like growth factor-I (IGF-I) is synthesized in the liver and fibroblasts, and its biological actions are mediated by the IGF-I receptor (IGF-IR). The binding of IGF-I to IGF-IR leads to the activation of phosphatidylinositol 3-kinase (PI3K). Activated PI3K stimulates the production of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] and phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3]. The PH domain of AKT (protein kinase B, PKB) (v-AKT murine thymoma viral oncogene homolog) binds to PI(4,5)P2 and PI(3,4,5)P3, followed by phosphorylation of the Thr308 and Ser473 regulatory sites. Tuberous sclerosis complex 1 (TSC1) and TSC2 are upstream regulators of mammalian target of rapamycin (mTOR) and downstream effectors of the PI3K/AKT signaling pathway. The activation of AKT suppresses the TSC1/TSC2 heterodimer, which is an upstream regulator of mTOR. Dysregulated IGF-I/PI3K/AKT/mTOR signaling has been shown to be associated with autism spectrum disorders (ASDs). In this review, we discuss the emerging evidence for a functional relationship between the IGF-I/PI3K/AKT/mTOR pathway and ASDs, as well as a possible role of this signaling pathway in the diagnosis and treatment of ASDs. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. A large microRNA cluster on chromosome 19 is a transcriptional hallmark of WHO type A and AB thymomas

    PubMed Central

    Radovich, Milan; Solzak, Jeffrey P; Hancock, Bradley A; Conces, Madison L; Atale, Rutuja; Porter, Ryan F; Zhu, Jin; Glasscock, Jarret; Kesler, Kenneth A; Badve, Sunil S; Schneider, Bryan P; Loehrer, Patrick J

    2016-01-01

    Background: Thymomas are one of the most rarely diagnosed malignancies. To better understand its biology and to identify therapeutic targets, we performed next-generation RNA sequencing. Methods: The RNA was sequenced from 13 thymic malignancies and 3 normal thymus glands. Validation of microRNA expression was performed on a separate set of 35 thymic malignancies. For cell-based studies, a thymoma cell line was used. Results: Hierarchical clustering revealed 100% concordance between gene expression clusters and WHO subtype. A substantial differentiator was a large microRNA cluster on chr19q13.42 that was significantly overexpressed in all A and AB tumours and whose expression was virtually absent in the other thymomas and normal tissues. Overexpression of this microRNA cluster activates the PI3K/AKT/mTOR pathway. Treatment of a thymoma AB cell line with a panel of PI3K/AKT/mTOR inhibitors resulted in marked reduction of cell viability. Conclusions: A large microRNA cluster on chr19q13.42 is a transcriptional hallmark of type A and AB thymomas. Furthermore, this cluster activates the PI3K pathway, suggesting the possible exploration of PI3K inhibitors in patients with these subtypes of tumour. This work has led to the initiation of a phase II clinical trial of PI3K inhibition in relapsed or refractory thymomas (http://clinicaltrials.gov/ct2/show/NCT02220855). PMID:26766736

  14. Seronegative myasthenia gravis associated with malignant thymoma.

    PubMed

    Richards, Jason; Howard, James F

    2017-05-01

    Myasthenia gravis (MG) is generally caused by antibodies directed against the neuromuscular junction, including antibodies against the postsynaptic nicotinic acetylcholine receptor (AChR). Pathologic abnormalities of the thymus gland, including thymoma, are associated with MG. We report a 56-year-old woman who presented with double vision. Single fiber EMG confirmed myasthenia gravis. AChR, striational muscle and MuSK antibodies were absent in the serum. Chest CT demonstrated a malignant thymoma. We report the first case of seronegative myasthenia gravis associated with malignant thymoma. The case challenges the conventional wisdom that all patients with thymoma associated MG test positive for antibodies against AChR. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells.more » Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.« less

  16. Autocrine CSF-1R signaling drives mesothelioma chemoresistance via AKT activation

    PubMed Central

    Cioce, M; Canino, C; Goparaju, C; Yang, H; Carbone, M; Pass, H I

    2014-01-01

    Clinical management of malignant pleural mesothelioma (MPM) is very challenging because of the uncommon resistance of this tumor to chemotherapy. We report here increased expression of macrophage colony-stimulating-factor-1-receptor (M-CSF/CSF-1R) mRNA in mesothelioma versus normal tissue specimens and demonstrate that CSF-1R expression identifies chemoresistant cells of mesothelial nature in both primary cultures and mesothelioma cell lines. By using RNAi or ligand trapping, we demonstrate that the chemoresistance properties of those cells depend on autocrine CSF-1R signaling. At the single-cell level, the isolated CSF-1Rpos cells exhibit a complex repertoire of pluripotency, epithelial–mesenchymal transition and detoxifying factors, which define a clonogenic, chemoresistant, precursor-like cell sub-population. The simple activation of CSF-1R in untransformed mesothelial cells is sufficient to confer clonogenicity and resistance to pemetrexed, hallmarks of mesothelioma. In addition, this induced a gene expression profile highly mimicking that observed in the MPM cells endogenously expressing the receptor and the ligands, suggesting that CSF-1R expression is mainly responsible for the phenotype of the identified cell sub-populations. The survival of CSF1Rpos cells requires active AKT (v-akt murine thymoma viral oncogene homolog 1) signaling, which contributed to increased levels of nuclear, transcriptionally competent β-catenin. Inhibition of AKT reduced the transcriptional activity of β-catenin-dependent reporters and sensitized the cells to senescence-induced clonogenic death after pemetrexed treatment. This work expands what is known on the non-macrophage functions of CSF-1R and its role in solid tumors, and suggests that CSF-1R signaling may have a critical pathogenic role in a prototypical, inflammation-related cancer such as MPM and therefore may represent a promising target for therapeutic intervention. PMID:24722292

  17. Thymoma

    MedlinePlus

    ... gynecologic, and pediatric oncologists, oncology nurses, physician assistants, social workers, and patient advocates. Cancer.Net Guide Thymoma ... Options About Clinical Trials Latest Research Coping ...

  18. The coexistence of autoimmune rheumatic diseases and thymomas.

    PubMed

    Jiang, Ying; Dai, Xiaodan; Duan, Liping; Zhou, Yaou

    2017-01-01

    Autoimmune rheumatic diseases (ARDs), involving immune disturbances resulting from auto-inflammatory mechanisms, are a group of diseases characterized by autoimmunity and autoimmunemediated organ damage. Thymoma, whose mechanism is also associated with immune abnormalities, is the most common neoplasm of the anterior mediastinum. But thymoma with ARDs is relatively less frequent. The clinical characteristics of the coexistence of ARDs and thymomas are still not very clear. And the therapeutic strategy for ARDs combined with thymomas varies, with an uncertain outcome. The aim of this study was to investigate the clinical characteristics of the coexistence of ARDs and thymomas in order to speculate whether a thymectomy is effective for ARDs combined with thymomas, and to seek the proper therapeutic strategy for treating ARDs combined with thymomas. We presented 2 cases of the coexistence of ARDs and thymomas. Then, we summarized 20 cases (including our 2 cases) in which the ARD was diagnosed concurrently with, or prior to, the thymoma. Pure red cell aplastic anemia (PRCA) might be associated with an ARD and a thymoma, and a thymectomy may lead to the appearance, exacerbation, or remission of ARDs. Searching for a thymoma is necessitated if a patient with ARDs experiences PRCA and the effects of thymectomy in ARDs combined with thymomas may be associated with the onset sequence of ARDs and thymomas.

  19. Loss of T-cadherin (CDH-13) regulates AKT signaling and desensitizes cells to apoptosis in melanoma.

    PubMed

    Bosserhoff, Anja K; Ellmann, Lisa; Quast, Annika S; Eberle, Juergen; Boyle, Glen M; Kuphal, Silke

    2014-08-01

    An understanding of signaling pathways is a basic requirement for the treatment of melanoma. Currently, kinases are at the center of melanoma therapies. According to our research, additional alternative molecules are equally important for development of melanoma. In this regard, cancer progression is, among other factors, driven by an altered adhesion via cadherins. For instance, the de-regulated expression of the adhesion molecule T-cadherin is found in various cancer types, including melanoma, and influences migration and invasion. T-cadherin is thought to affect cellular function largely through its signaling and not its adhesion properties because the molecule is anchored into the cell membrane by a glycosylphosphatidylinositol (GPI) moiety. However, detailed knowledge about the consequences of the loss of T-cadherin in melanoma is currently lacking. For this reason, we were interested in assessing which signaling pathways are initiated by T-cadherin. The tumor growth of subcutaneously injected T-cadherin-positive melanoma cells was diminished compared with T-cadherin-negative cells in nude mice. The difference in tumor volume was not due to decreased proliferation but rather due to increased apoptosis. After the expression of T-cadherin was induced, we detected V-AKT murine thymoma viral oncogene homolog (AKT) and FoxO3a hypophosphorylation accompanied by the downregulation of the antiapoptotic molecules BCL-2, BCL-x and Clusterin. Furthermore, we detected a diminished transcriptional activity of CREB and AP-1. We demonstrated that T-cadherin functions as a pro-apoptotic tumor suppressor that antagonizes AKT/CREB/AP-1/FoxO3a signaling, whereas NFκB, TCF/LEF and mTOR are not part of the T-cadherin signaling pathway. Notably, we found that the restoration of T-cadherin in melanoma cells causes sensitization to apoptosis induced by CD95/Fas antibody CH-11. © 2013 Wiley Periodicals, Inc.

  20. Thymoma in myasthenia gravis: from diagnosis to treatment.

    PubMed

    Romi, Fredrik

    2011-01-01

    One half of cortical thymoma patients develop myasthenia gravis (MG), while 15% of MG patients have thymomas. MG is a neuromuscular junction disease caused in 85% of the cases by acetylcholine receptor (AChR) antibodies. Titin and ryanodine receptor (RyR) antibodies are found in 95% of thymoma MG and 50% of late-onset MG (MG onset ≥50 years), are associated with severe disease, and may predict thymoma MG outcome. Nonlimb symptom profile at MG onset with bulbar, ocular, neck, and respiratory symptoms should raise the suspicion about the presence of thymoma in MG. The presence of titin and RyR antibodies in an MG patient younger than 60 years strongly suggests a thymoma, while their absence at any age strongly excludes thymoma. Thymoma should be removed surgically. Prethymectomy plasmapheresis/iv-IgG should be considered before thymectomy. The pharmacological treatment does not differ from nonthymoma MG, except for tacrolimus which is an option in difficult thymoma and nonthymoma MG cases with RyR antibodies.

  1. Thymoma and Thymic Carcinoma—Patient Version

    Cancer.gov

    Thymomas and thymic carcinomas are rare tumors that form in cells on the thymus. Thymomas grow slowly and rarely spread beyond the thymus. Thymic carcinoma grows faster, often spreads to other parts of the body, and is harder to treat. Start here to find information on thymoma and thymic carcinoma treatment.

  2. TCR Signal Strength Regulates Akt Substrate Specificity To Induce Alternate Murine Th and T Regulatory Cell Differentiation Programs.

    PubMed

    Hawse, William F; Boggess, William C; Morel, Penelope A

    2017-07-15

    The Akt/mTOR pathway is a key driver of murine CD4 + T cell differentiation, and induction of regulatory T (Treg) cells results from low TCR signal strength and low Akt/mTOR signaling. However, strong TCR signals induce high Akt activity that promotes Th cell induction. Yet, it is unclear how Akt controls alternate T cell fate decisions. We find that the strength of the TCR signal results in differential Akt enzymatic activity. Surprisingly, the Akt substrate networks associated with T cell fate decisions are qualitatively different. Proteomic profiling of Akt signaling networks during Treg versus Th induction demonstrates that Akt differentially regulates RNA processing and splicing factors to drive T cell differentiation. Interestingly, heterogeneous nuclear ribonucleoprotein (hnRNP) L or hnRNP A1 are Akt substrates during Treg induction and have known roles in regulating the stability and splicing of key mRNAs that code for proteins in the canonical TCR signaling pathway, including CD3ζ and CD45. Functionally, inhibition of Akt enzymatic activity results in the dysregulation of splicing during T cell differentiation, and knockdown of hnRNP L or hnRNP A1 results in the lower induction of Treg cells. Together, this work suggests that a switch in substrate specificity coupled to the phosphorylation status of Akt may lead to alternative cell fates and demonstrates that proteins involved with alternative splicing are important factors in T cell fate decisions. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Transcervical excision of thymoma and video-assisted thoracoscopic extended thymectomy (VATET) for ectopic cervical thymoma with myasthenia gravis: report of a case.

    PubMed

    Kumazawa, Sachiko; Ishibashi, Hironori; Takahashi, Ken; Okubo, Kenichi

    2016-12-01

    Myasthenia gravis is the most common disease associated with thymoma, but it is rarely accompanied by ectopic thymoma. We describe a 47-year-old woman who presented with an ectopic cervical thymoma with myasthenia gravis. She was admitted to our neurology department with ptosis, diplopia, and mandibular muscle fatigue, and was diagnosed with myasthenia gravis. The mass was located posterior to the right lobe of thyroid gland on computed tomography and was diagnosed as ectopic thymoma on fine-needle aspiration biopsy examination. Transcervical excision of thymoma and VATET were performed. The patient has been free of neurological symptoms and has displayed no evidence of recurrent thymoma for 2 years.

  4. Extrathymic malignancies in thymoma patients with and without myasthenia gravis.

    PubMed

    Owe, Jone Furlund; Cvancarova, Milada; Romi, Fredrik; Gilhus, Nils Erik

    2010-03-15

    The influence of myasthenia gravis (MG) on risk of cancer is uncertain. Using nationwide, comprehensive data, we investigated the association between MG and occurrence of extrathymic malignancies in thymoma patients, and also assessed the risk of consecutive extrathymic malignancies after thymoma diagnosis. Two hundred twelve thymoma patients were identified at the Cancer Registry of Norway between 1969 and 2005. Records on all extrathymic malignancies for these patients were supplied from the Registry's database. Comparisons were made between MG and non-MG patients and between thymoma patients and the general population. The frequency of extrathymic malignancies was similar in MG and non-MG thymoma patients, and so was the survival after thymoma diagnosis. Extrathymic malignancies occurred in 10% of thymoma patients within 10 years following the thymoma diagnosis. Thymoma patients had a significantly increased risk of developing an extrathymic malignancy compared to the general population. This was not linked to any specific kind of cancer. Thymoma morphology was not a significant predictor for an increased risk of consecutive cancer. The immunological process underlying MG does not influence the risk of cancer in thymoma patients. Thymoma patients have a significantly increased risk of extrathymic malignancies. This is an intrinsic effect, being unaffected by a coexisting autoimmune disease such as MG and not specific for any type of cancer. Screening for extrathymic malignancies in thymoma patients is probably not recommendable, but clinicians should be aware of the high rate of extrathymic malignancies occurring in thymoma patients.

  5. Mutational analysis of PI3K/AKT and RAS/RAF pathway activation in malignant salivary gland tumours with a new mutation of PIK3CA.

    PubMed

    Shalmon, B; Drendel, M; Wolf, M; Hirshberg, A; Cohen, Y

    2016-06-01

    The phosphoinositide 3-kinase (PIK3)/v-akt murine thymoma (AKT) oncogene pathway and the RAS/RAF pathway are involved in regulating the signalling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth. Mutations in the genes within these pathways are frequently found in several tumours. The aim of this study was to investigate the frequency of mutations in the PIK3CA, BRAF, and KRAS genes in cases of malignant salivary gland tumours. Mutational analysis of the PIK3CA, KRAS, and BRAF genes was performed by direct sequencing of material from 21 patients with malignant salivary gland tumours who underwent surgery between 1992 and 2001. No mutations were found in the KRAS exon 2, BRAF exon 15, or PIK3CA exon 9 genes. However, an unpublished mutation of the PIK3CA gene in exon 20 (W1051 stop mutation) was found in one case of adenocarcinoma NOS. The impact of this mutation on the biological behaviour of the tumour has yet to be explored, however the patient with adenocarcinoma NOS harbouring this mutation has survived for over 20 years following surgery despite a high stage at presentation. Further studies with more homogeneous patient cohorts are needed to address whether this mutation reflects a different clinical presentation and may benefit from targeted treatment strategies. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Thymoma: first large Indian experience.

    PubMed

    Rathod, S; Munshi, A; Paul, S; Ganesh, B; Prabhash, K; Agarwal, J P

    2014-01-01

    Thymoma is the most common tumor of the anterior mediastinum. Surgery is mainstay of treatment, with adjuvant radiation recommended for invasive thymoma. Because of rarity, prospective randomized trials may not be feasible even in multicentric settings hence the best possible evidence can be large series. Till date Thymoma has not been studied in Indian settings. All patients presenting to Thoracic disease management group at our Centre during 2006-2011 were screened. Sixty two patients' with histo-pathological confirmation of thymoma medical records could be retrieved and are presented in this study. Mosaoka staging and WHO classification was used. The clinical, therapeutic factors and follow up parameters were recorded and survival was calculated. Effects of prognostic factors were compared. Sixty two patients were identified (36M, 26F; age 22-84, median 51.5 years) and majorities (57%) of thymoma were stage I-II. WHO pathological subtype B was most common 30 (49%). Mean tumor size was smaller in patients with myasthenia (5.3cm) than the entire group (7.6cm). Neoadjuvant therapy was offered to five unresectable stages III or IV a patient's with 40% resectability rates. Median overall survival was 60 months (Inter quartile-range 3-44 months) with overall survival rate (OS) at three year being 90%. Resectable tumors had better outcomes (94%) than non resectable (81%) at three years. Mosaoka Stage was the only significant (P = 0.03) prognostic factor on multivariate analysis. This is first thymoma series from India with large number of patients where staging is an important prognostic factor and surgery is the mainstay of therapy. In Indian context aggressive multimodality treatment should be offered to advanced stage patients and which yields good survival rates and comparable.

  7. Synergistic Cytotoxicity of Bendamustine and the BTK Inhibitor in a Mantle Cell Lymphoma Cell Line.

    PubMed

    Hagiwara, Kazumi; Tokunaga, Takashi; Iida, Hiroatsu; Nagai, Hirokazu

    2015-12-01

    Bendamustine is effective in B-cell malignancies, including mantle cell lymphoma (MCL), alone and in combination with other agents. This study investigated the combination effect of bendamustine and the Bruton tyrosine kinase (BTK) inhibitor PCI-32765 on MCL cell death and the underlying mechanisms. Cytotoxicity was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MIT) assay. Apoptosis was assessed by annexin V/propidium iodide staining and protein expression was analyzed by western blotting. When combined with bendamustine, PCI-32765 showed a synergistic effect on growth inhibition of the MCL cell line Jeko-1. Cleavage of caspase-3 and poly-(ADP-ribose) polymerase was increased, indicating enhanced apoptosis induction. In addition, this combination decreased the protein expression of cyclin D1. Phosphorylated v-akt murine thymoma viral oncogene homolog 1 (AKT) (Ser473) was also down-regulated, suggesting a suppression of the phosphatidylinositol 3-kinase/AKT signaling pathway. Combination treatment with bendamustine and a BTK inhibitor may be effective in MCL therapy. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Minimal-change nephropathy and malignant thymoma.

    PubMed

    Varsano, S; Bruderman, I; Bernheim, J L; Rathaus, M; Griffel, B

    1980-05-01

    A 56-year-old man had fever, precordial pain, and a mediastinal mass. The mass disappeared two months later and the patient remained asymptomatic for 2 1/2 years. At that time a full-blown nephrotic syndrome developed, with minimal-change glomerulopathy. The chest x-ray film showed the reappearance of a giant mediastinal mass. On biopsy of the mass, malignant thymoma was diagnosed. Association between minimal-change disease and Hodgkin's disease is well known, while the association with malignant thymoma has not been previously reported. The relationship between malignant thymoma and minimal-change disease is discussed, and a possible pathogenic mechanism involving cell-mediated immunity is proposed.

  9. Thymoma and Thymic Carcinoma—Health Professional Version

    Cancer.gov

    Thymomas and thymic carcinomas are epithelial tumors of the thymus. A thymic epithelial tumor that exhibits cytologic atypia and histologic features no longer specific to the thymus is known as a thymic carcinoma. Find evidence-based information on thymoma and thymic carcinoma treatment.

  10. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    PubMed Central

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  11. Caspr2 antibody limbic encephalitis is associated with Hashimoto thyroiditis and thymoma.

    PubMed

    Lee, Chih-Hong; Lin, Jainn-Jim; Lin, Kun-Ju; Chang, Bao-Luen; Hsieh, Hsiang-Yao; Chen, Wei-Hsun; Lin, Kuang-Lin; Fung, Hon-Chung; Wu, Tony

    2014-06-15

    Contactin-associated protein 2 (Caspr2) antibody is a neuronal surface antibody (NSAb) capable of causing disorders involving central and peripheral nervous systems (PNS). Thymoma can be found in patients with Caspr2 antibodies and is most frequently associated with PNS symptoms. Myasthenia gravis can be found in these patients, but Hashimoto thyroiditis (HT) has not been reported. A 76-year-old woman presented with sub-acute-onset changes in mental status. Further investigations revealed thymoma and HT. The presence of NSAb was tested by immunofluorescence on human embryonic kidney-293 cells. Treatment included corticosteroids, azathioprine, thyroxine, plasmapheresis, and thymectomy. Caspr2 antibody was positive in serum but absent in CSF. Brain magnetic resonance imaging (MRI) showed diffuse cortical atrophy, but did not change significantly after treatments. Brain positron emission tomography (PET) revealed diffuse hypometabolism over the cerebral cortex. The patient's mental status only partially improved. In Caspr2 antibody-associated syndromes, thymoma can occur in patients presenting only with LE, and HT can be an accompanying disease. Brain MRI and PET may not show specific lesions in limbic area. Patients with Caspr2 antibodies and thymoma may not have good prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. cFLIP overexpression in T cells in thymoma-associated myasthenia gravis

    PubMed Central

    Belharazem, Djeda; Schalke, Berthold; Gold, Ralf; Nix, Wilfred; Vitacolonna, Mario; Hohenberger, Peter; Roessner, Eric; Schulze, Torsten J; Saruhan-Direskeneli, Güher; Yilmaz, Vuslat; Ott, German; Ströbel, Philipp; Marx, Alexander

    2015-01-01

    Objective The capacity of thymomas to generate mature CD4+ effector T cells from immature precursors inside the tumor and export them to the blood is associated with thymoma-associated myasthenia gravis (TAMG). Why TAMG(+) thymomas generate and export more mature CD4+ T cells than MG(−) thymomas is unknown. Methods Unfixed thymoma tissue, thymocytes derived thereof, peripheral blood mononuclear cells (PBMCs), T-cell subsets and B cells were analysed using qRT-PCR and western blotting. Survival of PBMCs was measured by MTT assay. FAS-mediated apoptosis in PBMCs was quantified by flow cytometry. NF-κB in PBMCs was inhibited by the NF-κB-Inhibitor, EF24 prior to FAS-Ligand (FASLG) treatment for apoptosis induction. Results Expression levels of the apoptosis inhibitor cellular FLICE-like inhibitory protein (c-FLIP) in blood T cells and intratumorous thymocytes were higher in TAMG(+) than in MG(−) thymomas and non-neoplastic thymic remnants. Thymocytes and PBMCs of TAMG patients showed nuclear NF-κB accumulation and apoptosis resistance to FASLG stimulation that was sensitive to NF-κB blockade. Thymoma removal reduced cFLIP expression in PBMCs. Interpretation We conclude that thymomas induce cFLIP overexpression in thymocytes and their progeny, blood T cells. We suggest that the stronger cFLIP overexpression in TAMG(+) compared to MG(−) thymomas allows for the more efficient generation of mature CD4+ T cells in TAMG(+) thymomas. cFLIP overexpression in thymocytes and exported CD4+ T cells of patients with TAMG might contribute to the pathogenesis of TAMG by impairing central and peripheral T-cell tolerance. PMID:26401511

  13. Effects of the HIF1 inhibitor, echinomycin, on growth and NOTCH signalling in leukaemia cells.

    PubMed

    Yonekura, Satoru; Itoh, Mai; Okuhashi, Yuki; Takahashi, Yusuke; Ono, Aya; Nara, Nobuo; Tohda, Shuji

    2013-08-01

    To examine the effects of echinomycin, a compound that inhibits DNA-binding activity of hypoxia-inducible factor-1 (HIF1), on leukaemia cell growth. Three acute myeloid leukaemia cell lines and three T-lymphoblastic leukaemia cell lines were cultured with echinomycin. Cell growth, mRNA and protein expression levels were examined by WST-1 assay, reverse-transcription polymerase chain reaction and immunoblotting, respectively. HIF1α protein was expressed in all cell lines under normoxia. Treatment with echinomycin suppressed cell growth and induced apoptosis in association with decreased mRNA expression of HIF1 targets, glucose transporter-1 (GLUT1) and B-cell CLL/lymphoma-2 (BCL2). Echinomycin also suppressed the protein expression of NOTCH1, cleaved NOTCH1, v-myc myelocytomatosis viral oncogene homolog (MYC), v-akt murine thymoma viral oncogene homolog-1 (AKT), phosphorylated AKT, mechanistic target of rapamycin (mTOR), and phosphorylated mTOR and increased that of cleaved caspase-3 in some cell lines. Echinomycin suppresses leukaemia cell growth in association with reduced NOTCH1 expression. This is the first report to show that HIF inhibitor treatment suppresses NOTCH1 signalling. HIF inhibitors could be novel candidates for a molecular-targeted therapy against leukaemia.

  14. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues

    PubMed Central

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-01-01

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months’ supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake. PMID:27194405

  15. Recurrent invasive thymoma with pleural dissemination : disease management and treatment possibilities.

    PubMed

    Konecna, J; Willemse, E; Lefebvre, Y; de Wind, R; Andry, G

    2014-01-01

    Thymoma is the most common benign neoplasm of the anterior mediastinum presenting often an agressive behaviour typical for the malignants tumors. The rate of invasive thymoma recurrency is relatively high. We present the case of a 55-year old man with a recurrent invasive thymoma with a pleural dissemination, detected on CT-imaging 2 years following his primary surgery. Since the first pre-operative imaging studies showed no invasion of the adjacent organs and a thymoma was suspected, a surgical resection was decided as a first line treatment. Per-operatively a number of adjacent structures were invaded and despite a macroscopical RO resection, the margins were microscopically positive. An invasive thymoma, WHO classification B3, Masaoka stage IVb was diagnosed and the patient received adjuvant radiotherapy. We highlight the role of multimodality treatement and disscus the potential of surgical, radiotherapeutical and systemic therapy in stage IV thymoma as well as in recurrent disease. Copyright© Acta Chirurgica Belgica.

  16. High CTLA-4 expression correlates with poor prognosis in thymoma patients

    PubMed Central

    Santoni, Giorgio; Amantini, Consuelo; Morelli, Maria Beatrice; Tomassoni, Daniele; Santoni, Matteo; Marinelli, Oliviero; Nabissi, Massimo; Cardinali, Claudio; Paolucci, Vittorio; Torniai, Mariangela; Rinaldi, Silvia; Morgese, Francesca; Bernardini, Giovanni; Berardi, Rossana

    2018-01-01

    Thymomas, tumors that arise from epithelial cells of the thymus gland, are the most common neoplasms of the anterior mediastinum, with an incidence rate of approximately 2.5 per million/year. Cytotoxic T Lymphocyte Antigen 4 (CTLA-4 or CD152) exerts inhibitory activity on T cells, and since its oncogenic role in the progression of different types of tumors, it has emerged as a potential therapeutic target in cancer patients. In this study, we assessed the expression of CTLA-4 both at mRNA and protein levels in paraffin embedded-tissues from patients with thymomas. Furthermore, we evaluated the relationship between CTLA-4 expression and the clinical-pathologic characteristics and prognosis in patients with thymomas. Sixty-eight patients with median age corresponding to 62 years were included in this analysis. Thymomas were classified accordingly to the WHO and Masaoka-Koga for histochemical analysis and for prognostic significance. A statistical difference was found between CTLA-4 mRNA levels in human normal thymus compared with thymoma specimens. CTLA-4 expression was statistically found to progressively increase in A, B1, B2, AB and it was maximal in B3 thymomas. According to Masaoka-Koga pathological classification, CTLA-4 expression was lower in I, IIA and IIB, and higher in invasive III and IV stages. By confocal microscopy analysis we identified the expression of CTLA-4 both in tumor cells and in CD45+ tumor-infiltrating leukocytes, mainly in B3 and AB thymomas. Finally, CTLA-4 overexpression significantly correlates with reduced overall survival in thymoma patients and in atypical thymoma subgroup, suggesting that it represents a negative prognostic factor. PMID:29682176

  17. Mutational status of EGFR and KIT in thymoma and thymic carcinoma.

    PubMed

    Yoh, Kiyotaka; Nishiwaki, Yutaka; Ishii, Genichiro; Goto, Koichi; Kubota, Kaoru; Ohmatsu, Hironobu; Niho, Seiji; Nagai, Kanji; Saijo, Nagahiro

    2008-12-01

    This study was conducted to evaluate the prevalence of EGFR and KIT mutations in thymomas and thymic carcinomas as a means of exploring the potential for molecularly targeted therapy with tyrosine kinase inhibitors. Genomic DNA was isolated from 41 paraffin-embedded tumor samples obtained from 24 thymomas and 17 thymic carcinomas. EGFR exons 18, 19, and 21, and KIT exons 9, 11, 13, and 17, were analyzed for mutations by PCR and direct sequencing. Protein expression of EGFR and KIT was evaluated immunohistochemically. EGFR mutations were detected in 2 of 20 thymomas, but not in any of the thymic carcinomas. All of the EGFR mutations detected were missense mutations (L858R and G863D) in exon 21. EGFR protein was expressed in 71% of the thymomas and 53% of the thymic carcinomas. The mutational analysis of KIT revealed only a missense mutation (L576P) in exon 11 of one thymic carcinoma. KIT protein was expressed in 88% of the thymic carcinomas and 0% of the thymomas. The results of this study indicate that EGFR and KIT mutations in thymomas and thymic carcinomas are rare, but that many of the tumors express EGFR or KIT protein.

  18. Titin and ryanodine receptor epitopes are expressed in cortical thymoma along with costimulatory molecules.

    PubMed

    Romi, Fredrik; Bø, Lars; Skeie, Geir Olve; Myking, Andreas; Aarli, Johan A; Gilhus, Nils Erik

    2002-07-01

    Cortical-type thymomas are associated with myasthenia gravis (MG) in 50% of the cases. MG is caused by antibodies against the acetylcholine receptors (AChR), but additional non-AChR muscle autoantibodies such as those against titin and ryanodine receptor (RyR) are found in up to 95% of MG patients with thymoma. To elucidate the induction of non-AChR autoantibodies in thymoma-associated MG, we studied cortical-type thymomas from seven thymoma MG patients, and sera from six of them. All six had titin antibodies, and four had RyR antibodies. Titin and RyR epitopes were co-expressed along with LFA3 and B7 (BB1) costimulatory molecules on thymoma antigen-presenting cells (APC) in all thymomas. In normal thymus, the staining by anti-titin, anti-RyR, anti-LFA3, and anti-BB1 antibodies was weak and occurred exclusively in the medulla and perivascularly. Our results indicate a primary autosensitization against titin and RyR antigens inside the thymoma. In MG-associated thymoma, the mechanisms involved in the initial autosensitization against titin and RyR are probably similar to those implicated in the autosensitization against AChR. In all cases, there is an overexpression of muscle-like epitopes and costimulatory molecules indicating that the T-cell autoimmunization is actively promoted by the pathogenic microenvironment inside the thymoma.

  19. Thymoma and Thymic Carcinoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Thymoma and thymic carcinoma treatment options include surgery, radiation therapy, chemotherapy, chemoradiation, and corticosteroids. Get detailed information about treatment of newly diagnosed and recurrent thymoma and thymic cancer in this summary for clinicians.

  20. Appl1 Is Dispensable for Mouse Development, and Loss of Appl1 Has Growth Factor-selective Effects on Akt Signaling in Murine Embryonic Fibroblasts*

    PubMed Central

    Tan, Yinfei; You, Huihong; Wu, Chao; Altomare, Deborah A.; Testa, Joseph R.

    2010-01-01

    The adaptor protein APPL1 (adaptor protein containing pleckstrin homology (PH), phosphotyrosine binding (PTB), and leucine zipper motifs) was first identified as a binding protein of AKT2 by yeast two-hybrid screening. APPL1 was subsequently found to bind to several membrane-bound receptors and was implicated in their signal transduction through AKT and/or MAPK pathways. To determine the unambiguous role of Appl1 in vivo, we generated Appl1 knock-out mice. Here we report that Appl1 knock-out mice are viable and fertile. Appl1-null mice were born at expected Mendelian ratios, without obvious phenotypic abnormalities. Moreover, Akt activity in various fetal tissues was unchanged compared with that observed in wild-type littermates. Studies of isolated Appl1−/− murine embryonic fibroblasts (MEFs) showed that Akt activation by epidermal growth factor, insulin, or fetal bovine serum was similar to that observed in wild-type MEFs, although Akt activation by HGF was diminished in Appl1−/− MEFs. To rule out a possible redundant role played by the related Appl2, we used small interfering RNA to knock down Appl2 expression in Appl1−/− MEFs. Unexpectedly, cell survival was unaffected under normal culture conditions, and activation of Akt was unaltered following epidermal growth factor stimulation, although Akt activity did decrease further after HGF stimulation. Furthermore, we found that Appl proteins are required for HGF-induced cell survival and migration via activation of Akt. Our studies suggest that Appl1 is dispensable for development and only participate in Akt signaling under certain conditions. PMID:20040596

  1. [Acquired hypogammaglobulinemia associated with thymoma: Good syndrome].

    PubMed

    Aouadi, Samira; Ghrairi, Najla; Braham, Emna; Kaabi, Manel; Maâlej, Sonia; Elgharbi, Leila Douik

    2017-01-01

    Good syndrome (GS) is defined as the association between thymoma and immune deficiency. It is often complicated by broncho-pulmonary bacterial infections and rhinosinusitis. This disease accounts for only 5% of all parathymic syndromes. These recurrent respiratory infections can cause bronchiectasis associated with Good syndrome. We report the case of a 52-year old woman hospitalized for non resolutive infectious pneumonitis. Chest CT scan showed bronchiectasis associated with thymoma confirmed by biopsy. The discovery of hypogammaglobulinemia allowed the diagnosis of Good syndrome.

  2. Role of positive selection of thymoma-associated T cells in the pathogenesis of myasthenia gravis.

    PubMed

    Inada, Keiji; Okumura, Meinoshin; Shiono, Hiroyuki; Inoue, Masayoshi; Kadota, Yoshihisa; Ohta, Mitsunori; Matsuda, Hikaru

    2005-06-01

    A human thymoma is a thymic epithelial neoplasm and is characterized by its frequent association with myasthenia gravis. The histological characteristic of thymoma is coexistence of a large number of lymphocytes, including CD4(+)CD8(+) double positive T cells, phenotypes of the cortical thymocytes. To elucidate the role of these T lymphocytes in the pathogenesis of thymoma-associated myasthenia gravis, we examined the usage of alphabeta or gammadelta T cell receptor of the T lymphocytes in thymoma in conjunction with the positive selection event. Thymomas were obtained from 28 patients. Nine patients were associated with myasthenia gravis. Lymphocytes were freshly isolated from the tumor tissue and were subjected to four-color flow cytometric analysis. The average proportion of TCRalphabeta(+) cells in thymomas associated with myasthenia gravis was 47.0% and was significantly higher (P = 0.0008) than that without myasthenia gravis (23.4%). Positive selection event was then examined in terms of CD69, a positive selection marker. The mean proportion of TCRalphabeta(+)CD69(+)CD4(+)CD8(-) cells in the myasthenic thymomas (8.22%) was significantly greater (P = 0.015) than the nonmyasthenic thymomas (2.99%). On the other hand, there was not a significant difference in the mean proportion of TCRalphabeta(+)CD69(+)CD4(-)CD8(+) cells between the myasthenic and the nonmyasthenic thymomas. The possible role of development of TCRalphabeta(+) T cells, especially the role of positive selection of TCRalphabeta(+)CD4(+)CD8(-) T cells in thymoma, was suggested in the pathogenesis of thymoma-associated myasthenia gravis.

  3. Pediatric thymomas: report of two cases and comprehensive review of the literature.

    PubMed

    Fonseca, Annabelle L; Ozgediz, Doruk E; Christison-Lagay, Emily R; Detterbeck, Frank C; Caty, Michael G

    2014-03-01

    Thymomas are rare pediatric malignancies with indolent behavior. There are fewer than 50 reported cases and no comprehensive review. We sought to evaluate our recent experience with pediatric thymomas, and comprehensively review the extant literature. A systematic search of the PubMed database was performed using keywords: "thymoma", "pediatric", "juvenile", "childhood", and "child". Additional studies were identified by a manual search of the reference list. We report two patients with thymomas. We identified 22 case reports or series that described 48 patients; 62 % were male, 15 % presented with myasthenia gravis. Fifty percent were Masaoka Stage I, 15 % were Stage II, 13 % were Stage III, and 23 % were Stage IV. Four patients with early stage (I or II) disease were treated with adjuvant therapies in addition to surgical excision, while five patients with late stage (III or IV) disease treated with surgical excision alone. Of studies reporting at least 2-year follow-up, survival was 71 %. Pediatric thymomas are rare tumors with a slight male predominance. Wide variations were observed in the treatment of thymomas across all stages. Our review indicates a need for large database and multi-institutional studies to clearly elucidate clinical course, prognostic factors and outcome.

  4. Netrin-1 receptor antibodies in thymoma-associated neuromyotonia with myasthenia gravis.

    PubMed

    Torres-Vega, Estefanía; Mancheño, Nuria; Cebrián-Silla, Arantxa; Herranz-Pérez, Vicente; Chumillas, María J; Moris, Germán; Joubert, Bastien; Honnorat, Jérôme; Sevilla, Teresa; Vílchez, Juan J; Dalmau, Josep; Graus, Francesc; García-Verdugo, José Manuel; Bataller, Luis

    2017-03-28

    To identify cell-surface antibodies in patients with neuromyotonia and to describe the main clinical implications. Sera of 3 patients with thymoma-associated neuromyotonia and myasthenia gravis were used to immunoprecipitate and characterize neuronal cell-surface antigens using reported techniques. The clinical significance of antibodies against precipitated proteins was assessed with sera of 98 patients (neuromyotonia 46, myasthenia gravis 52, thymoma 42; 33 of them with overlapping syndromes) and 219 controls (other neurologic diseases, cancer, and healthy volunteers). Immunoprecipitation studies identified 3 targets, including the Netrin-1 receptors DCC (deleted in colorectal carcinoma) and UNC5A (uncoordinated-5A) as well as Caspr2 (contactin-associated protein-like 2). Cell-based assays with these antigens showed that among the indicated patients, 9 had antibodies against Netrin-1 receptors (7 with additional Caspr2 antibodies) and 5 had isolated Caspr2 antibodies. Only one of the 219 controls had isolated Caspr2 antibodies with relapsing myelitis episodes. Among patients with neuromyotonia and/or myasthenia gravis, the presence of Netrin-1 receptor or Caspr2 antibodies predicted thymoma ( p < 0.05). Coexisting Caspr2 and Netrin-1 receptor antibodies were associated with concurrent thymoma, myasthenia gravis, and neuromyotonia, often with Morvan syndrome ( p = 0.009). Expression of DCC, UNC5A, and Caspr2 proteins was demonstrated in paraffin-embedded thymoma samples (3) and normal thymus. Antibodies against Netrin-1 receptors (DCC and UNC5a) and Caspr2 often coexist and associate with thymoma in patients with neuromyotonia and myasthenia gravis. This study provides Class III evidence that antibodies against Netrin-1 receptors can identify patients with thymoma (sensitivity 21.4%, specificity 100%). © 2017 American Academy of Neurology.

  5. Netrin-1 receptor antibodies in thymoma-associated neuromyotonia with myasthenia gravis

    PubMed Central

    Torres-Vega, Estefanía; Mancheño, Nuria; Cebrián-Silla, Arantxa; Herranz-Pérez, Vicente; Chumillas, María J.; Moris, Germán; Joubert, Bastien; Honnorat, Jérôme; Sevilla, Teresa; Vílchez, Juan J.; Dalmau, Josep; Graus, Francesc; García-Verdugo, José Manuel

    2017-01-01

    Objective: To identify cell-surface antibodies in patients with neuromyotonia and to describe the main clinical implications. Methods: Sera of 3 patients with thymoma-associated neuromyotonia and myasthenia gravis were used to immunoprecipitate and characterize neuronal cell-surface antigens using reported techniques. The clinical significance of antibodies against precipitated proteins was assessed with sera of 98 patients (neuromyotonia 46, myasthenia gravis 52, thymoma 42; 33 of them with overlapping syndromes) and 219 controls (other neurologic diseases, cancer, and healthy volunteers). Results: Immunoprecipitation studies identified 3 targets, including the Netrin-1 receptors DCC (deleted in colorectal carcinoma) and UNC5A (uncoordinated-5A) as well as Caspr2 (contactin-associated protein-like 2). Cell-based assays with these antigens showed that among the indicated patients, 9 had antibodies against Netrin-1 receptors (7 with additional Caspr2 antibodies) and 5 had isolated Caspr2 antibodies. Only one of the 219 controls had isolated Caspr2 antibodies with relapsing myelitis episodes. Among patients with neuromyotonia and/or myasthenia gravis, the presence of Netrin-1 receptor or Caspr2 antibodies predicted thymoma (p < 0.05). Coexisting Caspr2 and Netrin-1 receptor antibodies were associated with concurrent thymoma, myasthenia gravis, and neuromyotonia, often with Morvan syndrome (p = 0.009). Expression of DCC, UNC5A, and Caspr2 proteins was demonstrated in paraffin-embedded thymoma samples (3) and normal thymus. Conclusions: Antibodies against Netrin-1 receptors (DCC and UNC5a) and Caspr2 often coexist and associate with thymoma in patients with neuromyotonia and myasthenia gravis. Classification of evidence: This study provides Class III evidence that antibodies against Netrin-1 receptors can identify patients with thymoma (sensitivity 21.4%, specificity 100%). PMID:28251919

  6. Metastatic Thymoma-Associated Myasthenia Gravis: Favorable Response to Steroid Pulse Therapy Plus Immunosuppressive Agent

    PubMed Central

    Qi, Guoyan; Liu, Peng; Dong, Huimin; Gu, Shanshan; Yang, Hongxia; Xue, Yinping

    2017-01-01

    Background Our study retrospectively reviewed the therapeutic effect of steroid pulse therapy in combination with an immunosuppressive agent in myasthenia gravis (MG) patients with metastatic thymoma. Material/Methods MG patients with metastatic thymoma that underwent methylprednisolone pulse therapy plus cyclophosphamide were retrospectively analyzed. Patients initially received methylprednisolone pulse therapy followed by oral methylprednisolone. Cyclophosphamide was prescribed simultaneously at the beginning of treatment. Clinical outcomes, including therapeutic efficacy and adverse effects of MG and thymoma, were assessed. Results Twelve patients were recruited. According to histological classification, 4 cases were type B2 thymoma, 3 were type B3, 2 were type B1, and 1 was type AB. After combined treatment for 15 days, both the thymoma and MG responded dramatically to high-dose methylprednisolone plus cyclophosphamide. The symptoms of MG were improved in all patients, with marked improvement in 6 patients and basic remission in 4. Interestingly, complete remission of thymoma was achieved in 5 patients and partial remission in 7 patients. Myasthenic crisis was observed in 1 patient and was relieved after intubation and ventilation. Adverse reactions were observed in 7 patients (58.3%), most commonly infections, and all were resolved without discontinuation of therapy. During the follow-up, all patients were stabilized except for 1 with pleural metastasis who received further treatment and another 1 who died from myasthenic crisis. Conclusions The present study in a series of MG patients with metastatic thymoma indicated that steroid pulse therapy in combination with immunosuppressive agents was an effective and well-tolerated for treatment of both metastatic thymoma and MG. Glucocorticoid pulse therapy plus immunosuppressive agents should therefore be considered in MG patients with metastatic thymoma. PMID:28278141

  7. The murine Cd48 gene: allelic polymorphism in the IgV-like region.

    PubMed

    Cabrero, J G; Freeman, G J; Reiser, H

    1998-12-01

    The murine CD48 molecule is a member of the immunoglobulin superfamily which regulates the activation of T lymphocytes. prior cloning experiments using mRNA from two different mouse strains had yielded discrepant sequences within the IgV-like domain of murine CD48. To resolve this issue, we have directly sequenced genomic DNA of 10 laboratory strains and two inbred strains of wild origin. The results of our analysis reveal an allelic polymorphism within the IgV-like domain of murine CD48.

  8. Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3β-mediated suppression of mitochondrial permeation pore opening.

    PubMed

    Zhang, Yingmei; Xia, Zhi; La Cour, Karissa H; Ren, Jun

    2011-11-01

    The present study was designed to examine the impact of chronic Akt activation on endoplasmic reticulum (ER) stress-induced cardiac mechanical anomalies, if any, and the underlying mechanism involved. Wild-type and transgenic mice with cardiac-specific overexpression of the active mutant of Akt (Myr-Akt) were subjected to the ER stress inducer tunicamycin (1 or 3 mg/kg). ER stress led to compromised echocardiographic (elevated left ventricular end-systolic diameter and reduced fractional shortening) and cardiomyocyte contractile function, intracellular Ca(2+) mishandling, and cell survival in wild-type mice associated with mitochondrial damage. In vitro ER stress induction in murine cardiomyocytes upregulated the ER stress proteins Gadd153, GRP78, and phospho-eIF2α, and promoted reactive oxygen species production, carbonyl formation, apoptosis, mitochondrial membrane potential loss, and mitochondrial permeation pore (mPTP) opening associated with overtly impaired cardiomyocyte contractile and intracellular Ca(2+) properties. Interestingly, these anomalies were mitigated by chronic Akt activation or the ER chaperon tauroursodeoxycholic acid (TUDCA). Treatment with tunicamycin also dephosphorylated Akt and its downstream signal glycogen synthase kinase 3β (GSK3β) (leading to activation of GSK3β), the effect of which was abrogated by Akt activation and TUDCA. The ER stress-induced cardiomyocyte contractile and mitochondrial anomalies were obliterated by the mPTP inhibitor cyclosporin A, GSK3β inhibitor SB216763, and ER stress inhibitor TUDCA. This research reported the direct relationship between ER stress and cardiomyocyte contractile and mitochondrial anomalies for the first time. Taken together, these data suggest that ER stress may compromise cardiac contractile and intracellular Ca(2+) properties, possibly through the Akt/GSK3β-dependent impairment of mitochondrial integrity.

  9. Mouse chromosomal mapping of a murine leukemia virus integration region (Mis-1) first identified in rat thymic leukemia.

    PubMed Central

    Jolicoeur, P; Villeneuve, L; Rassart, E; Kozak, C

    1985-01-01

    We have previously identified a region of genomic DNA which constitutes the site of frequent provirus integration in rat thymomas induced by Moloney murine leukemia virus (Lemay and Jolicoeur, Proc. Natl. Acad. Sci. USA 81:38-42, 1984). This genetic locus is now designated Mis-1 (Moloney integration site). Cellular sequences homologous to Mis-1 are present in mouse DNA. Using a series of hamster-mouse somatic cell hybrids, we mapped the Mis-1 locus to mouse chromosome 15. Frequent chromosome 15 aberrations have been described in mouse thymomas. Mis-1 represents a putative new oncogene which might be involved in the initiation or maintenance or both of these neoplasms. Images PMID:4068142

  10. Synchronous B3 thymoma and lung bronchoalveolar carcinoma.

    PubMed

    Patella, Miriam; Anile, Marco; Vitolo, Domenico; Venuta, Federico

    2011-01-01

    The association between thymic tumors and other intrathoracic or extrathoracic neoplasms is relatively rare; the synchronous occurrence of thymoma and bronchoalveolar carcinoma of the lung has never been described so far. A huge B3 cystic thymoma was found at thoracotomy to be associated with stage IV bronchoalveolar carcinoma (intraparenchymal and pleural metastases). The thymic tumor was completely resected; lung cancer was biopsied only for diagnosis and staging purposes. After an uneventful postoperative course the patient underwent chemotherapy; she is still alive and well one year after surgery.

  11. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer.

    PubMed

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.

  12. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    PubMed Central

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  13. A Gene Signature to Determine Metastatic Behavior in Thymomas

    PubMed Central

    Gökmen-Polar, Yesim; Wilkinson, Jeff; Maetzold, Derek; Stone, John F.; Oelschlager, Kristen M.; Vladislav, Ioan Tudor; Shirar, Kristen L.; Kesler, Kenneth A.; Loehrer, Patrick J.; Badve, Sunil

    2013-01-01

    Purpose Thymoma represents one of the rarest of all malignancies. Stage and completeness of resection have been used to ascertain postoperative therapeutic strategies albeit with limited prognostic accuracy. A molecular classifier would be useful to improve the assessment of metastatic behaviour and optimize patient management. Methods qRT-PCR assay for 23 genes (19 test and four reference genes) was performed on multi-institutional archival primary thymomas (n = 36). Gene expression levels were used to compute a signature, classifying tumors into classes 1 and 2, corresponding to low or high likelihood for metastases. The signature was validated in an independent multi-institutional cohort of patients (n = 75). Results A nine-gene signature that can predict metastatic behavior of thymomas was developed and validated. Using radial basis machine modeling in the training set, 5-year and 10-year metastasis-free survival rates were 77% and 26% for predicted low (class 1) and high (class 2) risk of metastasis (P = 0.0047, log-rank), respectively. For the validation set, 5-year metastasis-free survival rates were 97% and 30% for predicted low- and high-risk patients (P = 0.0004, log-rank), respectively. The 5-year metastasis-free survival rates for the validation set were 49% and 41% for Masaoka stages I/II and III/IV (P = 0.0537, log-rank), respectively. In univariate and multivariate Cox models evaluating common prognostic factors for thymoma metastasis, the nine-gene signature was the only independent indicator of metastases (P = 0.036). Conclusion A nine-gene signature was established and validated which predicts the likelihood of metastasis more accurately than traditional staging. This further underscores the biologic determinants of the clinical course of thymoma and may improve patient management. PMID:23894276

  14. Clinical and pathological aspects of microscopic thymoma with myasthenia gravis and review of published reports.

    PubMed

    Fukuhara, Mitsuro; Higuchi, Mitsunori; Owada, Yuki; Inoue, Takuya; Watanabe, Yuzuru; Yamaura, Takumi; Muto, Satoshi; Hasegawa, Takeo; Suzuki, Hiroyuki

    2017-06-01

    Microscopic thymomas, defined as epithelial proliferations smaller than 1 mm in diameter, characteristically occur in patients with myasthenia gravis without macroscopic thymic epithelial tumors. However, some clinical and pathological aspects of this entity are still unclear. This retrospective study includes five consecutive patients who had undergone extended thymectomy for myasthenia gravis at our institution from April 2007 to March 2016 and in whom microscopic thymomas were diagnosed by histopathological examination of the resected specimens. During the same period, we performed 32 extended transsternal thymothymectomies/thymectomies in patients with myasthenia gravis, including the above five cases. We here review 18 cases of microscopic thymoma, including our five cases and 13 previously reported cases. The incidence of previously undiagnosed microscopic thymoma in patients undergoing thymectomy for myasthenia gravis in our institution is 15.2%. Serum preoperative anti-acetylcholine receptor antibody (anti-AchR Ab) titers were abnormally high in all of our five cases h (74.4±53.3 nmol/L) and decreased significantly after surgery (11.7±13.5 nmol/L, P=0.037). We divided our cases into the following three groups: microscopic thymoma group (Group M), thymoma group (Group T) and non-thymic tumor group (Group N). The mean preoperative anti-AchR Ab titers of these groups were 74.4, 26.5, and 368 nmol/L, respectively. All these values decreased postoperatively. The mean anti-AchR Ab titer was significantly higher in Group M than in Group T (P=0.034). All five cases in Group M were found by post-operative pathological examination to have multifocal type A thymomas. Microscopic thymomas tend to be multifocal type A thymomas. Anti-AchR Ab titers decreased significantly in all groups. It is very important to both perform complete extended thymectomies in patients with myasthenia gravis and pathological examination of thin slices of thymic tissue to maximize detection

  15. Myasthenia gravis and autoimmune Addison disease in a patient with thymoma.

    PubMed

    Seker, Mesut; Gozu, Hulya Iliksu; Oven Ustaalioğlu, Bala Basak; Sonmez, Berkant; Erkal, Fatih Yavuz; Kocak, Mihriban; Barisik, Nagehan Ozdemir; Orbay, Ekrem; Sargin, Mehmet; Sargin, Haluk; Boru, Ulku Turk; Yaylaci, Mustafa

    2009-09-01

    The association of thymoma with myasthenia gravis has been well documented. However, the relationship between these two syndromes and Addison disease are very rarely encountered in clinical practice. We report on a 32-year-old man who underwent a resection for thymoma 48 months ago. The diagnosis of Addison disease was made followed by a diagnosis of myasthenia gravis on the basis of a high titer of acetylcholine receptor levels. The treatment of oral prednisolone 7.5 mg/day and oral prostigmine 180 mg/day was initiated. His symptoms and physical signs were improved after this treatment. To our knowledge, this is the fourth reported case of thymoma synchronously associated with myasthenia gravis and Addison disease.

  16. Temperature sensitivity of phospho-Ser{sup 473}-PKB/AKT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehler-Jaenne, Christoph; Bueren, Andre O. von; Vuong, Van

    2008-10-24

    The phospho-PKB/Akt status is often used as surrogate marker to measure activation of the PI3K/Akt/mTOR signal transduction pathway. Though, inconsistencies of the p-Ser{sup 473}-PKB/Akt status have raised doubts in the validity of p-Ser{sup 473}-PKB/Akt phosphorylation as endpoint. Here, we determined that p-Ser{sup 473}-PKB/Akt but not p-Thr{sup 308}-PKB/Akt phosphorylation is highly temperature sensitive. p-Ser{sup 473}-PKB/Akt phosphorylation was rapidly reduced to levels below 50% on exposure to 20-25 deg. C in murine and human cell lines including cells expressing constitutively active PI3K or lacking PTEN. Down-regulation of p-Ser{sup 473}-PKB/Akt was reversible and re-exposure to physiological temperature resulted in increased p-Ser{sup 473}-PKB/Akt phosphorylationmore » levels. Phosphatase activity at low temperature was sustained at 75% baseline level and phosphatase inhibition prevented p-Ser{sup 473}-PKB/Akt dephosphorylation induced by the low temperature shift. Interestingly temperature-dependent deregulation of the p-Ser{sup 473}-PKB/Akt status was also observed in response to irradiation. Thus our data demonstrate that minimal additional stress factors deregulate the PI3K/Akt-survival pathway and the p-Ser{sup 473}-PKB/Akt status as experimental endpoint.« less

  17. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells.

    PubMed

    Mercau, M E; Astort, F; Giordanino, E F; Martinez Calejman, C; Sanchez, R; Caldareri, L; Repetto, E M; Coso, O A; Cymeryng, C B

    2014-03-25

    Previous studies from our laboratory demonstrated the involvement of COX-2 in the stimulation of steroid production by LPS in murine adrenocortical Y1 cells, as well as in the adrenal cortex of male Wistar rats. In this paper we analyzed signaling pathways involved in the induction of this key regulatory enzyme in adrenocortical cells and demonstrated that LPS triggers an increase in COX-2 mRNA levels by mechanisms involving the stimulation of reactive oxygen species (ROS) generation and the activation of p38 MAPK and Akt, in addition to the previously demonstrated increase in NFκB activity. In this sense we showed that: (1) inhibition of p38 MAPK or PI3K/Akt (pharmacological or molecular) prevented the increase in COX-2 protein levels by LPS, (2) LPS induced p38 MAPK and Akt phosphorylation, (3) antioxidant treatment blocked the effect of LPS on p38 MAPK phosphorylation and in COX-2 protein levels, (4) PI3K inhibition with LY294002 prevented p38 MAPK phosphorylation and, (5) the activity of an NFκB reporter was decreased by p38 MAPK or PI3K inhibition. These results suggest that activation of both p38 MAPK and PI3K/Akt pathways promote the stimulation of NFκB activity and that PI3K/Akt activity might regulate both p38 MAPK and NFκB signaling pathways. In summary, in this study we showed that in adrenal cells, LPS induces COX-2 expression by activating p38 MAPK and PI3K/Akt signaling pathways and that both pathways converge in the modulation of NFκB transcriptional activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis

    PubMed Central

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2010-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-triphosphate (PIP3) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP3 and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis. PMID:20875857

  19. A case of co-existing paraganglioma and thymoma.

    PubMed

    Bano, G; Sennik, D; Kenchaiah, M; Kyaw, Ye; Snape, Katie; Tripathi, V; Wilson, P; Vlahos, I; Hunt, I; Hodgson, S

    2015-01-01

    Head and neck paragangliomas are rare tumours and can arise as a part of inherited syndromes. Their association with thymic tumour is not well known. This report describes a female patient who presented with right sided neck paragangliomas. The histology of the tumour was consistent with paraganlioma. Few years later her MRI scan of the chest revealed presence of an anterior mediastinal mass that corresponded to the location of the thymus. Review of her previous scans showed that the mass was present all along and had gradually increased in size. Patient developed symptoms including fatigue, dyspnoea, migratory polyarthritis, Raynaud's phenomenon and erythema nodosum. She had sternotomy and excision of mediastinal mass. The histology was consistent with cortical thymoma (WHO type B2) and she had radiotherapy. After treatment her constitutional symptoms improved. Her paraganglioma susceptibility genes are negative. To our knowledge this is only the second case report in the literature of coexistence of carotid body tumour and thymoma. The first case reported was bilateral carotid body tumour, thyroid gland adenoma and thymoma. This case also highlights the importance of long term surveillance, multidisciplinary management and being aware of associated pathologies in patients with isolated paraganglioma.

  20. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    PubMed

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser 318 , Ser 346 , Ser 612 , and Ser 789 , and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Knockdown of Akt1 promotes Akt2 upregulation and resistance to oxidative-stress-induced apoptosis through control of multiple signaling pathways.

    PubMed

    Zhang, Lan; Sun, Shuming; Zhou, Jie; Liu, Jiao; Lv, Jia-Han; Yu, Xiang-Qiang; Li, Chi; Gong, Lili; Yan, Qin; Deng, Mi; Xiao, Ling; Ma, Haili; Liu, Jin-Ping; Peng, Yun-Lei; Wang, Dao; Liao, Gao-Peng; Zou, Li-Jun; Liu, Wen-Bin; Xiao, Ya-Mei; Li, David Wan-Cheng

    2011-07-01

    The Akt signaling pathway plays a key role in promoting the survival of various types of cells from stress-induced apoptosis, and different members of the Akt family display distinct physiological roles. Previous studies have shown that in response to UV irradiation, Akt2 is sensitized to counteract the induced apoptosis. However, in response to oxidative stress such as hydrogen peroxide, it remains to be elucidated what member of the Akt family would be activated to initiate the signaling cascades leading to resistance of the induced apoptosis. In the present study, we present the first evidence that knockdown of Akt1 enhances cell survival under exposure to 50 μM H(2)O(2). This survival is derived from selective upregulation and activation of Akt2 but not Akt3, which initiates 3 major signaling cascades. First, murine double minute 2 (MDM2) is hyperphosphorylated, which promotes p53 degradation and attenuates its Ser-15 phosphorylation, significantly attenuating Bcl-2 homologous antagonist killer (Bak) upregulation. Second, Akt2 activation inactivates glycogen synthase kinase 3 beta (GSK-3β) to promote stability of myeloid leukemia cell differentiation protein 1 (MCL-1). Finally, Akt2 activation promotes phosphorylation of FOXO3A toward cytosolic export and thus downregulates Bim expression. Overexpression of Bim enhances H(2)O(2)-induced apoptosis. Together, our results demonstrate that among the Akt family members, Akt2 is an essential kinase in counteracting oxidative-stress-induced apoptosis through multiple signaling pathways.

  2. Multimodal treatment for stage IVA thymoma: a proposable strategy.

    PubMed

    Rena, Ottavio; Mineo, Tommaso Claudio; Casadio, Caterina

    2012-04-01

    A retrospective review of a series of consecutive patients was carried out to evaluate the feasibility and the efficacy of a multimodal treatment in the management of stage IVA thymoma at first diagnosis. From 1998 to 2008, 18 patients affected by stage IVA thymoma underwent neoadjuvant chemotherapy, surgery and subsequent mediastinal radiation therapy. There were 10 males and 8 females, mean age 54.5 years (range 29-68). Not specific symptoms were present in 12 cases and thymus-related syndromes were reported in 4. Histological subtypes were 1 AB, 2 B1, 4 B2, 7 B3, 1 mixed B1-B2, 1 mixed B1-B3 and 2 mixed B2-B3 thymomas. Neoadjuvant chemotherapy (4 courses of cisplatin-based chemotherapy) was well tolerated in all cases. Those patients demonstrating clinical response at restaging (16/18) received surgical resection: "en-bloc" thymoma, residual thymic tissue and tumour involved organs resection was carried out together with the pleural implants removal. Complete macroscopic resection was achieved 10/16 patients (64%). Postoperative mortality and morbidity were null and 24%, respectively. Adjuvant radiation therapy consisted of 45-54 Gy administered by a 6 MV linear accelerator to the whole mediastinum and previous tumour bed. Mean follow-up was 82±33 months (range 31-143); overall survival was 85% and 53% at 5- and 10-years. Disease-related survival of the entire cohort was 100% and 58% at 5- and 10-years, whereas freedom from relapse survival for patients submitted to complete resection was 58% and 42% at 5- and 10-years. Disease-related survival when complete and not complete resection were considered were 100% and 52% and 72% and 0% at 5- and 10-years respectively (p=0.048). Multimodal management based on induction chemotherapy, subsequent surgery and postoperative mediastinal radiation allows a good complete resection rate and it is demonstrated to be a safe and effective treatment to warrant a good long-term survival in stage IVA thymoma patients. Copyright

  3. PKBγ/AKT3 loss-of-function causes learning and memory deficits and deregulation of AKT/mTORC2 signaling: Relevance for schizophrenia

    PubMed Central

    Floyd, Kirsten; Law, Amanda J.

    2017-01-01

    Psychiatric genetic studies have identified genome-wide significant loci for schizophrenia. The AKT3/1q44 locus is a principal risk region and gene-network analyses identify AKT3 polymorphisms as a constituent of several neurobiological pathways relevant to psychiatric risk; the neurobiological mechanisms remain unknown. AKT3 shows prenatal enrichment during human neocortical development and recurrent copy number variations involving the 1q43-44 locus are associated with cortical malformations and intellectual disability, implicating an essential role in early brain development. Here, we investigated the role of AKT3 as it relates to aspects of learning and memory and behavioral function, relevant to schizophrenia and cognitive disability, utilizing a novel murine model of Akt3 genetic deficiency. Akt3 heterozygous (Akt3-/+) or null mice (Akt3-/-) were assessed in a comprehensive test battery. Brain biochemical studies were conducted to assess the impact of Akt3 deficiency on cortical Akt/mTOR signaling. Akt3-/+ and Akt3-/- mice exhibited selective deficits of temporal order discrimination and spatial memory, tasks critically dependent on intact prefrontal-hippocampal circuitry, but showed normal prepulse inhibition, fear conditioned learning, memory for novel objects and social function. Akt3 loss-of-function, reduced brain size and dramatically impaired cortical Akt Ser473 activation in an allele-dose dependent manner. Such changes were observed in the absence of altered Akt1 or Akt2 protein expression. Concomitant reduction of the mTORC2 complex proteins, Rictor and Sin1 identifies a potential mechanism. Our findings provide novel insight into the neurodevelopmental role of Akt3, identify a non-redundant role for Akt3 in the development of prefrontal cortical-mediated cognitive function and show that Akt3 is potentially the dominant regulator of AKT/mTOR signaling in brain. PMID:28467426

  4. General Information about Thymoma and Thymic Carcinoma

    MedlinePlus

    ... and Thymic Carcinoma Treatment (PDQ®)–Patient Version General Information About Thymoma and Thymic Carcinoma Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  5. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    PubMed

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Akt regulates drug-induced cell death through Bcl-w downregulation.

    PubMed

    Garofalo, Michela; Quintavalle, Cristina; Zanca, Ciro; De Rienzo, Assunta; Romano, Giulia; Acunzo, Mario; Puca, Loredana; Incoronato, Mariarosaria; Croce, Carlo M; Condorelli, Gerolama

    2008-01-01

    Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w.

  7. Concurrent renal amyloidosis and thymoma resulting in a fatal ventricular thrombus in a dog

    PubMed Central

    Loewen, Jennifer M.; Cianciolo, Rachel E.; Zhang, Liwen; Yaeger, Michael; Ward, Jessica L.; Smith, Jodi D.

    2018-01-01

    Thymoma‐associated nephropathies have been reported in people but not in dogs. In this report, we describe a dog with thymoma and concurrent renal amyloidosis. A 7‐year‐old castrated male Weimaraner was presented for progressive anorexia, lethargy, and tachypnea. The dog was diagnosed with azotemia, marked proteinuria, and a thymoma that was surgically removed. Postoperatively, the dog developed a large left ventricular thrombus and was euthanized. Necropsy confirmed the presence of a left ventricular thrombus and histopathology revealed renal amyloidosis. We speculate that the renal amyloidosis occurred secondary to the thymoma, with amyloidosis in turn leading to nephrotic syndrome, hypercoagulability, and ventricular thrombosis. This case illustrates the potential for thymoma‐associated nephropathies to occur in dogs and that dogs suspected to have thymoma should have a urinalysis and urine protein creatinine ratio performed as part of the pre‐surgical database. PMID:29485186

  8. Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells.

    PubMed

    Ku, H; Meier, K E

    2000-04-14

    Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.

  9. Metaplastic thymoma with myasthenia gravis presumably caused by an accumulation of intratumoral immature T cells: a case report.

    PubMed

    Tajima, Shogo; Yanagiya, Masahiro; Sato, Masaaki; Nakajima, Jun; Fukayama, Masashi

    2015-01-01

    Among human neoplasms, thymomas are well known for their association with paraneoplastic autoimmune diseases such as myasthenia gravis. However, regarding rare metaplastic thymoma, only one case of an association with myasthenia gravis has been reported. Here, we present the second case of a 44-year-old woman with metaplastic thymoma associated with myasthenia gravis. In metaplastic thymoma, intratumoral terminal deoxynucleotidyl transferase-positive T-cells (immature T-cells) are generally scarce, while they were abundant in the present case. We believe that these immature T-cells could be related to the occurrence of myasthenia gravis.

  10. Effects of MERTK Inhibitors UNC569 and UNC1062 on the Growth of Acute Myeloid Leukaemia Cells.

    PubMed

    Koda, Yuki; Itoh, Mai; Tohda, Shuji

    2018-01-01

    MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase that affects cancer cell proliferation. This study evaluated the effects of the synthetic MERTK inhibitors UNC569 and UNC1062 on in vitro growth of acute myeloid leukaemia (AML) cells. Four AML cell lines expressing MERTK were treated with UNC569 and UNC1062 and analyzed for cell proliferation, immunoblotting, and gene expression. The effects of MERTK knockdown were also evaluated. Treatment with the inhibitors suppressed cell growth and induced apoptosis in all cell lines. OCI/AML5 and TMD7 cells, in which MERTK was constitutively phosphorylated by autocrine mechanisms, were highly susceptible to these inhibitors. The treatment reduced the phosphorylation of MERTK and its down-stream signalling molecules, v-akt murine thymoma viral oncogene homolog 1 (AKT) and extracellular signal-regulated kinase (ERK). Similar effects were observed after MERTK knockdown. The inhibitors and the knockdown caused similar changes in mRNA expression. These MERTK inhibitors are potential molecular-targeted drugs for treating AML expressing constitutively phosphorylated MERTK. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. [A case of myasthenia gravis with invasive thymoma associated with diffuse panbronchiolitis, alopecia, dysgeusia, cholangitis and myositis].

    PubMed

    Maekawa, Risa; Shibuya, Hideki; Hideyama, Takuto; Shiio, Yasushi

    2014-01-01

    A 43-year-old man was admitted to our hospital because of diplopia, ptosis, and dysphagia that had begun three years previously. He was diagnosed with myasthenia gravis (MG) and invasive thymoma and treated with corticosteroid, thymectomy, and radiation therapy. Ten years after the thymectomy, computed tomography (CT) showed metastasis of the thymoma in the left lower lobe of the lung. Two years after this recurrence, when the patient was 55, respiratory symptoms such as wheezing, persistent cough, and dyspnea appeared. Chronic sinusitis, diffuse centrilobular opacities on CT, and positivity for HLA-B54 led to a diagnosis of diffuse panbronchiolitis (DPB). Despite treatment with clarithromycin, the respiratory symptoms worsened. The patient developed alopecia and body hair loss at the age of 56 followed by dysgeusia, cholangitis, and myositis with positivity for anti-Kv1.4 antibodies. Although treatment with an increased dose of corticosteroid improved hair loss, dysgeusia, cholangitis, and myositis, he died of progression of DPB and serious respiratory infection at the age of 58. In this case, various autoimmune disorders occurred together with MG as complications of thymoma. Although alopecia, dysgeusia, and myositis are already known as complications of MG associated with thymoma, cholangitis is not well-recognized since there have been few reports suggesting a causal relationship between cholangitis and thymoma. Furthermore, DPB caused by immunodeficiency and respiratory tract hypersensitivity associated with thymoma and HLA-B54, respectively, is the distinctive feature of our case. Neurologists should be aware that various organs can be damaged directly and indirectly by abnormal T cells from thymoma in patients with MG.

  12. Paraneoplastic neurologic syndrome and autoimmune Addison disease in a patient with thymoma.

    PubMed

    Morita, Hiroyuki; Hirota, Takuo; Mune, Tomoatsu; Suwa, Tetsuya; Ishizuka, Tatsuo; Inuzuka, Takashi; Tanaka, Keiko; Ishimori, Masatoshi; Nakamura, Shigenori; Yasuda, Keigo

    2005-01-01

    A 48-year-old man with autoimmune Addison disease developed the following paraneoplastic neurologic syndromes (PNNS): limbic encephalitis, opsoclonus/myoclonus, and sensorimotor and autonomic neuropathies. An anterior mediastinal mass detected on a chest computed tomographic scan was found on resection to be a noninvasive lymphocytic thymoma. The PNNS went into remission 1 year after the thymectomy. This is the first case of thymoma associated with autoimmune Addison disease and PNNS to be described in the literature.

  13. Islet amyloid polypeptide exerts a novel autocrine action in β-cell signaling and proliferation.

    PubMed

    Visa, Montse; Alcarraz-Vizán, Gema; Montane, Joel; Cadavez, Lisa; Castaño, Carlos; Villanueva-Peñacarrillo, María Luisa; Servitja, Joan-Marc; Novials, Anna

    2015-07-01

    The toxic effects of human islet amyloid polypeptide (IAPP) on pancreatic islets have been widely studied. However, much less attention has been paid to the physiologic actions of IAPP on pancreatic β cells, which secrete this peptide together with insulin upon glucose stimulation. Here, we aimed to explore the signaling pathways and mitogenic actions of IAPP on β cells. We show that IAPP activated Erk1/2 and v-akt murine thymoma viral oncogene homolog 1 (Akt) at the picomolar range (10-100 pM) in mouse pancreatic islets and MIN6 β cells cultured at low glucose concentrations. In contrast, IAPP decreased the induction of these pathways by high glucose levels. Consistently, IAPP induced a 1.7-fold increase of β-cell proliferation at low-glucose conditions, whereas it reduced β-cell proliferation at high glucose levels. Strikingly, the specific antagonist of the IAPP receptor AC187 (100 nM) decreased the activation of Erk1/2 and Akt and reduced β-cell proliferation by 24% in glucose-stimulated β cells, uncovering a key role of endogenously released IAPP in β-cell responses to glucose. We conclude that exogenously added IAPP exerts a dual effect on β-cell mitogenic signaling and proliferation, depending on the glucose concentration. Importantly, secreted IAPP contributes to the signaling and mitogenic response of β cells to glucose through an autocrine mechanism. © FASEB.

  14. Differential expression of genes associated with lipid metabolism in longissimus dorsi of Korean bulls and steers.

    PubMed

    Bong, Jin Jong; Jeong, Jin Young; Rajasekar, Panchamoorthy; Cho, Young Moo; Kwon, Eung Gi; Kim, Hyeong Cheol; Paek, Bong Hyun; Baik, Myunggi

    2012-07-01

    The objective of this study was to compare expression of genes associated with lipid deposition and removal between bulls and steers in the longissimus dorsi muscle (LM) tissue of Korean cattle. Castration increased the expression of lipid uptake lipoprotein lipase, fatty acid translocase, and fatty acid transport protein 1 in LM. Castration increased lipogenic gene expression of both acetyl-CoA carboxylase and fatty acid synthase. In contrast, castration downregulated lipolytic gene expression of both adipose triglyceride lipase (ATGL) and monoglyceride lipase. Steers showed higher expression levels of insulin signaling phospho-v-akt murine thymoma viral oncogene homolog 1 than bulls but lower protein levels of nuclear Forkhead box O 1 (FoxO1) than bulls, suggesting that increased insulin signaling following castration decreases nuclear FoxO1 levels, leading to downregulation of ATGL gene expression. These findings suggest that castration contributes to increases in lipid uptake and lipogenesis and a decrease in lipolysis, resulting in improved marbling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. o,p'-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Hee; Kim, Ji Young; Kim, Hyung-Kyun

    Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E{sub 2} (PGE{sub 2}), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDTmore » dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-{kappa}B site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT.« less

  16. Serum parathyroid hormone-related protein concentration in a dog with a thymoma and persistent hypercalcemia.

    PubMed Central

    Foley, P; Shaw, D; Runyon, C; McConkey, S; Ikede, B

    2000-01-01

    A thymoma was tentatively diagnosed by radiographic and cytologic examination in a dog with hypercalcemia and elevated serum parathyroid hormone-related protein (PTHrP) concentration. Following surgical excision, the diagnosis of thymoma was confirmed via histopathologic examination, the hypercalcemia resolved, and the PTHrP concentration decreased to below detectable limits. Images Figure 1. Figure 2. PMID:11126493

  17. Clinical and serologic parallels to APS-I in patients with thymomas, and autoantigen transcripts in their tumors1

    PubMed Central

    Wolff, Anette S. B.; Kärner, Jaanika; Owe, Jone F.; Oftedal, Bergithe E.V.; Gilhus, Nils Erik; Erichsen, Martina M.; Kämpe, Olle; Meager, Anthony; Peterson, Pärt; Kisand, Kai; Willcox, Nick; Husebye, Eystein S.

    2014-01-01

    Patients with the autoimmune polyendocrine syndrome type I (APS-I), caused by mutations in the autoimmune regulator (AIRE) gene, and myasthenia gravis (MG) with thymoma, show intriguing but unexplained parallels. They include uncommon manifestations like autoimmune adrenal insufficiency (AI), hypoparathyroidism (HP), and chronic mucocutaneous candidiasis (CMC) plus autoantibodies neutralizing IL-17, IL-22 and type I interferons. Thymopoiesis in the absence of AIRE is implicated in both syndromes. To test whether these parallels extend further, we screened 247 patients with MG and/or thymoma for clinical features and organ-specific autoantibodies characteristic of APS-I patients, and assayed 26 thymoma samples for transcripts for AIRE and 16 peripheral tissue-specific autoantigens (TSAgs) by quantitative PCR. We found APS-I-typical autoantibodies and clinical manifestations, including CMC, AI and asplenia, respectively in 49/121 (40%) and 10/121 (8%) thymoma patients, but clinical features seldom co-occurred with the corresponding autoantibodies. Both were rare in other MG subgroups (N=126). In 38 APS-I patients, by contrast, we observed neither autoantibodies against muscle antigens nor any neuromuscular disorders. Whereas relative transcript levels for AIRE and 7 of 16 TSAgs showed the expected under-expression in thymomas, levels were increased for 4 of the 5 TSAgs most frequently targeted by these patients’ autoAbs. Hence the clinical and serologic parallels to APS-I in patients with thymomas are not explained purely by deficient TSAg transcription in these aberrant AIRE-deficient tumors. We therefore propose additional explanations for the unusual autoimmune biases they provoke. Thymoma patients should be monitored for potentially life-threatening APS-I manifestations such as AI and HP. PMID:25230752

  18. Activation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating

    PubMed Central

    Kim, Deok-Song; Kim, Ji-Yun; Park, Jun-Gyu; Alfajaro, Mia Madel; Baek, Yeong-Bin; Cho, Eun-Hyo; Kwon, Joseph; Choi, Jong-Soon; Kang, Mun-Il; Park, Sang-Ik; Cho, Kyoung-Oh

    2018-01-01

    The cellular PI3K/Akt and/or MEK/ERK signaling pathways mediate the entry process or endosomal acidification during infection of many viruses. However, their roles in the early infection events of group A rotaviruses (RVAs) have remained elusive. Here, we show that late-penetration (L-P) human DS-1 and bovine NCDV RVA strains stimulate these signaling pathways very early in the infection. Inhibition of both signaling pathways significantly reduced production of viral progeny due to blockage of virus particles in the late endosome, indicating that neither of the two signaling pathways is involved in virus trafficking. However, immunoprecipitation assays using antibodies specific for pPI3K, pAkt, pERK and the subunit E of the V-ATPase co-immunoprecipitated the V-ATPase in complex with pPI3K, pAkt, and pERK. Moreover, Duolink proximity ligation assay revealed direct association of the subunit E of the V-ATPase with the molecules pPI3K, pAkt, and pERK, indicating that both signaling pathways are involved in V-ATPase-dependent endosomal acidification. Acidic replenishment of the medium restored uncoating of the RVA strains in cells pretreated with inhibitors specific for both signaling pathways, confirming the above results. Isolated components of the outer capsid proteins, expressed as VP4-VP8* and VP4-VP5* domains, and VP7, activated the PI3K/Akt and MEK/ERK pathways. Furthermore, psoralen-UV-inactivated RVA and CsCl-purified RVA triple-layered particles triggered activation of the PI3K/Akt and MEK/ERK pathways, confirming the above results. Our data demonstrate that multistep binding of outer capsid proteins of L-P RVA strains with cell surface receptors phosphorylates PI3K, Akt, and ERK, which in turn directly interact with the subunit E of the V-ATPase to acidify the late endosome for uncoating of RVAs. This study provides a better understanding of the RVA-host interaction during viral uncoating, which is of importance for the development of strategies aiming at

  19. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    PubMed

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  20. PIK3CA Mutations in Mucinous Cystic Neoplasms of the Pancreas

    PubMed Central

    Garcia-Carracedo, Dario; Chen, Zong-Ming; Qiu, Wanglong; Huang, Alicia S.; Tang, Sophia M.; Hruban, Ralph H.; Su, Gloria H.

    2014-01-01

    Objectives Mucinous cystic neoplasms (MCNs) are rare, potentially curable, mucin-producing neoplasms of the pancreas. We have previously reported PIK3CA (phosphoinositide-3-kinase catalytic subunit, p110α) mutations in intraductal papillary mucinous neoplasms, another mucin-producing neoplasm of the pancreas. In this study, we analyzed the presence of PIK3CA and AKT1/PKB (V-akt murine thymoma viral oncogene homolog 1) hot-spot mutations in MCN specimens. Methods Using the genomic DNA sequencing of tumor tissues isolated by laser capture microdissection, we evaluated 15 well-characterized MCNs for the E542K, E545K(exon 9), and H1047R (exon 20) hot-spotmutations in the PIK3CA gene and the E17K mutation in the AKT1 gene. Results A hot-spotmutation (E545K) of the PIK3CA gene was detected in 1 of the 15 MCNs and further confirmed by a mutant-enriched method. Interestingly, this mutation was found to be present only in the high-grade but not in low-grade dysplastic epithelium obtained from this neoplasm and coexisted with a KRASG12D mutation. No mutations were identified in the AKT1 gene. Conclusions Our data, when combined with previous reports on intraductal papillary mucinous neoplasms, indicate that oncogenic activation of the PI3K pathway involving PIK3CA gene mutations can contribute to the progression of mucin-producing neoplasms but not pancreatic intraepithelial neoplasia. PIK3CA status could be useful for understanding their progression to malignancy. PMID:24518503

  1. PI3K/Akt signaling is involved in the disruption of gap junctional communication caused by v-Src and TNF-α.

    PubMed

    Ito, Satoko; Hyodo, Toshinori; Hasegawa, Hitoki; Yuan, Hong; Hamaguchi, Michinari; Senga, Takeshi

    2010-09-17

    Gap junctional communication, which is mediated by the connexin protein family, is essential for the maintenance of normal tissue function and homeostasis. Loss of intercellular communication results in a failure to coordinately regulate cellular functions, and it can facilitate tumorigenesis. Expression of oncogenes and stimulation with cytokines has been shown to suppress intercellular communication; however, the exact mechanism by which intercellular communication is disrupted by these factors remains uncertain. In this report, we show that Akt is essential for the disruption of gap junctional communication in v-Src-transformed cells. In addition, inhibition of Akt restores gap junctional communication after it is suppressed by TNF-α signaling. Furthermore, we demonstrate that the expression of a constitutively active form of Akt1, but not of Akt2 or Akt3, is sufficient to suppress gap junctional communication. Our results clearly define Akt1 as one of the critical regulators of gap junctional communication. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Gene-Specific Methylation Analysis in Thymomas of Patients with Myasthenia Gravis

    PubMed Central

    Lopomo, Angela; Ricciardi, Roberta; Maestri, Michelangelo; De Rosa, Anna; Melfi, Franca; Lucchi, Marco; Mussi, Alfredo; Coppedè, Fabio; Migliore, Lucia

    2016-01-01

    Thymomas are uncommon neoplasms that arise from epithelial cells of the thymus and are often associated with myasthenia gravis (MG), an autoimmune disease characterized by autoantibodies directed to different targets at the neuromuscular junction. Little is known, however, concerning epigenetic changes occurring in thymomas from MG individuals. To further address this issue, we analyzed DNA methylation levels of genes involved in one-carbon metabolism (MTHFR) and DNA methylation (DNMT1, DNMT3A, and DNMT3B) in blood, tumor tissue, and healthy thymic epithelial cells from MG patients that underwent a surgical resection of a thymic neoplasm. For the analyses we applied the methylation-sensitive high-resolution melting technique. Both MTHFR and DNMT3A promoters showed significantly higher methylation in tumor tissue with respect to blood, and MTHFR also showed significantly higher methylation levels in tumor tissue respect to healthy adjacent thymic epithelial cells. Both DNMT1 and DNMT3B promoter regions were mostly hypomethylated in all the investigated tissues. The present study suggests that MTHFR methylation is increased in thymomas obtained from MG patients; furthermore, some degrees of methylation of the DNMT3A gene were observed in thymic tissue with respect to blood. PMID:27999265

  3. Expression and activity of multidrug resistance protein 1 in a murine thymoma cell line

    PubMed Central

    Echevarria-Lima, Juliana; Kyle-Cezar, Fernanda; Leite, Daniela F P; Capella, Luiz; Capella, Márcia A M; Rumjanek, Vivian M

    2005-01-01

    Multidrug resistance proteins [MRPs and P-glycoprotein (Pgp)] are members of the family of ATP-binding cassette (ABC) transport proteins, originally described as being involved in the resistance against anti-cancer agents in tumour cells. These proteins act as ATP-dependent efflux pumps and have now been described in normal cells where they exert physiological roles. The aim of this work was to investigate the expression and activity of MRP and Pgp in the thymoma cell line, EL4. It was observed that EL4 cells expressed mRNA for MRP1, but not for MRP2, MRP3 or Pgp. The activity of ABC transport proteins was evaluated by using the efflux of the fluorescent probes carboxy-2′-7′-dichlorofluorescein diacetate (CFDA) and rhodamine 123 (Rho 123). EL4 cells did not retain CFDA intracellularly, and MRP inhibitors (probenecid, indomethacin and MK 571) decreased MRP1 activity in a concentration-dependent manner. As expected, EL4 cells accumulated Rho 123, and the presence of cyclosporin A and verapamil did not modify this accumulation. Most importantly, when EL4 cells were incubated in the presence of the MRP1 inhibitors indomethacin and MK 571 for 6 days, they started to express CD4 and CD8 molecules on their surface, producing double-positive cells and CD8 single-positive cells. Our results suggest that MRP activity is important for the maintenance of the undifferentiated state in this cell type. This finding might have implications in the physiological process of normal thymocyte maturation. PMID:15804283

  4. [Symptoms of myasthenia gravis in a patient with a history of thymectomy for invasive thymoma].

    PubMed

    Giraldo, Lilliana María; Duque, Camilo; Uribe, Carlos Santiago; Hernández, Olga Helena

    2015-01-01

    Myasthenia gravis is an antibody-mediated autoimmune disease. Approximately 10-15% of patients present with a thymoma, the presence of which is associated with greater severity of symptoms, myasthenic crisis, and irresponsiveness to front-line therapy. A thymectomy is recommended in young patients with generalized myasthenia gravis and in all patients presenting with thymoma. The patient was a 43-year-old woman, who first showed symptoms of myasthenic crisis in 2005 and presented with invasive thymoma managed with thymectomy and radiotherapy. In the subsequent three years, the patient presented with severe symptoms and two myasthenic crises that required mechanical ventilation and immunoglobulin treatment. Contrast chest computed tomography examinations showed no recurrence. Between 2009 and 2012, the patient experienced decreased symptom severity. In 2013, the patient presented with an exacerbation of symptoms; a contrast chest magnetic resonance scan showed a lesion in the anterior mediastinum, previously observed in 2011, suggestive of residual tissue as opposed to fibrosis. Regular management was started with immunoglobulins; a positron emission tomography scan was inconclusive, requiring a new resection, which showed no evidence of tumor recurrence. Patients with myasthenia gravis and those with myasthenia-related thymoma both share thymectomy as an element of treatment. However, following the procedure, exacerbation or reappearance of symptoms does not necessarily represent new alterations in the thymus.

  5. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras.

    PubMed

    Akutagawa, J; Huang, T Q; Epstein, I; Chang, T; Quirindongo-Crespo, M; Cottonham, C L; Dail, M; Slusher, B S; Friedman, L S; Sampath, D; Braun, B S

    2016-06-01

    Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are myelodysplastic/myeloproliferative neoplasia (MDS/MPN) overlap syndromes that respond poorly to conventional treatments. Aberrant Ras activation because of NRAS, KRAS, PTPN11, CBL and NF1 mutations is common in CMML and JMML. However, no mechanism-based treatments currently exist for cancers with any of these mutations. An alternative therapeutic strategy involves targeting Ras-regulated effector pathways that are aberrantly activated in CMML and JMML, which include the Raf/MEK/ERK and phosphoinositide-3'-OH kinase (PI3K)/Akt cascades. Mx1-Cre, Kras(D12) and Mx1-Cre, Nf1(flox/)(-) mice accurately model many aspects of CMML and JMML. Treating Mx1-Cre, Kras(D12) mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia and splenomegaly while extending survival. However, GDC-0941 treatment attenuated activation of both PI3K/Akt and Raf/MEK/ERK pathways in primary hematopoietic cells, suggesting it could be acting through suppression of Raf/MEK/ERK signals. To interrogate the importance of the PI3K/Akt pathway specifically, we treated mice with the allosteric Akt inhibitor MK-2206. This compound had no effect on Raf/MEK/ERK signaling, yet it also induced robust hematologic responses in Kras and Nf1 mice with MPN. These data support investigating PI3K/Akt pathway inhibitors as a therapeutic strategy in JMML and CMML patients.

  6. Diagnostic Dilemma: Lymphocytopenia in a Patient with Thymoma – Side Effect due to Irradiation Treatment or Development of Good's Syndrome?

    PubMed Central

    Raaschou-Jensen, Klas; Katzenstein, Terese L.; Marquart, Hanne; Ryder, Lars; Daugaard, Gedske

    2010-01-01

    A case of persistent B-cell lymphocytopenia in a 40-year-old woman with lymphoid-epithelial thymoma treated with chemotherapy, surgery and irradiation is described. The possible diagnosis of Good's syndrome (hypogammaglobulinaemia and thymoma) is discussed. PMID:20740204

  7. A Molecular Connection Between Cancer Proliferation and Metastasis Mediated by Akt Kinase

    DTIC Science & Technology

    2006-08-01

    promoter. We set out to further map the molecular connections between Akt kinase activity and osteopontin transcription in breast epithelial cells. For...Because different growth rates did not account for the distinct phenotypes generated by osteopontin-a and osteopontin-c in soft agar, we set out ...murine encephalomyelitis virus, reovirus, Mycoplasma pulmonis, mouse parvovirus , epizootic diarrhea of infant mice virus, lymphocytic choriomeningitis

  8. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras

    PubMed Central

    Akutagawa, Jon; Huang, Tannie Q.; Epstein, Inbal; Chang, Tiffany; Quirindongo-Crespo, Maricel; Cottonham, Charisa L.; Dail, Monique; Slusher, Barbara S.; Friedman, Lori S.; Sampath, Deepak; Braun, Benjamin S.

    2016-01-01

    Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are myelodysplastic/myeloproliferative neoplasia (MDS/MPN) overlap syndromes that respond poorly to conventional treatments. Aberrant Ras activation due to NRAS, KRAS, PTPN11, CBL, and NF1 mutations is common in CMML and JMML. However, no mechanism-based treatments currently exist for cancers with any of these mutations. An alternative therapeutic strategy involves targeting Ras-regulated effector pathways that are aberrantly activated in CMML and JMML, which include the Raf/MEK/ERK and phosphoinositide-3´-OH kinase (PI3K)/Akt cascades. Mx1-Cre, KrasD12 and Mx1-Cre, Nf1flox/− mice accurately model many aspects of CMML and JMML. Treating Mx1-Cre, KrasD12 mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia, and splenomegaly while extending survival. However, GDC-0941 treatment attenuated activation of both PI3K/Akt and Raf/MEK/ERK pathways in primary hematopoietic cells, suggesting it could be acting through suppression of Raf/MEK/ERK signals. To interrogate the importance of the PI3K/Akt pathway specifically, we treated mice with the allosteric Akt inhibitor MK-2206. This compound had no effect on Raf/MEK/ERK signaling, yet it also induced robust hematologic responses in Kras and Nf1 mice with MPN. These data support investigating PI3K/Akt pathway inhibitors as a therapeutic strategy in JMML and CMML patients. PMID:26965285

  9. Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis

    PubMed Central

    Hellesøy, Monica; Lorens, James B.

    2015-01-01

    The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089

  10. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer

    PubMed Central

    Bhardwaj, Anjana; Singh, Harpreet; Rajapakshe, Kimal; Tachibana, Kazunoshin; Ganesan, Nivetha; Pan, Yinghong; Gunaratne, Preethi H.; Coarfa, Cristian; Bedrosian, Isabelle

    2017-01-01

    Little is understood about the early molecular drivers of triple-negative breast cancer (TNBC), making the identification of women at risk and development of targeted therapy for prevention significant challenges. By sequencing a TNBC cell line-based breast cancer progression model we have found that miRNA-29c is progressively lost during TNBC tumorigenesis. In support of the tumor suppressive role of miRNA 29c, we found that low levels predict poor overall patient survival and, conversely, that ectopic expression of miRNA-29c in preneoplastic cell models inhibits growth. miRNA-29c exerts its growth inhibitory effects through direct binding and regulation of TGFB-induced factor homeobox 2 (TGIF2), CAMP-responsive element binding protein 5 (CREB5), and V-Akt murine thymoma viral oncogene homolog 3 (AKT3). miRNA-29c regulation of these gene targets seems to be functionally relevant, as TGIF2, CREB5, and AKT3 were able to rescue the inhibition of cell proliferation and colony formation caused by ectopic expression of miRNA-29c in preneoplastic cells. AKT3 is an oncogene of known relevance in breast cancer, and as a proof of principle we show that inhibition of phosphoinositide 3-kinase (PI3K) activity, a protein upstream of AKT3, suppressed proliferation in TNBC preneoplastic cells. We explored additional opportunities for prevention of TNBC by studying the regulation of miRNA-29c and identified DNA methylation to have a role in the inhibition of miRNA-29c during TNBC tumorigenesis. Consistent with these observations, we found 5 aza-cytadine to relieve the suppression of miRNA-29c. Together, these results demonstrate that miRNA-29c loss plays a key role in the early development of TNBC. PMID:28160548

  11. Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis.

    PubMed

    Lee, Susie A; Ladu, Sara; Evert, Matthias; Dombrowski, Frank; De Murtas, Valentina; Chen, Xin; Calvisi, Diego F

    2010-08-01

    Sprouty2 (Spry2), a negative feedback regulator of the Ras/mitogen-activated protein kinase (MAPK) pathway, is frequently down-regulated in human hepatocellular carcinoma (HCC). We tested the hypothesis that loss of Spry2 cooperates with unconstrained activation of the c-Met protooncogene to induce hepatocarcinogenesis via in vitro and in vivo approaches. We found coordinated down-regulation of Spry2 protein expression and activation of c-Met as well as its downstream effectors extracellular signal-regulated kinase (ERK) and v-akt murine thymoma viral oncogene homolog (AKT) in a subset of human HCC samples with poor outcome. Mechanistic studies revealed that Spry2 function is disrupted in human HCC via multiple mechanisms at both transcriptional and post-transcriptional level, including promoter hypermethylation, loss of heterozygosity, and proteosomal degradation by neural precursor cell expressed, developmentally down-regulated 4 (NEDD4). In HCC cell lines, Spry2 overexpression inhibits c-Met-induced cell proliferation as well as ERK and AKT activation, whereas loss of Spry2 potentiates c-Met signaling. Most importantly, we show that blocking Spry2 activity via a dominant negative form of Spry2 cooperates with c-Met to promote hepatocarcinogenesis in the mouse liver by sustaining proliferation and angiogenesis. The tumors exhibited high levels of activated ERK and AKT, recapitulating the subgroup of human HCC with a clinically aggressive phenotype. The occurrence of frequent genetic, epigenetic, and biochemical events leading to Spry2 inactivation provides solid evidence that Spry2 functions as a tumor suppressor gene in liver cancer. Coordinated deregulation of Spry2 and c-Met signaling may be a pivotal oncogenic mechanism responsible for unrestrained activation of ERK and AKT pathways in human hepatocarcinogenesis.

  12. A common variation of the PTEN gene is associated with peripheral insulin resistance.

    PubMed

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, J F P; Poulsen, P; Grunnet, L G; Vaag, A

    2016-09-01

    Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated with fasting levels of plasma insulin and glucose, influences in vivo glucose metabolism and insulin signalling. The primary outcome measure was the gene variant's association with peripheral glucose disposal rate and, secondarily, whether this association was explained by altered activities of PTEN targets PI3K and Akt. A total of 183 normoglycaemic Danes, including 158 twins and 25 singletons, were genotyped for PTEN rs11202614, which is in complete linkage disequilibrium with rs2142136 and rs10788575, which have also been reported in association with glycaemic traits and type 2 diabetes (T2D). Hepatic and peripheral insulin sensitivity was measured using tracer and euglycaemic-hyperinsulinaemic clamp techniques; insulin secretion was assessed by intravenous glucose tolerance test; and muscle biopsies were taken during insulin infusion from 150 twins for measurement of PI3K and Akt activities. The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single nucleotide polymorphism was not associated with either PI3K or Akt activities. A common PTEN variation is associated with peripheral insulin resistance and subsequent risk of developing T2D. However, the association with insulin resistance is not explained by decreased proximal insulin signalling in skeletal muscle. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. A comparative study of the spatial distribution of mast cells and microvessels in the foetal, adult human thymus and thymoma.

    PubMed

    Raica, Marius; Cimpean, Anca Maria; Nico, Beatrice; Guidolin, Diego; Ribatti, Domenico

    2010-02-01

    Mast cells (MCs) are widely distributed in human and animal tissues and have been shown to play an important role in angiogenesis in normal and pathological conditions. Few data are available about the relationship between MCs and blood vessels in the normal human thymus, and there are virtually no data about their distribution and significance in thymoma. The aim of this study was to analyse the spatial distribution of MCs and microvessels in the normal foetal and adult thymus and thymoma. Twenty biopsy specimens of human thymus, including foetal and adult normal thymus and thymoma were analysed. Double staining with CD34 and mast cell tryptase was used to count both mast cells and microvessels in the same fields. Computer-assisted image analysis was performed to characterize the spatial distribution of MCs and blood vessels in selected specimens. Results demonstrated that MCs were localized exclusively to the medulla. Their number was significantly higher in thymoma specimens as compared with adult and foetal normal specimens respectively. In contrast the microvessel area was unchanged. The analysis of the spatial distribution and relationship between MCs and microvessels revealed that only in the thymoma specimens was there a significant spatial association between MCs and microvessels. Overall, these data suggest that MCs do not contribute significantly to the development of the vascular network in foetal and adult thymus, whereas in thymoma they show a close relationship to blood vessels. This could be an expression of their involvement not only in endothelial cells but also in tumour cell proliferation.

  14. Familial occurrence of thymoma and autoimmune diseases with the constitutional translocation t(14;20)(q24.1;p12.3).

    PubMed

    Nicodème, Frédéric; Geffroy, Sandrine; Conti, Massimo; Delobel, Bruno; Soenen, Valérie; Grardel, Nathalie; Porte, Henri; Copin, Marie-Christine; Laï, Jean-Luc; Andrieux, Joris

    2005-10-01

    Thymomas are low-grade epithelial cancers of the thymus whose prevalence varies between 0.1/100,000 and 0.4/100,000. Familial occurrence of thymoma is very rare. We studied a family bearing the constitutional chromosome translocation t(14;20)(q24;p12), 3 of whose members had a thymoma. In this family, among 27 patients, 11 had the translocation: 3 had thymoma and 4 others had 5 different autoimmune diseases: type 1 diabetes mellitus, Graves' disease, pernicious anemia, primitive Sjögren disease, and autoimmune pancytopenia. FISH studies allowed us to be more specific about the translocation breakpoints. The 14q24 breakpoint was in intron 5 of RAD51L1, and the 20p12 breakpoint was 100 kb telomeric to BMP2. RAD51L1 is a tumor-suppressor gene belonging to the RAD51 family, already implicated in many tumors (uterine leiomyomas, pseudo-Meigs syndromes, pulmonary chondroid hamartomas) and involved in recombinational repair of DNA double-strand breaks. BMP2 belongs to the TGFbeta superfamily, and the BMP2-BMP4 genes are involved in thymocyte differentiation by blocking progression from CD4-CD8- to CD4+CD8+ while maintaining a sufficient pool of immature precursors. Dysregulation of RAD51L1 and/or BMP2 may explain this familial occurrence of thymomas and autoimmune diseases. Using QRT-PCR, we studied the expression of BMP2 in 20 sporadic thymomas and found various levels of expression that may be associated with autoimmune diseases.

  15. mTORC1 activation blocks BrafV600E-induced growth-arrest, but is insufficient for melanoma formation

    PubMed Central

    Damsky, William; Micevic, Goran; Meeth, Katrina; Muthusamy, Viswanathan; Curley, David P.; Santhankrishnan, Manjula; Erdelyi, Ildiko; Platt, James T.; Huang, Laura; Theodosakis, Nicholas; Zaidi, M. Raza; Tighe, Scott; Davies, Michael A.; Dankort, David; McMahon, Martin; Merlino, Glenn; Bardeesy, Nabeel; Bosenberg, Marcus

    2014-01-01

    SUMMARY BrafV600E induces benign, growth-arrested melanocytic nevus development, but also drives melanoma formation. Cdkn2a loss in BrafV600E melanocytes in mice results in rare progression to melanoma, but only after stable growth arrest as nevi. Immediate progression to melanoma is prevented by upregulation of miR-99/100 which downregulates mTOR and IGF1R signaling. mTORC1 activation through Stk11 (Lkb1) loss abrogates growth-arrest of BrafV600E melanocytic nevi, but is insufficient for complete progression to melanoma. Cdkn2a loss is associated with mTORC2 and Akt activation in human and murine melanocytic neoplasms. Simultaneous Cdkn2a and Lkb1 inactivation in BrafV600E melanocytes results in activation of both mTORC1 and mTORC2/Akt, inducing rapid melanoma formation in mice. In this model, activation of both mTORC1/2 is required for Braf-induced melanomagenesis. PMID:25584893

  16. Effect of API-1 and FR180204 on cell proliferation and apoptosis in human DLD-1 and LoVo colorectal cancer cells

    PubMed Central

    Saglam, Atiye Seda Yar; Alp, Ebru; Elmazoglu, Zubeyir; Menevse, Emine Sevda

    2016-01-01

    The activation of the phosphatidylinositol-3 kinase/v-akt murine thymoma viral oncogene homolog (Akt) and mitogen activated protein kinase kinase/extracellular signal-regulated kinase (ERK) pathways are implicated in the majority of cancers. Selective inhibition of Akt and ERK represents a potential approach for cancer therapy. Therefore, the present study aimed to investigate the apoptotic and anti-proliferative effects of the novel and selective Akt inhibitor 4-amino-5,8-dihydro-5-oxo-8-β-D-ribofuranosyl-pyrido[2,3-d]pyrimidine-6-carboxamide (API-1) and selective ERK1/2 inhibitor FR180204 (FR) alone and in combination on colorectal cancer (CRC) cells (DLD-1 and LoVo). In addition, the effects of API-1 and FR on Akt and ERK signaling pathways were also investigated. The effects of the agents on DLD-1 and LoVo cells were evaluated in terms of cell viability, cytotoxicity, DNA synthesis rate, DNA fragmentation and caspase-3 activity levels. In addition, quantitative reverse transcription-polymerase chain reaction and western blot analysis were performed to examine relevant mRNA and protein levels. The present study observed that the combination of FR with API-1 resulted in significant apoptosis and cytotoxicity compared with any single agent alone in a time-dependent manner in these cells. Also, treatment with FR and API-1 in combination decreased the expression levels of B-cell lymphoma-2 (BCL2), Bcl-2-like1, cyclin D1 and cMYC, and increased the expression levels of BCL2-associated X protein and BCL2 antagonist/killer via phosphorylated Akt and phosphorylated ERK1/2 downregulation. The combination of Akt and ERK1/2 inhibitors resulted in enhanced apoptotic and anti-proliferative effects against CRC cells. The present study hypothesizes that the combination of FR and API-1 in CRC cells may contribute toward potential anti-carcinogenic effects. Additional analyses using other cancer cell lines and animal models are required to confirm these findings in vitro and in

  17. Effect of API-1 and FR180204 on cell proliferation and apoptosis in human DLD-1 and LoVo colorectal cancer cells.

    PubMed

    Saglam, Atiye Seda Yar; Alp, Ebru; Elmazoglu, Zubeyir; Menevse, Emine Sevda

    2016-10-01

    The activation of the phosphatidylinositol-3 kinase/v-akt murine thymoma viral oncogene homolog (Akt) and mitogen activated protein kinase kinase/extracellular signal-regulated kinase (ERK) pathways are implicated in the majority of cancers. Selective inhibition of Akt and ERK represents a potential approach for cancer therapy. Therefore, the present study aimed to investigate the apoptotic and anti-proliferative effects of the novel and selective Akt inhibitor 4-amino-5,8-dihydro-5-oxo-8-β-D-ribofuranosyl-pyrido[2,3-d]pyrimidine-6-carboxamide (API-1) and selective ERK1/2 inhibitor FR180204 (FR) alone and in combination on colorectal cancer (CRC) cells (DLD-1 and LoVo). In addition, the effects of API-1 and FR on Akt and ERK signaling pathways were also investigated. The effects of the agents on DLD-1 and LoVo cells were evaluated in terms of cell viability, cytotoxicity, DNA synthesis rate, DNA fragmentation and caspase-3 activity levels. In addition, quantitative reverse transcription-polymerase chain reaction and western blot analysis were performed to examine relevant mRNA and protein levels. The present study observed that the combination of FR with API-1 resulted in significant apoptosis and cytotoxicity compared with any single agent alone in a time-dependent manner in these cells. Also, treatment with FR and API-1 in combination decreased the expression levels of B-cell lymphoma-2 (BCL2), Bcl-2-like1, cyclin D1 and cMYC, and increased the expression levels of BCL2-associated X protein and BCL2 antagonist/killer via phosphorylated Akt and phosphorylated ERK1/2 downregulation. The combination of Akt and ERK1/2 inhibitors resulted in enhanced apoptotic and anti-proliferative effects against CRC cells. The present study hypothesizes that the combination of FR and API-1 in CRC cells may contribute toward potential anti-carcinogenic effects. Additional analyses using other cancer cell lines and animal models are required to confirm these findings in vitro and in

  18. Effect of homeopathic preparations of Syzygium jambolanum and Cephalandra indica on gastrocnemius muscle of high fat and high fructose-induced type-2 diabetic rats.

    PubMed

    Sampath, Sathish; Narasimhan, Akilavalli; Chinta, Raveendar; Nair, K R Janardanan; Khurana, Anil; Nayak, Debadatta; Kumar, Alok; Karundevi, Balasubramanian

    2013-07-01

    Homeopathy is a holistic method of treatment that uses microdoses of natural substances originating from plants, minerals, or animal parts. Syzygium jambolanum and Cephalandra indica are used in homeopathy for treatment of type-2 diabetes. However, the molecular mechanisms responsible for such effects are not known. Homeopathic preparations of S. jambolanum and C. indica in mother tincture, 6c and 30c were used to examine the molecular mechanism of antidiabetic effects in the skeletal muscle of rats with high fat and fructose-induced type-2 diabetes mellitus. After 30 days treatment, fasting blood glucose, serum insulin and insulin signaling molecules in the skeletal muscle (gastrocnemius) were measured. Diabetic rats showed a significant decrease in serum insulin and lipid profile as well as low levels of insulin receptor (IR), v-akt murine thymoma viral oncogene homolog (Akt), p-Akt(ser473) and glucose transporter-4 (GLUT4) protein expression (p < 0.05) with a significant increase in fasting blood glucose level (p < 0.05) compared to the control group. Treatment with homeopathic remedies significantly increased the serum insulin and expression of these proteins (p < 0.05) with a significant decrease in fasting blood glucose (p < 0.05) compared to diabetic rats. In the present study homeopathic preparations of S. jambolanum and C. indica, including ultramolecular dilutions exhibit antidiabetic effects, improving insulin action through activation of insulin signaling molecules in skeletal muscle of type-2 diabetic rats. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  19. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis

    PubMed Central

    Li, Ni; Xue, Wei; Yuan, Huairui; Dong, Baijun; Ding, Yufeng; Liu, Yongfeng; Jiang, Min; Kan, Shan; Sun, Tongyu; Ren, Jiale; Pan, Qiang; Li, Xiang; Zhang, Peiyuan; Wang, Yan; Wang, Xiaoming; Li, Qintong

    2017-01-01

    Loss of phosphatase and tensin homolog (PTEN) and activation of the PI3K/AKT signaling pathway are hallmarks of prostate cancer (PCa). However, these alterations alone are insufficient for cells to acquire metastatic traits. Here, we have shown that the histone dimethyl transferase WHSC1 critically drives indolent PTEN-null tumors to become metastatic PCa. In a PTEN-null murine PCa model, WHSC1 overexpression in prostate epithelium cooperated with Pten deletion to produce a metastasis-prone tumor. Conversely, genetic ablation of Whsc1 prevented tumor progression in PTEN-null mice. Molecular characterization revealed that increased AKT activity due to PTEN loss directly phosphorylates WHSC1 at S172, preventing WHSC1 degradation by CRL4Cdt2 E3 ligase. Increased WHSC1 expression transcriptionally upregulates expression of RICTOR, a pivotal component of mTOR complex 2 (mTORC2), to further enhance AKT activity. Therefore, the AKT/WHSC1/mTORC2 signaling cascade represents a vicious feedback loop that elicits unrestrained AKT signaling. Furthermore, we determined that WHSC1 positively regulates Rac1 transcription to increase tumor cell motility. The biological importance of a WHSC1-mediated signaling cascade is substantiated by patient sample analysis in which WHSC1 signaling is tightly correlated with disease progression and recurrence. Taken together, our findings highlight a pivotal link between an epigenetic regulator, WHSC1, and key intracellular signaling molecules, AKT, RICTOR, and Rac1, to drive PCa metastasis. PMID:28319045

  20. Thymic nurse cells (TNC) in spontaneous thymoma BUF/Mna rats as a model to study their roles in T-cell development.

    PubMed Central

    Ezaki, T; Matsuno, K; Kotani, M

    1991-01-01

    In order to elucidate possible roles of thymic nurse cells (TNC) we isolated them as lympho-epithelial cell complexes from spontaneous thymomas of BUF/Mna rats and characterized them using immuno- and enzyme-histochemical techniques. A remarkable increase in the number of TNC was seen at 8 months of age, immediately before or in accordance with the onset of thymomas. No structural abnormality in the TNC was detected by light-microscopy compared with those from normal control thymi. Phenotypically, the TNC per se were positive for major histocompatibility complex (MHC) class I, class II, cytokeratin and thymulin, but lacked macrophage markers, indicating their epithelial origin. They also expressed some of the markers for non-epithelial components, such as Thy-1, S100 and peanut agglutinin (PNA). The majority of intra-TNC cells were MHC class 1+, Thy-1+, CD5+, CD4+ CD8+ (double positive) and PNA+, but with some heterogeneity in their phenotype. The intra-TNC cells from thymomas revealed higher proliferation indices than those from control thymi, as assessed by 5-bromo-2'-deoxyuridine (BrdU)-uptake. It was also demonstrated for the first time that, not only in thymoma rats but also in normal control rats, about 15-30% of TNC enclosed macrophage populations within them. These results may suggest that the TNC in BUF/Mna thymomas represent typical TNC populations, but they are hyperactive particularly in their number and nursing capacity, resulting in the unusual increment of thymocytes in the thymomas. This animal model lends itself greatly to studies on the regulatory roles of TNC in T-cell development. Images Figure 1 Figure 2 Figure 3 PMID:2071160

  1. Lysosomal Interaction of Akt with Phafin2: A Critical Step in the Induction of Autophagy

    PubMed Central

    Matsuda-Lennikov, Mami; Suizu, Futoshi; Hirata, Noriyuki; Hashimoto, Manabu; Kimura, Kohki; Nagamine, Tadashi; Fujioka, Yoichiro; Ohba, Yusuke; Iwanaga, Toshihiko; Noguchi, Masayuki

    2014-01-01

    Autophagy is an evolutionarily conserved mechanism for the gross disposal of intracellular proteins in mammalian cells and dysfunction in this pathway has been associated with human disease. Although the serine threonine kinase Akt is suggested to play a role in this process, little is known about the molecular mechanisms by which Akt induces autophagy. Using a yeast two-hybrid screen, Phafin2 (EAPF or PLEKHF2), a lysosomal protein with a unique structure of N-terminal PH (pleckstrin homology) domain and C-terminal FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain was found to interact with Akt. A sucrose gradient fractionation experiment revealed that both Akt and Phafin2 co-existed in the same lysosome enriched fraction after autophagy induction. Confocal microscopic analysis and BiFC analysis demonstrated that both Akt and Phafin2 accumulate in the lysosome after induction of autophagy. BiFC analysis using PtdIns (3)P interaction defective mutant of Phafin2 demonstrated that lysosomal accumulation of the Akt-Phafin2 complex and subsequent induction of autophagy were lysosomal PtdIns (3)P dependent events. Furthermore, in murine macrophages, both Akt and Phafin2 were required for digestion of fluorescent bacteria and/or LPS-induced autophagy. Taken together, these findings establish that lysosomal accumulation of Akt and Phafin2 is a critical step in the induction of autophagy via an interaction with PtdIns (3)P. PMID:24416124

  2. Survival Impact of Adjuvant Radiation Therapy in Masaoka Stage II to IV Thymomas: A Systematic Review and Meta-analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Yu Jin; Kim, Eunji; Kim, Hak Jae, E-mail: khjae@snu.ac.kr

    Purpose: To evaluate the survival impact of postoperative radiation therapy (PORT) in stage II to IV thymomas, using systematic review and meta-analysis. Methods and Materials: A database search was conducted with EMBASE, PubMed, Web of Science, Cochrane Library, and Ovid from inception to August 2015. Thymic carcinomas were excluded, and studies comparing overall survival (OS) with and without PORT in thymomas were included. The hazard ratios (HRs) of OS were extracted, and a random-effects model was used in the pooled analysis. Results: Seven retrospective series with a total of 1724 patients were included and analyzed. Almost all of the patients underwentmore » macroscopically complete resection, and thymoma histology was confirmed by the World Health Organization criteria. In the overall analysis of stage II to IV thymomas, OS was not altered with the receipt of PORT (HR 0.79, 95% confidence interval [CI] 0.58-1.08). Although PORT was not associated with survival difference in Masaoka stage II disease (HR 1.45, 95% CI 0.83-2.55), improved OS was observed with the addition of PORT in the discrete pooled analysis of stage III to IV (HR 0.63, 95% CI 0.40-0.99). Significant heterogeneity and publication bias were not found in the analyses. Conclusions: From the present meta-analysis of sole primary thymomas, we suggest the potential OS benefit of PORT in locally advanced tumors with macroscopically complete resection, but not in stage II disease. Further investigations with sufficient survival data are needed to establish detailed treatment indications.« less

  3. Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R.

    PubMed

    Patel, Bhaumik B; Gupta, Deepshika; Elliott, Althea A; Sengupta, Vivek; Yu, Yingjie; Majumdar, Adhip P N

    2010-02-01

    Curcumin (diferuloylmethane), which has no discernible toxicity, inhibits initiation, promotion and progression of carcinogenesis. 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) remains the backbone of colorectal cancer chemotherapeutics, but produces an incomplete response resulting in survival of cells (chemo-surviving cells) that may lead to cancer recurrence. The present investigation was, therefore, undertaken to examine whether addition of curcumin to FOLFOX is a superior therapeutic strategy for chemo-surviving cells. Forty-eight-hour treatment of colon cancer HCT-116 and HT-29 cells with FOLFOX resulted in 60-70% survival, accompanied by a marked activation of insulin like growth factor-1 receptor (IGF-1R) and minor to moderate increase in epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2) as well as v-akt murine thymoma viral oncogene homolog 1 (AKT), cyclooxygenase-2 (COX-2) and cyclin-D1. However, inclusion of curcumin to continued FOLFOX treatment for another 48 h greatly reduced the survival of these cells, accompanied by a concomitant reduction in activation of EGFR, HER-2, IGF-1R and AKT, as well as expression of COX-2 and cyclin-D1. More importantly, EGFR tyrosine kinase inhibitor gefitinib or attenuation of IGF-1R expression by the corresponding si-RNA caused a 30-60% growth inhibition of chemo-surviving HCT-116 cells. However, curcumin alone was found to be more effective than both gefitinib and IGF-1R si-RNA mediated growth inhibition of chemo-surviving HCT-116 cells and addition of FOLFOX to curcumin did not increase the growth inhibitory effect of curcumin. Our data suggest that inclusion of curcumin in conventional chemotherapeutic regimens could be an effective strategy to prevent the emergence of chemoresistant colon cancer cells.

  4. Quercetin Attenuates Cell Survival, Inflammation, and Angiogenesis via Modulation of AKT Signaling in Murine T-Cell Lymphoma.

    PubMed

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2017-04-01

    AKT signaling is important to maintaining normal physiology. Hyperactivation of AKT signaling is frequent in cancer, which maintains a high oxidative state in a tumor microenvironment that is needed for tumor adaptation. Therefore, antioxidants are proposed to exhibit anticancer properties by interfering with the tumor microenvironment. Quercetin is an ubiquitous bioactive antioxidant rich in vegetables and beverages. The present study aimed to analyze cancer preventive property of quercetin in ascite cells of Dalton's lymphoma-bearing mice. Protein level was determined by Western blotting. Nitric oxide (NO) level was estimated spectrophotometrically using Griess reagent. Results show downregulation in phosphorylation of AKT and PDK1 by quercetin, which was consistent with decreased phosphorylation of downstream survival factors such as BAD, GSK-3β, mTOR, and IkBα. Further, quercetin attenuated the levels of angiogenic factor VEGF-A and inflammatory enzymes COX-2 and iNOS as well as NO levels, whereas it increased the levels of phosphatase PTEN. Overall results suggest that quercetin modulates AKT signaling leading to attenuation of cell survival, inflammation, and angiogenesis in lymphoma-bearing mice.

  5. Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone.

    PubMed

    Liu, Weidong; Mao, Li; Ji, Feng; Chen, Fengli; Wang, Shouguo; Xie, Yue

    2017-01-10

    The potential effect of icariside II on dexamethasone-induced osteoblast cell damages was evaluated here. In MC3T3-E1 osteoblastic cells and the primary murine osteoblasts, co-treatment with icariside II dramatically attenuated dexamethasone- induced cell death and apoptosis. Icariside II activated Akt signaling, which is required for its actions in osteoblasts. Akt inhibitors (LY294002, perifosine and MK-2206) almost abolished icariside II-induced osteoblast cytoprotection against dexamethasone. Further studies showed that icariside II activated Nrf2 signaling, downstream of Akt, to inhibit dexamethasone-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary osteoblasts. On the other hand, Nrf2 shRNA knockdown inhibited icariside II-induced anti-dexamethasone cytoprotection in MC3T3-E1 cells. Finally, we showed that icariside II induced heparin-binding EGF (HB-EGF) production and EGFR trans-activation in MC3T3-E1 cells. EGFR inhibition, via anti-HB-EGF antibody, EGFR inhibitor AG1478 or EGFR shRNA knockdown, almost blocked icariside II-induced Akt-Nrf2 activation in MC3T3-E1 cells. Collectively, we conclude that icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone. Icariside II might have translational value for the treatment of dexamethasone-associated osteoporosis/osteonecrosis.

  6. A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation.

    PubMed

    Cuthbert, Candace E; Foster, Jerome E; Ramdath, D Dan

    2017-10-01

    A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (P<0·05) of genes coding for v-Akt murine thymoma viral oncogene homolog 2, resistin and v-Raf-1 murine leukaemia viral oncogene homolog 1 (Raf1) in offspring skeletal muscle and acetyl-CoA carboxylase (Acaca), fatty acid synthase and phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit β in offspring liver. Skeletal muscle neuropeptide Y and hepatic Kruppel-like factor 10 were up-regulated in HFS v. CON offspring (P<0·05). Compared with CON, Acaca and Raf1 protein expression levels were significantly lower in HFS offspring. Maternal HFS induced higher homoeostasis model of assessment index of insulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.

  7. Determinants of complete resection of thymoma by minimally invasive and open thymectomy: analysis of an international registry

    PubMed Central

    Burt, Bryan M.; Yao, Xiaopan; Shrager, Joseph; Antonicelli, Alberto; Padda, Sukhmani; Reiss, Jonathan; Wakelee, Heather; Su, Stacey; Huang, James; Scott, Walter

    2017-01-01

    INTRODUCTION Minimally invasive thymectomy (MIT) is a surgical approach to thymectomy that has more favorable short-term outcomes than open thymectomy (OT) for myasthenia gravis. When performed for thymoma, the oncologic outcomes of MIT have not been rigorously evaluated. We analyzed determinants of complete (R0) resection among patients undergoing MIT and open thymectomy in a large international database. METHODS The retrospective database of the International Thymic Malignancy Interest Group (ITMIG) was queried. Chi-Square and Wilcoxon rank-sum tests, multivariate logistic regression models, and propensity matching were performed. RESULTS A total of 2514 patients underwent thymectomy for thymoma between 1997 and 2012. 2053 (82%) patients underwent OT, 461 (18%) patients underwent MIT, and the use of MIT increased significantly in recent years. The rate of R0 resection among patients undergoing OT was 86%, and among those undergoing MIT was 94%, respectively (p<0.0001). In propensity matched MIT and OT groups (n=266 each group), however, the rate of R0 resection did not differ significantly (MIT 96%, OT 96%, p=0.7). Multivariate analyses were performed to identify determinants of complete resection. Factors independently associated with R0 resection were geographical region, later time period, less advanced Masaoka stage, total thymectomy, and the absence of radiotherapy. Surgical approach, whether minimally invasive or open, was not associated with completeness of resection. CONCLUSIONS The use of MIT for resection of thymoma is increasing substantially over time, and MIT can achieve similar rates of R0 resection for thymoma as OT. PMID:27566187

  8. High glucose induces alternative activation of macrophages via PI3K/Akt signaling pathway.

    PubMed

    Wang, Jie; Liu, Jingjing; Wang, Yuying; Lin, Minghui; Tian, Wei; Zhou, Lingling; Ye, Xiaoyin; Lin, Lihang

    2017-08-01

    It has been proved that lactate-4.25% dialysate could result in peritoneal fibrosis by inducing alternative activation of macrophages in our previous study, but the mechanism of high glucose-induced alternative activation has not been elucidated. This study was, therefore, to investigate the mechanism by high glucose stimuli. In this study, Raw264.7 (murine macrophage cell line) cells were cultured and stimulated by 4.25% glucose medium, and mannitol medium was used as osmotic pressure control. Cells were harvested at 0 h, 4 h, 8 h, and 12 h to examine the expression of Arg-1, CD206, and p-Akt. After blocking PI3K by LY294002, the expression of Arg-1, CD206, and p-Akt was examined again. The expression of Arg-1 and CD206 was increased in a time-dependent manner induced by high glucose medium. On the contrary, there was mainly no Agr-1 or CD206 expressed in cells cultured in the mannitol medium with the same osmotic pressure. What's more, Akt was phosphorylated at the eighth hour stimulated by high glucose medium, and LY294002 inhibited the expression of Arg-1 and CD206 by blocking the phosphorylation of Akt. Our study indicated that high glucose rather than high osmotic pressure induced M2 phenotype via PI3K/Akt signaling pathway.

  9. Akt3 kinase suppresses pinocytosis of low-density lipoprotein by macrophages via a novel WNK/SGK1/Cdc42 protein pathway

    PubMed Central

    Ding, Liang; Zhang, Lifang; Kim, Michael; Byzova, Tatiana; Podrez, Eugene

    2017-01-01

    Fluid-phase pinocytosis of LDL by macrophages is regarded as a novel promising target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. The mechanisms of regulation of fluid-phase pinocytosis in macrophages and, specifically, the role of Akt kinases are poorly understood. We have found previously that increased lipoprotein uptake via the receptor-independent process in Akt3 kinase-deficient macrophages contributes to increased atherosclerosis in Akt3−/− mice. The mechanism by which Akt3 deficiency promotes lipoprotein uptake in macrophages is unknown. We now report that Akt3 constitutively suppresses macropinocytosis in macrophages through a novel WNK1/SGK1/Cdc42 pathway. Mechanistic studies have demonstrated that the lack of Akt3 expression in murine and human macrophages results in increased expression of with-no-lysine kinase 1 (WNK1), which, in turn, leads to increased activity of serum and glucocorticoid-inducible kinase 1 (SGK1). SGK1 promotes expression of the Rho family GTPase Cdc42, a positive regulator of actin assembly, cell polarization, and pinocytosis. Individual suppression of WNK1 expression, SGK1, or Cdc42 activity in Akt3-deficient macrophages rescued the phenotype. These results demonstrate that Akt3 is a specific negative regulator of macropinocytosis in macrophages. PMID:28389565

  10. CCNG2 Overexpression Mediated by AKT Inhibits Tumor Cell Proliferation in Human Astrocytoma Cells.

    PubMed

    Zhang, Danfeng; Wang, Chunhui; Li, Zhenxing; Li, Yiming; Dai, Dawei; Han, Kaiwei; Lv, Liquan; Lu, Yicheng; Hou, Lijun; Wang, Junyu

    2018-01-01

    The cyclin family protein CCNG2 has an important inhibitory role in cancer initiation and progression, but the exact mechanism is still unknown. In this study, we examined the relationship between CCNG2 and the malignancy of astrocytomas and whether the AKT pathway, which is upregulated in astrocytomas, may inhibit CCNG2 expression. CCNG2 expression was found to be negatively associated with the pathological grade and proliferative activity of astrocytomas, as the highest expression was found in control brain tissue ( N  = 31), whereas the lowest expression was in high-grade glioma tissue ( N  = 31). Additionally, CCNG2 overexpression in glioma cell lines, T98G and U251 inhibited proliferation and arrested cells in the G0/G1 phase. Moreover, CCNG2 overexpression could increase glioma cells apoptosis. In contrast, AKT activity increased in glioma cells that had low CCNG2 expression. Expression of CCNG2 was higher in cells treated with the AKT kinase inhibitor MK-2206 indicating that the presence of phosphorylated AKT may inhibit the expression of CCNG2. Inhibition of AKT also led to decreased colony formation in T98G and U251 cells and knocked down of CCNG2 reversed the result. Finally, overexpression of CCNG2 in glioma cells reduced tumor volume in a murine model. To conclude, low expression of CCNG2 correlated with the severity astrocytoma and CCNG2 overexpression could induce apoptosis and inhibit proliferation. Inhibition of AKT activity increased the expression of CCNG2. The present study highlights the regulatory consequences of CCNG2 expression and AKT activity in astrocytoma tumorigenesis and the potential use of CCNG2 in anticancer treatment.

  11. AKT is a therapeutic target in myeloproliferative neoplasms

    PubMed Central

    Khan, Irum; Huang, Zan; Wen, Qiang; Stankiewicz, Monika J.; Gilles, Laure; Goldenson, Benjamin; Schultz, Rachael; Diebold, Lauren; Gurbuxani, Sandeep; Finke, Christy M.; Lasho, Terra L.; Koppikar, Priya; Pardanani, Animesh; Stein, Brady; Altman, Jessica K.; Levine, Ross L.; Tefferi, Ayalew; Crispino, John D.

    2014-01-01

    The majority of patients with BCR-ABL1-negative myeloproliferative neoplasms (MPN) harbor mutations in JAK2 or MPL, which lead to constitutive activation of the JAK/STAT, PI3K, and ERK signaling pathways. JAK inhibitors by themselves are inadequate in producing selective clonal suppression in MPN and are associated with hematopoietic toxicities. MK-2206 is a potent allosteric AKT inhibitor that was well tolerated, including no evidence of myelosuppression, in a phase I study of solid tumors. Herein, we show that inhibition of PI3K/AKT signaling by MK-2206 affected the growth of both JAK2V617F or MPLW515L-expressing cells via reduced phosphorylation of AKT and inhibition of its downstream signaling molecules. Moreover, we demonstrate that MK-2206 synergizes with Ruxolitinib in suppressing the growth of JAK2V617F mutant SET2 cells. Importantly MK-2206 suppressed colony formation from hematopoietic progenitor cells in patients with primary myelofibrosis (PMF) and alleviated hepatosplenomegaly and reduced megakaryocyte burden in the bone marrows, livers and spleens of mice with MPLW515L-induced MPN. Together, these findings establish AKT as a rational therapeutic target in the MPNs. PMID:23748344

  12. AKT is a therapeutic target in myeloproliferative neoplasms.

    PubMed

    Khan, I; Huang, Z; Wen, Q; Stankiewicz, M J; Gilles, L; Goldenson, B; Schultz, R; Diebold, L; Gurbuxani, S; Finke, C M; Lasho, T L; Koppikar, P; Pardanani, A; Stein, B; Altman, J K; Levine, R L; Tefferi, A; Crispino, J D

    2013-09-01

    The majority of patients with BCR-ABL1-negative myeloproliferative neoplasms (MPN) harbor mutations in JAK2 or MPL, which lead to constitutive activation of the JAK/STAT, PI3K and ERK signaling pathways. JAK inhibitors by themselves are inadequate in producing selective clonal suppression in MPN and are associated with hematopoietic toxicities. MK-2206 is a potent allosteric AKT inhibitor that was well tolerated, including no evidence of myelosuppression, in a phase I study of solid tumors. Herein, we show that inhibition of PI3K/AKT signaling by MK-2206 affected the growth of both JAK2V617F- or MPLW515L-expressing cells via reduced phosphorylation of AKT and inhibition of its downstream signaling molecules. Moreover, we demonstrate that MK-2206 synergizes with ruxolitinib in suppressing the growth of JAK2V617F-mutant SET2 cells. Importantly, MK-2206 suppressed colony formation from hematopoietic progenitor cells in patients with primary myelofibrosis and alleviated hepatosplenomegaly and reduced megakaryocyte burden in the bone marrows, livers and spleens of mice with MPLW515L-induced MPN. Together, these findings establish AKT as a rational therapeutic target in the MPNs.

  13. Resveratrol Overcomes Cellular Resistance to Vemurafenib Through Dephosphorylation of AKT in BRAF-mutated Melanoma Cells.

    PubMed

    Luo, Hao; Umebayashi, Masayo; Doi, Keiko; Morisaki, Takashi; Shirasawa, Senji; Tsunoda, Toshiyuki

    2016-07-01

    The serine/threonine-protein kinase B-Raf (BRAF) V600E mutant (BRAF(V600E)) inhibitor vemurafenib, has improved clinical outcomes for patients with BRAF(V600E) melanoma, but acquired cellular resistance mediated by AKT serine/threonine kinase 1 (AKT) phosphorylation limits its efficacy. We examined the effect of resveratrol on vemurafenib-resistant melanoma cells. A vemurafenib-resistant human metastatic melanoma cell line positive for the BRAF V600E mutation was established. The anti-tumorigenic effects of vemurafenib and resveratrol, both alone and in combination, were examined through analysis of cell proliferation and protein expression. The level of phosphorylated AKT (p-AKT) was increased in the primary melanoma cells after treatment with vemurafenib, and the basal level of p-AKT was increased in vemurafenib-resistant melanoma cells. Notably, resveratrol both alone and in combination with vemurafenib effectively suppressed cell proliferation and AKT phosphorylation in both parental and vemurafenib-resistant melanoma cells. Vemurafenib resistance can be reversed by addition of resveratrol in patients undergoing treatment with BRAF inhibitors. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Determinants of Complete Resection of Thymoma by Minimally Invasive and Open Thymectomy: Analysis of an International Registry.

    PubMed

    Burt, Bryan M; Yao, Xiaopan; Shrager, Joseph; Antonicelli, Alberto; Padda, Sukhmani; Reiss, Jonathan; Wakelee, Heather; Su, Stacey; Huang, James; Scott, Walter

    2017-01-01

    Minimally invasive thymectomy (MIT) is a surgical approach to thymectomy that has more favorable short-term outcomes for myasthenia gravis than open thymectomy (OT). The oncologic outcomes of MIT performed for thymoma have not been rigorously evaluated. We analyzed determinants of complete (R0) resection among patients undergoing MIT and OT in a large international database. The retrospective database of the International Thymic Malignancy Interest Group was queried. Chi-square and Wilcoxon rank sum tests, multivariate logistic regression models, and propensity matching were performed. A total of 2514 patients underwent thymectomy for thymoma between 1997 and 2012; 2053 of them (82%) underwent OT and 461 (18%) underwent MIT, with the use of MIT increasing significantly in recent years. The rate of R0 resection among patients undergoing OT was 86%, and among those undergoing MIT it was 94% (p < 0.0001). In propensity-matched MIT and OT groups (n = 266 in each group); however, the rate of R0 resection did not differ significantly (96% in both the MIT and OT groups, p = 0.7). Multivariate analyses were performed to identify determinants of R0 resection. Factors independently associated with R0 resection were geographical region, later time period, less advanced Masaoka stage, total thymectomy, and the absence of radiotherapy. Surgical approach, whether minimally invasive or open, was not associated with completeness of resection. The use of MIT for resection of thymoma has been increasing substantially over time, and MIT can achieve rates of R0 resection for thymoma similar to those achieved with OT. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  15. Early and mid-term outcomes of trans-sternal and video-assisted thoracoscopic surgery for thymoma.

    PubMed

    Manoly, Imthiaz; Whistance, Robert N; Sreekumar, Rahul; Khawaja, Saud; Horton, Joanne M; Khan, Ali Zamir; Casali, Gianluca; Thorpe, James A; Amer, Khalid; Woo, Edwin

    2014-06-01

    Video-assisted thoracoscopic surgery (VATS) for thymoma has uncertain safety and effectiveness in comparison with trans-sternal resection. This feasibility study compared short- and mid-term outcomes for patients undergoing these two procedures, highlights weaknesses in current research and makes recommendations for long-term technological evaluations in this field. Consecutive thymoma cases between 2004 and 2010 were identified. Patients were divided into two groups according to surgical approach (Group I trans-sternal; Group II VATS) and comparisons were made between groups. The primary outcome was overall survival. Secondary outcomes included operative morbidity and mortality, hospital stay, recurrence rate and disease-free survival. Thirty-nine patients were included (Group I: n = 22 vs Group II: n = 17). There were no differences between groups at baseline for all measured covariates. No deaths occurred within 30 days of surgery. More patients in Group I developed complications (Group I: n = 10 vs Group II: n = 3; P = 0.093), while hospital stay was shorter in Group II (Group I: 6.4 ± 4.6 days vs Group II: 4.4 ± 1.8 days; P = 0.030). Five-year overall survival (Group I: 93.8 ± 6.1% vs Group II: 83.3 ± 11.2%; P = 0.425), 5-year disease-free survival (Group I: 71.0 ± 15.3% vs Group II: 83.3 ± 11.2%; P = 0.827) and recurrence rates at final follow-up (Group I: n = 2 vs Group II: n = 1; P = 0.363) were similar between the groups. VATS thymectomy for thymoma is feasible, safe and has comparable mid-term oncological outcomes to trans-sternal thymectomy. Future research is required to evaluate long-term oncological outcomes of VATS thymectomy for thymoma in national registries and randomized, controlled trials. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Malignant transformation of thymoma in recipient rats by heterotopic thymus transplantation from HTLV-I transgenic rats.

    PubMed

    Tsuji, Takahiro; Ikeda, Hitoshi; Tsuchikawa, Takahiro; Kikuchi, Kazunori; Baba, Tomohisa; Ishizu, Akihiro; Yoshiki, Takashi

    2005-07-01

    Transgenic rats expressing the pX gene of human T lymphocyte virus type-I (HTLV-I) under control of the rat lymphocyte-specific protein tyrosine kinase type-I promoter (lck-pX rats) developed benign epithelial thymomas. When the thymuses of newborn lck-pX rats were transplanted into the subcapsular space of the kidney in other thymectomized lck-pX rats, similar tumors developed in the transplanted thymuses. Following the tumor growth, dissemination in the abdominal cavity and distant metastasis occurred. The tumors were histopathologically similar to the original thymomas, but prominent nuclear atypia and high mitotic activity were present. The Ki-67 index was twice as high as that in the originals. The tumors were transplantable into the subcutis of lck-pX rats, although transplantation of the originals never succeeded. All evidence indicated that malignant transformation of thymoma was induced by the heterotopic transplantation. Expression of the pX transgene in the transformed tumors were significantly reduced. Among host genes, the expression of p16ink4a/ARF, which was significantly upregulated in the originals, was never detected in the transformed tumors. Genomic Southern blots and PCR suggest that homozygous deletion of the p16ink4a/ARF gene may play important roles in malignant transformation in this model. Our model described here is a useful unique model for in vivo malignant transformation.

  17. Peroxisome Proliferator-Activated Receptor γ Decouples Fatty Acid Uptake from Lipid Inhibition of Insulin Signaling in Skeletal Muscle

    PubMed Central

    Hu, Shanming; Yao, Jianrong; Howe, Alexander A.; Menke, Brandon M.; Sivitz, William I.; Spector, Arthur A.

    2012-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity. PMID:22474127

  18. Anti-cancer activity of Annexin V in murine melanoma model by suppressing tumor angiogenesis.

    PubMed

    Zhang, Xuerui; Huo, Lina; Jin, Haibo; Han, Yuheng; Wang, Jie; Zhang, Yanjun; Lai, Xinghuan; Le, Ziwei; Zhang, Jing; Hua, Zichun

    2017-06-27

    Annexin V, a protein with high affinity to phosphatidylserine (PS) in a calcium dependent manner, has been widely used to probe apoptosis. Annexin V in inhibiting engulfment of apoptotic cells by macrophages had been reported to increase the immunogenicity of tumor cells undergoing apoptosis. However, far less is known about its multiple properties, especially in cancer therapies. Here we found that Annexin V had a good anti-tumor activity in murine melanomaxenograft model. Treatment with Annexin V showed significant reduction in tumor size and remarkable tumor necrosis areas. The serum level of VEGF was downregualted by Annexin V both in normal mice and mice bearing tumor, suggesting that its new role on impeding tumor angiogenesis. In Silico analysis using Oncomine database, we also found the negative correlation of AnnexinV and VEGF both in skin and melanoma. The decreased Annexin V expression shows linearity relation with the elevated VEGF expression. These data provided a possibility that Annexin V can be used as a novel angiogenesis inhibitor in tumor therapy.

  19. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.

    PubMed

    Bellacosa, A; Testa, J R; Staal, S P; Tsichlis, P N

    1991-10-11

    The v-akt oncogene codes for a 105-kilodalton fusion phosphoprotein containing Gag sequences at its amino terminus. Sequence analysis of v-akt and biochemical characterization of its product revealed that it codes for a protein kinase C-related serine-threonine kinase whose cellular homolog is expressed in most tissues, with the highest amount found in thymus. Although Akt is a serine-threonine kinase, part of its regulatory region is similar to the Src homology-2 domain, a structural motif characteristic of cytoplasmic tyrosine kinases that functions in protein-protein interactions. This suggests that Akt may form a functional link between tyrosine and serine-threonine phosphorylation pathways.

  20. Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators.

    PubMed

    Johnson, Ann Mary; Kartha, C C

    2014-04-01

    Insulin-like growth factor-1 (IGF-1) is known to promote proliferation in many cell types including c-kit(pos) cardiac stem cells (CSCs). Downstream signaling pathways of IGF-1 induced CSC proliferation have not been investigated. An important downstream target of IGF-1/Akt-1 signaling is FoxO3a, a key negative regulator of cell-cycle progression. We studied the effect of IGF-1 on proliferation of c-kit(pos) murine CSCs and found that IGF-1-mediated cell proliferation is associated with FoxO3a phosphorylation and inactivation of its transcriptional activity. PI3 inhibitors LY294002 and Wortmannin abolished the effect of IGF-1 on FoxO3a phosphorylation indicating that FoxO3a phosphorylation is mediated by PI3/Akt-1 pathway. In cells with FoxO3a translocation to the cytoplasm, there is decreased expression of cell-cycle inhibitors such as p27(kip1) and p57(kip2) and increased expression of CyclinD1. Our study provides evidence that IGF-1 induced CSC proliferation could be the result of FoxO3a inactivation and its downstream effect on cell-cycle regulators.

  1. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth.

    PubMed

    Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen

    2015-09-01

    Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions. © The Author 2015. Published by Oxford University Press.

  2. Akt Suppression of TGFβ Signaling Contributes to the Maintenance of Vascular Identity in Embryonic Stem Cell-Derived Endothelial Cells

    PubMed Central

    Israely, Edo; Ginsberg, Michael; Nolan, Daniel; Ding, Bi-Sen; James, Daylon; Elemento, Olivier; Rafii, Shahin; Rabbany, Sina Y

    2016-01-01

    The ability to generate and maintain stable in vitro cultures of mouse endothelial cells (EC) has great potential for genetic dissection of the numerous pathologies involving vascular dysfunction as well as therapeutic applications. However, previous efforts at achieving sustained cultures of primary stable murine vascular cells have fallen short, and the cellular requirements for EC maintenance in vitro remain undefined. In this study, we have generated vascular ECs from mouse embryonic stem (ES) cells, and show that active Akt is essential to their survival and propagation as homogeneous monolayers in vitro. These cells harbor the phenotypical, biochemical, and functional characteristics of ECs, and expand throughout long-term cultures, while maintaining their angiogenic capacity. Moreover, Akt-transduced embryonic ECs form functional perfused vessels in vivo that anastomose with host blood vessels. We provide evidence for a novel function of Akt in stabilizing EC identity, whereby the activated form of the protein protects mouse ES cell-derived ECs from TGFβ-mediated transdifferentiation by downregulating SMAD3. These findings identify a role for Akt in regulating the developmental potential of ES cell-derived ECs, and demonstrate that active Akt maintains endothelial identity in embryonic ECs by interfering with active TGFβ-mediated processes that would ordinarily usher these cells to alternate fates. PMID:23963623

  3. Akt suppression of TGFβ signaling contributes to the maintenance of vascular identity in embryonic stem cell-derived endothelial cells.

    PubMed

    Israely, Edo; Ginsberg, Michael; Nolan, Daniel; Ding, Bi-Sen; James, Daylon; Elemento, Olivier; Rafii, Shahin; Rabbany, Sina Y

    2014-01-01

    The ability to generate and maintain stable in vitro cultures of mouse endothelial cells (ECs) has great potential for genetic dissection of the numerous pathologies involving vascular dysfunction as well as therapeutic applications. However, previous efforts at achieving sustained cultures of primary stable murine vascular cells have fallen short, and the cellular requirements for EC maintenance in vitro remain undefined. In this study, we have generated vascular ECs from mouse embryonic stem (ES) cells and show that active Akt is essential to their survival and propagation as homogeneous monolayers in vitro. These cells harbor the phenotypical, biochemical, and functional characteristics of ECs and expand throughout long-term cultures, while maintaining their angiogenic capacity. Moreover, Akt-transduced embryonic ECs form functional perfused vessels in vivo that anastomose with host blood vessels. We provide evidence for a novel function of Akt in stabilizing EC identity, whereby the activated form of the protein protects mouse ES cell-derived ECs from TGFβ-mediated transdifferentiation by downregulating SMAD3. These findings identify a role for Akt in regulating the developmental potential of ES cell-derived ECs and demonstrate that active Akt maintains endothelial identity in embryonic ECs by interfering with active TGFβ-mediated processes that would ordinarily usher these cells to alternate fates. © AlphaMed Press.

  4. Identification of cysteine-644 as the covalent site of attachment of dexamethasone 21-mesylate to murine glucocorticoid receptors in WEHI-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.I.; Bodwell, J.E.; Mendel, D.B.

    1988-05-17

    Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. The authors have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with (/sup 3/H)dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single (/sup 3/H)dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the (/sup 3/H)dexamethasone 21-mesylate was located at position 5 frommore » the amino terminus. Dual-isotope labeling studies with (/sup 3/H)dexamethasone 21-mesylate and (/sup 35/S)methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of (/sup 3/H)dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, their data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate. They have confirmed this finding by demonstrating that a synthetic peptide representing the amino acid sequence 640-650 of the murine glucocorticoid receptor behaves in an identical manner on reversed-phase HPLC as the trypsin-generated peptide from intact cells.« less

  5. Nuclear accumulation of cyclin D1 following long-term fractionated exposures to low-dose ionizing radiation in normal human diploid cells

    PubMed Central

    Shimura, Tsutomu; Hamada, Nobuyuki; Sasatani, Megumi; Kamiya, Kenji; Kunugita, Naoki

    2014-01-01

    Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation. PMID:24583467

  6. Introducing differential expression of human heat shock protein 27 in hepatocellular carcinoma: moving toward identification of cancer biomarker.

    PubMed

    Khan, Rizma; Siddiqui, Nadir Naveed; Ul Haq, Ahtesham; Rahman, M Ataur

    2016-01-01

    Previously, it has to be acknowledged that overexpressed heat shock protein B27 (HSPB27) have been implicated in the etiology of wide range of human cancers. However, the molecular mechanism leading to the disease initiation to progression in liver cancer is still unknown. Present work was undertaken to investigate the differentially expressed HSPB27 in association with those damages that lead to liver cancer development. For the identification of liver cancer biomarker, samples were subjected to comparative proteomic analysis using two-dimensional gel electrophoresis (2-DE) and were further validated by Western blot and immunohistochemical analysis. After validation, in silico studies were applied to demonstrate the significantly induced phosphorylated and S-nitrosylated signals. The later included the interacting partner of HSPB27, i.e., mitogen-activated protein kinase-3 and 5 (MAPK3 and 5), ubiquitin C (UBC), v-akt murine thymoma viral oncogene homolog 1 (AKT1), mitogen-activated protein kinase 14 (MAPK14), and tumor protein p53 (TP53), which bestowed with critical capabilities, namely, apoptosis, cell cycling, stress activation, tumor suppression, cell survival, angiogenesis, proliferation, and stress resistance. Taking together, these results shed new light on the potential biomarker HSPB27 that overexpression of HSPB27 did lead to upregulation of their interacting partner that together demonstrate their possible role as a novel tumor progressive agent for the treatment of metastasis in liver cancer. HSPB27 is a promising diagnostic marker for liver cancer although further large-scale studies are required. Also, molecular profiling may help pave the road to the discovery of new therapies.

  7. Nuclear accumulation of cyclin D1 following long-term fractionated exposures to low-dose ionizing radiation in normal human diploid cells.

    PubMed

    Shimura, Tsutomu; Hamada, Nobuyuki; Sasatani, Megumi; Kamiya, Kenji; Kunugita, Naoki

    2014-01-01

    Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G 1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G 1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation.

  8. Transducer of ERBB2.1 (TOB1) as a Tumor Suppressor: A Mechanistic Perspective.

    PubMed

    Lee, Hun Seok; Kundu, Juthika; Kim, Ryong Nam; Shin, Young Kee

    2015-12-15

    Transducer of ERBB2.1 (TOB1) is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK) expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT) signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX) protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4) and phosphatase and tensin homolog-10 (PTEN), and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.

  9. Cardiac Metastasis from Invasive Thymoma Via the Superior Vena Cava: Cardiac MRI Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursun, Memduh, E-mail: memduhdursun@yahoo.com; Sarvar, Sadik; Cekrezi, Bledi

    2008-07-15

    Cardiac tumors are rare, and metastatic deposits are more common than primary cardiac tumors. We present cardiac magnetic resonance imaging (MRI) findings of a 50-year-old woman with invasive thymoma. Cardiac MRI revealed a heterogeneous, lobulated anterior mediastinal mass invading the superior vena cava and extending to the right atrium. In cine images there was no invasion to the right atrial wall.

  10. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kaijun; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou; Jiang, Yiqian

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolishedmore » escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.« less

  11. Postzygotic HRAS mutation causing both keratinocytic epidermal nevus and thymoma and associated with bone dysplasia and hypophosphatemia due to elevated FGF23.

    PubMed

    Avitan-Hersh, Emily; Tatur, Sameh; Indelman, Margarita; Gepstein, Vardit; Shreter, Roni; Hershkovitz, Dov; Brick, Riva; Bergman, Reuven; Tiosano, Dov

    2014-01-01

    Epidermal nevus syndrome is a rare group of disorders characterized by the combination of congenital epidermal nevi and extracutaneous features, including skeletal, neurological, ocular, and other systemic findings. We report a case of keratinocytic epidermal nevus syndrome that includes a thymoma, bone dysplasia, and hypophosphatemia with elevated fibroblast growth factor 23 (FGF23) levels associated with postzygotic HRAS mutation. A 14-year-old boy was admitted due to recent limping. The physical examination revealed multiple right-sided linear epidermal nevi along Blaschko's lines. Magnetic resonance imaging showed cystic lesions in cervical bones and thymoma, and x-ray examination showed cystic lesions in the hands. Biochemical studies demonstrated severe hypophosphatemia, normocalcemia, high normal PTH, low 25-hydroxyvitamin D and low 1,25-dihydroxyvitamin D levels. The serum FGF23 C-terminal level was normal, but the intact FGF23 level was found to be elevated. Genetic evaluation revealed a heterozygote mutation in the HRAS gene in both the keratinocytic epidermal nevus and thymoma but not in DNA extracted from blood lymphocytes, thus establishing the mutation as postzygotic. Postzygotic mutations in HRAS lead to elevation of FGF23 levels, as found in mutated PHEX, FGF23, DMP1, and ENPP1 genes, which lead to hypophosphatemia. An identical postzygotic HRAS mutation was shown to be present in both keratinocytic epidermal nevus and thymoma and to be associated with bone lesions and hypophosphatemia due to elevated FGF23 levels. These may all be related to the HRAS mutation.

  12. Effects of protein kinase C activators on phorbol ester-sensitive and -resistant EL4 thymoma cells.

    PubMed

    Sansbury, H M; Wisehart-Johnson, A E; Qi, C; Fulwood, S; Meier, K E

    1997-09-01

    Phorbol ester-sensitive EL4 murine thymoma cells respond to phorbol 12-myristate 13-acetate with activation of ERK mitogen-activated protein kinases, synthesis of interleukin-2, and death, whereas phorbol ester-resistant variants of this cell line do not exhibit these responses. Additional aspects of the resistant phenotype were examined, using a newly-established resistant cell line. Phorbol ester induced morphological changes, ERK activation, calcium-dependent activation of the c-Jun N-terminal kinase (JNK), interleukin-2 synthesis, and growth inhibition in sensitive but not resistant cells. A series of protein kinase C activators caused membrane translocation of protein kinase C's (PKCs) alpha, eta, and theta in both cell lines. While PKC eta was expressed at higher levels in sensitive than in resistant cells, overexpression of PKC eta did not restore phorbol ester-induced ERK activation to resistant cells. In sensitive cells, PKC activators had similar effects on cell viability and ERK activation, but differed in their abilities to induce JNK activation and interleukin-2 synthesis. PD 098059, an inhibitor of the mitogen activated protein (MAP)/ERK kinase kinase MEK, partially inhibited ERK activation and completely blocked phorbol ester-induced cell death in sensitive cells. Thus MEK and/or ERK activation, but not JNK activation or interleukin-2 synthesis, appears to be required for phorbol ester-induced toxicity. Alterations in phorbol ester response pathways, rather than altered expression of PKC isoforms, appear to confer phorbol ester resistance to EL4 cells.

  13. Oncogenic B-Raf(V600E) abrogates the AKT/B-Raf/Mps1 interaction in melanoma cells.

    PubMed

    Zhang, Ling; Shi, Ruyi; He, Chanting; Cheng, Caixia; Song, Bin; Cui, Heyang; Zhang, Yanyan; Zhao, Zhiping; Bi, Yanghui; Yang, Xiaofeng; Miao, Xiaoping; Guo, Jiansheng; Chen, Xing; Wang, Jinfen; Li, Yaoping; Cheng, Xiaolong; Liu, Jing; Cui, Yongping

    2013-08-28

    Activating B-Raf mutations that deregulate the mitogen-activated protein kinase (MAPK) pathway commonly occur in cancer. Although B-Raf(V600E) induces increased Mps1 protein contributing to centrosome amplification and chromosome instability, the regulatory mechanisms of Mps1 in melanoma cells is not fully understood. Here, we report that Mps1/AKT and B-Raf(WT)/ERK signaling form an auto-regulatory negative feedback loop in melanoma cells; notably, oncogenic B-Raf(V600E) abrogates the negative feedback loop, contributing the aberrant Mps1 functions and tumorigenesis. Our findings raise the possibility that targeting the oncogenic B-Raf and Mps1, especially when used in combination could potentially provide great therapeutic opportunities for cancer treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Recombinant VP1, an Akt Inhibitor, Suppresses Progression of Hepatocellular Carcinoma by Inducing Apoptosis and Modulation of CCL2 Production

    PubMed Central

    Chen, Tai-An; Wang, Jui-Ling; Hung, Shao-Wen; Chu, Chiao-Li; Cheng, Yung-Chih; Liang, Shu-Mei

    2011-01-01

    Background The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC), one of the most common human cancers worldwide. Methodology/Principal Findings Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC50 values in the range of 0.1–0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice. Conclusions/Significance The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC. PMID:21826248

  15. Oral administration of curcumin and salsalate attenuates high fat diet-induced up-regulation of pro-inflammatory colonic cytokines via suppression of Akt/NFkappaB in azoxymethane-treated mice

    USDA-ARS?s Scientific Manuscript database

    Background: Obesity, a robust risk factor for colorectal cancer (CRC), is known to elevate the concentrations of proinflammatory cytokines in the murine colon. Also, signaling through the Akt pathway, which is known to be activated by proinflammatory cytokines, is thought to play a role in colorecta...

  16. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    PubMed

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  17. Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex.

    PubMed

    Wu, Rui; Kausar, Hina; Johnson, Paul; Montoya-Durango, Diego E; Merchant, Michael; Rane, Madhavi J

    2007-07-27

    We have shown previously that Akt exists in a signal complex with p38 MAPK, MAPK-activated protein kinase-2 (MK2), and heat shock protein 27 (Hsp27) and MK2 phosphorylates Akt on Ser-473. Additionally, dissociation of Hsp27 from Akt, prior to Akt activation, induced polymorphonuclear leukocyte (PMN) apoptosis. However, the role of Hsp27 in regulating Akt activation was not examined. This study tested the hypothesis that Hsp27 regulates Akt activation and promotes cell survival by scaffolding MK2 to the Akt signal complex. Here we show that loss of Akt/Hsp27 interaction by anti-Hsp27 antibody treatment resulted in loss of Akt/MK2 interaction, loss of Akt-Ser-473 phosphorylation, and induced PMN apoptosis. Transfection of myristoylated Akt (AktCA) in HK-11 cells induced Akt-Ser-473 phosphorylation, activation, and Hsp27-Ser-82 phosphorylation. Cotransfection of AktCA with Hsp27 short interfering RNA, but not scrambled short interfering RNA, silenced Hsp27 expression, without altering Akt expression in HK-11 cells. Silencing Hsp27 expression inhibited Akt/MK2 interaction, inhibited Akt phosphorylation and Akt activation, and induced HK-11 cell death. Deletion mutagenesis studies identified acidic linker region (amino acids 117-128) on Akt as an Hsp27 binding region. Deletion of amino acids 117-128 on Akt resulted in loss of its interaction with Hsp27 and MK2 but not with Hsp90 as demonstrated by immunoprecipitation and glutathione S-transferase pulldown studies. Co-transfection studies demonstrated that constitutively active MK2 (MK2EE) phosphorylated Aktwt (wild type) on Ser-473 but failed to phosphorylate Akt(Delta117-128) mutant in transfixed cells. These studies collectively define a novel role of Hsp27 in regulating Akt activation and cellular apoptosis by mediating interaction between Akt and its upstream activator MK2.

  18. Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension

    PubMed Central

    Tang, Haiyang; Chen, Jiwang; Fraidenburg, Dustin R.; Song, Shanshan; Sysol, Justin R.; Drennan, Abigail R.; Offermanns, Stefan; Ye, Richard D.; Bonini, Marcelo G.; Minshall, Richard D.; Garcia, Joe G. N.; Machado, Roberto F.; Makino, Ayako

    2014-01-01

    Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1–3) with distinct but overlapping functions, is involved in regulating cell proliferation and migration. This study aims to investigate whether the Akt/mammalian target of rapamycin (mTOR) pathway, and particularly which Akt isoform, contributes to the development and progression of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Compared with the wild-type littermates, Akt1−/− mice were protected against the development and progression of chronic HPH, whereas Akt2−/− mice did not demonstrate any significant protection against the development of HPH. Furthermore, pulmonary vascular remodeling was significantly attenuated in the Akt1−/− mice, with no significant effect noted in the Akt2−/− mice after chronic exposure to normobaric hypoxia (10% O2). Overexpression of the upstream repressor of Akt signaling, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and conditional and inducible knockout of mTOR in smooth muscle cells were also shown to attenuate the rise in right ventricular systolic pressure and the development of right ventricular hypertrophy. In conclusion, Akt isoforms appear to have a unique function within the pulmonary vasculature, with the Akt1 isoform having a dominant role in pulmonary vascular remodeling associated with HPH. The PTEN/Akt1/mTOR signaling pathway will continue to be a critical area of study in the pathogenesis of pulmonary hypertension, and specific Akt isoforms may help specify therapeutic targets for the treatment of pulmonary hypertension. PMID:25416384

  19. A complicated case of metastatic thymoma.

    PubMed

    Mather, Harriet

    2016-03-01

    This report describes the case of a 49-year-old man who presented to the hospice with severe neuropathic pain, cramps, muscle twitching, generalised sweating, insomnia and anxiety in the context of metastatic thymoma. The symptoms were exquisitely corticosteroid sensitive raising the possibility of an immunogenic aetiology. Morvan's syndrome, a paraneoplastic, immune-mediated syndrome characterised by peripheral nerve hyperexcitability, dysautonomia and central nervous system dysfunction was thus considered. Nerve conduction studies and electromyography were negative as were initial serological assays. Subsequent assays for antibodies to leucine-rich, glioma inactivated one protein and contactin-associated protein-2, recently discovered to be associated with Morvan's syndrome, confirmed the diagnosis. By the time the diagnosis of Morvan's syndrome was reached the patient was too unwell to receive disease-modifying treatments. An awareness of Morvan's syndrome in Palliative and Supportive care is essential to improve the outcome of patients with this devastating syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis.

    PubMed

    Chen, Dong-Bao; Feng, Lin; Hodges, Jennifer K; Lechuga, Thomas J; Zhang, Honghai

    2017-09-01

    Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study

  1. Adjuvant treatment in patients at high risk of recurrence of thymoma: efficacy and safety of a three-dimensional conformal radiation therapy regimen.

    PubMed

    Perri, Francesco; Pisconti, Salvatore; Conson, Manuel; Pacelli, Roberto; Della Vittoria Scarpati, Giuseppina; Gnoni, Antonio; D'Aniello, Carmine; Cavaliere, Carla; Licchetta, Antonella; Cella, Laura; Giuliano, Mario; Schiavone, Concetta; Falivene, Sara; Di Lorenzo, Giuseppe; Buonerba, Carlo; Ravo, Vincenzo; Muto, Paolo

    2015-01-01

    The clinical benefits of postoperative radiation therapy (PORT) for patients with thymoma are still controversial. In the absence of defined guidelines, prognostic factors such as stage, status of surgical margins, and histology are often considered to guide the choice of adjuvant treatment (radiotherapy and/or chemotherapy). In this study, we describe our single-institution experience of three-dimensional conformal PORT administered as adjuvant treatment to patients with thymoma. Twenty-two consecutive thymoma patients (eleven male and eleven female) with a median age of 52 years and treated at our institution by PORT were analyzed. The patients were considered at high risk of recurrence, having at least one of the following features: stage IIB or III, involved resection margins, or thymic carcinoma histology. Three-dimensional conformal PORT with a median total dose on clinical target volume of 50 (range 44-60) Gy was delivered to the tumor bed by 6-20 MV X-ray of the linear accelerator. Follow-up after radiotherapy was done by computed tomography scan every 6 months for 2 years and yearly thereafter. Two of the 22 patients developed local recurrence and four developed distant metastases. Median overall survival was 100 months, and the 3-year and 5-year survival rates were 83% and 74%, respectively. Median disease-free survival was 90 months, and the 5-year recurrence rate was 32%. On univariate analysis, pathologic stage III and presence of positive surgical margins had a significant impact on patient prognosis. Radiation toxicity was mild in most patients and no severe toxicity was registered. Adjuvant radiotherapy achieved good local control and showed an acceptable toxicity profile in patients with high-risk thymoma.

  2. The Akt DUBbed InAktive.

    PubMed

    Lin, Kui

    2013-01-08

    Akt is a central node in the phosphoinositide-3 kinase-Akt-mammalian target of rapamycin pathway and is activated by a multistep process in response to growth factor stimulation. An additional layer of posttranslational modification has emerged as a new paradigm in the regulation of Akt. The identification of an E3 ligase for Lys(63)-linked ubiquitination of Akt has now been complemented with the discovery of the tumor suppressor cylindromatosis as a deubiquitinating enzyme (DUB) for Akt. Thus, like phosphorylation and dephosphorylation, cycles of ubiquitination and deubiquitination provide additional on-off switches that keep Akt activity in balance, and disturbances in this balance have pathological consequences.

  3. Unusual late presentation of metastatic extrathoracic thymoma to gastrohepatic lymph node treated by surgical resection.

    PubMed

    Billè, Andrea; Sachidananda, Sandeep; Moreira, Andre L; Rizk, Nabil P

    2017-02-01

    In advanced stages, thymic tumors tend to spread locally. Distant metastatic disease is rare. We present the first report of single metastatic abdominal lymph node in a 37-year-old female patient and 5 years after an extrapleural pneumonectomy for stage IV thymoma followed by radiotherapy with no other evidence of abdominal disease successfully treated by robotic surgical resection.

  4. Sirt2 Deacetylase Is a Novel AKT Binding Partner Critical for AKT Activation by Insulin*

    PubMed Central

    Ramakrishnan, Gopalakrishnan; Davaakhuu, Gantulga; Kaplun, Ludmila; Chung, Wen-Cheng; Rana, Ajay; Atfi, Azeddine; Miele, Lucio; Tzivion, Guri

    2014-01-01

    AKT/PKB kinases transmit insulin and growth factor signals downstream of phosphatidylinositol 3-kinase (PI3K). AKT activation involves phosphorylation at two residues, Thr308 and Ser473, mediated by PDK1 and the mammalian target of rapamycin complex 2 (mTORC2), respectively. Impaired AKT activation is a key factor in metabolic disorders involving insulin resistance, whereas hyperactivation of AKT is linked to cancer pathogenesis. Here, we identify the cytoplasmic NAD+-dependent deacetylase, Sirt2, as a novel AKT interactor, required for optimal AKT activation. Pharmacological inhibition or genetic down-regulation of Sirt2 diminished AKT activation in insulin and growth factor-responsive cells, whereas Sirt2 overexpression enhanced the activation of AKT and its downstream targets. AKT was prebound with Sirt2 in serum or glucose-deprived cells, and the complex dissociated following insulin treatment. The binding was mediated by the pleckstrin homology and the kinase domains of AKT and was dependent on AMP-activated kinase. This regulation involved a novel AMP-activated kinase-dependent Sirt2 phosphorylation at Thr101. In cells with constitutive PI3K activation, we found that AKT also associated with a nuclear sirtuin, Sirt1; however, inhibition of PI3K resulted in dissociation from Sirt1 and increased association with Sirt2. Sirt1 and Sirt2 inhibitors additively inhibited the constitutive AKT activity in these cells. Our results suggest potential usefulness of Sirt1 and Sirt2 inhibitors in the treatment of cancer cells with up-regulated PI3K activity and of Sirt2 activators in the treatment of insulin-resistant metabolic disorders. PMID:24446434

  5. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lei; Wu, Zhong; Yin, Gang

    2014-12-12

    Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but littlemore » is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.« less

  6. Characterization of Human and Murine T-Cell Immunoglobulin Mucin Domain 4 (TIM-4) IgV Domain Residues Critical for Ebola Virus Entry.

    PubMed

    Rhein, Bethany A; Brouillette, Rachel B; Schaack, Grace A; Chiorini, John A; Maury, Wendy

    2016-07-01

    Phosphatidylserine (PtdSer) receptors that are responsible for the clearance of dying cells have recently been found to mediate enveloped virus entry. Ebola virus (EBOV), a member of the Filoviridae family of viruses, utilizes PtdSer receptors for entry into target cells. The PtdSer receptors human and murine T-cell immunoglobulin mucin (TIM) domain proteins TIM-1 and TIM-4 mediate filovirus entry by binding to PtdSer on the virion surface via a conserved PtdSer binding pocket within the amino-terminal IgV domain. While the residues within the TIM-1 IgV domain that are important for EBOV entry are characterized, the molecular details of virion-TIM-4 interactions have yet to be investigated. As sequences and structural alignments of the TIM proteins suggest distinct differences in the TIM-1 and TIM-4 IgV domain structures, we sought to characterize TIM-4 IgV domain residues required for EBOV entry. Using vesicular stomatitis virus pseudovirions bearing EBOV glycoprotein (EBOV GP/VSVΔG), we evaluated virus binding and entry into cells expressing TIM-4 molecules mutated within the IgV domain, allowing us to identify residues important for entry. Similar to TIM-1, residues in the PtdSer binding pocket of murine and human TIM-4 (mTIM-4 and hTIM-4) were found to be important for EBOV entry. However, additional TIM-4-specific residues were also found to impact EBOV entry, with a total of 8 mTIM-4 and 14 hTIM-4 IgV domain residues being critical for virion binding and internalization. Together, these findings provide a greater understanding of the interaction of TIM-4 with EBOV virions. With more than 28,000 cases and over 11,000 deaths during the largest and most recent Ebola virus (EBOV) outbreak, there has been increased emphasis on the development of therapeutics against filoviruses. Many therapies under investigation target EBOV cell entry. T-cell immunoglobulin mucin (TIM) domain proteins are cell surface factors important for the entry of many enveloped viruses

  7. Characterization of Human and Murine T-Cell Immunoglobulin Mucin Domain 4 (TIM-4) IgV Domain Residues Critical for Ebola Virus Entry

    PubMed Central

    Rhein, Bethany A.; Brouillette, Rachel B.; Schaack, Grace A.; Chiorini, John A.

    2016-01-01

    ABSTRACT Phosphatidylserine (PtdSer) receptors that are responsible for the clearance of dying cells have recently been found to mediate enveloped virus entry. Ebola virus (EBOV), a member of the Filoviridae family of viruses, utilizes PtdSer receptors for entry into target cells. The PtdSer receptors human and murine T-cell immunoglobulin mucin (TIM) domain proteins TIM-1 and TIM-4 mediate filovirus entry by binding to PtdSer on the virion surface via a conserved PtdSer binding pocket within the amino-terminal IgV domain. While the residues within the TIM-1 IgV domain that are important for EBOV entry are characterized, the molecular details of virion–TIM-4 interactions have yet to be investigated. As sequences and structural alignments of the TIM proteins suggest distinct differences in the TIM-1 and TIM-4 IgV domain structures, we sought to characterize TIM-4 IgV domain residues required for EBOV entry. Using vesicular stomatitis virus pseudovirions bearing EBOV glycoprotein (EBOV GP/VSVΔG), we evaluated virus binding and entry into cells expressing TIM-4 molecules mutated within the IgV domain, allowing us to identify residues important for entry. Similar to TIM-1, residues in the PtdSer binding pocket of murine and human TIM-4 (mTIM-4 and hTIM-4) were found to be important for EBOV entry. However, additional TIM-4-specific residues were also found to impact EBOV entry, with a total of 8 mTIM-4 and 14 hTIM-4 IgV domain residues being critical for virion binding and internalization. Together, these findings provide a greater understanding of the interaction of TIM-4 with EBOV virions. IMPORTANCE With more than 28,000 cases and over 11,000 deaths during the largest and most recent Ebola virus (EBOV) outbreak, there has been increased emphasis on the development of therapeutics against filoviruses. Many therapies under investigation target EBOV cell entry. T-cell immunoglobulin mucin (TIM) domain proteins are cell surface factors important for the entry of many

  8. PKR is a novel functional direct player that coordinates skeletal muscle differentiation via p38MAPK/AKT pathways.

    PubMed

    Alisi, A; Spaziani, A; Anticoli, S; Ghidinelli, M; Balsano, C

    2008-03-01

    Myogenic differentiation is a highly orchestrated multistep process controlled by extracellular growth factors that modulate largely unknown signals into the cell affecting the muscle-transcription program. P38MAPK-dependent signalling, as well as PI3K/Akt pathway, has a key role in the control of muscle gene expression at different stages during the myogenic process. P38MAPK affects the activities of transcription factors, such as MyoD and myogenin, and contributes, together with PI3K/Akt pathway, to control the early and late steps of myogenic differentiation. The aim of our work was to better define the role of PKR, a dsRNA-activated protein kinase, as potential component in the differentiation program of C2C12 murine myogenic cells and to correlate its activity with p38MAPK and PI3K/Akt myogenic regulatory pathways. Here, we demonstrate that PKR is an essential component of the muscle development machinery and forms a functional complex with p38MAPK and/or Akt, contributing to muscle differentiation of committed myogenic cells in vitro. Inhibition of endogenous PKR activity by a specific (si)RNA and a PKR dominant-negative interferes with the myogenic program of C2C12 cells, causing a delay in activation of myogenic specific genes and inducing the formation of thinner myofibers. In addition, the construction of three PKR mutants allowed us to demonstrate that both N and C-terminal regions of PKR are critical for the interaction with p38MAPK and Akt. The novel discovered complex permits PKR to timely regulate the inhibition/activation of p38MAPK and Akt, controlling in this way the different steps characterizing skeletal muscle differentiation.

  9. Akt SUMOylation regulates cell proliferation and tumorigenesis.

    PubMed

    Li, Rong; Wei, Jie; Jiang, Cong; Liu, Dongmei; Deng, Lu; Zhang, Kai; Wang, Ping

    2013-09-15

    Proto-oncogene Akt plays essential roles in cell proliferation and tumorigenesis. Full activation of Akt is regulated by phosphorylation, ubiquitination, and acetylation. Here we report that SUMOylation of Akt is a novel mechanism for its activation. Systematically analyzing the role of lysine residues in Akt activation revealed that K276, which is located in a SUMOylation consensus motif, is essential for Akt activation. Ectopic or endogenous Akt1 could be modified by SUMOylation. RNA interference-mediated silencing of UBC9 reduced Akt SUMOylation, which was promoted by SUMO E3 ligase PIAS1 and reversed by the SUMO-specific protease SENP1. Although multiple sites on Akt could be SUMOylated, K276 was identified as a major SUMO acceptor site. K276R or E278A mutation reduced SUMOylation of Akt but had little effect on its ubiquitination. Strikingly, these mutations also completely abolished Akt kinase activity. In support of these results, we found that expression of PIAS1 and SUMO1 increased Akt activity, whereas expression of SENP1 reduced Akt1 activity. Interestingly, the cancer-derived mutant E17K in Akt1 that occurs in various cancers was more efficiently SUMOylated than wild-type Akt. Moreover, SUMOylation loss dramatically reduced Akt1 E17K-mediated cell proliferation, cell migration, and tumorigenesis. Collectively, our findings establish that Akt SUMOylation provides a novel regulatory mechanism for activating Akt function. ©2013 AACR.

  10. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival ofmore » wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.« less

  11. AML sensitivity to YM155 is modulated through AKT and Mcl-1

    PubMed Central

    de Necochea-Campion, Rosalia; Diaz Osterman, Carlos J.; Hsu, Heng-Wei; Fan, Junjie; Mirshahidi, Saied; Wall, Nathan R.; Chen, Chien-Shing

    2015-01-01

    HL60 and U937 (acute myeloid leukemia (AML) cell lines) were assessed for sensitivity to YM155, and found to have distinct sensitive and resistant phenotypes, respectively. In HL60 cells, YM155 inhibition of growth proliferation was due to apoptosis which was measured by annexin V/PI staining. YM155 induced apoptosis through activation of intrinsic and extrinsic pathways that also culminated in caspase-3 activity and PARP cleavage. YM155 sensitivity was partially associated with this compound’s ability to downregulate survivin transcription since this was more pronounced in the HL60 cell line. However, marked differences were also observed in XIAP, Bcl-2, and Mcl-1L, and Mcl-1s. Furthermore, YM155 treatment completely inhibited production of total Akt protein in HL60, but not U937 cells. Importantly, Akt activity (pAkt-Ser473) levels were maintained in YM155 treated U937 cells which may help stabilize other anti-apoptotic proteins. Combination treatments with an Akt inhibitor, MK-2206, reduced levels of pAkt-Ser473 in U937 cells and synergistically sensitized them to YM155 cytotoxicity. Collectively our results indicate that Akt signaling may be an important factor mediating YM155 response in AML, and combinatorial therapies with Akt inhibitors could improve treatment efficacy in YM155-resistant cells. PMID:26118775

  12. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  13. A case of late-onset, thymoma-associated myasthenia gravis with ryanodine receptor and titin antibodies and concomitant granulomatous myositis.

    PubMed

    Stefanou, M I; Komorowski, L; Kade, S; Bornemann, A; Ziemann, U; Synofzik, M

    2016-09-13

    Myasthenia gravis is an autoimmune neuromuscular disorder, which has only rarely been reported to co-manifest with myositis. The diagnosis of concomitant myositis in patients with myasthenia gravis is clinically challenging, and requires targeted investigations for the differential diagnosis, including EMG, autoantibody assays, muscle biopsy and, importantly, imaging of the mediastinum for thymoma screening. This report presents a case-vignette of a 72-year-old woman with progressive proximal muscle weakness and myalgias, diagnosed with thymoma-associated myasthenia and bioptically verified granulomatous myositis, with positive autoantibody status for ryanodine receptor and titin antibodies. The diagnosis of concurrent myositis and myasthenia gravis, especially in the presence of ryanodine receptor and titin antibodies, should lead neurologists to adopt different treatment strategies compared to those applied in myasthenia or myositis alone. Moreover, further evidence is warranted that titin and, particularly, ryanodine receptor antibodies may co-occur or be pathophysiologically involved in myasthenia-myositis cases.

  14. Video-Assisted Thoracoscopic Resection of a Noninvasive Thymoma in a Cat with Myasthenia Gravis Using Low-Pressure Carbon Dioxide Insufflation.

    PubMed

    Griffin, Maureen A; Sutton, Jessie S; Hunt, Geraldine B; Pypendop, Bruno H; Mayhew, Philipp D

    2016-11-01

    To report the use of low-pressure carbon dioxide insufflation during video-assisted thoracoscopic surgery for resection of a noninvasive thymoma in a cat with secondary myasthenia gravis. Clinical case report. Client-owned cat. An 11-year-old castrated male domestic shorthair cat was examined for generalized weakness, voice change, hypersalivation, hyporexia, vomiting, coughing, and gagging. Thoracic ultrasound revealed a cranial mediastinal mass for which cytology was consistent with a thymoma (or lymphoid tissue). Acetylcholine receptor antibody concentration was elevated at 3.16 mmol/L (reference interval < 0.3 mmol/L). Thoracic computed tomography showed two round, contrast-enhancing structures in the cranioventral mediastinum identified as the sternal lymph node and a cranial mediastinal mass (11 × 17 × 24 mm). A presumptive diagnosis of thymoma with paraneoplastic myasthenia gravis was made and surgical resection of both mediastinal masses was recommended. Video-assisted thoracoscopic resection of the cranial mediastinal mass and sternal lymph node were performed with low-pressure carbon dioxide insufflation maintained at an intrathoracic pressure of 2-3 mmHg. The cat recovered from surgery without serious complications. Nineteen months after surgery, the cat developed hind limb stiffness. Thoracic radiographs ruled out a cranial mediastinal mass or megaesophagus. Acetylcholine receptor antibody concentration remained elevated at 2.72 mmol/L. Low-pressure thoracic insufflation facilitated video-assisted thoracoscopic resection of cranial mediastinal masses in this cat. © Copyright 2016 by The American College of Veterinary Surgeons.

  15. Akt1 binds focal adhesion kinase via the Akt1 kinase domain independently of the pleckstrin homology domain.

    PubMed

    Basson, M D; Zeng, B; Wang, S

    2015-10-01

    Akt1 and focal adhesion kinase (FAK) are protein kinases that play key roles in normal cell signaling. Individually, aberrant expression of these kinases has been linked to a variety of cancers. Together, Akt1/FAK interactions facilitate cancer metastasis by increasing cell adhesion under conditions of increased extracellular pressure. Pathological and iatrogenic sources of pressure arise from tumor growth against constraining stroma or direct perioperative manipulation. We previously reported that 15 mmHg increased extracellular pressure causes Akt1 to both directly interact with FAK and to phosphorylate and activate it. We investigated the nature of the Akt1/FAK binding by creating truncations of recombinant FAK, conjugated to glutathione S-transferase (GST), to pull down full-length Akt1. Western blots probing for Akt1 showed that FAK/Akt1 binding persisted in FAK truncations consisting of only amino acids 1-126, FAK(NT1), which contains the F1 subdomain of its band 4.1, ezrin, radixin, and moesin (FERM) domain. Using FAK(NT1) as bait, we then pulled down truncated versions of recombinant Akt1 conjugated to HA (human influenza hemagglutinin). Probes for GST-FAK(NT1) showed Akt1-FAK binding to occur in the absence of the both the Akt1 (N)-terminal pleckstrin homology (PH) domain and its adjacent hinge region. The Akt1 (C)-terminal regulatory domain was equally unnecessary for Akt1/FAK co-immunoprecipitation. Truncations involving the Akt1 catalytic domain showed that the domain by itself was enough to pull down FAK. Additionally, a fragment spanning from the PH domain to half way through the catalytic domain demonstrated increased FAK binding compared to full length Akt1. These results begin to delineate the Akt1/FAK interaction and can be used to manipulate their force-activated signal interactions. Furthermore, the finding that the N-terminal half of the Akt1 catalytic domain binds so strongly to FAK when cleaved from the rest of the protein may suggest a means

  16. Akt/protein kinase B activation by adenovirus vectors contributes to NFkappaB-dependent CXCL10 expression.

    PubMed

    Liu, Qiang; White, Lindsay R; Clark, Sharon A; Heffner, Daniel J; Winston, Brent W; Tibbles, Lee Anne; Muruve, Daniel A

    2005-12-01

    In gene therapy, the innate immune system is a significant barrier to the effective application of adenovirus (Ad) vectors. In kidney epithelium-derived (REC) cells, serotype 5 Ad vectors induce the expression of the chemokine CXCL10 (IP-10), a response that is dependent on NFkappaB. Compared to the parental vector AdLuc, transduction with the RGD-deleted vector AdL.PB resulted in reduced CXCL10 activation despite increasing titers, implying that RGD-alpha(V) integrin interactions contribute to adenovirus induction of inflammatory genes. Akt, a downstream effector of integrin signaling, was activated within 10 min of transduction with Ad vectors in a dose-dependent manner. Akt activation was not present following transduction with AdL.PB, confirming the importance of capsid-alpha(V) integrin interactions in Ad vector Akt activation. Inhibition of the phosphoinositide-3-OH kinase/Akt pathway by Wortmannin or Ly294002 compounds decreased Ad vector induction of CXCL10 mRNA. Similarly, adenovirus-mediated overexpression of the dominant negative AktAAA decreased CXCL10 mRNA expression compared to the reporter vector AdLacZ alone. The effect of Akt on CXCL10 mRNA expression occurred via NFkappaB-dependent transcriptional activation, since AktAAA overexpression and Ly294002 both inhibited CXCL10 and NFkappaB promoter activation in luciferase reporter experiments. These results show that Akt plays a role in the Ad vector activation of NFkappaB and CXCL10 expression. Understanding the mechanism underlying the regulation of host immunomodulatory genes by adenovirus vectors will lead to strategies that will improve the efficacy and safety of these agents for clinical use.

  17. Immunostimulating activity of maysin isolated from corn silk in murine RAW 264.7 macrophages.

    PubMed

    Lee, Jisun; Kim, Sun-Lim; Lee, Seul; Chung, Mi Ja; Park, Yong Il

    2014-07-01

    Corn silk (CS) has long been consumed as a traditional herb in Korea. Maysin is a major flavonoid of CS. The effects of maysin on macrophage activation were evaluated, using the murine macrophage RAW 264.7 cells. Maysin was isolated from CS by methanol extraction, and preparative C18 reverse phase column chromatography. Maysin was nontoxic up to 100 μg/ml, and dose-dependently increased TNF-α secretion and iNOS production by 11.2- and 4.2-fold, respectively, compared to untreated control. The activation and subsequent nuclear translocation of NF-κB was substantially enhanced upon treatment with maysin (1-100 μg/ml). Maysin also stimulated the phosphorylation of Akt and MAPKs (ERK, JNK). These results indicated that maysin activates macrophages to secrete TNF-α and induce iNOS expression, via the activation of the Akt, NF-κB and MAPKs signaling pathways. These results suggest for the first time that maysin can be a new immunomodulator, enhancing the early innate immunity.

  18. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia.

    PubMed

    Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2018-02-01

    Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival.

    PubMed

    Gingery, Anne; Bradley, Elizabeth; Shaw, Aubie; Oursler, Merry Jo

    2003-05-01

    We have examined highly purified osteoclasts that were generated in vitro from murine co-culture of marrow precursors with stromal support cells and have found evidence of activation of the MEK/ERK and AKT/NFkappaB survival pathways. Many mature marrow-derived osteoclasts survived for at least 48 h in culture whether or not they are maintained with stromal cells. Moreover, supplementing purified osteoclasts with RANKL and/or M-CSF had no impact on their survival pattern. In addition, spleen-derived osteoclasts generated with RANKL and M-CSF treatment exhibited a similar survival pattern. Blocking MEK, AKT, or NFkappaB activity resulted in apoptosis of many, but not all, of the osteoclasts in purified marrow-derived osteoclasts, marrow-derived osteoclasts co-cultured with stromal cells, and spleen-derived osteoclasts maintained with RANKL and M-CSF. These data support that both the MEK/ERK and AKT/NFkappaB pathways contribute to osteoclast survival. Since PI3K has been shown to activate either of these pathways, we have examined its role in osteoclast survival. PI3K inhibition caused apoptosis of nearly all osteoclasts in purified and co-cultured marrow-derived osteoclasts and spleen-derived osteoclasts maintained with RANKL and M-CSF. Interestingly, in marrow-derived co-cultures, the apoptotic response was restricted to osteoclasts as there was no evidence of stromal support cell apoptosis. PI3K inhibition also blocked MEK1/2, ERK1/2, and AKT phosphorylation and NFkappaB activation in purified osteoclasts. Simultaneous blockage of both AKT and MEK1/2 caused rapid apoptosis of nearly all osteoclasts, mimicking the response to PI3K inhibition. These data reveal that PI3K coordinately activates two distinct survival pathways that are both important in osteoclast survival. Copyright 2003 Wiley-Liss, Inc.

  20. Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced Psoriasis-Like Disease in Mice

    PubMed Central

    Adhami, Vaqar M.; Esnault, Stephane; Sechi, Mario; Siddiqui, Imtiaz A.; Satyshur, Kenneth A.; Syed, Deeba N.; Dodwad, Shah-Jahan M.; Chaves-Rodriquez, Maria-Ines; Longley, B. Jack; Wood, Gary S.

    2017-01-01

    Abstract Aim: The treatment of psoriasis remains elusive, underscoring the need for identifying novel disease targets and mechanism-based therapeutic approaches. We recently reported that the PI3K/Akt/mTOR pathway that is frequently deregulated in many malignancies is also clinically relevant for psoriasis. We also provided rationale for developing delphinidin (Del), a dietary antioxidant for the management of psoriasis. This study utilized high-throughput biophysical and biochemical approaches and in vitro and in vivo models to identify molecular targets regulated by Del in psoriasis. Results: A kinome-level screen and Kds analyses against a panel of 102 human kinase targets showed that Del binds to three lipid (PIK3CG, PIK3C2B, and PIK3CA) and six serine/threonine (PIM1, PIM3, mTOR, S6K1, PLK2, and AURKB) kinases, five of which belong to the PI3K/Akt/mTOR pathway. Surface plasmon resonance and in silico molecular modeling corroborated Del's direct interactions with three PI3Ks (α/c2β/γ), mTOR, and p70S6K. Del treatment of interleukin-22 or TPA-stimulated normal human epidermal keratinocytes (NHEKs) significantly inhibited proliferation, activation of PI3K/Akt/mTOR components, and secretion of proinflammatory cytokines and chemokines. To establish the in vivo relevance of these findings, an imiquimod (IMQ)-induced Balb/c mouse psoriasis-like skin model was employed. Topical treatment of Del significantly decreased (i) hyperproliferation and epidermal thickness, (ii) skin infiltration by immune cells, (iii) psoriasis-related cytokines/chemokines, (iv) PI3K/Akt/mTOR pathway activation, and (v) increased differentiation when compared with controls. Innovation and Conclusion: Our observation that Del inhibits key kinases involved in psoriasis pathogenesis and alleviates IMQ-induced murine psoriasis-like disease suggests a novel PI3K/AKT/mTOR pathway modulator that could be developed to treat psoriasis. Antioxid. Redox Signal. 26, 49–69. PMID:27393705

  1. Oncocytoma-like renal tumor with transformation toward high-grade oncocytic carcinoma: a unique case with morphologic, immunohistochemical, and genomic characterization.

    PubMed

    Sirintrapun, Sahussapont J; Geisinger, Kim R; Cimic, Adela; Snow, Anthony; Hagenkord, Jill; Monzon, Federico; Legendre, Benjamin L; Ghazalpour, Anatole; Bender, Ryan P; Gatalica, Zoran

    2014-10-01

    Renal oncocytoma is a benign tumor with characteristic histologic findings. We describe an oncocytoma-like renal tumor with progression to high-grade oncocytic carcinoma and metastasis. A 74-year-old man with no family history of cancer presented with hematuria. Computed tomography showed an 11 cm heterogeneous multilobulated mass in the right kidney lower pole, enlarged aortocaval lymph nodes, and multiple lung nodules. In the nephrectomy specimen, approximately one third of the renal tumor histologically showed regions classic for benign oncocytoma transitioning to regions of high-grade carcinoma without sharp demarcation. With extensive genomic investigation using single nucleotide polymorphism-based array virtual karyotyping, multiregion sequencing, and expression array analysis, we were able to show a common lineage between the benign oncocytoma and high-grade oncocytic carcinoma regions in the tumor. We were also able to show karyotypic differences underlying this progression. The benign oncocytoma showed no chromosomal aberrations, whereas the high-grade oncocytic carcinoma showed loss of the 17p region housing FLCN (folliculin [Birt-Hogg-Dubé protein]), loss of 8p, and gain of 8q. Gene expression patterns supported dysregulation and activation of phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog (Akt), mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK), and mechanistic target of rapamycin (serine/threonine kinase) (mTOR) pathways in the high-grade oncocytic carcinoma regions. This was partly attributable to FLCN underexpression but further accentuated by overexpression of numerous genes on 8q. In the high-grade oncocytic carcinoma region, vascular endothelial growth factor A along with metalloproteinases matrix metallopeptidase 9 and matrix metallopeptidase 12 were overexpressed, facilitating angiogenesis and invasiveness. Genetic molecular testing provided evidence for the development of an

  2. Oncocytoma-Like Renal Tumor With Transformation Toward High-Grade Oncocytic Carcinoma

    PubMed Central

    Sirintrapun, Sahussapont J.; Geisinger, Kim R.; Cimic, Adela; Snow, Anthony; Hagenkord, Jill; Monzon, Federico; Legendre, Benjamin L.; Ghazalpour, Anatole; Bender, Ryan P.; Gatalica, Zoran

    2014-01-01

    Abstract Renal oncocytoma is a benign tumor with characteristic histologic findings. We describe an oncocytoma-like renal tumor with progression to high-grade oncocytic carcinoma and metastasis. A 74-year-old man with no family history of cancer presented with hematuria. Computed tomography showed an 11 cm heterogeneous multilobulated mass in the right kidney lower pole, enlarged aortocaval lymph nodes, and multiple lung nodules. In the nephrectomy specimen, approximately one third of the renal tumor histologically showed regions classic for benign oncocytoma transitioning to regions of high-grade carcinoma without sharp demarcation. With extensive genomic investigation using single nucleotide polymorphism-based array virtual karyotyping, multiregion sequencing, and expression array analysis, we were able to show a common lineage between the benign oncocytoma and high-grade oncocytic carcinoma regions in the tumor. We were also able to show karyotypic differences underlying this progression. The benign oncocytoma showed no chromosomal aberrations, whereas the high-grade oncocytic carcinoma showed loss of the 17p region housing FLCN (folliculin [Birt–Hogg–Dubé protein]), loss of 8p, and gain of 8q. Gene expression patterns supported dysregulation and activation of phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog (Akt), mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK), and mechanistic target of rapamycin (serine/threonine kinase) (mTOR) pathways in the high-grade oncocytic carcinoma regions. This was partly attributable to FLCN underexpression but further accentuated by overexpression of numerous genes on 8q. In the high-grade oncocytic carcinoma region, vascular endothelial growth factor A along with metalloproteinases matrix metallopeptidase 9 and matrix metallopeptidase 12 were overexpressed, facilitating angiogenesis and invasiveness. Genetic molecular testing provided evidence for the

  3. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats.

    PubMed

    Qin, Bolin; Polansky, Marilyn M; Harry, Dawson; Anderson, Richard A

    2010-05-01

    Epidemiological studies indicate that the consumption of green tea polyphenols (GTP) may reduce the risk of coronary artery disease. To explore the underlying mechanisms of action at the molecular level, we examined the effects of GTP on the cardiac mRNA and protein levels of genes involved in insulin and lipid metabolism and inflammation. In rats fed a high-fructose diet, supplementation with GTP (200 mg/kg BW daily dissolved in distilled water) for 6 wk, reduced systemic blood glucose, plasma insulin, retinol-binding protein 4, soluble CD36, cholesterol, triglycerides, free fatty acids and LDL-C levels, as well as the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and IL-6. GTP did not affect food intake, bodyweight and heart weight. In the myocardium, GTP also increased the insulin receptor (Ir), insulin receptor substrate 1 and 2 (Irs1 and Irs2), phosphoinositide-3-kinase (Pi3k), v-akt murine thymoma viral oncogene homolog 1 (Akt1), glucose transporter 1 and 4 (Glut1 and Glut4) and glycogen synthase 1 (Gys1) expression but inhibited phosphatase and tensin homolog deleted on chromosome ten (Pten) expression and decreased glycogen synthase kinase 3beta (Gsk3beta) mRNA expression. The sterol regulatory element-binding protein-1c (Srebp1c) mRNA, microsomal triglyceride transfer protein (Mttp) mRNA and protein, Cd36 mRNA and cluster of differentiation 36 protein levels were decreased and peroxisome proliferator-activated receptor (Ppar)gamma mRNA levels were increased. GTP also decreased the inflammatory factors: Tnf, Il1b and Il6 mRNA levels, and enhanced the anti-inflammatory protein, zinc-finger protein, protein and mRNA expression. In summary, consumption of GTP ameliorated the detrimental effects of high-fructose diet on insulin signaling, lipid metabolism and inflammation in the cardiac muscle of rats.

  4. CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway

    PubMed Central

    Jijiwa, Mayumi; Demir, Habibe; Gupta, Snehalata; Leung, Crystal; Joshi, Kaushal; Orozco, Nicholas; Huang, Tiffany; Yildiz, Vedat O.; Shibahara, Ichiyo; de Jesus, Jason A.; Yong, William H.; Mischel, Paul S.; Fernandez, Soledad; Kornblum, Harley I.; Nakano, Ichiro

    2011-01-01

    Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44high GBM but not from CD44low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44high GBM, but not in CD44low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKTpathway. PMID:21915300

  5. Anesthetic Propofol Reduces Endotoxic Inflammation by Inhibiting Reactive Oxygen Species-regulated Akt/IKKβ/NF-κB Signaling

    PubMed Central

    Hsing, Chung-Hsi; Lin, Ming-Chung; Choi, Pui-Ching; Huang, Wei-Ching; Kai, Jui-In; Tsai, Cheng-Chieh; Cheng, Yi-Lin; Hsieh, Chia-Yuan; Wang, Chi-Yun; Chang, Yu-Ping; Chen, Yu-Hong; Chen, Chia-Ling; Lin, Chiou-Feng

    2011-01-01

    Background Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. Methodology/Principal Findings Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. Conclusions/Significance These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways. PMID:21408125

  6. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models.

    PubMed

    Lin, Jie; Sampath, Deepak; Nannini, Michelle A; Lee, Brian B; Degtyarev, Michael; Oeh, Jason; Savage, Heidi; Guan, Zhengyu; Hong, Rebecca; Kassees, Robert; Lee, Leslie B; Risom, Tyler; Gross, Stefan; Liederer, Bianca M; Koeppen, Hartmut; Skelton, Nicholas J; Wallin, Jeffrey J; Belvin, Marcia; Punnoose, Elizabeth; Friedman, Lori S; Lin, Kui

    2013-04-01

    We describe the preclinical pharmacology and antitumor activity of GDC-0068, a novel highly selective ATP-competitive pan-Akt inhibitor currently in clinical trials for the treatment of human cancers. The effect of GDC-0068 on Akt signaling was characterized using specific biomarkers of the Akt pathway, and response to GDC-0068 was evaluated in human cancer cell lines and xenograft models with various genetic backgrounds, either as a single agent or in combination with chemotherapeutic agents. GDC-0068 blocked Akt signaling both in cultured human cancer cell lines and in tumor xenograft models as evidenced by dose-dependent decrease in phosphorylation of downstream targets. Inhibition of Akt activity by GDC-0068 resulted in blockade of cell-cycle progression and reduced viability of cancer cell lines. Markers of Akt activation, including high-basal phospho-Akt levels, PTEN loss, and PIK3CA kinase domain mutations, correlate with sensitivity to GDC-0068. Isogenic PTEN knockout also sensitized MCF10A cells to GDC-0068. In multiple tumor xenograft models, oral administration of GDC-0068 resulted in antitumor activity ranging from tumor growth delay to regression. Consistent with the role of Akt in a survival pathway, GDC-0068 also enhanced antitumor activity of classic chemotherapeutic agents. GDC-0068 is a highly selective, orally bioavailable Akt kinase inhibitor that shows pharmacodynamic inhibition of Akt signaling and robust antitumor activity in human cancer cells in vitro and in vivo. Our preclinical data provide a strong mechanistic rationale to evaluate GDC-0068 in cancers with activated Akt signaling. ©2012 AACR.

  7. Fatty acid transport and transporters in muscle are critically regulated by Akt2.

    PubMed

    Jain, Swati S; Luiken, Joost J F P; Snook, Laelie A; Han, Xiao Xia; Holloway, Graham P; Glatz, Jan F C; Bonen, Arend

    2015-09-14

    Muscle contains various fatty acid transporters (CD36, FABPpm, FATP1, FATP4). Physiological stimuli (insulin, contraction) induce the translocation of all four transporters to the sarcolemma to enhance fatty acid uptake similarly to glucose uptake stimulation via glucose transporter-4 (GLUT4) translocation. Akt2 mediates insulin-induced, but not contraction-induced, GLUT4 translocation, but its role in muscle fatty acid transporter translocation is unknown. In muscle from Akt2-knockout mice, we observed that Akt2 is critically involved in both insulin-induced and contraction-induced fatty acid transport and translocation of fatty acid translocase/CD36 (CD36) and FATP1, but not of translocation of fatty acid-binding protein (FABPpm) and FATP4. Instead, Akt2 mediates intracellular retention of both latter transporters. Collectively, our observations reveal novel complexities in signaling mechanisms regulating the translocation of fatty acid transporters in muscle. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Cannabis and a lower BMI in psychosis: What is the role of AKT1?

    PubMed

    Liemburg, Edith J; Bruins, Jojanneke; van Beveren, Nico; Islam, Md Atiqul; Alizadeh, Behrooz Z

    2016-10-01

    Cannabis use has been associated with favorable outcomes on metabolic risk factors. The cause of this relation is still unknown. In this study we investigated whether this effect is mediated by the AKT1 gene, as activation of the related enzyme by cannabis may cause metabolic changes. Six Single Nucleotide Polymorphisms (SNPs) of the AKT1 gene (rs1130214, rs1130233, rs2494732, rs2498784, rs3730358, and rs3803300) of patients with psychotic disorders (n=623) were related to Body Mass Index (BMI), levels of glycosylated hemoglobin (HBA1c) and total metabolic risk. Next, mediation analysis was performed with BMI as outcome, cannabis as predictor, and AKT1 as mediator. Cannabis use was inversely related to BMI but not with levels of HBA1c and total metabolic risk. Moreover, out of 6 AKT1 SNPs, rs2494732 was associated with cannabis use, but AKT1 did not mediate the effect of cannabis on BMI. In conclusion, cannabis use is likely to be associated with a lower BMI in patients with a psychotic disorder. Moreover, AKT1 risk alleles may increase the incidence of cannabis use in patients with a psychotic disorder, but AKT1 does not appear to mediate the effect of cannabis on BMI. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia

    PubMed Central

    LaRue, Rebecca S.; Nguyen, Hanh T.; Sachs, Karen; Noble, Klara E.; Mohd Hassan, Nurul Azyan; Diaz-Flores, Ernesto; Rathe, Susan K.; Sarver, Aaron L.; Bendall, Sean C.; Ha, Ngoc A.; Diers, Miechaleen D.; Nolan, Garry P.; Shannon, Kevin M.; Largaespada, David A.

    2014-01-01

    Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific functions of these pathways in AML are unclear, thwarting the rational application of targeted therapeutics. To elucidate the downstream functions of activated NRAS in AML, we used a murine model that harbors Mll-AF9 and a tetracycline-repressible, activated NRAS (NRASG12V). Using computational approaches to explore our gene-expression data sets, we found that NRASG12V enforced the leukemia self-renewal gene-expression signature and was required to maintain an MLL-AF9– and Myb-dependent leukemia self-renewal gene-expression program. NRASG12V was required for leukemia self-renewal independent of its effects on growth and survival. Analysis of the gene-expression patterns of leukemic subpopulations revealed that the NRASG12V-mediated leukemia self-renewal signature is preferentially expressed in the leukemia stem cell–enriched subpopulation. In a multiplexed analysis of RAS-dependent signaling, Mac-1Low cells, which harbor leukemia stem cells, were preferentially sensitive to NRASG12V withdrawal. NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell–specific therapies. Together, these experimental results define a RAS oncogene–driven function that is critical for leukemia maintenance and represents a novel mechanism of oncogene addiction. PMID:25316678

  10. Annexin A11 knockdown inhibits in vitro proliferation and enhances survival of Hca-F cell via Akt2/FoxO1 pathway and MMP-9 expression.

    PubMed

    Liu, Shuqing; Wang, Jiasheng; Guo, Chunmei; Qi, Houbao; Sun, Ming-Zhong

    2015-03-01

    Annexin A11 (Anxa11), a Ca(2+)-regulated phospholipid-binding protein, is involved in cell apoptosis, differentiation, vesicle trafficking, cancer progression and autoimmune diseases. Previous study from our group indicated that Anxa11 was associated with lymphatic metastatic potential of murine hepatocarcinoma cells. Herein, we investigated the effects and action mechanism of Anxa11 knockdown on in vitro cell proliferation and apoptosis of Hca-F, a murine hepatocarcinoma cell with∼75% lymph node metastatic potential. Real-time PCR and western blotting assays indicated that Anxa11 was significantly downregulated in monoclonal Anxa11-shRNA-transfected Hca-F cells. Anxa11 knockdown in Hca-F suppressed its in vitro proliferation and cell apoptosis capacities. Following Anxa11 knockdown in Hca-F cells, Bax/Bcl-2 expression level ratio, Akt2 and FoxO1 (pSer319) expression levels as well as MMP-9 mRNA and active MMP-9 protein levels were significantly elevated in Hca-F cells. In conclusion, Annexin A11 knockdown inhibits the in vitro proliferation and cell apoptosis of Hca-F cell via Akt2/FoxO1 and/or MMP-9 expression pathway. Anxa11 might play an important role in hepatocarcinoma cell invasion and metastasis and hepatocarcinoma malignancy. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. Copyright © 2015 the American Physiological Society.

  12. Glucose starvation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling.

    PubMed

    McGuire, Christina M; Forgac, Michael

    2018-06-08

    The vacuolar H + -ATPase (V-ATPase) is an ATP-driven proton pump involved in many cellular processes. An important mechanism by which V-ATPase activity is controlled is the reversible assembly of its two domains, namely the peripheral V 1 domain and the integral V 0 domain. Although reversible assembly is conserved across all eukaryotic organisms, the signaling pathways controlling it have not been fully characterized. Here, we identify glucose starvation as a novel regulator of V-ATPase assembly in mammalian cells. During acute glucose starvation, the V-ATPase undergoes a rapid and reversible increase in assembly and activity as measured by lysosomal acidification. Because the V-ATPase has recently been implicated in the activation of AMP kinase (AMPK), a critical cellular energy sensor that is also activated upon glucose starvation, we compared the time course of AMPK activation and V-ATPase assembly upon glucose starvation. We observe that AMPK activation precedes increased V-ATPase activity. Moreover, the starvation-induced increase in V-ATPase activity and assembly are prevented by the AMPK inhibitor dorsomorphin. These results suggest that increased assembly and activity of the V-ATPase upon glucose starvation are dependent upon AMPK. We also find that the PI3K/Akt pathway, which has previously been implicated in controlling V-ATPase assembly in mammalian cells, also plays a role in the starvation-induced increase in V-ATPase assembly and activity. These studies thus identify a novel stimulus of V-ATPase assembly and a novel signaling pathway involved in regulating this process. The possible function of starvation-induced increase in lysosomal V-ATPase activity is discussed. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling.

    PubMed

    Chatterjee, Madhumita; Borst, Oliver; Walker, Britta; Fotinos, Anna; Vogel, Sebastian; Seizer, Peter; Mack, Andreas; Alampour-Rajabi, Setareh; Rath, Dominik; Geisler, Tobias; Lang, Florian; Langer, Harald F; Bernhagen, Jürgen; Gawaz, Meinrad

    2014-11-07

    Macrophage migration inhibitory factor (MIF) is released on platelet activation. Circulating MIF could potentially regulate platelets and thereby platelet-mediated inflammatory and regenerative mechanisms. However, the effect of MIF on platelets is unknown. The present study evaluated MIF in regulating platelet survival and thrombotic potential. MIF interacted with CXCR4-CXCR7 on platelets, defining CXCR7 as a hitherto unrecognized receptor for MIF on platelets. MIF internalized CXCR4, but unlike CXCL12 (SDF-1α), it did not phosphorylate Erk1/2 after CXCR4 ligation because of the lack of CD74 and failed in subsequent CXCR7 externalization. MIF did not alter the activation status of platelets. However, MIF rescued platelets from activation and BH3 mimetic ABT-737-induced apoptosis in vitro via CXCR7 and enhanced circulating platelet survival when administered in vivo. The antiapoptotic effect of MIF was absent in Cxcr7(-/-) murine embryonic cells but pronounced in CXCR7-transfected Madin-Darby canine kidney cells. This prosurvival effect was attributed to the MIF-CXCR7-initiated PI3K-Akt pathway. MIF induced CXCR7-Akt-dependent phosphorylation of BCL-2 antagonist of cell death (BAD) both in vitro and in vivo. Consequentially, MIF failed to rescue Akt(-/-) platelets from thrombin-induced apoptosis when challenged ex vivo, also in prolonging platelet survival and in inducing BAD phosphorylation among Akt(-/-) mice in vivo. MIF reduced thrombus formation under arterial flow conditions in vitro and retarded thrombotic occlusion after FeCl3-induced arterial injury in vivo, an effect mediated through CXCR7. MIF interaction with CXCR7 modulates platelet survival and thrombotic potential both in vitro and in vivo and thus could regulate thrombosis and inflammation. © 2014 American Heart Association, Inc.

  14. Recent Development of Anticancer Therapeutics Targeting Akt

    PubMed Central

    Morrow, John K.; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J.; Mash, Eugene A.; Powis, Garth; Zhang, Shuxing

    2013-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches. PMID:21110830

  15. Fluorescent indicators for Akt/protein kinase B and dynamics of Akt activity visualized in living cells.

    PubMed

    Sasaki, Kazuki; Sato, Moritoshi; Umezawa, Yoshio

    2003-08-15

    Akt/protein kinase B (PKB) is a serine/threonine kinase that regulates a variety of cellular responses. To provide information on the spatial and temporal dynamics of Akt/PKB activity, we have developed genetically encoded fluorescent indicators for Akt/PKB. The indicators contain two green fluorescent protein mutants, an Akt/PKB substrate domain, flexible linker sequence, and phosphorylation recognition domain. A phosphorylation of the substrate domain in the indicators caused change in the emission ratio based on fluorescent resonance energy transfer between the two green fluorescent protein mutants. To let the fluorescent indicators behave as endothelial nitric-oxide synthase and Bad, which are endogenous Akt/PKB substrates, they were fused with the Golgi target domain and mitochondria target domain, respectively. The indicators thus colocalized with the endogenous substrates conferred their susceptibilities to phosphorylation by Akt/PKB. We showed that the Golgi-localized indicator responded to the stimulation with 17beta-estradiol (E2) and insulin in endothelial cells. In addition, E2 elicited the phosphorylation of the mitochondria-localized indicator in the endothelial cells, but no phosphorylation was observed by E2 or by insulin of the diffusible indicator that has no targeting domain. The difference in the results with the three indicators suggests that the activated Akt/PKB is localized to subcellular compartments, including the Golgi apparatus and/or mitochondria, rather than diffusing in the cytosol, thereby efficiently phosphorylating its substrate proteins. E2 triggered the phosphorylation of the mitochondria-localized indicator, whereas insulin did not induce this phosphorylation, which suggests that the localization of the activated Akt/PKB to the mitochondria is directed differently between insulin and E2 via distinct mechanisms.

  16. Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy.

    PubMed

    Urak, Ryan; Walter, Miriam; Lim, Laura; Wong, ChingLam W; Budde, Lihua E; Thomas, Sandra; Forman, Stephen J; Wang, Xiuli

    2017-01-01

    Insufficient persistence and effector function of chimeric antigen receptor (CAR)-redirected T cells have been challenging issues for adoptive T cell therapy. Generating potent CAR T cells is of increasing importance in the field. Studies have demonstrated the importance of the Akt pathway in the regulation of T cell differentiation and memory formation. We now investigate whether inhibition of Akt signaling during ex vivo expansion of CAR T cells can promote the generation of CAR T cells with enhanced antitumor activity following adoptive therapy in a murine leukemia xenograft model. Various T cell subsets including CD8+ T cells, bulk T cells, central memory T cells and naïve/memory T cells were isolated from PBMC of healthy donors, activated with CD3/CD28 beads, and transduced with a lentiviral vector encoding a second-generation CD19CAR containing a CD28 co-stimulatory domain. The transduced CD19CAR T cells were expanded in the presence of IL-2 (50U/mL) and Akt inhibitor (Akti) (1 μM) that were supplemented every other day. Proliferative/expansion potential, phenotypical characteristics and functionality of the propagated CD19CAR T cells were analyzed in vitro and in vivo after 17-21 day ex vivo expansion. Anti-tumor activity was evaluated after adoptive transfer of the CD19CAR T cells into CD19+ tumor-bearing immunodeficient mice. Tumor signals were monitored with biophotonic imaging, and survival rates were analyzed by the end of the experiments. We found that Akt inhibition did not compromise CD19CAR T cell proliferation and expansion in vitro, independent of the T cell subsets, as comparable CD19CAR T cell expansion was observed after culturing in the presence or absence of Akt inhibitor. Functionally, Akt inhibition did not dampen cell-mediated effector function, while Th1 cytokine production increased. With respect to phenotype, Akti-treated CD19CAR T cells expressed higher levels of CD62L and CD28 as compared to untreated CD19CAR T cells. Once

  17. Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells.

    PubMed

    Arimura, Yutaka; Shimizu, Kazuhiko; Koyanagi, Madoka; Yagi, Junji

    2014-12-01

    T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Akt mediated ROS-dependent selective targeting of mutant KRAS tumors.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Pervaiz, Shazib

    2014-10-01

    Reactive oxygen species (ROS) play a critical role in a variety of cellular processes, ranging from cell survival and proliferation to cell death. Previously, we reported the ability of a small molecule compound, C1, to induce ROS dependent autophagy associated apoptosis in human cancer cell lines and primary tumor cells (Wong C. et al. 2010). Our ongoing investigations have unraveled a hitherto undefined novel signaling network involving hyper-phosphorylation of Akt and Akt-mediated ROS production in cancer cell lines. Interestingly, drug-induced Akt activation is selectively seen in cell lines that carry mutant KRAS; HCT116 cells that carry the V13D KRAS mutation respond favorably to C1 while HT29 cells expressing wild type KRAS are relatively resistant. Of note, not only does the compound target mutant KRAS expressing cells but also induces RAS activation as evidenced by the PAK pull down assay. Corroborating this, pharmacological inhibition as well as siRNA mediated silencing of KRAS or Akt, blocked C1-induced ROS production and rescued tumor colony forming ability in HCT116 cells. To further confirm the involvement of KRAS, we made use of mutant KRAS transformed RWPE-1 prostate epithelial cells. Notably, drug-induced ROS generation and death sensitivity was significantly higher in RWPE-1-KRAS cells than the RWPE-1-vector cells, thus confirming the results obtained with mutant KRAS colorectal carcinoma cell line. Lastly, we made use of HCT116 mutant KRAS knockout cells (KO) where the mutant KRAS allele had been deleted, thus expressing a single wild-type KRAS allele. Exposure of the KO cells to C1 failed to induce Akt activation and mitochondrial ROS production. Taken together, results show the involvement of activated Akt in ROS-mediated selective targeting of mutant KRAS expressing tumors, which could have therapeutic implications given the paucity of chemotherapeutic strategies specifically targeting KRAS mutant cancers. Copyright © 2014. Published by

  19. An allosteric Akt inhibitor effectively blocks Akt signaling and tumor growth with only transient effects on glucose and insulin levels in vivo

    PubMed Central

    Cherrin, Craig; Haskell, Kathleen; Howell, Bonnie; Jones, Raymond; Leander, Karen; Robinson, Ronald; Watkins, Aubrey; Bilodeau, Mark; Hoffman, Jacob; Sanderson, Philip; Hartman, George; Mahan, Elizabeth; Prueksaritanont, Thomayant; Jiang, Guoqiang; She, Qing-Bai; Rosen, Neal; Sepp-Lorenzino, Laura; Defeo-Jones, Deborah; Huber, Hans E.

    2010-01-01

    The PI3K-Akt pathway is dysregulated in the majority of solid tumors. Pharmacological inhibition of Akt is a promising strategy for treating tumors resistant to growth factor receptor antagonists due to mutations in PI3K or PTEN. We have developed allosteric, isozyme-specific inhibitors of Akt activity and activation, as well as ex vivo kinase assays to measure inhibition of individual Akt isozymes in tissues. Here we describe the relationship between PK, Akt inhibition, hyperglycemia and tumor efficacy for a selective inhibitor of Akt1 and Akt2 (AKTi). In nude mice, AKTi treatment caused transient insulin resistance and reversible, dose-dependent hyperglycemia and hyperinsulinemia. Akt1 and Akt2 phosphorylation was inhibited in mouse lung with EC50 values of 1.6 and 7 μM, respectively, and with similar potency in other tissues and xenograft tumors. Weekly subcutaneous dosing of AKTi resulted in dose-dependent inhibition of LNCaP prostate cancer xenografts, an AR-dependent tumor with PTEN deletion and constitutively activated Akt. Complete tumor growth inhibition was achieved at 200 mpk, a dose that maintained inhibition of Akt1 and Akt2 of greater than 80% and 50%, respectively, for at least 12 hours in xenograft tumor and mouse lung. Hyperglycemia could be controlled by reducing Cmax, while maintaining efficacy in the LNCaP model, but not by insulin administration. AKTi treatment was well tolerated, without weight loss or gross toxicities. These studies supported the rationale for clinical development of allosteric Akt inhibitors and provide the basis for further refining of pharmacokinetic properties and dosing regimens of this class of inhibitors. PMID:20139722

  20. The Akt signaling pathway

    PubMed Central

    Madhunapantula, SubbaRao V; Mosca, Paul J

    2011-01-01

    Studies using cultured melanoma cells and patient tumor biopsies have demonstrated deregulated PI3 kinase-Akt3 pathway activity in ∼70% of melanomas. Furthermore, targeting Akt3 and downstream PRAS40 has been shown to inhibit melanoma tumor development in mice. Although these preclinical studies and several other reports using small interfering RNAs and pharmacological agents targeting key members of this pathway have been shown to retard melanoma development, analysis of early Phase I and Phase II clinical trials using pharmacological agents to target this pathway demonstrate the need for (1) selection of patients whose tumors have PI3 kinase-Akt pathway deregulation, (2) further optimization of therapeutic agents for increased potency and reduced toxicity, (3) the identification of additional targets in the same pathway or in other signaling cascades that synergistically inhibit the growth and progression of melanoma, and (4) better methods for targeted delivery of pharmaceutical agents inhibiting this pathway. In this review we discuss key potential targets in PI3K-Akt3 signaling, the status of pharmacological agents targeting these proteins, drugs under clinical development, and strategies to improve the efficacy of therapeutic agents targeting this pathway. PMID:22157148

  1. Tissue distribution of very late activation antigens-1/6 and very late activation antigen ligands in the normal thymus and in thymoma.

    PubMed Central

    Ruco, L. P.; Paradiso, P.; Pittiglio, M.; Diodoro, M. G.; Gearing, A. J.; Mainiero, F.; Gismondi, A.; Santoni, A.; Baroni, C. D.

    1993-01-01

    The expression of very late activation antigens (VLAs)-1/6 was correlated with that of the VLA ligands fibronectin, laminin, collagen, and vascular cell adhesion molecule-1 in sections of normal thymus, in thymocyte suspensions, and in 10 cases of thymoma. Capsular epithelial cells are VLA-2+, VLA-3+, and VLA-6+ and face the thymic basement membrane, which is rich in fibronectin, laminin, and collagen type IV. Cortical epithelial cells are VLA-2+ and are embedded in a reticular meshwork of nonorganized extracellular matrix (ECM) that is rich in fibronectin. Cortical thymocytes, identified as CD3dim cells by using immunofluorescence in suspension, are highly positive for VLA-4, a fibronectin ligand. Most cortical macrophages are positive for vascular cell adhesion molecule-1, a molecule recognized by VLA-4. Medullary epithelial cells are VLA-2+/VLA-3+ and are codistributed with fibrous strands of organized ECM that are positive for fibronectin, collagen, and laminin. Medullary thymocytes, identified as CD3bright cells, are positive for VLA-4 and VLA-6, a ligand for laminin. Our findings suggest that intrathymic thymocyte maturation is associated with changes in expression of VLA molecules, which are apparently correlated with the presence of VLA ligands in the tissue microenvironment. Thymomas were classified as cortical (three), common (five), or medullary (two) type. Expression of VLA molecules and distribution of ECM in the three histological subtypes were reminiscent of those observed in the respective regions of the normal thymus. All cases of thymoma were characterized by overexpression of VLA molecules on neoplastic cells, which was associated with increased deposition of organized ECM rich in fibronectin, laminin, and collagen. Images Figure 1 Figure 3 PMID:8456937

  2. Onset and Evolution of Clinically Apparent Myasthenia Gravis After Resection of Non-myasthenic Thymomas.

    PubMed

    Mineo, Tommaso Claudio; Tamburrini, Alessandro; Schillaci, Orazio; Ambrogi, Vincenzo

    2018-03-06

    Patients with thymoma and without clinical or electromyographical myasthenic signs may occasionally develop myasthenia several years after thymectomy. Hereby, we investigated the predictors and the evolution of this peculiar disease. We performed a retrospective analysis in 104 consecutive patients who underwent thymectomy between 1987 and 2013 for thymoma without clinical or electromyographic signs of myasthenia gravis. Predictors of post-thymectomy onset of myasthenia gravis were investigated with univariate time-to-disease analysis. Evolution of myasthenia was analyzed with time-to-regression analysis. Eight patients developed late myasthenia gravis after a median period of 33 months from thymectomy. No significant correlation was found for age, gender, Masaoka's stage, and World Health Organization histology. Only high preoperative serum acetylcholine-receptor antibodies titer (>0.3 nmol/L) was significantly associated with post-thymectomy myasthenia gravis at univariate time-to-disease (P = 0.003) analysis. Positron emission tomography was always performed in high-titer patients, and increased metabolic activity was detected in 4 of these patients. Surgical treatment through redo-sternotomy or video-assisted thoracoscopy was performed in these last cases with a remission in all patients after 12, 24, 32 and 48 months, respectively. No patient under medical treatment has yet developed a complete remission. In our study the presence of preoperative high-level serum acetylcholine receptor antibodies was the only factor significantly associated with the development of post-thymectomy myasthenia gravis. The persistence of residual islet of ectopic thymic tissue was one of the causes of the onset of myasthenia and its surgical removal was successful. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Akt-Dependent Cytokine Production in Mast Cells

    PubMed Central

    Kitaura, Jiro; Asai, Koichi; Maeda-Yamamoto, Mari; Kawakami, Yuko; Kikkawa, Ushio; Kawakami, Toshiaki

    2000-01-01

    Cross-linking of FcεRI induces the activation of three protein tyrosine kinases, Lyn, Syk, and Bruton's tyrosine kinase (Btk), leading to the secretion of a panel of proinflammatory mediators from mast cells. This study showed phosphorylation at Ser-473 and enzymatic activation of Akt/protein kinase B, the crucial survival kinase, upon FcεRI stimulation in mouse mast cells. Phosphorylation of Akt is regulated positively by Btk and Syk and negatively by Lyn. Akt in turn can regulate positively the transcriptional activity of interleukin (IL)-2 and tumor necrosis factor (TNF)-α promoters. Transcription from the nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein 1 (AP-1) sites within these promoters is under the control of Akt activity. Accordingly, the signaling pathway involving IκB-α, a cytoplasmic protein that binds NF-κB and inhibits its nuclear translocation, appears to be regulated by Akt in mast cells. Catalytic activity of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase that phosphorylates NF-AT and promotes its nuclear export, seems to be inhibited by Akt. Importantly, Akt regulates the production and secretion of IL-2 and TNF-α in FcεRI-stimulated mast cells. Altogether, these results revealed a novel function of Akt in transcriptional activation of cytokine genes via NF-κB, NF-AT, and AP-1 that contributes to the production of cytokines. PMID:10974038

  4. Comparison of Akt/mTOR/4E-BP1 pathway signal activation and mutations of PIK3CA in Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative carcinomas.

    PubMed

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Nagata, Keiko; Nakajima, Hideki; Sano, Shigetoshi; Hayashi, Kazuhiko

    2015-02-01

    Merkel cell polyomavirus (MCPyV) integrates monoclonally into the genomes of approximately 80% of Merkel cell carcinomas (MCCs), affecting their clinicopathological features. The molecular mechanisms underlying MCC development after MCPyV infection remain unclear. We investigated the association of MCPyV infection with activation of the Akt/mammalian target of rapamycin (mTOR)/4E-binding protein 1 (4E-BP1) signaling pathway in MCCs to elucidate the role of these signal transductions and to identify molecular targets for treatment. We analyzed the molecular and pathological characteristics of 41 MCPyV-positive and 27 MCPyV-negative MCCs. Expression of mTOR, TSC1, and TSC2 messenger RNA was significantly higher in MCPyV-negative MCCs, and Akt (T308) phosphorylation also was significantly higher (92% vs 66%; P = .019), whereas 4E-BP1 (S65 and T70) phosphorylation was common in both MCC types (92%-100%). The expression rates of most other tested signals were high (60%-100%) and not significantly correlated with MCPyV large T antigen expression. PIK3CA mutations were observed more frequently in MCPyV-positive MCCs (6/36 [17%] vs 2/20 [10%]). These results suggest that protein expression (activation) of most Akt/mTOR/4E-BP1 pathway signals was not significantly different in MCPyV-positive and MCPyV-negative MCCs, although these 2 types may differ in tumorigenesis, and MCPyV-negative MCCs showed significantly more frequent p-Akt (T308) activation. Therefore, certain Akt/mTOR/4E-BP1 pathway signals could be novel therapeutic targets for MCC regardless of MCPyV infection status. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague.

    PubMed

    Amemiya, Kei; Meyers, Jennifer L; Rogers, Taralyn E; Fast, Randy L; Bassett, Anthony D; Worsham, Patricia L; Powell, Bradford S; Norris, Sarah L; Krieg, Arthur M; Adamovicz, Jeffrey J

    2009-04-06

    The current U.S. Department of Defense candidate plague vaccine is a fusion between two Yersinia pestis proteins: the F1 capsular protein, and the low calcium response (Lcr) V-protein. We hypothesized that an immunomodulator, such as CpG oligodeoxynucleotide (ODN)s, could augment the immune response to the plague F1-V vaccine in a mouse model for plague. CpG ODNs significantly augmented the antibody response and efficacy of a single dose of the plague vaccine in murine bubonic and pneumonic models of plague. In the latter study, we also found an overall significant augmentation the immune response to the individual subunits of the plague vaccine by CpG ODN 2006. In a long-term, prime-boost study, CpG ODN induced a significant early augmentation of the IgG response to the vaccine. The presence of CpG ODN induced a significant increase in the IgG2a subclass response to the vaccine up to 5 months after the boost. Our studies showed that CpG ODNs significantly augmented the IgG antibody response to the plague vaccine, which increased the probability of survival in murine models of plague (P<0.0001).

  6. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp; Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Wada, Eiji, E-mail: gacchu1@yahoo.co.jp

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc onmore » differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.« less

  7. Identification of Bombyx mori Akt and its phosphorylation by bombyxin stimulation.

    PubMed

    Nagata, Shinji; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Nagasawa, Hiromichi

    2008-11-01

    Akt, a Ser/Thr protein kinase involved in insulin signaling, was identified from the silkworm, Bombyx mori. Bombyx Akt (BomAkt) is composed of 493 amino acid residues including regions conserved in other Akts: the Pleckstrin homology and kinase domains, and a dual phosphorylation site essential for kinase activation. Commercially available antibodies against mammalian Akt and phosphoAkt were able to recognize BomAkt and phosphorylated BomAkt in HEK293 cells expressing BomAkt. Additionally, phosphorylation of BomAkt was detectable in insulin-like growth factor (IGF)-I stimulated-HEK293 cells expressing BomAkt. RT-PCR and immunoblotting analyses revealed that BomAkt is expressed ubiquitously in Bombyx larvae. Phosphorylation of BomAkt was observed both in the isolated fat body after exposure to bombyxin, an endogenous insulin-like peptide, and in the larval fat body by refeeding a diet after starvation. These results suggest that dietary intake may activate the insulin signaling pathway, including Akt, through bombyxin action in B. mori.

  8. The replication of a mouse adapted SARS-CoV in a mouse cell line stably expressing the murine SARS-CoV receptor mACE2 efficiently induces the expression of proinflammatory cytokines

    PubMed Central

    Regla-Nava, Jose A.; Jimenez-Guardeño, Jose M.; Nieto-Torres, Jose L.; Gallagher, Thomas M.; Enjuanes, Luis; DeDiego, Marta L.

    2013-01-01

    Infection of conventional mice with a mouse adapted (MA15) severe acute respiratory syndrome (SARS) coronavirus (CoV) reproduces many aspects of human SARS such as pathological changes in lung, viremia, neutrophilia, and lethality. However, established mouse cell lines highly susceptible to mouse-adapted SARS-CoV infection are not available. In this work, efficiently transfectable mouse cell lines stably expressing the murine SARS-CoV receptor angiotensin converting enzyme 2 (ACE2) have been generated. These cells yielded high SARS-CoV-MA15 titers and also served as excellent tools for plaque assays. In addition, in these cell lines, SARS-CoV-MA15 induced the expression of proinflammatory cytokines and IFN-β, mimicking what has been observed in experimental animal models infected with SARS-CoV and SARS patients. These cell lines are valuable tools to perform in vitro studies in a mouse cell system that reflects the species used for in vivo studies of SARS-CoV-MA15 pathogenesis. PMID:23911968

  9. Yersinia outer proteins (YOPS) E, K and N are antigenic but non-protective compared to V antigen, in a murine model of bubonic plague.

    PubMed

    Leary, S E; Griffin, K F; Galyov, E E; Hewer, J; Williamson, E D; Holmström, A; Forsberg, A; Titball, R W

    1999-03-01

    The pathogenic Yersiniae produce a range of virulence proteins, encoded by a 70 kb plasmid, which are essential for infection, and also form part of a contact-dependent virulence mechanism. One of these proteins, V antigen, has been shown to confer a high level of protection against parenteral infection with Y. pestis in murine models, and is considered to be a protective antigen. In this study, the protective efficacy of V antigen has been compared in the same model with that of other proteins (YopE, YopK and YopN), which are part of the contact-dependent virulence mechanism. Mice immunised with two intraperitoneal doses of V antigen or each of the Yops, administered with either Alhydrogel or interleukin-12, produced high antigen-specific serum IgG titres. As shown in previous studies, V+Alhydrogel was fully protective, and 5/5 mice survived a subcutaneous challenge with 90 or 9x10(3) LD50's of Y. pestis GB. In addition, these preliminary studies also showed that V+IL-12 was partially protective: 4/5 or 3/5 mice survived a challenge with 90 or 9x10(3) LD50's, respectively. In contrast, none of the mice immunised with the Yops survived the challenges, and there was no significant delay in the mean time to death compared to mice receiving a control protein. These results show that using two different vaccine regimens, Yops E, K and N, failed to elicit protective immune responses in a murine model of plague, whereas under the same conditions, V antigen was fully or partially protective. Copyright 1999 Academic Press.

  10. Hepatic Proteomic Analysis Revealed Altered Metabolic Pathways in Insulin Resistant Akt1+/-/Akt2-/-Mice

    PubMed Central

    Pedersen, Brian A; Wang, Weiwen; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Edwards, Robert A; Yazdi, Puya G; Wang, Ping H

    2015-01-01

    Objective The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. Methods Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1+/-/AKT2-/- mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway analysis was performed for the interpretation of the biological significance of the observed proteomic changes. Results 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1+/-/Akt2-/-) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. Conclusion Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance. PMID:26455965

  11. EZH2 phosphorylation regulates Tat-induced HIV-1 transactivation via ROS/Akt signaling pathway.

    PubMed

    Zhang, Hong-Sheng; Liu, Yang; Wu, Tong-Chao; Du, Guang-Yuan; Zhang, Feng-Juan

    2015-12-21

    EZH2 plays a major role in HIV-1 latency, however, the molecular linkage between Tat-induced HIV-1 transactivation and EZH2 activity is not fully understood. It was shown Tat induced HIV-1 transactivation through inhibiting EZH2 activity. Tat decreased the levels of H3K27me3 and EZH2 occupy at the long terminal repeat (LTR) of HIV-1. We further showed for the first time that transfected with Tat construct resulted in an increase in phosphorylated EZH2 (p-EZH2), mediated by active Akt. ROS/Akt-dependent p-EZH2 was correlated with Tat-induced transactivation. Our study reveals that novel mechanisms allow Tat-induced HIV-1 transactivation by ROS/Akt-dependent downregulating the EZH2 epigenetic silencing machinery. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Insights from Molecular Dynamics Simulations: Structural Basis for the V567D Mutation-Induced Instability of Zebrafish Alpha-Dystroglycan and Comparison with the Murine Model

    PubMed Central

    Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina

    2014-01-01

    A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies. PMID:25078606

  13. Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model.

    PubMed

    Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina

    2014-01-01

    A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies.

  14. Proinflammatory activation of macrophages by bisphenol A-glycidyl-methacrylate involved NFκB activation via PI3K/Akt pathway.

    PubMed

    Kuan, Yu-Hsiang; Huang, Fu-Mei; Li, Yi-Ching; Chang, Yu-Chao

    2012-11-01

    Bisphenol A-glycidyl-methacrylate (BisGMA), a dental composite resin and dentin bonding agent, might prompt inflammatory effects to adjacent tissues. Macrophages are a major cellular component of the inflammatory sites. Little is known about the mechanisms of BisGMA on macrophages activation. The aim of this study was to evaluate BisGMA on proinflammatory mediators generation of murine macrophage RAW264.7 cells. IL-1β and IL-6 were analyzed by enzyme-linked immunosorbent assay. Nitric oxide, extracellular superoxide anion, and intracellular reaction oxygen species were measured by Griess assay, ferricytochrome c, and 2',7'-dichlorofluorescein assay, respectively. Expression of iNOS, p-p65, IκB, and p-Akt was analyzed by Western blotting. BisGMA augmented the generation of IL-1β, IL-6, nitric oxide and the expression of iNOS in a time- and dose-dependent manner (p<0.05). BisGMA enhanced the generation of intracellular and extracellular ROS in a dose-dependent manner (p<0.05). The levels of p65 phosphorylation, IκB degradation, and Akt phosphorylation were found to be increased in a time- and dose-dependent manner (p<0.05). These results indicate that BisGMA could induce nitric oxide, ROS, and inflammatory cytokines in macrophages. In addition, BisGMA may active macrophage via NF-κB activation, IκB degradation, and p-Akt activation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Silencing of diphthamide synthesis 3 (Dph3) reduces metastasis of murine melanoma.

    PubMed

    Wang, Lei; Shi, Yu; Ju, Peijun; Liu, Rui; Yeo, Siok Ping; Xia, Yinyan; Owlanj, Hamed; Feng, Zhiwei

    2012-01-01

    Melanoma is the most dangerous skin cancer due to its highly metastatic potential and resistance to chemotherapy. Currently, there is no effective treatment for melanoma once it is progressed to metastatic stage. Therefore, further study to elucidate the molecular mechanism underlying the metastasis of melanoma cells is urgently required for the improvement of melanoma treatment. In the present study, we found that diphthamide synthesis 3 (Dph3) is involved in the metastasis of B16F10 murine melanoma cells by insertional mutagenesis. We demonstrated that Dph3 disruption impairs the migration of B16F10 murine melanoma cells. The requirement of Dph3 in the migration of melanoma cells was further confirmed by gene silencing with siRNA in vitro. In corresponding to this result, overexpression of Dph3 significantly promoted the migratory ability of B16F10 and B16F0 melanoma cells. Moreover, down regulation of Dph3 expression in B16F10 melanoma cells strikingly inhibits their cellular invasion and metastasis in vivo. Finally, we found that Dph3 promotes melanoma migration and invasion through the AKT signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma.

  16. Role of Akt and Ca2+ on cell permeabilization via connexin43 hemichannels induced by metabolic inhibition.

    PubMed

    Salas, Daniela; Puebla, Carlos; Lampe, Paul D; Lavandero, Sergio; Sáez, Juan C

    2015-07-01

    Connexin hemichannels are regulated under physiological and pathological conditions. Metabolic inhibition, a model of ischemia, promotes surface hemichannel activation associated, in part, with increased surface hemichannel levels, but little is known about its underlying mechanism. Here, we investigated the role of Akt on the connexin43 hemichannel's response induced by metabolic inhibition. In HeLa cells stably transfected with rat connexin43 fused to EGFP (HeLa43 cells), metabolic inhibition induced a transient Akt activation necessary to increase the amount of surface connexin43. The increase in levels of surface connexin43 was also found to depend on an intracellular Ca2+ signal increase that was partially mediated by Akt activation. However, the metabolic inhibition-induced Akt activation was not significantly affected by intracellular Ca2+ chelation. The Akt-dependent increase in connexin43 hemichannel activity in HeLa43 cells also occurred after oxygen-glucose deprivation, another ischemia-like condition, and in cultured cortical astrocytes (endogenous connexin43 expression system) under metabolic inhibition. Since opening of hemichannels has been shown to accelerate cell death, inhibition of Akt-dependent phosphorylation of connexin43 hemichannels could reduce cell death induced by ischemia/reperfusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dapper1 attenuates hepatic gluconeogenesis and lipogenesis by activating PI3K/Akt signaling.

    PubMed

    Kuang, Jian-Ren; Zhang, Zhi-Hui; Leng, Wei-Ling; Lei, Xiao-Tian; Liang, Zi-Wen

    2017-05-15

    Studies have shown that hepatic insulin resistance, a disorder of glucose and lipid metabolism, plays a vital role in type 2 diabetes (T2D). To clarify the function of Dapper1 in glucose and lipid metabolism in the liver, we investigated the relationships between Dapper1 and adenosine triphosphate (ATP)- and Ca 2+ -mediated activation of PI3K/Akt. We observed a reduction in hepatic Dapper1 in db/db (mice that are homozygous for a spontaneous diabetes mutation) and HFD-induced diabetic mice with T2D. Hepatic overexpression of Dapper1 improved hyperglycemia, insulin resistance, and fatty liver. It also increased Akt (pAkt) signaling and repressed both gluconeogenesis and lipogenesis. Conversely, Ad-shDapper1-induced knockdown of hepatic Dapper1 promoted gluconeogenesis and lipogenesis. Furthermore, Dapper1 activated PI3K p110α/Akt in an insulin-independent manner by inducing ATP production and secretion in vitro. Blockade of P2 ATP receptors, the downstream phospholipase C (PLC), or the inositol triphosphate receptor (IP3R all reduced the Dapper1-induced increase in cytosolic free calcium and Dapper1-mediated PI3K/Akt activation, as did removal of calcium in the medium. In conclusion, Dapper1 attenuates hepatic gluconeogenesis and lipogenesis in T2D. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Functional characterization of lysosomal interaction of Akt with VRK2.

    PubMed

    Hirata, Noriyuki; Suizu, Futoshi; Matsuda-Lennikov, Mami; Tanaka, Tsutomu; Edamura, Tatsuma; Ishigaki, Satoko; Donia, Thoria; Lithanatudom, Pathrapol; Obuse, Chikashi; Iwanaga, Toshihiko; Noguchi, Masayuki

    2018-06-05

    Serine-threonine kinase Akt (also known as PKB, protein kinase B), a core intracellular mediator of cell survival, is involved in various human cancers and has been suggested to play an important role in the regulation of autophagy in mammalian cells. Nonetheless, the physiological function of Akt in the lysosomes is currently unknown. We have reported previously that PtdIns(3)P-dependent lysosomal accumulation of the Akt-Phafin2 complex is a critical step for autophagy induction. Here, to characterize the molecular function of activated Akt in the lysosomes in the process of autophagy, we searched for the molecules that interact with the Akt complex at the lysosomes after induction of autophagy. By time-of-flight-mass spectrometry (TOF/MS) analysis, kinases of the VRK family, a unique serine-threonine family of kinases in the human kinome, were identified. VRK2 interacts with Akt1 and Akt2, but not with Akt3; the C terminus of Akt and the N terminus of VRK2 facilitate the interaction of Akt and VRK2 in mammalian cells. The kinase-dead form of VRK2A (KD VRK2A) failed to interact with Akt in coimmunoprecipitation assays. Bimolecular fluorescence complementation (BiFC) experiments showed that, in the lysosomes, Akt interacted with VRK2A but not with VRK2B or KD VRK2A. Immunofluorescent assays revealed that VRK2 and phosphorylated Akt accumulated in the lysosomes after autophagy induction. WT VRK2A, but not KD VRK2A or VRK2B, facilitated accumulation of phosphorylated Akt in the lysosomes. Downregulation of VRK2 abrogated the lysosomal accumulation of phosphorylated Akt and impaired nuclear localization of TFEB; these events coincided to inhibition of autophagy induction. The VRK2-Akt complex is required for control of lysosomal size, acidification, bacterial degradation, and for viral replication. Moreover, lysosomal VRK2-Akt controls cellular proliferation and mitochondrial outer-membrane stabilization. Given the roles of autophagy in the pathogenesis of human

  19. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries.

    PubMed

    Goodchild, Sarah A; Dooley, Helen; Schoepp, Randal J; Flajnik, Martin; Lonsdale, Stephen G

    2011-09-01

    Members of the genus Ebolavirus cause fulminating outbreaks of disease in human and non-human primate populations with a mortality rate up to 90%. To facilitate rapid detection of these pathogens in clinical and environmental samples, robust reagents capable of providing sensitive and specific detection are required. In this work recombinant antibody libraries were generated from murine (single chain variable domain fragment; scFv) and nurse shark, Ginglymostoma cirratum (IgNAR V) hosts immunised with Zaire ebolavirus. This provides the first recorded IgNAR V response against a particulate antigen in the nurse shark. Both murine scFv and shark IgNAR V libraries were panned by phage display technology to identify useful antibodies for the generation of immunological detection reagents. Two murine scFv were shown to have specificity to the Zaire ebolavirus viral matrix protein VP40. Two isolated IgNAR V were shown to bind to the viral nucleoprotein (NP) and to capture viable Zaire ebolavirus with a high degree of sensitivity. Assays developed with IgNAR V cross-reacted to Reston ebolavirus, Sudan ebolavirus and Bundibugyo ebolavirus. Despite this broad reactivity, neither of IgNAR V showed reactivity to Côte d'Ivoire ebolavirus. IgNAR V was substantially more resistant to irreversible thermal denaturation than murine scFv and monoclonal IgG in a comparative test. The demonstrable robustness of the IgNAR V domains may offer enhanced utility as immunological detection reagents in fieldable biosensor applications for use in tropical or subtropical countries where outbreaks of Ebolavirus haemorrhagic fever occur. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. The replication of a mouse adapted SARS-CoV in a mouse cell line stably expressing the murine SARS-CoV receptor mACE2 efficiently induces the expression of proinflammatory cytokines.

    PubMed

    Regla-Nava, Jose A; Jimenez-Guardeño, Jose M; Nieto-Torres, Jose L; Gallagher, Thomas M; Enjuanes, Luis; DeDiego, Marta L

    2013-11-01

    Infection of conventional mice with a mouse adapted (MA15) severe acute respiratory syndrome (SARS) coronavirus (CoV) reproduces many aspects of human SARS such as pathological changes in lung, viremia, neutrophilia, and lethality. However, established mouse cell lines highly susceptible to mouse-adapted SARS-CoV infection are not available. In this work, efficiently transfectable mouse cell lines stably expressing the murine SARS-CoV receptor angiotensin converting enzyme 2 (ACE2) have been generated. These cells yielded high SARS-CoV-MA15 titers and also served as excellent tools for plaque assays. In addition, in these cell lines, SARS-CoV-MA15 induced the expression of proinflammatory cytokines and IFN-β, mimicking what has been observed in experimental animal models infected with SARS-CoV and SARS patients. These cell lines are valuable tools to perform in vitro studies in a mouse cell system that reflects the species used for in vivo studies of SARS-CoV-MA15 pathogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Staurosporine, but not Ro 31-8220, induces interleukin 2 production and synergizes with interleukin 1alpha in EL4 thymoma cells.

    PubMed

    Mahon, T M; Matthews, J S; O'Neill, L A

    1997-07-01

    Protein kinase C (PKC) has been implicated in interleukin 1 (IL1) signal transduction in a number of cellular systems, either as a key event in IL1 action or as a negative regulator. Here we have examined the effects of two PKC inhibitors, staurosporine and the more selective agent Ro 31-8220, on IL1 responses in the murine thymoma line EL4.NOB-1. A 1 h pulse of staurosporine was found to strongly potentiate the induction of IL2 by IL1alpha in these cells. In contrast, neither a pulse nor prolonged incubation with Ro 31-8220 affected the response to IL1alpha. Both agents blocked the response to PMA, however. A 1 h pulse of staurosporine was also found to induce IL2 production on its own, activate the transcription factor nuclear factor kappaB (NFkappaB) and increase the expression of a NFkappaB-linked reporter gene. It synergized with IL1alpha in all of these responses. Ro 31-8220 was again without effect, although both staurosporine and Ro 31-8220 blocked the activation of NFkappaB by PMA. Finally, staurosporine caused the translocation of PKC-alpha and -epsilon, and to a lesser extent PKC-beta, but not PKC-θ or -zeta, from the cytosol to the membrane, although a similar effect was observed with Ro 31-8220. The results suggest that PKC is not involved in IL1alpha signalling in EL4 cells. Furthermore, the potentiating effect of staurosporine on IL1alpha action does not involve PKC inhibition, and is likely to be at the level of NFkappaB activation.

  2. Resistance of Akt kinases to dephosphorylation through ATP-dependent conformational plasticity.

    PubMed

    Chan, Tung O; Zhang, Jin; Rodeck, Ulrich; Pascal, John M; Armen, Roger S; Spring, Maureen; Dumitru, Calin D; Myers, Valerie; Li, Xue; Cheung, Joseph Y; Feldman, Arthur M

    2011-11-15

    Phosphorylation of a threonine residue (T308 in Akt1) in the activation loop of Akt kinases is a prerequisite for deregulated Akt activity frequently observed in neoplasia. Akt phosphorylation in vivo is balanced by the opposite activities of kinases and phosphatases. Here we describe that targeting Akt kinase to the cell membrane markedly reduced sensitivity of phosphorylated Akt to dephosphorylation by protein phosphatase 2A. This effect was amplified by occupancy of the ATP binding pocket by either ATP or ATP-competitive inhibitors. Mutational analysis revealed that R273 in Akt1 and the corresponding R274 in Akt2 are essential for shielding T308 in the activation loop against dephosphorylation. Thus, occupancy of the nucleotide binding pocket of Akt kinases enables intramolecular interactions that restrict phosphatase access and sustain Akt phosphorylation. This mechanism provides an explanation for the "paradoxical" Akt hyperphosphorylation induced by ATP-competitive inhibitor, A-443654. The lack of phosphatase resistance further contributes insight into the mechanism by which the human Akt2 R274H missense mutation may cause autosomal-dominant diabetes mellitus.

  3. AKT signaling displays multifaceted functions in neural crest development.

    PubMed

    Sittewelle, Méghane; Monsoro-Burq, Anne H

    2018-05-31

    AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Adaptive Immunity Restricts Replication of Novel Murine Astroviruses

    PubMed Central

    Yokoyama, Christine C.; Loh, Joy; Zhao, Guoyan; Stappenbeck, Thaddeus S.; Wang, David; Huang, Henry V.

    2012-01-01

    The mechanisms of astrovirus pathogenesis are largely unknown, in part due to a lack of a small-animal model of disease. Using shotgun sequencing and a custom analysis pipeline, we identified two novel astroviruses capable of infecting research mice, murine astrovirus (MuAstV) STL1 and STL2. Subsequent analysis revealed the presence of at least two additional viruses (MuAstV STL3 and STL4), suggestive of a diverse population of murine astroviruses in research mice. Complete genomic characterization and subsequent phylogenetic analysis showed that MuAstV STL1 to STL4 are members of the mamastrovirus genus and are likely members of a new mamastrovirus genogroup. Using Rag1−/− mice deficient in B and T cells, we demonstrate that adaptive immunity is required to control MuAstV infection. Furthermore, using Stat1−/− mice deficient in innate signaling, we demonstrate a role for the innate immune response in the control of MuAstV replication. Our results demonstrate that MuAstV STL permits the study of the mechanisms of astrovirus infection and host-pathogen interactions in a genetically manipulable small-animal model. Finally, we detected MuAstV in commercially available mice, suggesting that these viruses may be present in academic and commercial research mouse facilities, with possible implications for interpretation of data generated in current mouse models of disease. PMID:22951832

  5. Akt/PKB activation in gastric carcinomas correlates with clinicopathologic variables and prognosis.

    PubMed

    Nam, Seon Young; Lee, Hye Seung; Jung, Gyung-Ah; Choi, Jimi; Cho, Sung Jin; Kim, Min Kyu; Kim, Woo Ho; Lee, Byung Lan

    2003-12-01

    Akt/protein kinase B (PKB) plays an important role in cell survival. However, the role of Akt in the biology of gastric cancer has not been well studied. We sought to investigate the expression of Akt or phosphorylated Akt (pAkt) in human gastric carcinomas and to analyze the relationship between Akt or pAkt and the clinicopathologic parameters. The expressions of Akt and pAkt were evaluated immunohistochemically in 311 gastric carcinomas using the tissue array method. Akt expression was detected in 74% of the tumors and pAkt expression in 78%. pAkt was highly expressed in the early stage of pTNM (p=0.011). We also found an inverse association between pAkt and lymphatic invasion (p=0.01) or lymph node metastasis (p=0.008). pAkt expression was significantly correlated with a higher survival in patients with stage I carcinomas (p=0.0003). Interestingly, combined evaluation revealed that the group with pAkt-positive and lymph node-negative carcinomas showed a better prognosis than the other groups (p<0.0001). In addition, pAkt was shown to correlate positively with APC (p=0.002) and Smad4 (p<0.0001) expression. These findings suggest that pAkt expression may help to predict the clinical outcome of gastric cancer patients.

  6. MSA Mimic? Rare Occurrence of Anti-Hu Autonomic Failure and Thymoma in a Patient with Parkinsonism: Case Report and Literature Review

    PubMed Central

    Ricigliano, Vito A. G.; Fossati, Barbara; Saraceno, Lorenzo; Cavalli, Michele; Bazzigaluppi, Elena; Meola, Giovanni

    2018-01-01

    Thymoma is a tumor originating from thymic gland, frequently manifesting with paraneoplastic neurological disorders. Its association with paraneoplastic dysautonomia is relatively uncommon. Here, we describe the challenging case of a 71 year-old female who developed subacute autonomic failure with digestive pseudo-obstruction, dysphagia, urinary tract dysfunction and orthostatic hypotension complicating an underlying extrapyramidal syndrome that had started 3 months before hospital admission. Autonomic symptoms had 2-month course and acutely worsened just before and during hospitalization. Combination of severe dysautonomia and parkinsonism mimicked rapidly progressing multiple system atrophy. However, diagnostic exams showed thymic tumor with positive anti-Hu antibodies on both serum and cerebrospinal fluid. Complete response of dysautonomia to immunoglobulins followed by thymectomy confirmed the diagnosis of anti-Hu-related paraneoplastic neurological syndrome. With regards to extrapyramidal symptoms, despite previous descriptions of paraneoplastic parkinsonism caused by other antineuronal antibodies, in our case no relation between anti-Hu and parkinsonism could be identified. A literature review of published reports describing anti-Hu positivity in thymic neoplasms highlighted that a definite autonomic disease due to anti-Hu antibodies is extremely rare in patients with thymoma but without myasthenia gravis, with only one case published so far. PMID:29416500

  7. Inhibition of PTEN and activation of Akt by menadione.

    PubMed

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-04-01

    Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.

  8. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice[S

    PubMed Central

    Babaev, Vladimir R.; Hebron, Katie E.; Wiese, Carrie B.; Toth, Cynthia L.; Ding, Lei; Zhang, Youmin; May, James M.; Fazio, Sergio; Vickers, Kasey C.; Linton, MacRae F.

    2014-01-01

    Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis. PMID:25240046

  9. Degradation of Akt using protein-catalyzed capture agents.

    PubMed

    Henning, Ryan K; Varghese, Joseph O; Das, Samir; Nag, Arundhati; Tang, Grace; Tang, Kevin; Sutherland, Alexander M; Heath, James R

    2016-04-01

    Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry, we recently developed multiple protein-catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein-based assay. Here, we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare proteolysis targeting chimeric molecules that are shown to promote the rapid degradation of Akt in live cancer cells. These novel proteolysis targeting chimeric molecules demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  10. Targeting protein kinase-b3 (akt3) signaling in melanoma.

    PubMed

    Madhunapantula, SubbaRao V; Robertson, Gavin P

    2017-03-01

    Deregulated Akt activity leading to apoptosis inhibition, enhanced proliferation and drug resistance has been shown to be responsible for 35-70% of advanced metastatic melanomas. Of the three isoforms, the majority of melanomas have elevated Akt3 expression and activity. Hence, potent inhibitors targeting Akt are urgently required, which is possible only if (a) the factors responsible for the failure of Akt inhibitors in clinical trials is known; and (b) the information pertaining to synergistically acting targeted therapeutics is available. Areas covered: This review provides a brief introduction of the PI3K-Akt signaling pathway and its role in melanoma development. In addition, the functional role of key Akt pathway members such as PRAS40, GSK3 kinases, WEE1 kinase in melanoma development are discussed together with strategies to modulate these targets. Efficacy and safety of Akt inhibitors is also discussed. Finally, the mechanism(s) through which Akt leads to drug resistance is discussed in this expert opinion review. Expert opinion: Even though Akt play key roles in melanoma tumor progression, cell survival and drug resistance, many gaps still exist that require further understanding of Akt functions, especially in the (a) metastatic spread; (b) circulating melanoma cells survival; and (c) melanoma stem cells growth.

  11. Formulation of glutathione responsive anti-proliferative nanoparticles from thiolated Akt1 siRNA and disulfide-crosslinked PEI for efficient anti-cancer gene therapy.

    PubMed

    Muthiah, Muthunarayanan; Che, Hui-Lian; Kalash, Santhosh; Jo, Jihoon; Choi, Seok-Yong; Kim, Won Jong; Cho, Chong Su; Lee, Jae Young; Park, In-Kyu

    2015-02-01

    In this study, thiol-modified siRNA (SH-siRNA) was delivered by bioreducible polyethylenimine (ssPEI), to enhance physicochemical properties of polyplexes and function of siRNA through disulfide bonding between SH-siRNA and ssPEI. The ssPEI was utilized to deliver Akt1 SH-siRNA for suppression of Akt1 mRNA and blockage of Akt1 protein translation, resulting in reduced cellular proliferation and the induction of apoptosis. Disulfide bondings between the ssPEI and SH-siRNA through thiol groups in both were confirmed by DTT treatment. Complexation between ssPEI and Akt1SH-siRNA was enhanced and reduced surface charge of ssPEI/Akt1SH-siRNA complexes with smaller average particle sizes even at lower N/P ratios was obtained compared with PEI/Akt1siRNA ones. Cellular uptake of ssPEI/Akt1SH-siRNA complexes in CT-26 mouse colon cancer cells was also enhanced. The ssPEI/Akt1SH-siRNA complexes reduced proliferation and increased apoptosis of mouse colon cancer cells in vitro. In an in vivo mouse tumor model, the complexes reduced tumor proliferation and downregulation of Akt1 compared to controls. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. PTEN inhibition enhances angiogenesis in an in vitro model of ischemic injury by promoting Akt phosphorylation and subsequent hypoxia inducible factor-1α upregulation.

    PubMed

    Xue, Lixia; Huang, Jiankang; Zhang, Ting; Wang, Xiuzhe; Fu, Jianliang; Geng, Zhi; Zhao, Yuwu; Chen, Hao

    2018-06-24

    Angiogenesis is an important pathophysiological response to cerebral ischemia. PTEN is a lipid phosphatase whose loss activates PI3K/Akt signaling, which is related to HIF-1α upregulation and enhanced angiogenesis in human cancer cells. However, the specific roles of PTEN in endothelial cell functions and angiogenesis after cerebral ischemia remain unknown. Therefore, we sought to examine the potential effects of PTEN inhibition on post-ischemic angiogenesis in human blood vessel cells and to determine the underlying mechanism. In this present study, human umbilical vein endothelial cells (HUVECs) were exposed to oxygen-glucose deprivation (OGD), cell proliferation, migration and apoptosis, in vitro tube formation and expression of PTEN/Akt pathway and angiogenic factors were examined in HUVECs after treatment with PTEN inhibitor bisperoxovanadium (bpV) at different doses. The results showed that bpV significantly increased the cell proliferation and reduced cell apoptosis indicating that the drug exerts a cytoprotective effect on HUVECs with OGD exposure. bpV also enhanced cell migration and tube formation in HUVECs following OGD, and upregulated HIF-1α and VEGF expressions, but attenuated endostatin expression. Additionally, western blotting analysis demonstrated that Akt phosphorylation in HUVECs was significantly increased after bpV treatment. These findings suggest that PTEN inhibition promotes post-ischemic angiogenesis in HUVECs after exposure to OGD and this enhancing effect might be achieved through activation of the Akt signal cascade.

  13. Calcineurin mediates AKT dephosphorylation in the ischemic rat retina.

    PubMed

    Park, Chang Hwan; Kim, Yoon Sook; Kim, Young Hee; Choi, Mee Young; Yoo, Ji Myong; Kang, Sang Soo; Choi, Wan Sung; Cho, Gyeong Jae

    2008-10-09

    Calcineurin (CaN) is a calcium/calmodulin-dependent protein phosphatase that has an important role in ischemia-induced apoptosis. The serine/threonine kinase, Akt, which is also known as protein kinase B, has an important role in the cell death/survival pathways. Akt is activated by its phosphorylation, which is positively regulated by phosphatidylinositol 3-kinase (PI3K) and negatively regulated by a class of protein phosphatases (PPs) in tissue. However, the relationship between CaN and Akt after transient ischemia remains unclear. In the present study, we investigated whether CaN is involved in neuronal cell apoptosis and Akt dephosphorylation that occur during ischemic injury. We examined the interdependence between CaN and Akt/protein kinase B (PKB) in the rat retina after transient ischemia. After ischemic damage, we detected changes in levels of CaN, Akt and Bad in rats in the presence or absence FK506, CaN inhibitor. Our results show that CaN cleavage reduced Akt phosphorylation at Thr308 and Ser473, and led to apoptosis via dephosphorylation of the proapoptotic Bcl-2 family member Bad. After treatment with FK506, Akt and Bad dephosphorylation was greatly reduced. The total number of TUNEL-positive neurons was reduced by intravitreal injection of FK506 after transient ischemia. These results indicate that CaN cleavage negatively regulates Akt phosphorylation and is involved in retinal cell apoptosis after transient ischemia.

  14. Carbon Monoxide Protects against Hepatic Ischemia/Reperfusion Injury via ROS-Dependent Akt Signaling and Inhibition of Glycogen Synthase Kinase 3β

    PubMed Central

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W.

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury. PMID:24454979

  15. Carbon monoxide protects against hepatic ischemia/reperfusion injury via ROS-dependent Akt signaling and inhibition of glycogen synthase kinase 3β.

    PubMed

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  16. Aberrant AKT activation drives well-differentiated liposarcoma

    PubMed Central

    Gutierrez, Alejandro; Snyder, Eric L.; Marino-Enriquez, Adrian; Zhang, Yi-Xiang; Sioletic, Stefano; Kozakewich, Elena; Grebliunaite, Ruta; Ou, Wen-bin; Sicinska, Ewa; Raut, Chandrajit P.; Demetri, George D.; Perez-Atayde, Antonio R.; Wagner, Andrew J.; Fletcher, Jonathan A.; Fletcher, Christopher D. M.; Look, A. Thomas

    2011-01-01

    Well-differentiated liposarcoma (WDLPS), one of the most common human sarcomas, is poorly responsive to radiation and chemotherapy, and the lack of animal models suitable for experimental analysis has seriously impeded functional investigation of its pathobiology and development of effective targeted therapies. Here, we show that zebrafish expressing constitutively active Akt2 in mesenchymal progenitors develop WDLPS that closely resembles the human disease. Tumor incidence rates were 8% in p53 wild-type zebrafish, 6% in p53 heterozygotes, and 29% in p53-homozygous mutant zebrafish (P = 0.013), indicating that aberrant Akt activation collaborates with p53 mutation in WDLPS pathogenesis. Analysis of primary clinical specimens of WDLPS, and of the closely related dedifferentiated liposarcoma (DDLPS) subtype, revealed immunohistochemical evidence of AKT activation in 27% of cases. Western blot analysis of a panel of cell lines derived from patients with WDLPS or DDLPS revealed robust AKT phosphorylation in all cell lines examined, even when these cells were cultured in serum-free media. Moreover, BEZ235, a small molecule inhibitor of PI3K and mammalian target of rapamycin that effectively inhibits AKT activation in these cells, impaired viability at nanomolar concentrations. Our findings are unique in providing an animal model to decipher the molecular pathogenesis of WDLPS, and implicate AKT as a previously unexplored therapeutic target in this chemoresistant sarcoma. PMID:21930930

  17. ONCOGENIC DRIVER GENES AND THE INFLAMMATORY MICROENVIRONMENT DICTATE LIVER TUMOR PHENOTYPE

    PubMed Central

    Matter, Matthias S.; Marquardt, Jens U.; Andersen, Jesper B.; Quintavalle, Cristina; Korokhov, Nikolay; Stauffer, Jim K.; Kaji, Kosuke; Decaens, Thomas; Quagliata, Luca; Elloumi, Fathi; Hoang, Tanya; Molinolo, Alfredo; Conner, Elizabeth A.; Weber, Achim; Heikenwalder, Mathias; Factor, Valentina M.; Thorgeirsson, Snorri S.

    2016-01-01

    The majority of hepatocellular carcinoma (HCC) develops in the background of chronic liver inflammation caused by viral hepatitis and alcoholic or non-alcoholic steatohepatitis. However, the impact of different types of chronic inflammatory microenvironments on the phenotypes of tumors generated by distinct oncogenes is largely unresolved. To address this issue, we generated murine liver tumors by constitutively active AKT-1 (AKT) and β-catenin (CAT) followed by induction of chronic liver inflammation by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and carbon tetrachloride (CCl4). Also, the impact of DDC-induced chronic liver inflammation was compared between two liver tumor models using a combination of AKT-CAT or AKT-NRASG12V. Treatment with DDC and CCl4 significantly facilitated the adenoma-to-carcinoma conversion and accelerated the growth of AKT-CAT tumors. Furthermore, DDC treatment altered the morphology of AKT-CAT tumors and caused loss of lipid droplets. Transcriptome analysis of AKT-CAT tumors revealed that cellular growth and proliferation was mainly affected by chronic inflammation and caused upregulated of Cxcl16, Galectin-3 and Nedd9 among others. Integration with transcriptome profiles from human HCCs further demonstrated that AKT-CAT tumors generated in the context of chronic liver inflammation showed enrichment of poor prognosis gene sets or decrease of good prognosis gene sets. In contrast, DDC had a more subtle effect on AKT-NRASG12V tumors and primarily enhanced already existent tumor characteristics as supported by transcriptome analysis. However, it also reduced lipid droplets in AKT-NRASG12V tumors. Conclusion Our study suggests that liver tumor phenotype is defined by a combination of driving oncogenes but also the nature of chronic liver inflammation. PMID:26844528

  18. Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway.

    PubMed

    Mao, Xiao-Yuan; Zhou, Hong-Hao; Li, Xi; Liu, Zhao-Qian

    2016-08-01

    Oxidative glutamate toxicity is involved in diverse neurological disorders including epilepsy and ischemic stroke. Our present work aimed to assess protective effects of huperzine A (HupA) against oxidative glutamate toxicity in a mouse-derived hippocampal HT22 cells and explore its potential mechanisms. Cell survival and cell injury were analyzed by MTT method and LDH release assay, respectively. The production of ROS was measured by detection kits. Protein expressions of BDNF, phosphor-TrkB (p-TrkB), TrkB, phosphor-Akt (p-Akt), Akt, phosphor-mTOR (p-mTOR), mTOR, phosphor-p70s6 (p-p70s6) kinase, p70s6 kinase, Bcl-2, Bax, and β-actin were assayed via Western blot analysis. Enzyme-linked immunosorbent assay was employed to measure the contents of nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Our findings illustrated 10 μM HupA for 24 h significantly protected HT22 from cellular damage and suppressed the generation of ROS. Additionally, after treating with LY294002 or wortmannin [the selective inhibitors of phosphatidylinositol 3 kinase (PI3K)], HupA dramatically prevented the down-regulations of p-Akt, p-mTOR, and p-p70s6 kinase in HT22 cells under oxidative toxicity. Furthermore, it was observed that the protein levels of BDNF and p-TrkB were evidently enhanced after co-treatment with HupA and glutamate in HT22 cells. The elevations of p-Akt and p-mTOR were abrogated under toxic conditions after blockade of TrkB by TrkB IgG. Cellular apoptosis was significantly suppressed (decreased caspase-3 activity and enhanced Bcl-2 protein level) after HupA treatment. It was concluded that HupA attenuated oxidative glutamate toxicity in murine hippocampal HT22 cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway.

  19. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    PubMed

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule. Copyright © 2014 the American Physiological Society.

  20. Bisphenol A and estradiol impede myoblast differentiation through down-regulating Akt signaling pathway.

    PubMed

    Go, Ga-Yeon; Lee, Sang-Jin; Jo, Ayoung; Lee, Jae-Rin; Kang, Jong-Sun; Yang, Mihi; Bae, Gyu-Un

    2018-04-20

    Bisphenol A (BPA), one of the most widespread endocrine disrupting chemicals, is known as an artificial estrogen, which interacts with estrogen receptor (ER). In this study, we investigated the effects of BPA and estradiol on myoblast differentiation and the underlying signaling mechanism. Exposure to BPA (0.01-1 μM) in mouse myoblast C2C12 cells attenuated myogenic differentiation via the reduced expression of muscle-specific genes, such as myosin heavy chain (MHC), MyoD, and Myogenin, without the alteration of cell proliferation and viability. BPA-exposed C2C12 myoblasts also showed a reduction of Akt phosphorylation ((37-61) %, p < 0.001), a key event for myogenesis. Similarly to BPA, estradiol (0.01-1 μM) reduced the expression of muscle-specific proteins and the formation of multinucleated myotubes, and attenuated the muscle differentiation-specific phosphorylation of Akt ((42-59) %, p < 0.001). We conclude that BPA and estradiol suppress myogenic differentiation through the inhibition of Akt signaling. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response.

    PubMed

    Szymonowicz, Klaudia; Oeck, Sebastian; Malewicz, Nathalie M; Jendrossek, Verena

    2018-03-18

    Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt's activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.

  2. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis.

    PubMed

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-06-21

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.

  3. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation

    PubMed Central

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E. M.; Jenkins, Jermaine L.; Heimiller, Chelsea; Maines, Mahin D.

    2016-01-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1–3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T308 before S473 autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S230 in hBVR 225RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR’s PDK1 binding 161RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.—Miralem, T., Lerner-Marmarosh, N

  4. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.

    PubMed

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Jenkins, Jermaine L; Heimiller, Chelsea; Maines, Mahin D

    2016-08-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner

  5. Mammalian Target of Rapamycin (mTor) Mediates Tau Protein Dyshomeostasis

    PubMed Central

    Tang, Zhi; Bereczki, Erika; Zhang, Haiyan; Wang, Shan; Li, Chunxia; Ji, Xinying; Branca, Rui M.; Lehtiö, Janne; Guan, Zhizhong; Filipcik, Peter; Xu, Shaohua; Winblad, Bengt; Pei, Jin-Jing

    2013-01-01

    Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function. PMID:23585566

  6. The peroxisome proliferator-activated receptor (PPAR) β/δ agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells.

    PubMed

    Serrano-Marco, L; Barroso, E; El Kochairi, I; Palomer, X; Michalik, L; Wahli, W; Vázquez-Carrera, M

    2012-03-01

    IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.

  7. Silencing of Diphthamide Synthesis 3 (Dph3) Reduces Metastasis of Murine Melanoma

    PubMed Central

    Wang, Lei; Shi, Yu; Ju, Peijun; Liu, Rui; Yeo, Siok Ping; Xia, Yinyan; Owlanj, Hamed; Feng, Zhiwei

    2012-01-01

    Melanoma is the most dangerous skin cancer due to its highly metastatic potential and resistance to chemotherapy. Currently, there is no effective treatment for melanoma once it is progressed to metastatic stage. Therefore, further study to elucidate the molecular mechanism underlying the metastasis of melanoma cells is urgently required for the improvement of melanoma treatment. In the present study, we found that diphthamide synthesis 3 (Dph3) is involved in the metastasis of B16F10 murine melanoma cells by insertional mutagenesis. We demonstrated that Dph3 disruption impairs the migration of B16F10 murine melanoma cells. The requirement of Dph3 in the migration of melanoma cells was further confirmed by gene silencing with siRNA in vitro. In corresponding to this result, overexpression of Dph3 significantly promoted the migratory ability of B16F10 and B16F0 melanoma cells. Moreover, down regulation of Dph3 expression in B16F10 melanoma cells strikingly inhibits their cellular invasion and metastasis in vivo. Finally, we found that Dph3 promotes melanoma migration and invasion through the AKT signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma. PMID:23185508

  8. The glycogen metabolism via Akt signaling is important for the secretion of enamel matrix in tooth development.

    PubMed

    Ida-Yonemochi, Hiroko; Otsu, Keishi; Ohshima, Hayato; Harada, Hidemitsu

    2016-02-01

    Cells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased. These results suggested that the activation of Akt signaling via IGF is linked to the onset of both glycogen metabolism and enamel matrix deposition. In the experiments using organ culture and ameloblast cell line, the activation of Akt signaling by IGF-1 stimulated glycogen metabolism through the up-regulation of Glut-1,-4 and Gsk-3β and the dephosphorylation of glycogen synthase. Subsequently, they resulted in increased enamel matrix secretion. In contrast, some inhibitors of Akt signals and glycogen synthesis/degradation down-regulated enamel matrix secretion. Taking these findings together, glycogen metabolism via Akt signaling is an essential system for the secretion of enamel matrix in ameloblast differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  10. Absence of Akt1 reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis

    PubMed Central

    Fernández-Hernando, Carlos; József, Levente; Jenkins, Deborah; Lorenzo, Annarita Di; Sessa, William C.

    2009-01-01

    Objective Deletion of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. VSMC are an important component of atherosclerotic plaques, responsible for promoting plaque stability in advanced lesions. Fibrous caps of unstable plaques contain less collagen and ECM components and fewer VSMCs than caps from stable lesions. Here, we investigated the role of Akt1 in VSMC proliferation, migration and oxidative stress-induce apoptosis. In addition, we also characterized the atherosclerotic plaque morphology and cardiac function in an atherosclerosis-prone mouse model deficient in Akt1. Methods and Results Absence of Akt1 reduces VSMC proliferation and migration. Mechanistically, the proliferation and migratory phenotype found in Akt1 null VSMCs was linked to reduced Rac-1 activity and MMP-2 secretion. Serum starvation and stress-induced apoptosis was enhanced in Akt1 null VSMCs as determined by flow cytometry using Annexin V/PI staining. Immunohistochemical analysis of atherosclerotic plaques from Akt1−/−ApoE−/− mice showed a dramatic increase in plaque vulnerability characteristics such as enlarged necrotic core and reduced fibrous cap and collagen content. Finally, we show evidences of myocardial infarcts and cardiac dysfunction in Akt1−/−ApoE−/− mice analyzed by immunohistochemistry and echocardiography respectively. Conclusion Akt1 is essential for VSMC proliferation, migration and protection against oxidative stress-induce apoptosis. Absence of Akt1 induces features of plaque vulnerability and cardiac dysfunction in a mouse model of atherosclerosis. PMID:19762778

  11. Inflammation induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation.

    PubMed

    Banerjee, Dipanjan; Sinha, Archana; Saikia, Sudeshna; Gogoi, Bhaskarjyoti; Rathore, Arvind K; Das, Anindhya Sundar; Pal, Durba; Buragohain, Alak K; Dasgupta, Suman

    2018-06-05

    The transformation of macrophages into lipid loaded foam cells is a critical and early event in the pathogenesis of atherosclerosis. Several recent reports highlighted that induction of TLR4 signaling promotes macrophage foam cell formation; however, the underlying molecular mechanisms have not been clearly elucidated. Here, we found that the TLR4 mediated inflammatory signaling communicated with mTORC2-Akt-mTORC1 metabolic cascade in macrophage and thereby promoting lipid uptake and foam cell formation. Mechanistically, LPS treatment markedly upregulates TLR4 mediated inflammatory pathway which by activating mTORC2 induces Akt phosphorylation at serine 473 and that aggravate mTORC1 dependent scavenger receptors expression and consequent lipid accumulation in THP-1 macrophages. Inhibition of mTORC2 either by silencing Rictor expression or inhibiting its association with mTOR notably prevents LPS induced Akt activation, scavenger receptors expression and macrophage lipid accumulation. Although suppression of mTORC1 expression by genetic knockdown of Raptor did not produce any significant change in Akt S473 phosphorylation, however, incubation with Akt activator in Rictor silenced cells failed to promote scavenger receptors expression and macrophage foam cell formation. Thus, present research explored the signaling pathway involved in inflammation induced macrophage foam cells formation and therefore, targeting this pathway might be useful for preventing macrophage foam cell formation. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Extensive Crosstalk between O-GlcNAcylation and Phosphorylation Regulates Akt Signaling

    PubMed Central

    Sun, Danni; Xin, Xianliang; Pan, Qiuming; Peng, Shuying; Liang, Zhongjie; Luo, Cheng; Yang, Yiming; Jiang, Hualiang; Huang, Min; Chai, Wengang; Ding, Jian; Geng, Meiyu

    2012-01-01

    O-linked N-acetylglucosamine glycosylations (O-GlcNAc) and O-linked phosphorylations (O-phosphate), as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling. PMID:22629392

  13. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Houbao; Xu, Wangyang; Zhang, Hongxin

    2013-08-16

    Highlights: •Kif18A is up-regulated in CAC of mouse model. •Kif18a{sup −/−} mice are protected from CAC. •Tumor cells from Kif18a{sup −/−} mice undergo more apoptosis. •Kif18A deficiency induces poor Atk phosphorylation. -- Abstract: Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM–DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation ofmore » colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.« less

  14. The Role of Akt Isoforms in Colorectal Cancer

    DTIC Science & Technology

    2015-09-01

    AD_________________ Award Number: W81XWH-13-1-0198 TITLE: The Role of Akt Isoforms in Colorectal Cancer PRINCIPAL INVESTIGATOR: Jatin Roper...CONTRACT NUMBER The Role of Akt Isoforms in Colorectal Cancer 5b. GRANT NUMBER W81XWH-13-1-0198 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...substantially reduces colorectal tumorigenesis in our genetically engineered mouse model. We also successfully ablated novel downstream targets of Akt in our

  15. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-03-01

    raft microdomains. The purpose of this project is to identify the mechanism of Akt1 recruitment to cholesterol-rich microdomains and to explore the...to identify the mecha- nism of Akt1 recruitment to cholesterol-rich microdomains and to explore the biological consequences for regulation of this...I was able to identify an im- portant function for serine 473 and lysine 179 in regulating the admission of Akt1 to the lipid raft signaling platform

  16. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-11-01

    promote oncogenesis by altering the nature of Akt1 signals that flow through lipid raft microdomains. The purpose of this project was to identify the...altering the nature of Akt1 signals that flow through lipid raft microdomains. The purpose of this project was to identify the mecha- nism of Akt1...predominantly in lipid rafts. Consequently, I was able to identify an important function for serine 473 and lysine 179 in regulating the admission

  17. Dissecting signalling by individual Akt/PKB isoforms, three steps at once.

    PubMed

    Osorio-Fuentealba, Cesar; Klip, Amira

    2015-09-01

    The serine/threonine kinase Akt/PKB (protein kinase B) is key for mammalian cell growth, survival, metabolism and oncogenic transformation. The diverse level and tissue expression of its three isoforms, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ, make it daunting to identify isoform-specific actions in vivo and even in isolated tissues/cells. To date, isoform-specific knockout and knockdown have been the best strategies to dissect their individual overall functions. In a recent article in the Biochemical Journal, Kajno et al. reported a new strategy to study isoform selectivity in cell lines. Individual Akt/PKB isoforms in 3T3-L1 pre-adipocytes are first silenced via shRNA and stable cellular clones lacking one or the other isoform are selected. The stably silenced isoform is then replaced by a mutant engineered to be refractory to inhibition by MK-2206 (Akt1(W80A) or Akt2(W80A)). Akt1(W80A) or Akt2(W80A) are functional and effectively recruited to the plasma membrane in response to insulin. The system affords the opportunity to acutely control the activity of the endogenous non-silenced isoform through timely addition of MK-2206. Using this approach, it is confirmed that Akt1/PKBα is the preferred isoform sustaining adipocyte differentiation, but both Akt1/PKBα and Akt2/PKBβ can indistinctly support insulin-dependent FoxO1 (forkhead box O1) nuclear exclusion. Surprisingly, either isoform can also support insulin-dependent glucose transporter (GLUT) 4 translocation to the membrane, in contrast with the preferential role of Akt2/PKBβ assessed by knockdown studies. The new strategy should allow analysis of the plurality of Akt/PKB functions in other cells and in response to other stimuli. It should also be amenable to high-throughput studies to speed up advances in signal transmission by this pivotal kinase. © 2015 Authors; published by Portland Press Limited.

  18. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis.

    PubMed

    Meager, A; Wadhwa, M; Dilger, P; Bird, C; Thorpe, R; Newsom-Davis, J; Willcox, N

    2003-04-01

    We have screened for spontaneous anticytokine autoantibodies in patients with infections, neoplasms and autoimmune diseases, because of their increasingly reported co-occurrence. We tested for both binding and neutralizing autoantibodies to a range of human cytokines, including interleukin-1alpha (IL-1alpha), IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, interferon-alpha2 (IFN-alpha2), IFN-omega, IFN-beta, IFN-gamma, tumour necrosis factor alpha (TNF-alpha), transforming growth factor beta-1 (TGF-beta1) and granulocyte-macrophage colony stimulating factor (GM-CSF), in plasmas or sera. With two notable exceptions described below, we found only occasional, mostly low-titre, non-neutralizing antibodies, mainly to GM-CSF; also to IL-10 in pemphigoid. Strikingly, however, high-titre, mainly IgG, autoantibodies to IFN-alpha2, IFN-omega and IL-12 were common at diagnosis in patients with late-onset myasthenia gravis (LOMG+), thymoma (T) but no MG (TMG-) and especially with both thymoma and MG together (TMG+). The antibodies recognized other closely related type I IFN-alpha subtypes, but rarely the distantly related type I IFN-beta, and never (detectably) the unrelated type II IFN-gamma. Antibodies to IL-12 showed a similar distribution to those against IFN-alpha2, although prevalences were slightly lower; correlations between individual titres against each were so modest that they appear to be entirely different specificities. Neither showed any obvious correlations with clinical parameters including thymoma histology and HLA type, but they did increase sharply if the tumours recurred. These antibodies neutralized their respective cytokine in bioassays in vitro; although they persisted for years severe infections were surprisingly uncommon, despite the immunosuppressive therapy also used in most cases. These findings must hold valuable clues to autoimmunizing mechanisms in paraneoplastic autoimmunity.

  19. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription.

    PubMed

    Fernández, Jaime G; Rodríguez, Diego A; Valenzuela, Manuel; Calderon, Claudia; Urzúa, Ulises; Munroe, David; Rosas, Carlos; Lemus, David; Díaz, Natalia; Wright, Mathew C; Leyton, Lisette; Tapia, Julio C; Quest, Andrew Fg

    2014-09-09

    Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These

  20. Constitutively Active Akt Induces Ectodermal Defects and Impaired Bone Morphogenetic Protein Signaling

    PubMed Central

    Segrelles, Carmen; Moral, Marta; Lorz, Corina; Santos, Mirentxu; Lu, Jerry; Cascallana, José Luis; Lara, M. Fernanda; Carbajal, Steve; Martínez-Cruz, Ana Belén; García-Escudero, Ramón; Beltran, Linda; Segovia, José C.; Bravo, Ana

    2008-01-01

    Aberrant activation of the Akt pathway has been implicated in several human pathologies including cancer. However, current knowledge on the involvement of Akt signaling in development is limited. Previous data have suggested that Akt-mediated signaling may be an essential mediator of epidermal homeostasis through cell autonomous and noncell autonomous mechanisms. Here we report the developmental consequences of deregulated Akt activity in the basal layer of stratified epithelia, mediated by the expression of a constitutively active Akt1 (myrAkt) in transgenic mice. Contrary to mice overexpressing wild-type Akt1 (Aktwt), these myrAkt mice display, in a dose-dependent manner, altered development of ectodermally derived organs such as hair, teeth, nails, and epidermal glands. To identify the possible molecular mechanisms underlying these alterations, gene profiling approaches were used. We demonstrate that constitutive Akt activity disturbs the bone morphogenetic protein-dependent signaling pathway. In addition, these mice also display alterations in adult epidermal stem cells. Collectively, we show that epithelial tissue development and homeostasis is dependent on proper regulation of Akt expression and activity. PMID:17959825

  1. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-07-01

    oncogenesis by altering the nature of Akt1 signals that flow through lipid raft microdomains. The purpose of this project is to identify the mechanism of...nature of Akt1 signals that flow through lipid raft microdomains. The purpose of this project was to identify the mecha- nism of Akt1 recruitment to...predominantly in lipid rafts (for details see Annual Summary Report March 2008). Consequently, I was able to identify an im- portant function for

  2. Apatinib promotes apoptosis of the SMMC-7721 hepatocellular carcinoma cell line via the PI3K/Akt pathway.

    PubMed

    Zhang, Hua; Cao, Yumei; Chen, Yuru; Li, Guangxi; Yu, Hanshu

    2018-04-01

    The present study investigated the inhibitory effects of apatinib on the proliferation of the SMMC-7721 hepatocellular carcinoma cell line to explore the possible mechanism. The MTT assay was used to detect the inhibitory effects of the different concentrations of apatinib on the proliferation of SMMC-7721 cells. Annexin V/PI double staining was performed to investigate the effects of apatinib on the apoptosis of SMMC-7721 cells. Expression of the apoptosis-related genes Bcl-2, Bax and caspase-9 after apatinib treatment was detected by reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis. Expression of the PI3K, p-PI3K, Akt and p-Akt proteins after apatinib treatment was detected using western blot analysis. The MTT results showed that apatinib inhibited the in vitro proliferation of SMMC-7721 cells. Annexin V/PI double staining showed that apatinib induced the apoptosis of SMMC-7721 cells in a concentration-dependent manner. Results of RT-qPCR and western blot analysis showed that apatinib was able to induce the expression of pro-apoptotic genes Bax and caspase-9 and inhibited the expression of anti-apoptotic gene Bcl-2 . In addition, the western blot analysis revealed that p-PI3K and p-Akt was significantly decreased following apatinib treatment, while no significant differences were found in the total protein levels of PI3K and Akt. The results of the present show that apatinib is capable of promoting the apoptosis of SMMC-7721 cells by inhibiting the PI3K/Akt signal transduction pathway, upregulating the expression of pro-apoptotic genes Bax and caspase-9 , and downregulating the expression level of the anti-apoptotic gene Bcl-2 .

  3. 17β-estradiol activates mTOR in chondrocytes by AKT-dependent and AKT-independent signaling pathways

    PubMed Central

    Tao, Yulei; Sun, Haibiao; Sun, Hongyan; Qiu, Xianxing; Xu, Changbo; Shi, Changxiu; Du, Jiahui

    2015-01-01

    To confirm whether 17β-estradiol (E2) activates mammalian target of rapamycin (mTOR) signaling pathway in chondrocytes and in what way activates mTOR. Human immortalized chondrocytes cell lines TC28a2 and C28/I2 were subjected to incubate with or without E2, LY294002 (the inhibitor of PI3K), rapamycin (the inhibitor of mTOR), or E2 in combination with LY294002 or rapamycin. Thereafter, protein levels of S6K1, p-S6K1, protein kinase B (AKT), and p-AKT were determined by Western blot analysis. Matrix metallopeptidase (MMP) 3 or MMP13 mRNA levels were evaluated by quantitative real-time PCR (qRT-PCR). Co-immunoprecipitation and Western blot analysis were performed to verify the interaction between ERα and mTOR. Both p-S6K1 and p-AKT protein levels in TC28a2 and C28/I2E2 cells were significantly increased by incubation with E2 (0.5 h and 1 h) (P < 0.05). Rapamycin did not affect the levels of p-AKT, but were significantly reduced by LY294002 or E2 in combination with LY294002. The levels of p-S6K1 were significantly decreased by incubation with LY294002, but the effect could be reversed by E2 in combination with LY294002. Rabbit anti-mTOR antibody was able to immunoprecipitate ERα after incubation with E2. Moreover, E2 inhibited the mRNA levels of MMP3 and MMP13 by mTOR pathway. E2 actives mTOR in chondrocytes through AKT-dependent and independent ways. PMID:26884863

  4. AR-v7 protein expression is regulated by protein kinase and phosphatase

    PubMed Central

    Li, Yinan; Xie, Ning; Gleave, Martin E.; Rennie, Paul S.; Dong, Xuesen

    2015-01-01

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked. PMID:26378044

  5. Inhibition of mTOR complexes protects cancer cells from glutamine starvation induced cell death by restoring Akt stability.

    PubMed

    Khan, Md Wasim; Layden, Brian T; Chakrabarti, Partha

    2018-06-01

    Glutamine, a well-established oncometabolite, anaplerotically fuels mitochondrial energy metabolism and modulates activity of mammalian/mechanistic target of rapamycin complexes (mTOR). Currently, mTOR inhibitors are in clinical use for certain types of cancer but with limited success. Since glutamine is essential for growth of many cancers, we reasoned that glutamine deprivation under conditions of mTOR inhibition should be more detrimental to cancer cell survival. However, our results show that when cells are deprived of glutamine concomitant with mTOR inhibition, hepatocarcinoma cells elicit an adaptive response which aids in their survival due to enhanced autophagic flux. Moreover, inhibition of mTOR promotes Akt ubiquitination and its proteasomal degradation however we show that Akt degradation is abrogated by increased autophagy following glutamine withdrawal. Under conditions of glutamine deficiency and mTOR inhibition, the enhanced stability of Akt protein may provide survival cues to cancer cells. Thus, our data uncovers a novel molecular link between glutamine metabolism, autophagy and stability of Akt with cancer cell survival. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. TRPC3- and ETB receptor-mediated PI3K/AKT activation induces vasogenic edema formation following status epilepticus.

    PubMed

    Kim, Ji-Eun; Kang, Tae-Cheon

    2017-10-01

    Status epilepticus (SE, a prolonged seizure activity) is a high risk factor of developing vasogenic edema, which leads to secondary complications following SE. In the present study, we investigated whether transient receptor potential canonical channel-3 (TRPC3) may link vascular endothelial growth factor (VEGF) pathway to NFκB/ET B receptor axis in the rat piriform cortex during vasogenic edema formation. Following SE, TRPC3 and ET B receptor independently activated phosphatidylinositol 3 kinase (PI3K)/AKT/eNOS signaling pathway. SN50 (a NFκB inhibitor) attenuated the up-regulations of eNOS, TRPC3 and ET B receptor expressions following SE, accompanied by reductions in PI3K/AKT phosphorylations. Inhibition of SE-induced VEGF over-expression by leptomycin B also abrogated PI3K and AKT phosphorylations, but not TRPC3 expression. Wortmannin (a PI3K inhibitor) and 3CAI (an AKT inhibitor) effectively inhibited up-regulation of eNOS expressions and vasogenic edema lesion following SE. These findings indicate that PI3K/AKT may be common down-stream molecules for TRPC3- and ET B receptor signaling pathways during vasogenic edema formation. In addition, the present data demonstrate for the first time that TRPC3 may integrate VEGF- and NFκB-mediated vasogenic edema formation following SE. Thus, we suggest that PI3K/AKT signaling pathway may be one of considerable therapeutic targets for vasogenic edema. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. AKT-dependent phosphorylation of the SAM domain induces oligomerization and activation of the scaffold protein CNK1.

    PubMed

    Fischer, Adrian; Weber, Wilfried; Warscheid, Bettina; Radziwill, Gerald

    2017-01-01

    Scaffold proteins are hubs for the coordination of intracellular signaling networks. The scaffold protein CNK1 promotes several signal transduction pathway. Here we demonstrate that sterile motif alpha (SAM) domain-dependent oligomerization of CNK1 stimulates CNK1-mediated signaling in growth factor-stimulated cells. We identified Ser22 located within the SAM domain as AKT-dependent phosphorylation site triggering CNK1 oligomerization. Oligomeric CNK1 increased the affinity for active AKT indicating a positive AKT feedback mechanism. A CNK1 mutant lacking the SAM domain and the phosphorylation-defective mutant CNK1 S22A antagonizes oligomerization and prevents CNK1-driven cell proliferation and matrix metalloproteinase 14 promoter activation. The phosphomimetic mutant CNK1 S22D constitutively oligomerizes and stimulates CNK1 downstream signaling. Searching the COSMIC database revealed Ser22 as putative target for oncogenic activation of CNK1. Like the phosphomimetic mutant CNK1 S22D , the oncogenic mutant CNK1 S22F forms clusters in serum-starved cells comparable to clusters of CNK1 in growth factor-stimulated cells. CNK1 clusters induced by activating Ser22 mutants correlate with enhanced cell invasion and binding to and activation of ADP ribosylation factor 1 associated with tumor formation. Mutational analysis indicate that EGF-triggered phosphorylation of Thr8 within the SAM domain prevents AKT binding and antagonizes CNK1-mediated AKT signaling. Our findings reveal SAM domain-dependent oligomerization by AKT as switch for CNK1 activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Immunomodulatory activity of a novel, synthetic beta-glucan (β-glu6) in murine macrophages and human peripheral blood mononuclear cells.

    PubMed

    Li, Xiaofei; Wang, Jing; Wang, Wei; Liu, Chunhong; Sun, Shuhui; Gu, Jianxin; Wang, Xun; Boraschi, Diana; Huang, Yuxian; Qu, Di

    2013-01-01

    Natural β-glucans extracted from plants and fungi have been used in clinical therapies since the late 20th century. However, the heterogeneity of natural β-glucans limits their clinical applicability. We have synthesized β-glu6, which is an analog of the lentinan basic unit, β-(1→6)-branched β-(1→3) glucohexaose, that contains an α-(1→3)-linked bond. We have demonstrated the stimulatory effect of this molecule on the immune response, but the mechanisms by which β-glu6 activates innate immunity have not been elucidated. In this study, murine macrophages and human PBMCs were used to evaluate the immunomodulatory effects of β-glu6. We showed that β-glu6 activated ERK and c-Raf phosphorylation but suppressed the AKT signaling pathway in murine macrophages. Additionally, β-glu6 enhanced the secretion of large levels of cytokines and chemokines, including CD54, IL-1α, IL-1β, IL-16, IL-17, IL-23, IFN-γ, CCL1, CCL3, CCL4, CCL12, CXCL10, tissue inhibitor of metalloproteinase-1 (TIMP-1) and G-CSF in murine macrophages as well as IL-6, CCL2, CCL3, CCL5, CXCL1 and macrophage migration inhibitory factor (MIF) in human PBMCs. In summary, it demonstrates the immunomodulatory activity of β-glu6 in innate immunity.

  9. Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway.

    PubMed

    Xiang, Tao; Fang, Yong; Wang, Shi-Xuan

    2014-10-01

    To explore the effect of quercetin on the proliferation and apoptosis of HeLa cells, HeLa cells were incubated with quercetin at different concentrations. Cell viability was evaluated by MTT assay, cell apoptosis was detected by Annexin-V/PI double labeled cytometry and DNA ladder assay. Cell cycle was flow cytometrically determined and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33258 staining and the apoptosis-related proteins in the HeLa cells were assessed by Western blotting. The results showed that quercetin significantly inhibited the growth of HeLa cells and induced obvious apoptosis in vitro in a time- and dose-dependent manner. Moreover, quercetin induced apoptosis of HeLa cells in cell cycle-dependent manner because quercetin could induce arrest of HeLa cells at G0/G1 phase. Quercetin treatment down-regulated the expression of the PI3K and p-Akt. In addition, quercetin could down-regulate expression of bcl-2, up-regulate Bax, but exerted no effect on the overall expression of Akt. We are led to conclude that quercetin induces apoptosis via PI3k/Akt pathways, and quercetin has potential to be used as an anti-tumor agent against human cervix cancer.

  10. Incidental Detection of Type B2 Thymoma on 68Ga-Labeled Prostate-Specific Membrane Antigen PET/CT Imaging.

    PubMed

    Krishnaraju, Venkata Subramanian; Basher, Rajender Kumar; Singh, Harmandeep; Singh, Shrawan Kumar; Bal, Amanjit; Mittal, Bhagwant Rai

    2018-05-01

    Ga-labeled prostate-specific membrane antigen is a novel radiotracer for imaging of prostate cancer. We report a hormonally treated patient with prostate carcinoma, presenting with lower urinary tract symptoms and rising prostate-specific antigen levels, who underwent Ga-labeled prostate-specific membrane antigen PET/CT for suspected recurrence. No tracer avid lesion was noted in the prostate gland and locoregional area. However, intense tracer avid heterogeneously enhancing soft tissue lesion with cystic areas and coarse calcifications was seen in the anterior mediastinum. PET/CT-guided biopsy from the mediastenal lesion revealed type B2 thymoma.

  11. BRAFV600E Negatively Regulates the AKT Pathway in Melanoma Cell Lines

    PubMed Central

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F.; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways. PMID:22880048

  12. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    PubMed

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  13. Akt1 Controls the Timing and Amplitude of Vascular Circadian Gene Expression

    PubMed Central

    Luciano, Amelia K.; Santana, Jeans M.; Velazquez, Heino; Sessa, William C.

    2017-01-01

    The AKT signaling pathway is important for circadian rhythms in mammals and flies (Drosophila). However, AKT signaling in mammals is more complicated since there are 3 isoforms of AKT, each performing slightly different functions. Here we study the most ubiquitous AKT isoform, Akt1, and its role at the organismal level in the central and vascular peripheral clocks. Akt1−/− mice exhibit relatively normal behavioral rhythms with only minor differences in circadian gene expression in the liver and heart. However, circadian gene expression in the Akt1−/− aorta, compared with control aorta, follows a distinct pattern. In the Akt1−/− aorta, positive regulators of circadian transcription have lower amplitude rhythms and peak earlier in the day, and negative circadian regulators are expressed at higher amplitudes and peak later in the day. In endothelial cells, negative circadian regulators exhibit an increased amplitude of expression, while the positive circadian regulators are arrhythmic with a decreased amplitude of expression. This indicates that Akt1 conditions the normal circadian rhythm in the vasculature more so than in other peripheral tissues where other AKT isoforms or kinases might be important for daily rhythms. PMID:28452287

  14. Akt1 Controls the Timing and Amplitude of Vascular Circadian Gene Expression.

    PubMed

    Luciano, Amelia K; Santana, Jeans M; Velazquez, Heino; Sessa, William C

    2017-06-01

    The AKT signaling pathway is important for circadian rhythms in mammals and flies ( Drosophila). However, AKT signaling in mammals is more complicated since there are 3 isoforms of AKT, each performing slightly different functions. Here we study the most ubiquitous AKT isoform, Akt1, and its role at the organismal level in the central and vascular peripheral clocks. Akt1 -/- mice exhibit relatively normal behavioral rhythms with only minor differences in circadian gene expression in the liver and heart. However, circadian gene expression in the Akt1 -/- aorta, compared with control aorta, follows a distinct pattern. In the Akt1 -/- aorta, positive regulators of circadian transcription have lower amplitude rhythms and peak earlier in the day, and negative circadian regulators are expressed at higher amplitudes and peak later in the day. In endothelial cells, negative circadian regulators exhibit an increased amplitude of expression, while the positive circadian regulators are arrhythmic with a decreased amplitude of expression. This indicates that Akt1 conditions the normal circadian rhythm in the vasculature more so than in other peripheral tissues where other AKT isoforms or kinases might be important for daily rhythms.

  15. Ibrolipim attenuates high glucose-induced endothelial dysfunction in cultured human umbilical vein endothelial cells via PI3K/Akt pathway.

    PubMed

    Xiao, Guohua; Wang, Zongbao; Zeng, Huaicai; Yu, Jian; Yin, Weidong; Zhang, Sujun; Wang, Yueting; Zhang, Yali

    2011-10-01

    Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of

  16. The IGF-1/Akt/S6 pathway and expressions of glycolytic myosin heavy chain isoforms are upregulated in chicken skeletal muscle during the first week after hatching.

    PubMed

    Saneyasu, Takaoki; Tsuchihashi, Tatsuya; Kitashiro, Ayana; Tsuchii, Nami; Kimura, Sayaka; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-11-01

    Skeletal muscle mass is an important trait in the animal industry. We previously reported an age-dependent downregulation of the insulin-like growth factor 1 (IGF-1)/Akt/S6 pathway, major protein synthesis pathway, in chicken breast muscle after 1 week of age, despite a continuous increase of breast muscle weight. Myosin heavy chain (HC), a major protein in muscle fiber, has several isoforms depending on chicken skeletal muscle types. HC I (fast-twitch glycolytic type) is known to be expressed in adult chicken breast muscle. However, little is known about the changes in the expression levels of protein synthesis-related factors and HC isoforms in perihatching chicken muscle. In the present study, protein synthesis-related factors, such as IGF-1 messenger RNA (mRNA) levels, phosphorylation of Akt, and phosphorylated S6 content, increased in an age-dependent manner after post-hatch day (D) 0. The mRNA levels of HC I, III and V (fast-twitch glycolytic type) dramatically increased after D0. The increase ratio of breast muscle weight was approximately 1100% from D0 to D7. To our knowledge, these findings provide the first evidence that upregulation of protein synthesis pathway and transcription of fast twitch glycolytic HC isoforms play critical roles in the increase of chicken breast muscle weight during the first week after hatching. © 2017 Japanese Society of Animal Science.

  17. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  18. Mesoporous silica nanoparticles functionalized with fluorescent and MRI reporters for the visualization of murine tumors overexpressing αvβ3 receptors

    NASA Astrophysics Data System (ADS)

    Hu, He; Arena, Francesca; Gianolio, Eliana; Boffa, Cinzia; di Gregorio, Enza; Stefania, Rachele; Orio, Laura; Baroni, Simona; Aime, Silvio

    2016-03-01

    A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors.A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors. Electronic supplementary information (ESI) available: Absorption and emission spectra, energy

  19. Context-Dependent Antagonism between Akt Inhibitors and Topoisomerase Poisons

    PubMed Central

    Gálvez-Peralta, Marina; Flatten, Karen S.; Loegering, David A.; Peterson, Kevin L.; Schneider, Paula A.; Erlichman, Charles

    2014-01-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  20. Context-dependent antagonism between Akt inhibitors and topoisomerase poisons.

    PubMed

    Gálvez-Peralta, Marina; Flatten, Karen S; Loegering, David A; Peterson, Kevin L; Schneider, Paula A; Erlichman, Charles; Kaufmann, Scott H

    2014-05-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  1. Inactivation of AKT Induces Cellular Senescence in Uterine Leiomyoma

    PubMed Central

    Xu, Xiaofei; Lu, Zhenxiao; Qiang, Wenan; Vidimar, Vania; Kong, Beihua

    2014-01-01

    Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge. The AKT pathway is a major growth and survival pathway for fibroids. We propose that AKT inhibition results in a transient regulation of specific mechanisms that ultimately drive cells into cellular senescence or cell death. In this study, we investigated specific mechanisms of AKT inhibition that resulted in senescence. We observed that administration of MK-2206, an allosteric AKT inhibitor, increased levels of reactive oxygen species, up-regulated the microRNA miR-182 and several senescence-associated genes (including p16, p53, p21, and β-galactosidase), and drove leiomyoma cells into stress-induced premature senescence (SIPS). Moreover, induction of SIPS was mediated by HMGA2, which colocalized to senescence-associated heterochromatin foci. This study provides a conceivable molecular mechanism of SIPS by AKT inhibition in fibroids. PMID:24476133

  2. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response.

    PubMed

    Chan, Tung O; Zhang, Jin; Tiegs, Brian C; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M; Armen, Roger S; Rodeck, Ulrich; Penn, Raymond B

    2015-10-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. © 2015 Authors; published by Portland Press Limited.

  3. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate.

    PubMed

    Franke, T F; Kaplan, D R; Cantley, L C; Toker, A

    1997-01-31

    The regulation of the serine-threonine kinase Akt by lipid products of phosphoinositide 3-kinase (PI 3-kinase) was investigated. Akt activity was found to correlate with the amount of phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) in vivo, and synthetic PtdIns-3,4-P2 activated Akt both in vitro and in vivo. Binding of PtdIns-3,4-P2 occurred within the Akt pleckstrin homology (PH) domain and facilitated dimerization of Akt. Akt mutated in the PH domain was not activated by PI 3-kinase in vivo or by PtdIns-3, 4-P2 in vitro, and it was impaired in binding to PtdIns-3,4-P2. Examination of the binding to other phosphoinositides revealed that they bound to the Akt PH domain with much lower affinity than did PtdIns-3,4-P2 and failed to increase Akt activity. Thus, Akt is apparently regulated by the direct interaction of PtdIns-3,4-P2 with the Akt PH domain.

  4. Down-regulation of MDR1 by Ad-DKK3 via Akt/NFκB pathways augments the anti-tumor effect of temozolomide in glioblastoma cells and a murine xenograft model.

    PubMed

    Fujihara, Toshitaka; Mizobuchi, Yoshifumi; Nakajima, Kohei; Kageji, Teruyoshi; Matsuzaki, Kazuhito; Kitazato, Keiko T; Otsuka, Ryotaro; Hara, Keijiro; Mure, Hideo; Okazaki, Toshiyuki; Kuwayama, Kazuyuki; Nagahiro, Shinji; Takagi, Yasushi

    2018-05-19

    Glioblastoma multiforme (GBM) is the most malignant of brain tumors. Acquired drug resistance is a major obstacle for successful treatment. Earlier studies reported that expression of the multiple drug resistance gene (MDR1) is regulated by YB-1 or NFκB via the JNK/c-Jun or Akt pathway. Over-expression of the Dickkopf (DKK) family member DKK3 by an adenovirus vector carrying DKK3 (Ad-DKK3) exerted anti-tumor effects and led to the activation of the JNK/c-Jun pathway. We investigated whether Ad-DKK3 augments the anti-tumor effect of temozolomide (TMZ) via the regulation of MDR1. GBM cells (U87MG and U251MG), primary TGB105 cells, and mice xenografted with U87MG cells were treated with Ad-DKK3 or TMZ alone or in combination. Ad-DKK3 augmentation of the anti-tumor effects of TMZ was associated with reduced MDR1 expression in both in vivo and in vitro studies. The survival of Ad-DKK3-treated U87MG cells was inhibited and the expression of MDR1 was reduced. This was associated with the inhibition of Akt/NFκB but not of YB-1 via the JNK/c-Jun- or Akt pathway. Our results suggest that Ad-DKK3 regulates the expression of MDR1 via Akt/NFκB pathways and that it augments the anti-tumor effects of TMZ in GBM cells.

  5. Molecular and functional interactions between AKT and SOX2 in breast carcinoma

    PubMed Central

    Mir, Perihan; Konantz, Martina; Pereboom, Tamara C.; Paczulla, Anna M.; Merz, Britta; Fehm, Tanja; Perner, Sven; Rothfuss, Oliver C.; Kanz, Lothar; Schulze-Osthoff, Klaus; Lengerke, Claudia

    2015-01-01

    The transcription factor SOX2 is a key regulator of pluripotency in embryonic stem cells and plays important roles in early organogenesis. Recently, SOX2 expression was documented in various cancers and suggested as a cancer stem cell (CSC) marker. Here we identify the Ser/Thr-kinase AKT as an upstream regulator of SOX2 protein turnover in breast carcinoma (BC). SOX2 and pAKT are co-expressed and co-regulated in breast CSCs and depletion of either reduces clonogenicity. Ectopic SOX2 expression restores clonogenicity and in vivo tumorigenicity of AKT-inhibited cells, suggesting that SOX2 acts as a functional downstream AKT target. Mechanistically, we show that AKT physically interacts with the SOX2 protein to modulate its subcellular distribution. AKT kinase inhibition results in enhanced cytoplasmic retention of SOX2, presumably via impaired nuclear import, and in successive cytoplasmic proteasomal degradation of the protein. In line, blockade of either nuclear transport or proteasomal degradation rescues SOX2 expression in AKT-inhibited BC cells. Finally, AKT inhibitors efficiently suppress the growth of SOX2-expressing putative cancer stem cells, whereas conventional chemotherapeutics select for this population. Together, our results suggest the AKT/SOX2 molecular axis as a regulator of BC clonogenicity and AKT inhibitors as promising drugs for the treatment of SOX2-positive BC. PMID:26498353

  6. Akt2 deficiency is associated with anxiety and depressive behavior in mice.

    PubMed

    Leibrock, Christina; Ackermann, Teresa F; Hierlmeier, Michael; Lang, Florian; Borgwardt, Stefan; Lang, Undine E

    2013-01-01

    The economic burden associated with major depressive disorder and anxiety disorders render both disorders the most common and debilitating psychiatric illnesses. To date, the exact cellular and molecular mechanisms underlying the pathophysiology, successful treatment and prevention of these highly associated disorders have not been identified. Akt2 is a key protein in the phosphatidylinositide-3 (PI3K) / glycogen synthase 3 kinase (GSK3) signaling pathway, which in turn is involved in brain-derived neurotrophic factor (BDNF) effects on fear memory, mood stabilisation and action of several antidepressant drugs. The present study thus explored the impact of Akt2 on behaviour of mice. Behavioural studies (Open-Field, Light-Dark box, O-Maze, Forced Swimming Test, Emergence Test, Object Exploration Test, Morris Water Maze, Radial Maze) have been performed with Akt2 knockout mice (akt(-/-)) and corresponding wild type mice (akt(+/+)). Anxiety and depressive behavior was significantly higher in akt(-/-) than in akt(+/+) mice. The akt(-/-) mice were cognitively unimpaired but displayed increased anxiety in several behavioral tests (O-Maze test, Light-Dark box, Open Field test). Moreover, akt(-/-) mice spent more time floating in the Forced Swimming test, which is a classical feature of experimental depression. Akt2 might be a key factor in the pathophysiology of depression and anxiety. © 2013 S. Karger AG, Basel.

  7. Cycles of Ubiquitination and Deubiquitination Critically Regulate Growth Factor-Mediated Activation of Akt Signaling

    PubMed Central

    Yang, Wei-Lei; Jin, Guoxiang; Li, Chien-Feng; Jeong, Yun Seong; Moten, Asad; Xu, Dazhi; Feng, Zizhen; Chen, Wei; Cai, Zhen; Darnay, Bryant; Gu, Wei; Lin, Hui-Kuan

    2013-01-01

    K63-linked ubiquitination of Akt is a posttranslational modification that plays a critical role in growth factor-mediated membrane recruitment and activation of Akt. Although E3 ligases involved in growth factor-induced Akt ubiquitination have been defined, the deubiquitinating enzyme (DUB) that triggers deubiquitination of Akt and the function of Akt deubiquitination remain largely unclear. Here, we showed that CYLD was a DUB for Akt and suppressed growth factor-mediated Akt ubiquitination and activation. CYLD directly removed ubiquitin moieties on Akt under serum-starved conditions. CYLD dissociated from Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. CYLD deficiency also promoted cancer cell proliferation, survival, glucose uptake and growth of prostate tumors. Our findings reveal the crucial role of cycles of ubiquitination and deubiquitination of Akt in its membrane recruitment and activation, and further identifies CYLD as a molecular switch for these processes. PMID:23300340

  8. BMI-1 suppression increases the radiosensitivity of oesophageal carcinoma via the PI3K/Akt signaling pathway.

    PubMed

    Yang, Xing-Xiao; Ma, Ming; Sang, Mei-Xiang; Zhang, Xue-Yuan; Liu, Zhi-Kun; Song, Heng; Zhu, Shu-Chai

    2018-02-01

    B-cell‑specific Moloney murine leukaemia virus integration site-1 (BMI-1) contributes to the growth of tumour cells post-irradiation (IR). The aim of the present study was to characterize the effects of BMI-1 on cell viability, radiosensitivity and its mechanisms of action in oesophageal squamous cell cancer (ESCC). Western blotting and immunohistochemistry were employed to evaluate the protein expression of BMI-1 in ESCC cells and specimens, respectively. Additionally, the protein expression levels of BMI-1, H2AK119ub and γH2AX in ESCC cells were detected following different doses of IR and at different times after IR. The protein expression levels of MDC1 and 53BP1 were also measured. Flow cytometry and MTT assays were used to determine cell cycle progression, apoptosis and cell viability. The phosphatidylinositol 3-kinase inhibitor LY294002 and the agonist IGF-1 were employed to suppress or induce the phosphorylation of Akt to determine whether BMI-1 induces radioresistance in ESCC cells via activation of the PI3K/Akt pathway. The expression of BMI-1 was higher in ESCC tissues and cells compared with that in normal oesophageal tissues and cells. In addition, BMI-1 was positively related to tumour size and lymph node metastases and negatively to the overall survival of ESCC patients. IR induced the expression of BMI-1, H2AK119ub and γH2AX in a dose- and time-dependent manner. BMI-1 knockdown lowered the expression of γH2AX, MDC1 and 53BP1, suppressed cell viability and increased radiosensitivity. G2/M phase arrest was eliminated; this was followed by an increased proportion of cells entering the G0/G1 phase after IR and BMI-1 knockdown via the upregulation of P16 and downregulation of cyclin D2 and cyclin-dependent kinase-4. Moreover, BMI-1 knockdown increased cell apoptosis, downregulated MCL-1 and p-Akt and upregulated Bax. Additionally, the inhibitory effect of the downregulation of p-Akt by LY294002 on tumour cell viability was identical to that of

  9. Akt-Signal Integration Is Involved in the Differentiation of Embryonal Carcinoma Cells

    PubMed Central

    Chen, Bo; Xue, Zheng; Yang, Guanghui; Shi, Bingyang; Yang, Ben; Yan, Yuemin; Wang, Xue; Han, Daishu; Huang, Yue; Dong, Wenji

    2013-01-01

    The mechanism by which Akt modulates stem cell homeostasis is still incompletely defined. Here we demonstrate that Akt phosphorylates special AT-rich sequences binding protein 1 (SATB1) at serine 47 and protects SATB1 from apoptotic cleavage. Meanwhile, Akt phosphorylates Oct4 at threonine 228 and Klf4 at threonine 399, and accelerates their degradation. Moreover, PI3K/Akt signaling enhances the binding of SATB1 to Sox2, thereby probably impairing the formation of Oct4/Sox2 regulatory complexes. During retinoic acid (RA)-induced differentiation of mouse F9 embryonal carcinoma cells (ECCs), the Akt activation profile as well as its substrate spectrum is strikingly correlated with the down-regulation of Oct4, Klf4 and Nanog, which suggests Akt activation is coupled to the onset of differentiation. Accordingly, Akt-mediated phosphorylation is crucial for the capability of SATB1 to repress Nanog expression and to activate transcription of Bcl2 and Nestin genes. Taken together, we conclude that Akt is involved in the differentiation of ECCs through coordinated phosphorylations of pluripotency/differentiation factors. PMID:23762260

  10. PI3K/AKT signaling inhibits NOTCH1 lysosome-mediated degradation.

    PubMed

    Platonova, Natalia; Manzo, Teresa; Mirandola, Leonardo; Colombo, Michela; Calzavara, Elisabetta; Vigolo, Emilia; Cermisoni, Greta Chiara; De Simone, Daria; Garavelli, Silvia; Cecchinato, Valentina; Lazzari, Elisa; Neri, Antonino; Chiaramonte, Raffaella

    2015-06-06

    The pathways of NOTCH and PI3K/AKT are dysregulated in about 60% and 48% of T-cell acute lymphoblastic leukemia (T-ALL) patients, respectively. In this context, they interact and cooperate in controlling tumor cell biology. Here, we propose a novel mechanism by which the PI3K/AKT pathway regulates NOTCH1 in T-ALL, starting from the evidence that the inhibition of PI3K/AKT signaling induced by treatment with LY294002 or transient transfection with a dominant negative AKT mutant downregulates NOTCH1 protein levels and activity, without affecting NOTCH1 transcription. We showed that the withdrawal of PI3K/AKT signaling was associated to NOTCH1 phosphorylation in tyrosine residues and monoubiquitination of NOTCH1 detected by Ubiquitin capture assay. Co-immunoprecipitation assay and colocalization analysis further showed that the E3 ubiquitin ligase c-Cbl interacts and monoubiquitinates NOTCH1, activating its lysosomal degradation. These results suggest that the degradation of NOTCH1 could represent a mechanism of control by which NOTCH1 receptors are actively removed from the cell surface. This mechanism is finely regulated by the PI3K/AKT pathway in physiological conditions. In pathological conditions characterized by PI3K/AKT hyperactivation, such as T-ALL, the excessive AKT signaling could lead to NOTCH1 signaling dysregulation. Therefore, a therapeutic strategy directed to PI3K/AKT in T-ALL could contemporaneously inhibit the dysregulated NOTCH1 signaling. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury.

    PubMed

    Llacuna, Laura; Bárcena, Cristina; Bellido-Martín, Lola; Fernández, Laura; Stefanovic, Milica; Marí, Montserrat; García-Ruiz, Carmen; Fernández-Checa, José C; García de Frutos, Pablo; Morales, Albert

    2010-10-01

    Growth arrest-specific gene 6 (GAS6) promotes growth and cell survival during tissue repair and development in different organs, including the liver. However, the specific role of GAS6 in liver ischemia/reperfusion (I/R) injury has not been previously addressed. Here we report an early increase in serum GAS6 levels after I/R exposure. Moreover, unlike wild-type (WT) mice, Gas6(-/-) mice were highly sensitive to partial hepatic I/R, with 90% of the mice dying within 12 hours of reperfusion because of massive hepatocellular injury. I/R induced early hepatic protein kinase B (AKT) phosphorylation in WT mice but not in Gas6(-/-) mice without significant changes in c-Jun N-terminal kinase phosphorylation or nuclear factor kappa B translocation, whereas hepatic interleukin-1β (IL-1β) and tumor necrosis factor (TNF) messenger RNA levels were higher in Gas6(-/-) mice versus WT mice. In line with the in vivo data, in vitro studies indicated that GAS6 induced AKT phosphorylation in primary mouse hepatocytes and thus protected them from hypoxia-induced cell death, whereas GAS6 diminished lipopolysaccharide-induced cytokine expression (IL-1β and TNF) in murine macrophages. Finally, recombinant GAS6 treatment in vivo not only rescued GAS6 knockout mice from severe I/R-induced liver damage but also attenuated hepatic damage in WT mice after I/R. Our data have revealed GAS6 to be a new player in liver I/R injury that is emerging as a potential therapeutic target for reducing postischemic hepatic damage.

  12. Gentamicin alters Akt-expression and its activation in the guinea pig cochlea.

    PubMed

    Heinrich, U-R; Strieth, S; Schmidtmann, I; Li, H; Helling, K

    2015-12-17

    Gentamicin treatment induces hair cell death or survival in the inner ear. Besides the well-known toxic effects, the phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway was found to be involved in cell protection. After gentamicin application, the spatiotemporal expression patterns of Akt and its activated form (p-Akt) were determined in male guinea pigs. A single dose of 0.1 mL gentamicin (4 mg/ear/animal) was intratympanically injected. The auditory brainstem responses (ABRs) were recorded prior to application and 1, 2 and 7 days afterward. At these three time points the cochleae (n=10 in each case) were removed, transferred to fixative and embedded in paraffin. Seven ears were used as untreated controls. Gentamicin, Akt and p-Akt were identified immunohistochemically in various regions of the cochlea and their staining intensities were quantified on sections using digital image analysis. The application of gentamicin resulted in hearing loss with a concomitant up-regulation of Akt-expression in the organ of Corti and spiral ganglion cells and an additional activation in spiral ganglion cells. At the level of individual ears, clear intracellular correlations were found between Akt- and p-Akt-expression in the stria vascularis and interdental cells and, to a minor extent, in the spiral ligament and the organ of Corti. Furthermore, statistical evidence for the connection between gentamicin up-take and hearing loss was detected. The increase in Akt- and p-Akt-expression in the organ of Corti and spiral ganglion cells indicates a selected response of the cochlea against gentamicin toxicity. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. CD44v10, osteopontin and lymphoma growth retardation by a CD44v10-specific antibody.

    PubMed

    Megaptche, Amelie Pajip; Erb, Ulrike; Büchler, Markus Wolfgang; Zöller, Margot

    2014-09-01

    Blockade of CD44 is considered a therapeutic option for the elimination of leukemia-initiating cells. However, the application of anti-panCD44 can be burdened by severe side effects. We determined whether these side effects could be avoided by replacing anti-panCD44 with CD44 variant isoform (CD44v)-specific antibodies in CD44v-positive hematological malignancies using the EL4 thymoma and CD44v10-transfected EL4 (EL4-v10) as models. Subcutaneous growth of EL4 and EL4-v10 was equally well inhibited by the anti-panCD44 and anti-CD44v10 antibodies, respectively. Ex vivo analysis indicated that natural killer cytotoxicity and antibody-dependent cellular cytotoxicity were the main effector mechanisms. Under local inflammation, the efficacy of anti-CD44v10 prolonged the survival time twofold compared with untreated, EL4-v10 tumor-bearing mice, and this was due to inflammation-induced expression of osteopontin (OPN). A high level of OPN in EL4-v10 tumors supported leukocyte recruitment and tumor-infiltrating T-cell activation. Taken together, in hematological malignancies expressing CD44v, anti-panCD44 can be replaced by CD44v-specific antibodies without a loss in efficacy. Furthermore, CD44v10-specific antibodies appear particularly advantageous in cutaneous leukemia therapy, as CD44v10 binding of OPN drives leukocyte recruitment and activation.

  14. JAK2V617F-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation

    PubMed Central

    Zhan, H; Ma, Y; Lin, CHS; Kaushansky, K

    2016-01-01

    The myeloproliferative neoplasms (MPNs) are characterized by hematopoietic stem/progenitor cell (HSPC) expansion and overproduction of mature blood cells. The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs, but the mechanism(s) responsible for MPN stem cell expansion remain incomplete. One hallmark feature of the marrow in patients with MPNs is megakaryocyte (MK) hyperplasia. We report here that mice bearing a human JAK2V617F gene restricted exclusively to the MK lineage develop many of the features of a MPN. Specifically, these mice exhibit thrombocytosis, splenomegaly, increased numbers of marrow and splenic hematopoietic progenitors and a substantial expansion of HSPCs. In addition, wild-type mice transplanted with cells from JAK2V617F-bearing MK marrow develop a myeloproliferative syndrome with thrombocytosis and erythrocytosis as well as pan-hematopoietic progenitor and stem cell expansion. As marrow histology in this murine model of myeloproliferation reveals a preferentially perivascular localization of JAK2V617F-mutant MKs and an increased marrow sinusoid vascular density, it adds to accumulating data that MKs are an important component of the marrow HSPC niche, and that MK expansion might indirectly contribute to the critical role of the thrombopoietin/c-Mpl signaling pathway in HSPC maintenance and expansion. PMID:27133820

  15. Aerosol delivery of folate-decorated hyperbranched polyspermine complexes to suppress lung tumorigenesis via Akt signaling pathway.

    PubMed

    Luo, Cheng-Qiong; Jang, Yoonjeong; Xing, Lei; Cui, Peng-Fei; Qiao, Jian-Bin; Lee, Ah Young; Kim, Hyeon-Jeong; Cho, Myung-Haing; Jiang, Hu-Lin

    2016-11-20

    Lung cancer has been a leading cause of cancer mortality worldwide and aerosol-mediated gene therapy endows numerous advantages compared to other traditional modalities. Here, we reported a folic acid (FA)-modified hyperbranched polyspermine (HPSPE) with prominent biocompatibility for lung cancer cell targeted gene therapy. FA was decorated to the HPSPE via an amidation reaction and the physicochemical properties of nanoplexes formed with DNA were characterized. Gel electrophoresis study elucidated that the designed polymer was capable to condense DNA and protect it from degradation by DNase I. Cell viability and transfection efficiency assay in vitro and in vivo indicated its increased transfection performance with lower toxicity. Furthermore, reduced tumor numbers and down-regulation of Akt1 protein after aerosol treatment containing FA-HPSPE/shAkt1 complexes proved its therapeutic potential for lung cancer suppression. Results obtained in this study suggested that FA-HPSPE with highly biocompatibility and targeting capability while forming complexes with shAkt1 and administrated through noninvasive aerosol could be prospective for inhibiting lung tumorigenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Akt3 is a privileged first responder in isozyme-specific electrophile response.

    PubMed

    Long, Marcus J C; Parvez, Saba; Zhao, Yi; Surya, Sanjna L; Wang, Yiran; Zhang, Sheng; Aye, Yimon

    2017-03-01

    Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal-personalized physiological responses.

  17. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  18. Genetic Deletion of Akt3 Induces an Endophenotype Reminiscent of Psychiatric Manifestations in Mice

    PubMed Central

    Bergeron, Yan; Bureau, Geneviève; Laurier-Laurin, Marie-Élaine; Asselin, Eric; Massicotte, Guy; Cyr, Michel

    2017-01-01

    The protein kinase B (PKB/Akt), found in three distinctive isoforms (PKBα/Akt1, PKBβ/Akt2, PKBγ/Akt3), is implicated in a variety of cellular processes such as cell development, growth and survival. Although Akt3 is the most expressed isoform in the brain, its role in cerebral functions is still unclear. In the present study, we investigated the behavioral, electrophysiological and biochemical consequences of Akt3 deletion in mice. Motor abilities, spatial navigation, recognition memory and LTP are intact in the Akt3 knockout (KO) mice. However, the prepulse inhibition, three-chamber social, forced swim, tail suspension, open field, elevated plus maze and light-dark transition tests revealed an endophenotype reminiscent of psychiatric manifestations such as schizophrenia, anxiety and depression. Biochemical investigations revealed that Akt3 deletion was associated with reduced levels of phosphorylated GSK3α/β at serine 21/9 in several brain regions, although Akt1 and Akt2 levels were unaffected. Notably, chronic administration of lithium, a mood stabilizer, restored the decreased phosphorylated GSK3α/β levels and rescued the depressive and anxiety-like behaviors in the Akt3 KO mice. Collectively, our data suggest that Akt3 might be a critical molecule underlying psychiatric-related behaviors in mice. PMID:28442992

  19. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt.

    PubMed

    Murata, Hiroaki; Ihara, Yoshito; Nakamura, Hajime; Yodoi, Junji; Sumikawa, Koji; Kondo, Takahito

    2003-12-12

    Glutaredoxin (GRX) is a small dithiol protein involved in various cellular functions, including the redox regulation of certain enzyme activities. GRX functions via a disulfide exchange reaction by utilizing the active site Cys-Pro-Tyr-Cys. Here we demonstrated that overexpression of GRX protected cells from hydrogen peroxide (H2O2)-induced apoptosis by regulating the redox state of Akt. Akt was transiently phosphorylated, dephosphorylated, and then degraded in cardiac H9c2 cells undergoing H2O2-induced apoptosis. Under stress, Akt underwent disulfide bond formation between Cys-297 and Cys-311 and dephosphorylation in accordance with an increased association with protein phosphatase 2A. Overexpression of GRX protected Akt from H2O2-induced oxidation and suppressed recruitment of protein phosphatase 2A to Akt, resulting in a sustained phosphorylation of Akt and inhibition of apoptosis. This effect was reversed by cadmium, an inhibitor of GRX. Furthermore an in vitro assay revealed that GRX reduced oxidized Akt in concert with glutathione, NADPH, and glutathione-disulfide reductase. Thus, GRX plays an important role in protecting cells from apoptosis by regulating the redox state of Akt.

  20. Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis

    PubMed Central

    Rotllan, Noemi; Wanschel, Amarylis C.; Fernandez-Hernando, Ana; Salerno, Alessandro G.; Offermanns, Stefan; Sessa, William C.; Fernández-Hernando, Carlos

    2015-01-01

    Rationale Coronary artery disease (CAD), the direct result of atherosclerosis, is the most common cause of death in Western societies. Vascular smooth muscle cell (VSMC) apoptosis occurs during the progression of atherosclerosis and in advanced lesions, promotes plaque necrosis, a common feature of high-risk/vulnerable atherosclerotic plaques. Akt1, a serine-threonine protein kinase, regulates several key endothelial cell (EC) and VSMC functions including cell growth, migration, survival and vascular tone. While global deficiency of Akt1 results in impaired angiogenesis and massive atherosclerosis, the specific contribution of VSMC Akt1 remains poorly characterized. Objective To investigate the contribution of VSMC Akt1 during atherogenesis and in established atherosclerotic plaques. Methods and Results We generated two mouse models in which Akt1 expression can be suppressed specifically in VSCMs before (Apoe−/−Akt1fl/flSm22αCRE) and after (Apoe−/−Akt1fl/flSM-MHC-CreERT2E) the formation of atherosclerotic plaques. This approach allows us to interrogate the role of Akt1 during the initial and late steps of atherogenesis. Absence of Akt1 in VSMCs during the progression of atherosclerosis results in larger atherosclerotic plaques characterized by bigger necrotic core areas, enhanced VSMC apoptosis and reduced fibrous cap and collagen content. In contrast, VSMC Akt1 inhibition in established atherosclerotic plaques does not influence lesion size but markedly reduces the relative fibrous cap area in plaques and increases VSMC apoptosis. Conclusions Akt1 expression in VSMCs influences early and late stages of atherosclerosis. Absence of Akt1 in VSMCs induces features of plaque vulnerability including fibrous cap thinning and extensive necrotic core areas. These observations suggest that interventions enhancing Akt1 expression specifically in VSMCs may lessen plaque progression. PMID:25868464

  1. A three-dimensional mediastinal model created with rapid prototyping in a patient with ectopic thymoma.

    PubMed

    Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya

    2015-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases.

  2. Suppression of Murine Retrovirus Polypeptide Termination: Effect of Amber Suppressor tRNA on the Cell-Free Translation of Rauscher Murine Leukemia Virus, Moloney Murine Leukemia Virus, and Moloney Murine Sarcoma Virus 124 RNA

    PubMed Central

    Murphy, Edwin C.; Wills, Norma; Arlinghaus, Ralph B.

    1980-01-01

    The effect of suppressor tRNA's on the cell-free translation of several leukemia and sarcoma virus RNAs was examined. Yeast amber suppressor tRNA (amber tRNA) enhanced the synthesis of the Rauscher murine leukemia virus and clone 1 Moloney murine leukemia virus Pr200gag-pol polypeptides by 10- to 45-fold, but at the same time depressed the synthesis of Rauscher murine leukemia virus Pr65gag and Moloney murine leukemia virus Pr63gag. Under suppressor-minus conditions, Moloney murine leukemia virus Pr70gag was present as a closely spaced doublet. Amber tRNA stimulated the synthesis of the “upper” Moloney murine leukemia virus Pr70gag polypeptide. Yeast ochre suppressor tRNA appeared to be ineffective. Quantitative analyses of the kinetics of viral precursor polypeptide accumulation in the presence of amber tRNA showed that during linear protein synthesis, the increase in accumulated Moloney murine leukemia virus Pr200gag-pol coincided closely with the molar loss of Pr63gag. Enhancement of Pr200gag-pol and Pr70gag by amber tRNA persisted in the presence of pactamycin, a drug which blocks the initiation of protein synthesis, thus arguing for the addition of amino acids to the C terminus of Pr63gag as the mechanism behind the amber tRNA effect. Moloney murine sarcoma virus 124 30S RNA was translated into four major polypeptides, Pr63gag, P42, P38, and P23. In the presence of amber tRNA, a new polypeptide, Pr67gag, appeared, whereas Pr63gag synthesis was decreased. Quantitative estimates indicated that for every 1 mol of Pr67gag which appeared, 1 mol of Pr63gag was lost. Images PMID:7373716

  3. DUOX enzyme activity promotes AKT signalling in prostate cancer cells.

    PubMed

    Pettigrew, Christopher A; Clerkin, John S; Cotter, Thomas G

    2012-12-01

    Reactive oxygen species (ROS) and oxidative stress are related to tumour progression, and high levels of ROS have been observed in prostate tumours compared to normal prostate. ROS can positively influence AKT signalling and thereby promote cell survival. The aim of this project was to establish whether the ROS generated in prostate cancer cells positively regulate AKT signalling and enable resistance to apoptotic stimuli. In PC3 cells, dual oxidase (DUOX) enzymes actively generate ROS, which inactivate phosphatases, thereby maintaining AKT phosphorylation. Inhibition of DUOX by diphenylene iodium (DPI), intracellular calcium chelation and small-interfering RNA (siRNA) resulted in lower ROS levels, lower AKT and glycogen synthase kinase 3β (GSK3β) phosphorylation, as well as reduced cell viability and increased susceptibility to apoptosis stimulating fragment (FAS) induced apoptosis. This report shows that ROS levels in PC3 cells are constitutively maintained by DUOX enzymes, and these ROS positively regulate AKT signalling through inactivating phosphatases, leading to increased resistance to apoptosis.

  4. Roles of methyltrienolone (R1881) in AKTs and AR expression patterns of cultured granulosa-lutein cells.

    PubMed

    Nekoonam, Saeid; Naji, Mohammad; Mortezaee, Keywan; Amidi, Fardin

    2018-05-11

    AR-mediated androgen signaling plays a key role in female reproductive system. Granulosa-lutein cells (GCs) are the main sites for expression of androgen receptor (AR). There is also a close relation between AKT signaling and AR. Here, we assayed the role for a synthetic AR ligand methyltrienolone (R1881) in expressions of AKTs and AR. Controlled ovarian hyperstimulation (COH) was performed in 20 normal women. Mural GCs were isolated by filtration method, cultured, and passaged. Then, the cells were starved for 48 h with 10% charcoal stripped FBS. The cells were then treated with R1881, bicalutamide (AR blocker), LY294002 (PI3K/AKT pathway blocker), and combination of them for 48 h. Finally, GCs were evaluated for quantitative real-time PCR analysis of AKT1, AKT2, AKT3, and AR, and also Western blot assessment of total AKT and phosphorylated AKT (p-AKT) [Ser473 and Thr308]. Addition of R1881 to the GCs culture showed high expressions of AKT1, AKT2, and AKT3 (P ≤ 0.05 vs LY294002 group and bicalutamide group). Expressions of AKT1 and AKT2 were decreased in the GCs under exposure to bicalutamide or LY294002 (P ≤ 0.05 vs R1881). AKT1, AKT2, and AKT3 showed decreased rates of expressions in the LY294002 + bicalutamide group (P ≤ 0.05 vs R1881). AR, total AKT and p-AKT showed no significant differences between groups. Our findings indicate that 46 h exposure with R1881 could affect AKTs expressions in the GCs of pre-ovulatory phase, but it cannot promote AR expression and AKTs activation. © 2018 Wiley Periodicals, Inc.

  5. Convection enhanced delivery of carmustine to the murine brainstem: a feasibility study.

    PubMed

    Sewing, A Charlotte P; Caretti, Viola; Lagerweij, Tonny; Schellen, Pepijn; Jansen, Marc H A; van Vuurden, Dannis G; Idema, Sander; Molthoff, Carla F M; Vandertop, W Peter; Kaspers, Gertjan J L; Noske, David P; Hulleman, Esther

    2014-12-30

    Systemic delivery of therapeutic agents remains ineffective against diffuse intrinsic pontine glioma (DIPG), possibly due to an intact blood-brain-barrier (BBB) and to dose-limiting toxicity of systemic chemotherapeutic agents. Convection-enhanced delivery (CED) into the brainstem may provide an effective local delivery alternative for DIPG patients. The aim of this study is to develop a method to perform CED into the murine brainstem and to test this method using the chemotherapeutic agent carmustine (BiCNU). To this end, a newly designed murine CED catheter was tested in vitro and in vivo. After determination of safety and distribution, mice bearing VUMC-DIPG-3 and E98FM-DIPG brainstem tumors were treated with carmustine dissolved in DW 5% or carmustine dissolved in 10% ethanol. Our results show that CED into the murine brainstem is feasible and well tolerated by mice with and without brainstem tumors. CED of carmustine dissolved in 5% DW increased median survival of mice with VUMC-DIPG-3 and E98FM-DIPG tumors with 35% and 25% respectively. Dissolving carmustine in 10% ethanol further improved survival to 45% in mice with E98FM-DIPG tumors. Since genetically engineered and primary DIPG models are currently only available in mice, murine CED studies have clear advantages over CED studies in other animals. CED in the murine brainstem can be performed safely, is well tolerated and can be used to study efficacy of chemotherapeutic agents orthotopically. These results set the foundation for more CED studies in murine DIPG models. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation.

    PubMed

    Moriya, Nobuki; Miyazaki, Mitsunori

    2018-05-01

    Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.

  7. Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation.

    PubMed

    Sadidi, Mahdieh; Lentz, Stephen I; Feldman, Eva L

    2009-05-01

    Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) are involved in many cellular processes that positively and negatively regulate cell fate. H(2)O(2), acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H(2)O(2) was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H(2)O(2)-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.

  8. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression.

    PubMed

    Hu, Xiangyou; Schlanger, Rita; He, Wanxia; Macklin, Wendy B; Yan, Riqiang

    2013-05-01

    β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.

  9. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

    PubMed

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-09-28

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

  10. In vitro and in vivo effects of CpG-Oligodeoxynucleotides (CpG-ODN) on murine transitional cell carcinoma and on the native murine urinary bladder wall.

    PubMed

    Olbert, Peter Jochen; Schrader, Andres Jan; Simon, Corinna; Dalpke, Alexander; Barth, Peter; Hofmann, Rainer; Hegele, Axel

    2009-06-01

    Intravesical BCG instillation is established and efficient in the prophylaxis of recurrent transitional cell carcinoma. A Th-1 biased immune response is postulated. Recent work has proven the efficacy of synthetic CpG-Oligodeoxynucleotides (ODN) as inducers and adjuvants for a strong Th1-response and there is evidence for a direct and/or adjuvant anti-neoplastic effect. The purpose of this study was to examine the local effects of CpG-ODN on the murine bladder wall after intravesical instillation and the effects on cytokine expression in an orthotopic murine bladder cancer model. Histopathology, immunohistochemistry and fluorescence microscopy were performed after different instillation schedules of stimulatory, non-stimulatory biotinylized and FITC-labelled CpG-ODN into the murine bladder. MB-49 murine bladder cancer cells were tested for TLR-9 expression to exclude a potential direct responsiveness to CpG-ODN. Furthermore induction of apoptosis was tested by annexin V staining and FACS analysis of CpG-ODN stimulated tumor cells. In an orthotopic C57/Bl6 murine bladder cancer model, the expressions of IL-12, IFNgamma, IL-10 and TGF-beta were evaluated after repeated CpG-ODN treatment. Single and repeated instillation of CpG-ODN induced subepithelial and urothelial lymphocytic infiltrations with consecutive apoptoses. PBS and non-stimulative ODN induced no visible reaction. Bladder submucosa stained positive for biotin. Controls showed no endogenic biotin staining. FITC-labelled ODN adhered to the bladder mucosa and penetration of the mucosal barrier was not detected. MB-49 TCC cells did not express TLR-9 and CpG-ODN did not induce apoptosis in these cells. Repeated intravesical instillations of CpG-ODN in orthotopic murine tumor bearing urinary bladders resulted in significant up-regulation of both Th-1 and Th-2 cytokines. CpG-ODNs have promising anti-neoplastic potential. They exert a pronounced immunological response both in the native murine urinary bladder and

  11. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition

    PubMed Central

    Shi, Hubing; Hong, Aayoung; Kong, Xiangju; Koya, Richard C.; Song, Chunying; Moriceau, Gatien; Hugo, Willy; Yu, Clarissa C.; Ng, Charles; Chodon, Thinle; Scolyer, Richard A.; Kefford, Richard F.; Ribas, Antoni; Long, Georgina V.; Lo, Roger S.

    2013-01-01

    BRAF inhibitor (BRAFi) therapy leads to remarkable anti-melanoma responses, but the initial tumor shrinkage is commonly incomplete, providing a nidus for subsequent disease progression. Adaptive signaling may underlie early BRAFi resistance and influence the selection pattern for genetic variants causing late, acquired resistance. We show here that BRAFi (or BRAFi+MEKi) therapy in patients frequently led to rebound p-AKT levels in their melanomas early on treatment. In cell lines, BRAFi treatment led to rebound levels of RTKs (including PDGFRβ), PIP3, pleckstrin homology domain (PHD) recruitment, and p-AKT. PTEN expression limited this BRAFi-elicited PI3K-AKT signaling, which could be rescued by introduction of a mutant AKT1 (Q79K) kown to confer acquired BRAFi resistance. Functionally, AKT1 Q79K conferred BRAFi resistance via amplifying BRAFi-elicited PI3K-AKT signaling. Additionally, MAPK pathway inhibition enhanced clonogenic growth dependency on PI3K or AKT. Thus, adaptive or genetic upregulation of AKT critically participates in melanoma survival during BRAFi therapy. PMID:24265152

  12. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease

    PubMed Central

    Fernández-Hernando, Carlos; Ackah, Eric; Yu, Jun; Suárez, Yajaira; Murata, Takahisa; Iwakiri, Yasuko; Prendergast, Jay; Miao, Robert Q.; Birnbaum, Morris J.; Sessa, William C.

    2013-01-01

    SUMMARY The Akt signaling pathway controls several cellular functions in the cardiovascular system; however, its role in atherogenesis is unknown. Here we show that the genetic ablation of Akt1 on an apolipoprotein E knockout background (ApoE−/−Akt1−/−) increases aortic lesion expansion and promotes coronary atherosclerosis. Mechanistically, lesion formation is due to enhanced expression of pro-inflammatory genes and endothelial cell and macrophage apoptosis. Bone marrow transfer experiments suggest that macrophages from ApoE−/−Akt1−/− donors were not sufficient to worsen atherogenesis when transferred to ApoE−/− recipients suggesting that lesion expansion in the ApoE−/− Akt1−/ strain may be of vascular origin. In the vessel wall, the loss of Akt1 increases inflammatory mediators and reduces eNOS phosphorylation suggesting that Akt1 exerts vascular protection against atherogenesis. The presence of coronary lesions in ApoE−/−/Akt1−/− mice provides a new model for studying the mechanisms of acute coronary syndrome in humans. PMID:18054314

  13. Two Membrane-Associated Tyrosine Phosphatase Homologs Potentiate C. elegans AKT-1/PKB Signaling

    PubMed Central

    Hu, Patrick J; Xu, Jinling; Ruvkun, Gary

    2006-01-01

    Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues. PMID:16839187

  14. Ultrasound guided electrochemotherapy for the treatment of a clear cell thymoma in a cat

    PubMed Central

    Spugnini, Enrico Pierluigi; Menicagli, Francesco; Pettorali, Michela; Baldi, Alfonso

    2017-01-01

    A twelve-year-old male castrated domestic shorthair cat was presented for rapidly progressing respiratory distress. The cat was depressed, tachypneic and moderately responsive. Ultrasonography showed a mediastinal mass associated with a significant pleural effusion that needed tapping every five to seven days. Ultrasound guided biopsy yielded a diagnosis of clear cell thymoma upon histopathology. After complete staging procedures, the owner elected to treat the cat with electrochemotherapy (ECT) using systemic bleomycin. Two sessions of ultrasound guided ECT were performed at two week intervals with trains of biphasic electric pulses applied using needle electrodes until complete coverage of the area was achieved. The treatment was well tolerated and resulted in partial remission (PR). Additional sessions were performed on a monthly basis. The cat is still in PR after fourteen months. ECT resulted in improved local control and should be considered among the available adjuvant treatments in pets carrying visceral tumors. PMID:28331834

  15. The Akt signaling pathway is required for tissue maintenance and regeneration in planarians.

    PubMed

    Peiris, T Harshani; Ramirez, Daniel; Barghouth, Paul G; Oviedo, Néstor J

    2016-04-11

    Akt (PKB) is a serine threonine protein kinase downstream of the phosphoinositide 3-kinase (PI3K) pathway. In mammals, Akt is ubiquitously expressed and is associated with regulation of cellular proliferation, metabolism, cell growth and cell death. Akt has been widely studied for its central role in physiology and disease, in particular cancer where it has become an attractive pharmacological target. However, the mechanisms by which Akt signaling regulates stem cell behavior in the complexity of the whole body are poorly understood. Planarians are flatworms with large populations of stem cells capable of dividing to support adult tissue renewal and regeneration. The planarian ortholog Smed-Akt is molecularly conserved providing unique opportunities to analyze the function of Akt during cellular turnover and repair of adult tissues. Our findings abrogating Smed-Akt with RNA-interference in the planarian Schmidtea mediterranea led to a gradual decrease in stem cell (neoblasts) numbers. The reduced neoblast numbers largely affected the maintenance of adult tissues including the nervous and excretory systems and ciliated structures in the ventral epithelia, which impaired planarian locomotion. Downregulation of Smed-Akt function also resulted in an increase of cell death throughout the animal. However, in response to amputation, levels of cell death were decreased and failed to localize near the injury site. Interestingly, the neoblast mitotic response was increased around the amputation area but the regenerative blastema failed to form. We demonstrate Akt signaling is essential for organismal physiology and in late stages of the Akt phenotype the reduction in neoblast numbers may impair regeneration in planarians. Functional disruption of Smed-Akt alters the balance between cell proliferation and cell death leading to systemic impairment of adult tissue renewal. Our results also reveal novel roles for Akt signaling during regeneration, specifically for the timely

  16. Identification of Akt Interaction Protein PHF20/TZP That Transcriptionally Regulates p53*

    PubMed Central

    Park, Sungman; Kim, Donghwa; Dan, Han C.; Chen, Huihua; Testa, Joseph R.; Cheng, Jin Q.

    2012-01-01

    Akt regulates a diverse array of cellular functions, including cell survival, proliferation, differentiation, and metabolism. Although a number of molecules have been identified as upstream regulators and downstream targets of Akt, the mechanisms by which Akt regulates these cellular processes remain elusive. Here, we demonstrate that a novel transcription factor, PHF20/TZP (referring to Tudor and zinc finger domain containing protein), binds to Akt and induces p53 expression at the transcription level. Knockdown of PHF20 significantly reduces p53. PHF20 inhibits cell growth, DNA synthesis, and cell survival. Akt phosphorylates PHF20 at Ser291 in vitro and in vivo, which results in its translocation from the nucleus to the cytoplasm and attenuation of PHF20 function. These data indicate that PHF20 is a substrate of Akt and plays a role in Akt cell survival/growth signaling. PMID:22334668

  17. Role for pAKT in rat urinary bladder with cyclophosphamide (CYP)-induced cystitis

    PubMed Central

    Arms, Lauren

    2011-01-01

    AKT phosphorylation following peripheral nerve injury or inflammation may play a role in somatic pain processes and visceral inflammation. To examine such a role in micturition reflexes with bladder inflammation, we induced bladder inflammation in adult female Wistar rats (200–300 g) by injecting cyclophosphamide (CYP) intraperitoneally at acute (150 mg/kg; 4 h), intermediate (150 mg/kg; 48 h), and chronic (75 mg/kg; every third day for 10 days) time points. Western blot analyses of whole urinary bladders showed significant increases (P ≤ 0.01) in phosphorylated (p) AKT at all time points; however, the magnitude of AKT phosphorylation varied with duration of CYP treatment. Immunohistochemical analyses of pAKT immunoreactivity (pAKT-IR) in cryostat bladder sections demonstrated duration-dependent, significant (P ≤ 0.01) increases in pAKT-IR in both the urothelium and detrusor smooth muscle of CYP-inflamed bladders. Additionally, a suburothelial population of pAKT-IR macrophages (CD68-, MAC2-, and F4/80-positive) was present in chronic CYP-treated bladders. The functional role of pAKT in micturition was evaluated using open, conscious cystometry with continuous instillation of saline in conjunction with administration of an inhibitor of AKT phosphorylation, deguelin (1.0 μg/10 μl), or vehicle (1% DMSO in saline) in control (no inflammation) and CYP (48 h)-treated rats. Bladder capacity, void volume, and intercontraction void interval increased significantly (P ≤ 0.05) following intravesical instillation of deguelin in CYP (48 h)-treated rats. These results demonstrate increased AKT phosphorylation in the urinary bladder with urinary bladder inflammation and that blockade of AKT phosphorylation in the urothelium improves overall bladder function. PMID:21632956

  18. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].

  19. Amplification and Demultiplexing in Insulin-regulated Akt Protein Kinase Pathway in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Ng, Yvonne; Meoli, Christopher C.; Kumar, Ansu; Khoo, Poh-Sim; Fazakerley, Daniel J.; Junutula, Jagath R.; Vali, Shireen; James, David E.; Stöckli, Jacqueline

    2012-01-01

    Akt plays a major role in insulin regulation of metabolism in muscle, fat, and liver. Here, we show that in 3T3-L1 adipocytes, Akt operates optimally over a limited dynamic range. This indicates that Akt is a highly sensitive amplification step in the pathway. With robust insulin stimulation, substantial changes in Akt phosphorylation using either pharmacologic or genetic manipulations had relatively little effect on Akt activity. By integrating these data we observed that half-maximal Akt activity was achieved at a threshold level of Akt phosphorylation corresponding to 5–22% of its full dynamic range. This behavior was also associated with lack of concordance or demultiplexing in the behavior of downstream components. Most notably, FoxO1 phosphorylation was more sensitive to insulin and did not exhibit a change in its rate of phosphorylation between 1 and 100 nm insulin compared with other substrates (AS160, TSC2, GSK3). Similar differences were observed between various insulin-regulated pathways such as GLUT4 translocation and protein synthesis. These data indicate that Akt itself is a major amplification switch in the insulin signaling pathway and that features of the pathway enable the insulin signal to be split or demultiplexed into discrete outputs. This has important implications for the role of this pathway in disease. PMID:22207758

  20. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    PubMed

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  1. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition

    PubMed Central

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R.; Sun, Shi-Yong

    2012-01-01

    API-1 is a novel small molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation, and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of c-FLIP levels and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of DR4 or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis, but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1, but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Since other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. PMID:22345097

  2. AKT regulates BRCA1 stability in response to hormone signaling.

    PubMed

    Nelson, Andrew C; Lyons, Traci R; Young, Christian D; Hansen, Kirk C; Anderson, Steven M; Holt, Jeffrey T

    2010-05-05

    The observation that inherited mutations within BRCA1 result in breast and ovarian cancers suggests a functional relationship may exist between hormone signaling and BRCA1 function. We demonstrate that AKT activation promotes the expression of BRCA1 in response to estrogen and IGF-1 receptor signaling, and the rapid increase in BRCA1 protein levels appears to occur independently of new protein synthesis. Further, we identify a novel AKT phosphorylation site in BRCA1 at S694 which is responsive to activation of these signaling pathways. These data suggest AKT phosphorylation of BRCA1 increases total protein expression by preventing proteasomal degradation. AKT activation also appears to support nuclear localization of BRCA1, and co-expression of activated AKT with BRCA1 decreases radiation sensitivity, suggesting this interaction has functional consequences for BRCA1's role in DNA repair. Targets within this pathway could provide strategies for modulation of BRCA1 protein, which may prove therapeutically beneficial for breast and ovarian cancer treatment. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application.

  4. The change tendency of PI3K/Akt pathway after spinal cord injury

    PubMed Central

    Zhang, Peixun; Zhang, Luping; Zhu, Lei; Chen, Fangmin; Zhou, Shuai; Tian, Ting; Zhang, Yuqiang; Jiang, Xiaorui; Li, Xuekun; Zhang, Chuansen; Xu, Lin; Huang, Fei

    2015-01-01

    Spinal cord injury (SCI) refers to the damage of spinal cord’s structure and function due to a variety of causes. At present, many scholars have confirmed that apoptosis is the main method of secondary injury in spinal cord injury. In view of understanding the function of PI3K/Akt pathway on spinal cord injury, this study observed the temporal variation of key molecules (PI3K, Akt, p-Akt) in the PI3K/Akt pathway after spinal cord injury by immunohistochemistry and Western-blot. The results showed that the expression of PI3K, Akt and p-Akt display a sharp increase one day after the spinal cord injury, and then it decreased gradually with the time passing by, but the absolute expression was certainly higher than the normal group. These results indicate that the PI3K/Akt signaling pathway is involved in the spinal cord injury and the mechanism may be related to apoptosis. PMID:26807170

  5. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model.

    PubMed

    El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir

    2017-08-30

    The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.

  6. Deltex-3-like (DTX3L) stimulates metastasis of melanoma through FAK/PI3K/AKT but not MEK/ERK pathway

    PubMed Central

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y.; Iida, Machiko; Suzuki, Tamio; Kato, Masashi

    2015-01-01

    Deltex-3-like (DTX3L), an E3 ligase, is a member of the Deltex (DTX) family and is also called B-lymphoma and BAL-associated protein (BBAP). Previously, we established RFP/RET-transgenic mice, in which systemic hyperpigmented skin, benign melanocytic tumor(s) and melanoma(s) develop stepwise. Here we showed that levels of Dtx3l/DTX3L in spontaneous melanoma in RFP/RET-transgenic mice and human melanoma cell lines were significantly higher than those in benign melanocytic cells and primarily cultured normal human epithelial melanocytes, respectively. Immunohistochemical analysis of human tissues showed that more than 80% of the melanomas highly expressed DTX3L. Activity of FAK/PI3K/AKT signaling, but not that of MEK/ERK signaling, was decreased in Dtx3l/DTX3L-depleted murine and human melanoma cells. In summary, we demonstrated not only increased DTX3L level in melanoma cells but also DTX3L-mediated regulation of invasion and metastasis in melanoma through FAK/PI3K/AKT but not MEK/ERK signaling. Our analysis in human BRAFV600E inhibitor-resistant melanoma cells showed about 80% decreased invasion in the DTX3L-depleted cells compared to that in the DTX3L-intact cells. Thus, DTX3L is clinically a potential therapeutic target as well as a potential biomarker for melanoma. PMID:26033450

  7. A Three-Dimensional Mediastinal Model Created with Rapid Prototyping in a Patient with Ectopic Thymoma

    PubMed Central

    Nakada, Takeo; Inagaki, Takuya

    2014-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases. PMID:24633133

  8. BDE-47 and BDE-85 stimulate insulin secretion in INS-1 832/13 pancreatic β-cells through the thyroid receptor and Akt.

    PubMed

    Karandrea, Shpetim; Yin, Huquan; Liang, Xiaomei; Heart, Emma A

    2017-12-01

    PBDEs (polybrominated diphenyl ethers) are environmental pollutants that have been linked to the development of type 2 diabetes, however, the precise mechanisms are not clear. Particularly, their direct effect on insulin secretion is unknown. In this study, we show that two PBDE congeners, BDE-47 and BDE-85, potentiate glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 cells. This effect of BDE-47 and BDE-85 on GSIS was dependent on thyroid receptor (TR). Both BDE-47 and BDE-85 (10μM) activated Akt during an acute exposure. The activation of Akt by BDE-47 and BDE-85 plays a role in their potentiation of GSIS, as pharmacological inhibition of PI3K, an upstream activator of Akt, significantly lowers GSIS compared to compounds alone. This study shows that BDE-47 and BDE-85 directly act on pancreatic β-cells to stimulate GSIS, and that this effect is mediated by the thyroid receptor (TR) and Akt activation. Copyright © 2017. Published by Elsevier B.V.

  9. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT.

    PubMed

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M; Manteufel, Edward J; Goldspink, Paul H; Levick, Scott P; Janicki, Joseph S

    2015-08-15

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. Copyright © 2015 the American Physiological Society.

  10. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT

    PubMed Central

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M.; Manteufel, Edward J.; Goldspink, Paul H.; Levick, Scott P.

    2015-01-01

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. PMID:26071541

  11. Akt/p27kip1 Pathway Is Not Involved in Human Insulinoma Tumorigenesis

    PubMed Central

    de Lima, Andrea Paes; Garibaldi, Paula; Rubio, Maria de los Milagros; García, Florencia; Kral, Marta; Bruno, Oscar D.

    2018-01-01

    Insulinomas are pancreatic neuroendocrine tumors (pNET), usually benign. Akt/p27kip1 is an intracellular pathway overexpressed in many pNET. There are no data regarding its expression in human insulinomas. We aimed to investigate the expression of Akt and p27kip1 in 24 human insulinomas and to compare them to their expression in normal surrounding islets. Staining was performed on embedded paraffin tissue using polyclonal antibodies against total Akt, p-Akt, p27kip1, and pp27kip1. p-Akt was the predominant form in insulinomas; they presented lower Akt and p-Akt expression than normal islets in 83.3% and 87.5% of tumors, respectively. p27kip1 and pp27kip1 were mainly cytoplasmic in both insulinomas and normal tissue. Cytoplasmic pp27kip1 staining was higher in insulinomas and surprisingly nearly half of the insulinomas also presented nuclear p27kip1 (p = 0.029). No differences were observed in the subcellular localization of p27kip1 and activation of Akt between benign and malignant insulinomas. The low expression of Akt seen in insulinomas might explain the usual benign behavior of this type of pNET. Cytoplasmic p27kip1 in both insulinomas and normal islet cells could reflect the low rate of replication of beta cells, while nuclear p27kip1 would seem to indicate stabilization and nuclear anchoring of the cyclin D-Cdk4 complex. Our data seem to suggest that the Akt pathway is not involved in human insulinoma tumorigenesis. PMID:29853883

  12. α-Mangostin inhibits DMBA/TPA-induced skin cancer through inhibiting inflammation and promoting autophagy and apoptosis by regulating PI3K/Akt/mTOR signaling pathway in mice.

    PubMed

    Wang, Fei; Ma, Hongxia; Liu, Zhaoguo; Huang, Wei; Xu, Xiaojing; Zhang, Xuemei

    2017-08-01

    Skin cancer is the most common form of cancer responsible for considerable morbidity and mortality, the treatment progress of which remains slow though. Therefore, studies identifying anti-skin cancer agents that are innocuous are urgently needed. α-Mangostin, a natural product isolated from the pericarp of mangosteen fruit, has potent anti-cancer activity. However, its role in skin cancer remains unclear. The aim of this study was to evaluate the treatment effect of α-mangostin on skin tumorigenesis induced by 9,10-dimethylbenz[a]anthracene (DMBA)/TPA in mice and the potential mechanism. Treatment with α-mangostin significantly suppressed tumor formation and growth, and markedly reduced the incidence rate. α-Mangostin not only inhibited the expressions of pro-inflammatory factors, but also promoted the production of anti-inflammatory factors in tumor and blood. It induced autophagy of skin tumor and regulated the expressions of autophagy-related proteins. The protein expressions of LC3, LC3-II and Beclin1 increased whereas those of LC3-I and p62 decreased after treatment with α-mangostin. Moreover, α-mangostin promoted the apoptosis of skin tumor dose-dependently by up-regulating of Bax, cleaved caspase-3, cleaved PARP and Bad, and down-regulating of Bcl-2 and Bcl-xl. Furthermore, showed α-mangostin inhibited the PI3K/AKT/mTOR (mammalian target of rapamycin) signaling pathway, as evidenced by decreased expressions of phospho-PI3K (p-PI3K), p-Akt and p-mTOR, but did not affect the expressions of t-PI3K, t-Akt or t-mTOR. Collectively, α-mangostin suppressed murine skin tumorigenesis induced by DMBA/TPA through inhibiting inflammation and promoting autophagy and apoptosis by regulating the PI3K/Akt/mTOR signaling pathway, as a potential candidate for future clinical therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Endothelial Cell Autonomous Role of Akt1: Regulation of Vascular Tone and Ischemia-Induced Arteriogenesis.

    PubMed

    Lee, Monica Y; Gamez-Mendez, Ana; Zhang, Jiasheng; Zhuang, Zhenwu; Vinyard, David J; Kraehling, Jan; Velazquez, Heino; Brudvig, Gary W; Kyriakides, Themis R; Simons, Michael; Sessa, William C

    2018-04-01

    The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair. © 2018 American Heart Association, Inc.

  14. Alternative HER/PTEN/Akt Pathway Activation in HPV Positive and Negative Penile Carcinomas

    PubMed Central

    Stankiewicz, Elzbieta; Prowse, David M.; Ng, Mansum; Cuzick, Jack; Mesher, David; Hiscock, Frances; Lu, Yong-Jie; Watkin, Nicholas; Corbishley, Catherine; Lam, Wayne; Berney, Daniel M.

    2011-01-01

    Background The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood, though risk factors include human papillomavirus (HPV). Disruption of HER/PTEN/Akt pathway is present in many cancers; however there is little information on its function in PSCC. We investigated HER family receptors and phosphatase and tension homolog (PTEN) in HPV-positive and negative PSCC and its impact on Akt activation using immunohistochemistry and fluorescent in situ hybridisation (FISH). Methodology/Principal Findings 148 PSCCs were microarrayed and immunostained for phosphorylated EGFR (pEGFR), HER2, HER3, HER4, phosphorylated Akt (pAkt), Akt1 and PTEN proteins. EGFR and PTEN gene status were also evaluated using FISH. HPV presence was assessed by PCR. pEGFR expression was detected significantly less frequently in HPV-positive than HPV-negative tumours (p = 0.0143). Conversely, HER3 expression was significantly more common in HPV-positive cases (p = 0.0128). HER4, pAkt, Akt and PTEN protein expression were not related to HPV. HER3 (p = 0.0054) and HER4 (p = 0.0002) receptors significantly correlated with cytoplasmic Akt1 immunostaining. All three proteins positively correlated with tumour grade (HER3, p = 0.0029; HER4, p = 0.0118; Akt1, p = 0.0001). pEGFR expression correlated with pAkt but not with tumour grade or stage. There was no EGFR gene amplification. HER2 was not detected. PTEN protein expression was reduced or absent in 62% of tumours but PTEN gene copy loss was present only in 4% of PSCCs. Conclusions/Significance EGFR, HER3 and HER4 but not HER2 are associated with penile carcinogenesis. HPV-negative tumours tend to express significantly more pEGFR than HPV-positive cancers and this expression correlates with pAkt protein, indicating EGFR as an upstream regulator of Akt signalling in PSCC. Conversely, HER3 expression is significantly more common in HPV-positive cases and positively correlates with cytoplasmic Akt1 expression

  15. Alternative HER/PTEN/Akt pathway activation in HPV positive and negative penile carcinomas.

    PubMed

    Stankiewicz, Elzbieta; Prowse, David M; Ng, Mansum; Cuzick, Jack; Mesher, David; Hiscock, Frances; Lu, Yong-Jie; Watkin, Nicholas; Corbishley, Catherine; Lam, Wayne; Berney, Daniel M

    2011-03-02

    The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood, though risk factors include human papillomavirus (HPV). Disruption of HER/PTEN/Akt pathway is present in many cancers; however there is little information on its function in PSCC. We investigated HER family receptors and phosphatase and tension homolog (PTEN) in HPV-positive and negative PSCC and its impact on Akt activation using immunohistochemistry and fluorescent in situ hybridisation (FISH). 148 PSCCs were microarrayed and immunostained for phosphorylated EGFR (pEGFR), HER2, HER3, HER4, phosphorylated Akt (pAkt), Akt1 and PTEN proteins. EGFR and PTEN gene status were also evaluated using FISH. HPV presence was assessed by PCR. pEGFR expression was detected significantly less frequently in HPV-positive than HPV-negative tumours (p = 0.0143). Conversely, HER3 expression was significantly more common in HPV-positive cases (p = 0.0128). HER4, pAkt, Akt and PTEN protein expression were not related to HPV. HER3 (p = 0.0054) and HER4 (p = 0.0002) receptors significantly correlated with cytoplasmic Akt1 immunostaining. All three proteins positively correlated with tumour grade (HER3, p = 0.0029; HER4, p = 0.0118; Akt1, p = 0.0001). pEGFR expression correlated with pAkt but not with tumour grade or stage. There was no EGFR gene amplification. HER2 was not detected. PTEN protein expression was reduced or absent in 62% of tumours but PTEN gene copy loss was present only in 4% of PSCCs. EGFR, HER3 and HER4 but not HER2 are associated with penile carcinogenesis. HPV-negative tumours tend to express significantly more pEGFR than HPV-positive cancers and this expression correlates with pAkt protein, indicating EGFR as an upstream regulator of Akt signalling in PSCC. Conversely, HER3 expression is significantly more common in HPV-positive cases and positively correlates with cytoplasmic Akt1 expression. HER4 and PTEN protein expression are not related to HPV infection

  16. Akt, mTOR and NF-κB pathway activation in Treponema pallidum stimulates M1 macrophages.

    PubMed

    Lin, Li-Rong; Gao, Zheng-Xiang; Lin, Yong; Zhu, Xiao-Zhen; Liu, Wei; Liu, Dan; Gao, Kun; Tong, Man-Li; Zhang, Hui-Lin; Liu, Li-Li; Xiao, Yao; Niu, Jian-Jun; Liu, Fan; Yang, Tian-Ci

    2018-06-01

    The polarization of macrophages and the molecular mechanism involved during the early process of syphilis infection remain unknown. This study was conducted to explore the influence of Treponema pallidum (T. pallidum) treatment on macrophage polarization and the Akt-mTOR-NFκB signaling pathway mechanism involved in this process. M0 macrophages derived from the phorbol-12-myristate-13-acetate-induced human acute monocytic leukemia cell line THP-1 were cultured with T. pallidum. T. pallidum induced inflammatory cytokine (IL-1β and TNF-α) expression in a dose- and time-dependent manner. However IL-10 cytokine expression decreased at the mRNA and protein levels. Additionally, the expression of the M1 surface marker iNOS was up-regulated with incubation time, and the expression of the M2 surface marker CD206 was low (vs. PBS treated macrophages, P < 0.001) and did not fluctuate over 12 h. Further studies revealed that Akt-mTOR-NFκB pathway proteins, including p-Akt, p-mTOR, p-S6, p-p65, and p-IκBα, were significantly higher in the T. pallidum-treated macrophages than in the PBS-treated macrophages (P < 0.05). In addition, inflammatory cytokine expression was suppressed in T. pallidum-induced M1 macrophages pretreated with LY294002 (an Akt-specific inhibitor) or PDTC (an NF-κB inhibitor), while inflammatory cytokine levels increased in T. pallidum-induced M1 macrophages pretreated with rapamycin (an mTOR inhibitor). These findings revealed that T. pallidum promotes the macrophage transition to pro-inflammatory M1 macrophages in vitro. The present study also provides evidence that Akt, mTOR and NF-κB pathway activation in T. pallidum stimulates M1 macrophages. This study provides novel insights into the innate immune response to T. pallidum infection. Copyright © 2018. Published by Elsevier B.V.

  17. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A.

    PubMed

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-04-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21(Cip1) and p27(Kip1). Akt involvement was demonstrated by decreased phosphorylation of its substrate, p21(Cip1), and reduced Akt catalytic activity and phosphorylation at essential activation sites. Synemin silencing, however, did not affect the activities of PDPK1 and mTOR complex 2, which directly phosphorylate Akt activation sites, but instead enhanced the activity of the major regulator of Akt dephosphorylation, protein phosphatase type 2A (PP2A). This was accompanied by changes in PP2A subcellular distribution resulting in increased physical interactions between PP2A and Akt, as shown by proximity ligation assays (PLAs). PLAs and immunoprecipitation experiments further revealed that synemin and PP2A form a protein complex. In addition, treatment of synemin-silenced cells with the PP2A inhibitor cantharidic acid resulted in proliferation and pAkt and pRb levels similar to those of controls. Collectively these results indicate that synemin positively regulates glioblastoma cell proliferation by helping sequester PP2A away from Akt, thereby favoring Akt activation.

  18. Immunohistochemical Evaluation of AKT Protein Activation in Canine Mast Cell Tumours

    PubMed Central

    Rodriguez, S.; Fadlalla, K.; Graham, T.; Tameru, B.; Fermin, C. D.; Samuel, T.

    2011-01-01

    Summary The pathogenesis of canine mast cell tumour (MCT) remains unknown. Moreover, therapeutic options are limited and resistance to targeted drugs and recurrences are common, necessitating the identification of additional cellular targets for therapy. In this study we investigated the expression of phosphorylated AKT protein in 25 archival canine MCT samples by immunohistochemistry and examined the correlation between the immunohistochemical scores and histopathological tumour grades. AKT protein was detected in all of the samples and 24 of the 25 samples expressed the phosphorylated form of the protein, albeit with variable intensity. However, when the immunohistochemical scores of weak, intermediate and strong labelling were compared with the histopathological grades of I to III, there was no strong correlation. This study suggests that canine MCT cells have activated AKT and indicates the need for further research on the role of the AKT protein and the possibility of targeting the AKT signalling pathway in MCTs. PMID:22289273

  19. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells.

    PubMed

    Shearn, Colin T; Reigan, Philip; Petersen, Dennis R

    2012-07-01

    Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation. Published by Elsevier Inc.

  20. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling

    PubMed Central

    Cittadini, A; Monti, MG; Iaccarino, G; Di Rella, F; Tsichlis, PN; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2010-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the β-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca2+) handling, oxygen consumption, and β-adrenergic pathway. To this aim, Sprague–Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca2+ handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca2+–force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6±0.2 versus 2.7±0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca2+ available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca2+ responsiveness, documented by an increased maximal Ca2+-activated pressure (+19% versus controls) and a shift to the left of the Ca2+–force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca2+ ATPase protein levels were significantly increased in Ad.Akt rats. β-Adrenergic receptor density, affinity, kinase-1 levels, and

  1. Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes.

    PubMed

    Li, Luowei; Sampat, Keeran; Hu, Nancy; Zakari, Julia; Yuspa, Stuart H

    2006-02-10

    Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell

  2. Agmatine protects against intracerebroventricular streptozotocin-induced water maze memory deficit, hippocampal apoptosis and Akt/GSK3β signaling disruption.

    PubMed

    Moosavi, Maryam; Zarifkar, Amir Hossein; Farbood, Yaghoub; Dianat, Mahin; Sarkaki, Alireza; Ghasemi, Rasoul

    2014-08-05

    Centrally administered streptozotocin (STZ), is known to cause Alzheimer׳s like memory deterioration. It mainly affects insulin signaling pathways such as PI3/Akt and GSK-3β which are involved in cell survival. Previous studies indicate that STZ increases the ratio of Bax/Bcl-2 and thereby induces caspase-3 activation and apoptosis. Agmatine, a polyamine derived from l-arginine decarboxylation, is recently shown to exert some neuroprotective effects. This study aimed to assess if agmatine reverses STZ-induced memory deficits, hippocampal Akt/GSK-3β signaling disruption and caspase-3 activation. Adult male Sprague-Dawely rats weighing 200-250 g were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3 mg/kg) and agmatine treatment (40 or 80 mg/kg) was started from day 4 and continued in an every other day manner till day 14. The animal׳s learning and memory capability was assessed on days 15-18 using Morris water maze. After complement of behavioral studies the hippocampi was isolated and the amounts of hippocampal cleaved caspase-3 (the landmark of apoptosis), Bax/Bcl-2 ratio, total and phosphorylated forms of GSK-3β and Akt were analyzed by western blot. The results showed that agmatine in 80 but not 40 mg/kg reversed the memory deterioration induced by STZ. Western blot analysis revealed that STZ prompted elevation of caspase-3; Bax/Bcl-2 ratio and disrupted Akt/GSK-3β signaling in the hippocampus. Agmatine treatment prevented apoptosis and Akt/GSK-3β signaling impairment induced by STZ. This study disclosed that agmatine treatment averts not only STZ-induced memory deterioration but also hippocampal apoptosis and Akt/GSK-3β signaling disruption. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Chronic nicotine inhibits the therapeutic effects of gemcitabine on pancreatic cancer in vitro and in mouse xenografts.

    PubMed

    Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2013-03-01

    Smoking is an established risk factor for pancreatic cancer and nicotine replacement therapy (NRT) often accompanies chemotherapy. The current study has tested the hypothesis that chronic exposure to low dose nicotine reduces the responsiveness of pancreatic cancer to the leading therapeutic for this cancer, gemcitabine. The effects of chronic nicotine (1 μm/L) on two pancreatic cancer cell lines in vitro and in a xenograft model were assessed by immunoassays, Western blots and cell proliferation assays. Exposure in vitro to nicotine for 7 days inhibited the gemcitabine-induced reduction in viable cells, gemcitabine-induced apoptosis as indicated by reduced expression of cleaved caspase-3 while inducing the phosphorylation of signalling proteins extracellular signal-regulated kinase (ERK), v-akt thymoma viral oncogene homolog (protein kinase B, AKT) and Src. Nicotine (1 μm/L) in the drinking water for 4 weeks significantly reduced the therapeutic response of mouse xenografts to gemcitabine while reducing the induction of cleaved caspase-3 and the inhibition of phosphorylated forms of multiple signalling proteins by gemcitabine in xenograft tissues. Our experimental data suggest that continued moderate smoking and NRT may negatively impact therapeutic outcomes of gemcitabine on pancreatic cancer and that clinical studies in cancer patients are now warranted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Impaired Akt phosphorylation in B-cells of patients with common variable immunodeficiency.

    PubMed

    Yazdani, Reza; Ganjalikhani-Hakemi, Mazdak; Esmaeili, Mohammad; Abolhassani, Hassan; Vaeli, Shahram; Rezaei, Abbas; Sharifi, Zohre; Azizi, Gholamreza; Rezaei, Nima; Aghamohammadi, Asghar

    2017-02-01

    Common variable immunodeficiency (CVID) is a heterogeneous group of primary immunodeficiency characterized by recurrent infections. We evaluated whether defective PI3K/Akt/FoxO pathway could influence B-cell fate. Determination of B-cell subsets in CVD patients and healthy donors (HDs) were performed using flow cytometry. We evaluated mRNA and protein expression of PI3K, Akt and FoxO using real-time PCR and flow cytometry, respectively. Moreover, phosphorylated Akt (pAkt) expression in B-cells has been measured by flowcytometry. We identified a significant reduction in the percentage of marginal zone like B-cells, memory B-cells (total, switched and unswitched) and plasmablasts in patients, as these decreased B-cell subsets had a significant negative correlation with increased apoptosis in patients. Surprisingly, we identified decreased pAkt expression in B-cells of patients than HDs. We described for the first time impaired pAkt expression in B-cells of CVID patients that had a significant correlation with antibody response to the vaccine and worse clinical complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Akt2-Dependent Phosphorylation of Radixin in Regulation of Mrp-2 Trafficking in WIF-B Cells.

    PubMed

    Suda, Jo; Rockey, Don C; Karvar, Serhan

    2016-02-01

    The dominant ezrin/radixin/moesin protein in hepatocytes is radixin, which plays an important role in mediating the binding of F-actin to the plasma membrane after a conformational activation by phosphorylation at Thr564. Here we have investigated the importance of Akt-mediated radixin Thr564 phosphorylation on Mrp-2 distribution and function in WIF-B cells. Mrp-2 is an adenosine triphosphate (ATP)-binding cassette transporter that plays an important role in detoxification and chemoprotection by transporting a wide range of compounds, especially conjugates of lipophilic substances with glutathione, organic anions, and drug metabolites such as glucuronides. Akt1 and Akt2 expression were manipulated using dominant active and negative constructs as well as Akt1 and Akt2 siRNA. Cellular distribution of radixin and Mrp-2 was visualized by fluorescence microscopy. A 5-chloromethylfluorescein diacetate, which is a substrate of the Mrp-2 and is actively transported in canalicular lumina, was used to measure Mrp-2 function. Radixin phosphorylation was significantly increased in wild-type and dominant active Akt2 transfected cells. Furthermore, radixin and Mrp-2 were localized at the canalicular membrane, similar to control cells. In contrast, overexpression of dominant negative Akt2, siRNA knockdown of Akt2 and a specific Akt inhibitor prevented radixin phosphorylation and led to alteration of normal radixin and Mrp-2 localization; inhibition of Akt2, but not Akt1 function led to radixin localization to the cytoplasmic space. In addition, dominant negative and Akt2 knockdown led to a dramatically impaired hepatocyte secretory response, while wild-type and dominant active Akt2 transfected cells exhibited increased 5-chloromethylfluorescein diacetate excretion. In contrast to Akt2, Akt1 was not associated with radixin phosphorylation. These studies, therefore, identify Akt2 as a critical kinase that regulates radixin phosphorylation and leads to Mrp-2 translocation and

  6. Cell survival under nutrient stress is dependent on metabolic conditions regulated by Akt and not by autophagic vacuoles.

    PubMed

    Bruno, P; Calastretti, A; Priulla, M; Asnaghi, L; Scarlatti, F; Nicolin, A; Canti, G

    2007-10-01

    Akt activation assists tumor cell survival and promotes resistance to chemotherapy. Here we show that constitutively active Akt (CA-Akt) cells are highly sensitized to cell death induced by nutrient and growth factor deprivation, whereas dominant-negative Akt (DN-Akt) cells have a high rate of survival. The content of autophagosomes in starved CA-Akt cells was high, while DN-Akt cells expressed autophagic vacuoles constitutively, independently of nutrition conditions. Thus Akt down-regulation and downstream events can induce autophagosomes which were not directly determinants of cell death. Biochemical analysis in Akt-mutated cells show that (i) Akt and mTOR proteins were degraded more rapidly than the housekeeping proteins, (ii) mTOR phosphorylation at position Thr(2446) was relatively high in DN-Akt and low in CA-Akt cells, induced by starvation in mock cells only, which suggests reduced autoregulation of these pathways in Akt-mutated cells, (iii) both protein synthesis and protein degradation were significantly higher in starved CA-Akt cells than in starved DN-Akt cells or mock cells. In conclusion, constitutively active Akt, unable to control synthesis and wasting of proteins, accelerates the death of starved cells.

  7. The Akt1-eNOS axis illustrates the specificity of kinase-substrate relationships in vivo.

    PubMed

    Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Di Lorenzo, Annarita; Harrison, Kenneth D; Huang, Paul L; Sessa, William C

    2009-08-04

    Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1(-/-) mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme "constitutively active" or "less active." The eNOS mutations did not influence several phenotypes in Akt1(-/-) mice; however, the defective postnatal angiogenesis characteristic of Akt1(-/-) mice was rescued by crossing the Akt1(-/-) mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) and increased production of HIF-1alpha-responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling.

  8. Hyperlipidemia affects multiscale structure and strength of murine femur.

    PubMed

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-07-18

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. PI3K/Akt signalling pathway and cancer.

    PubMed

    Fresno Vara, Juan Angel; Casado, Enrique; de Castro, Javier; Cejas, Paloma; Belda-Iniesta, Cristóbal; González-Barón, Manuel

    2004-04-01

    Phosphatidylinositol-3 kinases, PI3Ks, constitute a lipid kinase family characterized by their ability to phosphorylate inositol ring 3'-OH group in inositol phospholipids to generate the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P(3)). RPTK activation results in PI(3,4,5)P(3) and PI(3,4)P(2) production by PI3K at the inner side of the plasma membrane. Akt interacts with these phospholipids, causing its translocation to the inner membrane, where it is phosphorylated and activated by PDK1 and PDK2. Activated Akt modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. In recent years, it has been shown that PI3K/Akt signalling pathway components are frequently altered in human cancers. Cancer treatment by chemotherapy and gamma-irradiation kills target cells primarily by the induction of apoptosis. However, the development of resistance to therapy is an important clinical problem. Failure to activate the apoptotic programme represents an important mode of drug resistance in tumor cells. Survival signals induced by several receptors are mediated mainly by PI3K/Akt, hence this pathway may decisively contribute to the resistant phenotype. Many of the signalling pathways involved in cellular transformation have been elucidated and efforts are underway to develop treatment strategies that target these specific signalling molecules or their downstream effectors. The PI3K/Akt pathway is involved in many of the mechanisms targeted by these new drugs, thus a better understanding of this crossroad can help to fully exploit the potential benefits of these new agents.

  10. Low Phosphorylated AKT Expression in Laryngeal Cancer: Indications for a Higher Metastatic Risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nijkamp, Monique M.; Span, Paul N.; Stegeman, Hanneke

    2013-10-01

    Purpose: To validate the association of phosphorylated (p)AKT with lymph node metastasis in an independent, homogeneous cohort of patients with larynx cancer. Methods and Materials: Seventy-eight patients with laryngeal cancer were included. Epidermal growth factor receptor, pAKT, vimentin, E-cadherin, hypoxia, and blood vessels were visualized in biopsy material using immunohistochemistry. Positive tumor areas and spatial relationships between markers were assessed by automated image analysis. In 6 laryngeal cancer cell lines, E-cadherin and vimentin messenger RNA was quantified by real-time polymerase chain reaction and by immunohistochemistry before and after treatment with the pAKT inhibitor MK-2206. Results: A significant correlation was foundmore » between low pAKT in the primary tumor and positive lymph node status (P=.0005). Tumors with lymph node metastases had an approximately 10-fold lower median pAKT value compared with tumors without lymph node metastases, albeit with large intertumor variations, validating our previous results. After inhibition of pAKT in laryngeal cancer cells with MK-2206, up-regulation of vimentin and a downregulation of E-cadherin occurred, consistent with epithelial–mesenchymal transition. Conclusion: Low pAKT expression in larynx tumors is associated with lymph node metastases. Further, inhibition of pAKT in laryngeal cancer induces epithelial–mesenchymal transition, predisposing for an increased metastatic risk.« less

  11. Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish.

    PubMed

    Jeffery, Jessie; Neyt, Christine; Moore, Wade; Paterson, Scott; Bower, Neil I; Chenevix-Trench, Georgia; Verkade, Heather; Hogan, Benjamin M; Khanna, Kum Kum

    2015-05-01

    CEP55 was initially described as a centrosome- and midbody-associated protein and a key mediator of cytokinesis. More recently, it has been implicated in PI3K/AKT pathway activation via an interaction with the catalytic subunit of PI3K. However, its role in embryonic development is unknown. Here we describe a cep55 nonsense mutant zebrafish with which we can study the in vivo physiologic role of Cep55. Homozygous mutants underwent extensive apoptosis by 24 hours postfertilization (hpf) concomitant with cell cycle defects, and heterozygous carriers were indistinguishable from their wild-type siblings. A similar phenotype was also observed in zebrafish injected with a cep55 morpholino, suggesting the mutant is a cep55 loss-of-function model. Further analysis revealed that Akt was destabilized in the homozygous mutants, which partially phenocopied Akt1 and Akt2 knockdown. Expression of either constitutively activated PIK3CA or AKT1 could partially rescue the homozygous mutants. Consistent with a role for Cep55 in regulation of Akt stability, treatment with proteasome inhibitor, MG132, partially rescued the homozygous mutants. Taken together, these results provide the first description of Cep55 in development and underline the importance of Cep55 in the regulation of Pi3k/Akt pathway and in particular Akt stability. © FASEB.

  12. Whole-exome sequencing identifies recurrent AKT1 mutations in sclerosing hemangioma of lung

    PubMed Central

    Jung, Seung-Hyun; Kim, Min Sung; Lee, Sung-Hak; Park, Hyun-Chun; Choi, Hyun Joo; Maeng, Leeso; Min, Ki Ouk; Kim, Jeana; Park, Tae In; Shin, Ok Ran; Kim, Tae-Jung; Xu, Haidong; Lee, Kyo Young; Kim, Tae-Min; Song, Sang Yong; Lee, Charles; Chung, Yeun-Jun; Lee, Sug Hyung

    2016-01-01

    Pulmonary sclerosing hemangioma (PSH) is a benign tumor with two cell populations (epithelial and stromal cells), for which genomic profiles remain unknown. We conducted exome sequencing of 44 PSHs and identified recurrent somatic mutations of AKT1 (43.2%) and β-catenin (4.5%). We used a second subset of 24 PSHs to confirm the high frequency of AKT1 mutations (overall 31/68, 45.6%; p.E17K, 33.8%) and recurrent β-catenin mutations (overall 3 of 68, 4.4%). Of the PSHs without AKT1 mutations, two exhibited AKT1 copy gain. AKT1 mutations existed in both epithelial and stromal cells. In two separate PSHs from one patient, we observed two different AKT1 mutations, indicating they were not disseminated but independent arising tumors. Because the AKT1 mutations were not found to co-occur with β-catenin mutations (or any other known driver alterations) in any of the PSHs studied, we speculate that this may be the single-most common driver alteration to develop PSHs. Our study revealed genomic differences between PSHs and lung adenocarcinomas, including a high rate of AKT1 mutation in PSHs. These genomic features of PSH identified in the present study provide clues to understanding the biology of PSH and for differential genomic diagnosis of lung tumors. PMID:27601661

  13. Esculetin exerts antitumor effect on human gastric cancer cells through IGF-1/PI3K/Akt signaling pathway.

    PubMed

    Wang, Guijun; Lu, Meili; Yao, Yusheng; Wang, Jing; Li, Juan

    2017-11-05

    In this study, we aimed to investigate the antitumor effect of esculetin, a coumarin derivative extracted from natural plants, on human gastric cancer cells, and to illustrate the potential mechanisms. The results showed that esculetin exhibited anti-proliferative effects against gastric cancer cells and induced their apoptosis in a dose dependent manner with lower toxicity against normal gastric epithelial cells. Mechanism study indicated that esculetin induced gastric cancer MGC-803 cells apoptosis by triggering the activation of mitochondrial apoptotic pathway through reducing the mitochondrial membrane potential (MMP), increasing Bax/Bcl-2 ratio, activating caspase-3 and caspase-9 activity, and increasing cytochrome c release from mitochondria. Further study showed that the pro-apoptotic effects of esculetin were associated with down-regulation of insulin-like growth factor-1/ phosphatidylinositide 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling pathway. Activation of IGF-1/PI3K/Akt pathway by IGF-1 abrogated the pro-apoptotic effects of esculetin, while inhibition of IGF-1/PI3K/Akt pathway by triciribine or LY294002 enhanced the pro-apoptotic effects of esculetin. In addition, esculetin inhibited in vivo tumor growth with no obvious toxicity following subcutaneous inoculation of MGC-803 cells in nude mice, and inhibited activation of IGF-1/PI3K/Akt pathway in tumor tissue. These results indicate that esculetin could inhibit cell proliferation and induce apoptosis of gastric cancer cells through IGF-1/PI3K/Akt mediated mitochondrial apoptosis pathway, and may be a novel effective chemotherapeutic agent against gastric cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Neuroprotective effect of nicorandil through inhibition of apoptosis by the PI3K/Akt1 pathway in a mouse model of deep hypothermic low flow.

    PubMed

    Yu, Di; Fan, Changfeng; Zhang, Weiyan; Wen, Zhongyuan; Hu, Liang; Yang, Lei; Feng, Yu; Yin, Ke-Jie; Mo, Xuming

    2015-10-15

    Nicorandil exerts a protective effect on ischemia-reperfusion (I/R) injury in the brain and kidney through anti-apoptotic mechanisms. However, the mechanism by which nicorandil protects against I/R injury induced by deep hypothermic low flow (DHLF) remains unclear. We used a cerebral I/R model induced by DHLF to determine the neuroprotective effects and possible mechanisms of nicorandil. Hematoxylin-eosin (HE) staining and in situ terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL) assay were used to detect changes in cell morphology and the number of apoptotic cells in hippocampus, respectively. The apoptotic regulators including Bcl-2, Bax, Akt, and p-Akt (the active, phosphorylated form of Akt) were examined by Western blot (WB). Histopathological findings showed that nicorandil significantly alleviated morphological damage in hippocampal and reduced the number of TUNEL-positive nuclei induced by DHLF. Nicorandil also increased the expression of Bcl-2 and decreased the expression of Bax, while increasing p-Akt level. Consistent with these results, nicorandil-mediated neuroprotection was reduced in the Akt1+/- mutant mice and inhibited by LY294002, a PI3K inhibitor. These findings showed that nicorandil provides a neuroprotective role in DHLF-induced I/R injury by inhibiting apoptosis via activation of the PI3K/Akt1 signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model

    PubMed Central

    Gim, Sang-A; Sung, Jin-Hee; Shah, Fawad-Ali; Kim, Myeong-Ok

    2013-01-01

    Ferulic acid, a component of the plants Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort, exerts a neuroprotective effect by regulating various signaling pathways. This study showed that ferulic acid treatment prevents the injury-induced increase of collapsin response mediator protein 2 (CRMP-2) in focal cerebral ischemia. Glycogen synthase kinase-3β (GSK-3β) regulates CRMP-2 function through phosphorylation of CRMP-2. Moreover, the pro-apoptotic activity of GSK-3β is inactivated by phosphorylation by Akt. This study investigated whether ferulic acid modulates the expression of CRMP-2 and its upstream targets, Akt and GSK-3β, in focal cerebral ischemia. Male rats were treated immediately with ferulic acid (100 mg/kg, i.v.) or vehicle after middle cerebral artery occlusion (MCAO), and then cerebral cortices were collected 24 hr after MCAO. MCAO resulted in decreased levels of phospho-Akt and phospho-GSK-3β, while ferulic acid treatment prevented the decrease in the levels of these proteins. Moreover, phospho-CRMP-2 and CRMP-2 levels increased during MCAO, whereas ferulic acid attenuated these injury-induced increases. These results demonstrate that ferulic acid regulates the Akt/GSK-3β/CRMP-2 signaling pathway in focal cerebral ischemic injury, thereby protecting against brain injury. PMID:23825478

  16. Role of Akt signaling in resistance to DNA-targeted therapy

    PubMed Central

    Avan, Abolfazl; Narayan, Ravi; Giovannetti, Elisa; Peters, Godefridus J

    2016-01-01

    The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients. PMID:27777878

  17. Mechanism of action for the cytotoxic effects of the nitric oxide prodrug JS-K in murine erythroleukemia cells.

    PubMed

    Kaczmarek, Monika Z; Holland, Ryan J; Lavanier, Stephen A; Troxler, Jami A; Fesenkova, Valentyna I; Hanson, Charlotte A; Cmarik, Joan L; Saavedra, Joseph E; Keefer, Larry K; Ruscetti, Sandra K

    2014-03-01

    The nitric oxide (NO) prodrug JS-K, a promising anti-cancer agent, consists of a diazeniumdiolate group necessary for the release of NO as well as an arylating ring. In this study, we research the mechanism by which JS-K kills a murine erythroleukemia cell line and determine the roles of NO and arylation in the process. Our studies indicate that JS-K inhibits the PI 3-kinase/Akt and MAP kinase pathways. This correlates with the activation of the tumor suppressor FoxO3a and increased expression of various caspases, leading to apoptosis. The arylating capability of JS-K appears to be sufficient for inducing these biological effects. Overall, these data suggest that JS-K kills tumor cells by arylating and inactivating signaling molecules that block the activation of a tumor suppressor. Published by Elsevier Ltd.

  18. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites.

    PubMed

    Znamensky, Vladimir; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2003-03-15

    In addition to genomic pathways, estrogens may regulate gene expression by activating specific signal transduction pathways, such as that involving phosphatidylinositol 3-kinase (PI3-K) and the subsequent phosphorylation of Akt (protein kinase B). The Akt pathway regulates various cellular events, including the initiation of protein synthesis. Our previous studies showed that synaptogenesis in hippocampal CA1 pyramidal cell dendritic spines is highest when brain estrogen levels are highest. To address the role of Akt in this process, the subcellular distribution of phosphorylated Akt immunoreactivity (pAkt-I) in the hippocampus of female rats across the estrous cycle and male rats was analyzed by light microscopy (LM) and electron microscopy (EM). By LM, the density of pAkt-I in stratum radiatum of CA1 was significantly higher in proestrus rats (or in estrogen-supplemented ovariectomized females) compared with diestrus, estrus, or male rats. By EM, pAkt-I was found throughout the shafts and in select spines of stratum radiatum dendrites. Quantitative ultrastructural analysis identifying pAkt-I with immunogold particles revealed that proestrus rats compared with diestrus, estrus, and male rats contained significantly higher pAkt-I associated with (1) dendritic spines (both cytoplasm and plasmalemma), (2) spine apparati located within 0.1 microm of dendritic spine bases, (3) endoplasmic reticula and polyribosomes in the cytoplasm of dendritic shafts, and (4) the plasmalemma of dendritic shafts. These findings suggest that estrogens may regulate spine formation in CA1 pyramidal neurons via Akt-mediated signaling events.

  19. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.

    PubMed

    Nguyen, Le Xuan Truong; Mitchell, Beverly S

    2013-12-17

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.

  20. Vitamin E Facilitates the Inactivation of the Kinase Akt by the Phosphatase PHLPP1

    PubMed Central

    Huang, Po-Hsien; Chuang, Hsiao-Ching; Chou, Chih-Chien; Wang, Huiling; Lee, Su-Lin; Yang, Hsiao-Ching; Chiu, Hao-Chieh; Kapuriya, Naval; Wang, Dasheng; Kulp, Samuel K.; Chen, Ching-Shih

    2014-01-01

    Vitamin E is a fat-soluble vitamin that includes isomers of tocopherols and tocotrienols which are known for their antioxidant properties. Tocopherols are the predominant form encountered in the diet and through supplementation, and have garnered interest for their potential cancer therapeutic and chemopreventive effects, which include the dephosphorylation of Akt, a serine/threonine kinase that plays a pivotal role in important cellular processes, such as cell growth, survival, metabolism and motility. Full catalytic activation of Akt requires phosphorylation at both Thr308 and Ser473. Dephosphorylation of Ser473 drastically reduces Akt catalytic activity and the number of downstream substrates it can regulate. The mechanism by which α- and γ-tocopherol facilitate the selective dephosphorylation of the kinase Akt at Ser473 was investigated. We showed that this site-specific Akt dephosphorylation was mediated through the pleckstrin homology (PH) domain-dependent recruitment to the plasma membrane of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase, isoform 1), a phosphatase that dephosphorylates Akt at Ser473. The ability of α- and γ-tocopherol to induce PHLPP-mediated Akt inhibition established PHLPP as a “druggable” target. We structurally optimized these tocopherols to obtain derivatives with greater in vitro potency and in vivo tumor-suppressive activity in two prostate xenograft tumor models. Binding affinities for the PH domains of Akt and PHLPP1 were greater than for other PH domain-containing proteins, which may underlie the preferential membrane recruitment of these proteins. Molecular modeling revealed the structural determinants of the interaction with the PH domain of Akt that may inform strategies for continued structural optimization. These findings describe a mechanism by which tocopherols facilitate the dephosphorylation of Akt at Ser473, thereby providing insights into the mode of antitumor action of tocopherols and a

  1. The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo

    PubMed Central

    Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Lorenzo, Annarita Di; Harrison, Kenneth D.; Huang, Paul L.; Sessa, William C.

    2016-01-01

    Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1−/− mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme “constitutively active” or “less active.” The eNOS mutations did not influence several phenotypes in Akt1−/− mice; however, the defective postnatal angiogenesis characteristic of Akt1−/− mice was rescued by crossing the Akt1−/− mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1α (HIF-1α) and increased production of HIF-1α–responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling. PMID:19654415

  2. Akt Regulates TNFα Synthesis Downstream of RIP1 Kinase Activation during Necroptosis

    PubMed Central

    McNamara, Colleen R.; Ahuja, Ruchita; Osafo-Addo, Awo D.; Barrows, Douglas; Kettenbach, Arminja; Skidan, Igor; Teng, Xin; Cuny, Gregory D.; Gerber, Scott; Degterev, Alexei

    2013-01-01

    Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation. PMID:23469174

  3. Oleanolic acid induces p53-dependent apoptosis via the ERK/JNK/AKT pathway in cancer cell lines in prostatic cancer xenografts in mice.

    PubMed

    Kim, Gyeong-Ji; Jo, Hyeon-Ju; Lee, Kwon-Jai; Choi, Jeong Woo; An, Jeung Hee

    2018-05-29

    We evaluated oleanolic acid (OA)-induced anti-cancer activity, apoptotic mechanism, cell cycle status, and MAPK kinase signaling in DU145 (prostate cancer), MCF-7 (breast cancer), U87 (human glioblastoma), normal murine liver cell (BNL CL.2) and human foreskin fibroblast cell lines (Hs 68). The IC50 values for OA-induced cytotoxicity were 112.57 in DU145, 132.29 in MCF-7, and 163.60 in U87 cells, respectively. OA did not exhibit toxicity in BNL CL. 2 and Hs 68 cell lines in our experiments. OA, at 100 µg/mL, increased the number of apoptotic cells to 27.0% in DU145, 27.0% in MCF-7, and 15.7% in U87, when compared to control cells. This enhanced apoptosis was due to increases in p53, cytochrome c, Bax, PARP-1 and caspase-3 expression in DU145, MCF-7 and U87 cell lines. OA-treated DU145 cells were arrested in G2 because of the activation of p-AKT, p-JNK, p21 and p27, and the decrease in p-ERK, cyclin B1 and CDK2 expression; OA-treated MCF-7 cells were arrested in G1 owing to the activation of p-JNK, p-ERK, p21, and p27, and the decrease in p-AKT, cyclin D1, CDK4, cyclin E, and CDK2; and OA-treated U87 cells also exhibited G1 phase arrest caused by the increase in p-ERK, p-JNK, p-AKT, p21, and p27, and the decrease in cyclin D1, CDK4, cyclin E and CDK2. Thus, OA arrested the cell cycle at different phases and induced apoptosis in cancer cells. These results suggested that OA possibly altered the expression of the cell cycle regulatory proteins differently in varying types of cancer.

  4. The dopamine D2 receptor regulates Akt and GSK-3 via Dvl-3.

    PubMed

    Sutton, Laurie P; Rushlow, Walter J

    2012-08-01

    The dopamine D2 receptor (D2DR) regulates Akt and may also target the Wnt pathway, two signalling cascades that inhibit glycogen synthase kinase-3 (GSK-3). This study examined whether the Wnt pathway is regulated by D2DR and the role of Akt and dishevelled-3 (Dvl-3) in regulating GSK-3 and the transcription factor β-catenin in the rat brain. Western blotting showed that subchronic treatment of raclopride (D2DR antagonist) increase phosphorylated Akt, Dvl-3, GSK-3, phosphorylated GSK-3 and β-catenin, whereas subchronic treatment of quinpirole (D2DR agonist) induced the opposite response. Co-immunopreciptations revealed an association between GSK-3 and the D2DR complex that was altered following raclopride and quinpirole, albeit in opposite directions. SCH23390 (D1DR antagonist) and nafadotride (D3DR antagonist) were also used to determine if the response was specific to the D2DR. Neither subchronic treatment affected Dvl-3, GSK-3, Akt nor β-catenin protein levels, although nafadotride altered the phosphorylation state of Akt and GSK-3. In addition, in-vitro experiments were conducted to manipulate Akt and Dvl-3 activity in SH-SY5Y cells to elucidate how the pattern of change observed following manipulation of D2DR developed. Results indicate that Akt affects the phosphorylation state of GSK-3 but has no effect on β-catenin levels. However, altering Dvl-3 levels resulted in changes in Akt and the Wnt pathway similar to what was observed following raclopride or quinpirole treatment. Collectively, the data suggests that the D2DR very specifically regulates Wnt and Akt signalling via Dvl-3.

  5. Lentiviral-induced high-grade gliomas in rats: the effects of PDGFB, HRAS-G12V, AKT, and IDH1-R132H.

    PubMed

    Lynes, John; Wibowo, Mia; Koschmann, Carl; Baker, Gregory J; Saxena, Vandana; Muhammad, A K M G; Bondale, Niyati; Klein, Julia; Assi, Hikmat; Lieberman, Andrew P; Castro, Maria G; Lowenstein, Pedro R

    2014-07-01

    In human gliomas, the RTK/RAS/PI(3)K signaling pathway is nearly always altered. We present a model of experimental gliomagenesis that elucidates the contributions of genes involved in this pathway (PDGF-B ligand, HRAS-G12V, and AKT). We also examine the effect on gliomagenesis by the potential modifier gene, IDH1-R132H. Injections of lentiviral-encoded oncogenes induce de novo gliomas of varying penetrance, tumor progression, and histological grade depending on the specific oncogenes used. Our model mimics hallmark histological structures of high-grade glioma, such as pseudopalisades, glomeruloid microvascular proliferation, and diffuse tumor invasion. We use our model of gliomagenesis to test the efficacy of an experimental brain tumor gene therapy. Our model allowed us to test the contributions of oncogenes in the RTK/RAS/PI(3)K pathway, and their potential modification by over-expression of mutated IDH1, in glioma development and progression in rats. Our model constitutes a clinically relevant system to study gliomagenesis, the effects of modifier genes, and the efficacy of experimental therapeutics.

  6. Overexpression of Akt1 Enhances Adipogenesis and Leads to Lipoma Formation in Zebrafish

    PubMed Central

    Rajendran, R. Samuel; Shen, Chia-Ning; Chen, Te-Hao; Yen, Chueh-Chuan; Chuang, Chih-Kuang; Lin, Dar-Shong; Hsiao, Chung-Der

    2012-01-01

    Background Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the Akt1 gene. Methodology/Principal Findings Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1)cy18 displays severely obese phenotypes at the adult stage. In Tg(krt4:Hsa.myrAkt1)cy18, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(krt4:Hsa.myrAkt1)cy18 caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(krt4:Hsa.myrAkt1)cy18. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(krt4:Hsa.myrAkt1)cy18, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues. Conclusion/Significance Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an

  7. Acute Alcohol Modulates Cardiac Function as PI3K/Akt Regulates Oxidative Stress

    PubMed Central

    Umoh, Nsini A.; Walker, Robin K.; Al-Rubaiee, Mustafa; Jeffress, Miara A.; Haddad, Georges E.

    2015-01-01

    Background Clinical manifestations of alcohol abuse on the cardiac muscle include defective contractility with the development of heart failure. Interestingly, low alcohol consumption has been associated with reduced risk of cardiovascular disease. Although several hypotheses have been postulated for alcoholic cardiomyopathy and for the low-dose beneficial cardiovascular effects, the precise mechanisms and mediators remain largely undefined. We hypothesize that modulation of oxidative stress by PI3K/Akt plays a key role in the cardiac functional outcome to acute alcohol exposure. Methods Thus, acutely exposed rat cardiac tissue and cardiocytes to low (LA: 5 mM), moderate (MA: 25 mM), and high (HA: 100 mM) alcohol were assessed for markers of oxidative stress in the presence and absence of PI3K/Akt activators (IGF-1 0.1 μM or constitutively active PI3K: Ad.BD110 transfection) or inhibitor (LY294002 1 μMor Akt-negative construct Ad.Akt(K179M) transfection). Results Acute LA reduced Akt, superoxide dismutase (SOD-3) and NFκB, ERK1, and p38 MAPK gene expression. Acute HA only increased that of SOD-3 and NFκB. These effects were generally inhibited by Ad.Akt(K179M) and enhanced with Ad.BD110 transfection. In parallel, LA reduced but HA enhanced Akt activity, which was reversed by IGF-1 and inhibited by Ad.Akt(K179M), respectively. Also, LA reduced caspase 3/7 activity and oxidative stress, while HA increased both. The former was blocked, while the latter effect was enhanced by Ad.Akt(K179M). The reverse was true with PI3K/Akt activation. This translated into reduced viability with HA, with no effect with LA. On the functional level, acute LA improved cardiac output and ejection fraction, mainly through increased stroke volume. This was accompanied with enhanced end-systolic pressure–volume relationship and preload recruitable stroke work. Opposite effect was recorded for HA. LA and HA in vivo functional effects were alleviated by LY and enhanced by IGF-1 treatment

  8. Myasthenia gravis: long-term prognostic value of thymus lactate dehydrogenase isoenzyme pattern of hyperplastic thymus and thymoma.

    PubMed Central

    Szathmáry, I; Selmeci, L; Pósch, E; Szobor, A; Molnár, J

    1985-01-01

    Lactate dehydrogenase (LDH) isoenzyme pattern and the percent of H-subunit content were determined in the thymus of 62 patients (55 with hyperplasia, 7 with tumours) after thymectomy. An increase in LDH1 relative activity indicates that in the thymus of patients with myasthenia gravis the ratio of mature differentiated thymocytes was higher than in the thymus of control subjects. LDH isoenzyme profiles of thymus tumours were similar to those described in other neoplasms, except that thymomas with apparent predominance of epithelial cells and with minimal lymphocytic reaction exhibited a marked elevation only in LDH2 relative activity, presumably associated with the specific (secretory) function of epithelial cells. The elevation of H-subunit content, a parameter characteristic of both thymic components (lymphoid and epithelial), correlated closely with a poor clinical condition in patients several years after surgery. PMID:4031927

  9. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival.

    PubMed

    McDonald, Paul C; Oloumi, Arusha; Mills, Julia; Dobreva, Iveta; Maidan, Mykola; Gray, Virginia; Wederell, Elizabeth D; Bally, Marcel B; Foster, Leonard J; Dedhar, Shoukat

    2008-03-15

    An unbiased proteomic screen to identify integrin-linked kinase (ILK) interactors revealed rictor as an ILK-binding protein. This finding was interesting because rictor, originally identified as a regulator of cytoskeletal dynamics, is also a component of mammalian target of rapamycin complex 2 (mTORC2), a complex implicated in Akt phosphorylation. These functions overlap with known ILK functions. Coimmunoprecipitation analyses confirmed this interaction, and ILK and rictor colocalized in membrane ruffles and leading edges of cancer cells. Yeast two-hybrid assays showed a direct interaction between the NH(2)- and COOH-terminal domains of rictor and the ILK kinase domain. Depletion of ILK and rictor in breast and prostate cancer cell lines resulted in inhibition of Akt Ser(473) phosphorylation and induction of apoptosis, whereas, in several cell lines, depletion of mTOR increased Akt phosphorylation. Akt and Ser(473)P-Akt were detected in ILK immunoprecipitates and small interfering RNA-mediated depletion of rictor, but not mTOR, inhibited the amount of Ser(473)P-Akt in the ILK complex. Expression of the NH(2)-terminal (1-398 amino acids) rictor domain also resulted in the inhibition of ILK-associated Akt Ser(473) phosphorylation. These data show that rictor regulates the ability of ILK to promote Akt phosphorylation and cancer cell survival.

  10. Effective Identification of Akt Interacting Proteins by Two-Step Chemical Crosslinking, Co-Immunoprecipitation and Mass Spectrometry

    PubMed Central

    Huang, Bill X.; Kim, Hee-Yong

    2013-01-01

    Akt is a critical protein for cell survival and known to interact with various proteins. However, Akt binding partners that modulate or regulate Akt activation have not been fully elucidated. Identification of Akt-interacting proteins has been customarily achieved by co-immunoprecipitation combined with western blot and/or MS analysis. An intrinsic problem of the method is loss of interacting proteins during procedures to remove non-specific proteins. Moreover, antibody contamination often interferes with the detection of less abundant proteins. Here, we developed a novel two-step chemical crosslinking strategy to overcome these problems which resulted in a dramatic improvement in identifying Akt interacting partners. Akt antibody was first immobilized on protein A/G beads using disuccinimidyl suberate and allowed to bind to cellular Akt along with its interacting proteins. Subsequently, dithiobis[succinimidylpropionate], a cleavable crosslinker, was introduced to produce stable complexes between Akt and binding partners prior to the SDS-PAGE and nanoLC-MS/MS analysis. This approach enabled identification of ten Akt partners from cell lysates containing as low as 1.5 mg proteins, including two new potential Akt interacting partners. None of these but one protein was detectable without crosslinking procedures. The present method provides a sensitive and effective tool to probe Akt-interacting proteins. This strategy should also prove useful for other protein interactions, particularly those involving less abundant or weakly associating partners. PMID:23613850

  11. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through NO and Akt

    PubMed Central

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J.

    2011-01-01

    Objective Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous NO synthase (NOS) inhibitors ADMA and L-NMMA. This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA independent effects that influence endothelial function. Methods and Results Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in HUVEC, we found that DDAH1 acts to promote endothelial cell proliferation, migration and tube formation both by Akt phosphorylation as well as through the traditional role of degrading ADMA. Incubation of HUVEC with the NOS inhibitors L-NAME or ADMA, the soluble guanylyl cyclase inhibitor ODQ, or the cGMP analog 8-pCPT-cGMP had no effect on p-AktSer473, indicating that the increase of p-AktSer473 produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase of p-AktSer473. Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. Conclusions DDAH1 exerts a unique role in activating Akt that affects endothelial function independent of degrading endogenous NOS inhibitors. PMID:21212404

  12. Wogonin induces cross-regulation between autophagy and apoptosis via a variety of Akt pathway in human nasopharyngeal carcinoma cells.

    PubMed

    Chow, Shu-Er; Chen, Yu-Wen; Liang, Chi-Ang; Huang, Yao-Kuan; Wang, Jong-Shyan

    2012-11-01

    Autophagy as well as apoptosis is an emerging target for cancer therapy. Wogonin, a flavonoid compound derived from the traditional Chinese medicine of Huang-Qin, has anticancer activity in many cancer cells including human nasopharyngeal carcinoma (NPC). However, the involvement of autophagy in the wogonin-induced apoptosis of NPC cells was still uninvestigated. In this study, we found wogonin-induced autophagy had interference on the process of apoptosis. Wogonin-induced autophagy formation evidenced by LC3 I/II cleavage, acridine orange (AO)-stained vacuoles and the autophagosome/autolysosome images of TEM analysis. Activation of autophagy with rapamycin resulted in increased wogonin-mediated autophagy via inhibition of mTOR/P70S6K pathway. The functional relevance of autophagy in the antitumor activity was investigated by annexin V-positive stained cells and PARP cleavage. Induction of autophagy by rapamycin ameliorated the wogonin-mediated apoptosis, whereas inhibition of autophagy by 3-methyladenine (3-MA) or bafilomycin A1 increased the apoptotic effect. Interestingly, this study also found, in addition the mTOR/P70S6K pathway, wogonin also inhibited Raf/ERK pathway, a variety of Akt pathways. Inactivation of PI(3) K/Akt by their inhibitors significantly induced apoptosis and markedly sensitized the NPC cells to wogonin-induced apoptosis. This anticancer effect of Akt was further confirmed by SH6, a specific inhibitor of Akt. Importantly, inactivation of its downstream molecule ERK by PD98059, a MEK inhibitor, also induced apoptosis. This study indicated wogonin-induced both autophagy and apoptosis through a variety of Akt pathways and suggested modulation of autophagy might provide profoundly the potential therapeutic effect. Copyright © 2012 Wiley Periodicals, Inc.

  13. AKT in cancer: new molecular insights and advances in drug development

    PubMed Central

    Mundi, Prabhjot S.; Sachdev, Jasgit; McCourt, Carolyn

    2016-01-01

    The phosphatidylinositol‐3 kinase (PI3K)–AKT pathway is one of the most commonly dysregulated pathways in all of cancer, with somatic mutations, copy number alterations, aberrant epigenetic regulation and increased expression in a number of cancers. The carefully maintained homeostatic balance of cell division and growth on one hand, and programmed cell death on the other, is universally disturbed in tumorigenesis, and downstream effectors of the PI3K–AKT pathway play an important role in this disturbance. With a wide array of downstream effectors involved in cell survival and proliferation, the well‐characterized direct interactions of AKT make it a highly attractive yet elusive target for cancer therapy. Here, we review the salient features of this pathway, evidence of its role in promoting tumorigenesis and recent progress in the development of therapeutic agents that target AKT. PMID:27232857

  14. The Role of Akt in Chronic Liver Disease and Liver Regeneration.

    PubMed

    Morales-Ruiz, Manuel; Santel, Ansgar; Ribera, Jordi; Jiménez, Wladimiro

    2017-02-01

    The liver is continuously exposed to diverse insults, which may culminate in pathological processes causing liver disease. An effective therapeutic strategy for chronic liver disease should control the causal factors of the disease and stimulate functional liver regeneration. Preclinical studies have shown that interventions aimed at maintaining Akt activity in a dysfunctional liver meet most of the criteria. Although the central function of Akt is cell survival, other cellular aspects such as glucose uptake, glycogen synthesis, cell-cycle progression, and lipid metabolism have been shown to be prominent functions of Akt in the context of hepatic physiology. In this review, the authors describe the benefits of the Akt signaling pathway, emphasizing its importance in coordinating proper cellular growth and differentiation during liver regeneration, hepatic function, and liver disease. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell.

    PubMed

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma.

  16. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell

    PubMed Central

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma. PMID:27158383

  17. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation.

    PubMed

    Diez, Héctor; Benitez, Ma José; Fernandez, Silvia; Torres-Aleman, Ignacio; Garrido, Juan José; Wandosell, Francisco

    2016-11-01

    PI3K proteins family have multiple and essential functions in most cellular events. This family is composed of class I, class II and class III PI3Ks, which upstream and downstream elements are not completely elucidated. Previous studies using the broad PI3K inhibitor, LY294002 allowed to propose that PI3 kinase>Akt pathway is a key element in the determination of axonal polarity in hippocampal neurons. Recently, new inhibitors with a higher selectivity for class I PI3K have been characterized. In the present study we have examined this widely accepted theory using a new class I PI3K inhibitor (GDC-0941), as well as Akt inhibitors, and PTEN phosphatase constructs to reduce PIP3 levels. Our present data show that both, class I PI3K inhibitor and Akt inhibitor did not alter axon specification in hippocampal neurons, but greatly reduced axon length. However, in the same experiments LY294002 effectively impeded axonal polarization, as previously reported. Our biochemical data show that both, class I PI3K and Akt inhibitors, effectively block downstream elements from Akt to S6K1 activity. Both inhibitors are stable in culture medium along the time period analysed, maintaining the inhibition better than LY294002. Besides, we found evidence that LY294002 directly inhibits mTORC1. However, further analysis using an mTORC1 inhibitor showed no change in neuron polarity. Same result was obtained using a general class III PI3K inhibitor. Interestingly, we found that either, wild-type PTEN, or a phosphatase-dead form of PTEN, disrupted axonal polarization, strongly suggesting that the role of PTEN in axonal polarity can be independent of PIP3. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Osthole relaxes pulmonary arteries through endothelial phosphatidylinositol 3-kinase/Akt-eNOS-NO signaling pathway in rats.

    PubMed

    Yao, Li; Lu, Ping; Li, Yumei; Yang, Lijing; Feng, Hongxuan; Huang, Yong; Zhang, Dandan; Chen, Jianguo; Zhu, Daling

    2013-01-15

    Pulmonary arterial hypertension is a life-threatening disease lacking effective therapies. Osthole is a natural coumarin compound isolated from Angelica pubescens Maxim., which possesses hypotensive effect. Although its effects on isolated thoracic aorta (systemic circulating system) are clarified, it remains unclear whether Osthole relaxes isolated pulmonary arteries (PAs) (pulmonary circulating system). The aim of this study was to investigate the effects of Osthole on isolated PAs and the underlying mechanisms. We examined PA relaxation induced by Osthole in isolated human and rat PA rings with force-electricity transducers, the expression and activity of endothelial nitric oxide synthase (eNOS) and protein kinase B (Akt) with western blot, and nitric oxide (NO) production using DAF-FM DA fluorescent indicator. The results showed that Osthole elicited a dose-dependent vasorelaxation activity with phenylephrine-precontracted human and rat PA rings, which can be diminished by endothelium denudation and inhibition of eNOS, while having no effect on rat mesenteric arteries. Osthole increased NO release as well as activation of Akt and eNOS, indicated with increased phosphorylations of Akt at Ser-473 and eNOS at Ser-1177 in endothelial cells. PI3K inhibitor LY294002 also blocked Osthole induced vasodilation. In summary, dilative effect of Osthole was dependent on endothelial integrity and NO production, and was mediated by endothelial PI3K/Akt-eNOS-NO pathway. These may provide a new pulmonary vasodilator for the therapy of pulmonary arterial hypertension. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78.

    PubMed

    Chen, Hsin-Hsin; Chen, Chien-Chin; Lin, Yee-Shin; Chang, Po-Chun; Lu, Zi-Yi; Lin, Chiou-Feng; Chen, Chia-Ling; Chang, Chih-Peng

    2017-06-01

    Dengue virus (DENV) infection has become a public health issue of worldwide concern and is a serious health problem in Taiwan, yet there are no approved effective antiviral drugs to treat DENV. The replication of DENV requires both viral and cellular factors. Targeting host factors may provide a potential antiviral strategy. It has been known that up-regulation of PI3K/AKT signaling and GRP78 by DENV infection supports its replication. AR-12, a celecoxib derivative with no inhibiting activity on cyclooxygenase, shows potent inhibitory activities on both PI3K/AKT signaling and GRP78 expression levels, and recently has been found to block the replication of several hemorrhagic fever viruses. However the efficacy of AR-12 in treating DENV infection is still unclear. Here, we provide evidence to show that AR-12 is able to suppress DENV replication before or after virus infection in cell culture and mice. The antiviral activities of AR-12 are positive against infection of the four different DENV serotypes. AR-12 significantly down-regulates the PI3K/AKT activity and GRP78 expression in DENV infected cells whereas AKT and GRP78 rescue are able to attenuate anti-DENV effect of AR-12. Using a DENV-infected suckling mice model, we further demonstrate that treatment of AR-12 before or after DENV infection reduces virus replication and mice mortality. In conclusion, we uncover the potential efficacy of AR-12 as a novel drug for treating dengue. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKTmore » Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.« less

  1. Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7.

    PubMed

    Gallardo Bolaños, Juan M; Balao da Silva, Carolina M; Martín Muñoz, Patricia; Morillo Rodríguez, Antolín; Plaza Dávila, María; Rodríguez-Martínez, Heriberto; Aparicio, Inés M; Tapia, José A; Ortega Ferrusola, Cristina; Peña, Fernando J

    2014-08-01

    AKT, also referred to as protein kinase B (PKB or RAC), plays a critical role in controlling cell survival and apoptosis. To gain insights into the mechanisms regulating sperm survival after ejaculation, the role of AKT was investigated in stallion spermatozoa using a specific inhibitor and a phosphoflow approach. Stallion spermatozoa were washed and incubated in Biggers-Whitten-Whittingham medium, supplemented with 1% polyvinyl alcohol (PVA) in the presence of 0 (vehicle), 10, 20 or 30 μM SH5, an AKT inhibitor. SH5 treatment reduced the percentage of sperm displaying AKT phosphorylation, with inhibition reaching a maximum after 1 h of incubation. This decrease in phosphorylation was attributable to either dephosphorylation or suppression of the active phosphorylation pathway. Stallion spermatozoa spontaneously dephosphorylated during in vitro incubation, resulting in a lack of a difference in AKT phosphorylation between the SH5-treated sperm and the control after 4 h of incubation. AKT inhibition decreased the proportion of motile spermatozoa (total and progressive) and the sperm velocity. Similarly, AKT inhibition reduced membrane integrity, leading to increased membrane permeability and reduced the mitochondrial membrane potential concomitantly with activation of caspases 3 and 7. However, the percentage of spermatozoa exhibiting oxidative stress, the production of mitochondrial superoxide radicals, DNA oxidation and DNA fragmentation were not affected by AKT inhibition. It is concluded that AKT maintains the membrane integrity of ejaculated stallion spermatozoa, presumably by inhibiting caspases 3 and 7, which prevents the progression of spermatozoa to an incomplete form of apoptosis. © 2014 Society for Reproduction and Fertility.

  2. Similar PDK1-AKT-mTOR pathway activation in balloon cells and dysmorphic neurons of type II focal cortical dysplasia with refractory epilepsy.

    PubMed

    Lin, Yuan-xiang; Lin, Kun; Kang, De-zhi; Liu, Xin-xiu; Wang, Xing-fu; Zheng, Shu-fa; Yu, Liang-hong; Lin, Zhang-ya

    2015-05-01

    Dysmorphic neurons and balloon cells constitute the neuropathological hallmarks of type II focal cortical dysplasias (FCDs) with refractory epilepsy. The genesis of these cells may be critical to the histological findings in type II FCD. Recent work has shown enhanced activation of the mTOR cascade in both balloon cells and dysmorphic neurons, suggesting a common pathogenesis for these two neuropathological hallmarks. A direct comparative analysis of balloon cells and dysmorphic neurons might identify a molecular link between balloon cells and dysmorphic neurons. Here, we addressed whether PDK1-AKT-mTOR activation differentiates balloon cells from dysmorphic neurons. We used immunohistochemistry with antibodies against phosphorylated (p)-PDK1 (Ser241), p-AKT (Thr308), p-AKT (Ser473), p-mTOR (Ser2448), p-P70S6K (Thr229), and p-p70S6 kinase (Thr389) in balloon cells compared with dysmorphic neurons. Strong or moderate staining for components of the PDK1-AKT-mTOR signaling pathway was observed in both balloon cells and dysmorphic neurons. However, only a few pyramidal neurons displayed weak staining in control group (perilesional neocortex and histologically normal neocortex). Additionally, p-PDK1 (Ser241) and p-AKT (Thr308) staining in balloon cells were stronger than in dysmorphic neurons, whereas p-P70S6K (Thr229) and p-p70S6 kinase (Thr389) staining in balloon cells was weaker than in dysmorphic neurons. In balloon cells, p-AKT (Ser473) and p-mTOR (Ser2448) staining was comparable with the staining in dysmorphic neurons. Our data support the previously suggested pathogenic relationship between balloon cells and dysmorphic neurons concerning activation of the PDK1-AKT-mTOR, which may play important roles in the pathogenesis of type II FCD. Differential expression of some components of the PDK1-AKT-mTOR pathway between balloon cells and dysmorphic neurons may result from cell-specific gene expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Seasonal, tissue-specific regulation of Akt/protein kinase B and glycogen synthase in hibernators.

    PubMed

    Hoehn, Kyle L; Hudachek, Susan F; Summers, Scott A; Florant, Gregory L

    2004-03-01

    Yellow-bellied marmots (Marmota flaviventris) exhibit a circannual cycle of hyperphagia and nutrient storage in the summer followed by hibernation in the winter. This annual cycle of body mass gain and loss is primarily due to large-scale accumulation of lipid in the summer, which is then mobilized and oxidized for energy during winter. The rapid and predictable change in body mass makes these animals ideal for studies investigating the molecular basis for body weight regulation. In the study described herein, we monitored seasonal changes in the protein levels and activity of a central regulator of anabolic metabolism, the serine-threonine kinase Akt-protein kinase B (Akt/PKB), during the months accompanying maximal weight gain and entry into hibernation (June-November). Interestingly, under fasting conditions, Akt/PKB demonstrated a tissue-specific seasonal activation. Specifically, although Akt/PKB levels did not change, the activity of Akt/PKB (isoforms 1/alpha and 2/beta) in white adipose tissue (WAT) increased significantly in July. Moreover, glycogen synthase, which lies downstream of Akt/PKB on a linear pathway linking the enzyme to the stimulation of glycogen synthesis, demonstrated a similar pattern of seasonal activation. By contrast, Akt/PKB activity in skeletal muscle peaked much later (i.e., September). These data suggest the existence of a novel, tissue-specific mechanism regulating Akt/PKB activation during periods of marked anabolism.

  4. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines

    PubMed Central

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-01-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  5. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis.

    PubMed

    Liu, Yunxin; Liu, Xiang; Hua, Weiwei; Wei, Qingyan; Fang, Xianjun; Zhao, Zheng; Ge, Chun; Liu, Chao; Chen, Chen; Tao, Yifu; Zhu, Yubing

    2018-04-01

    Berberine has been reported to have protective effects in colitis treatment. However, the detailed mechanisms remain unclear. Herein, we demonstrated that berberine could protect against dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization. In the colitis mouse model, berberine ameliorated DSS-induced colon shortening and colon tissue injury. Moreover, berberine-treated mice showed significant reduction in the disease activity index (DAI), pro-inflammatory cytokines expression and macrophages infiltration compared with the DSS-treated mice. Notably, berberine significantly reduced the percentage of M1 macrophages. In vitro analysis also confirmed the inhibitory effects of berberine on macrophages M1 polarization in RAW267.4 cells. Further investigation showed that berberine promoted AKT1 expression in mRNA and protein level. Silence of AKT1 abolished the inhibitory effect of berberine on macrophages M1 polarization. The berberine-induced AKT1 expression promoted suppressers of cytokine signaling (SOCS1) activation, which inhibited nuclear factor-kappa B (NF-κB) phosphorylation. In addition, we also found that berberine activated AKT1/SOCS1 signaling pathway but inhibited p65 phosphorylation in macrophages in vivo. Therefore, we concluded that berberine played a regulatory role in macrophages M1 polarization in DSS-induced colitis via AKT1/SOCS1/NF-κB signaling pathway. This unexpected property of berberine may provide a potential explanation for its protective effects in colitis treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1

    PubMed Central

    Lu, Mingjian; Wan, Min; Leavens, Karla F.; Chu, Qingwei; Monks, Bobby R.; Fernandez, Sully; Ahima, Rexford S.; Ueki, Kohjiro; Kahn, C. Ronald; Birnbaum, Morris J.

    2012-01-01

    Considerable data support the idea that Foxo1 drives the liver transcriptional program during fasting and is inhibited by Akt after feeding. Mice with hepatic deletion of Akt1 and Akt2 were glucose intolerant, insulin resistant, and defective in the transcriptional response to feeding in liver. These defects were normalized upon concomitant liver–specific deletion of Foxo1. Surprisingly, in the absence of both Akt and Foxo1, mice adapted appropriately to both the fasted and fed state, and insulin suppressed hepatic glucose production normally. Gene expression analysis revealed that deletion of Akt in liver led to constitutive activation of Foxo1–dependent gene expression, but once again concomitant ablation of Foxo1 restored postprandial regulation, preventing its inhibition of the metabolic response to nutrient intake. These results are inconsistent with the canonical model of hepatic metabolism in which Akt is an obligate intermediate for insulin’s actions. Rather they demonstrate that a major role of hepatic Akt is to restrain Foxo1 activity, and in the absence of Foxo1, Akt is largely dispensable for hepatic metabolic regulation in vivo. PMID:22344295

  7. Protein Phosphatase 2A Isoforms Utilizing Aβ Scaffolds Regulate Differentiation through Control of Akt Protein*

    PubMed Central

    Hwang, Justin H.; Jiang, Tao; Kulkarni, Shreya; Faure, Nathalie; Schaffhausen, Brian S.

    2013-01-01

    Protein phosphatase 2A (PP2A) regulates almost all cell signaling pathways. It consists of a scaffolding A subunit to which a catalytic C subunit and one of many regulatory B subunits bind. Of the more than 80 PP2A isoforms, 10% use Aβ as a scaffold. This study demonstrates the isoform-specific function of the A scaffold subunits. Polyomaviruses have shown the importance of phosphotyrosine, PI3K, and p53 in transformation. Comparisons of polyoma and SV40 small T antigens implicate Aβ in the control of differentiation. Knockdown of Aβ enhanced differentiation. Akt signaling regulated differentiation; its activation or inhibition promoted or blocked it, respectively. Aβ bound Akt. Enhancement of PP2A Aβ/Akt interaction by polyoma small T antigen increased turnover of Akt Ser-473 phosphorylation. Conversely, knockdown of Aβ promoted Akt activity and reduced turnover of phosphate at Ser-473 of Akt. These data provide new insight into the regulation of Akt, a protein of extreme importance in cancer. Furthermore, our results suggest that the role for Aβ in differentiation and perhaps tumor suppression may lie partly in its ability to negatively regulate Akt. PMID:24052256

  8. Phospholipase D2 Mediates Survival Signaling through Direct Regulation of Akt in Glioblastoma Cells*♦

    PubMed Central

    Bruntz, Ronald C.; Taylor, Harry E.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    The lack of innovative drug targets for glioblastoma multiforme (GBM) limits patient survival to approximately 1 year following diagnosis. The pro-survival kinase Akt provides an ideal target for the treatment of GBM as Akt signaling is frequently activated in this cancer type. However, the central role of Akt in physiological processes limits its potential as a therapeutic target. In this report, we show that the lipid-metabolizing enzyme phospholipase D (PLD) is a novel regulator of Akt in GBM. Studies using a combination of small molecule PLD inhibitors and siRNA knockdowns establish phosphatidic acid, the product of the PLD reaction, as an essential component for the membrane recruitment and activation of Akt. Inhibition of PLD enzymatic activity and subsequent Akt activation decreases GBM cell viability by specifically inhibiting autophagic flux. We propose a mechanism whereby phosphorylation of beclin1 by Akt prevents binding of Rubicon (RUN domain cysteine-rich domain containing beclin1-interacting protein), an interaction known to inhibit autophagic flux. These findings provide a novel framework through which Akt inhibition can be achieved without directly targeting the kinase. PMID:24257753

  9. Losartan protects against cerebral ischemia/reperfusion-induced apoptosis through β-arrestin1-mediated phosphorylation of Akt.

    PubMed

    Chen, Lin; Ren, Zhiping; Wei, Xinbing; Wang, Shuaishuai; Wang, Yimeng; Cheng, Yanyan; Gao, Hua; Liu, Huiqing

    2017-11-15

    Losartan, an angiotensin (Ang) II type 1 receptor blocker (ARB), has been revealed to protect against cerebral ischemia/reperfusion (I/R) injury. However, the mechanism by which losartan protect brain ischemia injury is still obscure. In this study, we investigated whether losartan protected against cerebral I/R injury by reducing apoptosis and the possible signaling pathways. Wistar rats were pretreated for 14 days with 5mg/kg losartan, and then subjected to middle cerebral artery occlusion (MCAO) for 2h followed by reperfusion. Meanwhile, PC12 cells pretreated with losartan were exposed to oxygen-glucose deprivation-reoxygenation (OGD/R), an in vitro model of cerebral ischemia. Our results showed that administration of losartan significantly inhibited the apoptosis by decreasing the number of apoptotic cells, decreasing the protein level of cleaved caspase-3, cytochrom C and Bax, and increasing the level of Bcl-2 both in vivo and in vitro. Moreover, losartan treatment markedly enhanced the phosphorylation of Akt and blockade of PI3K activity by wortmannin dramatically inhibited Akt phosphorylation and attenuated the anti-apoptotic effect of losartan. Furthermore, pretreatment with losartan significantly increased the protein level of β-arrestin1 and silence of β-arrestin1 by siRNA partly attenuated losartan-induced anti-apoptotic effect and the phosphorylation of Akt. These results suggested that β-arrestin1 modulated the activation of Akt in losartan-induced anti-apoptotic effect in cerebral I/R. Our data would provide a new molecular basis for further understanding of protective effect of losartan in cerebral I/R injury and may provide benefits of using losartan in the treatment of cerebrovascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    PubMed

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  11. Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth.

    PubMed

    Gururajan, Murali; Dasu, Trivikram; Shahidain, Seif; Jennings, C Darrell; Robertson, Darrell A; Rangnekar, Vivek M; Bondada, Subbarao

    2007-01-01

    Curcumin (diferuloylmethane), a component of dietary spice turmeric (Curcuma longa), has been shown in recent studies to have therapeutic potential in the treatment of cancer, diabetes, arthritis, and osteoporosis. We investigated the ability of curcumin to modulate the growth of B lymphomas. Curcumin inhibited the growth of both murine and human B lymphoma in vitro and murine B lymphoma in vivo. We also demonstrate that curcumin-mediated growth inhibition of B lymphoma is through inhibition of the survival kinase Akt and its key target Bad. However, in vitro kinase assays show that Akt is not a direct target of curcumin. We identified a novel target for curcumin in B lymphoma viz spleen tyrosine kinase (Syk). Syk is constitutively activated in primary tumors and B lymphoma cell lines and curcumin down-modulates Syk activity accompanied by down-regulation of Akt activation. Moreover, we show that overexpression of Akt, a target of Syk, or Bcl-x(L), a target of Akt can overcome curcumin-induced apoptosis of B lymphoma cells. These observations suggest a novel growth promoting role for Syk in lymphoma cells.

  12. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer.

    PubMed

    Xing, Mingzhao

    2010-07-01

    Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years. This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC. Genetic alterations

  13. Identification of a RAC/AKT-like gene in Leishmania parasites as a putative therapeutic target in leishmaniasis.

    PubMed

    Varela-M, Rubén E; Ochoa, Rodrigo; Muskus, Carlos E; Muro, Antonio; Mollinedo, Faustino

    2017-10-10

    Leishmaniasis is one of the world's most neglected diseases caused by at least 20 different species of the protozoan parasite Leishmania. Although new drugs have become recently available, current therapy for leishmaniasis is still unsatisfactory. A subgroup of serine/threonine protein kinases named as related to A and C protein kinases (RAC), or protein kinase B (PKB)/AKT, has been identified in several organisms including Trypanosoma cruzi parasites. PKB/AKT plays a critical role in mammalian cell signaling promoting cell survival and is a major drug target in cancer therapy. However, the role of protozoan parasitic PKB/AKT remains to be elucidated. We have found that anti-human AKT antibodies recognized a protein of about 57 kDa in Leishmania spp. parasites. Anti-human phospho-AKT(Thr308) antibodies identified a protein in extracts from Leishmania spp. that was upregulated following parasite exposure to stressful conditions, such as nutrient deprivation or heat shock. Incubation of AKT inhibitor X with Leishmania spp. promastigotes under stressful conditions or with Leishmania-infected macrophages led to parasite cell death. We have identified and cloned a novel gene from Leishmania donovani named Ld-RAC/AKT-like gene, encoding a 510-amino acid protein of approximately 57.6 kDa that shows a 26.5% identity with mammalian AKT1. Ld-RAC/AKT-like protein contains major mammalian PKB/AKT hallmarks, including the typical pleckstrin, protein kinase and AGC kinase domains. Unlike mammalian AKT that contains key phosphorylation sites at Thr308 and Ser473 in the activation loop and hydrophobic motif, respectively, Ld-RAC/AKT-like protein has a Thr residue in both motifs. By domain sequence comparison, we classified AKT proteins from different origins in four major subcategories that included different parasites. Our data suggest that Ld-RAC/AKT-like protein represents a Leishmania orthologue of mammalian AKT involved in parasite stress response and survival, and

  14. Testosterone regulation of Akt/mTORC1/FoxO3a Signaling in Skeletal Muscle

    PubMed Central

    White, James P.; Gao, Song; Puppa, Melissa J.; Sato, Shuichi; Welle, Stephen L.; Carson, James A.

    2012-01-01

    Low endogenous testosterone production, known as hypogonadism is commonly associated with conditions inducing muscle wasting. Akt signaling can control skeletal muscle mass through mTOR regulation of protein synthesis and FoxO regulation of protein degradation, and this pathway has been previously identified as a target of androgen signaling. However, the testosterone sensitivity of Akt/mTOR signaling requires further understanding in order to grasp the significance of varied testosterone levels seen with wasting disease on muscle protein turnover regulation. Therefore, the purpose of this study is to determine the effect of androgen availability on muscle Akt/mTORC1/FoxO3a regulation in skeletal muscle and cultured C2C12 myotubes. C57BL/6 mice were either castrated for 42 days or castrated and treated with the nandrolone decanoate (ND) (6 mg/kg bw/wk). Testosterone loss (TL) significantly decreased volitional grip strength, body weight, and gastrocnemius (GAS) muscle mass, and ND reversed these changes. Related to muscle mass regulation, TL decreased muscle IGF-1 mRNA, the rate of myofibrillar protein synthesis, Akt phosphorylation, and the phosphorylation of Akt targets, GSK3β, PRAS40 and FoxO3a. TL induced expression of FoxO transcriptional targets, MuRF1, atrogin1 and REDD1. Muscle AMPK and raptor phosphorylation, mTOR inhibitors, were not altered by low testosterone. ND restored IGF-1 expression and Akt/mTORC1 signaling while repressing expression of FoxO transcriptional targets. Testosterone (T) sensitivity of Akt/mTORC1 signaling was examined in C2C12 myotubes, and mTOR phosphorylation was induced independent of Akt activation at low T concentrations, while a higher T concentration was required to activate Akt signaling. Interestingly, low concentration T was sufficient to amplify myotube mTOR and Akt signaling after 24h of T withdrawal, demonstrating the potential in cultured myotubes for a T initiated positive feedback mechanism to amplify Akt

  15. Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis

    PubMed Central

    Ork, Britini; Hart, Brit J.; Holbrook, Michael R.; Frieman, Matthew B.; Traynor, Dawn; Johnson, Reed F.; Dyall, Julie; Olinger, Gene G.; Hensley, Lisa E.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies. PMID:25487801

  16. Activation of DNA damage repair pathways by murine polyomavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling.more » ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. -- Highlights: •Murine polyomavirus activates and recruits DNA damage repair (DDR) proteins to replication centers. •Large T-antigen mediates recruitment of DDR proteins to viral replication centers. •Inhibition or knockout of CHK1, CHK2, DNA-PK or H2AX do not affect viral titers. •Inhibition of ATR activity reduces viral titers, but not viral DNA accumulation.« less

  17. The AKT-mTOR signalling pathway in kidney cancer tissues

    NASA Astrophysics Data System (ADS)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Kolegova, E. S.

    2015-11-01

    An increased expression of phospho-AKT, m-TOR, glycogen regulator GSK-3-beta and transcription inhibitor 4E-BP1 was observed in kidney cancer tissues. Tumor size growth was associated with a high level of c-Raf and low content of phospho-m-TOR. Cancer metastasis development led to a decreased PTEN and phospho-AKT expression.

  18. Bone marrow mesenchymal stem cells promote head and neck cancer progression through Periostin-mediated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin.

    PubMed

    Liu, Chuanxia; Feng, Xiaoxia; Wang, Baixiang; Wang, Xinhua; Wang, Chaowei; Yu, Mengfei; Cao, Guifen; Wang, Huiming

    2018-03-01

    Bone marrow mesenchymal stem cells (BMMSC) have been shown to be recruited to the tumor microenvironment and exert a tumor-promoting effect in a variety of cancers. However, the molecular mechanisms related to the tumor-promoting effect of BMMSC on head and neck cancer (HNC) are not clear. In this study, we investigated Periostin (POSTN) and its roles in the tumor-promoting effect of BMMSC on HNC. In vitro analysis of HNC cells cultured in BMMSC-conditioned media (MSC-CM) showed that MSC-CM significantly promoted cancer progression by enhancing cell proliferation, migration, epithelial-mesenchymal transformation (EMT), and altering expression of cell cycle regulatory proteins and inhibition of apoptosis. Moreover, MSC-CM promoted the expression of POSTN and POSTN promoted HNC progression through the activation of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. In a murine model of HNC, we found that BMMSC promoted tumor growth, invasion, metastasis and enhanced the expression of POSTN and EMT in tumor tissues. Clinical sample analysis further confirmed that the expression of POSTN and N-cadherin were correlated with pathological grade and lymph node metastasis of HNC. In conclusion, this study indicated that BMMSC promoted proliferation, invasion, survival, tumorigenicity and migration of head and neck cancer through POSTN-mediated PI3K/Akt/mTOR activation. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. MK-2206, an AKT Inhibitor, Promotes Caspase-Independent Cell Death and Inhibits Leiomyoma Growth

    PubMed Central

    Sefton, Elizabeth C.; Qiang, Wenan; Serna, Vanida; Kurita, Takeshi; Wei, Jian-Jun; Chakravarti, Debabrata

    2013-01-01

    Uterine leiomyomas (ULs), benign tumors of the myometrium, are the number one indication for hysterectomies in the United States due to a lack of an effective alternative therapy. ULs show activation of the pro-survival AKT pathway compared with normal myometrium; however, substantial data directly linking AKT to UL cell survival are lacking. We hypothesized that AKT promotes UL cell survival and that it is a viable target for inhibiting UL growth. We used the investigational AKT inhibitor MK-2206, currently in phase II trials, on cultured primary human UL and myometrial cells, immortalized leiomyoma cells, and in leiomyoma grafts grown under the kidney capsule in mice. MK-2206 inhibited AKT and PRAS40 phosphorylation but did not regulate serum- and glucocorticoid-induced kinase and ERK1/2, demonstrating its specificity for AKT. MK-2206 reduced UL cell viability and decreased UL tumor volumes. UL cells exhibited disruption of mitochondrial structures and underwent cell death that was independent of caspases. Additionally, mammalian target of rapamycin and p70S6K phosphorylation were reduced, indicating that mammalian target of rapamycin complex 1 signaling was compromised by AKT inhibition in UL cells. MK-2206 also induced autophagy in UL cells. Pretreatment of primary UL cells with 3-methyladenine enhanced MK-2206-mediated UL cell death, whereas knockdown of ATG5 and/or ATG7 did not significantly influence UL cell viability in the presence of MK-2206. Our data provide molecular evidence for the involvement of AKT in UL cell survival and suggest that AKT inhibition by MK-2206 may be a viable option to consider for the treatment of ULs. PMID:24002033

  20. Akt phosphorylates the TR3 orphan receptor and blocks its targeting to the mitochondria.

    PubMed

    Chen, Hang-Zi; Zhao, Bi-Xing; Zhao, Wen-Xiu; Li, Li; Zhang, Bing; Wu, Qiao

    2008-11-01

    Acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) phosphorylates and regulates the function of many cellular proteins involved in processes such as metabolism, apoptosis and proliferation. However, the precise mechanisms by which Akt promotes cell survival and inhibits apoptosis have been characterized in part only. TR3, an orphan receptor, functions as a transcription factor that can both positively or negatively regulate gene expression. We have reported previously that the translocation of TR3 from the nucleus to the mitochondria can elicit a proapoptotic effect in gastric cancer cells. In our present study, we demonstrate that Akt phosphorylates cytoplasmic TR3 through its physical interaction with the N-terminus of TR3. When coexpressed with Akt, TR3 mitochondrial targeting was blocked and this protein adopted a diffuse expression pattern in the cytoplasm. Moreover, Akt displayed an ability to disrupt the interaction of TR3 with Bcl-2, which is thought to be a critical requirement for mitochondrial TR3 to elicit apoptosis. Consistently, insulin was also found to induce the phosphorylation of TR3 and abolish 12-O-tetradecanoylphorbol-13-acetate-induced mitochondrial localization, which was dependent upon the activation of the phophatidylinositol-3-OH-kinase-Akt signaling pathway. Taken together, our current data demonstrate a unique role for Akt in inhibiting TR3 functions that are not related to transcriptional activity but that correlate with the regulation of its mitochondrial association. This may represent a novel signal pathway by which Akt exerts its antiapoptotic effects in gastric cancer cells, i.e. by regulating the phosphorylation and redistribution of orphan receptors.

  1. The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia

    PubMed Central

    Palomero, Teresa; Dominguez, Maria; Ferrando, Adolfo A.

    2008-01-01

    Activating mutations in NOTCH1 are the most prominent genetic abnormality in T-cell acute Lymphoblastic Leukemia (T-ALL) and inhibition of NOTCH1 signaling with γ-secretase inhibitors (GSIs) has been proposed as targeted therapy in this disease. However, most T-ALL cell lines with mutations in NOTCH1 fail to respond to GSI therapy. Using gene expression profiling and mutation analysis we showed that mutational loss of PTEN is a common event in T-ALL and is associated with resistance to NOTCH inhibition. Furthermore, our studies revealed that NOTCH1 induces upregulation of the PI3K-AKT pathway via HES1, which negatively controls the expression of PTEN. This regulatory circuitry is evolutionary conserved from Drosophila to humans as demonstrated by the interaction of overexpression of Delta and Akt in a model of Notch-induced transformation in the fly eye. Loss of PTEN and constitutive activation of AKT in T-ALL induce increased glucose metabolism and bypass the requirement of NOTCH1 signaling to sustain cell growth. Importantly, PTEN-null/GSI resistant T-ALL cells switch their oncogene addiction from NOTCH1 to AKT and are highly sensitive to AKT inhibitors. These results should facilitate the development of molecular therapies targeting NOTCH1 and AKT for the treatment of T-ALL. PMID:18414037

  2. Xenon-delayed postconditioning attenuates spinal cord ischemia/reperfusion injury through activation AKT and ERK signaling pathways in rats.

    PubMed

    Liu, Shiyao; Yang, Yanwei; Jin, Mu; Hou, Siyu; Dong, Xiuhua; Lu, Jiakai; Cheng, Weiping

    2016-09-15

    Previous studies have shown that xenon-delayed postconditioning for up to 2h after reperfusion provides protection against spinal cord ischemia/reperfusion (I/R) injury in rats. This study was designed to determine the roles of phosphatidylinositol 3-kinase (PI3K)-Akt and extracellular signal-regulated kinase (ERK) in this neuroprotection. The rats were randomly assigned to the following nine groups (n=16∗9): 1) I/R+N2 group, 2) I/R+Xe group, 3) I/R+PD98059+N2 group (ERK blocking agent), 4) I/R+wortmannin+N2 group (PI3K-Akt blocking agent), 5) I/R+PD98059+Xe group, 6) I/R+wortmannin+Xe group, 7) I/R+DMSO+Xe group (dimethyl sulfoxide, vehicle control), 8) I/R+DMSO+N2 group, and 9) sham group (no spinal cord ischemia and no xenon). Spinal cord ischemia was induced for 25min in male Sprague-Dawley rats. Neurological function was assessed using the Basso, Beattie, and Bresnahan (BBB) open-field locomotor scale at 6, 12, 24 and 48h after reperfusion. Histological examination of the lumbar spinal cord was performed using Nissl staining and TUNEL staining at 4 (n=8) and 48 (n=8)h after reperfusion. Western blotting was performed to evaluate p-Akt and p-ERK expression in the spinal cord at 4 (n=8) and 48 (n=8) h after reperfusion. Compared with the sham group, all rats in the I/R groups had lower BBB scores, fewer normal motor neurons, more apoptotic neurons and lower p-Akt and p-ERK levels at each time point (P<0.05). Compared with the I/R group, rats in the I/R+Xe group had higher neurological scores, more normal motor neurons, fewer apoptotic neurons and significantly higher levels of p-Akt and p-ERK at each time point (P<0.05). Compared with the I/R+Xe group, the I/R+PD98059+Xe and I/R+wortmannin+Xe groups showed worse neurological outcomes and less p-Akt and p-ERK at each time point (P<0.05). These results suggest that xenon-delayed postconditioning improves neurological outcomes to spinal cord I/R injury in rats through the activation of the AKT and ERK signaling

  3. Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, Marc; Dormond-Meuwly, Anne; Pythoud, Catherine

    2013-08-16

    Highlights: •PI3K inhibitors inhibit AKT only transiently. •Re-activation of AKT limits the anti-cancer effect of PI3K inhibitors. •The results suggest to combine PI3K and AKT inhibitors in cancer therapy. -- Abstract: Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed bymore » the reactivation of AKT signaling after 48 h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.« less

  4. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    PubMed Central

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  5. A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy.

    PubMed

    Liu, Changhong; Zhang, Yan; She, Xiaoling; Fan, Li; Li, Peiyao; Feng, Jianbo; Fu, Haijuan; Liu, Qing; Liu, Qiang; Zhao, Chunhua; Sun, Yingnan; Wu, Minghua

    2018-06-04

    Despite the overwhelming number of investigations on AKT, little is known about lncRNA on AKT regulation, especially in GBM cells. RNA-binding protein immunoprecipitation assay (RIP) and RNA pulldown were used to confirm the binding of LINC00470 and fused in sarcoma (FUS). Confocal imaging, co-immunoprecipitation (Co-IP) and GST pulldown assays were used to detect the interaction between FUS and AKT. EdU assay, CCK-8 assay, and intracranial xenograft assays were performed to demonstrate the effect of LINC00470 on the malignant phenotype of GBM cells. RT-qPCR and Western blotting were performed to test the effect of LINC00470 on AKT and pAKT. In this study, we demonstrated that LINC00470 was a positive regulator for AKT activation in GBM. LINC00470 bound to FUS and AKT to form a ternary complex, anchoring FUS in the cytoplasm to increase AKT activity. Higher pAKT activated by LINC00470 inhibited ubiquitination of HK1, which affected glycolysis, and inhibited cell autophagy. Furthermore, higher LINC00470 expression was associated with GBM tumorigenesis and poor patient prognosis. Our findings revealed a noncanonical AKT activation signaling pathway, i.e., LINC00470 directly interacts with FUS, serving as an AKT activator to promote GBM progression. LINC00470 has an important referential significance to evaluate the prognosis of patients.

  6. Agmatine promotes the migration of murine brain endothelial cells via multiple signaling pathways.

    PubMed

    Jung, Hyun-Joo; Jeon, Yong-Heui; Bokara, Kiran Kumar; Koo, Bon-Nyeo; Lee, Won Taek; Park, Kyung Ah; Lee, Jong-Eun

    2013-01-17

    The combination of adhesion and migration of endothelial cells (ECs) is an integral process for evolution, organization, repair and vessel formation in living organisms. Agmatine, a polycationic amine existing in brain, has been investigated to exert neuroprotective effects. Up to date, there are no studies reporting that agmatine modulates murine brain endothelial (bEnd.3) cells migration. In the present study, we intend to investigate the role of agmatine in bEnd.3 cells migration and the molecular mechanism mediating this action. The effect of agmatine on the bEnd.3 cells migration was examined by migration assay, and the mechanism involved for this effect was investigated by western blot analysis and NO contents measurements. Agmatine treatment (50, 100 and 200 μM) significantly accelerated bEnd.3 cells migration in a concentration-dependent manner. Western blotting revealed that agmatine treatment significantly induced vascular endothelial growth factor (VEGF), VEGF receptor 2 (Flk-1/KDR or VEGFR2), phosphatidylinositol 3-kinase (PI3K), Akt/protein kinase B (also known as PKB, PI3K downstream effector protein), endothelial nitric oxide synthase (eNOS) nitric oxide (NO; product by eNOS) and intercellular adhesion molecule 1 (ICAM-1) expressions during bEnd.3 cells migration. The expression of ICAM-1 and migration of bEnd.3 cells, induced by agmatine, were significantly attenuated by treatment of wortmannin, a specific PI3K inhibitor. Taken together, we provide the first evidence that activation of VEGF/VEGFR2 and the consequential PI3K/Akt/eNOS/NO/ICAM-1 signaling pathways are serial events, through which the treatment of agmatine could lead to bEnd.3 cells migration. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Elongation Factor 1 alpha interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility.

    PubMed

    Pecorari, Luisa; Marin, Oriano; Silvestri, Chiara; Candini, Olivia; Rossi, Elena; Guerzoni, Clara; Cattelani, Sara; Mariani, Samanta A; Corradini, Francesca; Ferrari-Amorotti, Giovanna; Cortesi, Laura; Bussolari, Rita; Raschellà, Giuseppe; Federico, Massimo R; Calabretta, Bruno

    2009-08-03

    Akt/PKB is a serine/threonine kinase that has attracted much attention because of its central role in regulating cell proliferation, survival, motility and angiogenesis. Activation of Akt in breast cancer portends aggressive tumour behaviour, resistance to hormone-, chemo-, and radiotherapy-induced apoptosis and it is correlated with decreased overall survival. Recent studies have identified novel tumor-specific substrates of Akt that may provide new diagnostic and prognostic markers and serve as therapeutic targets. This study was undertaken to identify pAkt-interacting proteins and to assess their biological roles in breast cancer cells. We confirmed that one of the pAkt interacting proteins is the Elongation Factor EF1alpha. EF1alpha contains a putative Akt phosphorylation site, but is not phosphorylated by pAkt1 or pAkt2, suggesting that it may function as a modulator of pAkt activity. Indeed, downregulation of EF1alpha expression by siRNAs led to markedly decreased expression of pAkt1 and to less extent of pAkt2 and was associated with reduced proliferation, survival and invasion of HCC1937 cells. Proliferation and survival was further reduced by combining EF1alpha siRNAs with specific pAkt inhibitors whereas EF1alpha downregulation slightly attenuated the decreased invasion induced by Akt inhibitors. We show here that EF1alpha is a pAkt-interacting protein which regulates pAkt levels. Since EF1alpha is often overexpressed in breast cancer, the consequences of EF1alpha increased levels for proliferation, survival and invasion will likely depend on the relative concentration of Akt1 and Akt2.

  8. Akt/PKB Controls the Activity-Dependent Bulk Endocytosis of Synaptic Vesicles

    PubMed Central

    Smillie, Karen J; Cousin, Michael A

    2012-01-01

    Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode during intense neuronal activity. The dephosphorylation of Ser774 on dynamin I is essential for triggering of ADBE, as is its subsequent rephosphorylation by glycogen synthase kinase 3 (GSK3). We show that in primary cultures of cerebellar granule neurons the protein kinase Akt phosphorylates GSK3 during intense neuronal activity, ensuring that GSK3 is inactive during intense stimulation to aid dynamin I dephosphorylation. Furthermore, when a constitutively active form of Akt was overexpressed in primary neuronal cultures, ADBE was inhibited with no effect on clathrin-mediated endocytosis. Thus Akt has two major regulatory roles (i) to ensure efficient dynamin I dephosphorylation via acute activity-dependent inhibition of GSK3 and (ii) to negatively regulate ADBE when activated in the longer term. This is the first demonstration of a role for Akt in SV recycling and suggests a key role for this protein kinase in modulating synaptic strength during elevated neuronal activity. PMID:22487004

  9. Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape

    PubMed Central

    Mattmann, Margrith E; Stoops, Sydney L; Lindsley, Craig W

    2014-01-01

    Introduction Akt plays a pivotal role in cell survival and proliferation through a number of downstream effectors; unregulated activation of the PI3K/PTEN/Akt pathway is a prominent feature of many human cancers. Akt is considered an attractive target for cancer therapy by the inhibition of Akt alone or in combination with standard cancer chemotherapeutics. Both preclinical animal studies and clinical trials in humans have validated Akt as an important target of cancer drug discovery. Area covered A historical perspective of Akt inhibitors, including PI analogs, ATP-competitive and allosteric Akt inhibitors, along with other inhibitory mechanisms are reviewed in this paper with a focus on issued patents, patent applications and a summary of clinical trial updates since the last review in 2007. Expert opinion A vast diversity of inhibitors of Akt, both small molecule and biologic, have been developed in the past 5 years, with over a dozen in various phases of clinical development, and several displaying efficacy in humans. While it is not yet clear which mechanism of Akt inhibition will be optimal in humans, or which Akt isoforms to inhibit, or whether a small molecule or biologic agent will be best, data to all of these points will be available in the near future. PMID:21635152

  10. Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity.

    PubMed

    Peres, Tanara V; Arantes, Leticia P; Miah, Mahfuzur R; Bornhorst, Julia; Schwerdtle, Tanja; Bowman, Aaron B; Leal, Rodrigo B; Aschner, Michael

    2018-06-07

    Excessive levels of the essential metal manganese (Mn) may cause a syndrome similar to Parkinson's disease. The model organism Caenorhabditis elegans mimics some of Mn effects in mammals, including dopaminergic neurodegeneration, oxidative stress, and increased levels of AKT. The evolutionarily conserved insulin/insulin-like growth factor-1 signaling pathway (IIS) modulates worm longevity, metabolism, and antioxidant responses by antagonizing the transcription factors DAF-16/FOXO and SKN-1/Nrf-2. AKT-1, AKT-2, and SGK-1 act upstream of these transcription factors. To study the role of these proteins in C. elegans response to Mn intoxication, wild-type N2 and loss-of-function mutants were exposed to Mn (2.5 to 100 mM) for 1 h at the L1 larval stage. Strains with loss-of-function in akt-1, akt-2, and sgk-1 had higher resistance to Mn compared to N2 in the survival test. All strains tested accumulated Mn similarly, as shown by ICP-MS. DAF-16 nuclear translocation was observed by fluorescence microscopy in WT and loss-of-function strains exposed to Mn. qRT-PCR data indicate increased expression of γ-glutamyl cysteine synthetase (GCS-1) antioxidant enzyme in akt-1 mutants. The expression of sod-3 (superoxide dismutase homologue) was increased in the akt-1 mutant worms, independent of Mn treatment. However, dopaminergic neurons degenerated even in the more resistant strains. Dopaminergic function was evaluated with the basal slowing response behavioral test and dopaminergic neuron integrity was evaluated using worms expressing green fluorescent protein (GFP) under the dopamine transporter (DAT-1) promoter. These results suggest that AKT-1/2 and SGK-1 play a role in C. elegans response to Mn intoxication. However, tissue-specific responses may occur in dopaminergic neurons, contributing to degeneration.

  11. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    PubMed

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Silencing of secretory clusterin sensitizes NSCLC cells to V-ATPase inhibitors by downregulating survivin.

    PubMed

    Kim, Young-Sun; Jin, Hyeon-Ok; Hong, Sung-Eun; Song, Jie-Young; Hwang, Chang-Sun; Park, In-Chul

    2018-01-08

    Secretory clusterin (sCLU) is a stress-associated protein that confers resistance to therapy when overexpressed. In this study, we observed that the V-ATPase inhibitors bafilomycin A1 and concanamycin A significantly stimulated sCLU protein expression. Knockdown of sCLU with siRNA sensitized non-small cell lung cancer (NSCLC) cells to bafilomycin A1, suggesting that sCLU expression renders cells resistant to V-ATPase inhibitors. The dual PI3K/AKT and mTOR inhibitor BEZ235 suppressed sCLU expression and enhanced cell sensitivity induced by bafilomycin A1. Notably, sCLU knockdown further decreased the expression of the survivin protein by bafilomycin A1, and the ectopic expression of survivin alleviated the cell sensitivity by bafilomycin A1 and sCLU depletion, suggesting that increased sensitivity to sCLU depletion in the cells with V-ATPase inhibitors is due, at least in part, to the down-regulation of survivin. Taken together, we demonstrated that the depletion of sCLU expression enhances the sensitivity of NSCLC cells to V-ATPase inhibitors by decreasing survivin expression. Inhibition of the PI3K/AKT/mTOR pathway enhances the sensitivity of NSCLC cells to V-ATPase inhibitors, leading to decreased sCLU and survivin expression. Thus, we suggest that a combination of PI3K/AKT/mTOR inhibitors with V-ATPase inhibitors might be an effective approach for NSCLC treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    PubMed Central

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  14. AKT1 Moderation of Cannabis-Induced Cognitive Alterations in Psychotic Disorder

    PubMed Central

    van Winkel, Ruud; van Beveren, Nico J M; Simons, Claudia; S Kahn, René S; Linszen, Don H; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; de Haan, Lieuwe; Krabbendam, Lydia; Myin-Germeys, Inez

    2011-01-01

    Genetic variation in AKT1 may be associated with sensitivity to the psychotomimetic effects of cannabis as well as with increased risk for psychotic disorder following cannabis use. Investigation of the effect of this interaction on relevant intermediate phenotypes for psychosis, such as cognition, may help to clarify the underlying mechanism. Thus, verbal memory (visually presented Word Learning Task), sustained attention (Continuous Performance Test, CPT), AKT1 rs2494732 genotype, and cannabis use were examined in a large cohort of patients with psychotic disorder. No evidence was found for AKT1 × cannabis interaction on verbal memory. Cannabis use preceding onset of psychotic disorder did interact significantly with AKT1 rs2494732 genotype to affect CPT reaction time (β=8.0, SE 3.9, p=0.037) and CPT accuracy (β=−1.2, SE 0.4, p=0.003). Cannabis-using patients with the a priori vulnerability C/C genotype were slower and less accurate on the CPT, whereas cannabis-using patients with the T/T genotype had similar or better performance than non-using patients with psychotic disorder. The interaction was also apparent in patients with psychotic disorder who had not used cannabis in the 12 months preceding assessment, but was absent in the unaffected siblings of these patients and in healthy controls. In conclusion, cannabis use before onset of psychosis may have long-lasting effects on measures of sustained attention, even in the absence of current use, contingent on AKT1 rs2494732 genotype. The results suggest that long-term changes in cognition may mediate the risk-increasing effect of the AKT1 × cannabis interaction on psychotic disorder. PMID:21775978

  15. AKT1 moderation of cannabis-induced cognitive alterations in psychotic disorder.

    PubMed

    van Winkel, Ruud; van Beveren, Nico J M; Simons, Claudia

    2011-11-01

    Genetic variation in AKT1 may be associated with sensitivity to the psychotomimetic effects of cannabis as well as with increased risk for psychotic disorder following cannabis use. Investigation of the effect of this interaction on relevant intermediate phenotypes for psychosis, such as cognition, may help to clarify the underlying mechanism. Thus, verbal memory (visually presented Word Learning Task), sustained attention (Continuous Performance Test, CPT), AKT1 rs2494732 genotype, and cannabis use were examined in a large cohort of patients with psychotic disorder. No evidence was found for AKT1 × cannabis interaction on verbal memory. Cannabis use preceding onset of psychotic disorder did interact significantly with AKT1 rs2494732 genotype to affect CPT reaction time (β=8.0, SE 3.9, p=0.037) and CPT accuracy (β=-1.2, SE 0.4, p=0.003). Cannabis-using patients with the a priori vulnerability C/C genotype were slower and less accurate on the CPT, whereas cannabis-using patients with the T/T genotype had similar or better performance than non-using patients with psychotic disorder. The interaction was also apparent in patients with psychotic disorder who had not used cannabis in the 12 months preceding assessment, but was absent in the unaffected siblings of these patients and in healthy controls. In conclusion, cannabis use before onset of psychosis may have long-lasting effects on measures of sustained attention, even in the absence of current use, contingent on AKT1 rs2494732 genotype. The results suggest that long-term changes in cognition may mediate the risk-increasing effect of the AKT1 × cannabis interaction on psychotic disorder.

  16. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice.

    PubMed

    Tehrani, A M; Hwang, S-K; Kim, T-H; Cho, C-S; Hua, J; Nah, W-S; Kwon, J-T; Kim, J-S; Chang, S-H; Yu, K-N; Park, S-J; Bhandari, D R; Lee, K-H; An, G-H; Beck, G R; Cho, M-H

    2007-03-01

    Lung cancer has emerged as a leading cause of cancer death in the world; however, most of the current conventional therapies are not sufficiently effective in altering the progression of disease. Therefore, development of novel treatment approaches is needed. Although several genes and methods have been used for cancer gene therapy, a number of problems such as specificity, efficacy and toxicity reduce their application. This has led to re-emergence of aerosol gene delivery as a noninvasive method for lung cancer treatment. In this study, nano-sized glucosylated polyethyleneimine (GPEI) was used as a gene delivery carrier to investigate the effects of Akt wild type (WT) and kinase deficient (KD) on Akt-related signaling pathways and protein translation in the lungs of CMV- LucR-cMyc-IRES-LucF dual reporter mice. These mice are a powerful tool for the discrimination between cap-dependent/-independent protein translation. Aerosols containing self-assembled nano-sized GPEI/Akt WT or GPEI/Akt KD were delivered into the lungs of reporter mice through nose-only-inhalation-chamber with the aid of nebulizer. Aerosol delivery of Akt WT caused the increase of protein expression levels of Akt-related signals, whereas aerosol delivery of Akt KD did not. Furthermore, dual luciferase activity assay showed that aerosol delivery of Akt WT enhanced cap-dependent protein translation, whereas a reduction in cap-dependent protein translation by Akt KD was observed. Our results clearly showed that targeting Akt may be a good strategy for prevention as well as treatment of lung cancer. These studies suggest that our aerosol delivery is compatible for in vivo gene delivery which could be used as a noninvasive gene therapy in the future.

  17. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    PubMed

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  18. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1.

    PubMed

    Corum, Daniel G; Tsichlis, Philip N; Muise-Helmericks, Robin C

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.

  19. Crystal Structure of Human AKT1 with an Allosteric Inhibitor Reveals a New Mode of Kinase Inhibition

    PubMed Central

    Wu, Wen-I; Voegtli, Walter C.; Sturgis, Hillary L.; Dizon, Faith P.; Vigers, Guy P. A.; Brandhuber, Barbara J.

    2010-01-01

    AKT1 (NP_005154.2) is a member of the serine/threonine AGC protein kinase family involved in cellular metabolism, growth, proliferation and survival. The three human AKT isozymes are highly homologous multi-domain proteins with both overlapping and distinct cellular functions. Dysregulation of the AKT pathway has been identified in multiple human cancers. Several clinical trials are in progress to test the efficacy of AKT pathway inhibitors in treating cancer. Recently, a series of AKT isozyme-selective allosteric inhibitors have been reported. They require the presence of both the pleckstrin-homology (PH) and kinase domains of AKT, but their binding mode has not yet been elucidated. We present here a 2.7 Å resolution co-crystal structure of human AKT1 containing both the PH and kinase domains with a selective allosteric inhibitor bound in the interface. The structure reveals the interactions between the PH and kinase domains, as well as the critical amino residues that mediate binding of the inhibitor to AKT1. Our work also reveals an intricate balance in the enzymatic regulation of AKT, where the PH domain appears to lock the kinase in an inactive conformation and the kinase domain disrupts the phospholipid binding site of the PH domain. This information advances our knowledge in AKT1 structure and regulation, thereby providing a structural foundation for interpreting the effects of different classes of AKT inhibitors and designing selective ones. PMID:20886116

  20. Methylglyoxal Mediates Adipocyte Proliferation by Increasing Phosphorylation of Akt1

    PubMed Central

    Jia, Xuming; Chang, Tuanjie; Wilson, Thomas W.; Wu, Lingyun

    2012-01-01

    Methylglyoxal (MG) is a highly reactive metabolite physiologically presented in all biological systems. The effects of MG on diabetes and hypertension have been long recognized. In the present study, we investigated the potential role of MG in obesity, one of the most important factors to cause metabolic syndrome. An increased MG accumulation was observed in the adipose tissue of obese Zucker rats. Cell proliferation assay showed that 5–20 µM of MG stimulated the proliferation of 3T3-L1 cells. Further study suggested that accumulated-MG stimulated the phosphorylation of Akt1 and its targets including p21 and p27. The activated Akt1 then increased the activity of CDK2 and accelerated the cell cycle progression of 3T3-L1 cells. The effects of MG were efficiently reversed by advanced glycation end product (AGE) breaker alagebrium and Akt inhibitor SH-6. In summary, our study revealed a previously unrecognized effect of MG in stimulating adipogenesis by up-regulation of Akt signaling pathway and this mechanism might offer a new approach to explain the development of obesity. PMID:22606274

  1. Multiple components in restriction enzyme digests of mammalian (insectivore), avian and reptilian genomic DNA hybridize with murine immunoglobulin VH probes.

    PubMed

    Litman, G W; Berger, L; Jahn, C L

    1982-06-11

    High molecular weight genomic DNAs isolated from an insectivore, Tupaia, and a representative reptilian, Caiman, and avian, Gallus, were digested with restriction endonucleases transferred to nitrocellulose and hybridized with nick-translated probes of murine VH genes. The derivations of the probes designated S107V (1) and mu 107V (2,3) have been described previously. Under conditions of reduced stringency, multiple hybridizing components were observed with Tupaia and Caiman; only mu mu 107V exhibited significant hybridization with the separated fragments of Gallus DNA. The nick-translated S107V probe was digested with Fnu4H1 and subinserts corresponding to the 5' and 3' regions both detected multiple hybridizing components in Tupaia and Caiman DNA. A 5' probe lacking the leader sequence identified the same components as the intact 5' probe, suggesting that VH coding regions distant as the reptilians may possess multiple genetic components which exhibit significant homology with murine immunoglobulin in VH regions.

  2. Multiple components in restriction enzyme digests of mammalian (insectivore), avian and reptilian genomic DNA hybridize with murine immunoglobulin VH probes.

    PubMed Central

    Litman, G W; Berger, L; Jahn, C L

    1982-01-01

    High molecular weight genomic DNAs isolated from an insectivore, Tupaia, and a representative reptilian, Caiman, and avian, Gallus, were digested with restriction endonucleases transferred to nitrocellulose and hybridized with nick-translated probes of murine VH genes. The derivations of the probes designated S107V (1) and mu 107V (2,3) have been described previously. Under conditions of reduced stringency, multiple hybridizing components were observed with Tupaia and Caiman; only mu mu 107V exhibited significant hybridization with the separated fragments of Gallus DNA. The nick-translated S107V probe was digested with Fnu4H1 and subinserts corresponding to the 5' and 3' regions both detected multiple hybridizing components in Tupaia and Caiman DNA. A 5' probe lacking the leader sequence identified the same components as the intact 5' probe, suggesting that VH coding regions distant as the reptilians may possess multiple genetic components which exhibit significant homology with murine immunoglobulin in VH regions. Images PMID:6285298

  3. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance

    PubMed Central

    Ahmad, Izhar; Mian, Afaq; Maathuis, Frans J. M.

    2016-01-01

    Potassium (K+) is the most important cationic nutrient for all living organisms and has roles in most aspects of plant physiology. To assess the impact of one of the main K+ uptake components, the K+ inward rectifying channel AKT1, we characterized both loss of function and overexpression of OsAKT1 in rice. In many conditions, AKT1 expression correlated with K+ uptake and tissue K+ levels. No salinity-related growth phenotype was observed for either loss or gain of function mutants. However, a correlation between AKT1 expression and root Na+ when the external Na/K ratio was high suggests that there may be a role for AKT1 in Na+ uptake in such conditions. In contrast to findings with Arabidopsis thaliana, we did not detect any change in growth of AKT1 loss of function mutants in the presence of NH4 +. Nevertheless, NH4 +-dependent inhibition was detected during K+ uptake assays in loss of function and wild type plants, depending on pre-growth conditions. The most prominent result of OsAKT1 overexpression was a reduction in sensitivity to osmotic/drought stress in transgenic plants: the data suggest that AKT1 overexpression improved rice osmotic and drought stress tolerance by increasing tissue levels of K+, especially in the root. PMID:26969743

  4. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1

    PubMed Central

    Corum, Daniel G.; Tsichlis, Philip N.; Muise-Helmericks, Robin C.

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (∼5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ∼1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.—Corum, D. G., Tsichlis, P. N., Muise-Helmericks, R. C. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1. PMID:24081905

  5. Mangiferin prevents the growth of gastric carcinoma by blocking the PI3K-Akt signalling pathway.

    PubMed

    Du, Min; Wen, Gang; Jin, Juan; Chen, Yuanguang; Cao, Jun; Xu, Aman

    2017-12-05

    The aim of the present study was to investigate the effects of mangiferin on gastric carcinoma cells and to determine the possible mechanisms underlying such effects. The MTT assay was performed to evaluate the antiproliferative effect of mangiferin. Following treatment, apoptosis rates of SGC-7901 were established by flow cytometry and laser confocal microscopy, and western blot analysis was used to detect the expression of apoptosis-related proteins. The MTT assay showed that mangiferin inhibited the proliferation of SGC-7901 and BCG-823 cells in a dose-dependent and time-dependent manner. After SGC-7901 cells were exposed to mangiferin for 24, 48 and 72 h, the half-maximal inhibitory concentration values were 16.00, 8.63 and 4.79 µmol/l, respectively. SGC-7901 cell apoptosis induced by mangiferin was observed by Annexin V/PI doubling staining and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive staining. We found a significant decrease in Bcl-2, Bcl-xL and Mcl-1 expression and a significant increase in Bax, Bad and cleaved caspase-3 and caspase-9 expression in SGC-7901 cells by mangiferin treatment. Moreover, mangiferin significantly decreased the levels of p-PI3K, p-Akt and p-mTOR, but had no effects on those of PI3K, Akt and mTOR in epidermal growth factor-treated SGC-7901 cells. Interestingly, the proapoptotic effect of mangiferin on SGC-7901 cells was partially blocked by the Akt activator SC79, whereas LY294002 significantly increased mangiferin-induced apoptosis and growth inhibition. Taken together, our findings indicate that mangiferin effectively inhibits cell growth and induces apoptosis of gastric cancer cells through inhibiting the PI3K/Akt pathways with relative safety, and may be used as a novel chemotherapeutic agent against gastric cancer.

  6. Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition

    PubMed Central

    Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.

    2009-01-01

    Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038

  7. A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice.

    PubMed

    de Ridder, Gustaaf G; Ray, Rupa; Pizzo, Salvatore V

    2012-06-01

    The HSP70 family member GRP78 is a selective tumor marker upregulated on the surface of many tumor cell types, including melanoma, where it acts as a growth factor receptor-like protein. Receptor-recognized forms of the proteinase inhibitor α2-macroglobulin (α2M*) are the best-characterized ligands for GRP78, but in melanoma and other cancer patients, autoantibodies arise against the NH2-terminal domain of GRP78 that react with tumor cell-surface GRP78. This causes the activation of signaling cascades that are proproliferative and antiapoptotic. Antibodies directed against the COOH-terminal domain of GRP78, however, upregulate p53-mediated proapoptotic signaling, leading to cell death. Here, we describe the binding characteristics, cell signaling properties, and downstream cellular effects of three novel murine monoclonal antibodies. The NH2-terminal domain-reactive antibody, N88, mimics α2M* as a ligand and drives PI 3-kinase-dependent activation of Akt and the subsequent stimulation of cellular proliferation in vitro. The COOH-terminal domain-reactive antibody, C38, acts as an antagonist of both α2M* and N88, whereas another, C107, directly induces apoptosis in vitro. In a murine B16F1 melanoma flank tumor model, we demonstrate the acceleration of tumor growth by treatment with N88, whereas C107 significantly slowed tumor growth whether administered before (P<0.005) or after (P<0.05) tumor implantation.

  8. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  9. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia

    PubMed Central

    Zuurbier, Linda; Petricoin, Emanuel F.; Vuerhard, Maartje J.; Calvert, Valerie; Kooi, Clarissa; Buijs-Gladdines, Jessica G.C.A.M.; Smits, Willem K.; Sonneveld, Edwin; Veerman, Anjo J.P.; Kamps, Willem A.; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2012-01-01

    Background PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. Design and Methods The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. Results PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKT mutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1-activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). Conclusions PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors. PMID:22491738

  10. Osteoprotegerin Promotes Cementoblastic Activity of Murine Cementoblast Cell Line in vitro.

    PubMed

    Zhang, Ying Ying; Zhao, Hua Xiang; Chen, Zhi Bin; Lin, Jiu Xiang; Liu, Yan

    2016-06-01

    To investigate the effect of osteoprotegerin (OPG) on the cementoblastic activity of a clonal population of immortalised murine cementoblasts (OCCM-30) in vitro. OCCM-30 cells were transiently transfected with the mouse OPG using the Avalanche transfection reagent. The ectopic expression of OPG was confirmed by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. The cell counting Kit-8 assay was used to investigate the effect of OPG on cell proliferation. The expression levels of cementoblastic-related mRNA and protein in the transfected OCCM-30 cells were detected using real-time PCR, Western blotting and immunohistochemical staining. Satisfactory transfection efficiency was observed 48 h after transfection. The results of the cell proliferation assay indicated that the expansion rate of the OPG transfection group was greater than that of the control group at both 72 h and 96 h. The mRNA levels of osterix (Osx), protein kinase B (Akt1), cementum attachment protein (CAP) and osteopontin (Opn) were significantly upregulated (P < 0.05) in the OPG group. Protein levels of OPN, bone sialoprotein II (BSP II), osteocalcin (OC) and CAP, which are responsible for osteogenetic and cementoblastic activity, were significantly increased in the OPG-overexpressing group. Overexpression of OPG in OCCM-30 cells promotes cementoblastic activity.

  11. Brain region differences in regulation of Akt and GSK3 by chronic stimulant administration in mice.

    PubMed

    Mines, Marjelo A; Jope, Richard S

    2012-07-01

    Acute amphetamine administration activates glycogen synthase kinase-3 (GSK3) by reducing its inhibitory serine-phosphorylation in mouse striatum and cerebral cortex. This results from Akt inactivation and is required for certain behavioral effects of amphetamine, such as increased locomotor activity. Here we tested if regulation of Akt and GSK3 was similarly affected by longer-term administration of amphetamine, as well as of methylphenidate, since each of these is administered chronically in patients with attention deficit hyperactivity disorder (ADHD). Akt is activated by post-translational phosphorylation on Thr308, and modulated by Ser473 phosphorylation, whereas phosphorylation on Ser21/9 inhibits the two GSK3 isoforms, GSK3α and GSK3β. After eight days of amphetamine or methylphenidate treatment, striatal Akt and GSK3 were dephosphorylated similar to reported changes after acute amphetamine treatment. Oppositely, in the cerebral cortex and hippocampus Akt and GSK3 phosphorylation increased after eight days of amphetamine or methylphenidate treatment. These opposite brain region changes in Akt and GSK3 phosphorylation matched opposite changes in the association of Akt with β-arrestin and GSK3, which after eight days of amphetamine treatment were increased in the striatum and decreased in the cerebral cortex. Thus, whereas the acute dephosphorylating effect of stimulants on Akt and GSK3 in the striatum was maintained, the response switched in the cerebral cortex after eight days of amphetamine or methylphenidate treatment to cause increased phosphorylation of Akt and GSK3. These results demonstrate that prolonged administration of stimulants causes brain region-selective differences in the regulation of Akt and GSK3. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Akt regulates the subcellular localization of the Rab27a-binding protein JFC1 by phosphorylation.

    PubMed

    Johnson, Jennifer L; Pacquelet, Sandrine; Lane, William S; Eam, Boreth; Catz, Sergio D

    2005-08-01

    Here, we show that the Rab27a-binding protein JFC1/Slp1 (synaptotagmin-like protein) is regulated by Akt-mediated phosphorylation. Using the phosphatase and tensin homolog-null LNCaP cells and the phosphatidylinositol 3-kinase inhibitor LY294002, we show that the phosphorylation of endogenous JFC1 is dependent on the phosphatidylinositol 3-kinase/Akt pathway. JFC1 was phosphorylated in cells expressing a constitutively active Akt, confirming that it is an Akt substrate in vivo. Direct phosphorylation of JFC1 by Akt was confirmed in vitro. Using microcapillary high-performance liquid chromatography tandem mass spectrometry, we identified five Akt-phosphorylation sites in JFC1. By mutagenesis analysis and subsequent immunoprecipitation (IP), we established that Akt phosphorylates JFC1 at serine 241. JFC1 and Rab27a colocalize in the proximity of the plasma membrane in LNCaP cells. The interaction was confirmed by IP analysis and was abolished by the point mutation W83S in JFC1. Phosphorylation did not alter the ability of JFC1 to bind to Rab27a. Instead, phosphorylation by Akt dramatically decreased when JFC1 was bound to Rab27a. Finally, we show that as a consequence of in vivo phosphorylation, JFC1 dissociates from the membrane, promoting JFC1 redistribution to the cytosol. Our results suggest that Akt regulates JFC1/Slp1 function by phosphorylation and may have implications on Rab27a-containing vesicle secretion.

  13. Photoactivation of Akt1/GSK3β Isoform-Specific Signaling Axis Promotes Pancreatic β-Cell Regeneration.

    PubMed

    Huang, Lei; Jiang, Xiaoxiao; Gong, Longlong; Xing, Da

    2015-08-01

    Promotion of insulin-secreting β-cell regeneration in patients with diabetes is a promising approach for diabetes therapy, which can contribute to rescue the uncontrolled hyperglycemia. Low-power laser irradiation (LPLI) has been demonstrated to regulate multiple physiological processes both in vitro and in vivo through activation of various signaling pathways. In the present study, we showed that LPLI promoted β-cell replication and cell cycle progression through activation of Akt1/GSK3β isoform-specific signaling axis. Inhibition of PI3-K/Akt or GSK3 with specific inhibitors dramatically reduced or increased LPLI-induced β-cell replication, revealing Akt/GSK3 signaling axis was involved in β-cell replication and survival upon LPLI treatment. Furthermore, the results of shRNA-mediated knock down of Akt/GSK3 isoforms revealed that Akt1/GSK3β isoform-specific signaling axis regulated β-cell replication and survival in response to LPLI, but not Akt2/GSK3α. The mechanism by which LPLI promoted β-cell replication through Akt1/GSK3β signaling axis involved activation of β-catenin and down-regulation of p21. Taken together, these observations suggest that Akt1/GSK3β isoform signaling axis play a key role in β-cell replication and survival induced by LPLI. Moreover, our findings suggest that activation of Akt1/GSK3β isoform signaling axis by LPLI may provide guidance in practical applications for β-cell regenerative therapies. © 2015 Wiley Periodicals, Inc.

  14. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  15. HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer

    PubMed Central

    Choi, Yiseul; Ko, Young San; Park, Jinju; Choi, Youngsun; Kim, Younghoon; Pyo, Jung-Soo; Jang, Bo Gun; Hwang, Douk Ho; Kim, Woo Ho; Lee, Byung Lan

    2016-01-01

    AIM To investigated the relationships between HER2, c-Jun N-terminal kinase (JNK) and protein kinase B (AKT) with respect to metastatic potential of HER2-positive gastric cancer (GC) cells. METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility. CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC. PMID:27895401

  16. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling

    PubMed Central

    Cao, Guo-fan; Cao, Cong; Jiang, Qin

    2016-01-01

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis. PMID:27517753

  17. Disruption of the Arabidopsis thaliana inward-rectifier K+ channel AKT1 improves plant responses to water stress.

    PubMed

    Nieves-Cordones, Manuel; Caballero, Fernando; Martínez, Vicente; Rubio, Francisco

    2012-02-01

    The Arabidopsis thaliana inward-rectifier K(+) channel AKT1 plays an important role in root K(+) uptake. Recent results show that the calcineurin B-like (CBL)-interacting protein kinase (CIPK) 23-CBL1/9 complex activates AKT1 in the root to enhance K(+) uptake. In addition, this CIPK-CBL complex has been demonstrated to regulate stomatal movements and plant transpiration. However, a role for AKT1 in plant transpiration has not yet been demonstrated. Here we show that disruption of AKT1 conferred an enhanced response to water stress in plants. Experiments performed in hydroponics showed that, when water potential was diminished by adding polyethylene glycol, akt1 adult plants lost less water than wild-type (WT) plants. Under long-term water stress in soil, adult akt1 plants displayed lower transpiration and less water consumption than WT plants. Finally, akt1 stomata closed more efficiently in response to ABA. Such results were also observed in cipk23 plants. The similar responses shown by cipk23 and akt1 plants to water stress denote that the regulation of AKT1 by CIPK23 may also take place in stomata and has a negative impact on plant performance under water stress conditions.

  18. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt.

    PubMed

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J

    2011-04-01

    Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous nitric oxide (NO) synthase (NOS) inhibitors asymmetrical dimethylarginine (ADMA) and L-NG-monomethyl arginine (L-NMMA). This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA-independent effects that influence endothelial function. Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in human umbilical vein endothelial cells, we found that DDAH1 acts to promote endothelial cell proliferation, migration, and tube formation by Akt phosphorylation, as well as through the traditional role of degrading ADMA. Incubation of human umbilical vein endothelial cells with the NOS inhibitors l-NG-nitro-arginine methyl ester (L-NAME) or ADMA, the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-2)quinoxalin-1-one, or the cGMP analog 8-(4-Chlorophenylthio)-cGMP had no effect on phosphorylated (p)-Akt(Ser473), indicating that the increase in p-Akt(Ser473) produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase in p-Akt(Ser473). Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. DDAH1 exerts a unique role in activating Akt that affects endothelial function independently of degrading endogenous NOS inhibitors.

  19. Cervical spinal erythropoietin induces phrenic motor facilitation via ERK and Akt signaling

    PubMed Central

    Dale, Erica A.; Satriotomo, Irawan; Mitchell, Gordon S.

    2012-01-01

    Erythropoietin (EPO) is typically known for its role in erythropoiesis, but is also a potent neurotrophic/neuroprotective factor for spinal motor neurons. Another trophic factor regulated by Hypoxia-Inducible Factor-1, vascular endothelial growth factor (VEGF), signals via ERK and Akt activation to elicit long-lasting phrenic motor facilitation (pMF). Since EPO also signals via ERK and Akt activation, we tested the hypothesis that EPO elicits similar pMF. Using retrograde labeling and immunohistochemical techniques, we demonstrate in adult, male, Sprague-Dawley rats that EPO and its receptor, EPO-R, are expressed in identified phrenic motor neurons. Intrathecal EPO at C4 elicits long-lasting pMF; integrated phrenic nerve burst amplitude increased >90 min post-injection (63±12% baseline 90 min post-injection; p<0.001). EPO increased phosphorylation (and presumed activation) of ERK (1.6 fold vs controls; p<0.05) in phrenic motor neurons; EPO also increased pAkt (1.6 fold vs controls; p<0.05). EPO-induced pMF was abolished by the MEK/ERK inhibitor U0126 and the PI3 kinase/Akt inhibitor LY294002, demonstrating that ERK MAP kinases and Akt are both required for EPO-induced pMF. Pre-treatment with U0126 and LY294002 decreased both pERK and pAkt in phrenic motor neurons (p<0.05), indicating a complex interaction between these kinases. We conclude that EPO elicits spinal plasticity in respiratory motor control. Since EPO expression is hypoxia-sensitive, it may play a role in respiratory plasticity in conditions of prolonged or recurrent low oxygen. PMID:22539857

  20. Astaxanthin reduces isoflurane-induced neuroapoptosis via the PI3K/Akt pathway.

    PubMed

    Wang, Chun-Mei; Cai, Xiao-Lan; Wen, Qing-Ping

    2016-05-01

    Astaxanthin is an oxygen-containing derivative of carotenoids that effectively suppresses reactive oxygen and has nutritional and medicinal value. The mechanisms underlying the effects of astaxanthin on isoflurane‑induced neuroapoptosis remain to be fully understood. The present study was conducted to evaluate the protective effect of astaxanthin to reduce isoflurane‑induced neuroapoptosis and to investigate the underlying mechanisms. The results demonstrated that isoflurane induced brain damage, increased caspase‑3 activity and suppressed the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway in an in vivo model. However, treatment with astaxanthin significantly inhibited brain damage, suppressed caspase‑3 activity and upregulated the PI3K/Akt pathway in the isoflurane‑induced rats. Furthermore, isoflurane suppressed cell growth, induced cell apoptosis, enhanced caspase‑3 activity and downregulated the PI3K/Akt pathway in organotypic hippocampal slice culture. Administration of astaxanthin significantly promoted cell growth, reduced cell apoptosis and caspase‑3 activity, and upregulated the PI3K/Akt pathway and isoflurane‑induced neuroapoptosis. The present study demonstrated that downregulation of the PI3K/Akt pathway reduced the effect of astaxanthin to protect against isoflurane‑induced neuroapoptosis in the in vitro model. The results of the current study suggested that the protective effect of astaxanthin reduces the isoflurane-induced neuroapoptosis via activation of the PI3K/Akt signaling pathway.

  1. Murine epithelial cells: isolation and culture.

    PubMed

    Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R

    2004-08-01

    We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.

  2. The Role of AKT2 in Human Breast Cancer

    DTIC Science & Technology

    2002-06-01

    factors, Aktl becomes phosphorylated at these two serous cystadenocarcinomas , four mucinous cystadeno- residues. It has been shown that AKT2 is activated...AD Award Number: DAMD17-01-1-0397 TITLE: The Role of AKT2 in Human Breast Cancer PRINCIPAL INVESTIGATOR: Zeng Qiang Yuan, Ph.D. Jin Q. Cheng, M.D...in Human Breast Cancer DAMD17-01-1-0397 6. AUTHOR(S) Zeng Qiang Yuan, Ph.D. Jin Q. Cheng, M.D., Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  3. Leflunomide counter akt s cardiac hypertrophy.

    PubMed

    Pescatore, Luciana A; Laurindo, Francisco R M

    2018-05-31

    Cardiac hypertrophy (CH) is a major independent risk factor for heart failure and mortality. However, therapeutic interventions that target hypertrophy signaling in a load-independent way are unavailable. In a recent issue of Clinical Science (vol. 132, issue 6, 685-699), Ma et al. describe that the anti-inflammatory drug leflunomide markedly antagonized CH, dysfunction, and fibrosis induced by aortic banding or angiotensin-II in mice or by agonists in cultured cells. Unexpectedly, this occurred not via anti-inflammatory mechanisms but rather via inhibtion of Akt (protein kinase B, PKB) signaling. We further discuss the mechanisms underlying Akt activation and its effects on CH and review possible mechanisms of leflunomide effects. Despite some caveats, the availability of such a newly repurposed compound to treat CH can be a relevant advance. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. [Signaling pathways mTOR and AKT in epilepsy].

    PubMed

    Romero-Leguizamon, C R; Ramirez-Latorre, J A; Mora-Munoz, L; Guerrero-Naranjo, A

    2016-07-01

    The signaling pathway AKT/mTOR is a central axis in regulating cellular processes, particularly in neurological diseases. In the case of epilepsy, it has been observed alteration in the pathophysiological process of the same. However, they have not described all the mechanisms of these signaling pathways that could open the opportunity to new research and therapeutic strategies. To review existing partnerships between intracellular signaling pathways AKT and mTOR in the pathophysiology of epilepsy. Epilepsy is a disease with a high epidemiological impact globally, so it is widely investigated regarding the pathophysiological components thereof. In that search they have been involved different intracellular signaling pathways in neurons, as determinants epileptogenic. Advances in this field have even allowed the successful implementation of new therapeutic strategies and to open the way to new research in the field. Improving knowledge about the pathophysiological role of the signaling pathway mTOR/AKT in epilepsy can raise new investigations regarding therapeutic alternatives. The use of mTOR inhibitors, has emerged in recent years as effective in treating this disease entity alternative however is clear the necessity of continue the research for new drug therapies.

  5. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes.

    PubMed

    Bai, Xiaoyan; Li, Xiao; Tian, Jianwei; Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser⁴⁷³-AKT, phosphorylated Thr³⁰⁸-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr³⁰⁸-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr³⁰⁸-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr³⁰⁸-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr³⁰⁸-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr³⁰⁸-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis

  6. Antiangiogenic Treatment Diminishes Renal Injury and Dysfunction via Regulation of Local AKT in Early Experimental Diabetes

    PubMed Central

    Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser473-AKT, phosphorylated Thr308-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr308-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr308-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr308-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr308-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr308-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate

  7. Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity.

    PubMed

    Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling

    2011-02-01

    Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide

  8. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu; Department of Cell Biology, Harvard Medical School, Boston, MA 02115; Mahoney, Sarah Jane

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophicmore » inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.« less

  9. Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining In Vivo AKT Isoform Substrate Specificity

    PubMed Central

    Lee, Rachel S.; House, Colin M.; Cristiano, Briony E.; Hannan, Ross D.; Pearson, Richard B.; Hannan, Katherine M.

    2011-01-01

    The AKT protooncogene mediates many cellular processes involved in normal development and disease states such as cancer. The three structurally similar isoforms: AKT1, AKT2, and AKT3 exhibit both functional redundancy and isoform-specific functions; however the basis for their differential signalling remains unclear. Here we show that in vitro, purified AKT3 is ∼47-fold more active than AKT1 at phosphorylating peptide and protein substrates. Despite these marked variations in specific activity between the individual isoforms, a comprehensive analysis of phosphorylation of validated AKT substrates indicated only subtle differences in signalling via individual isoforms in vivo. Therefore, we hypothesise, at least in this model system, that relative tissue/cellular abundance, rather than specific activity, plays the dominant role in determining AKT substrate specificity in situ. PMID:21869924

  10. PI3-K/Akt/JNK/NF-κB is essential for MMP-9 expression and outgrowth in human limbal epithelial cells on intact amniotic membrane.

    PubMed

    Cheng, Ching-Yi; Hsieh, Hsi-Lung; Hsiao, Li-Der; Yang, Chuen-Mao

    2012-07-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in the outgrowth of expanded human limbal epithelial cells on intact amniotic membranes (AM). The mechanisms of MMP-9 expression and cell outgrowth remain unknown. Here, we demonstrated that MMP-9 is preferentially expressed at the leading edge of limbal epithelial outgrowth. Treatment with the inhibitors of PI3-K (LY294002), Akt (SH-5), MEK1/2 (U0126), and JNK1/2 (SP600125) attenuated the outgrowth area, indicating that PI3-K/Akt, p42/p44 MAPK, and JNK1/2 are involved in the outgrowth of intact AM-expanded limbal epithelial cells. However, MMP-9 expression at both transcriptional and translational levels was attenuated by treatment with SP600125, LY294002, or SH-5, not by U0126 and SB202190, suggesting that JNK1/2 and PI3-K/Akt participate in MMP-9 expression. Moreover, NF-κB phosphorylation and nuclear translocation was especially noted at the leading edge, which was attenuated by treatment with SP600125 or LY294002. Helenalin, a selective NF-κB inhibitor, reduced both the limbal epithelial outgrowth and MMP-9 expression. Finally, the data reveal that PI3-K/Akt is an upstream component of the JNK1/2 pathway in MMP-9 expression. Thus, both MAPKs and PI3-K/Akt are required for limbal epithelial outgrowth on intact AM, only the PI3-K/Akt/JNK is essential for MMP-9 expression mediated through activation of transcriptional factor NF-κB in this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Atorvastatin enhances neurite outgrowth in cortical neurons in vitro via up-regulating the Akt/mTOR and Akt/GSK-3β signaling pathways

    PubMed Central

    Jin, Ying; Sui, Hai-juan; Dong, Yan; Ding, Qi; Qu, Wen-hui; Yu, Sheng-xue; Jin, Ying-xin

    2012-01-01

    Aim: To investigate whether atorvastatin can promote formation of neurites in cultured cortical neurons and the signaling mechanisms responsible for this effect. Methods: Cultured rat cerebral cortical neurons were incubated with atorvastatin (0.05–10 μmol/L) for various lengths of time. For pharmacological experiments, inhibitors were added 30 min prior to addition of atorvastatin. Control cultures received a similar amount of DMSO. Following the treatment period, phase-contrast digital images were taken. Digital images of neurons were analyzed for total neurite branch length (TNBL), neurite number, terminal branch number, and soma area by SPOT Advanced Imaging software. After incubation with atorvastatin for 48 h, the levels of phosphorylated 3-phosphoinoside-dependent protein kinase-1 (PDK1), phospho-Akt, phosphorylated mammalian target of rapamycin (mTOR), phosphorylated 4E-binding protein 1 (4E-BP1), p70S6 kinase (p70S6K), and glycogen synthase kinase-3β (GSK-3β) in the cortical neurons were evaluated using Western blotting analyses. Results: Atorvastatin (0.05–10 μmol/L) resulted in dose-dependent increase in neurite number and length in these neurons. Pretreatment of the cortical neurons with phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 (30 μmol/L) and wortmannin (5 μmol/L), Akt inhibitor tricribine (1 μmol/L) or mTOR inhibitor rapamycin (100 nmol/L) blocked the atorvastatin-induced increase in neurite outgrowth, suggesting that atorvastatin promoted neurite outgrowth via activating the PI3K/Akt/mTOR signaling pathway. Atorvastatin (10 μmol/L) significantly increased the levels of phosphorylated PDK1, Akt and mTOR in the cortical neurons, which were prevented by LY294002 (30 μmol/L). Moreover, atorvastatin (10 μmol/L) stimulated the phosphorylation of 4E-BP1 and p70S6K, the substrates of mTOR, in the cortical neurons. In addition, atorvastatin (10 μmol/L) significantly increased the phosphorylated GSK-3β level in the cortical

  12. Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas.

    PubMed

    Wang, Huamin; Wang, Hua; Zhang, Wei; Huang, Helen J; Liao, Warren S L; Fuller, Gregory N

    2004-08-01

    Loss of phosphatase and tensin homolog (PTEN) and amplification of the epidermal growth factor receptor (EGFR) gene contribute to the progression of gliomas. As downstream targets of the PTEN and EGFR signaling pathways, Akt, NFkappaB, and signal transducer and activator of transcription-3 (Stat3) have been shown to play important roles in the control of cell proliferation, apoptosis, and oncogenesis. We examined the activation status of Akt, NFkappaB, and Stat3 in 259 diffuse gliomas using tissue microarrays and immunohistochemistry, and evaluated their association with glioma grade. We observed significant positive correlations between the activation status of Akt and NFkappaB and glioma grade. In contrast, only focal immunoreactivity for phospho-Stat3 was observed in < 9% of high-grade gliomas. In addition, we observed a significant correlation between the activation of Akt and NFkappaB. Functional correlation between Akt activation and the activation of NFkappaB was confirmed in U251MG GBM cells in which inhibition of Akt activation either by stable expression of PTEN or by the PI3-kinase inhibitors, wortmannin and LY294002, led to a concomitant decrease in NFkappaB-binding activity. Thus, our results demonstrate that constitutive activation of Akt and NFkappaB, but not Stat3, contributes significantly to the progression of diffuse gliomas, and activation of Akt may lead to NFkappaB activation in high-grade gliomas.

  13. Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NFkappaB.

    PubMed

    Dhandapani, Krishnan M; Wade, F Marlene; Wakade, Chandramohan; Mahesh, Virendra B; Brann, Darrell W

    2005-10-01

    Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NFkappaB, which was also important for neuroprotection. Akt inhibition prevented NFkappaB binding, suggesting a role for Akt in SCF-induced NFkappaB. Pharmacological inhibition of NFkappaB or dominant negative IkappaB also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NFkappaB-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NFkappaB-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease.

  14. Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation.

    PubMed

    Cairns, Junmei; Fridley, Brooke L; Jenkins, Gregory D; Zhuang, Yongxian; Yu, Jia; Wang, Liewei

    2018-03-01

    AKT signaling is modulated by a complex network of regulatory proteins and is commonly deregulated in cancer. Here, we present a dual mechanism of AKT regulation by the ERBB receptor feedback inhibitor 1 (ERRFI1). We show that in cells expressing high levels of EGFR, ERRF1 inhibits growth and enhances responses to chemotherapy. This is mediated in part through the negative regulation of AKT signaling by direct ERRFI1-dependent inhibition of EGFR In cells expressing low levels of EGFR, ERRFI1 positively modulates AKT signaling by interfering with the interaction of the inactivating phosphatase PHLPP with AKT, thereby promoting cell growth and chemotherapy desensitization. These observations broaden our understanding of chemotherapy response and have important implications for the selection of targeted therapies in a cell context-dependent manner. EGFR inhibition can only sensitize EGFR-high cells for chemotherapy, while AKT inhibition increases chemosensitivity in EGFR-low cells. By understanding these mechanisms, we can take advantage of the cellular context to individualize antineoplastic therapy. Finally, our data also suggest targeting of EFFRI1 in EGFR-low cancer as a promising therapeutic approach. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  15. Protooncogene TCL1b functions as an Akt kinase co-activator that exhibits oncogenic potency in vivo

    PubMed Central

    Hashimoto, M; Suizu, F; Tokuyama, W; Noguchi, H; Hirata, N; Matsuda-Lennikov, M; Edamura, T; Masuzawa, M; Gotoh, N; Tanaka, S; Noguchi, M

    2013-01-01

    Protooncogene T-cell leukemia 1 (TCL1), which is implicated in human T-cell prolymphocytic leukemia (T-PLL), interacts with Akt and enhances its kinase activity, functioning as an Akt kinase co-activator. Two major isoforms of TCL1 Protooncogenes (TCL1 and TCL1b) are present adjacent to each other on human chromosome 14q.32. In human T-PLL, both TCL1 and TCL1b are activated by chromosomal translocation. Moreover, TCL1b-transgenic mice have never been created. Therefore, it remains unclear whether TCL1b itself, independent of TCL1, exhibits oncogenicity. In co-immunoprecipitation assays, both ectopic and endogenous TCL1b interacted with Akt. In in vitro Akt kinase assays, TCL1b enhanced Akt kinase activity in dose- and time-dependent manners. Bioinformatics approaches utilizing multiregression analysis, cluster analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway mapping, Venn diagrams and Gene Ontology (GO) demonstrated that TCL1b showed highly homologous gene-induction signatures similar to Myr-Akt or TCL1. TCL1b exhibited oncogenicity in in vitro colony-transformation assay. Further, two independent lines of β-actin promoter-driven TCL1b-transgenic mice developed angiosarcoma on the intestinal tract. Angiosarcoma is a rare form of cancer in humans with poor prognosis. Using immunohistochemistry, 11 out of 13 human angiosarcoma samples were positively stained with both anti-TCL1b and anti-phospho-Akt antibodies. Consistently, in various cancer tissues, 69 out of 146 samples were positively stained with anti-TCL1b, out of which 46 were positively stained with anti-phospho-Akt antibodies. Moreover, TCL1b structure-based inhibitor ‘TCL1b-Akt-in' inhibited Akt kinase activity in in vitro kinase assays and PDGF (platelet-derived growth factor)-induced Akt kinase activities—in turn, ‘TCL1b-Akt-in' inhibited cellular proliferation of sarcoma. The current study disclosed TCL1b bears oncogenicity and hence serves as a novel therapeutic target for human

  16. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells

    PubMed Central

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage. PMID:26465605

  17. Akt Pathway Activation by Human T-cell Leukemia Virus Type 1 Tax Oncoprotein.

    PubMed

    Cherian, Mathew A; Baydoun, Hicham H; Al-Saleem, Jacob; Shkriabai, Nikoloz; Kvaratskhelia, Mamuka; Green, Patrick; Ratner, Lee

    2015-10-23

    Human T-cell leukemia virus (HTLV) type 1, the etiological agent of adult T-cell leukemia, expresses the viral oncoprotein Tax1. In contrast, HTLV-2, which expresses Tax2, is non-leukemogenic. One difference between these homologous proteins is the presence of a C-terminal PDZ domain-binding motif (PBM) in Tax1, previously reported to be important for non-canonical NFκB activation. In contrast, this study finds no defect in non-canonical NFκB activity by deletion of the Tax1 PBM. Instead, Tax1 PBM was found to be important for Akt activation. Tax1 attenuates the effects of negative regulators of the PI3K-Akt-mammalian target of rapamycin pathway, phosphatase and tensin homologue (PTEN), and PHLPP. Tax1 competes with PTEN for binding to DLG-1, unlike a PBM deletion mutant of Tax1. Forced membrane expression of PTEN or PHLPP overcame the effects of Tax1, as measured by levels of Akt phosphorylation, and rates of Akt dephosphorylation. The current findings suggest that Akt activation may explain the differences in transforming activity of HTLV-1 and -2. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Akt Pathway Activation by Human T-cell Leukemia Virus Type 1 Tax Oncoprotein*

    PubMed Central

    Cherian, Mathew A.; Baydoun, Hicham H.; Al-Saleem, Jacob; Shkriabai, Nikoloz; Kvaratskhelia, Mamuka; Green, Patrick; Ratner, Lee

    2015-01-01

    Human T-cell leukemia virus (HTLV) type 1, the etiological agent of adult T-cell leukemia, expresses the viral oncoprotein Tax1. In contrast, HTLV-2, which expresses Tax2, is non-leukemogenic. One difference between these homologous proteins is the presence of a C-terminal PDZ domain-binding motif (PBM) in Tax1, previously reported to be important for non-canonical NFκB activation. In contrast, this study finds no defect in non-canonical NFκB activity by deletion of the Tax1 PBM. Instead, Tax1 PBM was found to be important for Akt activation. Tax1 attenuates the effects of negative regulators of the PI3K-Akt-mammalian target of rapamycin pathway, phosphatase and tensin homologue (PTEN), and PHLPP. Tax1 competes with PTEN for binding to DLG-1, unlike a PBM deletion mutant of Tax1. Forced membrane expression of PTEN or PHLPP overcame the effects of Tax1, as measured by levels of Akt phosphorylation, and rates of Akt dephosphorylation. The current findings suggest that Akt activation may explain the differences in transforming activity of HTLV-1 and -2. PMID:26324707

  19. AKT1 provides an essential survival signal required for differentiation and stratification of primary human keratinocytes.

    PubMed

    Thrash, Barry R; Menges, Craig W; Pierce, Robert H; McCance, Dennis J

    2006-04-28

    Keratinocyte differentiation and stratification are complex processes involving multiple signaling pathways, which convert a basal proliferative cell into an inviable rigid squame. Loss of attachment to the basement membrane triggers keratinocyte differentiation, while in other epithelial cells, detachment from the extracellular matrix leads to rapid programmed cell death or anoikis. The potential role of AKT in providing a survival signal necessary for stratification and differentiation of primary human keratinocytes was investigated. AKT activity increased during keratinocyte differentiation and was attributed to the specific activation of AKT1 and AKT2. Targeted reduction of AKT1 expression, but not AKT2, by RNA interference resulted in an abnormal epidermis in organotypic skin cultures with a thin parabasal region and a pronounced but disorganized cornified layer. This abnormal stratification was due to significant cell death in the suprabasal layers and was alleviated by caspase inhibition. Normal expression patterns of both early and late markers of keratinocyte differentiation were also disrupted, producing a poorly developed stratum corneum.

  20. MicroRNA-99 Family Targets AKT/mTOR Signaling Pathway in Dermal Wound Healing

    PubMed Central

    Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T.; Zhou, Xiaofeng

    2013-01-01

    Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3′-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling. PMID:23724047

  1. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing.

    PubMed

    Jin, Yi; Tymen, Stéphanie D; Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T; Zhou, Xiaofeng

    2013-01-01

    Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3'-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling.

  2. Modulation of the Akt Pathway Reveals a Novel Link with PERK/eIF2α, which Is Relevant during Hypoxia

    PubMed Central

    Sánchez, Manuel Alejandro; Urrutia, Carolina; Grande, Alicia; Risso, Guillermo; Srebrow, Anabella; Alfaro, Jennifer; Colman-Lerner, Alejandro

    2013-01-01

    The unfolded protein response (UPR) and the Akt signaling pathway share several regulatory functions and have the capacity to determine cell outcome under specific conditions. However, both pathways have largely been studied independently. Here, we asked whether the Akt pathway regulates the UPR. To this end, we used a series of chemical compounds that modulate PI3K/Akt pathway and monitored the activity of the three UPR branches: PERK, IRE1 and ATF6. The antiproliferative and antiviral drug Akt-IV strongly and persistently activated all three branches of the UPR. We present evidence that activation of PERK/eIF2α requires Akt and that PERK is a direct Akt target. Chemical activation of this novel Akt/PERK pathway by Akt-IV leads to cell death, which was largely dependent on the presence of PERK and IRE1. Finally, we show that hypoxia-induced activation of eIF2α requires Akt, providing a physiologically relevant condition for the interaction between Akt and the PERK branch of the UPR. These data suggest the UPR and the Akt pathway signal to one another as a means of controlling cell fate. PMID:23922774

  3. Protein Kinase C-δ Mediates Neuronal Apoptosis in the Retinas of Diabetic Rats via the Akt Signaling Pathway

    PubMed Central

    Kim, Young-Hee; Kim, Yoon-Sook; Park, Chang-Hwan; Chung, In-Yong; Yoo, Ji-Myong; Kim, Jae-Geun; Lee, Byung-Ju; Kang, Sang-Soo; Cho, Gyeong-Jae; Choi, Wan-Sung

    2008-01-01

    OBJECTIVE—Protein kinase C (PKC)-δ, an upstream regulator of the Akt survival pathway, contributes to cellular dysfunction in the pathogenesis of diabetes. Herein, we examined the role of PKC-δ in neuronal apoptosis through Akt in the retinas of diabetic rats. RESEARCH DESIGN AND METHODS—We used retinas from 24- and 35-week-old male Otsuka Long-Evans Tokushima fatty (OLETF) diabetic and Long-Evans Tokushima Otsuka (LETO) nondiabetic rats. To assess whether PKC-δ affects Akt signaling and cell death in OLETF rat retinas, we examined 1) PKC-δ activity and apoptosis; 2) protein levels of phosphatidylinositol 3-kinase (PI 3-kinase) p85, heat shock protein 90 (HSP90), and protein phosphatase 2A (PP2A); 3) Akt phosphorylation; and 4) Akt binding to HSP90 or PP2A in LETO and OLETF retinas in the presence or absence of rottlerin, a highly specific PKC-δ inhibitor, or small interfering RNAs (siRNAs) for PKC-δ and HSP90. RESULTS—In OLETF retinas from 35-week-old rats, ganglion cell death, PKC-δ and PP2A activity, and Akt-PP2A binding were significantly increased and Akt phosphorylation and Akt-HSP90 binding were decreased compared with retinas from 24-week-old OLETF and LETO rats. Rottlerin and PKC-δ siRNA abrogated these effects in OLETF retinas from 35-week-old rats. HSP90 siRNA significantly increased ganglion cell death and Akt-PP2A complexes and markedly decreased HSP90-Akt binding and Akt phosphorylation in LETO retinas from 35-week-old rats compared with those from nontreated LETO rats. CONCLUSIONS—PKC-δ activation contributes to neuro-retinal apoptosis in diabetic rats by inhibiting Akt-mediated signaling pathways. PMID:18443201

  4. Akt activation by Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells.

    PubMed

    Gocher, Angela M; Azabdaftari, Gissou; Euscher, Lindsey M; Dai, Shuhang; Karacosta, Loukia G; Franke, Thomas F; Edelman, Arthur M

    2017-08-25

    Hyperactivation of Akt is associated with oncogenic changes in the growth, survival, and chemoresistance of cancer cells. The PI3K/phosphoinositide-dependent kinase (PDK) 1 pathway represents the canonical mechanism for phosphorylation of Akt at its primary activation site, Thr-308. We observed that Ca 2+ /calmodulin (CaM)-dependent protein kinase kinase 2 (β) (CaMKK2) is highly expressed in high-grade serous ovarian cancer, and we investigated its role in Akt activation in ovarian cancer (OVCa) cell lines (OVCAR-3, SKOV-3, and Caov-3). Knockdown or pharmacological inhibition of CaMKK2 produced phenotypes expected of Akt inhibition, including reductions in cell growth and cell viability and in the regulation of Akt downstream targets involved in G 1 /S transition and apoptosis. CaMKK2 knockdown or inhibition decreased Akt phosphorylation at Thr-308 and Ser-473 to extents similar to those of PDK1 knockdown or PI3K inhibition. Combined CaMKK2 and PDK1 knockdown or CaMKK and PI3K inhibition, respectively, produced additive effects on p-Akt and cell growth, consistent with direct Akt phosphorylation by CaMKK2. This conclusion was supported by the absence of effects of CaMKK2 knockdown/inhibition on alternative means of activating Akt via p-Akt Thr-450, p-PDK1 Ser-241, or p-IRS1 Ser-636/639. Recombinant CaMKK2 directly activated recombinant Akt by phosphorylation at Thr-308 in a Ca 2+ /CaM-dependent manner. In OVCa cells, p-Akt Thr-308 was significantly inhibited by intracellular Ca 2+ i chelation or CaM inhibition. Ionomycin-induced Ca 2+ influx promoted p-Akt, an effect blocked by PDK1, and/or CaMKK2, siRNAs, and by PI3K and/or CaMKK inhibitors. CaMKK2 knockdown potentiated the effects of the chemotherapeutic drugs carboplatin and PX-866 to reduce proliferation and survival of OVCa cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. PI3K-AKT signaling pathway is involved in hypoxia/thermal-induced immunosuppression of small abalone Haliotis diversicolor.

    PubMed

    Sun, Yulong; Zhang, Xin; Wang, Guodong; Lin, Shi; Zeng, Xinyang; Wang, Yilei; Zhang, Ziping

    2016-12-01

    The PI3K-AKT signal pathway has been found to be involved in many important physiological and pathological processes of the innate immune system of vertebrates and invertebrates. In this study, the AKT (HdAKT) and PI3K (HdPI3K) gene of small abalone Haliotis diversicolor were cloned and characterized for the important status of PI3K and AKT protein in PI3K-AKT signaling pathway. The full length cDNAs of HdAKT and HdPI3K are 2126 bp and 6052 bp respectively, encoding proteins of 479 amino acids and 1097 amino acids, respectively. The mRNA expression level of fourteen genes in the PI3K-AKT signaling pathway were detected by quantitative real-time PCR. The results showed that all these fourteen genes were ubiquitously expressed in seven selected tissues. Meanwhile, HdAKT was expressed in haemocytes with the highest expression level (p < 0.05) next in hepatopancreas (p < 0.05). On the other hand, the expression level of HdPI3K in haemocytes was higher than other tissues. Under normal condition, the gene expression level of HdAKT, HdPI3K, and other PI3K-AKT signaling pathway members were significantly up-regulated by Vibrio parahaemolyticus infection which demonstrated that HdAKT, HdPI3K, and other PI3K-AKT signaling pathway members play a role in the innate immune system of abalone. The mRNA expression of these genes in gills, haemocytes and hepatopancreas was significantly down-regulated after the Vibrio parahaemolyticus stimulation with environment stimulation (thermal, hypoxia and thermal & hypoxia). These results indicate that the dual/multiple stresses defeat the immune system and lead to immunosuppression in abalone. PI3K-AKT signaling pathway may be involved in hypoxia/thermal-induced immunosuppression of small abalone Haliotis diversicolor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/AKT Pathway

    DTIC Science & Technology

    2016-10-01

    661, that disrupt the assembly of assembly of a specific signaling complex consisting of G, PI3K and AKT2, and blocked GPCR-stimulated PI3K/AKT...AKT2 with a higher efficacy than AKT1, and WDR26 also directly binds PI3K (Fig. 2). Second, we generated stable MDA-MB231 cell lines expressing...promotes Gβf signaling. Here, we demonstrate that WDR26 is overexpressed in highly malignant breast tumor cell lines and human breast cancer samples, and

  7. A Cell Number Counting Factor Regulates Akt/Protein Kinase B To Regulate Dictyostelium discoideum Group Size

    PubMed Central

    Gao, Tong; Knecht, David; Tang, Lei; Hatton, R. Diane; Gomer, Richard H.

    2004-01-01

    Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of ∼20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin− cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB. PMID:15470246

  8. Methamphetamine-alcohol interactions in murine models of sequential and simultaneous oral drug-taking.

    PubMed

    Fultz, Elissa K; Martin, Douglas L; Hudson, Courtney N; Kippin, Tod E; Szumlinski, Karen K

    2017-08-01

    A high degree of co-morbidity exists between methamphetamine (MA) addiction and alcohol use disorders and both sequential and simultaneous MA-alcohol mixing increases risk for co-abuse. As little preclinical work has focused on the biobehavioral interactions between MA and alcohol within the context of drug-taking behavior, we employed simple murine models of voluntary oral drug consumption to examine how prior histories of either MA- or alcohol-taking influence the intake of the other drug. In one study, mice with a 10-day history of binge alcohol-drinking [5,10, 20 and 40% (v/v); 2h/day] were trained to self-administer oral MA in an operant-conditioning paradigm (10-40mg/L). In a second study, mice with a 10-day history of limited-access oral MA-drinking (5, 10, 20 and 40mg/L; 2h/day) were presented with alcohol (5-40% v/v; 2h/day) and then a choice between solutions of 20% alcohol, 10mg/L MA or their mix. Under operant-conditioning procedures, alcohol-drinking mice exhibited less MA reinforcement overall, than water controls. However, when drug availability was not behaviorally-contingent, alcohol-drinking mice consumed more MA and exhibited greater preference for the 10mg/L MA solution than drug-naïve and combination drug-experienced mice. Conversely, prior MA-drinking history increased alcohol intake across a range of alcohol concentrations. These exploratory studies indicate the feasibility of employing procedurally simple murine models of sequential and simultaneous oral MA-alcohol mixing of relevance to advancing our biobehavioral understanding of MA-alcohol co-abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. AKT Pathway Affects Bone Regeneration in Nonunion Treated with Umbilical Cord-Derived Mesenchymal Stem Cells.

    PubMed

    Qu, Zhiguo; Guo, Shengnan; Fang, Guojun; Cui, Zhenghong; Liu, Ying

    2015-04-01

    We have previously grafted human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with blood plasma to treat rat tibia nonunion. To further examine the biological characteristics of this process, we applied an established hUC-MSCs-treated rat nonunion model with the addition of an inhibitor of AKT. SD rats (80) were randomly divided into four groups: a fracture group (positive control); a nonunion group (negative control); a hUC-MSCs grafting with blood plasma group; and a hUC-MSCs grafting with blood plasma & AKT blocker group. The animals were sacrificed under deep anesthesia at 4 and 8 weeks post fracture for analysis. The fracture line became less defined at 4 weeks and disappeared at 8 weeks postoperatively in both the hUC-MSCs grafting with blood plasma and grafting with blood plasma & the AKT blocker, which is similar to the fracture group. Histological immunofluorescence studies showed that the numbers of hUC-MSCs in the calluses were significantly higher in the hUC-MSCs grafting with blood plasma than those in group with the AKT blocker. More bone morphogenetic protein 2 and bone sialoprotein expression and less osteoprotegerin and bone gla protein expression were observed in the AKT blocker group compared to the hUC-MSCs grafting with blood plasma. AKT gene expression in the AKT blocker group was decreased 50% compared to the hUC-MSCs with plasma group and decreased 70% compared to the fracture group, while the elastic modulus was decreased. In summary, our work demonstrates that AKT may play a role in modulating osteogenesis induced by hUC-MSCs.

  10. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis.

    PubMed

    Maddika, Subbareddy; Ande, Sudharsana Rao; Wiechec, Emilia; Hansen, Lise Lotte; Wesselborg, Sebastian; Los, Marek

    2008-04-01

    Here, we show that CDK2, an S-phase cyclin-dependent kinase, is a novel target for Akt during cell cycle progression and apoptosis. Akt phosphorylates CDK2 at threonine 39 residue both in vitro and in vivo. Although CDK2 threonine 39 phosphorylation mediated by Akt enhances cyclin-A binding, it is dispensable for its basal binding and the kinase activity. In addition, for the first time, we report a transient nucleo-cytoplasmic shuttling of Akt during specific stages of the cell cycle, in particular during the late S and G2 phases. The Akt that is re-localized to the nucleus phosphorylates CDK2 and causes the temporary cytoplasmic localization of the CDK2-cyclin-A complex. The CDK2 cytoplasmic redistribution is required for cell progression from S to G2-M phase, because the CDK2 T39A mutant, which lacks the phosphorylation site and is defective in cytoplasmic localization, severely affects cell cycle progression at the transition from S to G2-M. Interestingly, we also show that the Akt/CDK2 pathway is constitutively activated by some anticancer drugs, such as methotrexate and docetaxel, and under these conditions it promotes, rather than represses, cell death. Thus, the constitutive activation of the Akt/CDK2 pathway and changed subcellular localization promotes apoptosis. By contrast, the transient, physiological Akt/CDK2 activation is necessary for cell cycle progression.

  11. Immunodeficiency with thymoma: failure to induce Ig production in immunodeficient lymphocytes cocultured with normal T cells. [X radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, S.D.

    Blood mononuclear cells of two individuals having immunodeficiency with thymoma (ID-THY) were cocultured with normal mononuclear cells or treated mononuclear cell fractions in an attempt to correct an imbalance of regulatory cells postulated to be responsible for the failure of pokeweed mitogen-induced Ig synthesis in vitro. Treatment included abrogation of suppressor cell activity by irradiation or incubation with prednisolone in vitro. T cell help was provided by cocultivating lymphocytes of related and unrelated persons, and in some cases autologous treated cells. Ig secretion failed to be induced by any experimental maneuver suggesting that the primary problem in the above ID-THYmore » cells was related to defective or deficient B cells rather than an imbalance of T regulatory cells. Prednisolone treatment in vitro decreased suppressor cell activity in allogeneic cocultures of two ID-THY persons (S1 and S2) but not of an individual (S3) with variable immunodeficiency suggesting heterogeneity of suppressor cells.« less

  12. Isolation and Differentiation of Murine Macrophages.

    PubMed

    Rios, Francisco J; Touyz, Rhian M; Montezano, Augusto C

    2017-01-01

    Macrophages play a major role in inflammation, wound healing, and tissue repair. Infiltrated monocytes differentiate into different macrophage subtypes with protective or pathogenic activities in vascular lesions. In the heart and vascular tissues, pathological activation promotes cardiovascular inflammation and remodeling and there is increasing evidence that macrophages play important mechanisms in this environment. Primary murine macrophages can be obtained from: bone marrow by different treatments (granulocyte-macrophage colony-stimulating factor-GM-CSF, macrophage colony-stimulating factor-M-CSF or supernatant of murine fibroblast L929), peritoneal cavity (resident or thioglycolate elicit macrophages), from the lung (alveolar macrophages) or from adipose tissue. In this chapter we describe some protocols to obtain primary murine macrophages and how to identify a pure macrophage population or activation phenotypes using different markers.

  13. WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/AKT Pathway

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0539 TITLE: WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/ AKT Pathway PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/ AKT Pathway 5b. GRANT NUMBER W81XWH-14-1-0539 5c. PROGRAM...growth and metastasis via dysregulation of the PI3K/AKT2 pathway. (months 1-24) Major Goal 1: Assess how WDR26 regulates PI3K/ AKT signaling in

  14. [The effects of leptin on apoptosis of airway smooth muscle cells via the PI3K/Akt signaling pathway].

    PubMed

    Liu, Wen-jing; Zhu, Shu-yang; Chen, Yu-ling; Wu, Xia; Ni, Wen-jing; Chen, Yun-feng; Zhao, Ling

    2012-12-01

    To observe the effects of leptin on the expression of Akt, Pho-Akt, Bcl-2, Bax, caspase-3 and the apoptosis of airway smooth muscle cells (ASMCs), and to explore the possible mechanisms. ASMCs were derived from rat airway tissue and cultured in vitro. The cells were randomly divided into 5 groups including a control group, leptin at concentrations of 50, 100, 200 µg/L groups (group Lep50, Lep100, Lep200), and PI3K specific antagonist with Lep200 group. Then the cells of different groups were incubated for 24 h. An apoptosis detection kit was used for annexin V and PI staining. The expression of Akt, phosphorylation Akt, Bcl-2, Bax, caspase-3 were measured by Western blot. The apoptosis rates of ASMCs in group Lep50, Lep100 and Lep200 were (3.97 ± 0.39)%, (1.88 ± 0.72)% and (0.77 ± 0.11)%, respectively, all significantly lower than that in the control group (7.38 ± 0.49)% (F = 89.57, P < 0.05). Furthermore, the concentration of leptin was negatively related to the apoptosis rate (r = -0.711, P < 0.05). The apoptosis rates of PI3K specific antagonist with Lep200 group (3.29 ± 0.36)% was higher than that of group Lep200 (0.77 ± 0.11)% (F = 89.57, P < 0.01). After the intervention of leptin, the expression of Bcl-2 was upregulated and positively correlated with leptin concentration (r = 0.939, P < 0.05); Bax was downregulated and negatively related to the leptin concentration (r = -0.908, P < 0.05); while the Bcl-2/Bax ratio was raised after leptin treatment (F = 20.56, P < 0.05). Leptin inhibited the activation of caspase-3 in the negative way. (r = -0.961, P < 0.05). The results also showed that leptin significantly increased phosphorylation of Akt that positively related to leptin concentration (r = 0.958, P < 0.05). Compared with group Lep200, the expression of Pho-Akt and Bcl-2 in PI3K specific antagonist with Lep200 group were downregulated (F = 32.93, 19.48, respectively, P < 0.05), while the expression of Bax and caspase-3 was increased (F = 10.10, 29

  15. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations

    PubMed Central

    LoPiccolo, Jaclyn; Blumenthal, Gideon M.; Bernstein, Wendy B.; Dennis, Phillip A.

    2008-01-01

    The PI3K/Akt/mTOR pathway is a prototypic survival pathway that is constitutively activated in many types of cancer. Mechanisms for pathway activation include loss of tumor suppressor PTEN function, amplification or mutation of PI3K, amplification or mutation of Akt, activation of growth factor receptors, and exposure to carcinogens. Once activated, signaling through Akt can be propagated to a diverse array of substrates, including mTOR, a key regulator of protein translation. This pathway is an attractive therapeutic target in cancer because it serves as a convergence point for many growth stimuli, and through its downstream substrates, controls cellular processes that contribute to the initiation and maintenance of cancer. Moreover, activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy, and is a poor prognostic factor for many types of cancers. This review will provide an update on the clinical progress of various agents that target the pathway, such as the Akt inhibitors perifosine and PX-866 and mTOR inhibitors (rapamycin, CCI-779, RAD-001) and discuss strategies to combine these pathway inhibitors with conventional chemotherapy, radiotherapy, as well as newer targeted agents. We will also discuss how the complex regulation of the PI3K/Akt/mTOR pathway poses practical issues concerning the design of clinical trials, potential toxicities and criteria for patient selection. PMID:18166498

  16. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2.

    PubMed

    Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo

    2017-03-16

    The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H + -ATPase-energized K + uptake. Moreover, through reversible post-translational modifications it can also function as an open, K + -selective channel, which taps a 'potassium battery', providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.

  17. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2

    NASA Astrophysics Data System (ADS)

    Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo

    2017-03-01

    The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.

  18. Activation of Akt by Advanced Glycation End Products (AGEs): Involvement of IGF-1 Receptor and Caveolin-1

    PubMed Central

    Yang, Su-Jung; Chen, Chen-Yu; Chang, Geen-Dong; Wen, Hui-Chin; Chen, Ching-Yu; Chang, Shi-Chuan; Liao, Jyh-Fei; Chang, Chung-Ho

    2013-01-01

    Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3

  19. Inhibition of Akt/mTOR/p70S6K Signaling Activity With Huangkui Capsule Alleviates the Early Glomerular Pathological Changes in Diabetic Nephropathy.

    PubMed

    Wu, Wei; Hu, Wei; Han, Wen-Bei; Liu, Ying-Lu; Tu, Yue; Yang, Hai-Ming; Fang, Qi-Jun; Zhou, Mo-Yi; Wan, Zi-Yue; Tang, Ren-Mao; Tang, Hai-Tao; Wan, Yi-Gang

    2018-01-01

    Huangkui capsule (HKC), a Chinese modern patent medicine extracted from Abelmoschus manihot (L.) medic, has been widely applied to clinical therapy in the early diabetic nephropathy (DN) patients. However, it remains elusive whether HKC can ameliorate the inchoate glomerular injuries in hyperglycemia. Recently the activation of phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling and its downstream regulator, 70-kDa ribosomal protein S6 kinase (p70S6K), play important roles in the early glomerular pathological changes of DN including glomerular hypertrophy, glomerular basement membrane (GBM) thickening and mild mesangial expansion. This study thereby aimed to clarify therapeutic effects of HKC during the initial phase of DN and its underlying mechanisms. Fifteen rats were randomly divided into 3 groups: the normal group, the model group and the HKC group. The early DN model rats were induced by unilateral nephrectomy combined with intraperitoneal injection of streptozotocin, and administered with either HKC suspension or vehicle after modeling and for a period of 4 weeks. Changes in the incipient glomerular lesions-related parameters in urine and blood were analyzed. Kidneys were isolated for histomorphometry, immunohistochemistry, immunofluorescence and Western blotting (WB) at sacrifice. In vitro , murine mesangial cells (MCs) were used to investigate inhibitory actions of hyperoside (HYP), a bioactive component of HKC, on cellular hypertrophy-associated signaling pathway by WB, compared with rapamycin (RAP). For the early DN model rats, HKC ameliorated micro-urinary albumin, body weight and serum albumin, but had no significant effects on renal function and liver enzymes; HKC improved renal shape, kidney weight and kidney hypertrophy index; HKC attenuated glomerular hypertrophy, GBM thickening and mild mesangial expansion; HKC inhibited the phosphorylation of Akt, mTOR and p70S6K, and the protein over

  20. The Role of a Novel Topological Form of the Prion Protein in Prion Disease

    DTIC Science & Technology

    2008-07-01

    branes from mouse BW5174.3 cells (24) or from canine pancreas (Pro- mega). After translation, 5-l aliquots of lysate were incubated for 60 min at 4 °C in...in vitro in the presence of either murine thymoma microsomes (constructs 1–18 and 23–28) or canine pancreatic microsomes (constructs 19–22 and 29–32...in PrP 45963 canine pancreatic microsomes are used (Fig. 3B; Table I, lines 19–22). In this system, the percentage of CtmPrP is doubled by introduction

  1. Efficacy of Histone Deacetylase and Estrogen Receptor Inhibition in Breast Cancer Cells Due to Concerted down Regulation of Akt

    PubMed Central

    Thomas, Scott; Thurn, K. Ted; Raha, Paromita; Chen, Stephanie; Munster, Pamela N.

    2013-01-01

    Hormonal therapy resistance remains a considerable barrier in the treatment of breast cancer. Activation of the Akt-PI3K-mTOR pathway plays an important role in hormonal therapy resistance. Our recent preclinical and clinical studies showed that the addition of a histone deacetylase inhibitor re-sensitized hormonal therapy resistant breast cancer to tamoxifen. As histone deacetylases are key regulators of Akt, we evaluated the effect of combined treatment with the histone deacetylase inhibitor PCI-24781 and tamoxifen on Akt in breast cancer cells. We demonstrate that while both histone deacetylase and estrogen receptor inhibition down regulate AKT mRNA and protein, their concerted effort results in down regulation of AKT activity with induction of cell death. Histone deacetylase inhibition exerts its effect on AKT mRNA through an estrogen receptor-dependent mechanism, primarily down regulating the most abundant isoform AKT1. Although siRNA depletion of AKT modestly induces cell death, when combined with an anti-estrogen, cytotoxicity is significantly enhanced. Thus, histone deacetylase regulation of AKT mRNA is a key mediator of this therapeutic combination and may represent a novel biomarker for predicting response to this regimen. PMID:23874830

  2. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzedmore » by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.« less

  3. The antagonistic effect of selenium on cadmium-induced apoptosis via PPAR-γ/PI3K/Akt pathway in chicken pancreas.

    PubMed

    Jin, Xi; Jia, Tiantian; Liu, Ruohan; Xu, Shiwen

    2018-06-01

    The animal experiment was preformed to investigate the roles of PPAR-γ/PI3K/Akt pathway in apoptosis triggered by cadmium (Cd) and in the antagonistic effects of selenium (Se) on Cd in the pancreas of chicken. The current study showed that Cd treatment obviously increased the accumulation of Cd and directly led to lower activities of amylase, trypsin and lipase in chicken pancreas. The expression of PPAR-γ, PI3K, and Akt was declined, whereas the level of Bax, Cyt C and caspase-3 were increased in Cd group. In the result of TUNEL assay and the histological examination, typical apoptosis characteristics in the pancreas of Cd group were confirmed. Cd group also showed high levels of inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) content in pancreas. However, those Cd-induced changes were obviously alleviated in Cd + Se group. Our study revealed that Cd could impact the pancreas function and induce the activation of Bax and the overproduction of NO via PPAR-γ/PI3K/Akt pathway to promote apoptosis in chicken pancreas. However, Se could reduce Cd accumulation and antagonize Cd-triggered apoptosis in chicken pancreas. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Genetic code expansion and live cell imaging reveal that Thr308 phosphorylation is irreplaceable and sufficient for Akt1 activity.

    PubMed

    Balasuriya, Nileeka; Kunkel, Maya T; Liu, Xuguang; Biggar, Kyle K; Li, Shawn S-C; Newton, Alexandra C; O'Donoghue, Patrick

    2018-05-17

    The proto-oncogene Akt/protein kinase B (PKB) is a pivotal signal transducer for growth and survival. Growth factor stimulation leads to Akt phosphorylation at two regulatory sites (Thr308, Ser473), acutely activating Akt signaling. Delineating the exact role of each regulatory site is, however, technically challenging and has remained elusive. Here, we used genetic code expansion to produce site-specifically phosphorylated Akt1 in order to dissect the contribution of each regulatory site to Akt1 activity. We achieved recombinant production of full length Akt1 containing site-specific pThr and pSer residues for the first time. Our analysis of Akt1 site-specifically phosphorylated at either or both sites revealed that phosphorylation at both sites increases the apparent catalytic rate 1500-fold relative to un-phosphorylated Akt1, an increase attributable primarily to phosphorylation at Thr308. Live imaging of COS7 cells confirmed that phosphorylation of Thr308, but not Ser473, is required for cellular activation of Akt. We found in vitro and in the cell that pThr308 function cannot be mimicked with acidic residues nor could unphosphorylated Thr308 be mimicked by an Ala mutation. An Akt1 variant with pSer308 achieved only partial enzymatic and cellular signaling activity, revealing a critical interaction between the γ-methyl group of pThr308 and Cys310 in the Akt1 active site. Thus, pThr308 is necessary and sufficient to stimulate Akt signaling in cells and the common use of phosphomimetics is not appropriate for studying the biology of Akt signaling. Our data also indicate that pThr308 should be regarded as the primary diagnostic marker of Akt activity. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes

    PubMed Central

    Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121

  6. mTOR Complex 2 mediates Akt Phosphorylation that Requires PKCε in Adult Cardiac Muscle Cells

    PubMed Central

    Moschella, Phillip C.; McKillop, John; Pleasant, Dorea L.; Harston, Rebecca K.; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2013-01-01

    Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKC ε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKC ε phosphorylation. Furthermore, phosphorylation of PKC ε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKC ε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKC ε in the Akt activation. Biochemical analyses also revealed that PKC ε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKC ε functions downstream of mTORC2 leading to Akt activation. PMID:23673367

  7. mTOR complex 2 mediates Akt phosphorylation that requires PKCε in adult cardiac muscle cells.

    PubMed

    Moschella, Phillip C; McKillop, John; Pleasant, Dorea L; Harston, Rebecca K; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2013-09-01

    Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKCε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKCε phosphorylation. Furthermore, phosphorylation of PKCε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKCε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKCε in the Akt activation. Biochemical analyses also revealed that PKCε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKCε functions downstream of mTORC2 leading to Akt activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells.

    PubMed

    Tsurutani, Junji; Castillo, S Sianna; Brognard, John; Granville, Courtney A; Zhang, Chunyu; Gills, Joell J; Sayyah, Jacqueline; Dennis, Phillip A

    2005-07-01

    Retrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnoses have lower response rates and shorter median survival compared with patients who stop smoking. To provide insight into the biologic basis for these clinical observations, we tested whether two tobacco components, nicotine or the tobacco-specific carcinogen, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), could activate the Akt pathway and increase lung cancer cell proliferation and survival. Nicotine or NNK, rapidly and potently, activated Akt in non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) cells. Nicotinic activation of Akt increased phosphorylation of multiple downstream substrates of Akt in a time-dependent manner, including GSK-3, FKHR, tuberin, mTOR and S6K1. Since nicotine or NNK bind to cell surface nicotinic acetylcholine receptors (nAchR), we used RT-PCR to assess expression of nine alpha and three beta nAchR subunits in five NSCLC cell lines and two types of primary lung epithelial cells. NSCLC cells express multiple nAchR subunits in a cell line-specific manner. Agonists of alpha3/alpha4 or alpha7 subunits activated Akt in a time-dependent manner, suggesting that tobacco components utilize these subunits to activate Akt. Cellular outcomes after nicotine or NNK administration were also assessed. Nicotine or NNK increased proliferation of NSCLC cells in an Akt-dependent manner that was closely linked with changes in cyclin D1 expression. Despite similar induction of proliferation, only nicotine decreased apoptosis caused by serum deprivation and/or chemotherapy. Protection conferred by nicotine was NFkappaB-dependent. Collectively, these results identify tobacco component-induced, Akt-dependent proliferation and NFkappaB-dependent survival as cellular processes that could underlie the detrimental effects of smoking in cancer patients.

  9. Contribution of delayed rectifier potassium currents to the electrical activity of murine colonic smooth muscle

    PubMed Central

    Koh, S D; Ward, S M; Dick, G M; Epperson, A; Bonner, H P; Sanders, K M; Horowitz, B; Kenyon, J L

    1999-01-01

    We used intracellular microelectrodes to record the membrane potential (Vm) of intact murine colonic smooth muscle. Electrical activity consisted of spike complexes separated by quiescent periods (Vm≈−60 mV). The spike complexes consisted of about a dozen action potentials of approximately 30 mV amplitude. Tetraethylammonium (TEA, 1–10 mM) had little effect on the quiescent periods but increased the amplitude of the action potential spikes. 4-Aminopyridine (4-AP, ⋧ 5 mM) caused continuous spiking.Voltage clamp of isolated myocytes identified delayed rectifier K+ currents that activated rapidly (time to half-maximum current, 11.5 ms at 0 mV) and inactivated in two phases (τf = 96 ms, τs = 1.5 s at 0 mV). The half-activation voltage of the permeability was −27 mV, with significant activation at −50 mV.TEA (10 mM) reduced the outward current at potentials positive to 0 mV. 4-AP (5 mM) reduced the early current but increased outward current at later times (100–500 ms) consistent with block of resting channels relieved by depolarization. 4-AP inhibited outward current at potentials negative to −20 mV, potentials where TEA had no effect.Qualitative PCR amplification of mRNA identified transcripts encoding delayed rectifier K+ channel subunits Kv1.6, Kv4.1, Kv4.2, Kv4.3 and the Kvβ1.1 subunit in murine colon myocytes. mRNA encoding Kv 1.4 was not detected.We find that TEA-sensitive delayed rectifier currents are important determinants of action potential amplitude but not rhythmicity. Delayed rectifier currents sensitive to 4-AP are important determinants of rhythmicity but not action potential amplitude. PMID:10050014

  10. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin.

    PubMed

    Srivastava, Pranay; Dhuriya, Yogesh K; Kumar, Vivek; Srivastava, Akriti; Gupta, Richa; Shukla, Rajendra K; Yadav, Rajesh S; Dwivedi, Hari N; Pant, Aditya B; Khanna, Vinay K

    2018-04-30

    Protective efficacy of curcumin in arsenic induced NMDA receptor dysfunctions and PI3K/Akt/ GSK3β signalling in hippocampus has been investigated in vivo and in vitro. Exposure to sodium arsenite (in vivo - 20 mg/kg, body weight p.o. for 28 days; in vitro - 10 μM for 24 h) and curcumin (in vivo - 100 mg/kg body weight p.o. for 28 days; in vitro - 20 μM for 24 h) was carried out alone or simultaneously. Treatment with curcumin ameliorated sodium arsenite induced alterations in the levels of NMDA receptors, its receptor subunits and synaptic proteins - pCaMKIIα, PSD-95 and SynGAP both in vivo and in vitro. Decreased levels of BDNF, pAkt, pERK1/2, pGSK3β and pCREB on sodium arsenite exposure were also protected by curcumin. Curcumin was found to decrease sodium arsenite induced changes in hippocampus by modulating PI3K/Akt/GSK3β neuronal survival pathway, known to regulate various cellular events. Treatment of hippocampal cultures with pharmacological inhibitors for ERK1/2, GSK3β and Akt individually inhibited levels of CREB and proteins associated with PI3K/Akt/GSK3β pathway. Simultaneous treatment with curcumin was found to improve sodium arsenite induced learning and memory deficits in rats assessed by water maze and Y-maze. The results provide evidence that curcumin exercises its neuroprotective effect involving PI3K/Akt pathway which may affect NMDA receptors and downstream signalling through TrKβ and BDNF in arsenic induced cognitive deficits in hippocampus. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells.

    PubMed

    Zhang, S; Zhang, Y; Qu, J; Che, X; Fan, Y; Hou, K; Guo, T; Deng, G; Song, N; Li, C; Wan, X; Qu, X; Liu, Y

    2017-11-13

    Cetuximab is widely used in patients with metastatic colon cancer expressing wildtype KRAS. However, acquired drug resistance limits its clinical efficacy. Exosomes are nanosized vesicles secreted by various cell types. Tumor cell-derived exosomes participate in many biological processes, including tumor invasion, metastasis, and drug resistance. In this study, exosomes derived from cetuximab-resistant RKO colon cancer cells induced cetuximab resistance in cetuximab-sensitive Caco-2 cells. Meanwhile, exosomes from RKO and Caco-2 cells showed different levels of phosphatase and tensin homolog (PTEN) and phosphor-Akt. Furthermore, reduced PTEN and increased phosphorylated Akt levels were found in Caco-2 cells after exposure to RKO cell-derived exosomes. Moreover, an Akt inhibitor prevented RKO cell-derived exosome-induced drug resistance in Caco-2 cells. These findings provide novel evidence that exosomes derived from cetuximab-resistant cells could induce cetuximab resistance in cetuximab-sensitive cells, by downregulating PTEN and increasing phosphorylated Akt levels.

  12. Inhibition of pressure-activated cancer cell adhesion by FAK-derived peptides

    PubMed Central

    Zeng, Bixi; Devadoss, Dinesh; Wang, Shouye; Vomhof-DeKrey, Emilie E.; Kuhn, Leslie A.; Basson, Marc D.

    2017-01-01

    Forces within the surgical milieu or circulation activate cancer cell adhesion and potentiate metastasis through signaling requiring FAK-Akt1 interaction. Impeding FAK-Akt1 interaction might inhibit perioperative tumor dissemination, facilitating curative cancer surgery without global FAK or AKT inhibitor toxicity. Serial truncation and structurally designed mutants of FAK identified a seven amino acid, short helical structure within FAK that effectively competes with Akt1-FAK interaction. Adenoviral overexpression of this FAK-derived peptide inhibited pressure-induced FAK phosphorylation and AKT-FAK coimmunoprecipitation in human SW620 colon cancer cells briefly exposed to 15mmHg increased pressure, consistent with laparoscopic or post-surgical pressures. Adenoviral FAK-derived peptide expression prevented pressure-activation of SW620 adhesion not only to collagen-I-coated plates but also to murine surgical wounds. A scrambled peptide did not. Finally, we modeled operative shedding of tumor cells before irrigation and closure by transient cancer cell adhesion to murine surgical wounds before irrigation and closure. Thirty minute preincubation of SW620 cells at 15mmHg increased pressure impaired subsequent tumor free survival in mice exposed to cells expressing the scrambled peptide. The FAK-derived sequence prevented this. These results suggest that blocking FAK-Akt1 interaction may prevent perioperative tumor dissemination and that analogs or mimics of this 7 amino acid FAK-derived peptide could impair metastasis. PMID:29228673

  13. Benzofuroxan derivatives N-Br and N-I induce intrinsic apoptosis in melanoma cells by regulating AKT/BIM signaling and display anti metastatic activity in vivo.

    PubMed

    Farias, C F; Massaoka, M H; Girola, N; Azevedo, R A; Ferreira, A K; Jorge, S D; Tavares, L C; Figueiredo, C R; Travassos, L R

    2015-10-27

    Malignant melanoma is an aggressive type of skin cancer, and despite recent advances in treatment, the survival rate of the metastatic form remains low. Nifuroxazide analogues are drugs based on the substitution of the nitrofuran group by benzofuroxan, in view of the pharmacophore similarity of the nitro group, improving bioavailability, with higher intrinsic activity and less toxicity. Benzofuroxan activity involves the intracellular production of free-radical species. In the present work, we evaluated the antitumor effects of different benzofuroxan derivatives in a murine melanoma model. B16F10-Nex2 melanoma cells were used to investigate the antitumor effects of Benzofuroxan derivatives in vitro and in a syngeneic melanoma model in C57Bl/6 mice. Cytotoxicity, morphological changes and reactive oxygen species (ROS) were assessed by a diphenyltetrasolium reagent, optical and fluorescence microscopy, respectively. Annexin-V binding and mitochondrial integrity were analyzed by flow cytometry. Western blotting and colorimetry identified cell signaling proteins. Benzofuroxan N-Br and N-I derivatives were active against murine and human tumor cell lines, exerting significant protection against metastatic melanoma in a syngeneic model. N-Br and N-I induce apoptosis in melanoma cells, evidenced by specific morphological changes, DNA condensation and degradation, and phosphatidylserine translocation in the plasma membrane. The intrinsic mitochondrial pathway in B16F10-Nex2 cells is suggested owing to reduced outer membrane potential in mitochondria, followed by caspase -9, -3 activation and cleavage of PARP. The cytotoxicity of N-Br and N-I in B16F10-Nex2 cells is mediated by the generation of ROS, inhibited by pre-incubation of the cells with N-acetylcysteine (NAC). The induction of ROS by N-Br and N-I resulted in the inhibition of AKT activation, an important molecule related to tumor cell survival, followed by upregulation of BIM. We conclude that N-Br and N-I are

  14. Caffeic acid phenethyl ester suppresses melanoma tumor growth by inhibiting PI3K/AKT/XIAP pathway.

    PubMed

    Pramanik, Kartick C; Kudugunti, Shashi K; Fofaria, Neel M; Moridani, Majid Y; Srivastava, Sanjay K

    2013-09-01

    Melanoma is highly metastatic and resistant to chemotherapeutic drugs. Our previous studies have demonstrated that caffeic acid phenethyl ester (CAPE) suppresses the growth of melanoma cells and induces reactive oxygen species generation. However, the exact mechanism of the growth suppressive effects of CAPE was not clear. Here, we determined the potential mechanism of CAPE against melanoma in vivo and in vitro. Administration of 10 mg/kg/day CAPE substantially suppressed the growth of B16F0 tumor xenografts in C57BL/6 mice. Tumors from CAPE-treated mice showed reduced phosphorylation of phosphoinositide 3-kinase, AKT, mammalian target of rapamycin and protein level of X-linked inhibitor of apoptosis protein (XIAP) and enhanced the cleavage of caspase-3 and poly (ADP ribose) polymerase. In order to confirm the in vivo observations, melanoma cells were treated with CAPE. CAPE treatment suppressed the activating phosphorylation of phosphoinositide 3-kinase at Tyr 458, phosphoinositide-dependent kinase-1 at Ser 241, mammalian target of rapamycin at Ser 2448 and AKT at Ser 473 in B16F0 and SK-MEL-28 cells in a concentration and time-dependent study. Furthermore, the expression of XIAP, survivin and BCL-2 was downregulated by CAPE treatment in both cell lines. Significant apoptosis was observed by CAPE treatment as indicated by cleavage of caspase-3 and poly (ADP ribose) polymerase. AKT kinase activity was inhibited by CAPE in a concentration-dependent manner. CAPE treatment increased the nuclear translocation of XIAP, indicating increased apoptosis in melanoma cells. To confirm the involvement of reactive oxygen species in the inhibition of AKT/XIAP pathway, cells were treated with antioxidant N-acetyl-cysteine (NAC) prior to CAPE treatment. Our results indicate that NAC blocked CAPE-mediated AKT/XIAP inhibition and protected the cells from apoptosis. Because AKT regulates XIAP, their interaction was examined by immunoprecipitation studies. Our results show that CAPE

  15. Expression of P-Akt, NFkappaB and their correlation with human papillomavirus infection in cervical carcinoma.

    PubMed

    Du, C X; Wang, Y

    2012-01-01

    To investigate the expression of P-Akt and NFkappaB and their correlation with human papillomavirus (HPV) infection in cervical carcinoma. Expression of P-Akt and NFkappaB was detected by an immunohistochemical SP technique with HPV DNA detetion by PCR in 26 cases of cervical carcinoma tissues, 18 cases of cervical intraepithelial neoplasia tissues (CINI / n = 5, CINII / n = 3, CINIII / n = 10) and 19 cases of chronic cervicitis tissues. The different expressions of P-Akt and NFkappaB were compared in different pathological types of cervical carcinoma (cervical squamous cell carcinoma, cervical adenocarcinoma), different pathological grading (high, medium, poorly differentiated) and different clinical stage (FIGO I to IV). The relationships between P-Akt and NFkappaB, respectively, with HPV infection in cervical carcinoma were analyzed. The positive expression rate of P-Akt in chronic cervicitis tissues, CIN and cervical carcinoma tissues was 21.05%, 66.67%, and 92.31%, respectively. There was no obvious difference in the expression of P-Akt in cervical carcinoma in different pathological types or in pathological grading and no obvious difference in different clinical stages. The positive expression rate of NFkappaB in chronic cervicitis tissues, CIN and cervical carcinoma tissues was 10.52%, 72.22% and 96.15%, respectively; there was no statistically significant difference among the groups for different pathological types and there was no obvious difference in different pathological grading or different clinical stage. There was an obviously positive correlation between P-Akt and NFkappaB expression rate and degree of disease (r = 0.998, p < 0.05). Cervical carcinoma and CIN cases totaled 44; the positive expression rate of P-Akt was 87.55% in 32 cases of positive HPV-DNA of the 44 cases, and the positive expression rate of P-Akt was only 16.70% in 12 cases of negative HPV-DNA of the 44 cases. The positive expression rate of NFkappaB was obviously higher in the

  16. Caffeic acid phenethyl ester suppresses melanoma tumor growth by inhibiting PI3K/AKT/XIAP pathway

    PubMed Central

    Srivastava, Sanjay K.

    2013-01-01

    Melanoma is highly metastatic and resistant to chemotherapeutic drugs. Our previous studies have demonstrated that caffeic acid phenethyl ester (CAPE) suppresses the growth of melanoma cells and induces reactive oxygen species generation. However, the exact mechanism of the growth suppressive effects of CAPE was not clear. Here, we determined the potential mechanism of CAPE against melanoma in vivo and in vitro. Administration of 10 mg/kg/day CAPE substantially suppressed the growth of B16F0 tumor xenografts in C57BL/6 mice. Tumors from CAPE-treated mice showed reduced phosphorylation of phosphoinositide 3-kinase, AKT, mammalian target of rapamycin and protein level of X-linked inhibitor of apoptosis protein (XIAP) and enhanced the cleavage of caspase-3 and poly (ADP ribose) polymerase. In order to confirm the in vivo observations, melanoma cells were treated with CAPE. CAPE treatment suppressed the activating phosphorylation of phosphoinositide 3-kinase at Tyr 458, phosphoinositide-dependent kinase-1 at Ser 241, mammalian target of rapamycin at Ser 2448 and AKT at Ser 473 in B16F0 and SK-MEL-28 cells in a concentration and time-dependent study. Furthermore, the expression of XIAP, survivin and BCL-2 was downregulated by CAPE treatment in both cell lines. Significant apoptosis was observed by CAPE treatment as indicated by cleavage of caspase-3 and poly (ADP ribose) polymerase. AKT kinase activity was inhibited by CAPE in a concentration-dependent manner. CAPE treatment increased the nuclear translocation of XIAP, indicating increased apoptosis in melanoma cells. To confirm the involvement of reactive oxygen species in the inhibition of AKT/XIAP pathway, cells were treated with antioxidant N-acetyl-cysteine (NAC) prior to CAPE treatment. Our results indicate that NAC blocked CAPE-mediated AKT/XIAP inhibition and protected the cells from apoptosis. Because AKT regulates XIAP, their interaction was examined by immunoprecipitation studies. Our results show that CAPE

  17. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  18. Lycium barbarum Polysaccharide Promotes Nigrostriatal Dopamine Function by Modulating PTEN/AKT/mTOR Pathway in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Murine Model of Parkinson's Disease.

    PubMed

    Wang, Xiaohong; Pang, Lei; Zhang, Yanqing; Xu, Jiang; Ding, Dongyi; Yang, Tianli; Zhao, Qian; Wu, Fan; Li, Fei; Meng, Haiwei; Yu, Duonan

    2018-04-01

    To investigate the effects of Lycium barbarum polysaccharide (LBP) on pathological symptoms and behavioral deficits in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. The therapeutic effects of LBP were monitored with an Open field test, a Rotarod test and a Morris water maze test. We also investigated the mechanisms with qRT-PCR and Western blotting analyses. After a relatively short-term LBP treatment, the total distance and walking time of PD mice significantly increased. The staying duration on the rod of PD mice increased in the Rotarod test. LBP can up-regulate levels of SOD2, CAT and GPX1 and inhibit the abnormal aggregation of α-synuclein induced by MPTP. LBP treatment can also up-regulate the phosphorylation of AKT and mTOR, and may play its protective role by activating the PTEN/AKT/mTOR signaling axis. These results suggest that LBP can effectively alleviate the degeneration in the nigrostriatal system induced by MPTP treatment. It may be a potential candidate for the treatment of Parkinson's disease.

  19. Phosphorylated Akt Protein at Ser473 Enables HeLa Cells to Tolerate Nutrient-Deprived Conditions

    PubMed

    Fathy, Moustafa; Awale, Suresh; Nikaido, Toshio

    2017-12-29

    Background: Despite angiogenesis, many tumours remain hypovascular and starved of nutrients while continuing to grow rapidly. The specific biochemical mechanisms associated with starvation resistance, austerity, may be new biological characters of cancer that are critical for cancer progression. Objective: This study aim was to investigate the effect of nutrient starvation on HeLa cells and the possible mechanism by which the cells are able to tolerate nutrient-deprived conditions. Methods: Nutrient starvation was achieved by culturing HeLa cells in nutrient-deprived medium (NDM) and cell survival was estimated by using cell counting kit-8. The effect of starvation on cell cycle distribution and the quantitative analysis of apoptotic cells were investigated by flow cytometry using propidium iodide staining. Western blotting was used to detect the expression levels of Akt and phosphorylated Akt at Ser473 (Ser473p-Akt) proteins. Results: HeLa cells displayed extremely long survival when cultured in NDM. The percentage of apoptotic HeLa cells was significantly increased by starvation in a time-dependent manner. A significant increase in the expression of Ser473p-Akt protein after starvation was also observed. Furthermore, it was found that Akt inhibitor III molecule inhibited the cells proliferation in a concentration- and time-dependent manner. Conclusion: Results of the present study provide evidence that Akt activation may be implicated in the tolerance of HeLa cells for nutrient starvation and may help to suggest new therapeutic strategies designed to prevent austerity of cervical cancer cells through inhibition of Akt activation. Creative Commons Attribution License

  20. The role of sodium hydrosulfide in attenuating the aging process via PI3K/AKT and CaMKKβ/AMPK pathways.

    PubMed

    Chen, Xubo; Zhao, Xueyan; Cai, Hua; Sun, Haiying; Hu, Yujuan; Huang, Xiang; Kong, Wen; Kong, Weijia

    2017-08-01

    Age-related dysfunction of the central auditory system, known as central presbycusis, is characterized by defects in speech perception and sound localization. It is important to determine the pathogenesis of central presbycusis in order to explore a feasible and effective intervention method. Recent work has provided fascinating insight into the beneficial function of H 2 S on oxidative stress and stress-related disease. In this study, we investigated the pathogenesis of central presbycusis and tried to explore the mechanism of H 2 S action on different aspects of aging by utilizing a mimetic aging rat and senescent cellular model. Our results indicate that NaHS decreased oxidative stress and apoptosis levels in an aging model via CaMKKβ and PI3K/AKT signaling pathways. Moreover, we found that NaHS restored the decreased activity of antioxidants such as GSH, SOD and CAT in the aging model in vivo and in vitro by regulating CaMKKβ and PI3K/AKT. Mitochondria function was preserved by NaHS, as indicated by the following: DNA POLG and OGG-1, the base excision repair enzymes in mitochondrial, were upregulated; OXPHOS activity was downregulated; mitochondrial membrane potential was restored; ATP production was increased; and mtDNA damage, indicated by the common deletion (CD), declined. These effects were also achieved by activating CaMKKβ/AMPK and PI3K/AKT signaling pathways. Lastly, protein homeostasis, indicated by HSP90 alpha, was strengthened by NaHS via CaMKKβ and PI3K/AKT. Our findings demonstrate that the ability to resist oxidative stress and mitochondria function are both decreased as aging developed; however, NaHS, a novel free radical scavenger and mitochondrial protective agent, precludes the process of oxidative damage by activating CaMKKβ and PI3K/AKT. This study might provide a therapeutic target for aging and age-related disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathwaymore » in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.« less

  2. Tyrosine kinase oncogenes abrogate interleukin-3 dependence of murine myeloid cells through signaling pathways involving c-myc: conditional regulation of c-myc transcription by temperature-sensitive v-abl.

    PubMed Central

    Cleveland, J L; Dean, M; Rosenberg, N; Wang, J Y; Rapp, U R

    1989-01-01

    Retroviral expression vectors carrying the tyrosine kinase oncogenes abl, fms, src, and trk abrogate the requirements of murine myeloid FDC-P1 cells for interleukin-3 (IL-3). Factor-independent clones constitutively express c-myc in the absence of IL-3, whereas in parental cultures c-myc transcription requires the presence of the ligand. To directly test the effect of a tyrosine kinase oncogene on c-myc expression, retroviral constructs containing three different temperature-sensitive mutants of v-abl were introduced into myeloid IL-3-dependent FDC-P1 and 32D cells. At the permissive temperature, clones expressing temperature-sensitive abl behaved like wild-type abl-containing cells in their growth properties and expressed c-myc constitutively. Temperature shift experiments demonstrated that both IL-3 abrogation and the regulation of c-myc expression correlated with the presence of functional v-abl. Induction of c-myc expression by reactivation of temperature-sensitive v-abl mimicked c-myc induction by IL-3 in that it did not require protein synthesis and occurred at the level of transcription, with effects on both initiation and a transcription elongation block. However, v-abl-regulated FDC-P1 cell growth differed from IL-3-regulated growth in that c-fos and junB, which are normally induced by IL-3, were not induced by activation of v-abl. Images PMID:2555703

  3. Murine Typhus, Reunion, France, 2011–2013

    PubMed Central

    Camuset, Guillaume; Socolovschi, Cristina; Moiton, Marie-Pierre; Kuli, Barbara; Foucher, Aurélie; Poubeau, Patrice; Borgherini, Gianandrea; Wartel, Guillaume; Audin, Héla; Raoult, Didier; Filleul, Laurent; Parola, Philippe; Pagès, Fréderic

    2015-01-01

    Murine typhus case was initially identified in Reunion, France, in 2012 in a tourist. Our investigation confirmed 8 autochthonous cases that occurred during January 2011–January 2013 in Reunion. Murine typhus should be considered in local patients and in travelers returning from Reunion who have fevers of unknown origin. PMID:25625653

  4. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion.

    PubMed

    Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen; Ananthakrishnan, Radha; Wang, Lingjie; Rosario, Rosa; Zhu, Zhengbin; Deckelbaum, Richard J; Ramasamy, Ravichandran

    2015-01-01

    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5 g/kg body weight), immediately after ischemia and 1 h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300 mg TG/100 ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.

  5. Acute Administration of n-3 Rich Triglyceride Emulsions Provides Cardioprotection in Murine Models after Ischemia-Reperfusion

    PubMed Central

    Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen; Ananthakrishnan, Radha; Wang, Lingjie; Rosario, Rosa; Zhu, Zhengbin; Deckelbaum, Richard J.; Ramasamy, Ravichandran

    2015-01-01

    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5g/kg body weight), immediately after ischemia and 1h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300mgTG/100ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction. PMID:25559887

  6. 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages.

    PubMed

    Pan, Min-Hsiung; Hsieh, Min-Chi; Hsu, Ping-Chi; Ho, Sheng-Yow; Lai, Ching-Shu; Wu, Hou; Sang, Shengmin; Ho, Chi-Tang

    2008-12-01

    Ginger, the rhizome of Zingiber officinale, is a traditional medicine with carminative effect, antinausea, anti-inflammatory, and anticarcinogenic properties. In this study, we investigated the inhibitory effects of 6-shogaol and a related compound, 6-gingerol, on the induction of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) in murine RAW 264.7 cells activated with LPS. Western blotting and reverse transcription-PCR analyses demonstrated that 6-shogaol significantly blocked protein and mRNA expression of inducible NOS (iNOS) and COX-2 in LPS-induced macrophages. The in vivo anti-inflammatory activity was evaluated by a topical 12-O-tetradecanoylphorbol 13-acetate (TPA) application to mouse skin. When applied topically onto the shaven backs of mice prior to TPA, 6-shogaol markedly inhibited the expression of iNOS and COX-2 proteins. Treatment with 6-shogaol resulted in the reduction of LPS-induced nuclear translocation of nuclear factor-kappaB (NF kappaB) subunit and the dependent transcriptional activity of NF kappaB by blocking phosphorylation of inhibitor kappaB (I kappaB)alpha and p65 and subsequent degradation of I kappaB alpha. Transient transfection experiments using NF kappaB reporter constructs indicated that 6-shogaol inhibits the transcriptional activity of NF kappaB in LPS-stimulated mouse macrophages. We found that 6-shogaol also inhibited LPS-induced activation of PI3K/Akt and extracellular signal-regulated kinase 1/2, but not p38 mitogen-activated protein kinase (MAPK). Taken together, these results show that 6-shogaol downregulates inflammatory iNOS and COX-2 gene expression in macrophages by inhibiting the activation of NF kappaB by interfering with the activation PI3K/Akt/I kappaB kinases IKK and MAPK.

  7. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    PubMed

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  8. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity.

    PubMed

    Shen, Duanwen; Bai, Mingfeng; Tang, Rui; Xu, Baogang; Ju, Xiaoming; Pestell, Richard G; Achilefu, Samuel

    2013-01-01

    Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzyme's activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.

  9. IGF-1 facilitates thrombopoiesis primarily through Akt activation.

    PubMed

    Chen, Shilei; Hu, Mengjia; Shen, Mingqiang; Wang, Song; Wang, Cheng; Chen, Fang; Tang, Yong; Wang, Xinmiao; Zeng, Hao; Chen, Mo; Gao, Jining; Wang, Fengchao; Su, Yongping; Xu, Yang; Wang, Junping

    2018-05-25

    It is known that insulin-like growth factor-1 (IGF-1) also functions as a hematopoietic factor, while its direct effect on thrombopoiesis remains unclear. In this study, we show that IGF-1 is able to promote CD34+ cell differentiation toward megakaryocytes (MKs), as well as the facilitation of proplatelet formation (PPF) and platelet production from cultured MKs. The in vivo study demonstrates that IGF-1 administration accelerates platelet recovery in mice after 6.0Gy of irradiation and in mice that received bone marrow transplantation (BMT) following 10.0Gy of lethal irradiation. Subsequent investigations reveal that ERK1/2 and Akt activation mediate the effect of IGF-1 on thrombopoiesis. Notably, Akt activation induced by IGF-1 is more apparent than that of ERK1/2, compared with that of thrombopoietin (TPO) treatment. Moreover, the effect of IGF-1 on thrombopoiesis is independent of TPO signaling, because IGF-1 treatment can also lead to a significant increase of platelet counts in homozygous TPO receptor mutant mice. Further analysis indicates that the activation of Akt triggered by IGF-1 requires the assistance of steroid receptor coactivator-3 (SRC-3). Therefore, our data reveal a distinct role of IGF-1 in regulating thrombopoiesis, providing new insights into TPO-independent regulation of platelet generation. Copyright © 2018 American Society of Hematology.

  10. Anti-tumor effect of evodiamine by inducing Akt-mediated apoptosis in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Shi, Le; Liang, Tao

    Background: Evodiamine is an alkaloid extracted from Euodia rutaecarpa (Juss.) Benth. There is little information about the mechanisms of evodiamine on the apoptosis of hepatocellular carcinoma (HCC). Materials and methods: A xenograft model and CCK8 assay were used to investigate the anti-HCC effect of evodiamine. The effect of evodiamine on apoptosis was evaluated by DAPI staining and flow cytometry. Western blot analyses and immunohistochemistry were processed to assess the protein expressions of Akt and apoptotic proteins. Results: Evodiamine suppressed tumor growth, improved the expression of cleaved-caspase3 and decreased tumor specific growth factor (TSGF) and alpha fetoprotein (AFP) activities. Furthermore, evodiaminemore » inhibited cell viability and induced cell cycle arrest. DAPI staining revealed nuclear condensation in evodiamine-treated groups. Meanwhile, evodiamine increased the number of apoptotic cells. Furthermore, evodiamine suppressed Akt and regulated apoptotic proteins in HepG2 cells. Evodiamine decreased p-Akt levels activated by SC79, which led to the increase of bax/bcl-2 and cleaved-caspase3. Conclusions: Our findings suggested that evodiamine could exert anti-HCC effect through inducing Akt-mediated apoptosis. Evodiamine has the potential to be a therapeutic medicine for HCCs. - Highlights: • Anti-tumor effect of evodiamine in hepatocellular carcinoma. • Evodiamine induces apoptosis in hepatocellular carcinoma. • The correlation between induction of apoptosis and Akt expression.« less

  11. Role of Growth Arrest and DNA Damage–inducible α in Akt Phosphorylation and Ubiquitination after Mechanical Stress-induced Vascular Injury

    PubMed Central

    Mitra, Sumegha; Sammani, Saad; Wang, Ting; Boone, David L.; Meyer, Nuala J.; Dudek, Steven M.; Moreno-Vinasco, Liliana; Garcia, Joe G. N.

    2011-01-01

    Rationale: The stress-induced growth arrest and DNA damage–inducible α (GADD45a) gene is up-regulated by mechanical stress with GADD45a knockout (GADD45a−/−) mice demonstrating both increased susceptibility to ventilator-induced lung injury (VILI) and reduced levels of the cell survival and vascular permeability signaling effector (Akt). However, the functional role of GADD45a in the pathogenesis of VILI is unknown. Objectives: We sought to define the role of GADD45a in the regulation of Akt activation induced by mechanical stress. Methods: VILI-challenged GADD45a−/− mice were administered a constitutively active Akt1 vector and injury was assessed by bronchoalveolar lavage cell counts and protein levels. Human pulmonary artery endothelial cells (EC) were exposed to 18% cyclic stretch (CS) under conditions of GADD45a silencing and used for immunoprecipitation, Western blotting or immunofluoresence. EC were also transfected with mutant ubiquitin vectors to characterize site-specific Akt ubiquitination. DNA methylation was measured using methyl-specific polymerase chain reaction assay. Measurements and Main Results: Studies exploring the linkage of GADD45a with mechanical stress and Akt regulation revealed VILI-challenged GADD45a−/− mice to have significantly reduced lung injury on overexpression of Akt1 transgene. Increased mechanical stress with 18% CS in EC induced Akt phosphorylation via E3 ligase tumor necrosis factor receptor–associated factor 6 (TRAF6)–mediated Akt K63 ubiquitination resulting in Akt trafficking and activation at the membrane. GADD45a is essential to this process because GADD45a-silenced endothelial cells and GADD45a−/− mice exhibited increased Akt K48 ubiquitination leading to proteasomal degradation. These events involve loss of ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a deubiquitinating enzyme that normally removes K48 polyubiquitin chains bound to Akt thus promoting Akt K63 ubiquitination. Loss of GADD45a

  12. Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Hirsch, R. E.; Lewis, D. R.; Qi, Z.; Sussman, M. R.; Lewis, B. D.

    1999-01-01

    A transferred-DNA insertion mutant of Arabidopsis that lacks AKT1 inward-rectifying K+ channel activity in root cells was obtained previously by a reverse-genetic strategy, enabling a dissection of the K+-uptake apparatus of the root into AKT1 and non-AKT1 components. Membrane potential measurements in root cells demonstrated that the AKT1 component of the wild-type K+ permeability was between 55 and 63% when external [K+] was between 10 and 1,000 microM, and NH4+ was absent. NH4+ specifically inhibited the non-AKT1 component, apparently by competing for K+ binding sites on the transporter(s). This inhibition by NH4+ had significant consequences for akt1 plants: K+ permeability, 86Rb+ fluxes into roots, seed germination, and seedling growth rate of the mutant were each similarly inhibited by NH4+. Wild-type plants were much more resistant to NH4+. Thus, AKT1 channels conduct the K+ influx necessary for the growth of Arabidopsis embryos and seedlings in conditions that block the non-AKT1 mechanism. In contrast to the effects of NH4+, Na+ and H+ significantly stimulated the non-AKT1 portion of the K+ permeability. Stimulation of akt1 growth rate by Na+, a predicted consequence of the previous result, was observed when external [K+] was 10 microM. Collectively, these results indicate that the AKT1 channel is an important component of the K+ uptake apparatus supporting growth, even in the "high-affinity" range of K+ concentrations. In the absence of AKT1 channel activity, an NH4+-sensitive, Na+/H+-stimulated mechanism can suffice.

  13. A model system for testing gene vectors using murine tumor cells on the chorioallantoic membrane of the chick embryo.

    PubMed

    Dani, Sergio U; Espindola, Rachel

    2002-06-30

    We developed a model system for testing gene vectors, based on the growth of murine tumors on the chorioallantoic membrane (CAM) of embryonic chickens. The ability of selected murine cells to grow on the CAM was rated according to the following criteria: i) formation of tumor masses; ii) metastasis formation; iii) reproducibility; iv) yield, indicated as the number of embryos surviving to assessment time with visible tumors on the CAM; v) maintainability of the cell, both in the original host and the embryonic chick, or 'shuttle maintainability'; vi) detection by the naked eye, and vii) cost/benefit relation. The murine melanoma cell lineage, B16F10, which efficiently forms distinct, pigmented tumor masses and metastases on the CAM, performed better in this model than the murine B61 cell line. In vitro transduction of B16F10 cells with a recombinant adenovirus carrying a construct of the E. coli LacZ gene followed by inoculation onto the CAM resulted in beta-galactosidase expression in the tumor mass growing on the CAM. This model is potentially applicable to preclinical evaluation of gene vectors, especially for gene therapy of cancer.

  14. Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

    PubMed

    Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E

    1996-05-31

    Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.

  15. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system

    PubMed Central

    Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying

    2015-01-01

    Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394

  16. 3,4,5-Tricaffeoylquinic acid inhibits tumor necrosis factor-α-stimulated production of inflammatory mediators in keratinocytes via suppression of Akt- and NF-κB-pathways.

    PubMed

    Lee, Chung Soo; Lee, Seon Ae; Kim, Yun Jeong; Seo, Seong Jun; Lee, Min Won

    2011-11-01

    Keratinocytes may play an important role in the pathogenesis of skin disease in atopic dermatitis. Caffeoyl derivatives are demonstrated to have anti-inflammatory and anti-oxidant effects. However, the effect of 3,4,5-tricaffeoylquinic acid prepared from Aconium koreanum on the pro-inflammatory cytokine-stimulated keratinocyte responses remains uncertain. In human keratinocytes, we investigated the effect of 3,4,5-tricaffeoylquinic acid on the tumor necrosis factor (TNF)-α-stimulated production of inflammatory mediators in relation to the nuclear factor (NF)-κB and cell signaling Akt, which regulates the transcription genes involved in immune and inflammatory responses. 3,4,5-Tricaffeoylquinic acid inhibited the TNF-α-stimulated production of cytokines (IL-1β and IL-8) and chemokine (CCL17 and CCL27) in keratinocytes. Bay 11-7085 (an inhibitor of NF-κB activation) and Akt inhibitor attenuated the TNF-α-induced formation of inflammatory mediators. 3,4,5-Tricaffeoylquinic acid, Bay 11-7085, Akt inhibitor and N-acetylcysteine inhibited the TNF-α-induced activation of NF-κB, activation of Akt, and formation of reactive oxygen and nitrogen species. The results show that 3,4,5-tricaffeoylquinic acid seems to attenuate the TNF-α-stimulated inflammatory mediator production in keratinocytes by suppressing the activation of Akt and NF-κB pathways which may be mediated by reactive oxygen species. The findings suggest that 3,4,5-tricaffeoylquinic acid may exert an inhibitory effect against the pro-inflammatory mediator-induced skin disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Corrective recombination of mouse immunoglobulin kappa alleles in Abelson murine leukemia virus-transformed pre-B cells.

    PubMed Central

    Feddersen, R M; Van Ness, B G

    1990-01-01

    Previous characterization of mouse immunoglobulin kappa gene rearrangement products cloned from murine plasmacytomas has indicated that two recombination events can take place on a single kappa allele (R. M. Feddersen and B. G. Van Ness, Proc. Natl. Acad. Sci. USA 82:4792-4797, 1985; M. A. Shapiro and M. Weigert, J. Immunol. 139:3834-3839, 1987). To determine whether multiple recombinations on a single kappa allele can contribute to the formation of productive V-J genes through corrective recombinations, we have examined several Abelson murine leukemia virus-transformed pre-B-cell clones which rearrange the kappa locus during cell culture. Clonal cell lines which had rearranged one kappa allele nonproductively while maintaining the other allele in the germ line configuration were grown, and secondary subclones, which subsequently expressed kappa protein, were isolated and examined for further kappa rearrangement. A full spectrum of rearrangement patterns was observed in this sequential cloning, including productive and nonproductive recombinations of the germ line allele and secondary recombinations of the nonproductive allele. The results show that corrective V-J recombinations, with displacement of the nonproductive kappa gene, occur with a significant frequency (6 of 17 kappa-producing subclones). Both deletion and maintenance of the primary (nonfunctional) V-J join, as a reciprocal product, were observed. Images PMID:2153918

  18. Celecoxib promotes c-FLIP degradation through Akt-independent inhibition of GSK3

    PubMed Central

    Chen, Shuzhen; Cao, Wei; Yue, Ping; Hao, Chunhai; Khuri, Fadlo R.; Sun, Shi-Yong

    2011-01-01

    Celecoxib is a COX2 inhibitor that reduces the risk of colon cancer. However, the basis for its cancer chemopreventive activity is not fully understood. In this study, we defined a mechanism of celecoxib action based on degradation of c-FLIP, a major regulator of the death receptor pathway of apoptosis. c-FLIP protein levels are regulated by ubiquitination and proteasome-mediated degradation. We found that celecoxib controlled c-FLIP ubiquitination through Akt-independent inhibition of GSK3 kinase, itself a candidate therapeutic target of interest in colon cancer. Celecoxib increased the levels of phosphorylated GSK3 (p-GSK3), including the α and β forms, even in cell lines where p-Akt levels were not increased. PI3K inhibitors abrogated Akt phosphorylation as expected but had no effect on celecoxib-induced GSK3 phosphorylation. In contrast, PKC inhibitors abolished celecoxib-induced GSK3 phosphorylation, implying that celecoxib influenced GSK3 phosphorylation through a mechanism relied upon PKC but not Akt. GSK3 blockade either by siRNA or kinase inhibitors was sufficient to attenuate c-FLIP levels. Combining celecoxib with GSK3 inhibition enhanced attenuation of c-FLIP and increased apoptosis. Proteasome inhibitor MG132 reversed the effects of GSK3 inhibition and increased c-FLIP ubiquitination, confirming that c-FLIP attenuation was mediated by proteasomal turnover as expected. Our findings reveal a novel mechanism through which the regulatory effects of c-FLIP on death receptor signaling are controlled by GSK3, which celecoxib acts at an upstream level to control independently of Akt. PMID:21868755

  19. Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy.

    PubMed

    Moc, Courtney; Taylor, Amy E; Chesini, Gino P; Zambrano, Cristina M; Barlow, Melissa S; Zhang, Xiaoxue; Gustafsson, Åsa B; Purcell, Nicole H

    2015-02-01

    To examine the role of physiological Akt signalling in pathological hypertrophy through analysis of PHLPP1 (PH domain leucine-rich repeat protein phosphatase) knock-out (KO) mice. To investigate the in vivo requirement for 'physiological' control of Akt activation in cardiac growth, we examined the effect of deleting the Akt phosphatase, PHLPP, on the induction of cardiac hypertrophy. Basal Akt phosphorylation increased nearly two-fold in the cardiomyocytes from PHLPP1 KO mice and physiological hypertrophy induced by swimming exercise was accentuated as assessed by increased heart size and myocyte cell area. In contrast, the development of pathophysiological hypertrophy induced by pressure overload and assessed by increases in heart size, myocyte cell area, and hypertrophic gene expression was attenuated. This attenuation coincided with decreased fibrosis and cell death in the KO mice. Cast moulding revealed increased capillary density basally in the KO hearts, which was further elevated relative to wild-type mouse hearts in response to pressure overload. In vitro studies with isolated myocytes in co-culture also demonstrated that PHLPP1 deletion in cardiomyocytes can enhance endothelial tube formation. Expression of the pro-angiogenic factor VEGF was also elevated basally and accentuated in response to transverse aortic constriction in hearts from KO mice. Our data suggest that enhancing Akt activity by inhibiting its PHLPP1-mediated dephosphorylation promotes processes associated with physiological hypertrophy that may be beneficial in attenuating the development of pathological hypertrophy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  20. Activation of Akt, not connexin 43 protein ubiquitination, regulates gap junction stability.

    PubMed

    Dunn, Clarence A; Su, Vivian; Lau, Alan F; Lampe, Paul D

    2012-01-20

    The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.