Science.gov

Sample records for v-cr-ti type alloys

  1. Welding development for V-Cr-Ti alloys

    SciTech Connect

    King, J.F.; Goodwin, G.M.; Alexander, D.J.

    1995-04-01

    A vanadium structure, cooled with helium, is a favored concept for an advanced breeding blanket for fusion systems. The objective of this task is to develop the metallurgical and technological base for the welding of thick sections of V-Cr-Ti. The subsize Charpy test results for electron beam weld metal from the V-5Cr-5Ti alloy has shown significant improvement in Charpy fracture energy compared to both gas tungsten arc weld metal and the base metal itself. These results are preliminary, however, and additional confirmation testing and analysis will be required to explain this improvement in properties.

  2. Subtask 12D4: Baseline tensile properties of V-Cr-Ti alloys

    SciTech Connect

    Loomis, B.A.; Chung, H.M.; Smith, D.L.

    1995-03-01

    The objective of this work is to provide a database on the baseline tensile properties of candidate V-Cr-Ti alloys. Vanadium-base alloys of the V-Cr-Ti system are attractive candidates for use as structural materials in fusion reactors. The current focus of the U.S. program of research on these alloys is on the V-(4-6)Cr-(3-6)Ti alloys containing 500-1000 wppm Si. In this paper, we present experimental results on baseline tensile properties of V-Cr-Ti alloys measured at 230-700{degrees}C, with an emphasis on the tensile properties of the U.S. reference alloy V-4Cr-4Ti. The reference alloy was found to exhibit excellent tensile properties up to 700{degrees}C. 9 refs., 8 figs., 1 tab.

  3. Oxidation and microstrucure of V-Cr-Ti alloys exposed to oxygen-containing environments

    SciTech Connect

    Natesan, K.; Uz, M.; Ulie, T.

    1997-08-01

    The objectives of this task are to (a) evaluate the oxygen uptake of several V-Cr-Ti alloys as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen trapped at the grain boundaries in the substrate alloys, and (c) evaluate the influence of alloy composition on oxygen uptake and develop correlation(s) between alloy composition, exposure environment, and temperature.

  4. Electrical resistivity of V-Cr-Ti alloys

    SciTech Connect

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S.

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  5. Physical properites of O- and N-containing V-Cr-Ti alloys

    SciTech Connect

    Park, J.H.; Kupperman, D.; Park, E.T.; Dragel, G.

    1996-04-01

    Incorporation of O in the surface of V-Ti-Cr alloys has been investigated in controlled environments at 550-750{degrees}C, and test were performed to determine the physical properties of V-Cr-Ti-O solid solutions. The amount of O in the alloys has been determined by weight change measurements. Microhardness was used to determine O depth profiles of the alloys. X-ray diffraction indicated a phase transformation from body-centered cubic (bcc) to tetragonal in the lattice that was highly stressed because of O incorporation. Back-scattered-electron images and electron-energy-dispersive spectra revealed Cr depletion near alloy grain boundaries. Elastic modulus and Vickers hardness increased in O-enriched V-Cr-Ti alloys. Hardening of the alloys results from O atoms on face-centered interstitial sites in the bcc sublattice and the formation of homogeneous oxide or nitride phases via internal oxidation or nitridation. The O,N-enriched surface region exhibited the extraordinarily high Vickers hardness of {approx}18 GPa (1800 kg/mm{sup 2}), a value that is typical of oxides nitrides, or carbides, or that is obtainable by ion-beam irradiation of metals.

  6. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    SciTech Connect

    Natesan, K.; Soppett, W.K.

    1998-03-01

    A systematic study has been initiated to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with the hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, four heats of alloys (BL-63, BL-71, and T87, plus 44 from General Atomics) are being evaluated. Other variables of interest are the effect of initial grain size on hydrogen uptake and tensile properties, and the synergistic effects of oxygen and hydrogen on the tensile behavior of the alloys. Experiments conducted thus far on specimens of various V-Cr-Ti alloys exposed to pH{sub 2} levels of 0.01 and 3 {times} 10{sup {minus}6} torr showed negligible effect of H{sub 2} on either maximum engineering stress of uniform/total elongation. Further, preliminary tests on specimens annealed at different temperatures showed that grain size variation by a factor of {approx}2 had a negligible effect on tensile properties.

  7. Laser-welded V-Cr-Ti alloys: Microstructural and mechanical properties

    SciTech Connect

    Natesan, K.; Smith, D.L.; Sanders, P.G.; Leong, K.H.

    1998-03-01

    A systematic study has been initiated to examine the use of lasers to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the laser-welded materials. In addition, several post-welding heat treatments are being applied to the welded samples to evaluate their benefits, if any, to the structure and properties of the weldments. Hardness measurements are made across the welded regions of different samples to evaluate differences in the characteristics of various weldments.

  8. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1998-09-01

    A systematic study has been initiated at Argonne National Laboratory to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, the principal effort has focused on the V-4Cr-4Ti alloy of heat identified as BL-71; however other alloys (V-5Cr-5Ti alloy of heats BL-63, and T87, plus V-4Cr-4Ti alloy from General Atomics [GA]) are also being evaluated. Other variables of interest are the effect of initial grain size on the tensile behavior of the alloys. Experiments conducted on specimens of various V-Cr-Ti alloys exposed to pH{sub 2} levels of 0.01 and 3 {times} 10{sup {minus}6} torr showed negligible effect of H{sub 2} on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed to 1.0 torr H{sub 2} pressure. Preliminary data from sequential exposures of the materials to low-pO{sub 2} and several low-pH{sub 2} environments did not reveal an adverse effect on the maximum engineering stress or on uniform and total elongation. Further, tests in H{sub 2} environments on specimens annealed at different temperatures showed that grain-size variation by a factor of {approx}2 had little or no effect on tensile properties.

  9. Performance of V-Cr-Ti alloys in a hydrogen environment

    SciTech Connect

    Natesan, K.; Soppet, W. K.

    2000-04-03

    A systematic study is underway at Argonne National Laboratory to evaluate the mechanical properties of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake by the samples and with the resulting influence on microstructures and tensile properties of the alloys. Other variables examined are specimen cooling rate and synergistic effects, if any, of oxygen and hydrogen on tensile behavior of the alloys. Experiments were conducted to evaluate the effect of pH{sub 2} in the range of 3 x 10{sup {minus}6} and 1 torr on tensile properties of two V-Cr-Ti alloys. Up to pH{sub 2} of 0.05 torr, negligible effect of H was observed on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed at 500 C to 1.0 torr of H{sub 2} pressure. Preliminary data from sequential exposures of the materials to low-pO{sub 2} and several low-pH{sub 2} environments did not reveal adverse effects on the maximum engineering stress or on uniform and total elongation when the alloy contained {approx} 2,000 wppm O and 16 wppm H. Furthermore, tests in H{sub 2}-exposed specimens, initially annealed at various temperatures, showed that grain-size variation by a factor of {approx} 2 had little or no effect on tensile properties. Also, specimen cooling rate had a small effect, if any, on the tensile properties of the alloy.

  10. Laser-welded V-Cr-Ti alloys: Microstructure and mechanical properties

    SciTech Connect

    Natesan, K.; Smith, D.L.; Xu, Z.; Leong, K.H.

    1998-09-01

    A systematic study has been in progress at Argonne National Laboratory to examine the use of YaG or CO{sub 2} lasers to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the laser-welded materials. In addition, several postwelding heat treatments are being applied to the welded samples to evaluate their benefits, if any, to the structure and properties of the weldments. Hardness measurements are made across the welded regions of different samples to evaluate differences in the characteristics of various weldments. Several weldments were used to fabricate specimens for four-point bend tests. Several additional weldments were made with a YaG laser; here, the emphasis was on determining the optimal weld parameters to achieve deep penetration in the welds. A preliminary assessment was then made of the weldments on the basis of microstructure, hardness profiles, and defects.

  11. Subtask 12B1: Welding development for V-Cr-Ti alloys

    SciTech Connect

    King, J.F.; Goodwin, G.M.; Grossbeck, M.L.; Alexander, D.J.

    1995-03-01

    Development of the metallurgical and technological basis for the welding of thick sections of V-Cr-Ti alloys. The weldability and weldment properties of the V-5Cr-5Ti alloy have been evaluated. Results for the Sigmajig test of the vanadium alloy were similar to the cracking resistance of stainless steels, and indicates hot-cracking is unlikely to be a problem. Subsize Charpy test results for GTA weld metal in the as-welded condition have shown a significant reduction in toughness compared to the base metal. The weld metal toughness properties were restored to approximately that of the base metal after exposure to a PWHT 950{degrees}C. The subsize Charpy toughness results for the EB weld metal from this same heat of vanadium alloy has shown significant improvement in properties compared to the GTA weld metal and the base metal. Further testing and analysis will be conducted to more fully characterize the properties of weld metal for each welding process and develop a basic understanding of the cause of the toughness decrease in the GTA welds. 5 figs., 1 tab.

  12. Assessment of the radiation-induced loss of ductility in V-Cr-Ti alloys

    SciTech Connect

    Rowcliffe, A.F.; Zinkle, S.J.

    1997-04-01

    Alloys based on the V-Cr-Ti system are attractive candidates for structural applications in fusion systems because of their low activation properties, high thermal stress factor (high thermal conductivity, moderate strength, and low coefficient of thermal expansion), and their good compatibility with liquid lithium. The U.S. program has defined a V-4Cr-4Ti (wt %) alloy as a leading candidate alloy based upon evidence from laboratory-scale (30 kg) heats covering the approximate composition range 0-8 wt % Ti and 5 to 15 wt % Cr. A review of the effects of neutron displacement damage, helium, and hydrogen generation on mechanical behavior, and of compatibility with lithium, water, and helium environments was presented at the ICFRM-5 conference at Clearwater in 1991. The results of subsequent optimization studies, focusing on the effects of fast reactor irradiation on tensile and impact properties of a range of alloys, were presented at the ICFRM-6 conference at Stresa in 1993. The primary conclusion of this work was that the V-4Cr-4Ti alloy composition possessed a near-optimal combination of physical and mechanical properties for fusion structural applications. Subsequently, a production-scale (500 kg) heat of V-4Cr-4Ti (Heat No. 832665) was procured from Teledyne Wah-Chang, together with several 15 kg heats of alloys with small variations in Cr and Ti. Further testing has been carried out on these alloys, including neutron irradiation experiments to study swelling and mechanical property changes. This paper discusses ductility measurements from some of these tests which are in disagreement with earlier work.

  13. Oxidation behavior of V-Cr-Ti alloys in low-partial-pressure oxygen environments

    SciTech Connect

    Natesan, K.; Uz, M.

    1998-09-01

    A test program is in progress at Argonne National Laboratory to evaluate the effect of pO{sub 2} in the exposure environment on oxygen uptake, scaling kinetics, and scale microstructure in V-Cr-Ti alloys. The data indicate that the oxidation process follows parabolic kinetics in all of the environments used in the present study. From the weight change data, parabolic rate constants were evaluated as a function of temperature and exposure environment. The temperature dependence of the parabolic rate constants was described by an Arrhenius relationship. Activation energy for the oxidation process was fairly constant in the oxygen pressure range of 1 {times} 10{sup {minus}6} to 1 {times} 10{sup {minus}1} torr for both the alloys. The activation energy for oxidation in air was significantly lower than in low-pO{sub 2} environments, and for oxidation in pure O{sub 2} at 760 torr was much lower than in low-pO{sub 2} environments. X-ray diffraction analysis of the specimens showed that VO{sub 2} was the dominant phase in low-pO{sub 2} environments, while V{sub 2}O{sub 5} was dominant in air and in pure oxygen at 76f0 torr.

  14. Neutron irradiation of V-Cr-Ti alloys in the BOR-60 fast reactor: Description of the fusion-1 experiment

    SciTech Connect

    Rowcliffe, A.F.; Tsai, H.C.; Smith, D.L.

    1997-08-01

    The FUSION-1 irradiation capsule was inserted in Row 5 of the BOR-60 fast reactor in June 1995. The capsule contains a collaborative RF/U.S. experiment to investigate the irradiation performance of V-Cr-Ti alloys in the temperature range 310 to 350{degrees}C. This report describes the capsule layout, specimen fabrication history, and the detailed test matrix for the U.S. specimens. A description of the operating history and neutronics will be presented in the next semiannual report.

  15. Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1998-03-01

    A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment. Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation {approx}500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after {approx}2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after {approx}250 h exposure at 500 C in environments with a pO{sub 2} range of 1 {times} 10{sup {minus}6} to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO{sub 2} in the preexposure environment and was of 70--95 {micro}m after 250--275 h exposure at 500 C.

  16. Revised ANL-reported tensile data for V-Ti and V-Cr-Ti alloys

    SciTech Connect

    Billone, M.C.

    1997-08-01

    The tensile for all irradiated vanadium alloy samples and several unirradiated vanadium alloys tested at Argonne National Laboratory (ANL) have been critically reviewed and revised, as necessary. The review and revision are based on re-analyzing the original load-displacement strip-chart recording using a methodology consistent with current ASTM standards. No significant difference has been found between the newly-revised and previously-reported values of yield strength (YS) and ultimate tensile strength (UTS). However, by correctly subtracting the non-gauge-length displacement and linear gauge-length displacement from the total cross-head displacement, the uniform elongation (UE) of the gauge length decreases by 4-9% strain and the total elongation (TE) of the gauge length decreases by 1-7% strain. These differences are more significant for lower-ductility irradiated alloys than for higher-ductility alloys.

  17. Grain boundary migration induced segregation in V-Cr-Ti alloys

    SciTech Connect

    Gelles, D.S.; Ohnuki, S.; Takahashi, H.

    1996-10-01

    Analytical electron microscopy results are reported for a series of vanadium alloys irradiated in the HFIR JP23 experiment at 500{degrees}C. Alloys were V-5Cr-5Ti and pure vanadium which are expected to have transmuted to V-15Cr-5Ti and V-10Cr following irradiation. Analytical microscopy confirmed the expected transmutation occurred and showed redistribution of Cr and Ti resulting from grain boundary migration in V-5Cr-5Ti, but in pure V, segregation was reduced and no clear trends as a function of position near a boundary were identified.

  18. Effect of time and temperature on grain size of V and V-Cr-Ti alloys

    SciTech Connect

    Natesan, K.; Rink, D.L.

    1996-10-01

    Grain growth studies were conducted to evaluate the effect of time and temperature on the grain size of pure V, V-4 wt.%Cr-4 wt.%Ti, and V-5 wt.%Cr-5 wt.%Ti alloys. The temperatures used in the study were 500, 650, 800, and 1000{degrees}C, and exposure times ranged between 100 and {approx}5000 h. All three materials exhibited negligible grain growth at 500, 650, and 800{degrees}C, even after {approx}5000 h. At 1000{degrees}C, pure V showed substantial grain growth after only 100 h, and V-4Cr-4Ti showed growth after 2000 h, while V-5Cr-5Ti showed no grain growth after exposure for up to 2000 h.

  19. Hardness recovery of 85% cold-worked V-Ti and V-Cr-Ti alloys upon annealing at 180{degrees}C to 1200{degrees}C

    SciTech Connect

    Loomis, B.A.; Nowicki, L.J.; Smith, D.L.

    1995-04-01

    The objective of this research is to determine the effect of heat treatment of cold-worked V-Ti and V-Cr-Ti alloys on their resulting microstructures and to correlate the results with the physical and mechanical properties of these alloys. Annealing of 85% cold-worked unalloyed V and V-(1-18)Ti alloys for 1 hr at 180 to 1200{degree}C results in hardness maxima at 180-250{degree}C, 420-600{degree}C, and 1050-1200{degree}C and in hardness minima at 280-360{degree}C and, depending on Ti concentration in the alloy, at 840-1050{degree}C. Annealing of 85% cold-worked V-(4-15)Cr-(3-6)Ti alloys for 1 hr at 180{degree}C to 1200{degree}C results in harness maxima at 180-250{degree}C, 420-800{degree}C, and 1050-1200{degree}C, and in hardness minima at 280-360{degree}C and 920-1050{degree}C.

  20. Revision of the tensile database for V-Ti and V-Cr-Ti alloys tested at ANL.

    SciTech Connect

    Billone, M. C.

    1998-01-13

    The published database for the tensile properties of unirradiated and irradiated vanadium-based alloys tested at Argonne National Laboratory (ANL) has been reviewed. The alloys tested are in the ranges of V-(0-18)wt.%Ti and V-(4-15)wt.%Cr-(3-15)wt.%Ti. A consistent methodology, based on ASTM terminology and standards, has been used to re-analyze the unpublished load vs. displacement curves for 162 unirradiated samples and 91 irradiated samples to determine revised values for yield strength (YS), ultimate tensile strength (UTS), uniform elongation (UE) and total elongation (TE). The revised data set contains lower values for UE ({minus}5{+-}2% strain) and TE ({minus}4{+-}2% strain) than previously reported. Revised values for YS and UTS are consistent with the previously-published values in that they are within the scatter usually associated with these properties.

  1. Procurement of V-Cr-Ti alloys to study minor variations on V-4Cr-4Ti

    SciTech Connect

    Grossbeck, M.L.

    1998-03-01

    The alloys V-6Cr-3Ti, V-4Cr-4Ti-Si, V-6Cr-6Ti, and V-3Cr-3Ti, were prepared by Teledyne Wah Chang Albany Corp. in 1994. Plate and sheet ranging from 0.76 mm to 6.25 mm with residual material being left in 12--20 mm thick bar were fabricated. Although the heats were prepared on a pilot plant scale using different equipment, an effort was made to keep the processing as close to Wah Chang Heat 832665, the reference fusion heat of V-4Cr-4Ti, as possible.

  2. Tensile properties of V-Cr-Ti alloys after exposure in helium and low-partial-pressure oxygen environments

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1997-04-01

    A test program is in progress to evaluate the effect of oxygen at low pO{sub 2} on the tensile properties of V-(4-5)wt% Cr-(4-5)wt% Ti alloys. Some of the tensile specimens were precharged with oxygen at low pO{sub 2} at 500{degrees}C and reannealed in vacuum at 500{degrees}C in environments with various pO{sub 2} levels and subsequently tensile tested at room temperature. The preliminary results indicate that both approaches are appropriate for evaluating the effect of oxygen uptake on the tensile properties of the alloys. The data showed that in the relatively short-time tests conducted thus far, the maximum engineering stress slightly increased after oxygen exposure but the uniform and total elongation values exhibited significant decrease after exposure in oxygen-containing environments. The data for a specimen exposed to a helium environment were similar to those obtained in low pO{sub 2} environments.

  3. CaO insulator coatings and self-healing of defects on V-Cr-Ti alloys in liquid lithium

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1996-02-01

    Electrically insulating and corrosion-resistant coatings are required at the liquid metal/structural interface in fusion first-wall/blanket applications. The electrical resistance of CaO coatings produced on V-5%Cr-5%Ti by exposure of the alloy to liquid Li that contained 0.5--85 wt.% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. The solute element, Ca in liquid Li, reacted with the alloy substrate at 400--420{degrees}C to produce a CaO coating. Resistance of the coating layer measured in-situ in liquid Li was {approx}10{sup 6} {Omega} at 400{degrees}C. Thermal cycling between 300 and 700{degrees}C changed the coating layer resistance. which followed insulator behavior. These results suggest that thin homogeneous coatings can be produced on variously shaped surfaces by controlling the exposure time, temperature, and composition of the liquid metal. The technique can be applied to various shapes(e.g., inside/outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. Examination of the specimens after cooling to room temperature revealed no spallation, but homogeneous crazing cracks were present in the CaO coating. Additional tests to investigate the in-situ self-healing behavior of the cracks indicated that rapid healing occurred at {ge}360{degrees}C.

  4. Revised ANL-reported tensile data for unirradiated and irradiated (FFTF, HFIR) V-Ti and V-Cr-Ti alloys

    SciTech Connect

    Billone, M.C.

    1998-03-01

    The tensile data for all unirradiated and irradiated vanadium alloys samples tested at Argonne National Laboratory (ANL) have been critically reviewed and, when necessary, revised. The review and revision are based on reanalyzing the original load-displacement strip chart recordings by a methodology consistent with current ASTM standards. For unirradiated alloys (162 samples), the revised values differ from the previous values as follows: {minus}11{+-}19 MPa ({minus}4{+-}6%) for yield strength (YS), {minus}3{+-}15 MPa ({minus}1{+-}3%) for ultimate tensile strength (UTS), {minus}5{+-}2% strain for uniform elongation (UE), and {minus}4{+-}2% strain for total elongation (TE). Of these changes, the decrease in {minus}1{+-}6 MPa (0{+-}1%) for UTS, {minus}5{+-}2% for UE, and {minus}4{+-}2% for TE. Of these changes, the decrease in UE values for alloys irradiated and tested at 400--435 C is the most significant. This decrease results from the proper subtraction of nongauge-length deformation from measured crosshead deformation. In previous analysis of the tensile curves, the nongauge-length deformation was not correctly determined and subtracted from the crosshead displacement. The previously reported and revised tensile values for unirradiated alloys (20--700 C) are tabulated in Appendix A. The revised tensile values for the FFTF-irradiated (400--600 C) and HFIR-irradiated (400 C) alloys are tabulated in Appendix B, along with the neutron damage and helium levels. Appendix C compares the revised values to the previously reported values for irradiated alloys. Appendix D contains previous and revised values for the tensile properties of unirradiated V-5Cr-5Ti (BL-63) alloy exposed to oxygen.

  5. CaO insulator coatings and self-healing of defects on V-Cr-Ti alloys in liquid lithium system

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1995-09-01

    Electrically insulating and corrosion-resistant coatings are required at the liquid metal/structural interface in fusion first-wall/blanket applications. Electrical resistance of CaO coatings that were produced on V-5%Cr-5%Ti by exposure of the alloy to liquid Li containing 0.5-85 wt.% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. The solute element, Ca in liquid Li, reacted with the alloy substrate at 400-420{degrees}C to produce a CaO coating. Resistance of the coating layer measured in-situ in liquid Li was {approx}10{sup 6} {Omega} at 400{degrees}C. Thermal cycling between 300 and 700{degrees}C changed the coating layer resistance, which followed insulator behavior. These results suggest that thin homogeneous coatings can be produced on variously shaped surfaces by controlling the exposure time, temperature, and composition of the liquid metal. The technique can be applied to various shapes (e.g., inside/outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. Examination of the specimens after cooling to room temperature revealed no spallation, but homogeneous crazing cracks were present in the CaO coating. Additional tests to investigate the in-situ self-healing behavior of the cracks indicated that rapid healing occurred at {>=}360{degrees}C.

  6. Reactions of hydrogen with V-Cr-Ti alloys

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Chitwood, L.D.; Roehrig, D.H.

    1998-09-01

    In the absence of increases in oxygen concentration, additions of up to 400 ppm hydrogen to V-4 Cr-4 Ti did not result in significant embrittlement as determined by room temperature tensile tests. However, when hydrogen approached 700 ppm after exposure at 325 C, rapid embrittlement occurred. In this latter case, hydride formation is the presumed embrittlement cause. When oxygen was added during or prior to hydrogen exposure, synergistic effects led to significant embrittlement by 100 ppm hydrogen.

  7. Tensile properties of aluminized V-5Cr-5Ti alloy after exposure in air environment

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1997-08-01

    The objectives of this task are to (a) develop procedures to modify surface regions of V-Cr-Ti alloys in order to minimize oxygen uptake by the alloys when exposed to environments that contain oxygen, (b) evaluate the oxygen uptake of the surface-modified V-Cr-Ti alloys as a function of temperature an oxygen partial pressure in the exposure environment, (c) characterize the microstructures of oxide scales and oxygen trapped at the grain boundaries of the substrate alloys, and (d) evaluate the influence of oxygen uptake on the tensile properties of the modified alloys at room and elevated temperatures.

  8. Research and development on vanadium alloys for fusion applications

    SciTech Connect

    Zinkle, S.J.; Rowcliffe, A.F.; Matsui, H.; Abe, K.; Smith, D.L.; Osch, E. van; Kazakov, V.A.

    1998-03-01

    The current status of research and development on unirradiated and irradiated V-Cr-Ti alloys intended for fusion reactor structural applications is reviewed, with particular emphasis on the flow and fracture behavior of neutron-irradiated vanadium alloys. Recent progress on fabrication, joining, oxidation behavior, and the development of insulator coatings is also summarized. Fabrication of large (>500 kg) heats of V-4Cr-4Ti with properties similar to previous small laboratory heats has now been demonstrated. Impressive advances in the joining of thick sections of vanadium alloys using GTA and electron beam welds have been achieved in the past two years, although further improvements are still needed.

  9. Subtask 12D2: Baseline impact properties of vanadium alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the baseline impact properties of vanadium-base alloys as a function of compositional variables. Up-to-date results on impact properties of unirradiated V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented and reviewed in this paper, with an emphasis on the most promising class of alloys, i.e., V-(4-5)Cr-(3-5)Ti containing 400-1000 wppm Si. Database on impact energy and ductile-brittle transition temperature (DBTT) has been established from Charpy impact tests on small laboratory as well as production-scale heats. DBTT is influenced most significantly by Cr contents and, to a lesser extent, by Ti contents of the alloys. When combined contents of Cr and Ti were {le}10 wt.%, V-Cr-Ti alloys exhibit excellent impact properties, i.e., DBTT<-200{degrees}C and upper shelf energies of {approx}120-140 J/cm{sup 2}. Impact properties of the production-scale heat of the U.S. reference alloy V-4Cr- 4Ti were as good as those of the laboratory-scale heats. Optimal impact properties of the reference alloy were obtained after annealing the as-rolled products at 1000{degrees}C-1050{degrees}C for 1-2 h in high-quality vacuum. 17 refs., 6 figs., 2 tabs.

  10. Thermophysical and mechanical properties of V-(4-5)%Cr-(4-5)%Ti alloys

    SciTech Connect

    Zinkle, S.J.

    1998-03-01

    Solid solution V-Cr-Ti alloys exhibit a good combination of high thermal conductivity, adequate tensile strength, and low thermal expansion. The key thermophysical and mechanical properties for V-(4-5)%Cr-(4-5)%Ti alloys are summarized in this report. Some of these data are available in the ITER Materials Properties Handbook (IMPH), whereas other data have been collected from recent studies. The IMPH is updated regularly, and should be used as the reference point for design calculations whenever possible.

  11. Heat treatment effects on tensile properties of V-(4-5) wt.% Cr-(4-5) wt.% Ti alloys

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1997-08-01

    Effects of thermomechanical treatments on microstructures and mechanical properties are of interest for long term application of V-Cr-Ti alloys in fusion reactor systems. Influence of thermal annealing at 1050{degrees}C on stress/strain behavior, maximum engineering strength, and uniform and total elongation were evaluated. The results show that multiple annealing has minimal effect on the tensile properties of V-(4-5)Cr-(4-5)Ti alloys tested at room temperature and at 500{degrees}C.

  12. Properties of splat-quenched 7075 aluminum type alloys

    NASA Technical Reports Server (NTRS)

    Durand, J. P. H. A.; Pelloux, R. M.; Grant, N. J.

    1976-01-01

    The 7075 alloy belonging to the Al-Zn-Mg-Cu system, prepared by powder metallurgy techniques, was used in a study of alloys prepared from splat-quenched foils consolidated into bar material by hot extrusion. Ni and Fe were included in one alloy specimen, producing a fine dispersion of FeAl3 type particles which added to the strength of the aged alloy but did not coarsen upon heat treatment. Fine oxide films showing up on air-splatted foils induce finely dispersed oxide stringers (if the foils are not hot-worked subsequently) which in turn promote axial cracking (but longitudinal tensile strength is not seriously impaired). Splatting in a protective atmosphere, or thermomechanical processing, is recommended to compensate for this.

  13. The effect of cobalt content in U-700 type alloys on degradation of aluminide coatings

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1985-01-01

    The influence of cobalt content in U-700 type alloys on the behavior of aluminide coatings is studied in burner rig cyclic oxidation tests at 1100C. It is determined that aluminide coatings on alloys with higher cobalt offer better oxidation protection than the same coatings on alloys containing less cobalt.

  14. Development and testing ov danadium alloys for fusion applications

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1996-10-01

    V base alloys have advantages for fusion reactor first-wall and blanket structure. To screen candidate alloys and optimize a V-base alloy, physical and mechanical properties of V-Ti, V-Cr-Ti, and V-Ti- Si alloys were studied before and after irradiation in Li environment in fast fission reactors. V-4Cr-4Ti containing 500-1000 wppM Si and <1000 wppM O+N+C was investigated as the most promising alloy, and more testing is being done. Major results of the work are presented in this paper. The reference V-4Cr-4Ti had the most attractive combination of the mechanical and physical properties that are prerequisite for first-wall and blanket structures: good thermal creep, good tensile strength/ductility, high impact energy, excellent resistance to swelling, and very low ductile-brittle transition temperature before and after irradiation. The alloy was highly resistant to irradiation-induced embrittlement in Li at 420-600 C, and the effects of dynamically charged He on swelling and mechanical properties were insignificant. However, several important issues remain unresolved: welding, low-temperature irradiation, He effect at high dose and high He concentration, irradiation creep, and irradiation performance in air or He. Initial results of investigation of some of these issues are also given.

  15. Improvement of needle type applicator made of shape memory alloy.

    PubMed

    Kanazawa, Y; Kato, K; Yabuhara, T; Uzuka, T; Takahashi, H; Fujii, Y

    2008-01-01

    This paper discusses radio frequency (RF) interstitial hyperthermia for brain tumors with a developed needle type applicator made of a shape memory alloy (SMA). The problem with the heating method of interstitial hyperthermia is the small heating area. So, we proposed a new heating method using a needle type electrode made of SMA which consists of nickel (Ni), copper (Cu) and titanium (Ti) for expanding the heating area. Here, we proposed the heating method that the leading end of needle type electrode was divided into four parts and the leading end spreads in four directions with a temperature rise. First, the proposed RF interstitial hyperthermia system with the SMA needle was presented. Second, the results obtained by the experimental heating of the agar phantom by using the developed SMA needle type applicator were presented. Third, comparing experimental results, we discussed the heating properties of the developed system. Finally, from these results, it is confirmed that the developed needle type applicator made of SMA is useful for wide heating by invasive hyperthermia.

  16. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications.

    PubMed

    Zhao, Xingfeng; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-05-01

    To develop a novel biomedical titanium alloy with a changeable Young's modulus via deformation-induced ω phase transformation for the spinal rods in spinal fixation devices, a series of metastable β type binary Ti-(15-18)Mo alloys were prepared. In this study, the microstructures, Young's moduli and tensile properties of the alloys were systemically examined to investigate the effects of deformation-induced ω phase transformation on their mechanical properties. The springback of the optimal alloy was also examined. Ti-(15-18)Mo alloys subjected to solution treatment comprise a β phase and a small amount of athermal ω phase, and they have low Young's moduli. All the alloys investigated in this study show an increase in the Young's modulus owing to deformation-induced ω phase transformation during cold rolling. The deformation-induced ω phase transformation is accompanied with {332}(β) mechanical twinning. This resulted in the maintenance of acceptable ductility with relatively high strength. Among the examined alloys, the Ti-17Mo alloy shows the lowest Young's modulus and the largest increase in the Young's modulus. This alloy exhibits small springback and could be easily bent to the required shape during operation. Thus, Ti-17Mo alloy is considered to be a potential candidate for the spinal rods in spinal fixation devices. PMID:22326686

  17. Subtask 12F1: Effect of neutron irradiation on swelling of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effects of neutron irradiation on the density change, void distribution, and microstructural evolution of vanadium-base alloys. Swelling behavior and microstructural evolution of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were investigated after irradiation at 420-600{degrees}C up to 114 dpa. The alloys exhibited swelling maxima between 30 and 80 dpa and swelling decreased on irradiation to higher dpa. This is in contrast to the monotonically increasing swelling of binary alloys that contain Fe, Ni, Cr, Mo, W, and Si. Precipitation of dense Ti{sub 5}Si{sub 3} promotes good resistance to swelling of the Ti-containing alloys, and it was concluded that Ti of >3 wt.% and 400-1000 wppm Si are necessary to effectively suppress swelling. Swelling was minimal in V-4Cr-4Ti, identified as the most promising alloy based on good mechanical properties and superior resistance to irradiation embrittlement. 18 refs., 6 figs., 1 tab.

  18. Subtask 12F3: Effects of neutron irradiation on tensile properties of vanadium-base alloys

    SciTech Connect

    Loomis, B.A.; Chung, H.M.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effects of neutron irradiation on the tensile properties of candidate vanadium-base alloys. Vanadium-base alloys of the V-Cr-Ti system are attractive candidates for use as structural materials in fusion reactors. The current focus of the U.S. program of research on these alloys is on the V-(4-6)Cr-(3-6)Ti-(0.05-0.1)Si (in wt.%) alloys. In this paper, we present experimental results on the effects of neutron irradiation on tensile properties of selected candidate alloys after irradiation at 400{degrees}C-600{degrees}C in lithium in fast fission reactors to displacement damages of up to {approx}120 displacement per atom (dpa). Effects of irradiation temperature and dose on yield and ultimate tensile strengths and uniform and total elongations are given for tensile test temperatures of 25{degrees}C, 420{degrees}C, 500{degrees}, and 600{degrees}C. Effects of neutron damage on tensile properties of the U.S. reference alloy V-4Cr-4Ti are examined in detail. 7 refs., 10 figs., 1 tab.

  19. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  20. Grain size control and superplasticity in 6013-type aluminum alloys

    NASA Astrophysics Data System (ADS)

    Troeger, Lillianne Plaster Whitelock

    Aluminum alloys have been the material of choice for aircraft construction since the 1930's. Currently, the automotive industry is also showing an increasing interest in aluminum alloys as structural materials. 6xxx aluminum alloys possess a combination of strength and formability which makes them attractive to both industries. In addition, 6xxx alloys are highly weldable, corrosion resistant, and low in cost as compared with the 2xxx and 7xxx aluminum alloys. Superplastic forming (SPF) is a manufacturing process which exploits the phenomenon of superplasticity in which gas pressure is used to form complex-shaped parts in a single forming operation. This reduces part counts and the need for fasteners and connectors, resulting in reduced product weight. Reduced product/vehicle weight improves fuel economy. Most alloys must be specially processed for superplasticity. Much research effort has been directed at the development of thermomechanical processes for the grain refinement of aluminum alloys by static or dynamic recrystallization. to induce superplasticity. While large numbers of studies have been conducted on 2xxx, 5xxx, 7xxx, and 8xxx aluminum alloys, very few studies have been focused on the grain refinement of 6xxx aluminum alloys for superplasticity. The current research describes a new thermomechanical process for application to 6xxx aluminum alloys for grain refinement and superplasticity. The process is shown to successfully refine and induce superplasticity in an Al-Mg-Si-Cu alloy which falls within the compositional limits of both 6013 and 6111. The grain refinement is by particle-stimulated nucleation of recrystallization. The microstructural evolution during the thermomechanical processing is characterized in terms of precipitate size, shape, distribution and composition; texture; recrystallization; and grain size, shape, and thermal stability. The new process produces a statically-stable, weakly-textured, equiaxed grain structure with an average

  1. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  2. Subtask 12A3: Fabrication and properties of compositional variants of vanadium alloys

    SciTech Connect

    Grossbeck, M.L.; Alexander, D.J.; Gubbi, A.N.

    1995-03-01

    Procurement of five 15 kg heats of V-Cr-Ti alloys with variations in Cr and Ti concentrations from the primary V-4Cr-4Ti composition. Fabrication into sheet product, determination of the tensile and Charpy impact properties, and preparation of specimens for reactor irradiation experiments. Data obtained from these alloys will be used to define the allowable ranges of Cr and Ti within which consistent properties may be obtained. Four 15 kg heats with variations in Cr and Ti concentration have been procured in various plate and sheet thicknesses. Measurements of recovery and recrystallization kinetics, precipitation behavior, and Charpy impact properties are in progress to compare properties with the behavior of the primary alloy composition V-4Cr-4Ti. In the fully recrystallized condition, the impact properties of the V-6Cr-3Ti alloy are inferior to those of the 500 kg heat of V-4Cr-4Ti. However, properties comparable to those of the V-4Cr-4Ti can be obtained of the V-6Cr-3Ti as tested in a partially-recrystallized condition. 5 figs., 4 tabs.

  3. Tensile properties of vanadium alloys irradiated at <430{degrees}C

    SciTech Connect

    Chung, H.M.; Smith, D.L.

    1997-08-01

    Recent attention to vanadium alloys has focused on significant susceptibility to loss of work-hardening capability in irradiation experiments at <430{degrees}C. An evaluation of this phenomenon was conducted on V-Ti, V-Cr-Ti, and V-Ti-Si alloys irradiated in several conventional and helium-charging irradiation experiments in the FFTF-MOTA, HFIR, and EBR-II. Work hardening capability and uniform tensile elongation appear to vary strongly from alloy and heat to heat. A strong heat-to-heat variation has been observed in V-4Cr-4Ti alloys tested, i.e., a 500-kg heat (No. 832665), a 100-kg heat (VX-8), and a 30-kg heat (BL-47). The significant differences in susceptibility to loss of work-hardening capability from one heat to another are estimated to correspond to a difference of {approx}100{degrees}C or more in minimum allowable operating temperature (e.g., 450 versus 350{degrees}C).

  4. Evaluation of the retentive force of a b-type Ti-6Mo-4Sn alloy wire clasp.

    PubMed

    Yoda, Nobuhiro; Yokoyama, Masayoshi; Adachi, Genki; Takahashi, Masatoshi; Sasaki, Keiichi

    2010-01-01

    The retentive force of a wire clasp composed of a b-type Ti-6Mo-4Sn alloy (b-Ti alloy) with a low Young modulus was evaluated using a piezoelectric transducer to determine the appropriate undercut for removable partial dentures. There were no significant differences in retentive force between a b-Ti alloy wire with a 0.50-mm undercut and a cobalt-chromium alloy (Co-Cr alloy) wire with a 0.25-mm undercut, or between a b-Ti alloy wire with a 0.75-mm undercut and a Co-Cr alloy wire with a 0.50-mm undercut. The b-Ti alloy wire may be applicable for abutment teeth with a large number of undercuts. Int J Prosthodont 2010;23:38-41.

  5. Evaluation of the retentive force of a b-type Ti-6Mo-4Sn alloy wire clasp.

    PubMed

    Yoda, Nobuhiro; Yokoyama, Masayoshi; Adachi, Genki; Takahashi, Masatoshi; Sasaki, Keiichi

    2010-01-01

    The retentive force of a wire clasp composed of a b-type Ti-6Mo-4Sn alloy (b-Ti alloy) with a low Young modulus was evaluated using a piezoelectric transducer to determine the appropriate undercut for removable partial dentures. There were no significant differences in retentive force between a b-Ti alloy wire with a 0.50-mm undercut and a cobalt-chromium alloy (Co-Cr alloy) wire with a 0.25-mm undercut, or between a b-Ti alloy wire with a 0.75-mm undercut and a Co-Cr alloy wire with a 0.50-mm undercut. The b-Ti alloy wire may be applicable for abutment teeth with a large number of undercuts. Int J Prosthodont 2010;23:38-41. PMID:20234890

  6. Alloy

    NASA Astrophysics Data System (ADS)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  7. Tensile impact properties of vanadium-base alloys irradiated at <430{degree}C.

    SciTech Connect

    Chung, H. M.

    1998-05-18

    Tensile and impact properties were investigated at <430 C on V-Cr-Ti, V-Ti-Si, and V-Ti alloys after irradiation to {approx}2-46 dpa at 205-430 C in lithium or helium in the Fast Flux Test Facility (FFTF), High Flux Isotope Reactor (HFIR), Experimental Breeder Reactor II (EBR-II), and Advanced Test Reactor (ATR). A 500-kg heat of V-4Cr-4Ti exhibited high ductile-brittle transition temperature and minimal uniform elongation as a result of irradiation-induced loss of work-hardening capability. Work-hardening capabilities of 30- and 100-kg heats of V-4Cr-4Ti varied significantly with irradiation conditions, although the 30-kg heat exhibited excellent impact properties after irradiation at {approx}390-430 C. The origin of the significant variations in the work-hardening capability of V-4Cr-4Ti is not understood, although fabrication variables, annealing history, and contamination from the irradiation environment are believed to play important roles. A 15-kg heat of V-3Ti-1Si exhibited good work-hardening capability and excellent impact properties after irradiation at {approx}390-430 C. Helium atoms, either charged dynamically or produced via transmutation of boron in the alloys, promote work-hardening capability in V-4Cr-4Ti and V-3Ti-1Si.

  8. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy

    NASA Astrophysics Data System (ADS)

    Wang, X. W.; Lee, H.; Lan, Y. C.; Zhu, G. H.; Joshi, G.; Wang, D. Z.; Yang, J.; Muto, A. J.; Tang, M. Y.; Klatsky, J.; Song, S.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F.

    2008-11-01

    The dimensionless thermoelectric figure of merit (ZT) of the n-type silicon germanium (SiGe) bulk alloy at high temperature has remained at about one for a few decades. Here we report that by using a nanostructure approach, a peak ZT of about 1.3 at 900 °C in an n-type nanostructured SiGe bulk alloy has been achieved. The enhancement of ZT comes mainly from a significant reduction in the thermal conductivity caused by the enhanced phonon scattering off the increased density of nanograin boundaries. The enhanced ZT will make such materials attractive in many applications such as solar, thermal, and waste heat conversion into electricity.

  9. Effect of Off-Stoichiometry on the Thermoelectric Properties of Heusler-Type Fe2VAl Sintered Alloys

    NASA Astrophysics Data System (ADS)

    Mikami, M.; Inukai, M.; Miyazaki, H.; Nishino, Y.

    2016-03-01

    Heusler-type Fe2V1- x Al1+ x sintered alloys with micrometer-sized grains were fabricated by the powder metallurgical process using mechanical alloying and pulse-current sintering. Both positive (˜90 μV/K) and negative (˜-140 μV/K) Seebeck coefficients were obtained for the composition ranges of x > 0 and x < 0, respectively, resulting from a Fermi level shift caused by the change in the valence electron concentration. The electrical resistivity was reduced by the carrier doping effect, especially at lower temperatures, resulting in an increased thermoelectric power factor of 2.8 mW/m-K2 for the p-type alloy with x = 0.06 and 5.0 mW/m-K2 for the n-type alloy with x = -0.06. In addition, the lattice thermal conductivity decreased with | x| because of phonon scattering at crystal lattice defects induced by the off-stoichiometry. Consequently, the thermoelectric figure of merit, ZT, was enhanced and reached 0.07 for p-type alloys with 0.06 < x < 0.15 and 0.18 for n-type alloys with -0.15 < x < -0.10 around 500 K. The ZT value was especially enhanced at higher temperatures by the off-stoichiometric composition control, which could extend the range of heat source temperatures for thermoelectric power generation applications using this alloy.

  10. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Meng, Qingkun; Zhao, Xinqing; Wei, Qiuming; Xu, Huibin

    2015-10-01

    Titanium and its alloys have become the most attractive implant materials due to their high corrosion resistance, excellent biocompatibility and relatively low elastic modulus. However, the current Ti materials used for implant applications exhibit much higher Young’s modulus (50 ~ 120 GPa) than human bone (~30 GPa). This large mismatch in the elastic modulus between implant and human bone can lead to so-called “stress shielding effect” and eventual implant failure. Therefore, the development of β-type Ti alloys with modulus comparable to that of human bone has become an ever more pressing subject in the area of advanced biomedical materials. In this study, an attempt was made to produce a bone-compatible metastable β-type Ti alloy. By alloying and thermo-mechanical treatment, a metastable β-type Ti-33Nb-4Sn (wt. %) alloy with ultralow Young’s modulus (36 GPa, versus ~30 GPa for human bone) and high ultimate strength (853 MPa) was fabricated. We believe that this method can be applied to developing advanced metastable β-type titanium alloys for implant applications. Also, this approach can shed light on design and development of novel β-type titanium alloys with large elastic limit due to their high strength and low elastic modulus.

  11. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength

    PubMed Central

    Guo, Shun; Meng, Qingkun; Zhao, Xinqing; Wei, Qiuming; Xu, Huibin

    2015-01-01

    Titanium and its alloys have become the most attractive implant materials due to their high corrosion resistance, excellent biocompatibility and relatively low elastic modulus. However, the current Ti materials used for implant applications exhibit much higher Young’s modulus (50 ~ 120 GPa) than human bone (~30 GPa). This large mismatch in the elastic modulus between implant and human bone can lead to so-called “stress shielding effect” and eventual implant failure. Therefore, the development of β-type Ti alloys with modulus comparable to that of human bone has become an ever more pressing subject in the area of advanced biomedical materials. In this study, an attempt was made to produce a bone-compatible metastable β-type Ti alloy. By alloying and thermo-mechanical treatment, a metastable β-type Ti-33Nb-4Sn (wt. %) alloy with ultralow Young’s modulus (36 GPa, versus ~30 GPa for human bone) and high ultimate strength (853 MPa) was fabricated. We believe that this method can be applied to developing advanced metastable β-type titanium alloys for implant applications. Also, this approach can shed light on design and development of novel β-type titanium alloys with large elastic limit due to their high strength and low elastic modulus. PMID:26434766

  12. Elastic softening of β-type Ti-Nb alloys by indium (In) additions.

    PubMed

    Calin, Mariana; Helth, Arne; Gutierrez Moreno, Julio J; Bönisch, Matthias; Brackmann, Varvara; Giebeler, Lars; Gemming, Thomas; Lekka, Christina E; Gebert, Annett; Schnettler, Reinhard; Eckert, Jürgen

    2014-11-01

    Recent developments showed that β-type Ti-Nb alloys are good candidates for hard tissue replacement and repair. However, their elastic moduli are still to be further reduced to match Young׳s modulus values of human bone, in order to avoid stress shielding. In the present study, the effect of indium (In) additions on the structural characteristics and elastic modulus of Ti-40 Nb was investigated by experimental and theoretical (ab initio) methods. Several β-type (Ti-40 Nb)-xIn alloys (with x ≤ 5.2 wt%) were produced by cold-crucible casting and subsequent heat treatments (solid solutioning in the β-field followed by water quenching). All studied alloys completely retain the β-phase in the quenched condition. Room temperature mechanical tests revealed ultimate compressive strengths exceeding 770 MPa, large plastic strains (>20%) and a remarkable strain hardening. The addition of up to 5.2 wt% indium leads to a noticeable decrease of the elastic modulus from 69 GPa to 49 GPa, which is closer to that of cortical bone (<30 GPa). Young's modulus is closely related to the bcc lattice stability and bonding characteristics. The presence of In atoms softens the parent bcc crystal lattice, as reflected by a lower elastic modulus and reduced yield strength. Ab initio and XRD data agree that upon In substitution the bcc unit cell volume increases almost linearly. The bonding characteristics of In were studied in detail, focusing on the energies that appeared from the EDOSs significant for possible hybridizations. It came out that minor In additions introduce low energy states with s character that present antibonding features with the Ti first neighboring atoms as well as with the Ti-Nb second neighboring atoms thus weakening the chemical bonds and leading to elastic softening. These results could be of use in the design of low rigidity β-type Ti-alloys with non-toxic additions, suitable for orthopedic applications. PMID:25128870

  13. Elastic softening of β-type Ti-Nb alloys by indium (In) additions.

    PubMed

    Calin, Mariana; Helth, Arne; Gutierrez Moreno, Julio J; Bönisch, Matthias; Brackmann, Varvara; Giebeler, Lars; Gemming, Thomas; Lekka, Christina E; Gebert, Annett; Schnettler, Reinhard; Eckert, Jürgen

    2014-11-01

    Recent developments showed that β-type Ti-Nb alloys are good candidates for hard tissue replacement and repair. However, their elastic moduli are still to be further reduced to match Young׳s modulus values of human bone, in order to avoid stress shielding. In the present study, the effect of indium (In) additions on the structural characteristics and elastic modulus of Ti-40 Nb was investigated by experimental and theoretical (ab initio) methods. Several β-type (Ti-40 Nb)-xIn alloys (with x ≤ 5.2 wt%) were produced by cold-crucible casting and subsequent heat treatments (solid solutioning in the β-field followed by water quenching). All studied alloys completely retain the β-phase in the quenched condition. Room temperature mechanical tests revealed ultimate compressive strengths exceeding 770 MPa, large plastic strains (>20%) and a remarkable strain hardening. The addition of up to 5.2 wt% indium leads to a noticeable decrease of the elastic modulus from 69 GPa to 49 GPa, which is closer to that of cortical bone (<30 GPa). Young's modulus is closely related to the bcc lattice stability and bonding characteristics. The presence of In atoms softens the parent bcc crystal lattice, as reflected by a lower elastic modulus and reduced yield strength. Ab initio and XRD data agree that upon In substitution the bcc unit cell volume increases almost linearly. The bonding characteristics of In were studied in detail, focusing on the energies that appeared from the EDOSs significant for possible hybridizations. It came out that minor In additions introduce low energy states with s character that present antibonding features with the Ti first neighboring atoms as well as with the Ti-Nb second neighboring atoms thus weakening the chemical bonds and leading to elastic softening. These results could be of use in the design of low rigidity β-type Ti-alloys with non-toxic additions, suitable for orthopedic applications.

  14. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.

    PubMed

    Li, S J; Cui, T C; Hao, Y L; Yang, R

    2008-03-01

    Due to recent concern about allergic and toxic effects of Ni ions released from TiNi alloy into human body, much attention has been focused on the development of new Ni-free, metastable beta-type biomedical titanium alloys with a reversible phase transformation between the beta phase and the alpha'' martensite. This study investigates the effect of the stress-induced alpha'' martensite on the mechanical and fatigue properties of Ti-24Nb-4Zr-7.6Sn (wt.%) alloy. The results show that the as-forged alloy has a low dynamic Young's modulus of 55GPa and a recoverable tensile strain of approximately 3%. Compared with Ti-6Al-4V ELI, the studied alloy has quite a high low-cycle fatigue strength because of the effective suppression of microplastic deformation by the reversible martensitic transformation. Due to the low critical stress required to induce the martensitic transformation, it has low fatigue endurance comparable to that of Ti-6Al-4V ELI. Cold rolling produces a beta+alpha'' two-phase microstructure that is characterized by regions of nano-size beta grains interspersed with coarse grains containing alpha'' martensite plates. Cold rolling increases fatigue endurance by approximately 50% while decreasing the Young's modulus to 49GPa along the rolling direction but increasing it to 68GPa along the transverse direction. Due to the effective suppression of the brittle isothermal omega phase, balanced properties of high strength, low Young's modulus and good ductility can be achieved through ageing treatment at intermediate temperature.

  15. Osteoblast cell behavior on the new beta-type Ti-25Ta-25Nb alloy.

    PubMed

    Cimpean, Anisoara; Mitran, Valentina; Ciofrangeanu, Cristina M; Galateanu, Bianca; Bertrand, Emmanuel; Gordin, Doina-Margareta; Iordachescu, Dana; Gloriant, Thierry

    2012-08-01

    Among metallic materials used as bone substitutes, β titanium alloys gain an increasing importance because of their low modulus, high corrosion resistance and good biocompatibility. In this work, an investigation of the in vitro cytocompatibility of a recently new developed β-type Ti-25Ta-25Nb alloy was carried out by evaluating the behavior of human osteoblasts. The metallic Ti-6Al-4V biomaterial, which is one of representative α+β type titanium alloys for biomedical applications, and Tissue Culture Polystyrene (TCPS), were also investigated as reference Ti-based material and control substrate, respectively. Both metallic surfaces were analyzed by X-ray diffraction, atomic force microscopy and X-ray photoelectron spectroscopy. The cellular response was quantified by assessments of viability, cell attachment and spreading, cell morphology, production and extracellular organization of fibronectin and cell proliferation. Polished surfaces from both materials having an equiaxed grain microstructure and nanometre scale surface roughness elicited an essentially identical osteoblast response in terms of all analyzed cellular parameters. Thus, on both surfaces the cells displayed high survival rates, good cell adhesion and spreading, a dense and randomly dispersed fibronectin matrix and increasing cell proliferation rates over the incubation time. Furhermore, the enhanced biological performance of Ti-25Ta-25Nb was highly supported by the results obtained in comparison with TCPS. These findings, together with previously shown superelastic behavior, low Young's modulus and high corrosion resistance, recommend Ti-25Ta-25Nb as good candidate for applications in bone implantology.

  16. P-type InGaN across the entire alloy composition range

    SciTech Connect

    Wang, K.; Araki, T.; Katsuki, T.; Yu, K. M.; Mayer, M. A.; Ager, J. W. III; Walukiewicz, W.; Alarcon-Llado, E.; Nanishi, Y.

    2013-03-11

    A systematic investigation on Mg doped and undoped InGaN epilayers grown by plasma-assisted molecular beam epitaxy has been conducted. Single phase InGaN alloys across the entire composition range were synthesized and Mg was doped into In{sub x}Ga{sub 1-x}N (0.1 {<=} x {<=} 0.88) epilayers up to {approx}10{sup 20}/cm{sup 3}. Hall effect, thermopower, and electrochemical capacitance voltage experimental results demonstrate the realization of p-type InGaN across the entire alloy composition range for properly Mg doped InGaN. Hole densities have been measured or estimated to be in the lower {approx}10{sup 18}/cm{sup 3} range when the net acceptor concentrations are in the lower {approx}10{sup 19}/cm{sup 3} range across the composition range.

  17. Epitaxial alloys of AlxGa1-xAs:Mg with different types of conductivity

    NASA Astrophysics Data System (ADS)

    Seredin, P. V.; Lenshin, A. S.; Arsentyev, I. N.; Tarasov, I. S.; Prutskij, Tatiana; Leiste, Harald; Rinke, Monika

    2016-10-01

    This project employed high-resolution X-ray diffraction, Raman spectroscopy and photoluminescence spectroscopy to investigate the structural, optical and band energy properties of the MOCVD epitaxial heterostructures, AlxGa1-xAs:Mg/GaAs(100), with different levels of magnesium doping. It was shown that the choice of technological conditions used in the preparation of the AlxGa1-xAs:Mg alloy allowed different types of conductivity and it was also possible to achieve significantly different concentrations of the charge carriers in the epitaxial film.

  18. Effect of alloying elements and residuals on corrosion resistance of type 444 stainless steel

    SciTech Connect

    Dowling, N.J.E.; Kim, Y.H.; Ahn, S.K.; Lee, Y.D.

    1999-02-01

    The principal criteria for the corrosion resistance of intermediate-grade ferritic stainless steels (SS) were examined in a neutral chloride (Cl{sup {minus}}) solution. The effect of increasing quantities of chromium and molybdenum was estimated for several heats in terms of the breakdown potential (E{sub b}). The effect of inclusions (particularly the oxide-sulfide type) in type 444 SS ([UNS S44400] 19% Cr-2% Mo-Nb or 19% Cr-2% Mo alloy), combined with the alloying element trend, permitted derivation of an expression that integrated both phenomena. The expression represents the mutually opposing effects of the chromium/molybdenum passive film reinforcement as represented by the pitting resistance equivalent number (PREN), as well as incorporating the deleterious contribution of the inclusion density ({Psi}/mm{sup 2}). Aluminum reduced the total inclusion content, which was associated with an increase in E{sub b}. Since no aluminum was detected in the passive film of high aluminum steels, it appeared likely that the prime effect of this element on corrosion resistance was via inclusion suppression. Corrosion studies of welded type 444 SS demonstrated that dual stabilization with low individual concentrations of titanium and niobium provided optimum corrosion resistance. This apparent synergism of niobium and titanium was independent of the surface of the welded materials, which were examined in the as-received, pickled, or polished states. The effect of the surface state in all cases was shown to exercise a critical effect on passive behavior.

  19. Effect of the mode of plastic deformation on the formation of the alloy-type texture

    SciTech Connect

    Dobrzanski, F.; Bochniak, W.

    1995-06-15

    The aim of this work was to explore the role of heterogeneous deformation in the formation of the alloy-type texture. Recent works on the role of the deformation mode in evolution of the deformation texture seem to shed new light on the problem of texture formation. In particular it has been shown, that the texture typical for pure fcc metals (copper type texture), may be easily converted into the B-component of the alloy type texture (brass texture) due to shear banding induced during cross-rolling. It was proved that deformation in shear bands is a simple transgranular shear (micro-shearband) which makes the polycrystalline metal behave like a single crystal oriented for the single system slip. In view of these results, it seems necessary to re-examine the problem of the formation of the brass type texture during monotonic rolling. In particular, there is no experimental information about the spatial orientation of shear bands in the test piece of brass, except that they occurs on average on lateral face of sample, at 35{degree} with respect to the rolling direction. This does not suffice yet to conclude whether the position of shear in brass is the same as in copper. It may as well be expected, that if the deformation in shear bands in brass is not a plane strain deformation with respect to the sample reference system or, in other words, the sample transverse direction does not lie in the plane of shear, the formation of shear bands may systematically lead to splitting of the metal type texture (resulting from homogeneous deformation) according to the geometry of shear bands. The problem of the spatial orientation of shear bands in monotonically rolled brass and of the evolution of the texture pattern is discussed in this work.

  20. Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering

    SciTech Connect

    Bathula, Sivaiah; Gahtori, Bhasker; Tripathy, S. K.; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay; Jayasimhadri, M.

    2014-08-11

    Owing to their high thermoelectric (TE) figure-of-merit, nanostructured Si{sub 80}Ge{sub 20} alloys are evolving as a potential replacement for their bulk counterparts in designing efficient radio-isotope TE generators. However, as the mechanical properties of these alloys are equally important in order to avoid in-service catastrophic failure of their TE modules, we report the strength, hardness, fracture toughness, and thermal shock resistance of nanostructured n-type Si{sub 80}Ge{sub 20} alloys synthesized employing spark plasma sintering of mechanically alloyed nanopowders of its constituent elements. These mechanical properties show a significant enhancement, which has been correlated with the microstructural features at nano-scale, delineated by transmission electron microscopy.

  1. Distribution of distances between dislocations in different types of dislocation substructures in deformed Cu-Al alloys

    NASA Astrophysics Data System (ADS)

    Trishkina, L.; Cherkasova, T.; Zboykova, N.; Koneva, N.; Kozlov, E.

    2016-01-01

    The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocation chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.

  2. Finite element analysis of the needle type applicator made of shape memory alloy.

    PubMed

    Yabuhara, T; Kato, K; Kanazawa, Y; Kubo, M; Takahashi, H; Uzuka, T; Fujii, Y

    2008-01-01

    In this paper, we propose a new heating method in which we use shape memory alloy (SMA) in a needle type applicator for brain tumor hyperthermia. In order to expand the heating area of a needle type applicator and to control the heating pattern for various sizes of tumors, some kinds of SMA needle type applicators were developed. To apply the proposed heating method safely to clinical hyperthermia, it is necessary to make appropriate thermal distribution to the region of the brain tumor. However, it is not easy to predict the three dimensional temperature distribution during the human brain tumor hyperthermia. Therefore, we estimated the temperature distribution inside the agar phantom by the finite element method (FEM). Here, first, the computer simulation results of temperature distributions under the different heating times are discussed. Second, a comparison of the heating properties obtained by using the needle type electrodes made of different shaped SMA is discussed. From these results, it is confirmed that the proposed heating method can expand the heating area and control the heating pattern for the various sizes of brain tumors.

  3. Ni{sub x}Cd{sub 1−x}O: Semiconducting alloys with extreme type III band offsets

    SciTech Connect

    Francis, Christopher A.; Detert, Douglas M.; Dubon, Oscar D.; Chen, Guibin; Yu, Kin M.; Walukiewicz, Wladek

    2015-01-12

    We have synthesized alloys of NiO and CdO that exhibit an extreme type III band offset and have studied the structural, electrical, and optical properties of Ni{sub x}Cd{sub 1−x}O over the entire composition range. The alloys are rocksalt structured and exhibit a monotonic shift of the (220) diffraction peak to higher 2θ angles with increasing Ni concentration. The electron mobility and electron concentration decrease with increasing x, and samples become insulating for Ni content x > 0.44. This decrease in n-type conductivity is consistent with the movement of the conduction band minimum from below to above the Fermi stabilization energy with increasing Ni content. The optical absorption edge of the alloys can be tuned continuously from CdO to NiO. The intrinsic gap of the alloys was calculated with the electrical and optical measurements and accounting for Burstein-Moss carrier filling and carrier-induced bandgap renormalization effects. We observe an uncommon composition dependence of the intrinsic bandgap on the alloy composition. The effect is tentatively attributed to an interaction between extended states of the conduction band and localized d-states of Ni.

  4. Corrosion of high Ni-Cr alloys and Type 304L stainless steel in HNO/sub 3/-HF

    SciTech Connect

    Ondrejcin, R.S.; McLaughlin, B.D.

    1980-04-01

    Nineteen alloys were evaluated as possible materials of construction for steam heating coils, the dissolver vessel, and the off-gas system of proposed facilities to process thorium and uranium fuels. Commercially available alloys were found that are satisfactory for all applications. With thorium fuel, which requires HNO/sub 3/-HF for dissolution, the best alloy for service at 130/sup 0/C when complexing agents for fluoride are used is Inconel 690; with no complexing agents at 130/sup 0/C, Inconel 671 is best. At 95/sup 0/C, six other alloys tested would be adequate: Haynes 25, Ferralium, Inconel 625, Type 304L stainless steel, Incoloy 825, and Haynes 20 (in order of decreasing preference); based on composition, six untested alloys would also be adequate. The ions most effective in reducing fluoride corrosion were the complexing agents Zr/sup 4 +/ and Th/sup 4 +/; Al/sup 3 +/ was less effective. With uranium fuel, modestly priced Type 304L stainless steel is adequate. Corrosion will be most severe in HNO/sub 3/-HF used occasionally for flushing and in solutions of HNO/sub 3/ and corrosion products (ferric and dichromate ions). HF corrosion can be minimized by complexing the fluoride ion and by passivation of the steel with strong nitric acid. Corrosion caused by corrosion products can be minimized by operating at lower temperatures.

  5. Subtask 12F4: Effects of neutron irradiation on the impact properties and fracture behavior of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    Up-to-date results on the effects of neutron irradiation on the impact properties and fracture behavior of V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented in this paper, with an emphasis on the behavior of the U.S. reference alloys V-4Cr-4Ti containing 500-1000 wppm Si. Database on impact energy and cluctile-brittle transition temperature (DBTT) has been established from Charpy impact tests of one-third-size specimens irradiated at 420{degrees}C-600{degrees}C up to {approx}50 dpa in lithium environment in fast fission reactors. To supplement the Charpy impact tests fracture behavior was also characterized by quantitative SEM fractography on miniature tensile and disk specimens that were irradiated to similar conditions and fractured at -196{degrees}C to 200{degrees}C by multiple bending. For similar irradiation conditions irradiation-induced increase in DBTT was influenced most significantly by Cr content, indicating that irradiation-induced clustering of Cr atoms takes place in high-Cr (Cr {ge} 7 wt.%) alloys. When combined contents of Cr and Ti were {le}10 wt.%, effects of neutron irradiation on impact properties and fracture behavior were negligible. For example, from the Charpy-impact and multiple-bend tests there was no indication of irradiation-induced embrittlement for V-5Ti, V-3Ti-1Si and the U.S. reference alloy V-4Cr-4Ti after irradiation to {approx}34 dpa at 420{degrees}C to 600{degrees}C, and only ductile fracture was observed for temperatures as low as -196{degrees}C. 14 refs., 8 figs., 1 tab.

  6. Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Yeniyol, Sinem; Oktay, Enver

    2016-04-01

    In this study, beta-type Ti-35Nb-10Cu alloy foams were produced by powder metallurgy method for dental implant applications. 35% Nb was added to stabilize the beta-Ti phase with low Young's modulus. Cu addition enhanced sinterability and gave precipitation hardening capacity to the alloy. Sintered specimens were precipitation hardened in order to enhance the mechanical properties. Electrochemical corrosion behavior of the specimens was examined by electrochemical impedance spectroscopy in artificial saliva. Electrochemical impedance spectroscopy results indicated that the oxide film on the surface of foam is a bi-layer structure consisting of outer porous layer and inner barrier layer. Impedance values of barrier layer were higher than porous layer. Corrosion resistance of specimens decreased at high fluoride concentrations and at low pH of artificial saliva. Corrosion resistance of alloys was slightly decreased with aging. Mechanical properties, microstructure, and surface roughness of the specimens were also examined.

  7. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    NASA Technical Reports Server (NTRS)

    Beaty, John S.; Rolfe, Jonathon L.; Vandersande, Jan; Fleurial, Jean-Pierre

    1992-01-01

    Spark erosion was used to produce ultra-fine particles of SiGe thermoelectric material and boron nitride, an inert phonon-scattering material. A homogeneous powder was made by mixing the two powders. The mixture was hot pressed to produce a thermoelectric material with uniformity dispersed, ultra-fine, inert, phonon-scattering centers. It is shown that, in samples with inert boron nitride or silicon nitride, thermal conductivity of a SiGe alloy can be reduced by about 25 percent while maintaining the electrical properties of the samples. Annealing of all the samples at 1525 K caused grain growth to over a micron, eliminating the detrimental effect attributable to small grains. Only in the sample with boron nitride the thermal conductivity did remain well below that for standard p-type SiGe (about 25 percent), while the electrical resistivity and Seebeck coefficient were very close to the values for standard p-type 80/20 SiGe.

  8. Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique.

    PubMed

    Barry, J N; Cowley, A; McNally, P J; Dowling, D P

    2014-03-01

    Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (<47°C) HA deposition technique, called CoBlast, for the application of crystalline HA coatings. To-date, reports on the CoBlast technique have been limited to titanium alloy substrates. This study addresses the suitability of the CoBlast technique for the deposition of HA coatings on a number of alternative metal alloys utilized in the fabrication of orthopedic devices. In addition to titanium grade 5, both cobalt chromium and stainless steel 316 were investigated. In this study, HA coatings were deposited using both the CoBlast and the plasma sprayed techniques, and the resultant HA coating and substrate properties were evaluated and compared. The CoBlast-deposited HA coatings were found to present similar surface morphologies, interfacial properties, and composition irrespective of the substrate alloy type. Coating thickness however displayed some variation with the substrate alloy, ranging from 2.0 to 3.0 μm. This perhaps is associated with the electronegativity of the metal alloys. The APS-treated samples exhibited evidence of both coating, and significantly, substrate phase alterations for two metal alloys; titanium grade 5 and cobalt chrome. Conversely, the CoBlast-processed samples exhibited no phase changes in the substrates after depositions. The APS alterations were attributed to the brief, but high-intensity temperatures experienced during processing.

  9. High thermoelectric potential of n-type Pb1-xTixTe alloys

    NASA Astrophysics Data System (ADS)

    Komisarchik, Genady; Fuks, David; Gelbstein, Yaniv

    2016-08-01

    In an attempt to reduce the reliance on fossil fuels, associated with severe environmental effects, the current research is focused on the identification of the thermoelectric potential of n-type Pb1-xTixTe alloys, with x values of up to 3%. A solubility limit of 0.5 at. % Ti in PbTe was identified, while beyond this composition, a precipitation of a TiTe2 phase was occurred. An impressive maximal dimensionless thermoelectric figure of merit ZT of ˜1.2 was obtained upon 0.1% Ti doping at 500 °C, indicating a ˜9% efficiency enhancement compared to an undoped PbTe. It is shown that generating a functionally graded material based on undoped PbTe as a low temperature segment and a 0.1% Ti doped PbTe as a high temperature segment has a potential to enhance the efficiency by ˜14% compared to the undoped sample.

  10. Design of an antagonistic shape memory alloy actuator for flap type control surfaces

    NASA Astrophysics Data System (ADS)

    Dönmez, Burcu; Özkan, Bülent

    2011-03-01

    This paper deals with the flap control of unmanned aerial vehicles (UAVs) using shape memory alloy (SMA) actuators in an antagonistic configuration. The use of SMA actuators has the advantage of significant weight and cost reduction over the conventional actuation of the UAV flaps by electric motors or hydraulic actuators. In antagonistic configuration, two SMA actuators are used: one to rotate the flap clockwise and the other to rotate the flap counterclockwise. In this content, mathematical modeling of strain and power dissipation of SMA wire is obtained through characterization tests. Afterwards, the model of the antagonistic flap mechanism is derived. Later, based on these models both flap angle and power dissipation of the SMA wire are controlled in two different loops employing proportional-integral type and neural network based control schemes. The angle commands are converted to power commands through the outer loop controller later, which are updated using the error in the flap angle induced because of the indirect control and external effects. In this study, power consumption of the wire is introduced as a new internal feedback variable. Constructed simulation models are run and performance specifications of the proposed control systems are investigated. Consequently, it is shown that proposed controllers perform well in terms of achieving small tracking errors.

  11. Ultrasonic detection of laminar-type defects in iridium alloy blanks

    SciTech Connect

    Cook, K.V.; Cunningham, R.A. Jr.; Simpson, W.A. Jr.; McClung, R.W.

    1986-07-01

    Encapsulated isotopic heat sources for use in generating electrical power for space applications require flight-quality hardware material. Iridium is the chosen material for such applications, and Oak Ridge National Laboratory has been the prime supplier of iridium alloy forming blanks 52 mm in diameter by 0.66 mm thick (1.0 by 0.026 in.). Prior to the work reported here, these blanks were ultrasonically examined by using 0.9-mm-diam (0.035-in.) simulated flaw standards. However, as a result of this effort, the sensitivity of our ultrasonic pulse-echo test system has been increased. The improved ultrasonic test system permits blank inspection at the 0.5-mm-diam (0.020-in.) simulated flaw detection level. This test system was successfully demonstrated on the initial blanks provided via an improved processing route (consumable arc-melting, extruding, and rolling). The equipment modification and/or selection and the specific focused search unit immersion technique developed to provide this capability are described. The improved flaw detection capability also provides data maps of a common type of defect in iridium (delaminations).

  12. Structures and magnetism of two types of c(2x2)-Mn/Pd(001) surface alloys

    SciTech Connect

    Tsuboi, N.; Okuyama, H.; Aruga, T.

    2005-05-15

    Mn/Pd(001) surface alloy was investigated by a tensor low-energy electron diffraction (LEED) analysis. After deposition of Mn on Pd(001) at room temperature, the surface was annealed at 570-620 K, which produced two types of c(2x2) surface alloys, according to the Mn coverage. At a low-Mn coverage, we obtained a Pd-capped c(2x2) surface, in which the first layer was composed of a (1x1)-Pd layer, and the second layer was a c(2x2)-MnPd mixed layer [{alpha}-c(2x2)]. The deposition of greater amounts of Mn followed by annealing resulted in another c(2x2) surface, in which Mn atoms existed in the substitutional sites of the first and third layers [{beta}-c(2x2)]. The first layer consisted of a c(2x2)-MnPd mixed layer, the second layer was a (1x1)-Pd layer, and the third layer was another c(2x2)-MnPd mixed layer. The structure of the {beta}-c(2x2) surface qualitatively agreed with the one previously investigated by LEED. These two types of surface alloys, {alpha}-c(2x2) and {beta}-c(2x2), may be considered as being precursors to the formation of the bulk MnPd{sub 3} alloy. We also investigated the magnetic properties of the {alpha}-c(2x2) and {beta}-c(2x2) surfaces by using surface magneto-optic Kerr effect (MOKE) and self-consistent, total-energy calculations. The MOKE measurements for both surface alloys show no hysterisis loop, even at 10 K. The total-energy calculation shows that Mn atoms have a local-spin moment of 3.9-4.1 {mu}{sub B} and that they are antiferromagnetically ordered in the ground state.

  13. Dot arrays of L1{sub 1} type Co-Pt ordered alloy perpendicular films

    SciTech Connect

    Shimatsu, T.; Mitsuzuka, K.; Aoi, H.; Sato, H.; Kataoka, H.; Okamoto, S.; Kitakami, O.

    2009-04-01

    Magnetic properties of dot arrays of L1{sub 1} type Co-Pt ordered alloy perpendicular films were studied. L1{sub 1}-Co-Pt films with a large uniaxial magnetic anisotropy K{sub u} of the order of 10{sup 7} erg/cm{sup 3} were fabricated at a substrate temperature of 360 deg. C using ultrahigh vacuum sputter film deposition. Dot patterns with dot diameters of 70-200 nm were made using high resolution e-beam lithography and reactive ion etching (RIE). The values of K{sub u} were measured by the GST method using the Anomalous Hall Effect; we observed the averaged signals of 6000 dots. The values of K{sub u} for dot arrays of 10-nm-thick L1{sub 1}-Co{sub 50}Pt{sub 50} films deposited on MgO(111) substrates (single crystal films) and glass disks (polycrystalline films) were nearly the same as those of the original films independent of D, indicating no significant etching damage by the RIE process. Magnetic force microscopy images revealed that all dots were single domains in the present D region. The coercivity H{sub c} of the dot arrays was 25.0 kOe [MgO(111) substrate, D=70 nm] and 14.3 kOe (glass disks, D=80 nm). The switching field distribution {sigma}/H{sub c} was relatively small, {sigma}/H{sub c}=0.15, even for dot arrays fabricated on glass disks, indicating the homogeneous formation of a L1{sub 1} type ordered structure in the Co{sub 50}Pt{sub 50} layers.

  14. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  15. Fatigue strength of titanium alloys with a VK-type detonation coating

    SciTech Connect

    Fedorenko, V.K.; Sergeev, V.V.; Shkanov, I.N.

    1995-07-01

    The influence of the structural, phase, and size factors, and the bonding of hard tungsten alloys to titanium alloy bases on the mechanism by which the system fails under alternating loads is studied. The failure mechanism of materials with detonation coatings applied by different methods is discussed in regard to the classical sequence of fatigue phenomena, i.e., hardening-softening and crack nucleation and growth.

  16. [New type titan alloy with shape memory for use in dental implantology].

    PubMed

    Grigor'ian, A S; Filonov, M R; Arkhipov, A V; Selezneva, I I; Zhukova, Iu S

    2013-01-01

    The paper summarizes the results of in vitro and in vivo studies that have proved biocompatibility and medical safety of Ta and Ti-Nb-Ta-bases alloys. According to some in vitro data Ti-Nb-Ta-based alloy possesses certain advantages when comparing to Ta-based. In particular, it contributes to elevation of viability of cellular elements and to definite increase of their adhesive potential.

  17. Magnetocaloric response of amorphous and nanocrystalline Cr-containing Vitroperm-type alloys

    NASA Astrophysics Data System (ADS)

    Moreno-Ramírez, L. M.; Blázquez, J. S.; Franco, V.; Conde, A.; Marsilius, M.; Budinsky, V.; Herzer, G.

    2016-07-01

    The broad compositional range in which transition metal (TM) based amorphous alloys can be obtained, yields an easily tunable magnetocaloric effect (MCE) in a wide temperature range. In some TM-based alloys, anomalous behaviors are reported, as a non-monotonous trend with magnetic moment (e.g. FeZrB alloys). Moreover, in certain Cr-containing Vitroperm alloys anomalously high values of the magnetic entropy change were published. In this work, a systematic study on MCE response of Cr-containing amorphous alloys of composition Fe74-xCrxCu1Nb3Si15.5B6.5 (with x=2, 8, 10, 12, 13, 14 and 20) has been performed in a broad Curie temperature range from 100 K to 550 K. Curie temperature and magnetic entropy change peak of the amorphous alloys decrease with the increase of Cr content at rates of -25.6 K/at% Cr and -54 mJ kg-1 K-1/at% Cr, respectively, following a linear trend with the magnetic moment in both cases. The presence of nanocrystalline phases has been considered as a possible cause in order to explain the anomalies. The samples were nanocrystallized in different stages, however, the magnetocaloric response decreases as crystallization progresses due to the large separation of the Curie temperatures of the two phases.

  18. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1990-02-02

    A method of fabricating doped microcrystalline semiconductor alloy material which includes a band gap widening element through a glow discharge deposition process by subjecting a precursor mixture which includes a diluent gas to an a.c. glow discharge in the absence of a magnetic field of sufficient strength to induce electron cyclotron resonance.

  19. Heating properties of the needle type applicator made of shape memory alloy by 3-D anatomical human head model.

    PubMed

    Mimoto, N; Kato, K; Kanazawa, Y; Shindo, Y; Tsuchiya, K; Kubo, M; Uzuka, T; Takahashi, H; Fujii, Y

    2009-01-01

    Since the human brain is protected by the skull, it is not easy to non-invasively heat deep brain tumors with electromagnetic energy for hyperthermia treatments. Generally, needle type applicators were used in clinical practice to heat brain tumors. To expand the heating area of needle type applicators, we have developed a new type of needle made of a shape memory alloy (SMA). In this paper, heating properties of the proposed SMA needle type applicator were discussed. Here, in order to apply the SMA needle type applicator clinically. First, we constructed an anatomical 3-D FEM model from MRI and X-ray CT images using 3D-CAD software. Second, we estimated electric and temperature distributions to confirm the SMA needle type applicator using the FEM soft were JMAG-Studio. From these results, it was confirmed that the proposed method can expand the heating area and control the heating of various sizes of brain tumors.

  20. Fabrication of low-cost beta-type Ti-Mn alloys for biomedical applications by metal injection molding process and their mechanical properties.

    PubMed

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko

    2016-06-01

    Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%. PMID:26999621

  1. Fabrication of low-cost beta-type Ti-Mn alloys for biomedical applications by metal injection molding process and their mechanical properties.

    PubMed

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko

    2016-06-01

    Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%.

  2. Effect of indium (In) on corrosion and passivity of a beta-type Ti-Nb alloy in Ringer's solution

    NASA Astrophysics Data System (ADS)

    Gebert, Annett; Oswald, Steffen; Helth, Arne; Voss, Andrea; Gostin, Petre Flaviu; Rohnke, Marcus; Janek, Jürgen; Calin, Mariana; Eckert, Jürgen

    2015-04-01

    Beta-phase Ti-Nb-based alloys are considered as new generation of biomaterials with improved mechanical compatibility for load-bearing implant applications. Small homogeneously dissolved In additions have a positive impact on the elastic properties of beta-type Ti-40Nb. For (Ti-40Nb)-4In the best match between low Young's modulus, high elastic energy and appropriate strength was achieved. In the present study the effect of In addition to Ti-40Nb on the corrosion and passivation behavior in Ringer's solution is assessed by means of potentiodynamic polarization, ICP-OES metal release analysis, XPS and ToF-SIMS for passive film characterization. Like Ti-40Nb, (Ti-40Nb)-4In exhibits very low corrosion rates (icorr = 0.1-0.2 μA/cm2) and stable anodic passivity (ipass = 3-4 μA/cm2). Small In additions do not have a detectable effect on the anodic response of the alloy. For both beta-phase alloys metal release rates are below the quantification limits of ICP-OES. Their strong passivating nature is governed by the formation of thin barrier-type Ti- and Nb-oxide films. Passive films on (Ti-40Nb)-4In surfaces which were formed during OCP exposure or anodic polarization comprise oxidized In species (In2O3, In(OH3)). From the viewpoint of corrosion stability (Ti-40Nb)-4In appears to be suitable for implant applications.

  3. Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D0{sub 3}-type Heusler alloys

    SciTech Connect

    Gao, G. Y. Yao, Kai-Lun

    2013-12-02

    High-spin-polarization materials are desired for the realization of high-performance spintronic devices. We combine recent experimental and theoretical findings to theoretically design several high-spin-polarization materials in binary D0{sub 3}-type Heusler alloys: gapless (zero-gap) half-metallic ferrimagnets of V{sub 3}Si and V{sub 3}Ge, half-metallic antiferromagnets of Mn{sub 3}Al and Mn{sub 3}Ga, half-metallic ferrimagnets of Mn{sub 3}Si and Mn{sub 3}Ge, and a spin gapless semiconductor of Cr{sub 3}Al. The high spin polarization, zero net magnetic moment, zero energy gap, and slight disorder compared to the ternary and quaternary Heusler alloys make these binary materials promising candidates for spintronic applications. All results are obtained by the electronic structure calculations from first-principles.

  4. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications

    SciTech Connect

    Guo, S.; Meng, Q. K.; Cheng, X. N.; Zhao, X. Q.

    2014-08-29

    The deformation behavior of metastable β-type Ti–25Nb–2Mo–4Sn (wt%) alloy subjected to different thermo-mechanical treatments was discussed by the combining results from transmission electron microscope, tensile test and in-situ synchrotron X-ray diffraction. Visible “double yielding” behavior, which is characterized by the presence of stress-plateau, was observed in the solution treated specimen. Upon a cold rolling treatment, the Ti–25Nb–2Mo–4Sn alloy performs nonlinear deformation because of the combined effects of elastic deformation and stress-induced α" martensitic transformation. After the subsequent annealing, the β phase is completely stabilized and no stress-induced martensitic transformation takes place on loading due to the inhibitory effect of grain boundaries and dislocations on martensitic transformation. As a result, the annealed specimen exhibits linear elastic deformation.

  5. Microstructural variations induced by gravity level during directional solidification of near-eutectic iron-carbon type alloys

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Fiske, Michael R.; Curreri, Peter A.

    1986-01-01

    The effects of gravity on the microstructure of directionally solidified near-eutectic cast irons are studied, using a Bridgman-type automatic directional solidification furnace aboard a NASA KC-135 aircraft which flies parabolic arcs and generates alternating periods of low-g (0.01 to 0.001 g, 30 seconds long) and high-g (1.8 g, 1.5 minutes long). Results show a refinement of the interlamellar spacing of the eutectic during low-g processing of metastable Fe-C eutectic alloys. Low-g processing of stable Fe-C-Si eutectic alloys (lamellar or spheroidal graphic) results in a coarsening of the eutectic grain structure. Secondary dendrite arm spacing of austenite increases in low-g and decreases in high-g. The effectiveness of low-gravity in the removal of buoyancy-driven graphite phase segregation is demonstrated.

  6. Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D03-type Heusler alloys

    NASA Astrophysics Data System (ADS)

    Gao, G. Y.; Yao, Kai-Lun

    2013-12-01

    High-spin-polarization materials are desired for the realization of high-performance spintronic devices. We combine recent experimental and theoretical findings to theoretically design several high-spin-polarization materials in binary D03-type Heusler alloys: gapless (zero-gap) half-metallic ferrimagnets of V3Si and V3Ge, half-metallic antiferromagnets of Mn3Al and Mn3Ga, half-metallic ferrimagnets of Mn3Si and Mn3Ge, and a spin gapless semiconductor of Cr3Al. The high spin polarization, zero net magnetic moment, zero energy gap, and slight disorder compared to the ternary and quaternary Heusler alloys make these binary materials promising candidates for spintronic applications. All results are obtained by the electronic structure calculations from first-principles.

  7. Age Hardening Kinetics in 7xxx Type (Al-Mg-Zn) Alloys

    SciTech Connect

    Vevecka-Priftaj, A.; Lamani, E.; Fjerdingen, J.; Langsrud, Y.; Gjoennes, J.; Hansen, V.

    2007-04-23

    Age hardening in industrial 7xxx alloys at the temperature 100 deg. and 150 deg. C up to 144 hrs, after solid solution treatments at 450 deg. and 550 deg. C, has been followed by measurements of Vickers hardness, scanning and transmission electron microscopy. The influence of silicon on phase and kinetic of age hardening zones and precipitates has been studied. High iron and silicon content increase the number of primary particle in the alloy. Size distribution of {eta}'-precipitates has been determined.

  8. Half-metallicity in Heusler-type Fe2Cr1-x Co x Si alloys

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Inamdar, Swaleha; Arout Chelvane, J.; Manivel Raja, M.; Kamat, S. V.

    2016-02-01

    The effects of the substitution of Cr with Co on microstructure, phase composition, structure, magnetic, and electrical properties in \\text{F}{{\\text{e}}2}\\text{C}{{\\text{r}}1-x}\\text{C}{{\\text{o}}x}\\text{Si} (0  ⩽  x  ⩽  1) alloys was investigated to identify the compositions with the potential to exhibit half-metallicity. The microstructural and structural studies revealed that only \\text{F}{{\\text{e}}2}\\text{C}{{\\text{r}}1-x}\\text{C}{{\\text{o}}x}\\text{Si} alloys with x  ⩾  0.5 exhibited the desired single phase L21 full Heusler alloy structure. Both the saturation magnetization (M s) and Curie temperature (T C) were found to increase with the increase in Co concentration. The experimentally measured M s values are in good agreement with the Slater-Pauling rule. The electrical resistivity measurements in the temperature range 10-300 K gives indirect evidence of half-metallic behaviour in these alloys at low temperatures. The temperature range in which the half-metallic behaviour was observed also increased with an increase in Co concentration.

  9. Mechanical properties of modified low cobalt powder metallurgy Udimet 700 type alloys

    NASA Technical Reports Server (NTRS)

    Harf, Fredric H.

    1989-01-01

    Eight superalloys derived from Udimet 700 were prepared by powder metallurgy, hot isostatically pressed, heat treated and their tensile and creep rupture properties determined. Several of these alloys displayed properties superior to those of Udimet 700 similarly prepared, in one case exceeding the creep rupture life tenfold. Filter clogging by extracted gamma prime, its measurement and significance are discussed in an appendix.

  10. Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization

    NASA Astrophysics Data System (ADS)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki

    2009-05-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60°C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  11. Characterization of corrosion products of AB{sub 5}-type hydrogen storage alloys for nickel-metal hydride batteries

    SciTech Connect

    Maurel, F.; Knosp, B.; Backhaus-Ricoult, M.

    2000-01-01

    To better understand the decrease in storage capacity of AB{sub 5}-type alloys in rechargeable Ni/MH batteries undergoing repeated charge/discharge cycles, the corrosion of a MnNi{sub 3.55}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.3} alloy in aqueous KOH electrolyte was studied. The crystal structure, chemical composition, and distribution of corrosion products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Hollow and filed needles of a mixed rare earth hydroxide Mn(OH){sub 3} were found to cover a continuous nanocrystalline corrosion scale composed of metal (Ni, Co) solid solution, oxide (Ni,Co)O solid solution and rare earth hydroxide, and a Mn-depleted alloy subscale. Corrosion kinetics were measured for three different temperatures. Growth kinetics of the continuous corrosion scale and of the Mm(OH){sub 3} needles obeyed linear and parabolic rate laws, respectively. Models for the corrosion mechanism were developed on the basis of diffusional transport of Mn and OH through the hydroxide needles and subsequent diffusion along grain boundaries through the nanocrystalline scale.

  12. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys

    DOE PAGES

    Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin

    2016-11-01

    To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less

  13. Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium

    SciTech Connect

    Zou, Minmin; Li, Jing-Feng; Kita, Takuji

    2013-02-15

    Fine-grained Ti-doped FeVSb half-Heusler alloys were synthesized by combining mechanical alloying and spark plasma sintering and their thermoelectric properties were investigated with an emphasis on the influences of Ti doping and phase purity. It was found that substituting V with Ti can change the electrical transport behavior from n-type to p-type due to one less valence electron of Ti than V, and the sample with nominal composition FeV{sub 0.8}Ti{sub 0.4}Sb exhibits the largest Seebeck coefficient and the maximum power factor. By optimizing the sintering temperature and applying annealing treatment, the power factor is significantly improved and the thermal conductivity is reduced simultaneously, resulting in a ZT value of 0.43 at 500 Degree-Sign C, which is relatively high as for p-type half-Heusler alloys containing earth-abundant elements. - Graphical abstract: Fine-grained Ti-doped FeVSb alloys were prepared by the MA-SPS method. The maximum ZT value reaches 0.43 at 500 Degree-Sign C, which is relatively high for p-type half-Heusler alloys. Highlights: Black-Right-Pointing-Pointer Ti-doped FeVSb half-Heusler alloys were synthesized by combining MA and SPS. Black-Right-Pointing-Pointer Substituting V with Ti changes the electrical behavior from n-type to p-type. Black-Right-Pointing-Pointer Thermoelectric properties are improved by optimizing sintering temperature. Black-Right-Pointing-Pointer Thermoelectric properties are further improved by applying annealing treatment. Black-Right-Pointing-Pointer A high ZT value of 0.43 is obtained at 500 Degree-Sign C for p-type Ti-doped FeVSb alloys.

  14. Atomic configurations of antiphase boundaries IN Lla superlattice alloys: APB of 1/2 <110> {110} type

    NASA Astrophysics Data System (ADS)

    Starostenkov, M. D.; Gorlov, N. V.; Dem'yanov, B. F.

    1987-07-01

    An antiphase boundary of 1/2 <100> {110} type in equilibrium with atomic displacements is examined, such as occurs in an ordered alloy with Ll2 superlattice. The effects from discrepancies in the atomic radii are evaluated along with those from differences in atomic interaction in a parallel simulation of the lattice states near planar defects in ordered Cu3Au and Ni3Fe. It is found that there are substantial differences in the local deformations at these boundaries by comparison with other types of planar defect: there are parallel planes involving compression and stretching together with oscillating atomic displacements perpendicular to the boundary, which die away at the eighth plane from the APB. It is found that the region of local deformation out to which the continuum theory of elasticity does not apply extends to ten planes of {110} type.

  15. Crevice Repassivation Potential of Alloy 22 in High-Nitrate Dust Deliquescence Type Environments

    SciTech Connect

    Lian, T; Gdowski, G E; Hailey, P D; Rebak, R B

    2007-02-08

    The nitrate ion (NO{sub 3}{sup -}) is an inhibitor for crevice corrosion of Alloy 22 (N06022) in chloride (Cl{sup -}) aqueous solutions. Naturally formed electrolytes may contain both chloride and nitrate ions. The higher the ratio R = [NO{sub 3}{sup -}]/[Cl{sup -}] in the solution the stronger the inhibition of crevice corrosion. Atmospheric desert dust contains both chloride and nitrate salts, generally based on sodium (Na{sup +}) and potassium (K{sup +}). Some of these salts may deliquescence at relatively low humidity at temperatures on the order of 150 C and higher. The resulting deliquescent brines are highly concentrated and especially rich in nitrate. Electrochemical tests have been performed to explore the anodic behavior of Alloy 22 in high chloride high nitrate electrolytes at temperatures as high as 150 C at ambient atmospheres. Naturally formed brines at temperatures higher than 120 C do not induce crevice corrosion in Alloy 22 because they contain high levels of nitrate. The inhibitive effect of nitrate on crevice corrosion is still active for temperatures higher than 100 C.

  16. Structural state and magnetic properties of Nd2Fe14 B-type rapidly quenched alloys

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, N. V.; Andreev, S. V.; Bogatkin, A. N.; Bogdanov, S. G.; Kozlov, A. I.; Markin, P. E.; Milyaev, O. A.; Pirogov, A. N.; Pushin, V. G.; Teplykh, A. E.

    2008-02-01

    Using X-ray, elastic neutron diffraction (END) and small angular neutron scattering (SANS) methods (Diffractometers D2 and D3 respectively), transmitting electronic microscopy (JEOL JEM-200CX) and magnetometry technique (vibrating sample magnetometer -VSM) the structure and magnetic properties of the rapidly quenched (RQ) alloys of the following compositions: A) Nd14Fe78B8; B) Y12Fe82B6; C) Nd13.3 Co6.6 Fe72.6Ge0.9B6.6; D)Nd9Fe85B6; E) Nd9Fe79B12; F) Nd9Fe74Ti4C B12 have been studied. At some quenching conditions or after consequent heat treatments of these alloys the nanoscale state of the main 2-14-1 phase and ?-Fe grains can be formed. Their size depends on the sample-preparation conditions and lies in the interval of 10-200 nm. Their influence on magnetic properties of alloys under study is discussed.

  17. Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan

    2016-09-01

    In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni (x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni (x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.

  18. Influence of nitrogen-induced grain refinement on mechanical properties of nitrogen alloyed type 316LN stainless steel

    NASA Astrophysics Data System (ADS)

    Kim, Dae Whan

    2012-01-01

    Tensile, fatigue, and creep tests were conducted to investigate the effect of grain refinement by the addition of nitrogen on mechanical properties of nitrogen alloyed type 316LN stainless steel. Grain size was reduced from 100 μm to 47 μm as nitrogen concentration was increased from 0.04% (N04) to 0.10% (N10). When nitrogen concentration was increased, there was a 20% increase in yield stress and a 14% increase in UTS, respectively. Elongation was not significantly changed with increasing nitrogen concentration. As nitrogen concentration was increased, there was a 41% increase in fatigue life and an approximately sixfold increase in the time to rupture. As grain size was reduced from 100 μm to 47 μm, there was an 8% increase in yield stress and a 3% increase in UTS, respectively. Elongation was little changed with decreasing grain size. As grain size was reduced from 100 μm to 47 μm, there was a 9% increase in fatigue life and a 23% increase in the time to rupture. The grain refinement achieved by the addition of nitrogen improved the high temperature mechanical properties of nitrogen alloyed type 316LN stainless steel but was not the main mechanism for improvement of mechanical properties.

  19. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    PubMed

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior.

  20. Formation of Tsai-type 1/1 approximants in In-Pd-RE (RE: rare earth metal) alloys

    NASA Astrophysics Data System (ADS)

    So, Yeong-Gi; Saruhashi, Fukuaki; Kimoto, Koji; Tamura, Ryuji; Edagawa, Keiichi

    2014-09-01

    The formation of the 1/1 crystal approximant phase (1/1 phase) to the icosahedral phase (i phase) in In-Pd-RE (RE: rare earth metal) systems has been investigated. A new series of 1/1 phases were found in In53Pd33RE14 (RE; Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm) alloys. For Y, Sm, Gd, Tb, Dy, and Ho, the 1/1 phases were found in annealed alloys, indicating that they are thermodynamically stable. The atomic structure of the 1/1 phases was directly observed by high-angle annular dark-field imaging performed via scanning transmission electron microscopy, revealing that the 1/1 phases consisted of a periodic arrangement of Tsai-type icosahedral clusters. Further, the atomic size effect on i phase formation, as well as formation conditions previously reported for other Tsai-type i and 1/1 phases were examined. It was found that the ratio of the atomic radius of base metals such as In and Pd affects i phase formation. Moreover, the appropriate range of the radius ratio for i phase formation was narrower than that for 1/1 phase formation. Present address: Department of Materials Science and Engineering, Akita University, Tegata Gakuen-machi, Akita-shi, Akita 010-8502, Japan

  1. Strain glass transition in a multifunctional β-type Ti alloy

    PubMed Central

    Wang, Yu; Gao, Jinghui; Wu, Haijun; Yang, Sen; Ding, Xiangdong; Wang, Dong; Ren, Xiaobing; Wang, Yunzhi; Song, Xiaoping; Gao, Jianrong

    2014-01-01

    Recently, a class of multifunctional Ti alloys called GUM metals attracts tremendous attentions for their superior mechanical behaviors (high strength, high ductility and superelasticity) and novel physical properties (Invar effect, Elinvar effect and low modulus). The Invar and Elinvar effects are known to originate from structural or magnetic transitions, but none of these transitions were found in the GUM metals. This challenges our fundamental understanding of their physical properties. In this study, we show that the typical GUM metal Ti-23Nb-0.7Ta-2Zr-1.2O (at%) alloy undergoes a strain glass transition, where martensitic nano-domains are frozen gradually over a broad temperature range by random point defects. These nano-domains develop strong texture after cold rolling, which causes the lattice elongation in the rolling direction associated with the transition upon cooling and leads to its Invar effect. Moreover, its Elinvar effect and low modulus can also be explained by the nano-domain structure of strain glass. PMID:24500779

  2. Crevice corrosion testing of austenitic, superaustenitic, superferritic, and superduplex stainless type alloys in seawater

    SciTech Connect

    Zeuthen, A.W.; Kain, R.M.

    1997-12-31

    In industry, many problems from corrosion occurring in crevices have been experienced and reported. These include the refining industry, offshore drilling platforms, fossil and nuclear power plants, chemical plants and the public utilities. The services are highly variable. Corrosion mechanisms and the results experienced are influenced by severe environments which cannot always be avoided. Corrosion testing is considered useful not only in comparing materials, but also in selecting materials from the design standpoint. The ultimate goal is to use materials which are superior to those currently in use. This will result in fewer outages, reduce repairs and significantly lower costs. This paper provides the results from four seawater test programs addressing crevice corrosion resistance of a number of superferritic, superaustenitic, and superduplex alloys, along with conventional 300 Series stainless steel. These programs included exposure to natural fouling organisms which can produce crevices, and testing which comprised several different manmade crevice configurations. Alloys found to be resistant under some test conditions were prone to attack under others. All of the super stainless steels were found to be more resistant to crevice corrosion than conventional austenitic grades, but some were susceptible to some degree.

  3. Predominant factor determining wear properties of β-type and (α+β)-type titanium alloys in metal-to-metal contact for biomedical applications.

    PubMed

    Lee, Yoon-Seok; Niinomi, Mitsuo; Nakai, Masaaki; Narita, Kengo; Cho, Ken

    2015-01-01

    The predominant factor determining the wear properties of a new titanium alloy, Ti-29Nb-13Ta-4.6Zr (TNTZ) and a conventional titanium alloy, Ti-6Al-4V extra-low interstitial (Ti64) was investigated for TNTZ and Ti64 combinations in metal-to-metal contacting bio-implant applications. The worn surfaces, wear debris, and subsurface damages were analyzed using a scanning electron microscopy combined with energy-dispersive spectroscopy and electron-back scattered diffraction analysis. The volume loss of TNTZ is found to be larger than that of Ti64, regardless of the mating material. The wear track of TNTZ exhibits the galled regions and severe plastic deformation with large flake-like debris, indicative of delamination wear, which strongly suggests the occurrence of adhesive wear. Whereas, the wear track of Ti64 have a large number of regular grooves and microcuttings with cutting chip-like wear debris and microfragmentation of fine oxide debris, indicative of abrasive wear combined with oxidative wear. This difference in the wear type is caused by severe and mild subsurface deformations of TNTZ and Ti64, respectively. The lower resistance to plastic shearing for TNTZ compared to that of Ti64 induces delamination, resulting in a higher wear rate.

  4. High-velocity-oxidation performance of metal-chromium-aluminum (MCrAl), cermet, and modified aluminide coatings on IN-100 and type VIA alloys at 1093 C

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1974-01-01

    Cermet, MCrAl, and modified aluminide types of coatings applied to IN-100 and NASA-TRW-VIA alloy specimens were cyclically oxidation tested in a high velocity (Mach 1) gas flame at 1093 C. Several coating compositions of each type were evaluated for oxidation resistance. The modified aluminide coating, Pt-Al, applied to alloy 6A proved to be the best, providing oxidation protection to approximately 750 hours based on weight change measurements. The second best, a CoCrAlY coating applied to 6A, provided protection to 450 hours. The third best was a cermet + aluminide coating on 6A with a protection time to 385 hours.

  5. High-Temperature Deformation Characteristics of a β-Type Ti-29Nb-13Ta-4.6Zr Alloy

    NASA Astrophysics Data System (ADS)

    Ghanbari, E.; Zarei-Hanzaki, A.; Farghadany, E.; Abedi, H. R.; Khoddam, Sh.

    2016-04-01

    The hot deformation behavior of a biomedical β-type Ti-Nb-Ta-Zr alloy has been studied through applying hot compression tests over a wide range of temperatures and strain rates (600-900 °C and 0.003-0.3 s-1). The main microstructural feature of the specimens, which were deformed at 900 °C, is the pancaked primary grains decorated by the serrated boundaries. The latter may well imply to the occurrence of dynamic recovery. The dynamic recrystallization however is considered as the main restoration mechanism in the specimens, which were deformed at 800 °C under all strain rates. The sizes of the new recrystallized grains well follow the serration amplitude of the primary grain boundaries. At lower deformation temperatures (600 and 700 °C), the strain rate sensitivity is suddenly decreased and ended to the strain localization in the form of macro shear band. The higher accumulated energy within the shear band zones appears to stimulate the occurrence of dynamic recrystallization. To further clarify the high-temperature flow behavior of the experimental alloy, a quantitative approach has been also employed. The observed flow hardening and softening has been justified considering the evolved microstructural features.

  6. Metastable β-type Ti-30Nb-1Mo-4Sn Alloy with Ultralow Young's Modulus and High Strength

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Guo, Shun; Meng, Qingkun; Zhao, Xinqing

    2014-02-01

    The effect of thermo-mechanical treatment on the mechanical properties of a novel metastable β-type Ti-30Nb-1Mo-4Sn (wt pct) alloy has been investigated. The solution-treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress (around 100 MPa). After cold rolling at a reduction of 87.5 pct and subsequent annealing treat at 623 K (350 °C) for 30 minutes, a fine microstructure with nano-sized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 954 MPa and an ultimate tensile strength of 999 MPa. With low stability of β phase and small volume fraction of α precipitates, the annealed specimen exhibits a low Young's modulus of 45 GPa. Such an excellent combination of the low elastic modulus and high strength in mechanical properties indicates a great potential candidate for biomedical applications.

  7. Correlation Between Two Types of Surface Stress Mitigation and the Resistance to Corrosion of Alloy 22

    SciTech Connect

    Yilmaz, A; Fix, D V; Estill, J C; Rebak, R B

    2005-02-04

    When metallic plates are welded, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 (N06022) plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to compare the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied.

  8. First-principles studies of p-type nitrogen-doped α-Fe{sub 2}O{sub 3-x}S{sub x} alloys

    SciTech Connect

    Xia, Congxin An, Jiao; Zhang, Qiming; Jia, Yu

    2015-06-28

    Based on spin-polarized density functional theory, the characteristics of p-type doping are investigated in the N-doped α-Fe{sub 2}O{sub 3−x}S{sub x} alloys by means of first-principles methods. Numerical results show that when N substitutes O atom in pure α-Fe{sub 2}O{sub 3}, N impurity level is a deeper acceptor state. However, the unoccupied level is much shallower when N doped in the α-Fe{sub 2}O{sub 3−x}S{sub x} alloys, which indicates N impurity can provide good and effective p-type carriers. These predicted numerical results are interesting and useful to understand the α-Fe{sub 2}O{sub 3−x}S{sub x} alloys as a new low-cost solar cell material.

  9. Mechanical alloying synthesis of K{sub 2}Bi{sub 8}Se{sub 13}-type solid solutions.

    SciTech Connect

    Toumpas, N.; Kyratsi, T.; Hatzikraniotis, E.; Tsiappos, A.; Pavlidou, E.; Paraskevopoulos, K. M.; Chung, D. Y.; Kanatzidis, M. G.; Materials Science Division; Univ. of Cyprus; Aristotle Univ. Thessaloniki; Northwestern Univ.

    2008-01-01

    Solid solutions of K{sub 2}Bi{sub 8-x}Sb{sub x}Se{sub 13} are an interesting series of materials for thermoelectric investigations due to their very low thermal conductivity and highly anisotropic electrical properties. In this work, we aimed to synthesize solid solutions of O-K{sub 2}Bi{sub 8-x}Sb{sub x}Se{sub 13} type materials using powder techniques. The synthesis was based on mechanical alloying as well as sintering procedures. The products were studied in terms of structural features, composition and purity with powder x-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Preliminary results on thermoelectric properties as well as IR reflectivity measurements are presented.

  10. NDE detectability of fatigue-type cracks in high-strength alloys: NDI reliability assessments

    NASA Technical Reports Server (NTRS)

    Christner, Brent K.; Long, Donald L.; Rummel, Ward D.

    1988-01-01

    This program was conducted to generate quantitative flaw detection capability data for the nondestructive evaluation (NDE) techniques typically practiced by aerospace contractors. Inconel 718 and Haynes 188 alloy test specimens containing fatigue flaws with a wide distribution of sizes were used to assess the flaw detection capabilities at a number of contractor and government facilities. During this program 85 inspection sequences were completed presenting a total of 20,994 fatigue cracks to 53 different inspectors. The inspection sequences completed included 78 liquid penetrant, 4 eddy current, and 3 ultrasonic evaluations. The results of the assessment inspections are presented and discussed. In generating the flaw detection capability data base, procedures for data collection, data analysis, and specimen care and maintenance were developed, demonstrated, and validated. The data collection procedures and methods that evolved during this program for the measurement of flaw detection capabilities and the effects of inspection variables on performance are discussed. The Inconel 718 and Haynes 188 test specimens that were used in conducting this program and the NDE assessment procedures that were demonstrated, provide NASA with the capability to accurately assess the flaw detection capabilities of specific inspection procedures being applied or proposed for use on current and future fracture control hardware program.

  11. Effect of alloy type on the life-time of torsion-preloaded nickel-titanium endodontic instruments.

    PubMed

    Ha, Jung-Hong; Kim, Sung Kyo; Cheung, Gary Shun-Pan; Jeong, Seong Hwa; Bae, Yong Chul; Kim, Hyeon-Cheol

    2015-01-01

    This study was aimed to evaluate the effect of torsional preloads on the cyclic fatigue life of nickel-titanium (NiTi) instruments with different history of heat treatments by manufacturers. WaveOne (Primary) made of M-wire, K3XF (#30/0.06) of R-phase, and ProTaper (F2) of conventional NiTi alloy was used. Each file was preloaded at four conditions (nil, 25, 50, and 75% of their mean ultimate torsional strength) before fatigue testing. The torsional preloads 10-, 30-, or 50-times were applied by securing 5 mm of the file tip, rotating it until the preset torque was attained before returning to the origin. Then, the number of cycles to failure (NCF) was evaluated by rotational bending in a simulated canal. Data were analyzed using multiple linear regression analysis and two-way ANOVA. Fractured instruments were examined under scanning electron microscope (SEM). SEM showed that most WaveOne after 75% preloading, regardless of repetitions, showed some longitudinal cracks parallel to the long axis of the file, which were rare for K3XF. Regression analysis revealed that the brand of instrument was the most critical factor. At up to 75% preloading, ProTaper and K3XF did not show any significant decline in NCF. For 30-repetition groups of WaveOne, the 50 and 25% torsion preloaded groups showed a significantly higher NCF than the 0 and 75% groups. Within the limitations of this study, the alloy type of NiTi instrument have a significant effect on the phenomenon that a certain amount of torsional preload may improve the cyclic fatigue resistance of NiTi rotary instruments.

  12. Effect of alloy type on the life-time of torsion-preloaded nickel-titanium endodontic instruments.

    PubMed

    Ha, Jung-Hong; Kim, Sung Kyo; Cheung, Gary Shun-Pan; Jeong, Seong Hwa; Bae, Yong Chul; Kim, Hyeon-Cheol

    2015-01-01

    This study was aimed to evaluate the effect of torsional preloads on the cyclic fatigue life of nickel-titanium (NiTi) instruments with different history of heat treatments by manufacturers. WaveOne (Primary) made of M-wire, K3XF (#30/0.06) of R-phase, and ProTaper (F2) of conventional NiTi alloy was used. Each file was preloaded at four conditions (nil, 25, 50, and 75% of their mean ultimate torsional strength) before fatigue testing. The torsional preloads 10-, 30-, or 50-times were applied by securing 5 mm of the file tip, rotating it until the preset torque was attained before returning to the origin. Then, the number of cycles to failure (NCF) was evaluated by rotational bending in a simulated canal. Data were analyzed using multiple linear regression analysis and two-way ANOVA. Fractured instruments were examined under scanning electron microscope (SEM). SEM showed that most WaveOne after 75% preloading, regardless of repetitions, showed some longitudinal cracks parallel to the long axis of the file, which were rare for K3XF. Regression analysis revealed that the brand of instrument was the most critical factor. At up to 75% preloading, ProTaper and K3XF did not show any significant decline in NCF. For 30-repetition groups of WaveOne, the 50 and 25% torsion preloaded groups showed a significantly higher NCF than the 0 and 75% groups. Within the limitations of this study, the alloy type of NiTi instrument have a significant effect on the phenomenon that a certain amount of torsional preload may improve the cyclic fatigue resistance of NiTi rotary instruments. PMID:25676195

  13. Low-cycle fatigue of Type 347 stainless steel and Hastelloy alloy X in hydrogen gas and in air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.; Buchheit, R. D.; Roach, D. B.; Porfilio, T. L.

    1976-01-01

    An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study.

  14. Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning

    NASA Astrophysics Data System (ADS)

    Yang, Hai-tao; Liu, Huan-rong; Zhang, Yong-chun; Chen, Bu-ming; Guo, Zhong-cheng; Xu, Rui-dong

    2013-10-01

    An Al/Pb-0.3%Ag alloy composite anode was produced via composite casting. Its electrocatalytic activity for the oxygen evolution reaction and corrosion resistance was evaluated by anodic polarization curves and accelerated corrosion test, respectively. The microscopic morphologies of the anode section and anodic oxidation layer during accelerated corrosion test were obtained by scanning electron microscopy. It is found that the composite anode (hard anodizing) displays a more compact interfacial combination and a better adhesive strength than plating tin. Compared with industrial Pb-0.3%Ag anodes, the oxygen evolution overpotentials of Al/Pb-0.3%Ag alloy (hard anodizing) and Al/Pb-0.3%Ag alloy (plating tin) at 500 A·m-2 were lower by 57 and 14 mV, respectively. Furthermore, the corrosion rates of Pb-0.3%Ag alloy, Al/Pb-0.3%Ag alloy (hard anodizing), and Al/Pb-0.3%Ag alloy (plating tin) were 13.977, 9.487, and 11.824 g·m-2·h-1, respectively, in accelerated corrosion test for 8 h at 2000 A·m-2. The anodic oxidation layer of Al/Pb-0.3%Ag alloy (hard anodizing) is more compact than Pb-0.3%Ag alloy and Al/Pb-0.3%Ag alloy (plating tin) after the test.

  15. Comparison of different pressing techniques for the preparation of n-type silicon-germanium thermoelectric alloys

    SciTech Connect

    Harringa, J.L.; Cook, B.A.

    1996-06-01

    Improvements to state-of-the-art Si{sub 80}Ge{sub 20} thermoelectric alloys have been observed in laboratory-scale samples by the powder metallurgy techniques of mechanical alloying and hot pressing. Incorporating these improvements in large scale compacts for the production of thermoelectric generator elements is the next step in achieving higher efficiency RTGs. This paper discusses consolidation of large quantities of mechanically alloyed powders into production size compacts. Differences in thermoelectric properties are noted between the compacts prepared by the standard technique of hot uniaxial pressing and hot isostatic pressing. Most significant is the difference in carrier concentration between the alloys prepared by the two consolidation techniques.

  16. Mechanical properties and cytocompatibility of oxygen-modified β-type Ti-Cr alloys for spinal fixation devices.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken; Narita, Kengo; Şen, Mustafa; Shiku, Hitoshi; Matsue, Tomokazu

    2015-01-01

    In this study, various amounts of oxygen were added to Ti-10Cr (mass%) alloys. It is expected that a large changeable Young's modulus, caused by a deformation-induced ω-phase transformation, can be achieved in Ti-10Cr-O alloys by the appropriate oxygen addition. This "changeable Young's modulus" property can satisfy the otherwise conflicting requirements for use in spinal implant rods: high and low moduli are preferred by surgeons and patients, respectively. The influence of oxygen on the microstructures and mechanical properties of the alloys was examined, as well as the bending springback and cytocompatibility of the optimized alloy. Among the Ti-10Cr-O alloys, Ti-10Cr-0.2O (mass%) alloy shows the largest changeable Young's modulus following cold rolling for a constant reduction ratio. This is the result of two competing factors: increased apparent β-lattice stability and decreased amounts of athermal ω phase, both of which are caused by oxygen addition. The most favorable balance of these factors for the deformation-induced ω-phase transformation occurred at an oxygen concentration of 0.2mass%. Ti-10Cr-0.2O alloy not only exhibits high tensile strength and acceptable elongation, but also possesses a good combination of high bending strength, acceptable bending springback and great cytocompatibility. Therefore, Ti-10Cr-0.2O alloy is a potential material for use in spinal fixture devices. PMID:25449914

  17. Mechanical properties and cytocompatibility of oxygen-modified β-type Ti-Cr alloys for spinal fixation devices.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken; Narita, Kengo; Şen, Mustafa; Shiku, Hitoshi; Matsue, Tomokazu

    2015-01-01

    In this study, various amounts of oxygen were added to Ti-10Cr (mass%) alloys. It is expected that a large changeable Young's modulus, caused by a deformation-induced ω-phase transformation, can be achieved in Ti-10Cr-O alloys by the appropriate oxygen addition. This "changeable Young's modulus" property can satisfy the otherwise conflicting requirements for use in spinal implant rods: high and low moduli are preferred by surgeons and patients, respectively. The influence of oxygen on the microstructures and mechanical properties of the alloys was examined, as well as the bending springback and cytocompatibility of the optimized alloy. Among the Ti-10Cr-O alloys, Ti-10Cr-0.2O (mass%) alloy shows the largest changeable Young's modulus following cold rolling for a constant reduction ratio. This is the result of two competing factors: increased apparent β-lattice stability and decreased amounts of athermal ω phase, both of which are caused by oxygen addition. The most favorable balance of these factors for the deformation-induced ω-phase transformation occurred at an oxygen concentration of 0.2mass%. Ti-10Cr-0.2O alloy not only exhibits high tensile strength and acceptable elongation, but also possesses a good combination of high bending strength, acceptable bending springback and great cytocompatibility. Therefore, Ti-10Cr-0.2O alloy is a potential material for use in spinal fixture devices.

  18. N-type Doped PbTe and PbSe Alloys for Thermoelectric Applications

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); LaLonde, Aaron (Inventor); Pei, Yanzhong (Inventor); Wang, Heng (Inventor)

    2014-01-01

    The present invention demonstrates that weak scattering of carriers leads to a high mobility and therefore helps achieve low electric resistivity with high Seebeck coefficient for a thermoelectric material. The inventors demonstrate this effect by obtaining a thermoelectric figure of merit, zT, higher than 1.3 at high temperatures in n-type PbSe, because of the weak scattering of carriers in the conduction band as compared with that in the valence band. The invention further demonstrates favorable thermoelectric transport properties of n-type PbTe.sub.1-xI.sub.x with carrier concentrations ranging from 5.8.times.10.sup.18-1.4.times.10.sup.20 cm.sup.-3.

  19. Carrier scattering mechanisms in p-type transparent copper-alloyed ZnS: Crystalline vs. amorphous

    NASA Astrophysics Data System (ADS)

    Woods-Robinson, Rachel; Faghaninia, Alireza; Cooper, Jason K.; Pham, Hieu H.; Lo, Cynthia; Wang, Lin-Wang; Ager, Joel W.

    2015-03-01

    Crystalline (wurtzite and sphalerite) and amorphous forms of copper-alloyed ZnS (CuxZn1-xS) are p-type conducting transparent thin film materials with near-record figures of merit for applications in photovoltaics and optoelectronics. Remarkably, the conductivity of amorphous CuxZn1-xS, 42 S/cm at x = 0.30, is nearly as high as crystalline CuxZn1-xS (54 S/cm at x = 0.21). This contrasts with typical observations of poorer carrier transport in amorphous materials. By combining experiment and computation, we investigate the defect physics underlying hole transport in amorphous and crystalline CuxZn1-xS. Structural probes (EXAFS, TEM and wide-angle XRD) are used to determine bonding characteristics and lattice order, and serve as inputs to ab initio hybrid functional HSE calculations of the electronic band structure. Hall effect, temperature dependent conductivity (15K to 500K), and XPS valence band measurements and ab initio calculations show that hole conduction occurs in a hybridized S-3p and Cu-3d valence band for amorphous and crystalline films. The hole scattering mechanisms which limit the conductivity will be discussed in the context of theoretical carrier transport model based on Boltzmann transport equation, ab initio calculated band structure, and phonon dispersion.

  20. Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu

    SciTech Connect

    Pan, H. L.; Yang, T.; Xu, Y.; Yao, B.; Zhang, B. Y.; Liu, W. W.; Shen, D. Z.

    2010-10-04

    Single wurtzite p-type Zn{sub 1-y}Cu{sub y}O{sub 1-x}S{sub x} alloy films with 0.081{<=}x{<=}0.186 and 0.09{<=}y{<=}0.159 were grown on quartz reproducibly by magnetron sputtering. The alloys show very stable p-type conductivity with a hole concentration of 4.31-5.78x10{sup 19} cm{sup -3}, a resistivity of 0.29-0.34 {Omega} cm and a mobility of 0.32-0.49 cm{sup 2} V{sup -1} s{sup -1}. The p-type conductivity is attributed to substitution of Cu{sup +1} for the Zn site, and the ionization energy of the Cu{sup +1} acceptor is measured to be 53 meV, much less than that of Cu-doped ZnO reported previously. The small ionization energy is due to Cu heavy doping and increase in valence band maximum of ZnO induced by alloying with S.

  1. Improvement in thermoelectric power factor of mechanically alloyed p-type SiGe by incorporation of TiB2

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajid; Dubey, K.; Bhattacharya, Shovit; Basu, Ranita; Bhatt, Ranu; Bohra, A. K.; Singh, Ajay; Aswal, D. K.; Gupta, S. K.

    2016-05-01

    Nearly 60% of the world's useful energy is wasted as heat and recovering a fraction of this waste heat by converting it as useful electrical power is an important area of research[1]. Thermoelectric power generators (TEG) are solid state devices which converts heat into electricity. TEG consists of n and p-type thermoelements connected electrically in series and thermally in parallel[2]. Silicon germanium (SiGe) alloy is one of the conventional high temperature thermoelectric materials and is being used in radio-isotopes based thermoelectric power generators for deep space exploration programs.Temperature (T) dependence of thermoelectric (TE) properties of p-type SiGe and p-type SiGe-x wt.%TiB2 (x=6,8,10%) nanocomposite materials has been studied with in the temperature range of 300 K to 1100 K. It is observed that there is an improvement in the power factor (α2/ρ) of SiGe alloy on addition of TiB2 upto 8 wt.% that is mainly due to increase in the Seebeck coefficient (α) and electrical conductivity (σ) of the alloy.

  2. Methods of thermoelectric enhancement in silicon-germanium alloy type I clathrates and in nanostructured lead chalcogenides

    NASA Astrophysics Data System (ADS)

    Martin, Joshua

    The rapid increase in thermoelectric (TE) materials R&D is a consequence of the growing need to increase energy efficiency and independence through waste heat recovery. TE materials enable the direct solid-state conversion of heat into electricity, with little maintenance, noise, or cost. In addition, these compact devices can be incorporated into existing technologies to increase the overall operating efficiency. High efficiency TE materials would enable the practical solid-state conversion of thermal to electrical energy. Optimizing the interdependent physical parameters to achieve acceptable efficiencies requires materials exhibiting a unique combination of properties. This research reports two methods of thermoelectric enhancement: lattice strain effects in silicon-germanium alloy type I clathrates and the nanostructured enhancement of lead chalcogenides. The synthesis and chemical, structural, and transport properties characterization of Ba8Ga16SixGe30-x type I clathrates with similar Ga-to-group IV element ratios but with increasing Si substitution (4 < x < 14) is reported. Substitution of Si within the Ga-Ge lattice framework of the type I clathrate Ba8Ga16Ge30 results in thermoelectric performance enhancement. The unique dependences of carrier concentration, electrical resistivity, Seebeck coefficient, and carrier effective mass on Si substitution level, may imply a modified band structure with Si substitution. These materials were then further optimized by adjusting the Ga-to-group IV element ratios. Recent progress in a number of higher efficiency TE materials can be attributed to nanoscale enhancement. Many of these materials demonstrate increased Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales. To satisfy the demands of bulk industrial applications requires additional synthesis techniques to incorporate nanostructure directly within a bulk matrix. This research investigates, for

  3. Microstructural characterization of a Zr-Ti-Ni-Mn-V-Cr based AB{sub 2}-type battery alloy

    SciTech Connect

    Shi, Zhan

    1999-01-01

    Transmission Electron Microscopy (TEM), combined with X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) was employed to investigate a proprietary and multicomponent AB{sub 2} type Nickel-Metal Hydride (Ni-MH) battery alloy. This material was prepared by High Pressure Gas Atomization (HPGA) and examined in both the as-atomized and heat treated condition. TEM examination showed a heavily faulted dendritic growth structure in as-atomized powder. Selected Area Diffraction (SAD) showed that this region consisted of both a cubic C15 structure with lattice constant a=7.03 and a hexagonal C14 structure with lattice parameter a=4.97 {angstrom}, c=8.11 {angstrom}. The Orientation Relationship (OR) between the C14 and C15 structures was determined to be (111)[1{bar 1}0]{sub C15}//(0001)[11{bar 2}0]{sub C14}. An interdendritic phase possessing the C14 structure was also seen. There was also a very fine grain region consisting of the C14 structure. Upon heat treatment, the faulted structure became more defined and appeared as intercalation layers within the grains. Spherical particles rich in Zr and Ni appeared scattered at the grain boundaries instead of the C14 interdendritic phase. The polycrystalline region also changed to a mixture of C14 and C15 structures. These results as well as phase stability of the C15 and C14 structures based on a consideration of atomic size factor and the average electron concentration are discussed.

  4. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  5. Energy band engineering and controlled p-type conductivity of CuAlO2 thin films by nonisovalent Cu-O alloying

    NASA Astrophysics Data System (ADS)

    Yao, Z. Q.; He, B.; Zhang, L.; Zhuang, C. Q.; Ng, T. W.; Liu, S. L.; Vogel, M.; Kumar, A.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Jiang, X.

    2012-02-01

    The electronic band structure and p-type conductivity of CuAlO2 films were modified via synergistic effects of energy band offset and partial substitution of less-dispersive Cu+ 3d10 with Cu2+ 3d9 orbitals in the valence band maximum by alloying nonisovalent Cu-O with CuAlO2 host. The Cu-O/CuAlO2 alloying films show excellent electronic properties with tunable wide direct bandgaps (˜3.46-3.87 eV); Hall measurements verify the highest hole mobilities (˜11.3-39.5 cm2/Vs) achieved thus far for CuAlO2 thin films and crystals. Top-gate thin film transistors constructed on p-CuAlO2 films were presented, and the devices showed pronounced performance with Ion/Ioff of ˜8.0 × 102 and field effect mobility of 0.97 cm2/Vs.

  6. Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: A solution to reduce residual stress anisotropy

    NASA Astrophysics Data System (ADS)

    Correa, C.; Peral, D.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; García-Beltrán, A.; Ocaña, J. L.

    2015-10-01

    Laser Shock Peening (LSP) is considered as an alternative technology to shot peening (SP) for the induction of compressive residual stresses in metallic alloys in order to improve their fatigue, corrosion and wear resistance. Since laser pulses generated by high-intensity laser systems cover only a small area, laser pulses are generally overlapped and scanned in a zigzag-type pattern to cover completely the surface to be treated. However, zigzag-type scanning patterns induce residual stress anisotropy as collateral effect. The purpose of this paper is to describe and explain, for the first time and with the aid of the numerical model developed by the authors, the influence of the scanning pattern directionality on the residual stress tensor. As an effective solution, the authors propose the application of random-type scanning patterns instead of zigzag-type in order to reduce the mentioned residual stress anisotropy.

  7. A Comparative Study on Improved Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Flow Behaviors in 20MnNiMo Alloy

    PubMed Central

    Yu, Chun-tang; Liu, Ying-ying; Xia, Yu-feng

    2014-01-01

    The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173∼1473 K and strain rate range of 0.01∼10 s−1. Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former, R and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of −39.99%∼35.05% and −3.77%∼16.74%. As for the former, only 16.3% of the test data set possesses η-values within ±1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model. PMID:24688358

  8. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  9. Subband Structure and Effective Mass in the Inversion Layer of a Strain Si-Based Alloy P-Type MOSFET.

    PubMed

    Chen, Kuan-Ting; Fan, Jun Wei; Chang, Shu-Tong; Lin, Chung-Yi

    2015-03-01

    In this paper, the subband structure and effective mass of an Si-based alloy inversion layer in a PMOSFET are studied theoretically. The strain condition considered in our calculations is the intrinsic strain resulting from growth of the silicon-carbon alloy on a (001) Si substrate and mechanical uniaxial stress. The quantum confinement effect resulting from the vertically effective electric field was incorporated into the k · p calculation. The distinct effective mass, such as the quantization effective mass and the density-of-states (DOS) effective mass, as well as the subband structure of the silicon-carbon alloy inversion layer for a PMOSFET under substrate strain and various effective electric field strengths, were all investigated. Ore results show that subband structure of relaxed silicon-carbon alloys with low carbon content are almost the same as silicon. We find that an external stress applied parallel to the channel direction can efficiently reduce the effective mass along the channel direction, thus producing hole mobility enhancement.

  10. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  11. Investigation on the crystallization mechanism difference between FINEMET and NANOMET type Fe-based soft magnetic amorphous alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yaocen; Zhang, Yan; Takeuchi, Akira; Makino, Akihiro; Kawazoe, Yoshiyuki

    2016-10-01

    In this article, the atomic behaviors of Nb and P in Fe-based amorphous alloys during nano-crystallization process were studied by the combination of ab initio molecular dynamics simulations and experimental measurements. The inclusion of Nb is found to be tightly bonded with B, resulting in the formation of diffusion barrier that could prevent the over-growth of α-(Fe, Si) grains and the promotion of larger amount of α-(Fe, Si) participation. The P inclusion could delay the diffusion of the metalloids that have to be expelled from the α-(Fe, Si) crystallization region so that the grain growth could be reduced with fast but practically achievable heating rates. The combined addition of P and Nb in high Fe content amorphous alloys failed in exhibiting the potential of good magnetic softness with slow heating (10 K/min) annealing at various temperatures. The sample with optimum crystallization process with confined grain size was annealed at 653 K, with the grain size of 31 nm and a coercivity of ˜120 A/m, much too large to meet the application requirements and to be compared with the currently well-studied alloy systems. This attempt suggests that the inclusion of early transition metal elements might not be effective enough to suppress grain growth in crystallizing high Fe content amorphous alloys.

  12. Development and validation of capabilities to measure thermal properties of layered monolithic U-Mo alloy plate-type fuel

    SciTech Connect

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-19

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of thermal conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify and validate the functionality of equipment methods installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, procedures to operate the equipment, and models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a zirconium diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  13. Thermoelectric device including an alloy of GeTe and AgSbTe as the P-type element

    DOEpatents

    Skrabek, Emanuel Andrew; Trimmer, Donald Smith

    1976-01-01

    Improved alloys suitable for thermoelectric applications and having the general formula: (AgSbTe.sub.2).sub.1.sub.-x + (GeTe).sub.x wherein x has a value of about 0.80 and 0.85, have been found to possess unexpectedly high thermoelectric properties such as efficiency index, as well as other improved physical properties.

  14. Isotropic plasticity of β-type Ti-29Nb-13Ta-4.6Zr alloy single crystals for the development of single crystalline β-Ti implants

    NASA Astrophysics Data System (ADS)

    Hagihara, Koji; Nakano, Takayoshi; Maki, Hideaki; Umakoshi, Yukichi; Niinomi, Mitsuo

    2016-07-01

    β-type Ti-29Nb-13Ta-4.6Zr alloy is a promising novel material for biomedical applications. We have proposed a ‘single crystalline β-Ti implant’ as new hard tissue replacements for suppressing the stress shielding by achieving a drastic reduction in the Young’s modulus. To develop this, the orientation dependence of the plastic deformation behavior of the Ti-29Nb-13Ta-4.6Zr single crystal was first clarified. Dislocation slip with a Burgers vector parallel to <111> was the predominant deformation mode in the wide loading orientation. The orientation dependence of the yield stress due to <111> dislocations was small, in contrast to other β-Ti alloys. In addition, {332} twin was found to be operative at the loading orientation around [001]. The asymmetric features of the {332} twin formation depending on the loading orientation could be roughly anticipated by their Schmid factors. However, the critical resolved shear stress for the {332} twins appeared to show orientation dependence. The simultaneous operation of <111> slip and {332} twin were found to be the origin of the good mechanical properties with excellent strength and ductility. It was clarified that the Ti-29Nb-13Ta-4.6Zr alloy single crystal shows the “plastically almost-isotropic and elastically highly-anisotropic” nature, that is desirable for the development of ‘single crystalline β-Ti implant’.

  15. Isotropic plasticity of β-type Ti-29Nb-13Ta-4.6Zr alloy single crystals for the development of single crystalline β-Ti implants

    PubMed Central

    Hagihara, Koji; Nakano, Takayoshi; Maki, Hideaki; Umakoshi, Yukichi; Niinomi, Mitsuo

    2016-01-01

    β-type Ti-29Nb-13Ta-4.6Zr alloy is a promising novel material for biomedical applications. We have proposed a ‘single crystalline β-Ti implant’ as new hard tissue replacements for suppressing the stress shielding by achieving a drastic reduction in the Young’s modulus. To develop this, the orientation dependence of the plastic deformation behavior of the Ti-29Nb-13Ta-4.6Zr single crystal was first clarified. Dislocation slip with a Burgers vector parallel to <111> was the predominant deformation mode in the wide loading orientation. The orientation dependence of the yield stress due to <111> dislocations was small, in contrast to other β-Ti alloys. In addition, {332} twin was found to be operative at the loading orientation around [001]. The asymmetric features of the {332} twin formation depending on the loading orientation could be roughly anticipated by their Schmid factors. However, the critical resolved shear stress for the {332} twins appeared to show orientation dependence. The simultaneous operation of <111> slip and {332} twin were found to be the origin of the good mechanical properties with excellent strength and ductility. It was clarified that the Ti-29Nb-13Ta-4.6Zr alloy single crystal shows the “plastically almost-isotropic and elastically highly-anisotropic” nature, that is desirable for the development of ‘single crystalline β-Ti implant’. PMID:27417073

  16. Alloying of aluminum-beryllium alloys

    NASA Astrophysics Data System (ADS)

    Molchanova, L. V.; Ilyushin, V. N.

    2013-01-01

    The existing phase diagrams of Al-Be- X alloys, where X is an alloying element, are analyzed. Element X is noted to poorly dissolve in both aluminum and beryllium. It is shown that the absence of intermetallic compounds in the Al-Be system affects the phase equilibria in an Al-Be- X system. Possible phase equilibria involving phases based on aluminum, beryllium, and intermetallic compounds are proposed, and the types of strengthening of Al-Be alloys by an addition of a third element are classified.

  17. Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, F.; Cheng, J. J.; Zuo, Q.; Chen, C. F.

    2016-04-01

    Hot deformation behavior of Nickel-based corrosion-resistant alloy (N08028) was studied in compression tests conducted in the temperature range of 1050-1200 °C and the strain rate range of 0.001-1 s-1. The flow stress behavior and microstructural evolution were observed during the hot deformation process. The results show that the flow stress increases with deformation temperature decreasing and strain rate increasing, and that the deformation activation energy ( Q) is not a constant but increases with strain rate increasing at a given strain, which is closely related with dislocation movement. On this basis, a revised strain-dependent hyperbolic sine constitutive model was established, which considered that the "material constants" in the original model vary as functions of the strain and strain rate. The flow curves of N08028 alloy predicted by the proposed model are in good agreement with the experimental results, which indicates that the revised constitutive model can estimate precisely the flow curves of N08028 alloy.

  18. The structural, electronic and dynamic properties of the L1{sub 2}- type Co{sub 3}Ti alloy

    SciTech Connect

    Arikan, Nihat; Özduran, Mustafa

    2014-10-06

    The structural, electronic and dynamic properties of the cubic Co{sub 3}Ti alloy in L1{sub 2} structure have been investigated using a pseudopotential plane wave (PP-PW) method within the generalized gradient approximation proposed by Perdew–Burke–Ernzerhof (GGA-PBE). The structural properties, including the lattice constant, the bulk modulus and its pressure derivative agree reasonably with the previous results. The density of state (DOS), projected density of state (PDOS) and electronic band structure are also reported. The DOS shows that Co{sub 3}Ti alloy has a metallic character since the energy bands cross the Fermi level. The density of states at Fermi level mainly comes from the Co-3d states. Phonon dispersion curves and their corresponding total densities of states were obtained using a linear response in the framework of the density functional perturbation theory. All computed phonon frequencies are no imaginer and thus, Co{sub 3}Ti alloy is dynamically stable. The zone center phonon modes have been founded to be 9.307, 9.626 and 13.891 THz for Co{sub 3}Ti.

  19. Cytocompatibility of magnesium and AZ31 alloy with three types of cell lines using a direct in vitro method.

    PubMed

    Mochizuki, Akira; Yahata, Chie; Takai, Hung

    2016-09-01

    Magnesium alloys have been investigated by many researchers as a new absorbable biomaterial owing to their excellent degradability with non-maleficence or low-maleficence in living tissues. In the present work, the in vitro cytocompatibility of an Magnesium alloy was investigated by culturing cells directly on it. Investigations were carried out in terms of the cell viability along with the use of scanning electron microscopy to observe its morphology. The cell lines used were derived from fibroblast, endothelial, and smooth muscle cells. Pure magnesium and AZ31 alloy composed of magnesium (96 %), aluminum (3 %), and zinc (1 %) were adopted as models. The viability of cells on the metal samples and on the margin area of a multi-well plate was investigated. For direct culturing on metal, a depression in the viability and morphologically stressed cells were observed. In addition, the cell viability was also depressed for the margin area. To clarify the factors causing the negative effects, the amount of eluted metal ions and pH changes in the medium because of the erosion of the Magnesium samples were investigated, together with the cytotoxicity of sole metal ions corresponding to the composition of the metals. It was found that Mg(2+), Zn(2+), and Al(3+) ions were less toxic at the investigated concentrations, and that these factors will not produce negative effects on cells. Consequently, these factors cannot fully explain the results. PMID:27568216

  20. Thermoelectric properties of the Heusler-type Fe{sub 2}VTa{sub x}Al{sub 1−x} alloys

    SciTech Connect

    Renard, Krystel Mori, Arinori; Yamada, Yuichiro; Tanaka, Suguru; Nishino, Yoichi; Miyazaki, Hidetoshi

    2014-01-21

    This study focuses on the thermoelectric properties of the Heusler-type Fe{sub 2}VTa{sub x}Al{sub 1−x} alloys (0≤x≤0.12). By means of Rietveld analyses on synchrotron X-ray diffraction patterns, it is shown that the Ta atoms enter sites occupied by V atoms in the stoichiometric Fe{sub 2}VAl alloy, while the ejected V atoms are transferred to the vacant Al sites. This Ta substitution leads to an improvement of the n-type thermoelectric properties owing to two mechanisms. On the one hand, the atoms position in the structure leads to an off-stoichiometric effect such as already observed in V-rich Fe{sub 2}V{sub 1+y}Al{sub 1−y} compounds: the Seebeck coefficient is increased towards negative absolute values and the electrical resistivity is decreased, with a large shift of their peak temperature towards higher temperature. The maximum power factor is 6.5 × 10{sup −3} W/mK{sup 2} for x = 0.05 at 340 K. On the other hand, the heavy element Ta substitution combined with this off-stoichiometric effect leads to a large decrease of the thermal conductivity, owing to an increase of the scattering events. Consequently, the dimensionless figure of merit is seen to reach higher values than for the Fe{sub 2}V{sub 1+y}Al{sub 1−y} alloys, i.e., 0.21–0.22 around 400–500 K for x = 0.05 and 500 K for x = 0.08.

  1. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  2. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys.

    PubMed

    Schuster, B E; Roszell, L E; Murr, L E; Ramirez, D A; Demaree, J D; Klotz, B R; Rosencrance, A B; Dennis, W E; Bao, W; Perkins, E J; Dillman, J F; Bannon, D I

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up-regulated and those involved with muscle development and differentiation significantly down-regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin-dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas.

  3. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    SciTech Connect

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  4. Effect of grain size on high-cycle fatigue properties in alpha-type titanium alloy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Matsuoka, S.; Ogata, T.

    2003-08-01

    High-cycle fatigue properties were investigated at 4, 77 and 293 K in Ti-5%Al-2.5%Sn ELI alloy which was used for liquid hydrogen turbo-pumps of Japanese-built launch vehicles. Mean grain size of specimens was controlled to be about 30 or 80 μm. In the specimens with a grain size of 30 μm, fatigue strengths at 10 6 cycles at 4 and 77 K are 1.6 and 1.5 times higher than that at 293 K, respectively. On the other hand, in the specimen with a grain size of 80 μm, fatigue strengths at 10 6 cycles at 4 and 77 K get lower to the same level as that at 293 K. Thus, it is concluded that refinement of α grains is one of important factors to obtain the good high-cycle fatigue properties for Ti-5%Al-2.5%Sn ELI alloy at cryogenic temperature.

  5. Investigation of early cell–surface interactions of human mesenchymal stem cells on nanopatterned β-type titanium–niobium alloy surfaces

    PubMed Central

    Medda, Rebecca; Helth, Arne; Herre, Patrick; Pohl, Darius; Rellinghaus, Bernd; Perschmann, Nadine; Neubauer, Stefanie; Kessler, Horst; Oswald, Steffen; Eckert, Jürgen; Spatz, Joachim P.; Gebert, Annett; Cavalcanti-Adam, Elisabetta A.

    2014-01-01

    Multi-potent adult mesenchymal stem cells (MSCs) derived from bone marrow have therapeutic potential for bone diseases and regenerative medicine. However, an intrinsic heterogeneity in their phenotype, which in turn results in various differentiation potentials, makes it difficult to predict the response of these cells. The aim of this study is to investigate initial cell–surface interactions of human MSCs on modified titanium alloys. Gold nanoparticles deposited on β-type Ti–40Nb alloys by block copolymer micelle nanolithography served as nanotopographical cues as well as specific binding sites for the immobilization of thiolated peptides present in several extracellular matrix proteins. MSC heterogeneity persists on polished and nanopatterned Ti–40Nb samples. However, cell heterogeneity and donor variability decreased upon functionalization of the gold nanoparticles with cyclic RGD peptides. In particular, the number of large cells significantly decreased after 24 h owing to the arrangement of cell anchorage sites, rather than peptide specificity. However, the size and number of integrin-mediated adhesion clusters increased in the presence of the integrin-binding peptide (cRGDfK) compared with the control peptide (cRADfK). These results suggest that the use of integrin ligands in defined patterns could improve MSC-material interactions, not only by regulating cell adhesion locally, but also by reducing population heterogeneity. PMID:24501674

  6. Investigation of early cell-surface interactions of human mesenchymal stem cells on nanopatterned β-type titanium-niobium alloy surfaces.

    PubMed

    Medda, Rebecca; Helth, Arne; Herre, Patrick; Pohl, Darius; Rellinghaus, Bernd; Perschmann, Nadine; Neubauer, Stefanie; Kessler, Horst; Oswald, Steffen; Eckert, Jürgen; Spatz, Joachim P; Gebert, Annett; Cavalcanti-Adam, Elisabetta A

    2014-02-01

    Multi-potent adult mesenchymal stem cells (MSCs) derived from bone marrow have therapeutic potential for bone diseases and regenerative medicine. However, an intrinsic heterogeneity in their phenotype, which in turn results in various differentiation potentials, makes it difficult to predict the response of these cells. The aim of this study is to investigate initial cell-surface interactions of human MSCs on modified titanium alloys. Gold nanoparticles deposited on β-type Ti-40Nb alloys by block copolymer micelle nanolithography served as nanotopographical cues as well as specific binding sites for the immobilization of thiolated peptides present in several extracellular matrix proteins. MSC heterogeneity persists on polished and nanopatterned Ti-40Nb samples. However, cell heterogeneity and donor variability decreased upon functionalization of the gold nanoparticles with cyclic RGD peptides. In particular, the number of large cells significantly decreased after 24 h owing to the arrangement of cell anchorage sites, rather than peptide specificity. However, the size and number of integrin-mediated adhesion clusters increased in the presence of the integrin-binding peptide (cRGDfK) compared with the control peptide (cRADfK). These results suggest that the use of integrin ligands in defined patterns could improve MSC-material interactions, not only by regulating cell adhesion locally, but also by reducing population heterogeneity. PMID:24501674

  7. The formation mechanisms of surface nanocrystallites in β-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Cui, Wenfang; Song, Xiu; Zhou, Lian

    2015-08-01

    A nanostructured surface layer was successfully performed on a biomedical β-type TiNbZrFe alloy by surface mechanical attrition treatment (SMAT). The results reveal that the surface layer along the depth from treated surface to strain-free matrix could be divided into an outer nanocrystalline layer (0-30 μm), a high-density dislocation region (30-200 μm) and an inner region with low-density dislocations and twins (200-700 μm) when the surface was treated for 60 min. The microhardness of the surface layer is enhanced and increases with increasing treatment time. Although the {1 1 2} <1 1 1> twin coordinates the deformations with dislocations, this coordination only occurs in the low strain area and cannot affect the nanocrystalline formation. The self-nanocrystallization of TiNbZrFe alloy is mainly attributed to dislocation movements. First, the dislocations start to move and easily form dislocation bands along certain crystal directions; then, multiple slips of dislocations gradually form dislocation tangles; after that, high-density dislocation tangles increases, which divides primary grains into many small domain areas. As high strain energies accumulate on the interfaces among these areas, the lattice rotation can be driven between the adjacent small domain areas, finally resulting in a large number of nanocrystalline regions with low or large angle grain boundaries.

  8. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    SciTech Connect

    Schuster, B.E.; Roszell, L.E.; Murr, L.E.; Ramirez, D.A.; Demaree, J.D.; Klotz, B.R.; Rosencrance, A.B.; Dennis, W.E.; Bao, W.; Perkins, E.J.; Dillman, J.F.; Bannon, D.I.

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  9. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    NASA Astrophysics Data System (ADS)

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-03-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description.

  10. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    SciTech Connect

    Isherwood, Patrick J. M. Walls, John M.; Butler, Keith T.; Walsh, Aron

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  11. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    NASA Astrophysics Data System (ADS)

    Isherwood, Patrick J. M.; Butler, Keith T.; Walsh, Aron; Walls, John M.

    2015-09-01

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO2. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a "compositional mobility edge." Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  12. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    PubMed Central

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-01-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description. PMID:26928759

  13. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  14. Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys

    NASA Astrophysics Data System (ADS)

    Boggess, Thomas

    InAs/Ga(In)Sb type-II superlattices (T2SL) have been extensively studied for both advanced emitter and detector technologies associated with mid-wave (MWIR), long-wave (LWIR), and very-long-wave (VLWIR) infrared applications. The type-II band alignment, together with control of both the layer thicknesses and the alloy composition, provide a rich environment for band structure engineering, including band gap tuning and suppression of Auger recombination. Unfortunately, the InAs/Ga(In)Sb MWIR T2SLs have been found to have minority carrier lifetimes persistently below 100 ns, even at cryogenic temperatures. Such short lifetimes are problematic for detector applications and suggest that this material system will not compete with HgCdTe for IR detector applications. On the other hand, the report by Steenbergen, et al., of much longer minority carrier recombination lifetimes (>412 ns at 77K) in a longwave (8.2 µm) InAs/InAsSb T2SL suggests that the ``Ga-free'' superlattices could be competitive for IR detector applications. We will discuss all-optical measurements of carrier lifetimes as a function of temperature and injected carrier density in InAs/InAsSb T2SLs with a broad range of sample designs based on variations in alloy composition and/or layer thickness. Minority carrier lifetimes ranging from 4.5 µs for a 9.2 µm-band-gap T2SL to 18 µs for a 4.2 µm-band-gap T2SL have been measured at 77 K. This research was performed in collaboration with Y. Aytac, B.V. Olson, J.K. Kim, E.A. Shaner, J.F. Klem, S.D. Hawkins, and M.E. Flatté.

  15. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  16. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  17. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales.

    PubMed

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K

    2016-01-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660

  18. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjorn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-03-16

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix andmore » elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. Furthermore, the study contributes to further understanding of load-partitioning characteristics in multiphase materials.« less

  19. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    PubMed Central

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-01-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660

  20. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    NASA Astrophysics Data System (ADS)

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-03-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials.

  1. Electrical behavior on n-type dopants in AlGaAs alloys: Shallow levels and DX centers

    NASA Astrophysics Data System (ADS)

    Munoz, Elias

    1990-11-01

    The electrical properties of n-type Al(x)Ga(1-x)As are governed by deep donor states, formerly called DX centers, and created by the isolated donor atoms. At very low Al compositions, such deep donors become resonant with the gamma minimum. For GaAs compositions, the electron thermal emission was studied under hydrostatic pressure. It is suggested that deep donors show a discrete structure of energy levels, revealed in their thermal emission kinetics. An analysis of the capacitance behavior of AlGaAs n-type regions (x greater than 0.2) was performed for Si and Sn donors. Electron capture kinetics was modeled.

  2. Back-junction back-contact n-type silicon solar cells with screen-printed aluminum-alloyed emitter

    NASA Astrophysics Data System (ADS)

    Bock, Robert; Mau, Susanne; Schmidt, Jan; Brendel, Rolf

    2010-06-01

    We introduce an n-type Si back-junction back-contact solar cell based on an Al-doped p+ rear emitter fabricated by means of screen-printing and firing instead of the commonly applied high-temperature boron diffusion. In order to demonstrate the applicability of this easy-to-fabricate p+ emitter to a back-junction back-contact solar cell we present experimental results showing 19.0% cell efficiency. The structuring of the cell is performed by laser processing omitting any photolithography. Using two-dimensional device simulation we determine a realistic efficiency limit of 21.6% for this cell type.

  3. Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications.

    PubMed

    Zhao, Xingfeng; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Ishimoto, Takuya; Nakano, Takayoshi

    2012-07-01

    Metallic implant rods used in spinal fixtures should have a Young's modulus that is sufficiently low to prevent stress shielding for the patient and sufficiently high to suppress springback for the surgeon. Therefore, we propose a new concept: novel biomedical titanium alloys with a changeable Young's modulus via deformation-induced ω phase transformation. In this study, the Cr content in the range of 10-14 mass% was optimized to produce deformation-induced ω phase transformation, resulting in a large increase in the Young's modulus of binary Ti-Cr alloys. The springback and cytotoxicity of the optimized alloys were also examined. Ti-(10-12)Cr alloys exhibit an increase in Young's modulus owing to deformation-induced ω phase transformation. In this case, such deformation-induced ω phase transformation occurs along with {332}(β) mechanical twinning, resulting in the maintenance of acceptable ductility with relatively high strength. Among the examined alloys, the lowest Young's modulus and largest increase in Young's modulus are obtained from the Ti-12Cr alloy. This alloy exhibits smaller springback than and comparable cytocompatibility to the biomedical Ti alloy Ti-29Nb-13Ta-4.6Zr. PMID:22342893

  4. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  5. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  6. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-02-01

    In order to meet the requirements of the patients and surgeons simultaneously for spinal fixation applications, a novel biomedical alloy with a changeable Young's modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, was developed. In this study, the chromium and oxygen contents in ternary Ti(11, 12 mass%)Cr-(0.2, 0.4, 0.6 mass%)O alloys were optimized in order to achieve a changeable Young's modulus via deformation-induced ω-phase transformation with good mechanical properties. The Young's moduli of all the examined alloys increase after cold rolling, which is attributed to the deformation-induced ω-phase transformation. This transformation is suppressed by oxygen but enhanced with lower chromium content, which is related to the β(bcc)-lattice stability. Among the examined alloys, the Ti-11Cr-0.2O alloy shows a low Young's modulus of less than 80GPa in the solution-treated (ST) condition and a high Young's modulus of more than 90GPa in the cold rolled (CR) condition. The Ti-11Cr-0.2O alloy also exhibits a high tensile strength, above 1000MPa, with an acceptable elongation of ~12% in the ST condition. Furthermore, the Ti-11Cr-0.2O alloy exhibits minimal springback. This value of springback is the closest to that of Ti64 ELI alloy among the compared alloys. Therefore, the Ti-11Cr-0.2O alloy, which has a good balance between large changeable Young's modulus, high tensile strength, good plasticity, and minimal springback, is considered to be a potential candidate for spinal fixation applications. PMID:24317494

  7. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-02-01

    In order to meet the requirements of the patients and surgeons simultaneously for spinal fixation applications, a novel biomedical alloy with a changeable Young's modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, was developed. In this study, the chromium and oxygen contents in ternary Ti(11, 12 mass%)Cr-(0.2, 0.4, 0.6 mass%)O alloys were optimized in order to achieve a changeable Young's modulus via deformation-induced ω-phase transformation with good mechanical properties. The Young's moduli of all the examined alloys increase after cold rolling, which is attributed to the deformation-induced ω-phase transformation. This transformation is suppressed by oxygen but enhanced with lower chromium content, which is related to the β(bcc)-lattice stability. Among the examined alloys, the Ti-11Cr-0.2O alloy shows a low Young's modulus of less than 80GPa in the solution-treated (ST) condition and a high Young's modulus of more than 90GPa in the cold rolled (CR) condition. The Ti-11Cr-0.2O alloy also exhibits a high tensile strength, above 1000MPa, with an acceptable elongation of ~12% in the ST condition. Furthermore, the Ti-11Cr-0.2O alloy exhibits minimal springback. This value of springback is the closest to that of Ti64 ELI alloy among the compared alloys. Therefore, the Ti-11Cr-0.2O alloy, which has a good balance between large changeable Young's modulus, high tensile strength, good plasticity, and minimal springback, is considered to be a potential candidate for spinal fixation applications.

  8. Structural, magnetic and electronic state characterization of L1 0-type ordered FeNi alloy extracted from a natural meteorite.

    PubMed

    Kotsugi, M; Maruyama, H; Ishimatsu, N; Kawamura, N; Suzuki, M; Mizumaki, M; Osaka, K; Matsumoto, T; Ohkochi, T; Ohtsuki, T

    2014-02-12

    To understand the hard magnetism of L10-type ordered FeNi alloy, we extracted the L10-FeNi phase from a natural meteorite, and evaluated its fundamental solid-state properties: sample composition, magnetic hysteresis, crystal structure and electronic structure. We executed multidirectional analyses using scanning electron microscopy with an electron probe micro-analyzer (SEM-EPMA), a superconducting quantum interference device (SQUID), x-ray diffraction (XRD) and magnetic circular dichroism (MCD). As a result, we found that the composition was Fe: 50.47 ± 1.98 at.%, Ni: 49.60 ± 1.49 at.%, and an obvious superlattice peak is confirmed. The estimated degree of order was 0.608, with lattice constants a = b = 3.582 Å and c = 3.607 Å. The obtained coercivity was more than 500 Oe. MCD analysis using the K absorption edge suggests that the magnetic anisotropy could originate from the orbital magnetic moment of 3d electrons in Fe; this result is consistent with that in a previous report obtained with synthetic L10-FeNi. PMID:24469025

  9. Structural, magnetic and electronic state characterization of L1 0-type ordered FeNi alloy extracted from a natural meteorite.

    PubMed

    Kotsugi, M; Maruyama, H; Ishimatsu, N; Kawamura, N; Suzuki, M; Mizumaki, M; Osaka, K; Matsumoto, T; Ohkochi, T; Ohtsuki, T

    2014-02-12

    To understand the hard magnetism of L10-type ordered FeNi alloy, we extracted the L10-FeNi phase from a natural meteorite, and evaluated its fundamental solid-state properties: sample composition, magnetic hysteresis, crystal structure and electronic structure. We executed multidirectional analyses using scanning electron microscopy with an electron probe micro-analyzer (SEM-EPMA), a superconducting quantum interference device (SQUID), x-ray diffraction (XRD) and magnetic circular dichroism (MCD). As a result, we found that the composition was Fe: 50.47 ± 1.98 at.%, Ni: 49.60 ± 1.49 at.%, and an obvious superlattice peak is confirmed. The estimated degree of order was 0.608, with lattice constants a = b = 3.582 Å and c = 3.607 Å. The obtained coercivity was more than 500 Oe. MCD analysis using the K absorption edge suggests that the magnetic anisotropy could originate from the orbital magnetic moment of 3d electrons in Fe; this result is consistent with that in a previous report obtained with synthetic L10-FeNi.

  10. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  11. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  12. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  13. Effect of small scattering centers on the thermoelectric properties of p-type SiGe alloys

    NASA Technical Reports Server (NTRS)

    Beaty, John S.; Rolfe, Jonathan L.; Vandersande, Jan W.

    1991-01-01

    Theory predicts that the addition of ultra-fine, inert, phonon-scattering centers to thermoelectric materials will reduce their thermal conductivity. To investigate this prediction, ultrafine particulates (20 to 120 A) of silicon nitride have been added to boron-doped, p-type, 80/20 SiGe. All of the SiGe samples produced from ultrafine powder have lower thermal conductivities than standard SiGe, but high-temperature heat treatment increases the thermal conductivity back to the value for standard SiGe. However, the SiGe samples with silicon nitride, inert, phonon-scattering centers retained the lower thermal conductivity after several heat treatments. A reduction of approximately 25 percent in thermal conductivity has been achieved in these samples. The magnitude of the reduction agrees with theoretical predictions.

  14. Stress corrosion of high strength aluminum alloys.

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Brummer, S. B.

    1972-01-01

    An investigation has been carried out to examine the relationship of the observed chemical and mechanical properties of Al-Cu and Al-Zn-Mg alloys to the stress corrosion mechanisms which dominate in each case. Two high purity alloys and analogous commercial alloys were selected. Fundamental differences between the behavior of Al-Cu and of Al-Zn-Mg alloys were observed. These differences in the corrosion behavior of the two types of alloys are augmented by substantial differences in their mechanical behavior. The relative cleavage energy of the grain boundaries is of particular importance.

  15. Dot arrays of L1{sub 0}-type FePt ordered alloy perpendicular films fabricated using low-temperature sputter film deposition

    SciTech Connect

    Shimatsu, T.; Aoi, H.; Inaba, Y.; Kataoka, H.; Sayama, J.; Okamoto, S.; Kitakami, O.

    2011-04-01

    Using ultrahigh vacuum sputter film deposition, we fabricated L1{sub 0}-type Fe{sub 50}Pt{sub 50} ordered alloy perpendicular films on MgO(001) single-crystal substrates and 2.5 in. glass disks at low substrate temperatures of 200-350 deg. C. Then we examined the magnetic properties of the dot arrays made from these films. The uniaxial magnetic anisotropy K{sub u} for L1{sub 0}-type FePt films (10 nm in thickness) deposited with a Pd underlayer on MgO(001) substrates reached about 2 x 10{sup 7} erg/cm{sup 3} at the substrate temperature T{sub s} of 200 deg. C, and 3 x 10{sup 7} erg/cm{sup 3} at T{sub s} = 250 deg. C. The order parameter S was about 0.46 at T{sub s} = 300 deg. C. Moreover, K{sub u} for L1{sub 0}-FePt films fabricated on glass disks using MgO/Cr underlayers shows 3.4 x 10{sup 7} erg/cm{sup 3} at T{sub s} = 300 deg. C, which was almost equal to that for FePt single-crystal films deposited on Pd/MgO(001). The switching field distribution {sigma}/H{sub c} for dot arrays made from L1{sub 0}-FePt film [5 nm in thickness, on Pd/MgO(001) at T{sub s} = 250 deg. C] was small; {sigma}/H{sub c}= 0.11 for a dot diameter of 15 nm. This value was smaller than that of hcp-Co{sub 75}Pt{sub 25} dot arrays ({sigma}/H{sub c} = 0.18). The difference was mainly attributable to the degree of the easy axis distribution. This result demonstrates the homogeneous formation of a L1{sub 0}-type ordered structure in the FePt layers.

  16. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  17. A Comparative Investigation on the Capability of Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Describe Flow Behavior of BFe10-1-2 Cupronickel Alloy at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Lei, Ying; Wang, Kuaishe; Zhang, Xiaolu; Miao, Chengpeng; Li, Wenbing

    2016-05-01

    True stress and true strain data obtained from isothermal compression tests on a Gleeble-3800 thermo-mechanical simulator, in a wide range of temperatures (1073-1323 K) and strain rates (0.001-10 s-1), has been used to evaluate the material constants of two constitutive models: the modified Zerilli-Armstrong and the strain compensation Arrhenius-type models. Furthermore, a comparative study was conducted on the capabilities of the two models in order to represent the elevated temperature flow behavior of BFe10-1-2 cupronickel alloy. The suitability levels of these two models were evaluated by comparing the accuracy of their predictions of deformation behavior, correlation coefficient ( R), average absolute relative error ( AARE), relative errors of prediction, and the number of material constants. The results show that the predicted values of these two models agree well with the experimental values of BFe10-1-2 cupronickel alloy except at the temperature of 1123 K and the strain rate of 1 s-1. Meanwhile, the strain compensated Arrhenius-type model can track the deformation behavior of BFe10-1-2 cupronickel alloy more accurately throughout the entire temperature and strain rate range, while fewer material constants are involved in the modified Zerilli-Armstrong model.

  18. A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict High-Temperature Flow Behavior of Ti-6Al-4V Alloy in α + β Phase

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Kuaishe; Han, Yingying

    2016-03-01

    True stress and true strain values obtained from isothermal compression tests over a wide temperature range from 1,073 to 1,323 K and a strain rate range from 0.001 to 1 s-1 were employed to establish the constitutive equations based on Johnson Cook, modified Zerilli-Armstrong (ZA) and strain-compensated Arrhenius-type models, respectively, to predict the high-temperature flow behavior of Ti-6Al-4V alloy in α + β phase. Furthermore, a comparative study has been made on the capability of the three models to represent the elevated temperature flow behavior of Ti-6Al-4V alloy. Suitability of the three models was evaluated by comparing both the correlation coefficient R and the average absolute relative error (AARE). The results showed that the Johnson Cook model is inadequate to provide good description of flow behavior of Ti-6Al-4V alloy in α + β phase domain, while the predicted values of modified ZA model and the strain-compensated Arrhenius-type model could agree well with the experimental values except under some deformation conditions. Meanwhile, the modified ZA model could track the deformation behavior more accurately than other model throughout the entire temperature and strain rate range.

  19. First-principles study on magnetism and half-metallicity in bulk and various (001) surfaces of Heusler alloy Zr2VSn with Hg2CuTi-type structure

    NASA Astrophysics Data System (ADS)

    Deng, Zun-Yi; Zhang, Jian-Min

    2016-07-01

    Structural, electronic and magnetic properties in the bulk and five different (001) surfaces (ZrV-, ZrSn-, VV-, ZrZr- and SnSn-terminations) of Zr2 VSn Heusler alloy with Hg2 CuTi -type structure are studied by using first-principles calculations based on density-functional theory. The bulk Zr2 VSn Heusler alloy is ferrimagnetic half-metallicity with equilibrium lattice constant 6.815 Å and total magnetic moment -1.000 μB / f.u . , following the Slater-Pauling rule μt =Zt - 18 . The atoms on different surface layers exhibit different displacements, electronic and magnetic properties. All five (001) surfaces lose the half-metallicity and are not usable in spintronics devices.

  20. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  1. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  2. The structure, anisotropy and coercivity of rapidly quenched TbCu7-type SmCo7-xZrx alloys and the effects of post-treatments

    NASA Astrophysics Data System (ADS)

    Feng, D. Y.; Liu, Z. W.; Zheng, Z. G.; Zeng, D. C.; Zhang, G. Q.

    2013-12-01

    The effects of wheel speed, Zr content, post-ball milling process and heat treatment on the structure, anisotropy, magnetic properties and phase transition of the melt-spun SmCo7-xZrx alloys were investigated. The crystallographic c-axis is parallel to the ribbon plane for the ribbons prepared at low speeds of 5 and 15 m/s, and this orientation is reduced at higher speeds. The out-of-plane coercivity of SmCo6.8Zr0.2 ribbon increases from 123 kA/m for 5 m/s to 1076 kA/m for 60 m/s. Zr doping improves the hard magnetic properties and the in-plane coercivity of SmCo7-xZrx alloys increases with the Zr content from 592 kA/m for x=0.1 to 1376 kA/m for x=0.4. The Rietveld refinements and theoretical analysis reveal that Zr atoms occupy the 2e site. The coercivity mechanisms are different for the alloys with various Zr contents. The ball milling process could enhance the coercivity and remanence of the ribbons due to the grain refinement and the precipitation of Co phase. Heat treatment can further modify the magnetic properties of the alloys. SmCo6.7Zr0.3 alloy heat treated at 400 °C has the high maximum energy product (BH)max of 64.5 kJ/m3, where the coercivity was enhanced to 1560 kA/m by 650 °C heat treatment. In addition, the SmCo7-xZrx alloys exhibit excellent hard magnetic properties at elevated temperatures.

  3. Method of producing superplastic alloys and superplastic alloys produced by the method

    NASA Technical Reports Server (NTRS)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  4. A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary M11-xM2xB2 alloys with AlB2 type structure

    NASA Astrophysics Data System (ADS)

    Alling, B.; Högberg, H.; Armiento, R.; Rosen, J.; Hultman, L.

    2015-05-01

    Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary M11-xM2xB2 alloys comprising MiB2 (Mi = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1-xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at EF in TiB2, ZrB2, and HfB2.

  5. A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary M11–xM2xB2 alloys with AlB2 type structure

    PubMed Central

    Alling, B.; Högberg, H.; Armiento, R.; Rosen, J.; Hultman, L.

    2015-01-01

    Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary M11–xM2xB2 alloys comprising MiB2 (Mi = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1–xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at EF in TiB2, ZrB2, and HfB2. PMID:25970763

  6. A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary M(1)1-x M(2)xB2 alloys with AlB2 type structure.

    PubMed

    Alling, B; Högberg, H; Armiento, R; Rosen, J; Hultman, L

    2015-05-13

    Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary M(1)1-x M(2)xB2 alloys comprising M(i)B2 (M(i) = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1-xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at EF in TiB2, ZrB2, and HfB2.

  7. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer.

    PubMed

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-01-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics.

  8. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer

    PubMed Central

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-01-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482

  9. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-12-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics.

  10. Thermoelectric performance of nanostructured p-type Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnxhalf-Heusler alloys

    SciTech Connect

    Maji, Pramathesh; Makongo, Julien P.A.; Zhou, Xiaoyuan; Chi, Hang; Uher, Ctirad; Poudeu, Pierre F.P.

    2013-06-01

    Several compositions of the p-type half-Heusler alloys Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnx (0≤x≤0.4) were synthesized by mechanically alloying high purity elemental powders using hardened steel jars and balls on a high energy shaker mill. Powder X-ray diffraction (XRD) investigations of several aliquots taken after regularly spaced milling time suggested that single phase products with half-Heusler (HH) structure can be obtained after 10 h. However, XRD and transmission electron microscopy (TEM) studies of several specimens obtained from compacted polycrystalline powders of Z₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnx alloys using a uniaxial hot press (HP) revealed the presence of CoSb inclusions with various sizes embedded inside the HH matrix. Hall effect, electrical conductivity, and thermopower data collected between 300 K and 775 K on several compositions suggested that electronic transport in the synthesized Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnx/CoSb composites strongly depends on the average size and/or mole fraction of the embedded CoSb inclusions rather than the fraction (x) of Sn substituting for Sb. Among the samples investigated, the nanocomposite with x=0.2, which contains nanometer-scale CoSb inclusions, showed the largest power factor (800 μW/K² m at 775 K) and the lowest lattice thermal conductivity (~2.2 W/m K at 775 K) leading to a six-fold enhancement in the figure of merit when compared to the Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb₀.₉₉Sn₀.₀₁ bulk matrix. - Graphical abstract: CoSb nanoinclusions embedded into a p-type Zr₀.₅Hf₀.₅Co₀.₄Rh₀.₆Sb1–xSnx half-Heusler matrix simultaneously boost the thermopower and carrier mobility leading to a drastic enhancement of the power factor of the resulting bulk nanostructured materials. Highlights: • The phase composition of half-Heusler (HH) alloy is very sensitive

  11. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  12. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  13. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    PubMed Central

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892

  14. Tritium Production from Palladium Alloys

    SciTech Connect

    Claytor, T.N.; Schwab, M.J.; Thoma, D.J.; Teter, D.F.; Tuggle, D.G.

    1998-04-19

    A number of palladium alloys have been loaded with deuterium or hydrogen under low energy bombardment in a system that allows the continuous measurement of tritium. Long run times (up to 200 h) result in an integration of the tritium and this, coupled with the high intrinsic sensitivity of the system ({approximately}0.1 nCi/l), enables the significance of the tritium measurement to be many sigma (>10). We will show the difference in tritium generation rates between batches of palladium alloys (Rh, Co, Cu, Cr, Ni, Be, B, Li, Hf, Hg and Fe) of various concentrations to illustrate that tritium generation rate is dependent on alloy type as well as within a specific alloy, dependent on concentration.

  15. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  16. Comparison of Three Primary Surface Recuperator Alloys

    SciTech Connect

    Matthews, Wendy; More, Karren Leslie; Walker, Larry R

    2010-01-01

    Extensive work performed by Capstone Turbine Corporation, Oak Ridge National Laboratory, and various others has shown that the traditional primary surface recuperator alloy, type 347 stainless steel, is unsuitable for applications above 650 C ({approx}1200 F). Numerous studies have shown that the presence of water vapor greatly accelerates the oxidation rate of type 347 stainless steel at temperatures above 650 C ({approx}1200 F). Water vapor is present as a product of combustion in the microturbine exhaust, making it necessary to find replacement alloys for type 347 stainless steel that will meet the long life requirements of microturbine primary surface recuperators. It has been well established over the past few years that alloys with higher chromium and nickel contents than type 347 stainless steel have much greater oxidation resistance in the microturbine environment. One such alloy that has replaced type 347 stainless steel in primary surface recuperators is Haynes Alloy HR-120 (Haynes and HR-120 are trademarks of Haynes International, Inc.), a solid-solution-strengthened alloy with nominally 33 wt % Fe, 37 wt % Ni and 25 wt % Cr. Unfortunately, while HR-120 is significantly more oxidation resistant in the microturbine environment, it is also a much more expensive alloy. In the interest of cost reduction, other candidate primary surface recuperator alloys are being investigated as possible alternatives to type 347 stainless steel. An initial rainbow recuperator test has been performed at Capstone to compare the oxidation resistance of type 347 stainless steel, HR-120, and the Allegheny Ludlum austenitic alloy AL 20-25+Nb (AL 20-25+Nb is a trademark of ATI Properties, Inc. and is licensed to Allegheny Ludlum Corporation). Evaluation of surface oxide scale formation and associated alloy depletion and other compositional changes has been carried out at Oak Ridge National Laboratory. The results of this initial rainbow test will be presented and discussed in this

  17. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  18. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  19. Alloys of clathrate allotropes for rechargeable batteries

    SciTech Connect

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  20. New alloys to conserve critical elements

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  1. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    SciTech Connect

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  2. Relations between the modulus of elasticity of binary alloys and their structure

    NASA Technical Reports Server (NTRS)

    Koster, Werner; Rauscher, Walter

    1951-01-01

    A comprehensive survey of the elastic modulus of binary alloys as a function of the concentration is presented. Alloys that form continuous solid solutions, limited solid solutions, eutectic alloys, and alloys with intermetallic phases are investigated. Systems having the most important structures have been examined to obtain criteria for the relation between lattice structure, type of binding, and elastic behavior.

  3. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  4. Thermoelectric performance of nanostructured p-type Zr0.5Hf0.5Co0.4Rh0.6Sb1-xSnx half-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Maji, Pramathesh; Makongo, Julien P. A.; Zhou, Xiaoyuan; Chi, Hang; Uher, Ctirad; Poudeu, Pierre F. P.

    2013-06-01

    Several compositions of the p-type half-Heusler alloys Zr0.5Hf0.5Co0.4Rh0.6Sb1-xSnx (0≤x≤0.4) were synthesized by mechanically alloying high purity elemental powders using hardened steel jars and balls on a high energy shaker mill. Powder X-ray diffraction (XRD) investigations of several aliquots taken after regularly spaced milling time suggested that single phase products with half-Heusler (HH) structure can be obtained after 10 h. However, XRD and transmission electron microscopy (TEM) studies of several specimens obtained from compacted polycrystalline powders of Zr0.5Hf0.5Co0.4Rh0.6Sb1-xSnx alloys using a uniaxial hot press (HP) revealed the presence of CoSb inclusions with various sizes embedded inside the HH matrix. Hall effect, electrical conductivity, and thermopower data collected between 300 K and 775 K on several compositions suggested that electronic transport in the synthesized Zr0.5Hf0.5Co0.4Rh0.6Sb1-xSnx/CoSb composites strongly depends on the average size and/or mole fraction of the embedded CoSb inclusions rather than the fraction (x) of Sn substituting for Sb. Among the samples investigated, the nanocomposite with x=0.2, which contains nanometer-scale CoSb inclusions, showed the largest power factor (800 μW/K2 m at 775 K) and the lowest lattice thermal conductivity (˜2.2 W/m K at 775 K) leading to a six-fold enhancement in the figure of merit when compared to the Zr0.5Hf0.5Co0.4Rh0.6Sb0.99Sn0.01 bulk matrix.

  5. [Use of titanium alloys for medical instruments].

    PubMed

    Feofilov, R N; Chirkov, V K; Levin, M V

    1977-01-01

    On the ground of an analysis into properties of titanium and its alloys the fields of their possible utilization for making various medical instruments are proposed. Because of their insufficient hardness and wear-resistance the titanium alloys cannot be recommended for making medical instruments with thin cutting edges. For the reasons of their insufficient strength, low wear-resistance and substandard modulus of elasticity, it is inexpedient to use titanium alloys in making many types of clamping medical instruments. Nor is it advisable to employ titanium alloys in handles of the instruments, for this may lead to a contact corrosion of their working parts. The use of titanium alloys is recommended for making bone-joining members, retracting medical instruments, of the spatula and speculum types, some kinds of non-magnetic pincers and ultrasonic medical instruments.

  6. Fabrication of Lotus-Type Porous Al-Si Alloys Using Thermal Decomposition Method Combined with Mold Casting and Continuous Casting Techniques

    NASA Astrophysics Data System (ADS)

    Kim, Tae Bum; Jung, Taek Kyun; Kim, Yong Hwan; Kim, Taek Soo; Hyun, Soong Keun

    2013-05-01

    Porous Al-Si alloys with directional pores were fabricated using thermal decomposition methods combined with mold casting and continuous casting techniques. The melt of Al-14 mass pct Si alloy was unidirectionally solidified in argon atmospheres by the mold casting or continuous casting technique. Ca(OH)2 compound was added into the melt as a source of hydrogen which forms pores during the solidification. In order to clarify the pore formation behavior, the effects of transfer velocity, ambient argon pressure, the amount, and the morphology of Ca(OH)2 compounds on the porosity were investigated. It was found that the porosity decreases with the increasing transfer velocity (solidification velocity). The pores are formed under the argon pressure of 1 kPa, while not being formed under the pressure higher than 20 kPa. The porosity increases with the increasing amount of Ca(OH)2 when the compacted Ca(OH)2 pellets are used, while pores are not formed when Ca(OH)2 powders are used because of the rapid decomposition of Ca(OH)2.

  7. Influence of cobalt and manganese content on the dehydrogenation capacity and kinetics of air-exposed LaNi 5+ x-type alloys in solid gas and electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Raekelboom, E.; Cuevas, F.; Knosp, B.; Percheron-Guégan, A.

    The effect of cobalt and manganese content on the dehydrogenation properties of air-exposed MmB 5+ x-type (Mm = mischmetal; B = Ni, Al, Co and Mn) alloys was investigated both in solid gas and electrochemical reactions. The cobalt and manganese content were varied separately while keeping constant the plateau pressure of the hydrides. The increase of the cobalt content leads to a decrease of the hydrogen capacity whereas the manganese content has no much effect. In solid gas reactions, the kinetics were found to be limited by the hydrogen diffusion through the surface oxidation layer. As for the electrochemistry, the kinetics are limited by a corrosion layer formed in alkaline medium. The desorption rates for both processes increase as the cobalt or manganese content decreases. This is thought to be due to an enhancement of the hydrogen diffusivity through the oxidation layer. As a result, a low cobalt or manganese content in MmB 5+ x alloys is found to be beneficial for the hydrogen desorption kinetics in both processes.

  8. [Mechanical studies on casting titanium alloy denture base].

    PubMed

    Ito, M

    1990-03-01

    The mechanical properties of the Akers type clasp, bar and frame made by the newly developed Ti-20Cr-0.2Si alloy were studied in order to obtain the indices for designing the cast partial denture base. In the case of the clasp, the bending strength of the Ti-20Cr-0.2Si alloy and pure Ti was lower than that of the Co-Cr alloy. The Ti-20Cr-0.2Si alloy and pure Ti may have the same retentive force as the gold type IV alloy because its bending behavior was similar to that of the gold alloy. In the cyclic bending test, the permanent deflection of the Ti-20Cr-0.2Si alloy was lower than that of the pure Ti and Co-Cr alloy. It had almost the same value as that of the gold alloy. Considering the permanent deflection and fracture, it is preferable that the undercut of the abutment tooth for the Ti-20Cr-0.02Si alloy clasp is 0.50mm or less. The Ti-20Cr-0.2Si alloy bars and frame showed the same bending behavior and strain distribution as the gold alloy. In the case of the Ti-20Cr-0.2Si alloy bar thickened about 30%, the strain was decreased and close to that of the Co-Cr alloy. It was suggested that the Ti-20Cr-0.2Si alloy bar or frame should be designed like the gold alloy. PMID:2196313

  9. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  10. Precipitates in Biomedical Co-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Narushima, Takayuki; Mineta, Shingo; Kurihara, Yuto; Ueda, Kyosuke

    2013-04-01

    Herein, precipitates in biomedical Co-Cr-Mo and Co-Cr-W-Ni alloys are reviewed with a focus on their phase, chemical composition, morphology, and formation/dissolution during heat treatment. The effects of the heat-treatment conditions and the addition of minor alloying elements such as carbon, nitrogen, Si, and Mn on the precipitates are also discussed. Mostly, the precipitates in the alloys are of the σ-phase, M23X6-type phase, η-phase (M6X-M12X type), π-phase (M2T3X type), χ-phase, M7X3-type phase, or M2X-type phase (M and T refer to metallic elements, and X refers to carbon and/or nitrogen); the σ- and χ-phases are intermetallic compounds, and the others are carbides, nitrides, and carbonitrides. The dissolution of the precipitates during solution treatment is delayed by the formation of the π-phase at temperatures where partial melting occurs in the alloys. In addition, the stability of the precipitates depends on the content of minor alloying elements. For example, the addition of carbon enhances the formation of M23X6-type and M7X3-type precipitates. Nitrogen stabilizes the M2X-type, η-phase, and π-phase precipitates, and Si stabilizes the η-phase and χ-phase precipitates. The balance between the minor alloying element abundances also affects the constitution of the precipitates in Co-Cr alloys.

  11. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  12. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion. PMID:23370866

  13. Corrosion Testing of Ni Alloy HVOF Coatings in High Temperature Environments for Biomass Applications

    NASA Astrophysics Data System (ADS)

    Paul, S.; Harvey, M. D. F.

    2013-03-01

    This paper reports the corrosion behavior of Ni alloy coatings deposited by high velocity oxyfuel spraying, and representative boiler substrate alloys in simulated high temperature biomass combustion conditions. Four commercially available oxidation resistant Ni alloy coating materials were selected: NiCrBSiFe, alloy 718, alloy 625, and alloy C-276. These were sprayed onto P91 substrates using a JP5000 spray system. The corrosion performance of the coatings varied when tested at ~525, 625, and 725 °C in K2SO4-KCl mixture and gaseous HCl-H2O-O2 containing environments. Alloy 625, NiCrBSiFe, and alloy 718 coatings performed better than alloy C-276 coating at 725 °C, which had very little corrosion resistance resulting in degradation similar to uncoated P91. Alloy 625 coatings provided good protection from corrosion at 725 °C, with the performance being comparable to wrought alloy 625, with significantly less attack of the substrate than uncoated P91. Alloy 625 performs best of these coating materials, with an overall ranking at 725 °C as follows: alloy 625 > NiCrBSiFe > alloy 718 ≫ alloy C-276. Although alloy C-276 coatings performed poorly in the corrosion test environment at 725 °C, at lower temperatures (i.e., below the eutectic temperature of the salt mixture) it outperformed the other coating types studied.

  14. Effects of substitution, pressure, and temperature on the phonon mode in layered-rocksalt-type Li(1-x/2)Ga(1-x/2)ZnxO (x = 0.036-0.515) alloys

    NASA Astrophysics Data System (ADS)

    Tan, Lijie; Hu, Qiwei; Lei, Li; Jiang, Xiaodong; Gao, Shangpan; He, Duanwei

    2015-11-01

    ZnO-based semiconductor alloys, Li(1-x/2)Ga(1-x/2)ZnxO (x = 0.036-0.515) with a layered-rocksalt-type structure, have been prepared under high pressure. The composition, pressure, and temperature dependence of phonons have been studied by Raman spectroscopy. We observe two disorder-activated Raman (DAR) modes when the Zn composition x increases: a broad Raman peak at ca. 400 cm-1 and a left-shoulder peak at ca. 530 cm-1 on the low-frequency side of A1g mode at ca. 580 cm-1, which can be explained by reference to the phonon density of states for rocksalt-type ZnO. With the increase of the pressure and temperature, the left-shoulder DAR mode induced by substitution does not change at the same pace with the A1g mode at Brillouin-zone center. We find that ion substitution can be seen as a kind of chemical pressure, and the chemical pressure caused by internal substitution and the physical pressure caused by external compression have equivalent effects on the shortening of correlation length, the distortion of crystal lattice, and the change of atomic occupation.

  15. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  16. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  17. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  18. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  19. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  20. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  1. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  2. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  3. Environmental embrittlement in ordered intermetallic alloys

    SciTech Connect

    Liu, C.T.; Stoloff, N.S.

    1992-12-31

    Ordered intermetallics based on aluminides and silicides possess many promising properties for elevated-temperature applications; however, poor fracture resistance and limited fabricability restrict their use as engineering material. Recent studies have shown that environmental embrittlement is a major cause of low ductility and brittle fracture in many ordered intermetallic alloys. There are two types of environmental embrittlement observed in intermetallic alloys. One is hydrogen-induced embrittlement occurring at ambient temperatures in air. The other is oxygen-induced embrittlement in oxidizing atmospheres at elevated temperatures. In most cases, the embrittlements are due to a dynamic effect involving generation and penetration of embrittling agents (i.e., hydrogen or oxygen ) during testing. Diffusion of embrittling agents plays a dominant role in fracture of these intermetallic alloys. This chapter summarizes recent progress in understanding and reducing environmental embrittlement in these alloys.

  4. High temperature mechanical properties of a zirconium-modified, precipitation- strengthened nickel, 30 percent copper alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1974-01-01

    A precipitation-strengthened Monel-type alloy has been developed through minor alloying additions of zirconium to a base Ni-30Cu alloy. The results of this exploratory study indicate that thermomechanical processing of a solution-treated Ni-30Cu-0.2Zr alloy produced a dispersion of precipitates. The precipitates have been tentatively identified as a Ni5Zr compound. A comparison of the mechanical properties, as determined by testing in air, of the zirconium-modified alloy to those of a Ni-30Cu alloy reveals that the precipitation-strengthened alloy has improved tensile properties to 1200 K and improved stress-rupture properties to 1100 K. The oxidation characteristics of the modified alloy appeared to be equivalent to those of the base Ni-30Cu alloy.

  5. [Casting of dental alloys with special reference to the bonding capacity of Ni-Cr alloys].

    PubMed

    Weber, H

    1979-07-01

    A short review on castability of dental alloys -- for which a definition is proposed -- reflects the different factors influencing the results of a casting. In this case solid sieves and plates are cast by use of one gold-base alloy (Type III) and two base metal alloys used for porcelain veneering. All three alloys filled the sieve pattern to a 100%, whereas they performed differently when cast as thin, solid squares. The most continuous results were achieved with a Ni-Cr-alloy whose melting temperature can be recognized since the ingots flow together when this point is reached. Since the plate pattern is most difficult to cast due to surface to bulk ratio it is assumed that a complete casting can only be achieved when the performance of the alloy is good and all required conditions match. Thus, this type of test seems to be suitable to determine the castability of a dental alloy. The sieve test should be used to investigate and to improve the influence of the different factors as for example burnout time and temperature of the mold and sprue size.

  6. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  7. Development of a carburizing stainless steel alloy

    SciTech Connect

    Wert, D.E. )

    1994-06-01

    A new carburizing stainless steel alloy that resists corrosion, heat, and fatigue has been developed for bearing and gear applications. Pyrowear 675 Stainless alloy is vacuum induction melted and vacuum arc remelted (VIM/VAR) for aircraft-quality cleanliness. Test results show that it has corrosion resistance similar to that of AISI Type 440-C stainless, and its rolling fatigue resistance is superior to that of AISI M50 (UNS K88165). In contrast to alloy gear steels and Type 440C, Pyrowear 675 maintains case hardness of HRC 60 at operating temperatures up to 200 C (400 F). Impact and fracture toughness are superior to that of other stainless bearing steels, which typically are relatively brittle and can break under severe service. Toughness is also comparable or superior to conventional noncorrosion-resistant carburizing bearing steels, such as SAE Types 8620 and 9310.

  8. Weldability of Fe3Al based iron aluminide alloys

    NASA Astrophysics Data System (ADS)

    Zacharia, T.; Maziasz, P. J.; David, S. A.; McKamey, C. G.

    An investigation was carried out to determine the weldability of Fe3Al type alloys. Sigmajig tests of a commercial heat of FA-129 alloy indicate that hot-cracking may not be a problem for this alloy. Additionally, several new Fe3Al based iron aluminides were evaluated for weldability. The preliminary results are encouraging and suggest that some of these alloys have comparable or better weldability than FA-129 based iron-aluminides. For the first time, successful welds, without hot or cold cracking, were made on 13 mm (0.5 in.) thick plates from a commercial heat of FA-129 using the proper choice of welding conditions and parameters.

  9. Development of new metallic alloys for biomedical applications.

    PubMed

    Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-11-01

    New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self-tunable modulus have been proposed for the construction of removable implants. Nickel-free low modulus β-type titanium alloys showing shape memory and super elastic behavior are also currently being developed. Nickel-free stainless steel and cobalt-chromium alloys for biomedical applications are receiving attention as well. Newly developed zirconium-based alloys for biomedical applications are proving very interesting. Magnesium-based or iron-based biodegradable biomaterials are under development. Further, tantalum, and niobium and its alloys are being investigated for biomedical applications. The development of new metallic alloys for biomedical applications is described in this paper. PMID:22765961

  10. Development of new metallic alloys for biomedical applications.

    PubMed

    Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-11-01

    New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self-tunable modulus have been proposed for the construction of removable implants. Nickel-free low modulus β-type titanium alloys showing shape memory and super elastic behavior are also currently being developed. Nickel-free stainless steel and cobalt-chromium alloys for biomedical applications are receiving attention as well. Newly developed zirconium-based alloys for biomedical applications are proving very interesting. Magnesium-based or iron-based biodegradable biomaterials are under development. Further, tantalum, and niobium and its alloys are being investigated for biomedical applications. The development of new metallic alloys for biomedical applications is described in this paper.

  11. Braze alloy holds bonding strength over wide temperature range

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Copper-based quaternary alloys of the solid solution type is used for vacuum furnace brazing of large stainless steel components at a maximum temperature of 1975 deg F. The alloy has high bonding strength and good ductility over a temperature range extending from the cryogenic region to approximately 800 deg F.

  12. In vitro cytotoxicity of Ag-Pd-Cu-based casting alloys.

    PubMed

    Niemi, L; Hensten-Pettersen, A

    1985-01-01

    The cytotoxicity and its correlation to alloy composition, structure, corrosion, as well as galvanic coupling was studied with 12 Ag-Pd-Cu-type alloys, one conventional type III gold alloy and pure Ag, Cu, and Pd. The agar overlay cell culture technique was used. Single phase binary CuPd alloys were only slightly cytotoxic below a Cu content of 30 wt%. The tested multiphase alloys were all toxic, but no correlation between toxicity and Cu content could be observed. Solid solution annealing increased the cytotoxicity of a multiphase alloy. Exposure of a single phase alloy to an artificial saliva for 1 week prior to the test decreased its cytotoxicity significantly. Galvanic coupling of the alloys through an outer copper wire decreased their cytotoxicity.

  13. Tellurium n-type doping of highly mismatched amorphous GaN1-xAsx alloys in plasma-assisted molecular beam epitaxy

    DOE PAGES

    Novikov, S. V.; Ting, M.; Yu, K. M.; Sarney, W. L.; Martin, R. W.; Svensson, S. P.; Walukiewicz, W.; Foxon, C. T.

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN1-xAsx layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN1-xAsx layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN1-xAsx layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN1-xAsx layers has been determined.

  14. Predicting the properties of the lead alloys from DFT calculations

    SciTech Connect

    Buimaga-Iarinca, L. Calborean, A.

    2015-12-23

    We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix for low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.

  15. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  16. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  17. Oxidation and sulfidation resistant alloys with silicon additions

    SciTech Connect

    Dunning, John S.; Alman, David E.; Poston, J.A., Jr.; Siriwardane, R.

    2003-01-01

    The Albany Research Center (ARC) has considerable experience in developing lean chromium, austenitic stainless steels with improved high temperature oxidation resistance. Using basic alloy design principles, a baseline composition of Fe-16Cr-16Ni-2Mn-1Mo alloys with Si and Al addition at a maximum of 5 weight percent was selected for potential application at temperatures above 700ºC for supercritical and ultra-supercritical power plant application. The alloys were fully austenitic. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700ºC to 800ºC. Oxidation resistances of alloys with Si only additions were outstanding, particularly at 800ºC (i.e., these alloys possessed weight gains 4 times less than a standard type-304 alloy). In addition, Si alloys pre-oxidized at 800ºC, showed a zero weight gain in subsequent testing for 1000 hours at 700ºC. Similar improvements were observed for Si only alloy after H2S exposure at 700ºC compared with type 304 stainless steel. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms at ARC. Depth profile analysis and element concentration profiles (argon ion etching/x-ray photoelectron spectroscopy) were conducted on oxidized specimens and base material at the National Energy Technology Laboratory.

  18. Creep and tensile properties of several oxide dispersion strengthened nickel base alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The creep properties at 1365 K of several oxide dispersion strengthened (ODS) alloys were studied, where the creep exposures involved low strains, on the order of 1% or less, after nominally 100 hours of testing. It was found that ODS alloys possess threshold stresses for creep. Creep in polycrystalline ODS alloys is an inhomogeneous process. The threshold stresses in large grain size ODS Ni-20Cr and Ni-16Cr-4/5Al type alloys are dependent on the grain aspect ratio.

  19. First-principles molecular spin dynamics study on the magnetic structure of Mn-based alloys with Cu3Au-type crystal structure

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Kakehashi, Y.; Kimura, N.

    2016-02-01

    The magnetic and electronic structures of Mn3Pt and Mn3Rh, which are three-dimensional frustrated itinerant magnets with a Cu3Au-type crystal structure, have been investigated by means of the first-principles Molecular Spin Dynamics (MSD) method. The theory is based on the first-principles tight-binding linear muffin-tin orbital Hamiltonian combined with the functional integral method and the isothermal MSD technique, and allows us to determine automatically the magnetic structures of itinerant magnets at finite temperatures. The MSD calculations using a self-consistent site-dependent effective medium show that below the Néel temperature Mn3Pt with fixed crystal structure (Cu3Au structure) and volume exhibits a second-order transition from a triangular structure to another noncollinear phase with increasing temperature. Mn3Rh, on the other hand, shows no sign of a phase transition up to the Néel temperature. We found that the Mn-Eg DOS peak, which is responsible for the ferromagnetic couplings among the second nearest-neighbor Mn local moments, develops at the Fermi energy (EF) around 350 K for Mn3Pt, while the peak development for Mn3Rh occurs with increasing temperature slightly above EF.

  20. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOEpatents

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  1. Photoelectron spectroscopic study on the electronic structures of the dental gold alloys and their interaction with L-cysteine

    SciTech Connect

    Ogawa, Koji; Takahashi, Kazutoshi; Azuma, Junpei; Kamada, Masao; Tsujibayashi, Toru; Ichimiya, Masayoshi; Fujimoto, Hitoshi; Sumimoto, Michinori

    2011-11-15

    The valence electronic structures of the dental gold alloys, type 1, type 3, and K14, and their interaction with L-cysteine have been studied by ultraviolet photoelectron spectroscopy with synchrotron radiation. It was found that the electronic structures of the type-1 and type-3 dental alloys are similar to that of polycrystalline Au, while that of the K14 dental alloy is much affected by Cu. The peak shift and the change in shape due to alloying are observed in all the dental alloys. It is suggested that the new peak observed around 2 eV for the L-cysteine thin films on all the dental alloys may be due to the bonding of S 3sp orbitals with the dental alloy surfaces, and the Cu-S bond, as well as the Au-S and Au-O bonds, may cause the change in the electronic structure of the L-cysteine on the alloys.

  2. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  3. Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws

    PubMed Central

    Henderson, Sarah E.; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L.; Chou, Da-Tren; Kumta, Prashant N.; Almarza, Alejandro J.

    2014-01-01

    Recently, magnesium (Mg) alloys have received significant attention as a potential biomaterial for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available Mg-alloys (pure Mg and AZ31) in-vivo in a rabbit mandible. First, Mg-alloy screws were compared to stainless steel screws in an in-vitro pull-out test and determined to have a similar holding strength (~40N). A finite element model of the screw was created using the pull-out test data, and the model can be used for future Mg-alloy screw design. Then, Mg-alloy screws were implanted for 4, 8, and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. MicroCT (computed tomography) was used to assess bone remodeling and Mg-alloy degradation, both visually and qualitatively through volume fraction measurements for all time points. Histologic analysis was also completed for the Mg-alloys at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg-alloy screw types. Pure Mg had a different degradation profile than AZ31, however bone growth occurred around both screw types. The degradation rate of both Mg-alloy screw types in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg-alloys for craniofacial applications. PMID:24384125

  4. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  5. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  6. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  7. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  8. The Mg impurity in nitride alloys

    SciTech Connect

    Zvanut, M. E.; Willoughby, W. R.; Sunay, U. R.; Koleske, D. D.; Allerman, A. A.; Wang, Ke; Araki, Tsutomu; Nanishi, Yasushi

    2014-02-21

    Although several magnetic resonance studies address the Mg acceptor in GaN, there are few reports on Mg doping in the alloys, where hole production depends strongly on the Al or In content. Our electron paramagnetic resonance (EPR) measurements of the p-type alloys suggest that the Mg impurity retains the axial symmetry, characteristic of a p-type dopant in both alloys; however, In and Al produce additional, different characteristics of the acceptor. In InGaN, the behavior is consistent with a lowering of the acceptor level and increasing hole density as In concentration increases. For AlGaN, the amount of neutral Mg decreases with increasing Al content, which is attributed to different kinetics of hydrogen diffusion thought to occur in samples with higher Al mole fraction.

  9. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  10. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  11. Corrosion of alloy steels in oil field fluids

    SciTech Connect

    Martin, R.L.

    1987-01-01

    Laboratory and field tests have been conducted on two low alloy and two higher alloy steels at a range of brine salinities and sulfide contents typical of oil well production fluids. AISI types 4130 and 4340 show the same behavior in these fluids as mild steel. AISI type 410 stainless steel and 9% chromium - 1% molybdenum steel corrode at rates as great as that of mild steel at higher chloride or sulfide concentrations. Special corrosion inhibitors are required for higher alloy steels when they are exposed to these conditions.

  12. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  13. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  14. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  15. Nickel base coating alloy

    NASA Technical Reports Server (NTRS)

    Barrett, C. A. (Inventor); Lowell, C. E. (Inventor)

    1986-01-01

    Zirconium is added to a Ni-30 Al (beta) intermetallic alloy in the range of 0.05 w/o to 0.25 w/o. This addition is made during melting or by using metal powders. The addition of zirconium improves the cyclic oxidation resistance of the alloys at temperatures above 1100 C.

  16. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  17. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  18. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  19. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  20. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  1. The oxidation of metals and alloys

    NASA Technical Reports Server (NTRS)

    Scheil, Erich

    1952-01-01

    This paper reviews the various types of oxidation processes occurring with pure metals and gives explanations for the varying time-temperature-oxidation rate relations that exist for copper, tungsten, zinc, cadmium, and tantalum. The effect of shape and crystal structure on oxidation is discussed. Principles derived are applied to the oxidation of alloys.

  2. The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Nan; Hou, Zeng-Tao; Ye, Xin; Xu, Zhao-Bin; Bai, Xue-Ling; Shang, Peng

    2013-09-01

    This review investigates the current application limitations of Mg and Mg alloys. The key issues hindering the application of biodegradable Mg alloys as implants are their fast degradation rate and biological consideration. We have discussed the effect of some selected alloying element additions on the properties of the Mg-based alloy, especially the nutrient elements in human (Zn, Mn, Ca, Sr). Different grain sizes, phase constituents and distributions consequently influence the mechanical properties of the Mg alloys. Solution strengthening and precipitation strengthening are enhanced by the addition of alloying elements, generally improving the mechanical properties. Besides, the hot working process can also improve the mechanical properties. Combination of different processing steps is suggested to be adopted in the fabrication of Mg-based alloys. Corrosion properties of these Mg-based alloys have been measured in vitro and in vivo. The degradation mechanism is also discussed in terms of corrosion types, rates, byproducts and response of the surrounding tissues. Moreover, the clinical response and requirements of degradable implants are presented, especially for the nutrient elements (Ca, Mn, Zn, Sr). This review provides information related to different Mg alloying elements and presents the promising candidates for an ideal implant.

  3. Investigation of alloys for advanced steam cycle superheaters and reheaters

    SciTech Connect

    Swindeman, R.W.; Maziasz, P.J.; Judkins, R.R.

    1988-01-01

    Screening tests were performed on three groups of developmental alloys and compared to the alloy design and performance criteria identified as needed for alloys suitable as superheater/reheater tubing in advanced heat recovery systems. The three alloy groups included modifications of type 316 stainless steel, Fe-20Cr-30Ni alloys, and Ni-Cr-Fe aluminides. The screening tests were performed by the Oak Ridge National Laboratory, several university researchers, and industrial researchers and included fabricability, mechanical properties, weldability, and oxidation behavior. If mildly hot or cold worked, the modified type 316 stainless steels possessed excellent strength and ductility for times to 20,000 h, but possessed marginal weldability and oxidation resistance. The 20Cr-30Ni-Fe alloys also exhibited good strength and ductility, but showed marginal weldability tubing, and were marginal with respect to meeting several of the alloy design criteria. One stainless and one modified alloy 800H were produced as 50-mm-diam. tubing for further evaluation. 24 refs., 14 figs.

  4. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  5. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    SciTech Connect

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  6. Ductile Titanium Alloy with Low Poisson's Ratio

    SciTech Connect

    Hao, Y. L.; Li, S. J.; Sun, B. B.; Sui, M. L.; Yang, R.

    2007-05-25

    We report a ductile {beta}-type titanium alloy with body-centered cubic (bcc) crystal structure having a low Poisson's ratio of 0.14. The almost identical ultralow bulk and shear moduli of {approx}24 GPa combined with an ultrahigh strength of {approx}0.9 GPa contribute to easy crystal distortion due to much-weakened chemical bonding of atoms in the crystal, leading to significant elastic softening in tension and elastic hardening in compression. The peculiar elastic and plastic deformation behaviors of the alloy are interpreted as a result of approaching the elastic limit of the bcc crystal under applied stress.

  7. Exchange bias effect in alloys and compounds.

    PubMed

    Giri, S; Patra, M; Majumdar, S

    2011-02-23

    The phenomenology of exchange bias effects observed in structurally single-phase alloys and compounds but composed of a variety of coexisting magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic, spin-glass, cluster-glass and disordered magnetic states are reviewed. The investigations on exchange bias effects are discussed in diverse types of alloys and compounds where qualitative and quantitative aspects of magnetism are focused based on macroscopic experimental tools such as magnetization and magnetoresistance measurements. Here, we focus on improvement of fundamental issues of the exchange bias effects rather than on their technological importance.

  8. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  9. DSC sample preparation for Al-based alloys

    SciTech Connect

    Starink, M.J.; Hobson, A.J.; Gregson, P.J.

    1996-06-01

    Differential Scanning Calorimetry (DSC) is a useful technique for the study of phase transformations and has been widely applied to study precipitation in aluminium alloys. In the present work the effect of sample preparation during DSC heating of a monolithic 8090 (Al-Cu-Mg-Li-Zr) alloy and an 8090 MMC is investigated. The 8090 alloy system seems especially suited for such a study since the main precipitation reactions which occur in this alloy (GPB-zone, {delta}{prime}(Al{sub 3}Li) and S{prime}(Al{sub 2}CuMg) formation) cover a wide range of different types of precipitation reactions. DSC experiments were performed with a Shimadzu DSC-50 employing a nitrogen gas flow using a heating rate of 10 C/min. DSC curves were corrected for the baseline of the DSC and for heat capacity of the alloys following a procedure outlined elsewhere. Hence, the presented DSC curves represent heat flows due to reactions only.

  10. Shielding, the bulk chemical potential, and cohesion in alloys

    NASA Technical Reports Server (NTRS)

    Stern, E. A.

    1976-01-01

    It is shown that the bulk chemical potential in alloys is intimately related to the spatial dependence of the shielding cloud that results when the electronic charge rearranges itself as one atom type is replaced by another at a given site. Such a relationship fixes the relative energy scale between the alloy and its pure constituents, important in determining the stability of alloys. A correct treatment of shielding is thus essential to quantitative calculations of alloy stability. A model calculation of the bulk chemical potential and cohesion of alloys in the tight-binding approximation is presented as a numerical example. In the course of this investigation a general invariant of an integral over the shielding cloud is derived.

  11. Alloy development for irradiation performance in fusion reactors

    NASA Astrophysics Data System (ADS)

    Harling, O. K.; Grant, N. J.

    1980-12-01

    The development of improved structural alloys for the fusion reactor first wall application is addressed. Several new alloys were produced by rapid solidification. Emphasis in alloy design and production was placed on producing austenitic Type 316SS with fine dispersions of TiC and Al2O3 particles. Results of mechanical and microstructural tests are presented. A number of neutron irradiations were initiated on samples fabricated from alloys produced. A dual beam, heavy ion, and helium ion, irradiation was completed using several alloys and a range of temperatures, damage rates, and total doses. Modeling of irradiation phenomena was continued with emphasis on understanding the effect of recoil resolution on relatively stable second phase particles. The microstructure of several ZrB2 doped stainless steels was characterized.

  12. Amorphous powders of Al-Hf prepared by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H.; Tiainen, T.

    1988-01-01

    We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.

  13. Technology status of tantalum alloys for space nuclear power applications

    NASA Technical Reports Server (NTRS)

    Hoffman, E. E.

    1985-01-01

    Tantalum alloys have a variety of properties which make them attractive candidates for application in nuclear power systems required to operate in space at elevated temperatures (1200 to 1600 K) for extended time periods. Most of the technology development on this class of alloys which is pertinent to space system application occurred during the 1960 to 1972 time period under NASA sponsorship. The most extensive data bases resulting from this earlier work were obtained on the alloys T-111 (Ta-8W-2Hf) and ASTAR 811C (Ta-8W-1Re-0.7Hf-0.025C). Emphasis in this paper is directed at the following technical factors: producibility, creep strength, weldability and compatibility. These factors are considered to be the most important elements in the selection of alloys for this application. Review of the available information indicates that alloys of this type are appropriate for application in many systems, particularly those utilizing alkali metals as the working fluid.

  14. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  15. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  16. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ({ge}10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 {plus_minus} 2)Al - (0.3 {plus_minus} 0.2)Mo - (0.2 {plus_minus} 0.15)Zr - (0.3 {plus_minus} 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  17. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ([ge]10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 [plus minus] 2)Al - (0.3 [plus minus] 0.2)Mo - (0.2 [plus minus] 0.15)Zr - (0.3 [plus minus] 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  18. A comparative study on the bond strength of porcelain to the millingable Pd-Ag alloy

    PubMed Central

    Hong, Jun-Tae

    2014-01-01

    PURPOSE The porcelain fused to gold has been widely used as a restoration both with the natural esthetics of the porcelain and durability and marginal fit of metal casting. However, recently, due to the continuous rise in the price of gold, an interest towards materials to replace gold alloy is getting higher. This study compared the bond strength of porcelain to millingable palladium-silver (Pd-Ag) alloy, with that of 3 conventionally used metal-ceramic alloys. MATERIALS AND METHODS Four types of metal-ceramic alloys, castable nonprecious nickel-chrome alloy, castable precious metal alloys containing 83% and 32% of gold, and millingable Pd-Ag alloy were used to make metal specimens (n=40). And porcelain was applied on the center area of metal specimen. Three-point bending test was performed with universal testing machine. The bond strength data were analyzed with a one-way ANOVA and post hoc Scheffe's tests (α=.05). RESULTS The 3-point bending test showed the strongest (40.42 ± 5.72 MPa) metal-ceramic bond in the nonprecious Ni-Cr alloy, followed by millingable Pd-Ag alloy (37.71 ± 2.46 MPa), precious metal alloy containing 83% of gold (35.89 ± 1.93 MPa), and precious metal alloy containing 32% of gold (34.59 ± 2.63 MPa). Nonprecious Ni-Cr alloy and precious metal alloy containing 32% of gold showed significant difference (P<.05). CONCLUSION The type of metal-ceramic alloys affects the bond strength of porcelain. Every metal-ceramic alloy used in this study showed clinically applicable bond strength with porcelain (25 MPa). PMID:25352959

  19. Pitting, galvanic, and long-term corrosion studies on candidate container alloys for the Tuff Repository

    SciTech Connect

    Beavers, J.A.; Thompson, N.G.; Durr, C.L.

    1992-01-01

    Contest Columbus Technologies, Inc. (CC Technologies) investigated the long-term performance of container materials for high-level radioactive waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy`s application to construct a geologic repository for the high-level radioactive waste. The scope of work focused on the Tuff Repository and employed short-term techniques, such as electrochemical and mechanical techniques to examine a wide range of possible failure modes. Two classes of alloys were evaluated for use as container materials for the Tuff Repository; Fe-Cr-Ni alloys and copper-base alloys. The candidate Fe-Cr-Ni alloys were Type 304L Stainless Steel (Alloy 304L) and Incoloy Alloy 825 (Alloy 825). The candidate copper-base alloys were CDA 102 Copper (Alloy CDA 102) and CDA 715 Copper-3D Nickel (Alloy CDA 715). The corrosion testing was performed in a simulated J-13 well water and in solutions selected from an experimental matrix from Task 2 of the program. This report summarizes the results of Task 4 (Pitting Studies), Task 6 (Other Failure Modes) and Task 7 (Long-Term Exposures) of the program. Pit-initiation studies, performed in Task 4, focused on anomalous Cyclic Potentiodynamic Polarization (CPP) behavior of the copper-base alloys reported in Task 2 of the program. Pit propagation studies were performed on Alloy CDA 102 in Task A of the program. Two types of galvanic corrosion studies were performed in Task 6 of the program; thermogalvanic couples and borehole linear-container interactions. In the thermogalvanic couples tests, the effect of temperature variation on the surface of the container on acceleration of corrosion was evaluated for two alloys; Alloy CDA 102 and Alloy 304L. Long-term immersion tests were conducted in Task 7 of the program.

  20. Pitting, galvanic, and long-term corrosion studies on candidate container alloys for the Tuff Repository

    SciTech Connect

    Beavers, J.A.; Thompson, N.G.; Durr, C.L. )

    1992-01-01

    Contest Columbus Technologies, Inc. (CC Technologies) investigated the long-term performance of container materials for high-level radioactive waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy's application to construct a geologic repository for the high-level radioactive waste. The scope of work focused on the Tuff Repository and employed short-term techniques, such as electrochemical and mechanical techniques to examine a wide range of possible failure modes. Two classes of alloys were evaluated for use as container materials for the Tuff Repository; Fe-Cr-Ni alloys and copper-base alloys. The candidate Fe-Cr-Ni alloys were Type 304L Stainless Steel (Alloy 304L) and Incoloy Alloy 825 (Alloy 825). The candidate copper-base alloys were CDA 102 Copper (Alloy CDA 102) and CDA 715 Copper-3D Nickel (Alloy CDA 715). The corrosion testing was performed in a simulated J-13 well water and in solutions selected from an experimental matrix from Task 2 of the program. This report summarizes the results of Task 4 (Pitting Studies), Task 6 (Other Failure Modes) and Task 7 (Long-Term Exposures) of the program. Pit-initiation studies, performed in Task 4, focused on anomalous Cyclic Potentiodynamic Polarization (CPP) behavior of the copper-base alloys reported in Task 2 of the program. Pit propagation studies were performed on Alloy CDA 102 in Task A of the program. Two types of galvanic corrosion studies were performed in Task 6 of the program; thermogalvanic couples and borehole linear-container interactions. In the thermogalvanic couples tests, the effect of temperature variation on the surface of the container on acceleration of corrosion was evaluated for two alloys; Alloy CDA 102 and Alloy 304L. Long-term immersion tests were conducted in Task 7 of the program.

  1. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    PubMed

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained. PMID:21783152

  2. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    PubMed

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained.

  3. Tensile and impact properties of iron-aluminum alloys

    SciTech Connect

    Alexander, D.J.; Sikka, V.K.

    1993-12-31

    Tensile and impact tests have been conducted on specimens from a series of five heats of iron-aluminum alloys. These results have been compared to data for the iron aluminide alloy FA-129. The transition temperatures of all of the Fe{sub 3}Al-based alloys were similar, but the simple ternary alloy had a much higher upper-shelf energy. The reduced aluminum alloys [based on Fe-8Al (wt %)] had lower transition temperatures and higher upper-shelf energy levels than the Fe{sub 3}Al-type alloys. The reduced aluminum alloy with yttrium showed excellent tensile properties, with a room temperature total elongation of 40%, and a very high upper-shelf energy level. Despite the high tensile ductility at room temperature, the transition temperature of the yttrium-containing alloy was still about 150 C, compared to approximately 300 C for FA-129. In general, the microstructures were coarse and anisotropic. The fracture processes were dominated by second-phase particles.

  4. Precipitation Hardening and Statistical Modeling of the Aging Parameters and Alloy Compositions in Al-Cu-Mg-Ag Alloys

    NASA Astrophysics Data System (ADS)

    Al-Obaisi, A. M.; El-Danaf, E. A.; Ragab, A. E.; Soliman, M. S.

    2016-06-01

    The addition of Ag to Al-Cu-Mg systems has been proposed to replace the existing high-strength 2xxx and 7xxx Al alloys. The aged Al-Cu-Mg-Ag alloys exhibited promising properties, due to special type of precipitates named Ω, which cooperate with other precipitates to enhance the mechanical properties significantly. In the present investigation, the effect of changing percentages of alloying elements, aging time, and aging temperature on the hardness values was studied based on a factorial design. According to this design of experiments (DOE)—23 factorial design, eight alloys were cast and hot rolled, where (Cu, Mg, and Ag) were added to aluminum with two different levels for each alloying element. These alloys were aged at different temperatures (160, 190, and 220 °C) over a wide range of time intervals from 10 min. to 64 h. The resulting hardness data were used as an input for Minitab software to model and relate the process variables with hardness through a regression analysis. Modifying the alloying elements' weight percentages to the high level enhanced the hardness of the alloy with about 40% as compared to the alloy containing the low level of all alloying elements. Through analysis of variance (ANOVA), it was figured out that altering the fraction of Cu had the greatest effect on the hardness values with a contribution of about 49%. Also, second-level interaction terms had about 21% of impact on the hardness values. Aging time, quadratic terms, and third-level interaction terms had almost the same level of influence on hardness values (about 10% contribution). Furthermore, the results have shown that small addition of Mg and Ag was enough to improve the mechanical properties of the alloy significantly. The statistical model formulated interpreted about 80% of the variation in hardness values.

  5. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  6. Stress corrosion cracking behavior of Ni28Mo-alloys: Recent research data

    SciTech Connect

    Koehler, M.; Heubner, U.

    1994-12-31

    Nickel-molybdenum alloys of the type Ni28Mo/alloy B-2 may fail in service due to stress corrosion cracking in components, where a high heat input during manufacturing or repair such as repeated welding operations may have occurred. Therefore, various tests in solution annealed and aged condition on different alloy compositions have been done with respect to stress corrosion resistance, uniform and intergranular corrosion and time-temperature-sensitization behavior. Stress corrosion sensitivity of the Ni28Mo materials in the aged condition is dependent on the alloys degree of ordering which is delayed by increasing alloying additions of iron and chromium. Therefore, in order to improve the stress corrosion resistance these alloying additions have to be increased beyond the limits being set for the current alloy B-2 grade. Consequently, a new Ni28Mo alloy type, alloy B-4 is proposed being alloyed with 2--5 wt % Fe and 0.5--1.5 wt % Cr. This new Ni28Mo alloy exhibits a considerably improved resistance to stress corrosion cracking which is achieved without impairing the resistance to overall uniform and to intergranular corrosion. Resistance to sensitization is also improved.

  7. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  8. Alloy Selection System

    SciTech Connect

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  9. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  10. Radiation-induced segregation in candidate fusion-reactor alloys

    SciTech Connect

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1981-07-01

    The effect of radiation on surface segregation of minor and impurity elements has been studied in four candidate fusion reactor alloys. Radiation induced surface segregation of phosphorus was found in both 316 type stainless steel and in Nimonic PE-16. Segregation and depletion of the other alloying elements in 316 stainless steel agreed with that reported by other investigators. Segregation of nitrogen in ferritic HT-9 was enhanced by radiation but no phosphorus segregation was detected. No significant radiation enhanced or induced segregation was observed in a Ti-6Al-4V alloy. The results indicate that radiaton enhanced grain boundary segregation could contribute to the embrittlement of 316 SS and PE-16.

  11. CRC Handbook of Electrical Resistivitives of Binary Metallic Alloys

    SciTech Connect

    Schroder, K.

    1983-01-01

    Material design engineers often require a tabulation of physical properties in order to select the appropriate material for use, while developmental engineers need to be aware of basic principles and systemic trends that can be utilized as a guide for developing future materials and alloys. The trade-off in conductivity that results when metals are replaced by alloys for strength and stability purposes becomes an important consideration for both types of engineers. This handbook presents an extensive, updated and comprehensive compilation of the electrical resistivities of metallic alloys.

  12. Influence of the Environment on the General Corrosion Rate of Alloy 22 (N06022)

    SciTech Connect

    Rebak, R B; Crook, P

    2004-04-19

    Nickel (Ni) can dissolve a large amount of alloying elements while still maintaining its desirable austenitic microstructure. The resulting alloys are generally divided in families depending on the type of alloying elements they contain. Each one of these families is aimed to specific applications. Corrosive environments in industrial applications are generally divided for example in reducing acids, oxidizing acids, contaminated acids, caustic environments, oxidizing salts, etc. Depending on the application and the environment (electrolyte composition and temperature) several or single alloys may be recommended to fabricate components. The Nichromium-molybdenum (Ni-Cr-Mo) series contains a balanced selection of beneficial alloying elements so it can handle a variety of aggressive environments. By design, Alloy 22 or N06022 is one of the most versatile corrosion resistant nickel alloys since it has an outstanding corrosion resistance both in reducing and oxidizing conditions.

  13. The half-metallicity of LiMgPdSn-type quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In): A first-principle study

    SciTech Connect

    Gao, Y. C.; Gao, X.

    2015-05-15

    Based on the first-principles calculations, quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In) including its phase stability, band gap, the electronic structures and magnetic properties has been studied systematically. We have found that, in terms of the equilibrium lattice constants, FeMnScZ (Z=Al, Ga, In) are half-metallic ferrimagnets, which can sustain the high spin polarization under a very large amount of lattice distortions. The half-metallic band gap in FeMnScZ (Z=Al, Ga, In) alloys originates from the t{sub 1u}-t{sub 2g} splitting instead of the e{sub u}-t{sub 1u} splitting. The total magnetic moments are 3μB per unit cell for FeMnScZ (Z=Al, Ga, In) alloys following the Slater–Pauling rule with the total number of valence electrons minus 18 rather than 24. According to the study, the conclusion can be drawn that all of these compounds which have a negative formation energy are possible to be synthesized experimentally.

  14. Correlation between diffusion barriers and alloying energy in binary alloys.

    PubMed

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan E L; Schiøtz, Jakob

    2016-01-28

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells. Using density functional theory calculations, we show that there is a correlation between the alloying energy of an alloy, and the diffusion barriers of the minority component. Alloys with a negative alloying energy may show improved long term stability, despite the fact that there is typically a greater thermodynamic driving force towards dissolution of the solute metal over alloying. In addition to Pt, we find that this trend also appears to hold for alloys based on Al and Pd. PMID:26750475

  15. Ultraprecision microelectroforming of metals and metal alloys

    NASA Astrophysics Data System (ADS)

    Loewe, Holger; Ehrfeld, Wolfgang; Diebel, Joerg

    1997-09-01

    In recent years, microsystem technology and its growing importance for actuators, sensors, optics and microfluidics, only to name a few, have gained a lot of attention. Specific applications demand fabrication techniques allowing a fast and reliable replication of microstructure products in a variety of materials. An important technique for replication processes of microstructures in many applications of microsystem technology are microelectroforming processes, generating a variety of metals and metal alloys with tailored characteristics. Here, new results in the development of alloys for specific applications as well as their applications are reported: (1) Newly developed alloys: Nickel-iron alloys enable the production of soft magnetic microstructures e.g. for specific applications in microactuators. Nickel-cobalt and Nickel-tungsten alloys have been employed for the manufacture of microstructured tools with excellent mechanical properties regarding wear and mechanical durability. These tools have been applied to hot-embossing and injection molding processes successfully. (2) Microelectroforming within the frame of the LIGA technique allows the manufacturing of extremely precise electrodes with various cross-sections and heights for (mu) - electro discharge machining. The combination of these techniques enables the production of microstructures from non- electrodepositable materials, like stainless steel e.g. for large scale replication processes. (3) The precision of microelectroforming enables the replication of structured surfaces on a nanoscale for molecular microelectronics or special applications. The new types of alloys reported here significantly enlarge the applicability of microelectroforming processes for tool fabrication or direct use. Moreover combining this process with other microstructuring processes like injection molding or (mu) -EDM techniques generates a powerful tool for microsystem technology.

  16. Localized corrosion resistance of corrosion-resistant Ni based alloys in hot concentrated seawater

    SciTech Connect

    Sugahara, Katsuo; Takizawa, Yoshio

    1998-12-31

    Localized corrosion resistance of stainless steel (Type 316L), a titanium-based alloy (Ti-0.15Pd) and corrosion-resistant nickel-based alloys (a new alloy MAT-21 (Alloy T) and Alloy C-276) was evaluated in four simulated seawater solutions containing 1.8 to 22.0 wt% of chloride ions concentrated by evaporation. Stress corrosion cracking was observed on the 316L stainless steel but not on Alloy T and Alloy C-276 in the solutions. Pitting attack occurred on the surface of the 316L stainless steel base metal in all the solutions. Alloy C-276 suffered pitting attack on the surface including the welded section only in the solutions containing 18.9 and 22.0 wt% of chloride ions, respectively. No pitting attack occurred over any part of the surface including the welded section of Alloy T in any of the solutions. No crevice corrosion was observed in an immersion test of Alloy T and the Ti-0.15 5Pd alloy using test pieces with crevices although crevice corrosion was seen the creviced test pieces of Alloy C-276 and the 316L stainless steel. It was found that both Alloy T and the Ti-0.15Pd alloy, which exhibit high repassivation potentials for crevice corrosion (E{sub r,CREV})corresponding to crevice corrosion potentials, have excellent crevice corrosion resistance, while these alloys which exhibit corrosion potentials greater than E{sub r,CREV}in a solution with a high chloride ion concentration and a high dissolved oxygen concentration in open air may be corroding in the crevices.

  17. Void and precipitate structure in ion- and electron-irradiated ferritic alloys

    NASA Astrophysics Data System (ADS)

    Ohnuki, Soumei; Takahashi, Heishichiro; Takeyama, Taro

    1984-05-01

    Void formation and precipitation were investigated in Fe10Cr and Fe13Cr base alloys by 200 keV C + ion and 1 MeV electron irradiation. The ferritic alloys exhibited significant resistance to void swelling. In FeCr and FeCr-Si alloys, ion-irradiation produced the precipitates of M 23C 6 type. In the FeCrTi alloy, Ti-rich precipitates were formed with high number density on {100} plane. During electron-irradiation Fe-10Cr alloy, complex dislocation loops were produced with high number density, of which Burgers vector was mostly <100>. EDX analysis showed slightly enrichment of chromium on dislocation loops. These results suggested that the stability of <100> type dislocation structure at high dose is an important factor on good swelling resistance in the ferritic alloys, moreover, titanium addition will intensify the stability of the doslocations through the fine precipitation on dislocations.

  18. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1995-08-01

    Alloys for design and construction of structural components needed to contain process streams and provide internal structures in advanced heat recovery and hot gas cleanup systems were examined. Emphasis was placed on high-strength, corrosion-resistant alloys for service at temperatures above 1000 {degrees}F (540{degrees}C). Data were collected that related to fabrication, joining, corrosion protection, and failure criteria. Alloys systems include modified type 310 and 20Cr-25Ni-Nb steels and sulfidation-resistance alloys HR120 and HR160. Types of testing include creep, stress-rupture, creep crack growth, fatigue, and post-exposure short-time tensile. Because of the interest in relatively inexpensive alloys for high temperature service, a modified type 310 stainless steel was developed with a target strength of twice that for standard type 310 stainless steel.

  19. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  20. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high titanium content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of titanium and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of titanium alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is studied.

  1. Mechanical alloying and high pressure processing of a TiAl-V intermetallic alloy.

    PubMed

    Dymek, S; Wróbel, M; Witczak, Z; Blicharski, M

    2010-03-01

    An alloy with a chemical composition of Ti-45Al-5V (at.%) was synthesized by mechanical alloying in a Szegvari-type attritor from elemental powders of high purity. Before compaction, the powders were characterized by X-ray diffraction and scanning as well as transmission electron microscopy. The compaction of powders was carried out by hot isostatic pressing and hot isostatic extrusion. The resulting material was subjected to microstructural and mechanical characterization. The microstructure investigated by transmission and scanning electron microscopy supplemented by X-ray diffraction revealed that the bulk material was composed of a mixture of TiAl- and Ti(3)Al-based phases, however, the typical lamellar microstructure for such alloys was not observed. The materials exhibited exceptionally high yield strength together with satisfactory ductility and fracture toughness. The high strength was unequivocally due to grain refinement and the presence of oxide dispersoid. PMID:20500422

  2. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  3. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  4. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  5. Dendritic solidification of alloys in low gravity

    NASA Astrophysics Data System (ADS)

    Curreri, P. A.; Lee, J. E.; Stefanescu, D. M.

    1988-11-01

    Gravity-driven convective flow influences dendrite morphology, interdendritic fluid flow, dendrite interface morphology, casting macrosegregation, formation of channel type casting defects, and casting grain structure. Dendritic solidification experiments during multiple parabolic aircraft maneuvers for iron-carbon type alloys and superalloys show increased dendritic spacing in low-gravity periods. Larger dendrite spacings for low-gravity solidification have also been reported for sounding rocket and space laboratory experiments for metal-model and binary alloys. Convection decreases local solidification time and increases the rate of interdendritic solute removal. The elimination of convection in low gravity is thus expected to increase dendritic spacing. Convection's effect on dendritic arm coarsening is expected to be dependent on the coarsening mechanism. Decreased coarsening in low gravity found for Al-Cu is indicative of coarsening predominately by arm coalescence.

  6. Correlation between shear punch and tensile data for neutron-irradiated aluminum alloys

    SciTech Connect

    Hamilton, M.L.; Edwards, D.J.; Toloczko, M.B.

    1995-04-01

    This work was performed to determine whether shear punch and tensile data obtained on neutron irradiated aluminum alloys exhibited the same type of relationship as had been seen in other work and to assess the validity of extrapolating the results to proton-irradiated alloys. This work was also meant to be the first of a series of similar test matrices designed to determine whether the shear punch/tensile relationship varied or was the same for different alloy classes.

  7. Segregation phenomena at growing alumina/alloy interfaces

    SciTech Connect

    Hou, Peggy Y.

    2005-03-30

    The chemistry and structure at the scale/alloy interface are important factors governing scale adhesion. The chemical changes can occur from segregation of impurities in the alloy, such as sulphur and carbon, or alloying elements such as chromium, aluminium and reactive elements. This paper reviews studies of the changes of interfacial composition with oxidation time for Al{sub 2}O{sub 3} formed on several model alumina-forming alloys, and tries to relate that to the interfacial strength. Results show that sulphur segregation to oxide/metal interfaces can indeed occur, but the type and amount of segregants at the interface depend on the alloy composition and the interface structure. Co-segregation of impurities with alloying elements can also occur, resulting in multi-layer segregants at the interface. Sulphur-containing interfaces are indeed weaker, but the major role of sulphur is to enhance interfacial void formation. Reactive elements in the alloy not only gather sulfur but also exert an additional positive effect on scale adhesion.

  8. Handling characteristics of gallium alloy for dental restoration.

    PubMed

    Mash, L K; Miller, B H; Nakajima, H; Collard, S M; Guo, I Y; Okabe, T

    1993-12-01

    The handling characteristics of a gallium alloy (Gallium Alloy GF) were compared to those of a spherical high-copper amalgam (Tytin). Ten dentists each restored four identical MO preparations in acrylic typodont teeth (no. 30), two with amalgam and two with gallium alloy. Each restoration was evaluated immediately following completion by the operator for six clinically relevant criteria. Each criterion was scored between 1 and 5, where 1 = very poor, 2 = poor, 3 = fair, 4 = good, and 5 = very good. Three two-sided Mann-Whitney tests were used to compare the median scores for significant differences (P < 0.05). The first test indicated no significant difference between scores for the first- and second-placed restorations, within criteria and within alloy type (n = 10). The second test indicated a significant difference between amalgam and gallium alloy, within criteria and within restoration sequence (n = 10), for each criterion except resistance to fracture during removal of the matrix band. The third test indicated a significant difference between amalgam and gallium alloy, within each criteria, combining scores for first- and second-placed restorations (n = 20). During simulated clinical placement, amalgam was rated significantly higher than gallium alloy in each handling characteristic evaluated.

  9. Utilization of Copper Alloys for Marine Applications

    NASA Astrophysics Data System (ADS)

    Drach, Andrew

    Utilization of copper alloy components in systems deployed in marine environment presents potential improvements by reducing maintenance costs, prolonging service life, and increasing reliability. However, integration of these materials faces technological challenges, which are discussed and addressed in this work, including characterization of material performance in seawater environment, hydrodynamics of copper alloy components, and design procedures for systems with copper alloys. To characterize the hydrodynamic behavior of copper alloy nets, mesh geometry of the major types of copper nets currently used in the marine aquaculture are analyzed and formulae for the solidity and strand length are proposed. Experimental studies of drag forces on copper alloy net panels are described. Based on these studies, empirical values for normal drag coefficients are proposed for various types of copper netting. These findings are compared to the previously published data on polymer nets. It is shown that copper nets exhibit significantly lower resistance to normal currents, which corresponds to lower values of normal drag coefficient. The seawater performance (corrosion and biofouling) of copper alloys is studied through the field trials of tensioned and untensioned specimens in a one-year deployment in the North Atlantic Ocean. The corrosion behavior is characterized by weight loss, optical microscopy, and SEM/EDX analyses. The biofouling performance is quantified in terms of the biomass accumulation. To estimate the effects of stray electrical currents on the seawater corrosion measurements, a low cost three-axis stray electric current monitoring device is designed and tested both in the lab and in the 30-day field deployment. The system consists of a remotely operated PC with a set of pseudo-electrodes and a digital compass. The collected data is processed to determine magnitudes of AC and DC components of electric field and dominant AC frequencies. Mechanical behavior of

  10. Thermodynamically stable superstructures in binary alloys

    NASA Astrophysics Data System (ADS)

    Nelson, Lance

    2009-10-01

    Adding a second metal to another can induce the formation of ordered superstructures. These ordered phases have properties that are desireable in many industrial, manufacturing and technological applications. Our goal is to find which of the thousands of possible superstructures are thermodynamically stable through the use of computational tools. Owing to the many superstructures that are possible, as well as the complex nature of some of these, DFT calculations become impractical for searching for these superstructures. We employ a cluster expansion method, which uses energy information from a relatively small number of structures and fits that information to a set of interaction types. Because the resulting expansion provides a fast way to compute energies, we can use it to calculate the energies of the thousands of other superstructures. Specifically, I discuss the use of the cluster expansion on two binary alloys: AgPd and MgZn. Palladium alloys are of interest in the fabrication of jewelry, and a stable ordered phase at some concentrations would be a breakthrough for the jewelry manufacturers. Magnesium alloys are of interest because of their strength and light weight. They are being used increasingly in the manufacturing of things such as airplanes and automobiles. A cheap alloying agent that promotes the formation of an ordered structure would be a breakthrough.

  11. Gas-deposit-alloy corrosion interactions in simulated combustion environments

    NASA Astrophysics Data System (ADS)

    Luer, Kevin Raymond

    High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage

  12. A study of surface tension driven segregation in monotectic alloy systems

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Andrews, Rosalia N.; Gowens, Terrell F.

    1988-01-01

    The compatibilities of various monotectic alloy systems with several different crucible materials were evaluated. The study was carried out using small candidate alloy samples of compositions that produced fifty volume percent of each liquid phase at the monotectic temperature. Compatibility was based on the evaluation of the wetting tendency of the two immiscible phases with the crucible material in a one-g solidified sample. Three types of wetting phenomena were observed during the evaluation. Type 1 indicates an alloy-crucible combination where the L2 phase preferentially wets the crucible material. Since L2 is usually the minority phase in desirable alloys, this material combination would be difficult to process and is therefore considered incompatible. Type 2 behavior indicates an alloy-crucible combination where the L1 phase preferentially wets the crucible material. This type of combination is considered compatible since surface tension effects should aid in processing the alloy to a useful form. Type 3 indicates any combination that leads to major reactions between the alloy and crucible material, gas entrapment, or separation of the metal from the crucible wall. Additional compatibility evaluations would have to be carried out on combinations of this category. The five alloy systems studied included aluminum-bismuth, copper-lead, aluminum-indium, aluminum-lead and cadmium-gallium. The systems were combined with crucibles of alumina, boron nitride, mullite, quartz, silicon carbide and zirconia.

  13. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  14. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  15. Work function of binary alloys

    NASA Astrophysics Data System (ADS)

    Ishii, Ryusuke; Matsumura, Katsunori; Sakai, Akira; Sakata, Toyo

    2001-01-01

    By utilizing the field emission method, we have studied the composition dependence of work function in NiCu and PtRh alloys. In PtRh alloys, we find that the work function falls below the linear interpolation, in agreement with the experimental results on AgAu alloys [Fain and McDavid, Phys. Rev. B 9 (1974) 5099]. On the other hand, the work function of NiCu alloys is found to show little systematic deviation from the linear interpolation. The observed negative deviation in PtRh alloys is not compatible with a simple theoretical prediction based on the electronic density of states.

  16. Effect of Alloying Elements in Hot-Rolled Metastable β-Titanium Alloys. Part II: Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Manda, Premkumar; Chakkingal, Uday; Singh, A. K.

    2016-07-01

    This paper describes the tensile properties, flow and work-hardening behavior of four metastable β-titanium alloys Ti-5Al-5Mo-5V-3Cr (A1), Ti-5Al-3.5Mo-7.2V-3Cr (A2), Ti-5Al-5Mo-8.6V-1.5Cr (A3), and Ti-5Al-3.5Mo-5V-3.94Cr (A4) in α+β hot-rolled condition. The decreasing order of average strength parameters ( σ YS and σ UTS) is A4, A2, A1, and A3. The maximum strength observed in alloy A4 is due to the presence of highest wt. fraction of Cr. The elongation is the maximum and minimum in alloys A3 and A4, respectively. These alloys display moderate to high percent in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values. Both the A IP and δ values are maximum and minimum in alloys A1 and A3, respectively. The yield locus plots also exhibit the presence of anisotropy due to relatively large differences in yield strength values along tension and compression directions. The flow behavior of alloys A1, A2, and A4 follows Swift equation, while the alloy A3 displays best fit with Holloman equation. The presence of prestrain ( ɛ 0) in hot-rolled materials before tensile testing has an important bearing on the flow curves of A1, A2, and A4 alloys. The instantaneous work-hardening rate curves of the alloys A1, A2, and A3 exhibit all the three typical stages (stage I, stage II, and stage III) in RD samples, while the alloy A4 shows the presence of only stage I and stage III. The 45 deg to RD and TD samples of alloys A1, A2, and A4 display only stage I. The stages I and III as well as I and II are present in alloy A3 in 45 deg to RD and TD samples, respectively. Dislocation-controlled strain hardening occurs in all the three stages of these alloys in the absence of stress-induced martensitic transformation (α″) and twinning. Slip is the predominant deformation mechanism during tensile testing. Three types of slip lines, i.e., planar, wavy, and intersecting have been observed close to fracture surfaces of post tensile-tested specimens.

  17. Effect of palladium on sulfide tarnishing of noble metal alloys.

    PubMed

    Suoninen, E; Herø, H; Minni, E

    1985-10-01

    Electron spectroscopic studies of Au-Ag-Cu alloys of the type used for dental castings show that small additions (less than or equal to 3 wt%) of palladium reduce essentially the thickness of the sulfide layer formed on surfaces of samples treated in aqueous Na2S solutions. Relative to silver, palladium does not enrich in the sulfide, but statistically significant enrichment is found immediately below the sulfide layer. This enrichment probably takes place during the exposure of the substrate surface to atmosphere before the sulfiding treatment. The mechanism of the impeding effect of palladium on sulfiding is assumed to be a decrease in diffusion from the bulk alloy to the surface due to the enriched layer. The effect cannot be explained by changes in the electronic structure of the alloy due to palladium alloying.

  18. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  19. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, Claudette G.; Liu, Chain T.

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  20. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  1. The structure of rapidly solidified Al- Fe- Cr alloys

    NASA Astrophysics Data System (ADS)

    Yearim, R.; Shechtman, D.

    1982-11-01

    Four aluminum alloys, designed for use at elevated temperatures, were studied. The alloys were supersaturated with iron and chromium, and one of them contained small amounts of Ti, V, and Zr. The starting materials were alloy powders made by the RSR (Rapid Solidification Rate) centrifugal atomization process. Extrusion bars were made from the four powders. The as-extruded microstructure and the microstructure of the alloys after annealing at 482 °C were investigated by optical and transmission electron microscopy and by X-ray diffraction. The microstructure consists of equiaxed grains of aluminum matrix and two types of precipitates, namely, Al3(Fe ,Cr) and a metastable phase, Al6(Fe,Cr). The precipitates were different in their shape, size, distribution, and location within the grains.

  2. A combined AEM/APFIM characterization of Alloy X-750

    SciTech Connect

    Burke, M.G.; Miller, M.K.

    1992-05-01

    In the development of advanced alloys for power system applications, the primary emphasis is placed on attaining specific mechanical properties with resistance to environmental attack. An important part of alloy development is the detailed characterization of the microstructure, because it is the composition, size and morphology of the microstructural features that define the mechanical properties of the material. The good mechanical properties of Ni-base superalloys are a result of the formation of fine coherent precipitates. Analytical electron microscopy (AEM) provides important information concerning the type and distribution of the phases in the alloys, but quantitative microchemical analysis for the ultra-fine precipitates is not readily obtainable with conventional AEM techniques. The high optical resolution of the atom probe field-ion microscope (APFIM) make this technique ideally suited to the analysis of the ultra-fine precipitates and surrounding matrix. In this paper, a combined AEM/APFIM study of precipitation in Alloy X-750 is presented.

  3. A combined AEM/APFIM characterization of Alloy X-750

    SciTech Connect

    Burke, M.G. ); Miller, M.K. )

    1992-01-01

    In the development of advanced alloys for power system applications, the primary emphasis is placed on attaining specific mechanical properties with resistance to environmental attack. An important part of alloy development is the detailed characterization of the microstructure, because it is the composition, size and morphology of the microstructural features that define the mechanical properties of the material. The good mechanical properties of Ni-base superalloys are a result of the formation of fine coherent precipitates. Analytical electron microscopy (AEM) provides important information concerning the type and distribution of the phases in the alloys, but quantitative microchemical analysis for the ultra-fine precipitates is not readily obtainable with conventional AEM techniques. The high optical resolution of the atom probe field-ion microscope (APFIM) make this technique ideally suited to the analysis of the ultra-fine precipitates and surrounding matrix. In this paper, a combined AEM/APFIM study of precipitation in Alloy X-750 is presented.

  4. Tensile and toughness assessment of the procured advanced alloys

    SciTech Connect

    Tan, Lizhen; Sokolov, Mikhail A.; Hoelzer, David T.; Busby, Jeremy T.

    2015-09-11

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to develop and test degradation resistant alloys from current commercial alloy specifications by 2021 to a new advanced alloy with superior degradation resistance by 2024 in light water reactor (LWR)-relevant environments

  5. Modeling of Substitutional Site Preference in Ordered Intermetallic Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    1998-01-01

    We investigate the site substitution scheme of specific alloying elements in ordered compounds and the dependence of site occupancy on compound stoichiometry, alloy concentration. This basic knowledge, and the interactions with other alloying additions are necessary in order to predict and understand the effect of various alloying schemes on the physical properties of a material, its response to various temperature treatments, and the resulting mechanical properties. Many theoretical methods can provide useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. With this in mind, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed to overcome these limitations, with the intent of providing an useful tool for the theoretical prediction of fundamental properties and structure of complex systems. After a brief description of the BFS method, its use for the determination of site substitution schemes for individual as well as collective alloying additions to intermetallic systems is described, including results for the concentration dependence of the lattice parameter. Focusing on B2 NiAl, FeAl and CoAl alloys, the energetics of Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W alloying additions are surveyed. The effect of single additions as well as the result of two simultaneous additions, discussing the interaction between additions and their influence on site preference schemes is considered. Finally, the BFS analysis is extended to ternary L1(sub 2) (Heusler phase) alloys. A comparison between experimental and theoretical results for the limited number of cases for which experimental data is available is also included.

  6. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys

    DOE PAGES

    Jin, K.; Lu, C.; Wang, L. M.; Qu, J.; Weber, W. J.; Zhang, Y.; Bei, H.

    2016-04-14

    The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.

  7. Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate strength while minimizing residual stresses and machining distortion.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    This report provides strategies for minimizing machining distortion in future designs of aluminum alloy satellite boxes, based in part on key findings from this investigation. The report outlines types of aluminum alloys and how they are heat treated, how residual stresses develop during heat treatment of age hardening alloys, ways residual stresses can be minimized, and the design of machining approaches to minimize distortion in parts that contain residual stresses. Specific recommendations are made regarding alloy selection, heat treatment, stress relieving, and machining procedures for boxes requiring various strength levels with emphasis on 6061 and 7075 aluminum alloys.

  8. Alloyed coatings for dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Wermuth, F. R.; Stetson, A. R.

    1971-01-01

    Processing techniques were developed for applying several diffusion barriers to TD-Ni and TD-NiCr. Barrier coated specimens of both substrates were clad with Ni-Cr-Al and Fe-Cr-Al alloys and diffusion annealed in argon. Measurement of the aluminum distribution after annealing showed that, of the readily applicable diffusion barriers, a slurry applied tungsten barrier most effectively inhibited the diffusion of aluminum from the Ni-Cr-Al clad into the TD-alloy substrates. No barrier effectively limited interdiffusion of the Fe-Cr-Al clad with the substrates. A duplex process was then developed for applying Ni-Cr-Al coating compositions to the tungsten barrier coated substrates. A Ni-(16 to 32)Cr-3Si modifier was applied by slurry spraying and firing in vacuum, and was then aluminized by a fusion slurry process. Cyclic oxidation tests at 2300 F resulted in early coating failure due to inadequate edge coverage and areas of coating porosity. EMP analysis showed that oxidation had consumed 70 to 80 percent of the aluminum in the coating in less than 50 hours.

  9. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  10. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  11. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  12. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1996-08-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, modified alloy 800, and two sulfidation resistant alloys: HR160 and HR120. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700{degrees}C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925{degrees}C with good weldability and ductility.

  13. Effects of Rh on the thermoelectric performance of the p-type Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} half-Heusler alloys

    SciTech Connect

    Maji, Pramathesh; Takas, Nathan J.; Misra, Dinesh K.; Gabrisch, Heike; Stokes, Kevin; Poudeu, Pierre F.P.

    2010-05-15

    We show that Rh substitution at the Co site in Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} (0<=x<=1) half-Heusler alloys strongly reduces the thermal conductivity with a simultaneous, significant improvement of the power factor of the materials. Thermoelectric properties of hot-pressed pellets of several compositions with various Rh concentrations were investigated in the temperature range from 300 to 775 K. The Rh 'free' composition shows n-type conduction, while Rh substitution at the Co site drives the system to p-type semiconducting behavior. The lattice thermal conductivity of Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} alloys rapidly decreased with increasing Rh concentration and lattice thermal conductivity as low as 3.7 W/m*K was obtained at 300 K for Zr{sub 0.5}Hf{sub 0.5}RhSb{sub 0.99}Sn{sub 0.01}. The drastic reduction of the lattice thermal conductivity is attributed to mass fluctuation induced by the Rh substitution at the Co site, as well as enhanced phonon scattering at grain boundaries due to the small grain size of the synthesized materials. - Graphical abstract: Significant reduction of the lattice thermal conductivity with increasing Rh concentration in the p-type Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} half-Heusler materials prepared by solid state reaction at 1173 K.

  14. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  15. Overview of corrosion, corrosion protection, and stress-corrosion cracking of uranium and uranium alloys

    SciTech Connect

    Koger, J.W.

    1981-12-14

    This paper covers some basic definitions and provides some data. The 51 slides illustrates these definitions, crack initiation and propagation, sources of stress, types of specimens used for SCC, potentiostatic polarization, data for Mulberry and U-Nb alloys, effects of environment, and data for U-0.75 Ti and U-Mo alloys. (DLC)

  16. Theoretical Studies of Hydrogen Storage Alloys.

    SciTech Connect

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  17. Correlation of atomic packing with the boson peak in amorphous alloys

    SciTech Connect

    Yang, W. M.; Liu, H. S. E-mail: blshen@seu.edu.cn E-mail: jiangjz@zju.edu.cn; Zhao, Y. C.; Liu, X. J.; Chen, G. X.; Man, Q. K.; Chang, C. T.; Li, R. W. E-mail: blshen@seu.edu.cn E-mail: jiangjz@zju.edu.cn; Dun, C. C.; Shen, B. L. E-mail: blshen@seu.edu.cn E-mail: jiangjz@zju.edu.cn; Inoue, A.; and others

    2014-09-28

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diameter are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.

  18. Prediction of novel, Earth abundant Cu2O based alloys for PV applications

    NASA Astrophysics Data System (ADS)

    Stevanovic, Vladan; Lany, Stephan

    2014-03-01

    Tuning the opto-electronic properties of semiconductors through alloying is essential for semiconductor industry. Currently, mostly isovalent and isostructural alloys are used (e.g. Si/Ge, GaN/InN or CdTe/ZnTe), but a vast and unexplored space of novel functional materials is conceivable when considering more complex alloys by mixing aliovalent and heterostructural constituents. The real challenge lies in the quantitative property prediction for such complex alloys to guide their experimental exploration. In our work we demonstrate how an Earth abundant p-type oxide Cu2O, can be engineered through alloying into a technologically useful absorber material. We use non-local external potentials (NLEP) fitted to GW calculations for correcting the DFT electronic structure and compute absorption coefficient of different alloy compositions and configurations. Work supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Next Generation Photovoltaics II (SunShot initiative).

  19. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  20. Biomedical titanium alloys with Young's moduli close to that of cortical bone.

    PubMed

    Niinomi, Mitsuo; Liu, Yi; Nakai, Masaki; Liu, Huihong; Li, Hua

    2016-09-01

    Biomedical titanium alloys with Young's moduli close to that of cortical bone, i.e., low Young's modulus titanium alloys, are receiving extensive attentions because of their potential in preventing stress shielding, which usually leads to bone resorption and poor bone remodeling, when implants made of their alloys are used. They are generally β-type titanium alloys composed of non-toxic and allergy-free elements such as Ti-29Nb-13Ta-4.6Zr referred to as TNTZ, which is highly expected to be used as a biomaterial for implants replacing failed hard tissue. Furthermore, to satisfy the demands from both patients and surgeons, i.e., a low Young's modulus of the whole implant and a high Young's modulus of the deformed part of implant, titanium alloys with changeable Young's modulus, which are also β-type titanium alloys, for instance Ti-12Cr, have been developed. In this review article, by focusing on TNTZ and Ti-12Cr, the biological and mechanical properties of the titanium alloys with low Young's modulus and changeable Young's modulus are described. In addition, the titanium alloys with shape memory and superelastic properties were briefly addressed. Surface modifications for tailoring the biological and anti-wear/corrosion performances of the alloys have also been briefly introduced.

  1. Biomedical titanium alloys with Young’s moduli close to that of cortical bone

    PubMed Central

    Niinomi, Mitsuo; Liu, Yi; Nakai, Masaki; Liu, Huihong; Li, Hua

    2016-01-01

    Biomedical titanium alloys with Young’s moduli close to that of cortical bone, i.e., low Young’s modulus titanium alloys, are receiving extensive attentions because of their potential in preventing stress shielding, which usually leads to bone resorption and poor bone remodeling, when implants made of their alloys are used. They are generally β-type titanium alloys composed of non-toxic and allergy-free elements such as Ti–29Nb–13Ta–4.6Zr referred to as TNTZ, which is highly expected to be used as a biomaterial for implants replacing failed hard tissue. Furthermore, to satisfy the demands from both patients and surgeons, i.e., a low Young’s modulus of the whole implant and a high Young’s modulus of the deformed part of implant, titanium alloys with changeable Young’s modulus, which are also β-type titanium alloys, for instance Ti–12Cr, have been developed. In this review article, by focusing on TNTZ and Ti–12Cr, the biological and mechanical properties of the titanium alloys with low Young’s modulus and changeable Young’s modulus are described. In addition, the titanium alloys with shape memory and superelastic properties were briefly addressed. Surface modifications for tailoring the biological and anti-wear/corrosion performances of the alloys have also been briefly introduced. PMID:27252887

  2. Effects of Loading Type And Cavity Position On The Pattern Height In Micro-manufacturing of Al5083 Superplastic Alloy And Zr62Cu17Ni13Al8 Metallic Glass

    NASA Astrophysics Data System (ADS)

    Na, Young-Sang; Son, Seon-Cheon; Park, Kyu-Yeol; Lee, Jong-Hoon

    2009-11-01

    Vibrational micro-forming of pyramidal shape patterns was conducted for an Al superplastic alloy, Al 5083 and a Zr-based bulk metallic glass, Zr62Cu17Ni13Al8. A vibrational micro-forming system was specially designed for generating vibrational load by combining a PZT actuator with a signal generator. Si micro dies with wet-etched pyramidal patterns were used as master dies for vibrational micro-forming. The micro-formed pattern height was increasing with increasing the frequency of the vibrational load. In particular, the vibrationally-microformed pattern height is similar or even higher than the statically-microformed pattern height when the load frequency exceeded about 125 kHz. It was also observed that the crystal grains affect the surface quality of the microformed pattern and the distribution of the pattern height in the die cavity array.

  3. Structure and corrosive wear resistance of plasma-nitrided alloy steels in 3% sodium chloride solutions

    SciTech Connect

    Lee, C.K.; Shih, H.C. . Dept. of Materials Science and Engineering)

    1994-11-01

    Type 304 stainless steel (SS), type 410 SS, and type 4140 low-alloy steel were plasma nitrided in a commercial furnace at 560 C for 50 h. Microstructure and the composition of the nitrided layer were analyzed. The resistance to corrosive wear was evaluated by a tribotest in which the specimen was held under potentiostatic control at anodic and cathodic potentials in 3% sodium chloride solution (pH 6.8). Electrochemical polarization measurements were made, and the surface morphology and composition after corrosive wear were examined. Wear rates at cathodic potentials were very low, but significant weight losses were observed as the applied potentials were increased anodically. The coefficient of friction varied in a fashion similar to the wear rate. For the untreated alloys, the magnitude of the wear rate and coefficient of friction decreased as follows: type 4140 alloy > type 41 SS > type 304 SS. For the plasma-nitrided alloys, the ranking was: type 304 SS > type 410 SS. type 4140 alloy. Plasma nitriding was shown to be beneficial to the corrosive wear resistance of type 4140 alloy, but an adverse effect was obtained for types 304 and 410 SS. These findings could be interpreted in terms of the electrochemical polarization characteristics of a static specimen and were strongly related to the subtleties of the nitrided microstructures. The stable chromium nitride (CrN) segregated in the [gamma]-iron (type 304 SS) and [alpha]-Fe (type 41 SS) matrices and resulted in a pitting and spalling type of corrosive wear mechanism. The phases [epsilon]-(Fe, Cr)[sub 2-3]N and [gamma]-(Fe, Cr)[sub 4]N enriched in the surface layer of nitrided type 4140 alloy provided excellent corrosive wear resistance.

  4. Interfacial oxidations of pure titanium and titanium alloys with investments.

    PubMed

    Ban, S; Watanabe, T; Mizutani, N; Fukui, H; Hasegawa, J; Nakamura, H

    2000-12-01

    External oxides of a commercially pure titanium (cpTi), Ti6Al4V alloy, and an experimental beta-type titanium alloy (Ti 53.4 wt%, Nb 29 wt%, Ta 13 wt%, and Zr 4.6 wt%) were characterized after heating to 600, 900, 1150, and 1400 degrees C in contact with three types of investments (alumina cement, magnesia cement, and phosphate-bonded) in air. XRD studies demonstrated that MgO, Li2TiO3 and/or Li2Ti3O7 were formed through reactions with the metal and the constituents in the magnesia cement-investment after heating to 900, 1150, and 1400 degrees C. Except for these conditions, TiO2 (rutile) was only formed on cpTi. For titanium alloys, the other components apart from Ti also formed simple and complex oxides such as Al2O3 and Al2TiO5 on Ti6Al4V, and Zr0.25Ti0.75Nb2O7 on the beta-type titanium alloy. However, no oxides containing V or Ta were formed. These results suggest that the constituents of titanium alloys reacted with the investment oxides and atmospheric oxygen to form external oxides due to the free energy of oxide formation and the concentration of each element on the metal surface.

  5. Environmental protection to 922K (1200 F) for titanium alloys

    NASA Technical Reports Server (NTRS)

    Groves, M. T.

    1973-01-01

    Evaluations are presented of potential coating systems for protection of titanium alloys from hot-salt stress-corrosion up to temperatures of 755 K (900 F) and from oxidation embrittlement up to temperature of 922 K (1200 F). Diffusion type coatings containing Si, Al, Cr, Ni or Fe as single coating elements or in various combinations were evaluated for oxidation protection, hot-salt stress-corrosion (HSSC) resistance, effects on tensile properties, fatigue properties, erosion resistance and ballistic impact resistance on an alpha and beta phase titanium alloy (Ti-6Al-2Sn-4Zr-2Mo). All of the coatings investigated demonstrated excellent oxidation protectiveness, but none of the coatings provided protection from hot-salt stress-corrosion. Experimental results indicated that both the aluminide and silicide types of coatings actually decreased the HSSC resistance of the substrate alloy. The types of coatings which have typically been used for oxidation protection of refractory metals and nickel base superalloys are not suitable for titanium alloys because they increase the susceptibility to hot-salt stress-corrosion, and that entirely new coating concepts must be developed for titanium alloy protection in advanced turbine engines.

  6. Preparation of electrodeposited Zn-Ni-B alloy coatings

    NASA Astrophysics Data System (ADS)

    Sakai, Taro; Kamimoto, Yuki; Ichino, Ryoichi

    2016-01-01

    We prepared Zn-Ni-B alloys with high Zn content and high corrosion resistance. The composition of the alloys was controlled by potentiostatic electrolysis. In the electroplating bath, dimethylamineborane was used as the B source. The characterization of the alloys and corrosion resistance evaluation were carried out by X-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), Tafel plots, and cyclic corrosion tests. All films were categorized into three groups on the basis of the results of XRD analysis, and it was found by TEM analysis that the Ni-B-type showed an amorphous structure. The Ni-B-type could contain up to 50.6 mol % Zn and showed similar or better anticorrosion properties than the amorphous Ni-B films. In the Ni-B-type, the higher the Zn content, the higher the corrosion resistance. The Zn-Ni-B alloys had almost the same electrochemical corrosion resistance and Zn content as the Zn-Ni-P alloys.

  7. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  8. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  9. Reduction in Defect Content of ODS Alloys

    SciTech Connect

    Ritherdon, J

    2003-11-17

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes work regarding the manipulation of grain structures via deformation processing and further results gathered during powder separation trials involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-IV''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out except for some of that dependent on the acquisition of materials from other sources. However, wherever omissions from the ''Plan of Action'' detailed in the ''Statement of Work'' have occurred due to lack of suitable materials, other related experimental work has been devised to fill the gaps where possible. All work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  10. Corrosion performance of structural alloys.

    SciTech Connect

    Natesan, K.

    1999-07-15

    Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described in this paper address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded structural alloys that were exposed to air-deficient and excess-air environments typical of coal-combustion and gasification processes. Data in this paper address the effects of preoxidation on the subsequent corrosion performance of structural materials such as 9Cr-1Mo ferritic steel, Type 347 austenitic stainless steel, Alloys 800, 825, 625, 214, Hastelloy X, and iron aluminide when exposed at 650 C to various mixed-gas environments with and without HCI. Results are presented for scaling kinetics, microstructural characteristics of corrosion products, detailed evaluations of near-surface regions of the exposed specimens, gains in our mechanistic understanding of the roles of S and Cl in the corrosion process, and the effect of preoxidation on subsequent corrosion.

  11. Alternate alloying for environmental resistance

    SciTech Connect

    Smolik, G.R.; Banerji, S.K.

    1986-01-01

    The 35 papers contained in this collection detail efforts being made toward achieving environmental resistance of alloys and conserved usage of strategic and critical materials. An in-depth look is taken at the roles played by various alloying elements in providing desired microstructures, properties, and influences upon environmental attack. Also presented are applications and performances of alternate alloys in aqueous and high temperature gaseous and molten salt environments. The book is broken down into five key sections covering: 1) philosophies and status of programs designing alloys for resistance to various environmental and microstructural stability of some of these alloys systems, 2) applications in hot corrosion and sulfidizing environments, 3) applications in oxidizing conditions, 4) corrosion resistance in aqueous environments, and 5) other properties, such as physical and mechanical, which are necessary to evaluate overall alloy performance.

  12. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  13. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  14. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    NASA Technical Reports Server (NTRS)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  15. Cladding burst behavior of Fe-based alloys under LOCA

    DOE PAGES

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less

  16. Cladding burst behavior of Fe-based alloys under LOCA

    SciTech Connect

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. The most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.

  17. Radiation Damages in Aluminum Alloy SAV-1 under Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Salikhbaev, Umar; Akhmedzhanov, Farkhad; Alikulov, Sherali; Baytelesov, Sapar; Boltabaev, Azizbek

    2016-05-01

    The aim of this work was to study the effect of neutron irradiation on the kinetics of radiation damages in the SAV-1 alloy, which belongs to the group of aluminum alloys of the ternary system Al-Mg-Si. For fast-neutron irradiation by different doses up to fluence 1019 cm-2 the SAV-1 samples were placed in one of the vertical channels of the research WWR type reactor (Tashkent). The temperature dependence of the electrical resistance of the alloy samples was investigated in the range 290 - 490 K by the four-compensation method with an error about 0.1%. The experimental results were shown that at all the temperatures the dependence of the SAV-1 alloy resistivity on neutron fluence was nonlinear. With increasing neutron fluence the deviation from linearity and the growth rate of resistivity with temperature becomes more appreciable. The observed dependences are explained by means of martensitic transformations and the radiation damages in the studied alloy under neutron irradiation. The mechanisms of radiation modification of the SAV-1 alloy structure are discussed.

  18. Positron lifetime studies of decomposition in 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) alloys

    SciTech Connect

    Dlubek, G. |; Lademann, P.; Krause, H.; Krause, S.; Unger, R.

    1998-09-04

    In the current paper, the decomposition behavior of the engineering alloys 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) is studied using positron lifetime measurements. Positrons probe open volume defects such as vacancies and dislocations. However, they may also be used to investigate coherent zones and incoherent precipitates. In order to understand the rather complicated precipitation sequences and the response of positrons to different type of precipitates occurring in 2024 and 7010 alloys, binary and ternary laboratory alloys were also investigated under the same experimental conditions as the engineering alloys. The interpretations of the results are based on experiences of the group from extensive positron studies of laboratory alloys such as Al-Zn, Al-Zn-Mg, Al-Cu, and further Al alloys (see also the review (4)). Their collected results are shown as lifetimes and curve-shape parameters S of the electron-positron momentum distribution curves characteristic for different precipitates in Al alloys.

  19. Alloy Interface Interdiffusion Modeled

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Garces, Jorge E.; Abel, Phillip B.

    2003-01-01

    With renewed interest in developing nuclear-powered deep space probes, attention will return to improving the metallurgical processing of potential nuclear fuels so that they remain dimensionally stable over the years required for a successful mission. Previous work on fuel alloys at the NASA Glenn Research Center was primarily empirical, with virtually no continuing research. Even when empirical studies are exacting, they often fail to provide enough insight to guide future research efforts. In addition, from a fundamental theoretical standpoint, the actinide metals (which include materials used for nuclear fuels) pose a severe challenge to modern electronic-structure theory. Recent advances in quantum approximate atomistic modeling, coupled with first-principles derivation of needed input parameters, can help researchers develop new alloys for nuclear propulsion.

  20. Titanium-tantalum alloy development

    SciTech Connect

    Cotton, J.D.; Bingert, J.F.; Dunn, P.S.; Butt, D.P.; Margevicius, R.W.

    1996-04-01

    Research has been underway at Los Alamos National Laboratory for several years to develop an alloy capable of containing toxic materials in the event of a fire involving a nuclear weapon. Due to their high melting point, good oxidation resistance, and low solubility in molten plutonium, alloys based on the Ti-Ta binary system have been developed for this purpose. The course of the alloy development to-date, along with processing and property data, are presented in this overview.

  1. Duct and cladding alloy

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  2. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  3. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  4. Chemiresistive sensing with chemically modified metal and alloy nanoparticles.

    PubMed

    Ibañez, Francisco J; Zamborini, Francis P

    2012-01-23

    This review describes the use of chemically modified pure and alloyed metal nanoparticles for chemiresistive sensing applications. Chemically modified metal nanoparticles consist of a pure or alloyed metallic core with some type of chemical coating. Researchers have studied the electronic properties of 1D, 2D, and 3D assemblies of chemically modified metal nanoparticles, and even single individual nanoparticles. The interaction with the analyte alters the conductivity of the sensitive material, providing a signal to measure the analyte concentration. This review focuses on chemiresistive sensing of a wide variety of gas- and liquid-phase analytes with metal nanoparticles coated with organothiols, ions, polymers, surfactants, and biomolecules. Different strategies used to incorporate chemically modified nanoparticles into chemiresistive sensing devices are reviewed, focusing on the different types of metal and alloy compositions, coatings, methods of assembly, and analytes (vapors, gases, liquids, biological materials), along with other important factors.

  5. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.

    PubMed

    Wang, Song; Ma, Zheng; Liao, Zhenhua; Song, Jian; Yang, Ke; Liu, Weiqiang

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti-5Cu and Ti-6Al-4V-5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO2 counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti2Cu intermetallic compounds appeared in both Ti-5Cu and Ti-6Al-4V-5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti-5Cu and Ti-6Al-4V-5Cu alloys due to the precipitation of Ti2Cu. The results also indicated that both CP-Ti and Ti-5Cu behaved better wear resistance than Ti-6Al-4V and Ti-6Al-4V-5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti-5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti-6Al-4V and Ti-6Al-4V-5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types.

  6. Radiation Effects in Refractory Alloys

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (<5%) even for high neutron exposures (>>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  7. Evaluation of a hydrogen resistant titanium aluminide alloy

    NASA Technical Reports Server (NTRS)

    Chan, K. S.

    1991-01-01

    The Ti-24Al-11Nb (Ti-24-11) alloy heat treated to the fine basketweave microstructure was shown previously to be hydrogen tolerant. In order to assess its limit of hydrogen tolerance, the tensile, creep, fracture toughness, and sustained load crack growth behaviors of this alloy were studied as a function of hydrogen content. All test specimens were thermally charged with internal hydrogen and tested at 25 and 600 C. Coupon specimens were used for developing the hydrogen charging procedures and for studying compatibility of the alloy with high temperature, high pressure gaseous hydrogen. The mechanical test results indicated that the fine basketweave microstructure was tolerant to hydride embrittlement for hydrogen contents up to approximately 1500 wt. ppm, providing that the hydride formed was of the TiH2 type. On the other hand, hydrogen charging experiments indicated that the Ti-24-11 alloy was severely cracked and pulverized under zero load when the hydrogen content exceeded 3000 wt. ppm. X-ray diffraction results revealed that the dichotomous behaviors might be due to the formation of TiH(1.924) type hydrides at higher hydrogen contents. Thus, hydrogen embrittlement in the Ti-24-11 alloy with the fine basketweave microstructure depends on hydrogen content and the nature of the hydrides formed.

  8. Biocompatibility of new Ti-Nb-Ta base alloys.

    PubMed

    Hussein, Abdelrahman H; Gepreel, Mohamed A-H; Gouda, Mohamed K; Hefnawy, Ahmad M; Kandil, Sherif H

    2016-04-01

    β-type titanium alloys are promising materials in the field of medical implants. The effect of β-phase stability on the mechanical properties, corrosion resistance and cytotoxicity of a newly designed β-type (Ti77Nb17Ta6) biocompatible alloys are studied. The β-phase stability was controlled by the addition of small quantities of Fe and O. X-ray diffraction and microstructural analysis showed that the addition of O and Fe stabilized the β-phase in the treated solution condition. The strength and hardness have increased with the increase in β-phase stability while ductility and Young's modulus have decreased. The potentio-dynamic polarization tests showed that the corrosion resistance of the new alloys is better than Ti-6Al-4V alloy by at least ten times. Neutral red uptake assay cytotoxicity test showed cell viability of at least 95%. The new alloys are promising candidates for biomedical applications due to their high mechanical properties, corrosion resistance, and reduced cytotoxicity.

  9. Procurement and screening test data for advanced austenitic alloys for 650/degree/C steam service: Part 2, final report

    SciTech Connect

    Swindeman, R.W.; Goodwin, G.M.; Maziasz, P.J.; Bolling, E.

    1988-08-01

    The results of screening tests on alloys from three compositional groups are summarized and compared to the alloy design and performance criteria identified as needed for austenitic alloys suitable as superheater/reheater tubing in advanced heat recovery systems. The three alloy groups included lean (nominally 14% Cr and 16% Ni) austenitic stainless steels that were modifications of type 316 stainless steel, 20Cr-30Ni-Fe alloys that were modifications of alloy 800H, and Ni-Cr aluminides, (Ni,Cr)/sub 3/Al. The screening tests covered fabricability, mechanical properties, weldability, and oxidation behavior. The lean stainless steels were found to possess excellent strength and ductility if cold-worked to an equivalent strain in the range 5 to 10% prior to testing. However, they possessed marginal weldability, poor oxidation resistance, and sensitivity to aging. The modified alloy 800H alloys also exhibited good strength and ductility in the cold-worked condition. The weldability was marginal, while the oxidation resistance was good. The aluminides were difficult to fabricate by methods typically used to produce superheater tubing alloys. The alloys that could be worked had marginal strength and ductility. An aluminide cast alloy, however, was found to be very strong and ductile. 23 refs., 19 figs., 13 tabs.

  10. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings

    SciTech Connect

    Van Weele, S. )

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  11. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings. Final report

    SciTech Connect

    Van Weele, S.

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  12. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  13. Cathodic protection against crevice corrosion of high-alloy steel in seawater

    SciTech Connect

    Baptista, W.; Pimenta, G.

    1995-10-01

    Localized corrosion of high-alloy steel in seawater, mainly under crevices, limits the alloys` use in such environments. An in-situ test program was conducted to study this corrosive process and possible protective measures. Attention focused on the resistance of several types of high-alloy steels under corrosive conditions and on the response of type 316 stainless steel to cathodic protection (CP) by carbon steel and zinc anodes. It was found that CP could effectively mitigate crevice corrosion in these subsea conditions.

  14. Directional Solidification of Monotectic Alloys

    NASA Technical Reports Server (NTRS)

    Hellawell, A.

    1983-01-01

    Cooling at certain rates produced fibrous composite structures. Alloy samples melted in alumina or graphite crucibles under argon and then chillcast into 33-mm-diameter rods or sucked directly into 3-mm-bore alumina or silica tubes. Alloying not automatic with immiscible components of different densities and widely different melting points.

  15. Directional Solidification Of Monotectic Alloys

    NASA Technical Reports Server (NTRS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1990-01-01

    Conditions promoting formation of aligned fibers sought. Report describes experiments in directional solidification of Cu/Pb and Bi/Ga monotectic alloys. Study motivated by need to understand physical mechanism governing formation of rodlike or fiberlike aligned structures in solidifying alloy and to determine process conditions favoring such structures.

  16. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  17. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  18. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  19. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  20. Welding metallurgy of titanium alloy C

    SciTech Connect

    Damkroger, B.K.; Knorovsky, G.A.; Headley, T.J.

    1994-12-31

    Alloy C (Ti-35V-15Cr) is an alloy developed by Pratt & Whitney for gas turbine engine applications. In addition to attractive physical and mechanical properties, the exceptional burn resistance of Alloy C make it an attractive candidate material for various aerospace and chemical processing industry applications. However, the fabricability of Alloy C can be limited by intergranular fusion zone cracking. In this study, the response of this material to welding cycles has been characterized with respect to microstructural evolution, thermal stress development, and susceptibility to weld cracking. The starting material for this study, 7.9 mm thick hot-rolled plate, has a microstructure consisting of an equiaxed {beta} matrix and two types of Ti (C,N) particles: one blocky and approximately 1 {mu} x 5{mu}, and the other, clusters of semicoherent 0.01 {mu} x 0.05 {mu} platelets representing the three possible variants of the (110)/(100) bcc/fcc orientation. In the heat-affected zone for example, the large blocky Ti(C,N) particles increase in size and number at the expense of the small platelets. A goal of this study was to examine the relative contributions of microstructural evolution and thermal stress development on the weld cracking susceptibility. The results of these studies are presented and combined to provide an understanding of the overall welding behavior of this material. The work was performed at Sandia National Laboratories supported by the U.S. Department of energy under contract number DE-AC04-76DR00789.

  1. Loss of Alloy in Cast Restorations Fabricated by Dental Students.

    ERIC Educational Resources Information Center

    Soh, George

    1991-01-01

    A study investigated the quantity of alloy lost in the fabrication of three types of cast restoration by dental students, and identified the proportion of loss at each of the four principal stages of the fabrication process. Suggestions for reducing metal loss and related costs in dental schools are offered. (MSE)

  2. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  3. Equivalent crystal theory of alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.

  4. Mo-Si alloy development

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  5. Wedlable nickel aluminide alloy

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  6. Thermomechanical treatment of alloys

    DOEpatents

    Bates, John F.; Brager, Howard R.; Paxton, Michael M.

    1983-01-01

    An article of an alloy of AISI 316 stainless steel is reduced in size to predetermined dimensions by cold working in repeated steps. Before the last reduction step the article is annealed by heating within a temperature range, specifically between 1010.degree. C. and 1038.degree. C. for a time interval between 90 and 60 seconds depending on the actual temperature. By this treatment the swelling under neutron bombardment by epithermal neutrons is reduced while substantial recrystallization does not occur in actual use for a time interval of at least of the order of 5000 hours.

  7. Aluminum alloy and associated anode and battery

    SciTech Connect

    Tarcy, G.P.

    1990-08-21

    This patent describes an aluminum alloy. It comprises: eutectic amounts of at least two alloying elements selected from the group consisting of bismuth, cadmium, scandium, gallium, indium, lead, mercury, thallium, tin, and zinc with the balance being aluminum and the alloying elements being about 0.01 to 3.0 percent by weight of the alloy.

  8. Supercooling effects in faceted eutectic Nb-Si alloys

    NASA Technical Reports Server (NTRS)

    Gokhale, A. B.; Sarkar, G.; Abbaschian, G. J.; Haygarth, J. C.; Wojcik, C.

    1988-01-01

    The effect of melt supercooling on the microstructure of an Nb-58 at. pct Si alloy is investigated experimentally using an electromagnetic levitation apparatus. It is found that, starting with an alloy nominally of eutectic composition, nucleation of Nb5Si3 occurs in the supercooled liquid first. Upon further cooling, the remaining liquid continues to supercool until the second phase, NbSi2 is nucleated, which is commonly accompanied by rapid recalescence. The primary phase exibits a eutectoid-type decomposition. The observations are discussed with reference to the results of quantitative microstructural measurements, compositional and thermal analysis, and preliminary thermodynamic modeling of the phase diagram.

  9. Microstructure and mechanical properties of eutectic nickel alloy coatings

    NASA Astrophysics Data System (ADS)

    Bezborodov, V. P.; Saraev, Yu N.

    2016-04-01

    The paper discusses the peculiarities of a structure and a coating composition after reflow. It was established that the structure of coatings from nickel alloy is a solid solution based on nickel, the eutectic of γ-Ni+Ni3B composition and dispersed reinforcing particles. The content of alloying elements in the initial powder material determines the type of the coating structure and the formation of hypoeutectic or hypereutectic structures. The influence of formation conditions on the structure and physical-mechanical properties of the coatings is considered in this paper.

  10. SCC Initiation in Alloy 600 Heat Affected Zones Exposed to High Temperature Water

    SciTech Connect

    E Richey; DS Morton; RA Etien; GA Young; RB Bucinell

    2006-11-03

    Studies have shown that grain boundary chromium carbides improve the stress corrosion cracking (SCC) resistance of nickel based alloys exposed to high temperature, high purity water. However, thermal cycles from welding can significantly alter the microstructure of the base material near the fusion line. In particular, the heat of welding can solutionize grain boundary carbides and produce locally high residual stresses and strains, reducing the SCC resistance of the Alloy 600 type material in the heat affected zone (HAZ). Testing has shown that the SCC growth rate in Alloy 600 heat affected zone samples can be {approx}30x faster than observed in the Alloy 600 base material under identical testing conditions due to fewer intergranular chromium rich carbides and increased plastic strain in the HAZ [1, 2]. Stress corrosion crack initiation tests were conducted on Alloy 600 HAZ samples at 360 C in hydrogenated, deaerated water to determine if these microstructural differences significantly affect the SCC initiation resistance of Alloy 600 heat affected zones compared to the Alloy 600 base material. Alloy 600 to EN82H to Alloy 600 heat-affected-zone (HAZ) specimens where fabricated from an Alloy 600 to Alloy 600 narrow groove weld with EN82H filler metal. The approximate middle third of the specimen gauge region was EN82H such that each specimen had two HAZ regions. Tests were conducted with in-situ monitored smooth tensile specimens under a constant load, and a direct current electric potential drop was used for in-situ detection of SCC. Test results suggest that the SCC initiation resistance of Alloy 600 and its weld metal follows the following order: EN82H > Alloy 600 HAZ > Alloy 600. The high SCC initiation resistance observed to date in Alloy 600 heat affected zones compared to wrought Alloy 600 is unexpected based on the microstructure of HAZ versus wrought material and based on prior SCC growth rate studies. The observed behavior for the HAZ specimens is likely

  11. Microstructures and mechanical properties of Ti-Mo alloys cold-rolled and heat treated

    SciTech Connect

    Zhou Yinglong; Luo Dongmei

    2011-10-15

    In this study, the microstructures and mechanical properties of Ti-10Mo and Ti-20Mo alloys (mass%) are investigated to assess the potential use in biomedical applications. The microstructures are examined by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The mechanical properties are determined from uniaxial tensile tests. The experimental results indicate that the microstructures and mechanical properties of Ti-Mo alloys are dependent upon the cold rolling, solution heat treatment, and Mo content. The Ti-10Mo alloy exhibits ({alpha}'' + {beta}) and ({beta} + {omega}) phases under the cold rolling (CR) and solution treatment (ST), respectively. By contrast, the Ti-20Mo alloy comprises only {beta} phase under such conditions. The quenched Ti-20Mo alloy has the lowest elastic modulus and CR Ti-20Mo alloy has the highest tensile strength. The quenched Ti-10Mo alloy exhibits the excellent ductility and two-stage yielding from stress-strain curves due to the stress-induced martensite transformation from {beta} to {alpha}'' during tensile deformation. These Ti-Mo alloys exhibit low yield strength and good ductility, and they are more suitable for biomedical applications than the conventional metallic biomaterials from the viewpoint of better mechanical compatibility. The quenched Ti-10Mo alloy has some advantages over the other {beta} binary Ti-Mo alloys for biomedical applications. {beta} type Ti-Mo-Sn alloys are expected to be promising candidates for novel metallic biomaterials. - Highlights: {yields} The microstructures and mechanical properties of Ti-Mo alloys are dependent upon the cold rolling, solution heat treatment, and Mo content. {yields} The quenched Ti-10Mo alloy exhibits the excellent ductility and two-stage yielding due to stress-induced martensite transformation from beta to alpha double prime during tensile deformation. {yields} The Ti-Mo alloys are more suitable for biomedical applications than the conventional metallic

  12. Galvanic cells including cobalt-chromium alloys.

    PubMed

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  13. Effects of substitution, pressure, and temperature on the phonon mode in layered-rocksalt-type Li{sub (1−x)/2}Ga{sub (1−x)/2}Zn{sub x}O (x = 0.036–0.515) alloys

    SciTech Connect

    Tan, Lijie; Hu, Qiwei; Lei, Li Jiang, Xiaodong; Gao, Shangpan; He, Duanwei

    2015-11-14

    ZnO-based semiconductor alloys, Li{sub (1−x)/2}Ga{sub (1−x)/2}Zn{sub x}O (x = 0.036–0.515) with a layered-rocksalt-type structure, have been prepared under high pressure. The composition, pressure, and temperature dependence of phonons have been studied by Raman spectroscopy. We observe two disorder-activated Raman (DAR) modes when the Zn composition x increases: a broad Raman peak at ca. 400 cm{sup −1} and a left-shoulder peak at ca. 530 cm{sup −1} on the low-frequency side of A{sub 1g} mode at ca. 580 cm{sup −1}, which can be explained by reference to the phonon density of states for rocksalt-type ZnO. With the increase of the pressure and temperature, the left-shoulder DAR mode induced by substitution does not change at the same pace with the A{sub 1g} mode at Brillouin-zone center. We find that ion substitution can be seen as a kind of chemical pressure, and the chemical pressure caused by internal substitution and the physical pressure caused by external compression have equivalent effects on the shortening of correlation length, the distortion of crystal lattice, and the change of atomic occupation.

  14. Fatigue of die cast zinc alloys

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appeared to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.

  15. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  16. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  17. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  18. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    SciTech Connect

    Swindeman, R.W.

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  19. The influence of containerless undercooling and rapid solid-state quenching on the superconductive and magnetic properties of some clustering alloy systems

    NASA Technical Reports Server (NTRS)

    Collings, E. W.

    1984-01-01

    The properties of clustering alloy systems and the manner in which they are influenced by rapid quenching from a containerless undercooled melt are discussed. It was postulated that rapid quenching under such conditions would result in highly disordered metastable alloys, and furthermore, that alloys in such conditions would possess physical properties characteristically different from those of alloys in the annealed equilibrium state. The scope of the program is essentially to gauge the influence of containerless undercooling on the submicrostructure of clustering-type alloys, using certain physical properties as diagnostic tools. Microstructures and macrostructures were to be examined using optical- and scanning-electron microscopy.

  20. New Amorphous Silicon Alloy Systems

    NASA Astrophysics Data System (ADS)

    Kapur, Mridula N.

    1990-01-01

    The properties of hydrogenated amorphous silicon (a-Si:H) have been modified by alloying with Al, Ga and S respectively. The Al and Ga alloys are in effect quaternary alloys as they were fabricated in a carbon-rich discharge. The alloys were prepared by the plasma assisted chemical vapor deposition (PACVD) method. This method has several advantages, the major one being the relatively low defect densities of the resulting materials. The PACVD system used to grow the alloy films was designed and constructed in the laboratory. It was first tested with known (a-Si:H and a-Si:As:H) materials. Thus, it was established that device quality alloy films could be grown with the home-made PACVD setup. The chemical composition of the alloys was characterized by secondary ion mass spectrometry (SIMS), and electron probe microanalysis (EPMA). The homogeneous nature of hydrogen distribution in the alloys was established by SIMS depth profile analysis. A quantitative analysis of the bulk elemental content was carried out by EPMA. The analysis indicated that the alloying element was incorporated in the films more efficiently at low input gas concentrations than at the higher concentrations. A topological model was proposed to explain the observed behavior. The optical energy gap of the alloys could be varied in the 0.90 to 1.92 eV range. The Al and Ga alloys were low band gap materials, whereas alloying with S had the effect of widening the energy gap. It was observed that although the Si-Al and Si-Ga alloys contained significant amounts of C and H, the magnitude of the energy gap was determined by the metallic component. The various trends in optical properties could be related to the binding characteristics of the respective alloy systems. A quantitative explanation of the results was provided by White's tight binding model. The dark conductivity-temperature dependence of the alloys was examined. A linear dependence was observed for the Al and Ga systems. Electronic conduction in

  1. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  2. Evaluating the Hot Corrosion Behavior of High-Temperature Alloys for Gas Turbine Engine Components

    NASA Astrophysics Data System (ADS)

    Deodeshmukh, V. P.

    2015-11-01

    The hot corrosion behavior of high-temperature alloys is critically important for gas turbine engine components operating near the marine environments. The two test methods—Two-Zone and Burner-Rig—used to evaluate the hot corrosion performance of high-temperature alloys are illustrated by comparing the Type I hot corrosion behavior of selected high-temperature alloys. Although the ranking of the alloys is quite comparable, it is evident that the two-zone hot corrosion test is significantly more aggressive than the burner-rig test. The effect of long-term exposures and the factors that influence the hot corrosion performance of high-temperature alloys are briefly discussed.

  3. Industrial Experience on the Caustic Cracking of Stainless Steels and Nickel Alloys - A Review

    SciTech Connect

    Rebak, R B

    2005-10-09

    Caustic environments are present in several industries, from nuclear power generation to the fabrication of alkalis and alumina. The most common material of construction is carbon steel but its application is limited to a maximum temperature of approximately 80 C. The use of Nickel (Ni) alloys is recommended at higher temperatures. Commercially pure Ni is the most resistant material for caustic applications both from the general corrosion and the stress corrosion cracking (SCC) perspectives. Nickel rich alloys also offer a good performance. The most important alloying elements are Ni and chromium (Cr). Molybdenum (Mo) is not a beneficial alloying element and it dissolves preferentially from the alloy in presence of caustic environments. Austenitic stainless steels such as type 304 and 316 seem less resistant to caustic conditions than even plain carbon steel. Experimental evidence shows that the most likely mechanism for SCC is anodic dissolution.

  4. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  5. Microstructural characterization of as-cast biocompatible Co-Cr-Mo alloys

    SciTech Connect

    Giacchi, J.V.; Morando, C.N.; Fornaro, O.; Palacio, H.A.

    2011-01-15

    The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by the investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants because of its high strength, good corrosion resistance and excellent biocompatibility properties. This work focuses on the resulting microstructures arising from samples poured under industrial environment conditions, of three different Co-Cr-Mo alloys. For this purpose, we used: 1) an alloy built up from commercial purity constituents, 2) a remelted alloy and 3) a certified alloy for comparison. The characterization of the samples was achieved by using optical microscopy (OM) with a colorant etchant to identify the present phases and scanning electron microscopy (SE-SEM) and energy dispersion spectrometry (EDS) techniques for a better identification. In general the as-cast microstructure is a Co-fcc dendritic matrix with the presence of a secondary phase, such as the M{sub 23}C{sub 6} carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloys. Other minority phases were also reported and their presence could be linked to the cooling rate and the manufacturing process variables and environment. - Research Highlights: {yields}The solidification microstructure of an ASTM-F75 type alloy were studied. {yields}The alloys were poured under an industrial environment. {yields}Carbides and sigma phase identified by color metallography and scanning microscopy (SEM and EDS). {yields}Two carbide morphologies were detected 'blocky type' and 'pearlite type'. {yields}Minority phases were also detected.

  6. Dendritic Alloy Solidification Experiment (DASE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    A space experiment, and supporting ground-based research, is proposed to study the microstructural evolution in free dendritic growth from a supercooled melt of the transparent model alloy succinonitrile-acetone (SCN-ACE). The research is relevant to equiaxed solidification of metal alloy castings. The microgravity experiment will establish a benchmark for testing of equiaxed dendritic growth theories, scaling laws, and models in the presence of purely diffusive, coupled heat and solute transport, without the complicating influences of melt convection. The specific objectives are to: determine the selection of the dendrite tip operating state, i.e. the growth velocity and tip radius, for free dendritic growth of succinonitrile-acetone alloys; determine the growth morphology and sidebranching behavior for freely grown alloy dendrites; determine the effects of the thermal/solutal interactions in the growth of an assemblage of equiaxed alloy crystals; determine the effects of melt convection on the free growth of alloy dendrites; measure the surface tension anisotropy strength of succinon itrile -acetone alloys establish a theoretical and modeling framework for the experiments. Microgravity experiments on equiaxed dendritic growth of alloy dendrites have not been performed in the past. The proposed experiment builds on the Isothermal Dendritic Growth Experiment (IDGE) of Glicksman and coworkers, which focused on the steady growth of a single crystal from pure supercooled melts (succinonitrile and pivalic acid). It also extends the Equiaxed Dendritic Solidification Experiment (EDSE) of the present investigators, which is concerned with the interactions and transients arising in the growth of an assemblage of equiaxed crystals (succinonitrile). However, these experiments with pure substances are not able to address the issues related to coupled heat and solute transport in growth of alloy dendrites.

  7. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  8. Precipitate Phases in Several High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Initiated by the aerospace industry, there has been a great interest to develop high temperature shape memory alloys (HTSMAs) for actuator type of application at elevated temperatures. Several NiTi based ternary systems have been shown to be potential candidates for HTSMAs and this work focuses on one or more alloys in the TiNiPt, TiNiPd, NiTiHf, NiPdTiHf systems. The sheer scope of alloys of varying compositions across all four systems suggests that the questions raised and addressed in this work are just the tip of the iceberg. This work focuses on materials characterization and aims to investigate microstructural evolution of these alloys as a function of heat treatment. The information gained through the study can serve as guidance for future alloy processing. The emphasis of this work is to describe novel precipitate phases that are formed under aging in the ternary systems and one quaternary system. Employing conventional transmission electron microscopy (TEM), high resolution high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM), 3D atom probe tomography (3D APT), as well as ab initio calculations, the complete description of the unit cell for the new precipitates was determined. The methodology is summarized in the appendix to help elucidate some basics of such a process.

  9. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  10. Development of lead-free copper alloy graphite castings. Annual report, January--December 1995

    SciTech Connect

    Rohatgi, P.K.

    1996-10-01

    The distribution of graphite particles in graphite containing copper alloy was further improved very significantly using several procedures and technological modifications. The developed techniques attacked the graphite distribution problem in two ways. Realizing that clustering of very fine (5um) graphite particles is one of the two major problems, a pretreatment process has been developed using aluminum powders to deagglomerate graphite particles. Along with this, a two-stage stirring technique was used to first incorporate and then to distribute uniformly the deagglomerated particles in the melt. During this year, based on these developments, several components were cast to evaluate the castability of Cu alloy-graphite melts. In addition, machinability tests were done to clearly established that addition of graphite particles improve the machinability of copper MMC alloys over and above that of monolithic copper alloys. The results show that the machining chip sizes and cutting forces of Cu alloys containing graphite particles are smaller than these of the corresponding monolithic Cu alloys. This clearly establishes that the presence of graphite particles in copper alloy improves the machinability in a fashion similar to lead additions to copper alloys. Centrifugal casting of shapes of different sizes appear to be a very attractive method for casting graphite containing copper alloys, since all the graphite particles (regardless of their distribution in the melt) are forced to segregate to the inner periphery of the castings where they impart a very desirable solid lubrication property for bushing and bearing use. A very large number of cylindrical elements of lead bearing copper alloys are now used for similar bearing bushing applications and the manufacturers of these type of bearings are under safety and health hazard pressure to remove lead. This year several parameters for centrifugal casting of copper graphite alloys have been established.

  11. Rank correlation of laser-induced breakdown spectroscopic data for the identification of alloys used in jewelry manufacture

    NASA Astrophysics Data System (ADS)

    Jurado-López, A.; Luque de Castro, M. D.

    2003-07-01

    The aim of the present study was the rapid identification of alloys used in the manufacture of jewelry pieces with the help of a spectral library. The laser-induced breakdown spectra of 32 alloys were stored, with 25 of them chosen as library standards; the remaining seven spectra were used as samples. The composition of the alloys was obtained by flame atomic absorption spectrometry. A rank correlation method was applied for comparison between spectra, providing good correlation coefficients for the alloys studied. The composition of the samples was also predicted by partial least-squares regression to demonstrate the capability of this technique for the rapid analysis of this type of material.

  12. Ohmic contact to p-type indium phosphide

    NASA Technical Reports Server (NTRS)

    Hawrylo, F. Z.

    1980-01-01

    Low-Series-resistance ohmic contact to p-type InP semiconductor material is achieved in technique utilizing Au-Ge-Zn eutectic alloy. Alloy sets and adheres well to semiconductor surface with higher acceptor concentration at metal semiconductor interface. Technique has provided satisfactory for pn junction LED's and lasers.

  13. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  14. Containerless processing of hypermonotectic and glass forming alloys using the Marshall Space Flight Center 100 meter drop tube facility

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.

    1986-01-01

    Two separate projects were carried out to study alloys whose solidification structures can be strongly influenced by the presence of a container during melting and solidifications. One project involved containerless solidification of hypermonotectic Au35Rh65 alloys. This alloy exhibits liquid immiscibility over a temperature range. It has been suggested that containerless melting might be one solution to the problem of sedimentation in the dispersions of immiscible liquid phases. However, surface tension driven flows could also lead to accumulation of the minority liquid phase at the external surface of a containerlessly melted alloy. The research underway is a first step in determining the influence of containerless, microgravity processing on immiscible alloys. Nickel-niobium alloys were studied using the drop tube facility. One alloy in this system, a Ni60Nb40 alloy, is a good candidate for the formation of a bulk metallic glass. Amorphous alloys of this composition were produced using thin film and mechanical alloying techniques. However, theory indicates that if heterogeneous nucleation can be avoided, it should be possible to produce an amorphous structure in this system using a moderate cooling rate from the melt. The containerless melting and solidification capabilities of the drop tube faciltiy provide ideal conditions for a study of this type. To date, several Ni60Nb40 samples have been levitated, melted and cooled during 4.6 seconds of free fall in the 100 meter drop tube. Structures obtained are discussed.

  15. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr.

    PubMed

    Niinomi, Mitsuo

    2003-07-01

    A beta type titanium alloy, Ti-29Nb-13Ta-4.6Zr, was newly designed and developed for biomedical applications. The new alloy contains non-toxic elements such as Nb, Ta, and Zr. In the present study, phases that appeared in the new alloy through various aging treatments were characterized by hardness tests and microstructural observations in order to identify the phase transformation. Fatigue properties of the new alloy were investigated. Young's modulus and cyto-toxicity of the new alloy were also evaluated. Precipitated phases distribute homogeneously over the whole specimen, and they are alpha phase, a small amount of omega phase, and beta phase when the new alloys are subjected to aging treatment at 673K for 259.2ks after solution treatment at 1063K for 3.6ks. The fatigue strength of the new alloy subjected to aging at 673K for 259.2ks after solution treatment at 1063K for 3.6ks is much better than when subjected to other aging treatments. In this case, the fatigue limit is around 700MPa. Young's modulus of the new alloy is much smaller than that of Ti-6Al-4V ELI. The cyto-toxicity of the new alloy is equivalent to that of pure Ti. Therefore, it is proposed that the new alloy, Ti-29Nb-13Ta-4.6Zr, will be of considerable use in biomedical applications.

  16. Mechanical alloying of biocompatible Co-28Cr-6Mo alloy.

    PubMed

    Sánchez-De Jesús, F; Bolarín-Miró, A M; Torres-Villaseñor, G; Cortés-Escobedo, C A; Betancourt-Cantera, J A

    2010-07-01

    We report on an alternative route for the synthesis of crystalline Co-28Cr-6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co-28Cr-6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 mum at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction. PMID:20364362

  17. Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint

    SciTech Connect

    Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

    2008-05-01

    We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

  18. Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling

    NASA Astrophysics Data System (ADS)

    Simoes, T. A.; Goode, A. E.; Porter, A. E.; Ryan, M. P.; Milne, S. J.; Brown, A. P.; Brydson, R. M. D.

    2014-06-01

    CoCrMo alloys are utilised as the main material in hip prostheses. The link between this type of hip prosthesis and chronic pain remains unclear. Studies suggest that wear debris generated in-vivo may be related to post-operative complications such as inflammation. These alloys can contain different amounts of carbon, which improves the mechanical properties of the alloy. However, the formation of carbides could become sites that initiate corrosion, releasing ions and/or particles into the human body. This study analysed the mechanical milling of alloys containing both high and low carbon levels in relevant biological media, as an alternative route to generate wear debris. The results show that low carbon alloys produce significantly more nanoparticles than high carbon alloys. During the milling process, strain induces an fcc to hcp phase transformation. Evidence for cobalt and molybdenum dissolution in the presence of serum was confirmed by ICP-MS and TEM EDX techniques.

  19. Mold filling of titanium alloys in two different wedge-shaped molds.

    PubMed

    Shimizu, H; Habu, T; Takada, Y; Watanabe, K; Okuno, O; Okabe, T

    2002-06-01

    Pure titanium and titanium alloys are potential materials for the fabrication of cast dental appliances. One important factor in producing sound castings is the capacity of the metal to fill the mold. This study used a wedge-shaped mold to compare the mold filling of titanium with that of conventional dental casting alloys. The metals used were CP Ti, Ti-6Al-7Nb, Ti-6Al-4V, Ti with 1 and 4wt% Cu and ADA Type III gold alloy and an Ni-Cr alloy. The castings were cut into four pieces parallel to the triangular surface. Mold filling was evaluated as the distance between the tip of the cast wedge and theoretical tip of the triangle. The mold filling of the gold alloy was superior compared to all the metals tested, while the mold filling of the Ni-Cr alloy was the worst. There were no statistical differences at the 30 degrees marginal angle for all the cast titanium metals. At the sharper 15 degrees angle, CP Ti and Ti-6Al-7Nb was superior to both the Ti-Cu alloys. Although the mold filling of titanium was inferior compared to the gold alloy, the data justify the use of titanium for the production of dental appliances.

  20. Local density of unoccupied states in ion-beam-mixed Pd-Ag alloys

    SciTech Connect

    Chae, K.H.; Jung, S.M.; Lee, Y.S.; Whang, C.N.; Jeon, Y.; Croft, M.; Sills, D.; Ansari, P.H.; Mack, K.

    1996-04-01

    X-ray absorption spectroscopy (XAS) measurements have been used to probe the electronic structure of ion-beam-mixed (IBM) Pd-Ag thin films with bulk alloys being studied for comparison. Pd {ital L}{sub 3} and Ag {ital L}{sub 3} absorption edges for pure Pd, Ag, and Pd{sub 1{minus}{ital x}}Ag{sub {ital x}} alloys are discussed. Structural information from both x-ray diffraction and the XAS fine structure oscillations are discussed. The observed decrease of the white-line feature strength, at the Pd {ital L}{sub 3} edge, indicates that the local density of unoccupied Pd 4{ital d} states declines upon alloying with Ag in a manner similar to that observed in previous bulk studies. However, while the Pd {ital d}-hole count decreases monotonically for bulk alloys, in the IBM alloys it saturates at higher levels in the Ag-rich materials. This disparity is interpreted on the basis of a modified charge transfer due to structural differences in the IBM alloys. The Ag {ital L}{sub 3} near-edge region is largely unchanged in these alloys, indicating that the charge transferred away from the Ag site is dominantly of {ital non}-{ital d} type. Our experimental results are discussed in the context of recent electronic structure calculations and of previous work on this alloy system. {copyright} {ital 1996 The American Physical Society.}

  1. Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures

    SciTech Connect

    Wang Huanran; Cai Canyuan; Chen Danian; Ma Dongfang

    2012-07-01

    Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From high speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.

  2. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility.

    PubMed

    Fu, Jie; Yamamoto, Akiko; Kim, Hee Young; Hosoda, Hideki; Miyazaki, Shuichi

    2015-04-01

    In this study, a new Ti-Zr-Nb-Sn alloy system was developed as Ni-free biomedical superelastic alloys with a large recovery strain and excellent biocompatibility. Ti-18Zr-(9-16)Nb-(0-4)Sn alloys were prepared by an Ar arc melting method and the effect of composition on the crystal structure and superelastic properties was investigated. A large superelastic recovery strain of 6.0% was observed in Ti-18Zr-12.5Nb-2Sn, Ti-18Zr-11Nb-3Sn, and Ti-18Zr-9.5Nb-4Sn alloys subjected to cold-rolling and solution treatment. XRD results showed that the large recovery strain of Sn-added alloys is due to a combination effect of a large transformation strain and a strong recrystallization texture. The Ti-18Zr-11Nb-3Sn alloy exhibited excellent cyclic stability with an extremely narrow stress hysteresis about 20MPa. Cytocompatibility was also examined using three types of cell lines, murine fibroblast L929, human osteosarcoma SaOS-2, and human umbilical vein endothelial cell HUVEC and the results showed that the Ti-18Zr-11Nb-3Sn alloy exhibited larger cell covering ratios when compared with those of the Ti-50.5Ni alloy for all kinds of cells.

  3. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  4. Electromagnetic Casting of Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tyler, D. E.; Lewis, B. G.; Renschen, P. D.

    1985-09-01

    Electromagnetic (EMC) casting technology has been successfully developed for copper base alloys. This casting technique eliminates the mold related defects normally encountered in direct chill (DC) mold casting, and provides castings with greatly improved hot workability.

  5. Magnesium Alloys and their Applications

    NASA Astrophysics Data System (ADS)

    Kainer, Karl U.

    1999-04-01

    In the recent years there has been a dramatic increase in research activity and also applications of magnesium alloys. The driving force is the growing demand by the automobile industry resulting from the pressure to reduce weight and hence to reduce the fuel consumption. The U.S. car industry incorporates the largest amount of magnesium at the present time. In Europe, Volkswagen had a history of using magnesium in the VW Beetle. Volkswagen, in common with other major car producers has initiated a major research and development programme for advanced magnesium materials. The main emphasis of this book is in the field of general physical metallurgy and alloy development refelcting the need to provide a wider range of alloys both casting and wrought alloys to meet the increasing demands of industry. Other topics are nevertheless well represented such as casting, recycling, joining, corrosion, and surface treatment.

  6. Technical Seminar "Shape Memory Alloys"

    NASA Video Gallery

    Shape memory alloys are a unique group of materials that remember their original shape and return to that shape after being strained. How could the aerospace, automotive, and energy exploration ind...

  7. Manufacturing of High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  8. Analysis Of Transport Properties of Mechanically Alloyed Lead Tin Telluride

    NASA Astrophysics Data System (ADS)

    Krishna, Rajalakshmi

    these inclusions would not be less than that expected in alloys without these inclusions while the portion of the thermal conductivity that is not due to charge carriers (the lattice thermal conductivity) would be less than what would be expected from alloys that do not have these inclusions. Furthermore, it would be possible to approximate the observed changes in the electrical and thermal transport properties using existing physical models for the scattering of electrons and phonons by small inclusions. The approach taken to investigate this hypothesis was to first experimentally characterize the mobile carrier concentration at room temperature along with the extent and type of secondary phase inclusions present in a series of three mechanically alloyed Pb1-xSnxTe alloys with different Sn content. Second, the physically based computational model was developed. This model was used to determine what the electronic conductivity, Seebeck coefficient, total thermal conductivity, and the portion of the thermal conductivity not due to mobile charge carriers would be in these particular Pb1-x SnxTe alloys if there were to be no secondary phase inclusions. Third, the electronic conductivity, Seebeck coecient and total thermal conductivity was experimentally measured for these three alloys with inclusions present at elevated temperatures. The model predictions for electrical conductivity and Seebeck coefficient were directly compared to the experimental elevated temperature electrical transport measurements. The computational model was then used to extract the lattice thermal conductivity from the experimentally measured total thermal conductivity. This lattice thermal conductivity was then compared to what would be expected from the alloys in the absence of secondary phase inclusions. Secondary phase inclusions were determined by X-ray diraction analysis to be present in all three alloys to a varying extent. The inclusions were found not to significantly degrade electrical

  9. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  10. Alloy B-10, a new nickel-based alloy for strong chloride-containing, highly acidic and oxygen-deficient environments

    SciTech Connect

    Kohler, M.; Kirchheiner, R.; Stenner, F.

    1998-12-31

    Alloy B-10 is a Ni-Mo-Cr alloy, recently developed for highly acidic but oxygen-deficient environments in the chemical process and environmental protection industries. The new nickel-based alloy with nominally (wt. %) 62 Ni, 24 MO, 8 Cr and 6 Fe, exhibits excellent corrosion resistance in intermediate concentrations of sulfuric acid, as well as in hydrochloric acid, even with additions of small amounts of oxidizing agents. In a simulated Flue Gas Desulfurization (FGD) environment of sulfuric acid of pH 1 with additions of 7% chloride and 0.01% fluoride, and also containing 15% gypsum the new alloy demonstrated high crevice corrosion resistance at 100 C, whereas a common Ni-Cr-Mo alloy of the C-type suffers crevice corrosion under the same conditions. This new alloy can easily be welded without filler or using matching filler. Good practical experience has been gained with Alloy B-10 in a district heating power station as a tube sheet and bottom wall liner for a glass tube heat exchanger working at 130 C with condensing 70% sulfuric acid.

  11. Corrosion Behavior of Alloys in Molten Fluoride Salts

    NASA Astrophysics Data System (ADS)

    Zheng, Guiqiu

    loss due to Cr depletion. While many factors affect the Deff such as the grain boundary type, grain size, precipitates, initial Cr concentration as well as temperature, this model provides a methodology for estimating corrosion attack depth of alloys in molten fluoride salts obviating the need for difficult and challenging experiment.

  12. Castable hot corrosion resistant alloy

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  13. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  14. Superplastic forming of alloy 718

    SciTech Connect

    Smith, G.D.; Flower, H.L. )

    1994-04-01

    Inconel Alloy 718 (UNS N07718) is now available in a fine-grained, controlled composition modification that can be super-plastically formed. The new superplastic forming (SPF) capability allows the manufacture of large, complex, and detailed parts, which improves integrity by reducing the need for joining. Furthermore, it allows designers to fabricate components having higher strength, fatigue resistance, and temperature capability than parts made of aluminum or titanium alloys.

  15. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.

    PubMed

    Verissimo, Nathália C; Geilich, Benjamin M; Oliveira, Haroldo G; Caram, Rubens; Webster, Thomas J

    2015-12-01

    β-type Ti alloys containing Nb are exciting materials for numerous orthopedic and dental applications due to their exceptional mechanical properties. To improve their cytocompatibility properties (such as increasing bone growth and decreasing infection), the surfaces of such materials can be optimized by adding elements and/or nanotexturing through anodization. Because of the increasing prevalence of orthopedic implant infections, the objective of this in vitro study was to add Sn and create unique nanoscale surface features on β-type Ti alloys. Nanotubes and nanofeatures on Ti-35Nb and Ti-35Nb-4Sn alloys were created by anodization in a HF-based electrolyte and then heat treated in a furnace to promote amorphous structures and phases such as anatase, a mixture of anatase-rutile, and rutile. Samples were characterized by SEM, which indicated different morphologies dependent on the oxide content and method of modification. XPS experiments identified the oxide content which resulted in a phase transformation in the oxide layer formed onto Ti-35Nb and Ti-35Nb-4Sn alloys. Most importantly, regardless of the resulting nanostructures (nanotubes or nanofeatures) and crystalline phase, this study showed for the first time that adding Sn to β-type Ti alloys strongly decreased the adhesion of Staphylococcus aureus (S. aureus; a bacteria which commonly infects orthopedic implants leading to their failure). Thus, this study demonstrated that β-type Ti alloys with Nb and Sn have great promise to improve numerous orthopedic applications where infection may be a concern.

  16. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys

    PubMed Central

    Huan, Z. G.; Leeflang, M. A.; Fratila-Apachitei, L. E.; Duszczyk, J.

    2010-01-01

    Zinc and zirconium were selected as the alloying elements in biodegradable magnesium alloys, considering their strengthening effect and good biocompatibility. The degradation rate, hydrogen evolution, ion release, surface layer and in vitro cytotoxicity of two Mg–Zn–Zr alloys, i.e. ZK30 and ZK60, and a WE-type alloy (Mg–Y–RE–Zr) were investigated by means of long-term static immersion testing in Hank’s solution, non-static immersion testing in Hank’s solution and cell-material interaction analysis. It was found that, among these three magnesium alloys, ZK30 had the lowest degradation rate and the least hydrogen evolution. A magnesium calcium phosphate layer was formed on the surface of ZK30 sample during non-static immersion and its degradation caused minute changes in the ion concentrations and pH value of Hank’s solution. In addition, the ZK30 alloy showed insignificant cytotoxicity against bone marrow stromal cells as compared with biocompatible hydroxyapatite (HA) and the WE-type alloy. After prolonged incubation for 7 days, a stimulatory effect on cell proliferation was observed. The results of the present study suggested that ZK30 could be a promising material for biodegradable orthopedic implants and worth further investigation to evaluate its in vitro and in vivo degradation behavior. PMID:20532960

  17. Structural and magnetic properties of Co 2CrAl Heusler alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hakimi, M.; Kameli, P.; Salamati, H.

    2010-11-01

    Mechanical alloying has been used to produce nanocrystalline samples of Co 2CrAl Heusler alloys. The samples were characterized by using different methods. The results indicate that, it is possible to produce L2 1-Co 2CrAl powders after 15 h of ball-milling. The grain size of 15 h ball milled L2 1-Co 2CrAl Heusler phase, calculated by analyzing the XRD peak broadening using Williamson and Hall approach was 14 nm. The estimated magnetic moment per formula unit is ˜2 μ B. The obtained magnetic moment is significantly smaller than the theoretical value of 2.96 μ B for L2 1 structure. It seems that an atomic disorder from the crystalline L2 1-type ordered state and two-phase separation depresses the ferromagnetic ordering in alloy. Also, the effect of annealing on the structural and magnetic properties of ball milled powders was investigated. Two structures were identified for annealed sample, namely L2 1 and B2. The obtained value for magnetic moment of annealed sample is smaller than the as-milled sample due to the presence of disordered B2 phase and improvement of phase separation.

  18. Carbide Formation and Dissolution in Biomedical Co-Cr-Mo Alloys with Different Carbon Contents during Solution Treatment

    NASA Astrophysics Data System (ADS)

    Mineta, Shingo; Namba, Shigenobu; Yoneda, Takashi; Ueda, Kyosuke; Narushima, Takayuki

    2010-08-01

    The microstructures of as-cast and heat-treated biomedical Co-Cr-Mo (ASTM F75) alloys with four different carbon contents were investigated. The as-cast alloys were solution treated at 1473 to 1548 K for 0 to 43.2 ks. The precipitates in the matrix were electrolytically extracted from the as-cast and heat-treated alloys. An M23C6 type carbide and an intermetallic σ phase (Co(Cr,Mo)) were detected as precipitates in the as-cast Co-28Cr-6Mo-0.12C alloy; an M23C6 type carbide, a σ phase, an η phase (M6C-M12C type carbide), and a π phase (M2T3X type carbide with a β-manganese structure) were detected in the as-cast Co-28Cr-6Mo-0.15C alloy; and an M23C6 type carbide and an η phase were detected in the as-cast Co-28Cr-6Mo-0.25C and Co-28Cr-6Mo-0.35C alloys. After solution treatment, complete precipitate dissolution occurred in all four alloys. Under incomplete precipitate dissolution conditions, the phase and shape of precipitates depended on the heat-treatment conditions and the carbon content in the alloys. The π phase was detected in the alloys with carbon contents of 0.15, 0.25, and 0.35 mass pct after heat treatment at high temperature such as 1548 K for a short holding time of less than 1.8 ks. The presence of the π phase in the Co-Cr-Mo alloys has been revealed in this study for the first time.

  19. Erosion of iron-chromium alloys by glass particles

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1984-01-01

    The material loss upon erosion was measured for several iron-chromium alloys. Two types of erodent material were used: spherical glass beads and sharp particles of crushed glass. For erosion with glass beads the erosion resistance (defined as the reciprocal of material loss rate) was linearly dependent on hardness. This is in accordance with the erosion behavior of pure metals, but contrary to the erosion behavior of alloys of constant composition that were subjected to different heat treatments. For erosion with crushed glass, however, no correlation existed between hardness and erosion resistance. Instead, the erosion resistance depended on alloy composition rather than on hardness and increased with the chromium content of the alloy. The difference in erosion behavior for the two types of erodent particles suggested that two different material removal mechanisms were involved. This was confirmed by SEM micrographs of the eroded surfaces, which showed that for erosion with glass beads the mechanism of material removal was deformation-induced flaking of surface layers, or peening, whereas for erosion with crushed glass it was cutting or chopping.

  20. Oxide Film Aging on Alloy 22 in Halide Containing Solutions

    SciTech Connect

    Rodriguez, Martin A.; Carranza, Ricardo M.; Rebak, Raul B.

    2007-07-01

    Passive and corrosion behaviors of Alloy 22 in chloride and fluoride containing solutions, changing the heat treatment of the alloy, the halide concentration and the pH of the solutions at 90 deg. C, was investigated. The study was implemented using electrochemical techniques, which included open circuit potential monitoring over time, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements carried out at open circuit and at passivity potentials. Corrosion rates obtained by EIS measurements after 24 h immersion in naturally aerated solutions were below 0.5 {mu}m/year. The corrosion rates were practically independent of solution pH, alloy heat treatment and halide ion nature and concentration. EIS low frequency resistance values increased with applied potential in the passive domain and with polarization time in pH 6 - 1 M NaCl at 90 deg. C. This effect was attributed to an increase in the oxide film thickness and oxide film aging. High frequency capacitance measurements indicated that passive oxide on Alloy 22 presented a double n-type/p-type semiconductor behavior in the passive potential range. (authors)

  1. Soft magnetic Ni-Fe and Co-Fe alloys - some physical and metallurgical aspects

    NASA Astrophysics Data System (ADS)

    Pfeifer, F.; Radeloff, C.

    1980-04-01

    The diversity of properties of soft magnetic alloys has been vastly increased in recent years. In this paper a number of the physical and metallurgical aspects are discussed, particularly those which influence the properties of the technically important nickel-iron alloys. These include the composition of the alloy, isotropic and anisotropic ordering processes, the microstructure, textures, non-magnetic inclusions and precipitation processes. These factors are, on the other hand, partially determined by manufacturing parameters such as the type of melting, the degree of cold rolling and the heat treatment.

  2. Ni{sub 3}Al aluminide alloys

    SciTech Connect

    Liu, C.T.

    1993-10-01

    This paper provides a brief review of the recent progress in research and development of Ni{sub 3}Al and its alloys. Emphasis has been placed on understanding low ductility and brittle fracture of Ni{sub 3}Al alloys at ambient and elevated temperatures. Recent studies have resulted in identifying both intrinsic and extrinsic factors governing the fracture behavior of Ni{sub 3}Al alloys. Parallel efforts on alloy design using physical metallurgy principles have led to properties for structural use. Industrial interest in these alloys is high, and examples of industrial involvement in processing and utilization of these alloys are briefly mentioned.

  3. Choosing An Alloy For Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    Report describes study of chemical compositions and microstructures of alloys for automotive Stirling engines. Engines offer advantages of high efficiency, low pollution, low noise, and ability to use variety of fuels. Twenty alloys evaluated for resistance to corrosion permeation by hydrogen, and high temperature. Iron-based alloys considered primary candidates because of low cost. Nickel-based alloys second choice in case suitable iron-based alloy could not be found. Cobalt-based alloy included for comparison but not candidate, because it is expensive strategic material.

  4. Influence of Impact-Oscillatory Loading upon the Mechanical Properties of the VT-22 Titanium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Chausov, M. G.; Pylypenko, A. P.; Berezin, V. B.; Markashova, L. I.; Kushnariova, O. S.; Hutsaylyuk, V. B.

    2016-08-01

    This study shows the effect of the specific impact-oscillatory loading (Dynamical nonequilibrium process) on the VT-22 titanium α+β-type alloy mechanical properties and microstructure. Experiments were conducted using modified universal testing machine. Physical research revealed that significant microstructural refinement of the alloy is observed after such type of loading, as the result of which the fine grains are formed with subgrain refinement which takes place within the basis of alloy. It was found that overall plastic deformation of this alloy can be increased by a factor 2.75 compared with its initial state without significant loss of strength. Also we show that such process can be used as a preliminary microstructure refinement method for such alloy.

  5. Carbon-rich hexagonal (BN)C alloys

    SciTech Connect

    Uddin, M. R.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2015-06-07

    Thin films of hexagonal boron nitride carbon, h-(BN){sub 1−x}(C{sub 2}){sub x}, alloys in the C-rich side have been synthesized by metal-organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates. X-ray diffraction measurements confirmed single hexagonal phase of h-(BN){sub 1−x}(C{sub 2}){sub x} epilayers. Electrical transport and Raman spectroscopy measurements results revealed evidences that homogenous h-(BN){sub 1−x}(C{sub 2}){sub x} alloys with x ≥ 95% can be synthesized by MOCVD at a growth temperature of 1300 °C. The variable temperature Hall-effect measurements suggested that a bandgap opening of about 93 meV with respect to graphite has been obtained for h-(BN){sub 1−x}(C{sub 2}){sub x} with x = 0.95, which is consistent with the expected value deduced from the alloy dependence of the energy gap of homogenous h-(BN){sub 1−x}(C{sub 2}){sub x} alloys. Atomic composition results obtained from x-ray photoelectron spectroscopy measurements revealed that the carrier type in C-rich h-(BN){sub 1−x}(C{sub 2}){sub x} alloys is controlled by the stoichiometry ratio between the B and N via changing the V/III ratio during the growth. The demonstration of bandgap opening and conductivity control in C-rich h-(BN){sub 1−x}(C{sub 2}){sub x} alloys provide feasibilities for realizing technologically significant devices including infrared (IR) emitters and detectors active from near to far IR and multi-spectral IR emitters and detectors.

  6. Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control.

    PubMed

    Niinomi, Mitsuo; Akahori, Toshikazu

    2010-07-01

    A limited number of reports exist regarding the systematic investigation or comparison of the fatigue strength of titanium alloys for medical devices, including plain, fretting and notch fatigue, for improvement through various treatments and processes, with respect to related microstructures. This article focuses on the changes and improvements in fatigue strength of newly developed beta-type and practically used alpha + beta-titanium alloys for medical devices through heat treatments, thermomechanical treatments and surface modifications.

  7. Chemical analysis of uranium-niobium alloys by wavelength dispersive spectroscopy at the sigma complex

    SciTech Connect

    Papin, Pallas A.

    2012-06-01

    Uranium-niobium alloys play an important role in the nation's nuclear stockpile. It is possible to chemically quantify this alloy at a micron scale by using a technique know as wavelength dispersive spectroscopy. This report documents how this technique was used and how it is possible to reproduce measurements of this type. Discussion regarding the accuracy and precision of the measurements, the development of standards, and the comparison of different ways to model the matrices are all presented.

  8. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  9. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    SciTech Connect

    Sindelar, R.; Louthan, M.; PNNL, B.

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  10. Alloy 602 CA -- A new alloy for the furnace industry

    SciTech Connect

    Brill, U.; Agarwal, D.C.

    1995-12-31

    Improving the economics of heat treatment facilities is often a question of raising the service temperature, which itself rests on the temperature capability of the alloys used. With the newly-developed alloy 602CA introduced to the market in 1992, there is now a nickel-base alloy available which provides sufficient high temperature strength and corrosion resistance up to 1,200 C, without any, special requirements on manufacturing and processing. Because of the excellent mechanical properties and corrosion resistance of this alloy it was possible to substitute uncooled all-metal furnace rolls for water-cooled asbestos rolls, in a continuous annealing furnace operating at up to 1,200 C. These rolls have now been in service for up to two years without any technical problems, and have proved themselves as a more economic and less environmentally dangerous, solution, This paper describes the mechanical properties and corrosion behavior of the new alloy, and gives some calculations on economic efficiency.

  11. Atomistic Method Applied to Computational Modeling of Surface Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    the BFS (Bozzolo, Ferrante, and Smith) method for the calculation of the energetics, consists of a small number of simple PCbased computer codes that deal with the different aspects of surface alloy formation. Two analysis modes are available within this package. The first mode provides an atom-by-atom description of real and virtual stages 1. during the process of surface alloying, based on the construction of catalogues of configurations where each configuration describes one possible atomic distribution. BFS analysis of this catalogue provides information on accessible states, possible ordering patterns, and details of island formation or film growth. More importantly, it provides insight into the evolution of the system. Software developed by the Computational Materials Group allows for the study of an arbitrary number of elements forming surface alloys, including an arbitrary number of surface atomic layers. The second mode involves large-scale temperature-dependent computer 2. simulations that use the BFS method for the energetics and provide information on the dynamic processes during surface alloying. These simulations require the implementation of Monte-Carlo-based codes with high efficiency within current workstation environments. This methodology capitalizes on the advantages of the BFS method: there are no restrictions on the number or type of elements or on the type of crystallographic structure considered. This removes any restrictions in the definition of the configuration catalogues used in the analytical calculations, thus allowing for the study of arbitrary ordering patterns, ultimately leading to the actual surface alloy structure. Moreover, the Monte Carlo numerical technique used for the large-scale simulations allows for a detailed visualization of the simulated process, the main advantage of this type of analysis being the ability to understand the underlying features that drive these processes. Because of the simplicity of the BFS method for e

  12. Electrical transport properties of (BN)-rich hexagonal (BN)C semiconductor alloys

    SciTech Connect

    Uddin, M. R.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.; Ziemer, K. S.

    2014-08-15

    The layer structured hexagonal boron nitride carbon semiconductor alloys, h-(BN)C, offer the unique abilities of bandgap engineering (from 0 for graphite to ∼6.4 eV for h-BN) and electrical conductivity control (from semi-metal for graphite to insulator for undoped h-BN) through alloying and have the potential to complement III-nitride wide bandgap semiconductors and carbon based nanostructured materials. Epilayers of (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys were synthesized by metal-organic chemical vapor deposition (MOCVD) on (0001) sapphire substrates. Hall-effect measurements revealed that homogeneous (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys are naturally n-type. For alloys with x = 0.032, an electron mobility of about 20 cm{sup 2}/Vs at 650 °K was measured. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition and analyze chemical bonding states. Both composition and chemical bonding analysis confirm the formation of alloys. XPS results indicate that the carbon concentration in the alloys increases almost linearly with the flow rate of the carbon precursor (propane (C{sub 3}H{sub 8})) employed during the epilayer growth. XPS chemical bonding analysis showed that these MOCVD grown alloys possess more C-N bonds than C-B bonds, which possibly renders the undoped h-(BN){sub 1-x}(C{sub 2}){sub x} alloys n-type and corroborates the Hall-effect measurement results.

  13. Zinc Alloys for the Fabrication of Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  14. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    SciTech Connect

    Rapp, R.A.

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  15. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  16. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  17. Imprinting bulk amorphous alloy at room temperature

    NASA Astrophysics Data System (ADS)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  18. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  19. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  20. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  1. Structural and magnetic properties of Mn50Fe50-xSnx (x=10, 15 and 20) alloys

    NASA Astrophysics Data System (ADS)

    Ghosh, Tanmoy; Agarwal, Sandeep; Mukhopadhyay, P. K.

    2016-11-01

    In this work we report measurements and comparisons of the structural, magnetic and transport properties of a series of Mn50Fe50-xSnx alloys (x=10, 15 and 20). We found that while the lower Sn composition sample stabilized in β-Mn-type crystallographic phase, the higher Sn composition alloys contained both β-Mn-type as well as Mn3Sn-type hexagonal DO19 phases. Through d.c. and a.c. magnetic property measurements we have established the existence of a ferromagnetic transition near room temperature followed by a spin reorientation at lower temperature in the Mn3Sn-type crystallographic phase of the alloys. Our resistivity study also revealed an interesting behavior with negative temperature coefficient (TCR) in these alloys.

  2. The studies of the martensite transformations in a Ti{sub 36.5}Ni{sub 48.5}Hf{sub 15} alloy

    SciTech Connect

    Han, S.; Jin, S. |; Zou, W.; Zhang, Z.; Yang, D.

    1995-05-01

    In recent years, high temperature shape memory alloy (SMA) has attracted much interest by many groups of researchers. Many kinds of alloys, such as TiNiPd and NiAL alloys were reported to have shape memory effect in high temperatures. But for different kinds of reasons, these alloys were not put to practical use. TiNi alloys have been considered the best shape memory materials until now. Adding a third element whose characteristics are similar to Ti or Ni in TiNi binary alloys can produce a new style SMA, which has been done in many cases. In most circumstances, Ni was substituted and only a few investigations on the TiNi alloys was Ti replaced. But in recent years, many investigators have given more attention to this subject. In 1976, Eckelmeyer showed that Zr was one of the element that can raise the phase transformation temperatures of TiNi alloys. In 1990, Krupp obtained a patent on TiNiZr SMA with high transformation temperatures for TiNi alloys. J.H. Mulder also published his work on TiNiZr alloys in 1992. In their previous work, a new type of high temperature SMA Ti{sub 36.5}Ni{sub 48.5}Hf{sub 15} alloy were investigated in more detail by DSC measurement, TEM and high-resolution observations.

  3. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  4. [Thermal expansion of Au-Pd-Ag system alloys. Casting stress and deformation of addition of Sn and In].

    PubMed

    Ohkuma, K

    1989-03-01

    To study the dimensional changes due to the release of casting stress in metal-ceramic alloys, a wheel-like pattern in which casting stress is liable to occur and rod- and barrel-like wax patterns in which the likelihood of such stress is low, were investigated with a phosphate-bonded investment compound. Furthermore, simultaneous casting was done using Au-Pd-Ag system alloys, 21 types of mother alloys and alloys with tin or indium or both, and accurate determinations of the thermal expansion rate with increased or decreased temperature were carried out. The results obtained were as follows. The mean thermal expansion rates of the mother alloys and the alloys with tin and indium upon increase and decrease of temperature were lowest for the large wheel-like pattern, followed by the small wheel-like pattern, rod-like pattern and barrel-like pattern, in that order. The mean thermal expansion rates of the mother alloys and the alloys with tin or indium or both were decreased when the palladium content was increased, but tended to increase when the silver content was higher. Gold had no influence on the thermal expansion rate. When the temperature decreased, the complex addition of tin and indium provided alloys showing only a slight deformation. PMID:2690394

  5. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys

    PubMed Central

    Jian, Yu-Tao; Yang, Yue; Tian, Tian; Stanford, Clark; Zhang, Xin-Ping; Zhao, Ke

    2015-01-01

    Five types of porous Nickel-Titanium (NiTi) alloy samples of different porosities and pore sizes were fabricated. According to compressive and fracture strengths, three groups of porous NiTi alloy samples underwent further cytocompatibility experiments. Porous NiTi alloys exhibited a lower Young’s modulus (2.0 GPa ~ 0.8 GPa). Both compressive strength (108.8 MPa ~ 56.2 MPa) and fracture strength (64.6 MPa ~ 41.6 MPa) decreased gradually with increasing mean pore size (MPS). Cells grew and spread well on all porous NiTi alloy samples. Cells attached more strongly on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cell adhesion on porous NiTi alloys was correlated negatively to MPS (277.2 μm ~ 566.5 μm; p < 0.05). More cells proliferated on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cellular ALP activity on all porous NiTi alloy samples was higher than on control group and blank group (p < 0.05). The porous NiTi alloys with optimized pore size could be a potential orthopedic material. PMID:26047515

  6. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys.

    PubMed

    Jian, Yu-Tao; Yang, Yue; Tian, Tian; Stanford, Clark; Zhang, Xin-Ping; Zhao, Ke

    2015-01-01

    Five types of porous Nickel-Titanium (NiTi) alloy samples of different porosities and pore sizes were fabricated. According to compressive and fracture strengths, three groups of porous NiTi alloy samples underwent further cytocompatibility experiments. Porous NiTi alloys exhibited a lower Young's modulus (2.0 GPa ~ 0.8 GPa). Both compressive strength (108.8 MPa ~ 56.2 MPa) and fracture strength (64.6 MPa ~ 41.6 MPa) decreased gradually with increasing mean pore size (MPS). Cells grew and spread well on all porous NiTi alloy samples. Cells attached more strongly on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cell adhesion on porous NiTi alloys was correlated negatively to MPS (277.2 μm ~ 566.5 μm; p < 0.05). More cells proliferated on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cellular ALP activity on all porous NiTi alloy samples was higher than on control group and blank group (p < 0.05). The porous NiTi alloys with optimized pore size could be a potential orthopedic material.

  7. Multiple cell photoresponsive amorphous alloys and devices

    SciTech Connect

    Ovshinsky, S.R.; Adler, D.

    1990-01-02

    This patent describes an improved photoresponsive tandem multiple solar cell device. The device comprising: at least a first and second superimposed cell of various materials. The first cell being formed of a silicon alloy material. The second cell including an amorphous silicon alloy semiconductor cell body having an active photoresponsive region in which radiation can impinge to produce charge carriers, the amorphous cell body including at least one density of states reducing element. The element being fluorine. The amorphous cell body further including a band gap adjusting element therein at least in the photoresponsive region to enhance the radiation absorption thereof, the adjusting element being germanium: the second cell being a multi-layer body having deposited semiconductor layers of opposite (p and n) conductivity type; and the first cell being formed with the second cell in substantially direct Junction contact therebetween. The first and second cells designed to generate substantially matched currents from each cell from a light source directed through the first cell and into the second cell.

  8. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  9. Oxidation of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  10. HEAT TREATED U-Nb ALLOYS

    DOEpatents

    McGeary, R.K.; Justusson, W.M.

    1959-11-24

    A fuel element for a nuclear reactor is described comprising an alloy containing uranium and from 7 to 20 wt.% niobium, the alloy being substantially in the gamma phase and having been produced by working an ingot of the alloy into the desired shape, homogenizing it by annealing it at a temperature in the gamma phase field, and quenching it to retain the gamma phase structure of the alloy.

  11. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, Michael L.; Goodwin, Gene M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  12. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  13. New Theoretical Technique for Alloy Design

    NASA Technical Reports Server (NTRS)

    Ferrante, John

    2005-01-01

    During the last 2 years, there has been a breakthrough in alloy design at the NASA Lewis Research Center. A new semi-empirical theoretical technique for alloys, the BFS Theory (Bozzolo, Ferrante, and Smith), has been used to design alloys on a computer. BFS was used, along with Monte Carlo techniques, to predict the phases of ternary alloys of NiAl with Ti or Cr additions. High concentrations of each additive were used to demonstrate the resulting structures.

  14. Self-disintegrating Raney metal alloys

    DOEpatents

    Oden, Laurance L.; Russell, James H.

    1979-01-01

    A method of preparing a Raney metal alloy which is capable of self-disintegrating when contacted with water vapor. The self-disintegrating property is imparted to the alloy by incorporating into the alloy from 0.4 to 0.8 weight percent carbon. The alloy is useful in forming powder which can be converted to a Raney metal catalyst with increased surface area and catalytic activity.

  15. Caldron For High-Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Geringer, Henry J.

    1989-01-01

    Induction-heated caldron melts high-temperature alloys. Prevents sort of contamination of melts occurring during arc melting in ceramic crucibles. Liquefies 200 grams of solid metal components of alloy like niobium aluminum and makes alloy homogeneous in less than 3 minutes. Plugged sleeve constitutes main body of caldron. Coolant flows through sleeve to prevent it from melting. Mandrel-wound induction coils adjusted to tune source of power. Also serves as mold for casting alloys into such shapes as bars.

  16. Solidification of eutectic system alloys in space (M-19)

    NASA Technical Reports Server (NTRS)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are

  17. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  18. ALLOY FOR USE IN NUCLEAR FISSION

    DOEpatents

    Spedding, F.A.; Wilhelm, H.A.

    1958-03-11

    This patent relates to an alloy composition capable of functioning as a solid homogeneous reactor fuel. The alloy consists of a beryllium moderator, together with at least 0.7% of U/sup 235/, and up to 50% thorium to give increased workability to the alloy.

  19. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  20. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  1. Grain boundary characterization in an X750 alloy

    SciTech Connect

    Kevin Fisher; Sebastien Teysseyre; Emmanuelle Marquis

    2012-11-01

    Grain boundary chemistry in an X750 Ni alloy was analyzed by atom probe tomography in an effort to clarify the possible roles of elemental segregation and carbide presence on the stress corrosion cracking behavior of Ni alloys. Two types of cracks are observed: straight cracks along twin boundaries and wavy cracks at general boundaries. It was found that carbides (M23C6 and TiC) are present at both twin and general boundaries, with comparable B and P segregation for all types of grain boundaries. Twin boundaries intercept ?’ precipitates while the general boundaries wave around the ?’ and carbide precipitates. Near a crack tip, oxidation takes place on the periphery of carbide precipitate.

  2. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    SciTech Connect

    F. Hua; G.M. Gordon; R.B. Rebak

    2005-10-13

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

  3. Degradation Modes of Alloy 22 in Yucca Mountain Repository Conditions

    SciTech Connect

    Hua, F; Gordon, G M; Mon, K G; Rebak, R B

    2005-11-05

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

  4. Solidification behavior and structure of Al-Cu alloy welds

    SciTech Connect

    Brooks, J.A.; Li, M.; Yang, N.C.Y.

    1997-09-01

    The microsegregation behavior of electron beam (EB) and gas tungsten arc (GTA) welds of Al-Cu alloys covering a range from 0.19 to 7.74 wt% Cu were characterized for dendrite core concentrations and fraction eutectic solidification. Although a single weld speed of 12.7 mm/sec was used, some differences were observed in the segregation behavior of the two weld types. The microsegregation behavior was also modeled using a finite differences technique considering dendrite tip and eutectic undercooling and solid state diffusion. Fairly good agreement was observed between measured and calculated segregation behavior although differences between the two weld types could not be completely accounted for. The concept of dendrite tip undercooling was used to explain the formation of a single through thickness centerline grain in the higher alloy content GTA welds.

  5. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials

    PubMed Central

    Ding, Wenjiang

    2016-01-01

    In recent years, biodegradable magnesium alloys emerge as a new class of biomaterials for tissue engineering and medical devices. Deploying biodegradable magnesium-based materials not only avoids a second surgical intervention for implant removal but also circumvents the long-term foreign body effect of permanent implants. However, these materials are often subjected to an uncontrolled and fast degradation, acute toxic responses and rapid structural failure presumably due to a localized, too rapid corrosion process. The patented Mg–Nd–Zn–based alloys (JiaoDa BioMg [JDBM]) have been developed in Shanghai Jiao Tong University in recent years. The alloy series exhibit lower biodegradation rate and homogeneous nanophasic degradation patterns as compared with other biodegradable Mg alloys. The in vitro cytotoxicity tests using various types of cells indicate excellent biocompatibility of JDBM. Finally, bone implants using JDBM-1 alloy and cardiovascular stents using JDBM-2 alloy have been successfully fabricated and in vivo long-term assessment via implantation in animal model have been performed. The results confirmed the reduced degradation rate in vivo, excellent tissue compatibility and long-term structural and mechanical durability. Thus, this novel Mg-alloy series with highly uniform nanophasic biodegradation represent a major breakthrough in the field and a promising candidate for manufacturing the next generation biodegradable implants. PMID:27047673

  6. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  7. Recrystallization behavior of Ti40 burn-resistant titanium alloy during hot working process

    NASA Astrophysics Data System (ADS)

    Lai, Yun-jin; Xin, She-wei; Zhang, Ping-xiang; Zhao, Yong-qing; Ma, Fan-jiao; Liu, Xiang-hong; Feng, Yong

    2016-05-01

    The recrystallization behavior of deformed Ti40 alloy during a heat-treatment process was studied using electron backscatter diffraction and optical microscopy. The results show that the microstructural evolution of Ti40 alloy is controlled by the growth behavior of grain-boundary small grains during the heating process. These small grains at the grain boundaries mostly originate during the forging process because of the alloy's inhomogeneous deformation. During forging, the deformation first occurs in the grain-boundary region. New small recrystallized grains are separated from the parent grains when the orientation between deformation zones and parent grains exceeds a certain threshold. During the heating process, the growth of these small recrystallized grains results in a uniform grain size and a decrease in the average grain size. The special recrystallization behavior of Ti40 alloy is mainly a consequence of the alloy's high β-stabilized elemental content and high solution strength of the β-grains, which partially explains the poor hot working ability of Ti-V-Cr-type burn-resistant titanium alloys. Notably, this study on Ti40 burn-resistant titanium alloy yields important information related to the optimization of the microstructures and mechanical properties.

  8. Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1983-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  9. Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  10. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials.

    PubMed

    Ding, Wenjiang

    2016-06-01

    In recent years, biodegradable magnesium alloys emerge as a new class of biomaterials for tissue engineering and medical devices. Deploying biodegradable magnesium-based materials not only avoids a second surgical intervention for implant removal but also circumvents the long-term foreign body effect of permanent implants. However, these materials are often subjected to an uncontrolled and fast degradation, acute toxic responses and rapid structural failure presumably due to a localized, too rapid corrosion process. The patented Mg-Nd-Zn-based alloys (JiaoDa BioMg [JDBM]) have been developed in Shanghai Jiao Tong University in recent years. The alloy series exhibit lower biodegradation rate and homogeneous nanophasic degradation patterns as compared with other biodegradable Mg alloys. The in vitro cytotoxicity tests using various types of cells indicate excellent biocompatibility of JDBM. Finally, bone implants using JDBM-1 alloy and cardiovascular stents using JDBM-2 alloy have been successfully fabricated and in vivo long-term assessment via implantation in animal model have been performed. The results confirmed the reduced degradation rate in vivo, excellent tissue compatibility and long-term structural and mechanical durability. Thus, this novel Mg-alloy series with highly uniform nanophasic biodegradation represent a major breakthrough in the field and a promising candidate for manufacturing the next generation biodegradable implants.

  11. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Esgin, U.; Özyürek, D.; Kaya, H.

    2016-04-01

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms-1 sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al0,9Ni4,22 intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  12. Evaluation of the cyclic behavior of aircraft turbine disk alloys, part 2

    NASA Technical Reports Server (NTRS)

    Cowles, B. A.; Warren, J. R.

    1980-01-01

    Several nickel-base aircraft turbine disk superalloys were evaluated at 650 C for resistance to fatigue crack initiation and propagation under cyclic and cyclic/dwell conditions. Controlled strain low cycle fatigue (LCF) and controlled load crack propagation tests were performed and results utilized to provide a direct comparison among the alloys. Tests were performed on selected alloys to evaluate the effects of hold times, mean stresses, stress-dwell cycle types, inert environment, and contractor test methods. At the lower total strain ranges of interest, the alloys exhibited generally increasing initiation life with increasing tensile strength for both cyclic (0.33 Hz) and cyclic/dwell (900-sec hold per cycle) conditions. Rank order of the alloys by LCF initiation life changed substantially at higher strain ranges, approaching the rank order expected from monotonic tensile ductilities. The effect of the 900 sec (15 min) hold time fatigue life varied significantly from alloy to alloy. Generally, the higher-strength, finer-grained alloys exhibited more significant reductions in fatigue life due to the dwell. The effects of mean strain were found to be negligible and the effects of mean stress were pronounced. At high strain ranges the mean stress was near zero and did not contribute to reduction in life. At low strain ranges, however, mean stresses were large and significant reductions in LCF lives occurred.

  13. Interfacial shear bond strength between different base metal alloys and five low fusing feldspathic ceramic systems.

    PubMed

    Sipahi, Cumhur; Ozcan, Mutlu

    2012-01-01

    This study compared the bond strength between metal alloys and 5 ceramic systems. Ceramic systems (Vita VMK68, Ivoclar IPSd. SIGN, Ceramco II, Matchmaker and Finesse) were fired onto either Ni-Cr or Co-Cr base metal alloy. Metal-ceramic interfaces were subjected to shear loading until failure. The ceramic type significantly affected the bond strength results (p<0.05). For Ni-Cr alloy, the results ranged between 15.4-25.3 MPa and for Co-Cr alloy between 13.3-19.0 MPa. The highest mean bond strength value was obtained with the combination of Ni-Cr alloy-Ceramco II (25.3 MPa), the lowest bond strength was received from the combination of Co-Cr alloy-Ivoclar IPS d.SIGN ceramic (13.3 MPa). Adhesive failures between metal and ceramic were significantly more frequent with Ni-Cr alloy (31 out of 50) than with Co-Cr (20 out of 50) (p<0.05). Ceramco II presented the highest bond strength with both Ni-Cr and Co-Cr being significantly different from one another.

  14. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOEpatents

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  15. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  16. Linear Anomaly in Welded 2219-T87 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Jemian, Wartan A.

    1987-01-01

    Study of causes and significance of two types of linear anomalies sometimes appearing in radiographs of welds described in preliminary report. Manifested as light or dark linear features parallel to weld line in radiograph of weld. Contains diagrams and descriptions of phenomena occurring during welding process. Includes microdensitometer traces from x-radiographs of actual welds and from computer simulations based calculation of x-ray transmission through assumed weld structures. Concludes anomalies not unique to 2219-T87 aluminum alloy.

  17. Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22

    SciTech Connect

    Rebak, R B

    2004-11-24

    The susceptibility or Alloy 22 (N06022) to crevice corrosion may depend on environmental or external factors and metallurgical or internal factors. Some of the most important environmental factors are chloride concentration, inhibitors, temperature and potential. The presence of a weld seam or second phase precipitation in the alloy are classified as internal factors. The localized corrosion resistance of Alloy 22 has been extensively investigated in the last five years, however not all affecting factors were considered in the studies. This paper discusses the current findings regarding the effect of many of these variables on the susceptibility (or resistance) of Alloy 22 to crevice corrosion. The effect of variables such as temperature, chloride concentration and nitrate are rather well understood. However there are only limited or no data regarding effect of other factors such as pH, other inhibitive or deleterious species and type of crevicing material and crevice geometry. There are contradictory results regarding the effect of metallurgical factors such as solution heat treatment.

  18. Evaluation of alloys for fuel cell heat exchanges

    NASA Astrophysics Data System (ADS)

    Perkins, R. A.; Vonk, S. J.

    1981-04-01

    The results are presented of an investigation to evaluate the behavior of commercial stainless steels, superalloys, and aluminide coatings in both clean (sulfur-free) and raw (1% H2S) gas representative of the Texaco slagging gasifier atmosphere are 1400 to 18000 F (1033 to 12550 K). The goal was to determine which, if any, of these materials is suitable for use in a high temperature heat exchanger operating on intermediate Btu coal gasification atmospheres. It has been found that none of the commercially available alloys or coatings are suitable for use in the raw (1% H2S) gas, even at temperatures as low as 14000 F (10330 K). Materials that are resistant to attack either have a limited life ( 5000 h) or cannot be fabricated as large size heat exchanger components. It is concluded that structural high temperature alloys must be coated for use in the raw gas and that the best coating or cladding materials are Ni-46Cr (IN671 type alloy) and MCrAl with 25 to 40% Cr and 30 to 40% Al (where M is Ni, Co, or Fe or some combination thereof). Heat exchanger components can be clad with Ni-46Cr but the alloy must be modified to improve its reliability and performance in coal conversion atmospheres.

  19. Properties of titanium-alloyed DLC layers for medical applications.

    PubMed

    Joska, Ludek; Fojt, Jaroslav; Cvrcek, Ladislav; Brezina, Vitezslav

    2014-01-01

    DLC-type layers offer a good potential for application in medicine, due to their excellent tribological properties, chemical resistance, and bio-inert character. The presented study has verified the possibility of alloying DLC layers with titanium, with coatings containing three levels of titanium concentration prepared. Titanium was present on the surface mainly in the form of oxides. Its increasing concentration led to increased presence of titanium carbide as well. The behavior of the studied systems was stable during exposure in a physiological saline solution. Electrochemical impedance spectra practically did not change with time. Alloying, however, changed the electrochemical behavior of coated systems in a significant way: from inert surface mediating only exchange reactions of the environment in the case of unalloyed DLC layers to a response corresponding rather to a passive surface in the case of alloyed specimens. The effect of DLC layers alloying with titanium was tested by the interaction with a simulated body fluid, during which precipitation of a compound containing calcium and phosphorus--basic components of the bone apatite--occurred on all doped specimens, in contrast to pure DLC. The results of the specimens' surface colonization with cells test proved the positive effect of titanium in the case of specimens with a medium and highest content of this element.

  20. Properties of titanium-alloyed DLC layers for medical applications

    PubMed Central

    Joska, Ludek; Fojt, Jaroslav; Cvrcek, Ladislav; Brezina, Vitezslav

    2014-01-01

    DLC-type layers offer a good potential for application in medicine, due to their excellent tribological properties, chemical resistance, and bio-inert character. The presented study has verified the possibility of alloying DLC layers with titanium, with coatings containing three levels of titanium concentration prepared. Titanium was present on the surface mainly in the form of oxides. Its increasing concentration led to increased presence of titanium carbide as well. The behavior of the studied systems was stable during exposure in a physiological saline solution. Electrochemical impedance spectra practically did not change with time. Alloying, however, changed the electrochemical behavior of coated systems in a significant way: from inert surface mediating only exchange reactions of the environment in the case of unalloyed DLC layers to a response corresponding rather to a passive surface in the case of alloyed specimens. The effect of DLC layers alloying with titanium was tested by the interaction with a simulated body fluid, during which precipitation of a compound containing calcium and phosphorus - basic components of the bone apatite - occurred on all doped specimens, in contrast to pure DLC. The results of the specimens' surface colonization with cells test proved the positive effect of titanium in the case of specimens with a medium and highest content of this element. PMID:25093457