Sample records for v-mo based catalysts

  1. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.

    PubMed

    Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W

    2010-01-01

    Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.

  2. Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1

    NASA Astrophysics Data System (ADS)

    Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed

    2016-01-01

    In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.

  3. Hybrid Mo-CT nanowires as highly efficient catalysts for direct dehydrogenation of isobutane.

    PubMed

    Mu, Jiali; Shi, Junjun; France, Liam John; Wu, Yongshan; Zeng, Qiang; Liu, Baoan; Jiang, Lilong; Long, Jinxing; Li, Xuehui

    2018-06-20

    Direct dehydrogenation of isobutane to isobutene has drawn extensive attention for synthesizing various chemicals. The Mo-based catalysts hold promise as an alternative to the toxic CrOx- and scarce Pt-based catalysts. However, the low activity and rapid deactivation of the Mo-based catalysts greatly hinder their practical applications. Herein, we demonstrate a feasible approach towards the development of efficient and non-noble metal dehydrogenation catalysts basing on Mo-CT hybrid nanowires calcined at different temperatures. In particular, the optimal Mo-C700 catalyst exhibits isobutane consumption rate of 3.9 mmol g-1 h-1, and isobutene selectivity of 73% with production rate of 2.8 mmol g-1 h-1. The catalyst maintained 90% of its initial activity after 50 h of reaction. Extensive characterizations reveal that such prominent performance is well-correlated with the adsorption abilities of isobutane and isobutene, and the formation of η-MoC species. By contrast, the generation of β-Mo2C crystalline phase during long-term reaction causes minor decline in activity. Compared to MoO2 and β-Mo2C, η-MoC plays a role more likely in suppressing the cracking reaction. This work demonstrates a feasible approach towards the development of efficient and non-noble metal dehydrogenation catalysts.

  4. Morphological investigation of nanostructured CoMo catalysts

    NASA Astrophysics Data System (ADS)

    Pawelec, B.; Castaño, P.; Zepeda, T. A.

    2008-04-01

    This work reports the morphological investigation of nanostructured sulfided CoMo catalysts by means of high-resolution transmission electron microscopy (HRTEM). The catalysts were supported on Ti-modified hexagonal mesoporous silica (HMS-Ti) and P-modified HMS-Ti (P/HMS-Ti) materials. The oxide precursors were characterized by specific surface area (S BET), temperature-programmed reduction (TPR), diffuse reflectance infrared Fourier transform spectroscopy in the OH region (DRIFTS-OH) and X-ray photoelectron spectroscopy (XPS) in order to elucidate the influence of the impregnation sequence (successive vs. simultaneous) and the effect of P-incorporation into HMS-Ti material on the morphology of calcined CoMo catalysts. Both TPR and XPS measurements indicate that the catalysts prepared by successive impregnation possess well-dispersed MoO 3 and CoO phases, whereas their counterparts prepared by simultaneous impregnation additionally possess the CoMoO 4 phase. For all sulfided catalysts, the presence of MoS 2 phase with particle size in the range 3.3-4.4 nm was confirmed by HRTEM. Catalytic activity was evaluated in the reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT) carried out in a flow reactor at 593 K and hydrogen pressure of 5.5 MPa. P-incorporation into the HMS-Ti material led to an overall increase in HDS activity and the hydrogenation ability of the sulfided catalysts. All catalysts proved to be stable during 10 h time-on-stream (TOS) operation. The activity of sulfide catalysts in the target reaction depends linearly on the surface exposure of Co species in the oxide precursors, as determined by XPS, and on the morphology of the sulfide form of catalysts (surface density of MoS 2 particles and their sizes) as determined by HRTEM.

  5. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    PubMed

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  6. Pt/Mo 2C/C-cp as a highly active and stable catalyst for ethanol electrooxidation

    DOE PAGES

    Lin, Lili; Sheng, Wenchao; Yao, Siyu; ...

    2017-02-09

    Here, a Pt/Mo 2C/C-cp electrocatalyst with optimized Pt-Mo 2C chemical bonding is synthesized and evaluated for the ethanol oxidation reaction (EOR). The chemical bonding of Mo 2C to Pt particles renders exceptional EOR activity at low potentials, which is 15 and 2.5 times higher than Pt/C and commercial 40% PtRu/C, respectively, at 0.6 V (vs. RHE). The stability of the Pt/Mo 2C/C-cp electrocatalyst is comparable to the commercial 40% PtRu/C catalyst. CO stripping test demonstrates the existence of highly active sites for CO oxidation on the Pt/Mo 2C/C-cp catalyst. In-situ infrared spectroscopic studies of EOR reveal that the excellent anti-poisoningmore » ability of the Pt/Mo 2C/C-cp catalyst is related to the relatively weak binding of carbonyl intermediates over the Pt/Mo 2C/C-cp catalysts.« less

  7. Pt/Mo 2C/C-cp as a highly active and stable catalyst for ethanol electrooxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lili; Sheng, Wenchao; Yao, Siyu

    Here, a Pt/Mo 2C/C-cp electrocatalyst with optimized Pt-Mo 2C chemical bonding is synthesized and evaluated for the ethanol oxidation reaction (EOR). The chemical bonding of Mo 2C to Pt particles renders exceptional EOR activity at low potentials, which is 15 and 2.5 times higher than Pt/C and commercial 40% PtRu/C, respectively, at 0.6 V (vs. RHE). The stability of the Pt/Mo 2C/C-cp electrocatalyst is comparable to the commercial 40% PtRu/C catalyst. CO stripping test demonstrates the existence of highly active sites for CO oxidation on the Pt/Mo 2C/C-cp catalyst. In-situ infrared spectroscopic studies of EOR reveal that the excellent anti-poisoningmore » ability of the Pt/Mo 2C/C-cp catalyst is related to the relatively weak binding of carbonyl intermediates over the Pt/Mo 2C/C-cp catalysts.« less

  8. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    PubMed

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  9. Hydrocracking of Jatropha Oil over non-sulfided PTA-NiMo/ZSM-5 Catalyst

    PubMed Central

    Yang, Xiaosong; Liu, Jing; Fan, Kai; Rong, Long

    2017-01-01

    The PTA-NiMo/ZSM-5 catalyst impregnated with phosphotungstic acid (PTA) was designed for the transformation of Jatropha oil into benzene, toluene, and xylenes (BTX) aromatics. The produced catalyst was characterized by N2 adsorption-desorption, powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and the temperature-programmed desorption of ammonia (NH3-TPD). The catalytic performance was evaluated by gas chromatography (GC). The liquid products were 70 wt% of the feed oil, and the majority of the liquid products were BTX. The aromatization activity of the catalyst was improved by the addition of PTA and the hierarchical process. The favorable PTA amount was 20 wt% and the yield of BTX was 59 wt% at 380 °C, 3 MPa, H2/oil (v/v) = 1000 and LHSV = 1 h−1 over the PTA20-NiMo/HZ0.5 catalyst (PTA 20 wt%) without sulfurization. PMID:28134313

  10. Controlling transformations in the assembly of polyoxometalate clusters: {Mo11V7}, {Mo17V8} and {Mo72V30}.

    PubMed

    Miras, Haralampos N; Ochoa, M Nieves Corella; Long, De-Liang; Cronin, Leroy

    2010-11-21

    The reaction of molybdate with vanadium(V) in the presence of sulfite anions is explored showing how, via cation control, stepwise assembly through the {Mo(11)V(7)} cluster yields a {M(25)} cluster-based compound, [Mo(VI)(11)V(V)(5)V(IV)(2)O(52)(μ(9)-SO(3))(Mo(VI)(6)V(V)O(22))](10-) (1a), which was first discovered using cryospray mass spectrometry, whereas switching the cation away from ammonium allows the direct formation of the spherical 'Keplerate' {Mo(72)V(30)} cluster.

  11. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  12. Hydrogenation catalysts were derived from Mo(Co)/sub 6//alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, R.G.

    1979-01-01

    Alumina hydrogenation catalysts were derived from mo(CO)/sub 6//alumina with characteristics dependent upon the activation temperature, degree of alumina hydroxylation, and carrier gas used. Decomposition of Mo(CO)/sub 6/ at 100/sup 0/C on partially hydroxylated alumina in helium or hydrogen yielded Mo(CO)/sub 3//alumina, which catalyzed olefin metathesis in helium carrier and both metathesis and hydrogenation in hydrogen carrier. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina at 100/sup 0/C in helium and in hydrogen resulted in complete decarbonylation and partial oxidation of molybdenum; this catalyst was 10 times as active as Mo(CO)/sub 3//alumina for hydrogenation. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina atmore » 500/sup 0/C in helium gave essentially Mo(0)/alumina, which catalyzed hydrogenation, methanation, and hydrogenolysis in hydrogen. Catalysts activated on dehydroxylated alumina were ten times more active for methanation at 300/sup 0/C than catalyst activated on partially hydroxylated alumina and showed differences in selectivity for cyclopropane hydrogenolysis at 100/sup 0/C.« less

  13. W-Incorporated CoMo/{lambda}-Al{sub 2}O{sub 3} hydrosulfurization catalyst. II. Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.K.; Lee, H.T.

    1996-03-01

    Series of W-incorporated CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts were characterized with TPR, DRS, ESR, and XPS. Two series of catalysts with varying content of tungsten were prepared for characterization by changing the impregnation order of cobalt and tungsten to a base Mo/{gamma}-Al{sub 2}O{sub 3} catalyst. The activity promotion by relatively low content of tungsten arose from the roles of tungsten in changing the Mo-oxide coordination from tetrahedral to octahedral, facilitating the reduction of Mo-oxide species, and increasing the dispersion of MoS{sub 2}. By incorporation of tungsten at a content as much as 0.025 in W/(W + Mo) atomic ratio, the MoS{submore » 2} dispersion of CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst was considered to be maximized without noticeable detriment to the active Co-Mo-O phase, resulting in the maximum activity promotion. The formation of the Co-Mo-O phases was more favored in the catalysts prepared by impregnating W onto CoMo/{gamma}-Al{sub 2}O{sub 3} than in those by impregnating W onto Mo/{gamma}-Al{sub 2}O{sub 3} before impregnation of Co. The effect of tungsten on the dispersion of active phase was not discriminated between the two series of catalysts. The activity decrease observed in the catalysts containing higher content of tungsten originated from the increase in the W-oxide coverage on the surface of Mo-oxides or Co-Mo-O phases, resulting in not only impeding the reduction or sulfidation of the oxidic precursor but facilitating the formation of less active Co-W-O at the sacrifice of more active Co-Mo-O phase. 40 refs., 11 figs., 1 tab.« less

  14. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    NASA Astrophysics Data System (ADS)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  15. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst

  16. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE PAGES

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.; ...

    2016-11-01

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst

  17. XAS Study at Mo and Co K-Edges of the Sulfidation of a CoMo / Al2O3 Hydrotreating Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pichon, C.; Gandubert, A. D.; Legens, C.

    2007-02-02

    Because of its impact on environment, the removal of sulfur is an indispensable step, called hydrotreatment, in the refining of petroleum. One of the most commonly used hydrotreating catalysts is CoMo-type catalyst which is composed of molybdenum disulfide slabs promoted by cobalt atoms (CoMoS phase) and well dispersed on a high specific area alumina. As far as the highest sulfur content allowed in gasoline and diesel is continually decreasing, more and more efficient and active hydrotreating catalysts are required. In order to optimize the reactivity of the CoMo-type catalyst in hydrotreatment, a better understanding of the processes used to producemore » the active phase (CoMoS slabs) of the catalyst is necessary. The study reported here deals with the sulfiding mechanism of the slabs and the influence of temperature on the phenomenon. Ex situ X-ray absorption spectroscopy (XANES and EXAFS) was used to study the evolution of the structure of CoMo-type catalyst sulfided at various temperatures (from 293 to 873 K). XAS analysis was performed at both molybdenum and cobalt K-edges to obtain a cross-characterization of the sulfidation of the slabs. It evidenced the formation of various compounds, including two molybdenum oxides, MoS3 (or MoS3-like compound) and Co9S8, at specific steps of the sulfiding process. It showed the role of intermediate played by MoS3 (or MoS3-like compound) during the formation of the slabs and the competition between the appearance of promoted slabs (CoMoS phase) and Co9S8. At last, it leaded to the proposal of a mechanism for the sulfidation of the catalyst.« less

  18. W-incorporated CoMo/{lambda}-Al{sub 2}O{sub 3} hydrodesulfurization catalyst. I. Catalytic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.K.; Lee, I.C.; Park, S.K.

    1996-03-01

    The promotional effect of tungsten in the CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst was studied for series of W-incorporated CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts with different content of tungsten. Two series of the catalysts were prepared by changing the impregnation order of cobalt and tungsten onto a base Mo/{gamma}-Al{sub 2}O{sub 3} catalyst. Impregnation of tungsten was achieved under the condition that the pH of an aqueous impregnating solution of W anion was controlled to 9.5. The hydrodesulfurization (HDS) and hydrogenation (HYD) activities of the sulfided catalysts were evaluated by thiophene HDS and ethylene HYD reactions at atmospheric pressure, respectively. Low-temperature O{sub 2} chemisorptionmore » at 195 K was conducted for the sulfided catalysts in order to determine the W-incorporation effects on the surface concentration of coordinatively unsaturated sites related to the catalytic activities. The dependence of catalytic activities on tungsten content showed initially an increase and subsequent decrease with increasing tungsten content. The maximum promotion of HDS and HYD activities occurred at a low content of tungsten corresponding to 0.025 in W/(W + Mo) atomic ratio regardless of the impregnation order of tungsten and cobalt. Oxygen uptake correlated well with catalytic activities. In general, the catalysts prepared by impregnating tungsten onto the CoMo/{gamma}-Al{sub 2}O{sub 3} showed higher activities than the catalysts prepared by impregnating tungsten onto Mo/{gamma}-Al{sub 2}O{sub 3} prior to impregnation of cobalt. 37 refs., 7 figs., 2 tabs.« less

  19. Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting

    NASA Astrophysics Data System (ADS)

    Zhou, Jungui; Dai, Song; Dong, Wen; Su, Xiaodong; Fang, Liang; Zheng, Fengang; Wang, Xiongdong; Shen, Mingrong

    2016-05-01

    MoS2 has been studied as an efficient and cheap hydrogen evolution reaction (HER) catalyst; however, its effective integration with a photocathode remains a challenge. Here, crystalline MoS2 catalyst was deposited on top of a ˜2 nm Al2O3 protected n+p-Si photocathode using a simple photoreduction method following a post-annealing. The amount of MoS2 is optimized for HER of the photocathode, balanced between its catalytic effect and light absorption. High efficiency with 0.35 V onset potential vs. reversible hydrogen electrode and 34.5 mA/cm2 saturated photocurrent and high stability after 2 min ultrasonication or under 40 h continuous HER were observed. Such properties are much superior to the corresponding photocathodes coated by the traditional electrodeposited amorphous MoS2. Furthermore, the MoS2 layer is also an effective support for Pt nanoparticles with considerable reduction in the Pt amount while keeping the photoelectrochemical reactivity. This study indicates that the cheap-made MoS2 can be an efficient and stable HER catalyst for the Si photocathode.

  20. Hydrodesulfurization reactions of atmospheric gas oil over CoMo/alumina-aluminum borate catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiuping Li; Jungchung Wu; Yuwen Chen

    1993-08-01

    A precipitation technique at constant pH value was used to prepare a series of alumina-aluminum borates (AABs) with various Al/B atomic ratios. These materials were used as the supports of Co-Mo catalysts. Hydrodesulfurization (HDS) of Kuwait atmospheric gas (AGO) oil was carried out over these presulfided catalysts in a bench-scale trickle bed reactor at 400 psi and 340 C. All CoMo/AAB catalysts are much more active than the conventional CoMo/Al[sub 2]O[sub 3] catalyst on HDS reactions. A correlation exists between the acidity and the HDS activity of the catalysts. The high activities of the CoMo/AAB catalysts can be rationalized onmore » the presence of boron. On one hand, it can increase the metal dispersions and hydrogenation capabilities. On the other hand, it can enhance the acidities and cracking abilities of the catalysts. The desulfurization data can be fitted with a pseudo-second-order rate equation. The activation energy for desulfurization is found to be 26 kcal/mol.« less

  1. Hydrodeoxygenation of bio-oil using different mesoporous supports of NiMo catalysts

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Simanungkalit, Sabar P.; Kristiani, Anis

    2017-11-01

    Biomass as a renewable and sustainable resources need to utilize in many applications, especially for energy application. One of its energy application is about converting biomass into bio-oil. High oxygen content in bio-oil needs to be upgraded through hydrodeoxygenation process before being used as transportation fuel. The development of heterogenenous catalysts become an important aspect in hydrodeoxygenation process, in particular the upgrading process of bio-oil. Several supporting mesoporous materials, such as TiO2, Al2O3 and MCM-41 have unique properties, both physical and chemical properties that can be utilized in various application, including catalyst. These heterogeneous catalysts were modified their catalytic properties by impregnation with some transition metal. The effect of various supporting material and transition metal impregnated were also studied. Their chemical and physical properties were characterized by X-Ray Diffraction, X-Ray Fluororesence, Fourier Transform Infra-Red, and Surface Area Analyzer. The result of characterizations showed that Ni-Mo/TiO2 is more crystalline than Ni-Mo/MCM-41 and Ni-Mo/Al2O3. In other hand, the specific surface area of Ni-Mo/TiO2 is lower than others. These heterogeneous catalysts were tested their catalytic activity in upgrading bio-oil. The liquid products produced were analyzed by using Elemental Analyzer. The result of catalytic activity tests showed catalysts resulted Ni-Mo/TiO2 exhibits best catalytic activity in hydrodeoxygenation process. The oxygen content decreased significantly from 41.61% to 26.22% by using Ni-Mo/TiO2. Compared with Ni-Mo/TiO2, Ni-Mo/MCM-41 and Ni-Mo/Al2O3 decrease lower to 33.22% % and 28.34%, respectively. Ni-Mo/TiO2 also resulted the highest Deoxygenation Degree (DOD) as of 55% compared with Ni-Mo/MCM-41 and Ni-Mo/Al2O3 as of 31.99 % and 47.99%, respectively.

  2. Preparation and Characterization of NiMo/Al2O3Catalyst for Hydrocracking Processing

    NASA Astrophysics Data System (ADS)

    Widiyadi, Aditya; Guspiani, Gema Adil; Riady, Jeffry; Andreanto, Rikky; Chaiunnisa, Safina Dea; Widayat

    2018-02-01

    Hydrocracking is a chemical process used in petroleum refineries for converting high boiling hydrocarbons in petroleum crude oils to more valuable lower boiling products such as gasoline, kerosene, and diesel oil that operate at high temperature and pressure. Catalyst was used in hydrocracking to reduce temperature and pressure. Hydrocracking catalyst are composed of active components and support. Alumina is widely used in hydrocracking process as catalyst support due to its high surface area, high thermal stability, and low prices. The objective of this research was preparated NiMo/Al2O3 catalyst that used as hydrocracking catalyst. Catalyst was synthesized by wetness impregnation method and simple heating method with various kind of Al2O3. The physicochemical properties of catalyst were investigated by X-ray diffraction (XRD) to determine type of crystal and scanning electron microscopy (SEM) to determine morphology of the catalyst. The NiMo/Al2O3 catalyst prepared by aluminium potassium sulfate dodecahydrate exhibited the highest crystallinity of 90.23% and it is clear that MoO3 and NiO crystallites are highly dispersed on the NiMo/Al2O3 catalyst which indicates as the best catalyst. The catalytic activity in hydrocracking process was successfully examined to convert fatty acid into hydrocarbon.

  3. Demetallation and hydrocracking of Arab heavy 650{degrees}F{sup +} resid over CoMo/carbon supported catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankel, L.A.

    1993-12-31

    Arab Heavy 650{degrees}F{sup +} atmospheric resid has been hydroprocessed over different CoMo/activated carbon catalysts and the results compared to processing with a conventional CoMo/alumina catalyst. Demetallation activity for the activated carbon catalysts depends on the activated carbon chosen as well as the way the Co and Mo metals are applied to the carbon. Hydroprocessing Arab Heavy 650{degrees}F{sup +} resid at 1500 psig showed that 87% demetallation over CoMo/Darco activated carbon was produced vs {approximately}73% demetallation over CoMo/alumina at about the same 1000{degrees}F conversion with 200-400 SCF/BBL less H-consumption. Desulfurization activity and CCR conversion were 10-20% higher for CoMo/alumina vs CoMo/Darcomore » activated carbon, consistent with higher H-consumption. Potential advantages for resid processing over carbon supported catalysts induce high levels of demetallation, reduced costs for carbon vs alumina, and easy recovery of metals by catalysts combustion.« less

  4. Visible light-induced degradation of acetone over SO42-/MoOx/MgF2 catalysts.

    PubMed

    He, Yiming; Sheng, Tianlu; Wu, Ying; Chen, Jianshan; Fu, Ruibiao; Hu, Shengming; Wu, Xintao

    2009-08-30

    A visible light active photodegration catalyst was prepared by doping MoO(3) into MgF(2) matrix. The addition of SO(4)(2-) into MoO(x)/MgF(2) could improve the catalytic activity greatly and an acetone conversion of 96.1% under visible light was obtained on the SO(4)(2-)/5%MoO(x)/MgF(2) (SMM) catalyst. By BET, XRD, Raman, FT-IR, XPS, UV-vis technology the specific area, structure and photoadsorption ability of the catalysts were characterized. The high photocatlaytic activity of the SMM catalyst is attributed to its large specific area, the high dispersal of MoO(3) domains in MgF(2) and the inhibiting effect of MgF(2) matrix on the electron-hole pair recombination.

  5. Effects of H sub 2 S addition on the performance of fresh vs. used CoMo catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankel, L.A.

    1991-01-01

    When a Co/Mo catalyst is used for processing vanadium-containing heavy oils, vanadium deposits on the catalyst. As the amount of vanadium on the CoMo catalyst increases, the catalytic effects of CoMo decline and the presence of vanadium starts to influence the hydroprocessing products. Model feeds have been used to explore the changes in the catalytic activity of CoMo, aged CoMo, and VS{sub x} on alumina. Desulfurization, denitrogenation, deoxygenation, aromatics hydrogenation, and metals removal were monitored. This paper reports that, upon the addition of hydrogen sulfide to hydrogen, improvements in the catalysts for aromatics hydrogenation, denitrogenation and metals removal were observed.

  6. Impact of support calcination and competitive adsorbate in Fe/Mo-Al2O3 catalyst for synthesis of carbon nanotubes by V-flame

    NASA Astrophysics Data System (ADS)

    Sun, Ya-Ping; Sun, Bao-Min; Zhai, Gang; Guo, Yong-Hong; Jia, Xiao-Wei; Kang, Zhi-Zhong

    2018-05-01

    Carbon nanotubes (CNTs) were synthesized via carbon monoxide decomposition with aid of various Fe/Mo-Al2O3 catalysts by V-type flame method. The influences of support calcination and competitive adsorbates on the morphology and properties of CNTs were studied. SEM, HRTEM, TPO and Raman spectroscopy were applied to investigate the morphology and microstructure of CNT products. XRD, H2-TPR were employed to characterize catalysts. The obtained results indicate that calcinated support can increase production and promote the formation of CNTs with small diameter. Utilizing citric acid as a competitive adsorbate is successful in improving the quality of CNTs. Besides, the addition of citric acid and calcinated support in catalyst enhances the catalytic growth activity. The obtained CNTs have a diameter around 4–6 nm within a narrow diameter distribution range. Raman spectrum analysis also illustrates that highly graphitized CNTs are produced on the catalyst with calcinated support and citric acid. These results suggest that support calcination and competitive adsorbate have pronounced effect on the average diameter, diameter distribution, and graphitization of CNTs, which provides a simple and effective way to tune the properties of CNTs.

  7. Enhanced Hydrodeoxygenation of m -Cresol over Bimetallic Pt–Mo Catalysts through an Oxophilic Metal-Induced Tautomerization Pathway

    DOE PAGES

    Robinson, Allison; Ferguson, Glen Allen; Gallagher, James R.; ...

    2016-05-26

    Supported bimetallic catalysts consisting of a noble metal (e.g., Pt) and an oxophilic metal (e.g., Mo) have received considerable attention for the hydrodeoxygenation of oxygenated aromatic compounds produced from biomass fast pyrolysis. Here, we report that PtMo can catalyze m-cresol deoxygenation via a pathway involving an initial tautomerization step. In contrast, the dominant mechanism on monometallic Pt/Al 2O 3 was found to be sequential Pt-catalyzed ring hydrogenation followed by dehydration on the support. Bimetallic Pt 10Mo 1 and Pt 1Mo 1 catalysts were found to produce the completely hydrogenated and deoxygenated product, methylcyclohexane (MCH), with much higher yields than monometallicmore » Pt catalysts with comparable metal loadings and surface areas. Over an inert carbon support, MCH formation was found to be slow over monometallic Pt catalysts, while deoxygenation was significant for PtMo catalysts even in the absence of an acidic support material. Experimental studies of m-cresol deoxygenation together with density functional theory calculations indicated that Mo sites on the PtMo bimetallic surface dramatically lower the barrier for m-cresol tautomerization and subsequent deoxygenation. The accessibility of this pathway arises from the increased interaction between the oxygen of m-cresol and the Mo sites in the Pt surface. This interaction significantly alters the configuration of the precursor and transition states for tautomerization. Lastly, a suite of catalyst characterization techniques including X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR) indicate that Mo was present in a reduced state on the bimetallic surface under conditions relevant for reaction. Overall, these results suggest that the use of bifunctional metal catalysts can result in new reaction pathways that are unfavorable on monometallic noble metal catalysts.« less

  8. A sup 57 Co Moessbauer emission spectrometric study of some supported CoMo hydrodesulfurization catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, J.A.R. van; Hendriks, P.A.J.M.; Beens, H.

    1992-01-01

    A suite of 11 CoMo/Al{sub 2}O{sub 4} (and one CoMo/SiO{sub 2}) catalysts has been prepared employing four preparation routes, viz. one sequential-impregnation route and three different coimpregnation routes. Speciation of the Co present in the oxidic precursors (octahedral vs tetrahedral Co) and in the activated, sulfided catalysts (CoMoS, Co{sub 9}S{sub 8}, and unsulfided Co) was effected with the aid of {sup 57}Co Moessbauer emission spectroscopy (MES). A linear relation between the thiophene-hydrodesulfurization (HDS) activity and wt% Co-in-CoMoS was observed for each preparation route, but no unique correlation was found to exist. This was traced to the fact that the preparationmore » routes differ in the amount of CoMoS I and CoMoS II they produce in the activated catalyst. Although these two phases differ in specific activity, CoMoS II being twice as active in thiophene HDS as CoMoS I, they cannot be distinguished on the basis of their Moessbauer parameters. It appears that octahedral Co is easier to sulfide than tetrahedral Co, but a substantial fraction of the latter is also found to be capable of entering CoMoS upon sulfidation. The reduced effectiveness of high-loading catalysts is traced to their being prone to CoMoO{sub 4} formation in the calcination step. A rationalization of this behavior is offered.« less

  9. Electric field tuned MoS2/metal interface for hydrogen evolution catalyst from first-principles investigations

    NASA Astrophysics Data System (ADS)

    Ling, F. L.; Zhou, T. W.; Liu, X. Q.; Kang, W.; Zeng, W.; Zhang, Y. X.; Fang, L.; Lu, Y.; Zhou, M.

    2018-01-01

    Understanding the interfacial properties of catalyst/substrate is crucial for the design of high-performance catalyst for important chemical reactions. Recent years have witnessed a surge of research in utilizing MoS2 as a promising electro-catalyst for hydrogen production, and field effect has been employed to enhance the activity (Wang et al 2017 Adv. Mater. 29, 1604464; Yan et al 2017 Nano Lett. 17, 4109-15). However, the underlying atomic mechanism remains unclear. In this paper, by using the prototype MoS2/Au system as a probe, we investigate effects of external electric field on the interfacial electronic structures via density functional theory (DFT) based first-principles calculations. Our results reveal that although there is no covalent interaction between MoS2 overlayer and Au substrate, an applied electric field efficiently adjusts the charge transfer between MoS2 and Au, leading to tunable Schottky barrier type (n-type to p-type) and decrease of barrier height to facilitate charge injection. Furthermore, we predict that the adsorption energy of atomic hydrogen on MoS2/Au to be readily controlled by electric field to a broad range within a modest magnitude of field, which may benefit the performance enhancement of hydrogen evolution reaction. Our DFT results provide valuable insight into the experimental observations and pave the way for future understanding and control of catalysts in practice, such as those with vacancies, defects, edge states or synthesized nanostructures.

  10. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Weihan; Xu, Yan; Li, Zhenhua; Wang, Baowei; Ma, Xinbin

    2018-05-01

    Two kinds of ZrO2 support with different morphologies were prepared by facile solvothermal method in different solvents. The obtained two supports showed monoclinic zirconia (m-ZrO2) and tetragonal zirconia (t-ZrO2) phase with similar crystalline size. Their supported Mo-based catalysts were prepared by impregnation method and the effect of zirconia morphology on the performance of sulfur-resistant methanation was examined. The results indicated that the MoO3/m-ZrO2 has higher CO conversion than the MoO3/t-ZrO2 catalyst. Characterizations by XRD, Raman, H2-TPR and IR confirmed that the m-ZrO2 is superior to t-ZrO2 for dispersing molybdenum species. In addition, the MoO3/m-ZrO2 catalyst has weaker interaction between support and active Mo speices than the MoO3/t-ZrO2 catalyst, which facilitates to forming active species of nanocrystalline MoS2 layers for sulfur-resistant methanation. The weaker interaction of molybdenum species with m-ZrO2 is related with the more covalent character of the Zrsbnd O bond and more oxygen defective structure of m-ZrO2. A larger number of Lewis acid centers appear on the surface of m-ZrO2, which verified the substantial vacancies on m-ZrO2 exposing coordinately unsaturated Zr3+ and Zr4+ cations. Meanwhile, the less Lewis acid of t-ZrO2 result in stronger interaction between support and molybdenum species and trigger crystalline phase MoO3 and Mosbnd Osbnd Zr linkages.

  11. Catalysis on Mo(CO)/sub 6/-derived supported molybdenum catalysts: CO oxidation with N/sub 2/O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazusaka, A.; Howe, R.F.

    1988-05-01

    The catalytic nature of Mo(CO)/sub 6/ supported on ..gamma..-Al/sub 2/O/sub 3/, KOH-doped ..gamma..-Al/sub 2/O/sub 3/, and HY-zeolite was investigated in CO oxidation with N/sub 2/O in comparison with that of a conventional partially reduced MoO/sub 3//..gamma..-Al/sub 2/O/sub 3/ catalyst. Kinetic parameters of this reaction were obtained in the range 0 to 100/sup 0/C; the rate law r = kP/sub N/sub 2/O//sup 1/P/sub CO//sup 0/ was found on all catalysts, and the activation energy was estimated to be 9.1 kcal/mol on the Mo(CO)/sub 6/-derived catalysts and 7.1 kcal/mol on the partially reduced MoO/sub 3//..gamma..-Al/sub 2/O/sub 3/ catalyst. Maximum catalytic activities weremore » obtained by activating the Mo(CO)/sub 6/-derived catalysts at 400/sup 0/C. To obtain similar activity on the MoO/sub 3//..gamma..-Al/sub 2/O/sub 3/ catalyst, it was necessary to reduce at 600/sup 0/C. The former catalysts were deactivated on repeating the reaction. On the basis of these results and those of ESR studies through the activation or deactivation process, an active site on the Mo(CO)/sub 6/-derived catalysts has been proposed. Also, clear IR absorption bands due to chemisorbed CO and N/sub 2/O species were observed on the HY-zeolite-supported catalysts. A reaction mechanism is proposed from the kinetic and IR spectroscopic results.« less

  12. Design Strategies for CeO2-MoO3 Catalysts for DeNOx and Hg(0) Oxidation in the Presence of HCl: The Significance of the Surface Acid-Base Properties.

    PubMed

    Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Mingguan; Sun, Xiaoxu; Li, Junhua; Duan, Lei; Hao, Jiming

    2015-10-20

    A series of CeMoOx catalysts with different surface Ce/Mo ratios was synthesized by a coprecipitation method via changing precipitation pH value. The surface basicity on selective catalytic reduction (SCR) catalysts (CeMoOx and VMo/Ti) was characterized and correlated to the durability and activity of catalyst for simultaneous elimination of NOx and Hg(0). The pH value in the preparation process affected the surface concentrations of Ce and Mo, the Brunauer-Emmett-Teller (BET) specific surface area, and the acid-base properties over the CeMoOx catalysts. The O 1s X-ray photoelectron spectroscopy (XPS) spectra and CO2-temperature programmed desorption (TPD) suggested that the surface basicity increased as the pH value increased. The existence of strong basic sites contributed to the deactivation effect of HCl over the VMo/Ti and CeMoOx catalysts prepared at pH = 12. For the CeMoOx catalysts prepared at pH = 9 and 6, the appearance of surface molybdena species replaced the surface -OH, and the existence of appropriate medium-strength basic sites contributed to their resistance to HCl poisoning in the SCR reaction. Moreover, these sites facilitated the adsorption and activation of HCl and enhanced Hg(0) oxidation. On the other hand, the inhibitory effect of NH3 on Hg(0) oxidation was correlated with the competitive adsorption of NH3 and Hg(0) on acidic surface sites. Therefore, acidic surface sites may play an important role in Hg(0) adsorption. The characterization and balance of basicity and acidity of an SCR catalyst is believed to be helpful in preventing deactivation by acid gas in the SCR reaction and simultaneous Hg(0) oxidation.

  13. Multislice frozen phonon high angle annular dark-field image simulation study of Mo-V-Nb-Te-O complex oxidation catalyst "M1".

    PubMed

    Blom, Douglas A

    2012-01-01

    Multislice frozen phonon calculations were performed on a model structure of a complex oxide which has potential use as an ammoxidation catalyst. The structure has 11 cation sites in the framework, several of which exhibit mixed Mo/V substitution. In this paper the sensitivity of high-angle annular dark-field (HAADF) imaging to partial substitution of V for Mo in this structure is reported. While the relationship between the average V content in an atom column and the HAADF image intensity is not independent of thickness, it is a fairly weak function of thickness suggesting that HAADF STEM imaging in certain cases can provide a useful starting point for Rietveld refinements of mixed occupancy in complex materials. The thermal parameters of the various cations and oxygen anions in the model affect the amount of thermal diffuse scattering and therefore the intensity in the HAADF images. For complex materials where the structure has been derived via powder Rietveld refinement, the uncertainty in the thermal parameters may limit the accuracy of HAADF image simulations. With the current interest in quantitative microscopy, simulations need to accurately describe the electron scattering to the very high angles often subtended by a HAADF detector. For this system approximately 15% of the scattering occurs above 200 mrad at 200 kV. To simulate scattering to such high angles, very fine sampling of the projected potential is necessary which increases the computational cost of the simulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. On the surface chemistry of molybdena-alumina catalysts prepared from Mo(CO) sub 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldwasser, J.; Fang, S.M.; Houalla, M.

    1989-01-01

    Catalysts were prepared by subliming Mo(CO){sub 6} onto partially dehydroxylated (PDA) and exhaustively dehydroxylated (DA) alumina made from the same parent preparation (American Cyanamid Aero 100PHF). The chemisorption of NO and Co on these materials was studied using volumetric, chromatographic, and spectroscopic techniques. ESCA data indicated that metallic Mo crystals formed on Mo(CO){sub 6}/DA whereas on PDA both Mo{sup 4+} and some lower valence state, Mo{sup 2+} or Mo{sup 0}, were present. NO chemisorbed on both preparations at 195 K without releasing either N{sub 2}O or N{sub 2}. The chemisorption on the PDA preparations was over tenfold higher than thatmore » on the DA-supported catalysts under these conditions, but at 300 K the difference was reduced to a factor of 2. Moreover, redox chemistry occurred at this higher temperature as evidenced by the release of N{sub 2}O and N{sub 2}. The amounts of NO actually chemisorbed correlated well with the integrated IR band intensities. These data suggest that lower valence states are oxidized to Mo{sup 4+} at 300 K and that the observed IR bands stem from Mo{sup 4+}(NO){sub 2}, irrespective of the initial catalyst. Infrared spectra from residual CO remaining on decomposition of Mo(CO){sub 6} on DA and PDA showed bands which could be attributed to residual Mo(CO){sub 6} and/or to subcarbonyl species formed during decomposition. By 573 K, no residual bands could be observed. On adding-back CO at 300 K to the PDA preparation, bands at 1989 and 2170 cm{sup {minus}1} appeared, suggesting the presence of Mo{sup 4+} and residual Mo{sup 0}. Spectra from similar experiments with the DA preparation demonstrated that chemisorbed Mo(CO){sub 6} was reforming and possibly some subcarbonyl species.« less

  15. Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery.

    PubMed

    Yang, Yue; Xu, Shengming; Li, Zhen; Wang, Jianlong; Zhao, Zhongwei; Xu, Zhenghe

    2016-11-15

    Deoiling process is a key issue for recovering metal values from spent hydrotreating catalysts. The oils can be removed with organic solvents, but the industrialized application of this method is greatly hampered by the high cost and complex processes. Despite the roasting method is simple and low-cost, it generates hardest-to-recycle impurities (CoMoO4 or NiMoO4) and enormous toxic gases. In this study, a novel and facile approach to remove oils from the spent hydrotreating catalysts is developed. Firstly, surface properties of spent catalysts are characterized to reveal the possibility of oil removal. And then, oils are removed with water solution under the conditions of 90°C, 0.1wt% SDS, 2.0wt% NaOH and 10ml/gL/S ratio for 4h. Finally, thermal treatment and leaching tests are carried out to further explore the advantages of oil removal. The results show that no hardest-to-recycle impurity CoMoO4 is found in XPS spectra of thermally treated samples after deoiling and molybdenum is leached completely with sodium carbonate solution. It means that the proposed deoiling method can not only remove oils simply and without enormous harmful gases generating, but also avoid the generation of detrimental impurity and promote recycling of valuable metals from spent hydrotreating catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dehydration, Dehydrogenation, and Condensation of Alcohols on Supported Oxide Catalysts Based on Cyclic (WO3)3 and (MoO3)3 Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Roger J.; Dixon, David A.; Kay, Bruce D.

    2014-01-01

    Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article we review preparation and activity of well-defined model WO3 and MoO3 catalysts prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketons, and ethers is employed to probe the structure-activity relationships on model WO3 and MoO3 catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlyingmore » reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. For the range of interrogated (WO3)3 they further shed light into the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity.« less

  17. In situ grown Ni9S8 nanorod/O-MoS2 nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst

    NASA Astrophysics Data System (ADS)

    Li, Songzhan; Chen, Tian; Wen, Jian; Gui, Pengbin; Fang, Guojia

    2017-11-01

    Transition metal sulfide nanostructure composites have received significant attention as energy conversion and storage devices. In this work, we report a three-dimension (3D) nanostructure with the Ni9S8 nanorods embedded in oxygen-incorporated MoS2 (O-MoS2) nanosheets for supercapacitors and hydrogen evolution catalysts. The in situ grown Ni9S8/O-MoS2 nanocomposite on carbon cloth can be used as a free binder supercapacitor electrode and hydrogen evolution catalyst. The Ni9S8/O-MoS2 nanocomposite exhibits electrochemical behaviors with a specific capacitance of 907 F g-1 (at 2 A g-1) and good cycle stability after 1200 cycles due to its unique mutual embedding 3D nanostructure. Furthermore, the Ni9S8/O-MoS2 nanocomposite also shows highly electrocatalytic features for hydrogen production with an onset overpotential of ˜150 mV and a low Tafel slope of ˜81 mV dec-1. The oxygen incorporation of MoS2 provides more active sites to participate in the catalytic process for the hydrogen evolution reaction.

  18. A new molybdenum nitride catalyst with rhombohedral MoS 2 structure for hydrogenation applications

    DOE PAGES

    Wang, Shanmin; Ge, Hui; Sun, Shouli; ...

    2015-03-23

    Here, nitrogen–rich transition–metal nitrides hold great promise to be the next–generation catalysts for clean and renewable energy applications. However, incorporation of nitrogen into the crystalline lattices of transition metals is thermodynamically unfavorable at atmospheric pressure; most of the known transition metal nitrides are nitrogen–deficient with molar ratios of N : metal less than a unity. In this work, we have formulated a high–pressure route for the synthesis of a nitrogen–rich molybdenum nitride through a solid–state ion–exchange reaction. The newly discovered nitride, 3R–MoN 2, adopts a rhombohedral R3m structure, isotypic with MoS 2. This new nitride exhibits catalytic activities that aremore » three times more active than the traditional catalyst MoS 2 for the hydrodesulfurization of dibenzothiophene and more than twice higher in the selectivity to hydrogenation. The nitride is also catalytically active in sour methanation of syngas with >80% CO and H 2 conversion at 723 K. Our formulated route for the synthesis of 3R–MoN 2 is at a moderate pressure of 3.5 GPa and is thus feasible for industrial–scale catalyst production.« less

  19. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications.

    PubMed

    Wang, Shanmin; Ge, Hui; Sun, Shouli; Zhang, Jianzhong; Liu, Fangming; Wen, Xiaodong; Yu, Xiaohui; Wang, Liping; Zhang, Yi; Xu, Hongwu; Neuefeind, Joerg C; Qin, Zhangfeng; Chen, Changfeng; Jin, Changqin; Li, Yongwang; He, Duanwei; Zhao, Yusheng

    2015-04-15

    Nitrogen-rich transition-metal nitrides hold great promise to be the next-generation catalysts for clean and renewable energy applications. However, incorporation of nitrogen into the crystalline lattices of transition metals is thermodynamically unfavorable at atmospheric pressure; most of the known transition metal nitrides are nitrogen-deficient with molar ratios of N:metal less than a unity. In this work, we have formulated a high-pressure route for the synthesis of a nitrogen-rich molybdenum nitride through a solid-state ion-exchange reaction. The newly discovered nitride, 3R-MoN2, adopts a rhombohedral R3m structure, isotypic with MoS2. This new nitride exhibits catalytic activities that are three times more active than the traditional catalyst MoS2 for the hydrodesulfurization of dibenzothiophene and more than twice as high in the selectivity to hydrogenation. The nitride is also catalytically active in sour methanation of syngas with >80% CO and H2 conversion at 723 K. Our formulated route for the synthesis of 3R-MoN2 is at a moderate pressure of 3.5 GPa and, thus, is feasible for industrial-scale catalyst production.

  20. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes.

    PubMed

    Hassan, Ayaz; Ticianelli, Edson A

    2018-01-01

    Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC) anodes are revised for the following catalyst systems: (1) a carbon supported PtMo electrocatalyst submitted to heat treatments; (2) Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C); (3) ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4) Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC) Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.

  1. Comparative study on cubic and tetragonal CexZr1-xO2 supported MoO3-catalysts for sulfur-resistant methanation

    NASA Astrophysics Data System (ADS)

    Liu, Zhaopeng; Xu, Yan; Cheng, Jiaming; Wang, Weihan; Wang, Baowei; Li, Zhenhua; Ma, Xinbin

    2018-03-01

    In this paper, two kinds of CexZr1-xO2 solid solution carriers with different Ce/Zr ratio were prepared by one-step co-precipitation method: the cubic Ce0.8Zr0.2O2 and the tetragonal Ce0.2Zr0.8O2 support. The MoO3/Ce0.8Zr0.2O2 and MoO3/Ce0.2Zr0.8O2 catalysts were prepared by incipient wetness impregnation method for comparative study on sulfur-resistant methanation reaction. The N2 adsorption/desorption, X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron (XPS), transmission electron microscopy (TEM), temperature-programmed reduction by hydrogen (H2-TPR) were undertaken to characterize the physico-chemical properties of the samples. The results indicated that the prepared MoO3/CexZr1-xO2 catalysts have a mesoporous structure with high surface area and uniform pore size distribution, achieving good MoO3 dispersion on CexZr1-xO2 supports. As for the catalytic performance of sulfur-resistant methanation, the cubic MoO3/Ce0.8Zr0.2O2 exhibited better than the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst at reaction temperature 400 °C and 450 °C. CO conversion on the cubic MoO3/Ce0.8Zr0.2O2 catalyst was 50.1% at 400 °C and 75.5% at 450 °C, which is respectively 7% and 20% higher than that on the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst. These were mainly attributed to higher content of active MoS2 on the surface of catalyst, the enhanced oxygen mobility, increased Mo-species dispersion as well as the excellent reducibility resulted from the increased amount of the reducible Ce3+ on the cubic MoO3/Ce0.8Zr0.2O2 catalyst.

  2. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction.

    PubMed

    Liu, Guoliang; Robertson, Alex W; Li, Molly Meng-Jung; Kuo, Winson C H; Darby, Matthew T; Muhieddine, Mohamad H; Lin, Yung-Chang; Suenaga, Kazu; Stamatakis, Michail; Warner, Jamie H; Tsang, Shik Chi Edman

    2017-08-01

    The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS 2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS 2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS 2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.

  3. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction

    NASA Astrophysics Data System (ADS)

    Liu, Guoliang; Robertson, Alex W.; Li, Molly Meng-Jung; Kuo, Winson C. H.; Darby, Matthew T.; Muhieddine, Mohamad H.; Lin, Yung-Chang; Suenaga, Kazu; Stamatakis, Michail; Warner, Jamie H.; Tsang, Shik Chi Edman

    2017-08-01

    The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.

  4. Late-Transition-Metal-Modified β-Mo 2C Catalysts for Enhanced Hydrogenation during Guaiacol Deoxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baddour, Frederick G.; Witte, Vanessa A.; Nash, Connor P.

    Molybdenum carbide has been identified as a promising bifunctional catalyst in the deoxygenation of a variety of pyrolysis vapor model compounds. Although high deoxygenation activity has been demonstrated, complementary hydrogenation activity has been limited, especially for lignin-derived, aromatic model compounds. The ability to control the relative site densities of acidic and hydrogenation functionalities represents a catalyst design challenge for these materials with the goal to improve hydrogenation activity under ex situ catalytic fast pyrolysis (CFP) conditions. Here in this paper, we demonstrate that the addition of Pt and Ni to Mo 2C resulted in an increase in the H*-site densitymore » with only a minor decrease in the acid-site density. In contrast, the addition of Pd did not significantly alter the H* or acid site densities. High conversions (>94%) and high selectivities to 0-oxygen products (>80%) were observed in guaiacol deoxygenation under ex situ CFP conditions (350 °C and 0.44 MPa H 2) for all catalysts. Pt addition resulted in the greatest deoxygenation, and site-time yields to hydrogenated products over the Pt/Mo 2C catalyst were increased to 0.048 s -1 compared to 0.015-0.019 s -1 for all other catalysts. The Pt/Mo 2C catalyst demonstrated the highest hydrogenation performance, but modification with Ni also significantly enhanced hydrogenation performance, representing a promising lower-cost alternative.« less

  5. Late-Transition-Metal-Modified β-Mo 2C Catalysts for Enhanced Hydrogenation during Guaiacol Deoxygenation

    DOE PAGES

    Baddour, Frederick G.; Witte, Vanessa A.; Nash, Connor P.; ...

    2017-10-26

    Molybdenum carbide has been identified as a promising bifunctional catalyst in the deoxygenation of a variety of pyrolysis vapor model compounds. Although high deoxygenation activity has been demonstrated, complementary hydrogenation activity has been limited, especially for lignin-derived, aromatic model compounds. The ability to control the relative site densities of acidic and hydrogenation functionalities represents a catalyst design challenge for these materials with the goal to improve hydrogenation activity under ex situ catalytic fast pyrolysis (CFP) conditions. Here in this paper, we demonstrate that the addition of Pt and Ni to Mo 2C resulted in an increase in the H*-site densitymore » with only a minor decrease in the acid-site density. In contrast, the addition of Pd did not significantly alter the H* or acid site densities. High conversions (>94%) and high selectivities to 0-oxygen products (>80%) were observed in guaiacol deoxygenation under ex situ CFP conditions (350 °C and 0.44 MPa H 2) for all catalysts. Pt addition resulted in the greatest deoxygenation, and site-time yields to hydrogenated products over the Pt/Mo 2C catalyst were increased to 0.048 s -1 compared to 0.015-0.019 s -1 for all other catalysts. The Pt/Mo 2C catalyst demonstrated the highest hydrogenation performance, but modification with Ni also significantly enhanced hydrogenation performance, representing a promising lower-cost alternative.« less

  6. Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability.

    PubMed

    Posada-Pérez, Sergio; Ramírez, Pedro J; Evans, Jaime; Viñes, Francesc; Liu, Ping; Illas, Francesc; Rodriguez, José A

    2016-07-06

    The ever growing increase of CO2 concentration in the atmosphere is one of the main causes of global warming. Thus, CO2 activation and conversion toward valuable added compounds is a major scientific challenge. A new set of Au/δ-MoC and Cu/δ-MoC catalysts exhibits high activity, selectivity, and stability for the reduction of CO2 to CO with some subsequent selective hydrogenation toward methanol. Sophisticated experiments under controlled conditions and calculations based on density functional theory have been used to study the unique behavior of these systems. A detailed comparison of the behavior of Au/β-Mo2C and Au/δ-MoC catalysts provides evidence of the impact of the metal/carbon ratio in the carbide on the performance of the catalysts. The present results show that this ratio governs the chemical behavior of the carbide and the properties of the admetal, up to the point of being able to switch the rate and mechanism of the process for CO2 conversion. A control of the metal/carbon ratio paves the road for an efficient reutilization of this environmental harmful greenhouse gas.

  7. Highly active Au/δ-MoC and Cu/δ-MoC catalysts for the conversion of CO 2: The metal/C ratio as a key factor defining activity, selectivity, and stability

    DOE PAGES

    Posada-Pérez, Sergio; Ramírez, Pedro J.; Evans, Jaime; ...

    2016-06-16

    The ever growing increase of CO 2 concentration in the atmosphere is one of the main causes of global warming. Thus, CO 2 activation and conversion toward valuable added compounds is a major scientific challenge. A new set of Au/δ-MoC and Cu/δ-MoC catalysts exhibits high activity, selectivity, and stability for the reduction of CO 2 to CO with some subsequent selective hydrogenation toward methanol. Sophisticated experiments under controlled conditions and calculations based on density functional theory have been used to study the unique behavior of these systems. A detailed comparison of the behavior of Au/β-Mo 2C and Au/δ-MoC catalysts providesmore » evidence of the impact of the metal/carbon ratio in the carbide on the performance of the catalysts. The present results show that this ratio governs the chemical behavior of the carbide and the properties of the admetal, up to the point of being able to switch the rate and mechanism of the process for CO 2 conversion. Here, a control of the metal/carbon ratio paves the road for an efficient reutilization of this environmental harmful greenhouse gas.« less

  8. Sulfidation of Co/Al[sub 2]O[sub 3] and CoMo/Al[sub 2]O[sub 3] catalysts studied by Moessbauer emission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craje, M.W.J.; Kraan, A.M. van der; Beer, V.H.J. de

    1993-10-01

    The structure of hydrodesulfurization catalysts is relevant to many industries. The sulfidation of uncalcined and calcined alumina-supported cobalt and cobalt-molybdenum catalysts was systematically studied by means of in situ Moessbauer emission spectroscopy (MES) at room temperature. The spectra obtained during the stepwise sulfidation of the uncalcined catalysts clearly resemble those observed for carbon-supported ones. Hence, the interpretation of the spectra of the alumina-supported catalysts is based on the conclusions drawn from the MES studies of the carbon-supported catalysts, which are less complex because Co ions do not diffuse into the support. It is demonstrated that not only in sulfided CoMo/Al[submore » 2]O[sub 3], but also in sulfided Co/Al[sub 2]O[sub 3], catalysts Co-sulfide species with a [open quotes]Co-Mo-S[close quotes]-type quadrupole splitting can be formed. It is concluded that the Co-sulfide species formed in sulfided Co/Al[sub 2]O[sub 3] and CoMo/Al[sub 2]O[sub 3] catalysts are essentially the same, only the particle size and ordering of the Co-sulfide species may differ, as in the case of Co/C and CoMo/C catalysts. The function of the Mo, which is present as MoS[sub 2], is merely to stabilize very small Co-sulfide particles, which in the limit contain only one single Co atom. Furthermore, it turns out that the value of the electric quadrupole splitting (Q.S. value) of the Co-sulfide phase in the sulfided catalysts depends on the sulfiding temperature and Co content. This observation leads to the conclusion that large Q.S. values point to the presence of very small Co-sulfide entities or particles (the lower limit being [open quotes]particles[close quotes] containing only one Co atom, such as proposed in the [open quotes]Co-Mo-S[close quotes] model), whereas small Q.S. values point to the presence of large Co-sulfide particles (the upper limit being crystalline Co[sub 9]S[sub 8]). 28 refs., 7 figs., 6 tabs.« less

  9. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation.

    PubMed

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-08-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H 2 -assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration-corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications.

  10. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation

    PubMed Central

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-01-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H2-assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration–corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications. PMID:28875160

  11. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu Zhiqiang; Fang Yan

    2008-06-03

    The influence of temperature on synthesizing single-walled carbon nanotubes (SWCNTs) by catalytic chemical vapor deposition of methane over Mo-Co-MgO catalyst was studied by Transmission Electron Microscope (TEM) and Raman scattering. The Mo-Co-MgO bimetallic catalyst was prepared by decomposing the mixture of magnesium nitrate, ammonium molybdate, citric acid, and cobalt nitrate. The results show that Mo-Co-MgO bimetallic catalyst is effective to synthesize SWCNTs. By using Mo-Co-MgO bimetallic catalyst, generation of SWCNTs even at 940 K was demonstrated. The optimum temperature of synthesizing SWCNTs over Mo-Co-MgO bimetallic catalyst may be about 1123 K. At 1123 K, the diameters of SWCNTs are inmore » the range of 0.75-1.65 nm. The content of SWCNTs is increased with the increase of temperature below 1123 K and the carbon yield rate is also increased with the increase of synthesis temperature. Therefore, the amount of SWCNTs increases with the increase of temperature below 1123 K. However, above 1123 K, the content of SWCNTs is decreased with the increase of temperature; therefore, it is not effective to increase the amount of SWCNTs through increasing synthesis temperature above 1123 K.« less

  12. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al 2O 3 catalysts

    NASA Astrophysics Data System (ADS)

    Domínguez-Crespo, M. A.; Díaz-García, L.; Arce-Estrada, E. M.; Torres-Huerta, A. M.; Cortéz-De la Paz, M. T.

    2006-11-01

    Four NiMo catalyst supported on Al 2O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.

  13. Highly active Au/δ-MoC and Au/β-Mo 2C catalysts for the low-temperature water gas shift reaction: effects of the carbide metal/carbon ratio on the catalyst performance

    DOE PAGES

    Posada-Pérez, Sergio; Gutiérrez, Ramón A.; Zuo, Zhijun; ...

    2017-05-08

    In this paper, the water gas shift (WGS) reaction catalyzed by orthorhombic β-Mo 2C and cubic δ-MoC surfaces with and without Au clusters supported thereon has been studied by means of a combination of sophisticated experiments and state-of-the-art computational modeling. Experiments evidence the importance of the metal/carbon ratio on the performance of these systems, where Au/δ-MoC is presented as a suitable catalyst for WGS at low temperatures owing to its high activity, selectivity (only CO 2 and H 2 are detected), and stability (oxycarbides are not observed). Periodic density functional theory-based calculations show that the supported Au clusters and themore » Au/δ-MoC interface do not take part directly in water dissociation but their presence is crucial to switch the reaction mechanism, drastically decreasing the effect of the reverse WGS reaction and favoring the WGS products desorption, thus leading to an increase in CO 2 and H 2 production. Finally, the present results clearly display the importance of the Mo/C ratio and the synergy with the admetal clusters in tuning the activity and selectivity of the carbide substrate.« less

  14. Highly active Au/δ-MoC and Au/β-Mo 2C catalysts for the low-temperature water gas shift reaction: effects of the carbide metal/carbon ratio on the catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posada-Pérez, Sergio; Gutiérrez, Ramón A.; Zuo, Zhijun

    In this paper, the water gas shift (WGS) reaction catalyzed by orthorhombic β-Mo 2C and cubic δ-MoC surfaces with and without Au clusters supported thereon has been studied by means of a combination of sophisticated experiments and state-of-the-art computational modeling. Experiments evidence the importance of the metal/carbon ratio on the performance of these systems, where Au/δ-MoC is presented as a suitable catalyst for WGS at low temperatures owing to its high activity, selectivity (only CO 2 and H 2 are detected), and stability (oxycarbides are not observed). Periodic density functional theory-based calculations show that the supported Au clusters and themore » Au/δ-MoC interface do not take part directly in water dissociation but their presence is crucial to switch the reaction mechanism, drastically decreasing the effect of the reverse WGS reaction and favoring the WGS products desorption, thus leading to an increase in CO 2 and H 2 production. Finally, the present results clearly display the importance of the Mo/C ratio and the synergy with the admetal clusters in tuning the activity and selectivity of the carbide substrate.« less

  15. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, William David

    2001-01-01

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m 2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO 3/(MoO 3 + V 2O 5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V +4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of watermore » to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V 2O 5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V 2O 5, solid solutions of Mo in V 2O 5, V 9Mo 6O 40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO 3/(V 2O 5 + MoO 3), determined by EDS analysis.« less

  16. Design of active and stable Co-Mo-S x chalcogels as pH-universal catalyst for the hydrogen evolution reaction

    DOE PAGES

    Staszak-Jirkovský, Jakub; Malliakas, Christos D.; Lopes, Pietro P.; ...

    2015-11-30

    Three of the fundamental catalytic limitations that have plagued the electrochemical production of hydrogen for decades still remain: low efficiency, short lifetime of catalysts and a lack of low-cost materials. Here, we address these three challenges by establishing and exploring an intimate functional link between the reactivity and stability of crystalline (CoS 2 and MoS 2) and amorphous (CoS x and MoS x) hydrogen evolution catalysts. We propose that Co 2+ and Mo 4+ centers promote the initial discharge of water (alkaline solutions) or hydronium ions (acid solutions). We establish that although CoS x materials are more active than MoSmore » x they are also less stable, suggesting that the active sites are defects formed after dissolution of Co and Mo cations. Finally, by combining the higher activity of CoS x building blocks with the higher stability of MoS x units into a compact and robust CoMoS x structure, we are able to design a low-cost alternative to noble metal catalysts for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments.« less

  17. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts.

    PubMed

    Lin, Lili; Zhou, Wu; Gao, Rui; Yao, Siyu; Zhang, Xiao; Xu, Wenqian; Zheng, Shijian; Jiang, Zheng; Yu, Qiaolin; Li, Yong-Wang; Shi, Chuan; Wen, Xiao-Dong; Ma, Ding

    2017-04-06

    Polymer electrolyte membrane fuel cells (PEMFCs) running on hydrogen are attractive alternative power supplies for a range of applications, with in situ release of the required hydrogen from a stable liquid offering one way of ensuring its safe storage and transportation before use. The use of methanol is particularly interesting in this regard, because it is inexpensive and can reform itself with water to release hydrogen with a high gravimetric density of 18.8 per cent by weight. But traditional reforming of methanol steam operates at relatively high temperatures (200-350 degrees Celsius), so the focus for vehicle and portable PEMFC applications has been on aqueous-phase reforming of methanol (APRM). This method requires less energy, and the simpler and more compact device design allows direct integration into PEMFC stacks. There remains, however, the need for an efficient APRM catalyst. Here we report that platinum (Pt) atomically dispersed on α-molybdenum carbide (α-MoC) enables low-temperature (150-190 degrees Celsius), base-free hydrogen production through APRM, with an average turnover frequency reaching 18,046 moles of hydrogen per mole of platinum per hour. We attribute this exceptional hydrogen production-which far exceeds that of previously reported low-temperature APRM catalysts-to the outstanding ability of α-MoC to induce water dissociation, and to the fact that platinum and α-MoC act in synergy to activate methanol and then to reform it.

  18. Metal leaching from refinery waste hydroprocessing catalyst.

    PubMed

    Marafi, Meena; Rana, Mohan S

    2018-05-18

    The present study aims to develop an eco-friendly methodology for the recovery of nickel (Ni), molybdenum (Mo), and vanadium (V) from the refinery waste spent hydroprocessing catalyst. The proposed process has two stages: the first stage is to separate alumina, while the second stage involves the separation of metal compounds. The effectiveness of leaching agents, such as NH 4 OH, (NH 4 ) 2 CO 3 , and (NH 4 ) 2 S 2 O 8 , for the extraction of Mo, V, Ni, and Al from the refinery spent catalyst has been reported as a function of reagent concentration (0.5 to 2.0 molar), leaching time (1 to 6 h), and temperature (35 to 60°C). The optimal leaching conditions were achieved to obtain the maximum recovery of Mo, Ni, and V metals. The effect of the mixture of multi-ammonium salts on the metal extraction was also studied, which showed an adverse effect for Ni and V, while marginal improvement was observed for Mo leaching. The ammonium salts can form soluble metal complexes, in which stability or solubility depends on the nature of ammonium salt and the reaction conditions. The extracted metals and support can be reused to synthesize a fresh hydroprocessing catalyst. The process will reduce the refinery waste and recover the expensive metals. Therefore, the process is not only important from an environmental point of view but also vital from an economic perspective.

  19. Catalytic functionalities of supported sulfides. I. Effect of support and additives on the CoMo catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidhar, G.; Massoth, F.E.; Shabtai, J.

    1984-01-01

    C-S hydrogenolysis (HDS) of thiophene, hydrogenation (HYD) of 1-hexene, and hydrocracking (HCG) of 2,4,4-trimethyl-1-pentene, were used as separate model test reactions to differentiate and assess the catalytic functionalities of sulfided CoMo catalysts, and their dependence on the nature of the support and incorporation of additives. Rate constants and relative catalyst activities for these three reaction types were determined. HDS and HYD activities of CoMo supported on different types of Al/sub 2/O/sub 3/ were higher, while the HCG activity was lower compared with CoMo supported on SiO/sub 2/-Al/sub 2/O/sub 3/, SiO/sub 2/-MgO, or TiO/sub 2/. For SiO/sub 2/-Al/sub 2/O/sub 3/ supportsmore » both HDS and HYD activities decreased with increase in SiO/sub 2/ content from 10 to 75%, while HCG activity showed the opposite trend. Additives to a finished CoMo catalyst at 0.5% level caused variations in HDS and HCG activities, while HYD was essentially unaffected. HDS was promoted by NH/sub 4/HF/sub 2/ and NH/sub 4/Cl, but depressed by NaNO/sub 3/, Ca(NO/sub 3/)/sub 2/, and H/sub 3/BO/sub 3/. HCG was promoted by NH/sub 4/HF/sub 2/, NH/sub 4/Cl, and H/sub 3/BO/sub 3/. Additives at 5% level, prior to or after CoMo impregnation, showed a strong depressing effect on HDS and a lesser effect on HYD, while HCG was strongly promoted by NH/sub 4/HF/sub 2/, Ti isopropoxide, and H/sub 3/BO/sub 3/. The changes in catalytic functionalities are rationalized in terms of different interactions between CoMo phase, support, and additives. 3 tables, 1 figure.« less

  20. CoMoS2/rGO/C3N4 ternary heterojunctions catalysts with high photocatalytic activity and stability for hydrogen evolution under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Xuejun; Si, Zhichun; Liu, Liping; Wang, Zehao; Chen, Ze; Ran, Rui; He, Yonghong; Weng, Duan

    2018-03-01

    Noble metal free MoS2/g-C3N4 catalyst has attracted intense attentions for visible light photocatalytic hydrogen evolution as a result of its earth abundance, low cost and unique heterojunctions stacked with two dimensional sheets. However, the low charge separation efficiency resulted from the poor conductivity of g-C3N4 and MoS2, and lack of abundant active sites from coordinative unsaturated atoms in MoS2, restricts the photocatalytic hydrogen evolution activity and stability enhancement of MoS2/C3N4 composite catalysts. Herein, CoMoS2/rGO/g-C3N4 catalysts with ternary heterojunctions are prepared by facile solvothermal method, which exhibit high visible light photocatalytic activity and stability for hydrogen evolution. The optimal hydrogen evolution rate of CoMoS2/rGO/g-C3N4 catalysts is 684 μmol g-1 h-1 when the content of CoMoS2 is 2% and the content of rGO is 0.5%. The stability of CoMoS2/rGO/C3N4 catalysts just decrease about 3% after 4 cycling runs for 16 h. The good catalytic performances of catalysts are attributed to the synergistic effect among the g-C3N4 nanosheets, rGO nanosheets and CoMoS2 nanosheets. The high conductivity of rGO nanosheets enhances the electron-hole separation and charge transfer, and Co doping increases the active sites for hydrogen evolution due to the increase of unsaturated atoms in CoMoS2 nanosheets.

  1. A review of metal recovery from spent petroleum catalysts and ash.

    PubMed

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100)

    NASA Astrophysics Data System (ADS)

    McManus, Jesse R.; Vohs, John M.

    2014-12-01

    The desire to produce fuels and chemicals in an energy conscious, environmentally sympathetic approach has motivated considerable research on the use of cellulosic biomass feedstocks. One of the major challenges facing the utilization of biomass is finding effective catalysts for the efficient and selective removal of oxygen from the highly-oxygenated, biomass-derived platform molecules. Herein, a study of the reaction pathways for the biomass-derived platform molecule furfural and biomass-derived sugar model compound glycolaldehyde provides insight into the mechanisms of hydrodeoxygenation (HDO) on a model molybdenum carbide catalyst, Mo2C/Mo(100). Using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS), it was found that the Mo2C/Mo(100) catalyst was active for selective deoxygenation of the aldehyde carbonyl by facilitating adsorption of the aldehyde in an η2(C,O) bonding configuration. Furthermore, the catalyst showed no appreciable activity for furanic ring hydrogenation, highlighting the promise of relatively inexpensive Mo2C catalysts for selective HDO chemistry.

  3. Dual role of monolayer MoS{sub 2} in enhanced photocatalytic performance of hybrid MoS{sub 2}/SnO{sub 2} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Shuang-Shuang; Huang, Wei-Qing, E-mail: wqhuang@hnu.edu.cn, E-mail: gfhuang@hnu.edu.cn; Yang, Yin-Cai

    2016-05-28

    The enhanced photocatalytic performance of various MoS{sub 2}-based nanomaterials has recently been observed, but the role of monolayer MoS{sub 2} is still not well elucidated at the electronic level. Herein, focusing on a model system, hybrid MoS{sub 2}/SnO{sub 2} nanocomposite, we first present a theoretical elucidation of the dual role of monolayer MoS{sub 2} as a sensitizer and a co-catalyst by performing density functional theory calculations. It is demonstrated that a type-II, staggered, band alignment of ∼0.49 eV exists between monolayer MoS{sub 2} and SnO{sub 2} with the latter possessing the higher electron affinity, or work function, leading to the robustmore » separation of photoexcited charge carriers between the two constituents. Under irradiation, the electrons are excited from Mo 4d orbitals to SnO{sub 2}, thus enhancing the reduction activity of latter, indicating that the monolayer MoS{sub 2} is an effective sensitizer. Moreover, the Mo atoms, which are catalytically inert in isolated monolayer MoS{sub 2}, turn into catalytic active sites, making the monolayer MoS{sub 2} to be a highly active co-catalyst in the composite. The dual role of monolayer MoS{sub 2} is expected to arise in other MoS{sub 2}-semiconductor nanocomposites. The calculated absorption spectra can be rationalized by available experimental results. These findings provide theoretical evidence supporting the experimental reports and pave the way for developing highly efficient MoS{sub 2}-based photocatalysts.« less

  4. A theoretical study on reaction mechanisms and kinetics of thiophene hydrodesulfurization over MoS 2 catalysts

    DOE PAGES

    Jin, Qiu; Chen, Biaohua; Ren, Zhibo; ...

    2018-02-10

    In the present study, thiophene hydrodesulphurization (HDS) over the Mo-edge, the S-edge, and the Mo-S connection edge of MoS 2 catalyst with 50% sulfur coverage was studied using first-principles based microkinetic modeling. Two parallel HDS routes, i.e., direct desulfurization (DDS) and hydrogenation (HYD) were taken into account. It has been found that the major reaction route of thiophene HDS on the Mo- and the Mo-S edges is temperature dependent. In the low temperature range of 500–600 K, the HYD route is dominant, leading to the C 4H 8 formation. As the temperature increases, the DDS route becomes competitive with themore » HYD route. At the temperature above 650 K, the DDS route will be the dominant HDS reaction route on the Mo- and the Mo-S edges. The DDS route leading to the formation of C 4H 6 is the major thiophene HDS reaction route on the S-edge in the entire temperature range of 500–750 K. The microkinetic modeling results show the overall HDS activity on the S-edge is lower than it on the Mo- and the Mo-S edges. The Mo-S edge also provides a preferential reaction pathway, which facilitates 2-hydrothiophene migration from the Mo-edge to the S-edge, followed by remaining elementary steps with lower activation barriers in the DDS route.« less

  5. A theoretical study on reaction mechanisms and kinetics of thiophene hydrodesulfurization over MoS 2 catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Qiu; Chen, Biaohua; Ren, Zhibo

    In the present study, thiophene hydrodesulphurization (HDS) over the Mo-edge, the S-edge, and the Mo-S connection edge of MoS 2 catalyst with 50% sulfur coverage was studied using first-principles based microkinetic modeling. Two parallel HDS routes, i.e., direct desulfurization (DDS) and hydrogenation (HYD) were taken into account. It has been found that the major reaction route of thiophene HDS on the Mo- and the Mo-S edges is temperature dependent. In the low temperature range of 500–600 K, the HYD route is dominant, leading to the C 4H 8 formation. As the temperature increases, the DDS route becomes competitive with themore » HYD route. At the temperature above 650 K, the DDS route will be the dominant HDS reaction route on the Mo- and the Mo-S edges. The DDS route leading to the formation of C 4H 6 is the major thiophene HDS reaction route on the S-edge in the entire temperature range of 500–750 K. The microkinetic modeling results show the overall HDS activity on the S-edge is lower than it on the Mo- and the Mo-S edges. The Mo-S edge also provides a preferential reaction pathway, which facilitates 2-hydrothiophene migration from the Mo-edge to the S-edge, followed by remaining elementary steps with lower activation barriers in the DDS route.« less

  6. Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals.

    PubMed

    Cheng, Shouyun; Wei, Lin; Zhao, Xianhui; Kadis, Ethan; Cao, Yuhe; Julson, James; Gu, Zhengrong

    2016-06-25

    Bio-oil can be upgraded through hydrodeoxygenation (HDO). Low-cost and effective catalysts are crucial for the HDO process. In this study, four inexpensive combinations of Ni based activated carbon synergistic catalysts including Ni/AC, Ni-Fe/AC, Ni-Mo/AC and Ni-Cu/AC were evaluated for HDO of prairie cordgrass (PCG) bio-oil. The tests were carried out in the autoclave under mild operating conditions with 500psig of H2 pressure and 350°C temperature. The catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscope (TEM). The results show that all synergistic catalysts had significant improvements on the physicochemical properties (water content, pH, oxygen content, higher heating value and chemical compositions) of the upgraded PCG bio-oil. The higher heating value of the upgraded bio-oil (ranging from 29.65MJ/kg to 31.61MJ/kg) improved significantly in comparison with the raw bio-oil (11.33MJ/kg), while the oxygen content reduced to only 21.70-25.88% from 68.81% of the raw bio-oil. Compared to raw bio-oil (8.78% hydrocarbons and no alkyl-phenols), the Ni/AC catalysts produced the highest content of gasoline range hydrocarbons (C6-C12) at 32.63% in the upgraded bio-oil, while Ni-Mo/AC generated the upgraded bio-oil with the highest content of gasoline blending alkyl-phenols at 38.41%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Synthesis of renewable diesel through hydrodeoxygenation reaction from nyamplung oil (Calophyllum Inophyllum oil) using NiMo/Z and NiMo/C catalysts with rapid heating and cooling method

    NASA Astrophysics Data System (ADS)

    Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.

    2016-11-01

    The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.

  8. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group bymore » dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.« less

  9. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  10. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE PAGES

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    2016-09-20

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  11. Synergetic effect at the interfaces of solution processed MoS2-WS2 composite for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Kim, Seong Ku; Song, Wooseok; Ji, Seulgi; Lim, Yi Rang; Lee, Young Bum; Myung, Sung; Lim, Jongsun; An, Ki-Seok; Lee, Sun Sook

    2017-12-01

    Recently, the importance of developing an effective catalyst for hydrogen evolution reaction is emphasized because hydrogen fueled energy conversion processes are gaining attention as the next generation energy production method. We propose a transition metal dichalcogenide composite catalyst based on molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on reduced graphene oxide coated nickel (rGO-Ni) foams. The composite exhibited enhanced catalytic activity with observed on-set potential of ∼275 mV at -10 mA/cm2 and Tafel slope of 54.1 mV/dec when the composition of the composite was 50%MoS2-50%WS2. The composite catalyst demonstrated high-stability up to 300 cycles. In order to understand the enhanced catalytic activity, X-ray photoelectron spectroscopy compositional analysis was utilized. We propose that the enhancement of catalytic activities exhibited by the composited samples were achieved due to introduction of new type of interface between MoS2 and WS2 grains, regional transition of 2H phase MoS2 and WS2 to 1T phase, and formation of excess sulfur which depended directly on the composition.

  12. Quantitative determination of oxygen defects, surface lewis acidity, and catalytic properties of mesoporous MoO3/SBA-15 catalysts

    NASA Astrophysics Data System (ADS)

    González, Julio; Wang, Jin An; Chen, Lifang; Manríquez, Maria; Salmones, José; Limas, Roberto; Arellano, Ulises

    2018-07-01

    A set of MoO3/SBA-15 mesoporous catalysts were characterized with a variety of spectroscopic techniques and their crystalline structures were refined with Rietveld method. Oxygen defect concentration, crystallite size, phase composition, surface acidity, mesoporous regularity, and textural properties were reported. Both α-MoO3 and β-MoO3 phases coexisted but α-MoO3 was predominated. Oxygen defects were created in the orthorhombic structure and its concentration decreased from 3.08% for the 20 wt%MoO3/SBA-15 to 0.55% for the 25 wt%MoO3/SBA-15. All the MoO3/SBA-15 catalysts chiefly contained a big number of Lewis acid sites originating from oxygen defects in MoO3 crystals. In the absence of formic acid, the oxidation of 4,6-dibenzothiophene (4,6-DMDBT) in a model diesel was almost proportional to the number of Lewis acid sites. In the presence of formic acid, 4,6-DMDBT oxidation was significantly affected by the formation of surface peroxometallic complex and Lewis acidity. Formic acid addition could improve the ODS efficiency by promoting peroxometallic complex formation and enhancing oxidant stability. Under the optimal reaction condition using the best 15 and 20 wt%MoO3/SBA-15 catalysts, more than 99% 4,6-DMDBT could be removed at 70 °C within 30 min. This work confirmed that 4,6-DMDBT oxidation is a texture and particle size sensitive and Lewis acidity dependent reaction. This work also shows that crystalline structure refinement combination with experiments can gain new insights in the design of heterogeneous nanocatalysts and help to better understand the catalytic behavior in the oxidative desulfurization reactions.

  13. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Binjie; Chen, Yuanfu; Qi, Fei; Wang, Xinqiang; Zhang, Wanli; Li, Yanrong; Li, Xuesong

    2017-06-01

    Clean hydrogen split from water by hydrogen evolution reaction (HER) is significant for sustainability, environmental emissions, and energy security. So far, it is still a big challenge to develop highly efficient noble metal-free electrocatalysts with comparable HER efficiency to platinum-based catalysts, which are mainly hindered by the intrinsic electrocatalytic property and particularly the reasonable nanostructure design of the electrocatalyst. Here we report a newly-designed three-dimensional hierarchical MoSe2 nanoarchitecture (3D-MoSe2) with outstanding HER performance. The 3D-MoSe2 is grown by chemical vapor deposition method with using perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt as a seeding promoter. The as-grown 3D-MoSe2 nanoarchitecture is highly crystalline and constructed with curly few-layered vertical nanosheets onto the horizontal layer, which has much larger (~12 times) electrochemically active area and much smaller (only 2%) charge transfer resistance compared to conventional horizontal MoSe2 layer. With these advantages, the Tafel slope of 3D-MoSe2 can be as small as 47.3 mV/dev, which is the smallest record ever reported for pure MoSe2, even for pure two-dimensional transition metal dichalcogenides (2D-TMDs) catalysts. Furthermore, when 3D-MoSe2 is grown on the multiwall carbon nanotube film, its Tafel slope can be further reduced down to 32.5 mV/dec, which is close to the theoretical limit (29 mV/dec) of HER, and comparable to platinum-based electrocatalysts, making it promising as a highly efficient electrocatalyst for hydrogen evolution.

  14. Catalyst for selective NO.sub.x reduction using hydrocarbons

    DOEpatents

    Marshall, Christopher L [Naperville, IL; Neylon, Michael K [Naperville, IL

    2007-05-22

    A two phase catalyst is disclosed with one or more transition metals such as Cu, Co, Fe, Ag and Mo supported on a molecular sieve having a pore size not greater than 8 .ANG. along with a stabilizing oxide of one or more of the oxides of Zr, Mo, V, Nb or the rare earths coating the molecular sieve. A method of preparing the two phase catalyst and using same to remediate NO.sub.x in combustion gases is also described.

  15. Cracking vegetable oil from Callophylluminnophyllum L. seeds to bio-gasoline by Ni-Mo/Al2O3 and Ni-Mo/Zeolite as micro-porous catalysts

    NASA Astrophysics Data System (ADS)

    Savitri, Effendi, R.; Tursiloadi, S.

    2016-02-01

    Natural minerals such as zeolite are local natural resources in the various regions in Indonesia. Studies on the application of natural mineral currently carried out by national research institutions, among others, as a filler, bleaching agent, or dehydration agent. However, not many studies that utilize these natural minerals as green catalysts material which has high performance for biomass conversion processes and ready to be applied directly by the bio-fuel industry. The trend movement of green and sustainable chemistry research that designing environmentally friendly chemical processes from renewable raw materials to produce innovative products derived biomass for bio-fuel. Callophylluminnophyllum L. seeds can be used as raw material for bio-energy because of its high oil content. Fatty acid and triglyceride compounds from this oil can be cracked into bio-gasoline, which does not contain oxygen in the hydrocarbon structure. Bio-gasoline commonly is referred to as drop-in biofuel because it can be directly used as a substitute fuel. This paper focused on the preparation and formulation of the catalyst NiMo/H-Zeolite and Ni-Mo/Al2O3 which were used in hydro-cracking process of oil from Callophylluminnophyllum L. seeds to produce bio-gasoline. The catalysts were analyzed using XRD, BET and IR-adsorbed pyridine method. The results of hydro-cracking products mostly were paraffin (C10-C19) straight chain, with 59.5 % peak area based on GC-MS analysis.

  16. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.

    PubMed

    Xu, Yin; Li, Xiaoyi; Cheng, Xiang; Sun, Dezhi; Wang, Xueye

    2012-03-06

    To overcome the drawback of catalytic wet air oxidation (CWAO) with high temperature and high pressure, the catalytic activity of Mo-Zn-Al-O catalyst for degradation of cationic red GTL under room temperature and atmospheric pressure was investigated. Mo-Zn-Al-O catalyst was prepared by coprecipitation and impregnation. XRD, TG-DTG, and XPS were used to characterize the resulting sample. Central composition design using response surface methodology was employed to optimize correlation of factors on the decolorization of cationic red GTL. The results show that the optimal conditions of pH value, initial concentration of dye and catalyst dosage were found to be 4.0, 85 mg/L and 2.72 g/L, respectively, for maximum decolorization of 80.1% and TOC removal of 50.9%. Furthermore, the reaction on the Mo-Zn-Al-O catalyst and degradation mechanism of cationic red GTL was studied by Electron spin resonance (ESR) and GC-MS technique. The possible reaction mechanism was that the Mo-Zn-Al-O catalyst can efficiently react with adsorbed oxygen/H(2)O to produce ·OH and (1)O(2) and finally induce the degradation of cationic red GTL. GC-MS analysis of the degradation products indicates that cationic red GTL was initiated by the cleavage of -N ═ N- and the intermediates were further oxidized by ·OH or (1)O(2).

  17. Highly efficient hydrogen evolution based on Ni3S4@MoS2 hybrids supported on N-doped reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobing; Zhong, Wei; Wu, Liqian; Sun, Yuan; Wang, Tingting; Wang, Yuanqi; Du, Youwei

    2018-01-01

    Hydrogen evolution reaction (HER) through water splitting at low overpotential is an appealing technology to produce renewable energy, wherein the design of stable electrocatalysts is very critical. To achieve optimal electrochemical performance, a highly efficient and stable noble-metal-free HER catalyst is synthesized by means of a facile hydrothermal co-synthesis. It consists of Ni3S4 nanosheets and MoS2 nanolayers supported on N-doped reduced graphene oxide (Ni3S4/MoS2@N-rGO). The optimized sample provides a large amount of active sites that benefit electron transfer in 3D conductive networks. Thanks to the strong synergistic effect in the catalyst network, we achieved a low overpotential of 94 mV, a small Tafel slope of 56 mV/dec and remarkable durability in an acidic medium.

  18. Carbon-supported, selenium-modified ruthenium-molybdenum catalysts for oxygen reduction in acidic media.

    PubMed

    Guinel, Maxime J-F; Bonakdarpour, Arman; Wang, Biao; Babu, Panakkattu K; Ernst, Frank; Ramaswamy, Nagappan; Mukerjee, Sanjeev; Wieckowski, Andrzej

    2009-07-20

    The stability and oxygen reduction activity of two carbon-supported catalyst materials are reported. The catalysts, Se/Ru and Se/(Ru-Mo), were prepared by using a chemical reduction method. The catalyst nanoparticles were evenly dispersed onto globular amorphous carbon supports, and their average size was ca. 2.4 nm. Thermal treatment at 500 °C for 2 h in an inert argon atmosphere resulted in coarsening of the nanoparticles, and also in some decrease of their activity. A gradual reduction of activity was also observed for Se/Ru during potential-cycle experiments. However, the incorporation of small amounts of Mo into the Se/Ru catalysts considerably improved the stability of the catalyst against dissolution. The Mo-containing samples showed excellent oxygen reduction activities even after cycling the potential 1000 times between 0.7 and 0.9 V. Furthermore, they showed excellent fuel-cell behavior. The performance of the Se/Ru catalysts is greatly improved by the addition of small amounts of elemental Mo. Possible mechanisms responsible for the improvement of the activity are discussed. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ganoderma-Like MoS2 /NiS2 with Single Platinum Atoms Doping as an Efficient and Stable Hydrogen Evolution Reaction Catalyst.

    PubMed

    Guan, Yongxin; Feng, Yangyang; Wan, Jing; Yang, Xiaohui; Fang, Ling; Gu, Xiao; Liu, Ruirui; Huang, Zhengyong; Li, Jian; Luo, Jun; Li, Changming; Wang, Yu

    2018-05-27

    Herein, a unique ganoderma-like MoS 2 /NiS 2 hetero-nanostructure with isolated Pt atoms anchored is reported. This novel ganoderma-like heterostructure can not only efficiently disperse and confine the few-layer MoS 2 nanosheets to fully expose the edge sites of MoS 2 , and provide more opportunity to capture the Pt atoms, but also tune the electronic structure to modify the catalytic activity. Because of the favorable dispersibility and exposed large specific surface area, single Pt atoms can be easily anchored on MoS 2 nanosheets with ultrahigh loading of 1.8 at% (the highest is 1.3 at% to date). Owing to the ganoderma-like structure and platinum atoms doping, this catalyst shows Pt-like catalytic activity for the hydrogen evolution reaction with an ultralow overpotential of 34 mV and excellent durability of only 2% increase in overpotential for 72 h under the constant current density of 10 mA cm -2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    PubMed Central

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  1. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawal, Adeniyi; Manganaro, James; Goodall, Brian

    Valicor’s proprietary wet extraction process in conjunction with thermochemical pre-treatment was performed on algal biomass from two different algae strains, Nannochloropsis Salina (N.S.) and Chlorella to produce algae oils. Polar lipids such as phospholipids were hydrolyzed, and metals and metalloids, known catalyst poisons, were separated into the aqueous phase, creating an attractive “pre-refined” oil for hydrodeoxygenation (HDO) upgrading by Stevens. Oil content and oil extraction efficiency of approximately 30 and 90% respectively were achieved. At Stevens, we formulated a Pt-based bi-metallic catalyst which was demonstrated to be effective in the hydro-treating of the algae oils to produce ‘green’ diesel. Themore » bi-metallic catalyst was wash-coated on a monolith, and in conjunction with a high throughput high pressure (pilot plant) reactor system, was used in hydrotreating algae oils from N.S. and Chlorella. Mixtures of these algae oils and refinery light atmospheric gas oil (LAGO) supplied by our petroleum refiner partner, Marathon Petroleum Corporation, were co-processed in the pilot plant reactor system using the Pt-based bi-metallic monolith catalyst. A 26 wt% N.S. algae oil/74 wt % LAGO mixture hydrotreated in the reactor system was subjected to the ASTM D975 Diesel Fuel Specification Test and it met all the important requirements, including a cetane index of 50.5. An elemental oxygen analysis performed by an independent and reputable lab reported an oxygen content of trace to none found. The successful co-processing of a mixture of algae oil and LAGO will enable integration of algae oil as a refinery feedstock which is one of the goals of DOE-BETO. We have presented experimental data that show that our precious metal-based catalysts consume less hydrogen than the conventional hydrotreating catalyst NiMo Precious metal catalysts favor the hydrodecarbonylation/hydrodecarboxylation route of HDO over the dehydration route preferred by base

  2. MoS2 @HKUST-1 Flower-Like Nanohybrids for Efficient Hydrogen Evolution Reactions.

    PubMed

    Wang, Chengli; Su, Yingchun; Zhao, Xiaole; Tong, Shanshan; Han, Xiaojun

    2018-01-24

    A novel MoS 2 -based flower-like nanohybrid for hydrogen evolution was fabricated through coating the Cu-containing metal-organic framework (HKUST-1) onto MoS 2 nanosheets. It is the first time that MoS 2 @HKUST-1 nanohybrids have been reported for the enhanced electrochemical performance of HER. The morphologies and components of the MoS 2 @HKUST-1 flower-like nanohybrids were characterized by scanning electron microscopy, X-ray diffraction analysis and Fourier transform infrared spectroscopy. Compared with pure MoS 2 , the MoS 2 @HKUST-1 hybrids exhibit enhanced performance on hydrogen evolution reaction with an onset potential of -99 mV, a smaller Tafel slope of 69 mV dec -1 , and a Faradaic efficiency of nearly 100 %. The MoS 2 @HKUST-1 flower-like nanohybrids exhibit excellent stability in acidic media. This design opens new possibilities to effectively synthesize non-noble metal catalysts with high performance for the hydrogen evolution reaction (HER). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel [Chihuahua, MX; Chianelli, Russell R [El Paso, TX; Fuentes, Sergio [Ensenada, MX; Torres, Brenda [El Paso, TX

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  4. Improving the Photo-Oxidative Performance of Bi2MoO6 by Harnessing the Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition.

    PubMed

    Wu, Xuelian; Hart, Judy N; Wen, Xiaoming; Wang, Liang; Du, Yi; Dou, Shi Xue; Ng, Yun Hau; Amal, Rose; Scott, Jason

    2018-03-21

    It has been reported that photogenerated electrons and holes can be directed toward specific crystal facets of a semiconductor particle, which is believed to arise from the differences in their surface electronic structures, suggesting that different facets can act as either photoreduction or photo-oxidation sites. This study examines the propensity for this effect to occur in faceted, plate-like bismuth molybdate (Bi 2 MoO 6 ), which is a useful photocatalyst for water oxidation. Photoexcited electrons and holes are shown to be spatially separated toward the {100} and {001}/{010} facets of Bi 2 MoO 6 , respectively, by facet-dependent photodeposition of noble metals (Pt, Au, and Ag) and metal oxides (PbO 2 , MnO x , and CoO x ). Theoretical calculations revealed that differences in energy levels between the conduction bands and valence bands of the {100} and {001}/{010} facets can contribute to electrons and holes being drawn to different surfaces of the plate-like Bi 2 MoO 6 . Utilizing this knowledge, the photo-oxidative capability of Bi 2 MoO 6 was improved by adding an efficient water oxidation co-catalyst, CoO x , to the system, whereby the extent of enhancement was shown to be governed by the co-catalyst location. A greater oxygen evolution occurred when CoO x was selectively deposited on the hole-rich {001}/{010} facets of Bi 2 MoO 6 compared to when CoO x was randomly located across all of the facets. The elevated performance exhibited for the selectively loaded CoO x /Bi 2 MoO 6 was ascribed to the greater opportunity for hole trapping by the co-catalyst being accentuated over other potentially detrimental effects, such as the co-catalyst acting as a recombination medium and/or covering reactive sites. The results indicate that harnessing the synergy between the spatial charge separation and the co-catalyst location on the appropriate facets of plate-like Bi 2 MoO 6 can promote its photocatalytic activity.

  5. Active hydrogen evolution through lattice distortion in metallic MoTe2

    NASA Astrophysics Data System (ADS)

    Seok, Jinbong; Lee, Jun-Ho; Cho, Suyeon; Ji, Byungdo; Kim, Hyo Won; Kwon, Min; Kim, Dohyun; Kim, Young-Min; Oh, Sang Ho; Wng Kim, Sung; Lee, Young Hee; Son, Young-Woo; Yang, Heejun

    2017-06-01

    Engineering surface atoms of transition metal dichalcogenides (TMDs) is a promising way to design catalysts for efficient electrochemical reactions including the hydrogen evolution reaction (HER). However, materials processing based on TMDs, such as vacancy creation or edge exposure, for active HER, has resulted in insufficient atomic-precision lattice homogeneity and a lack of clear understanding of HER over 2D materials. Here, we report a durable and effective HER at atomically defined reaction sites in 2D layered semimetallic MoTe2 with intrinsic turnover frequency (TOF) of 0.14 s-1 at 0 mV overpotential, which cannot be explained by the traditional volcano plot analysis. Unlike former electrochemical catalysts, the rate-determining step of the HER on the semimetallic MoTe2, hydrogen adsorption, drives Peierls-type lattice distortion that, together with a surface charge density wave, unexpectedly enhances the HER. The active HER using unique 2D features of layered TMDs enables an optimal design of electrochemical catalysts and paves the way for a hydrogen economy.

  6. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review.

    PubMed

    Zhao, Yufei; Zhang, Yuxia; Yang, Zhiyu; Yan, Yiming; Sun, Kening

    2013-08-01

    Scientists increasingly witness the applications of MoS 2 and MoO 2 in the field of energy conversion and energy storage. On the one hand, MoS 2 and MoO 2 have been widely utilized as promising catalysts for electrocatalytic or photocatalytic hydrogen evolution in aqueous solution. On the other hand, MoS 2 and MoO 2 have also been verified as efficient electrode material for lithium ion batteries. In this review, the synthesis, structure and properties of MoS 2 and MoO 2 are briefly summarized according to their applications for H 2 generation and lithium ion batteries. Firstly, we overview the recent advancements in the morphology control of MoS 2 and MoO 2 and their applications as electrocatalysts for hydrogen evolution reactions. Secondly, we focus on the photo-induced water splitting for H 2 generation, in which MoS 2 acts as an important co-catalyst when combined with other semiconductor catalysts. The newly reported research results of the significant functions of MoS 2 nanocomposites in photo-induced water splitting are presented. Thirdly, we introduce the advantages of MoS 2 and MoO 2 for their enhanced cyclic performance and high capacity as electrode materials of lithium ion batteries. Recent key achievements in MoS 2 - and MoO 2 -based lithium ion batteries are highlighted. Finally, we discuss the future scope and the important challenges emerging from these fascinating materials.

  7. Characterization of MoVTeNbO x catalysts during oxidation reactions using in situ/operando techniques: A review

    DOE PAGES

    Lwin, Soe; Diao, Weijian; Baroi, Chinmoy; ...

    2017-04-08

    The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less

  8. Characterization of MoVTeNbO x catalysts during oxidation reactions using in situ/operando techniques: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lwin, Soe; Diao, Weijian; Baroi, Chinmoy

    The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less

  9. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  10. Evolution of the Active Phase of CoMo/Al2O3 Catalysts under Industrial Conditions: a High-Pressure MES Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugulan, A.I.; Overweg, A.R.; Craje, M.W.J.

    2005-04-26

    The behavior of CoMo/Al2O3 catalysts sulfided in H2S/H2 gas mixture, under industrial conditions, was investigated using Moessbauer emission spectroscopy (MES). An intermediate Co-Mo phase is formed after increasing the sulfidation pressure to 4 MPa, favoring the Co-Mo-S phase formation. An increase in the quadrupole splitting value of the Co-sulfide species after treatment at 573 K is proposed as a prerequisite for the formation of ideal Co-Mo-S structures.

  11. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  12. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation

  13. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE PAGES

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia; ...

    2017-12-10

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation

  14. [Catalytic combustion of soot on combined oxide catalysts].

    PubMed

    He, Xu-wen; Yu, Jun-jie; Kang, Shou-fang; Hao, Zheng-ping; Hu, Chun

    2005-01-01

    Combined oxide catalysts are prepared for catalytic combustion of soot and regeneration from diesel emissions. Thermo-gravimetric analysis(TGA) and temperature programmed oxidation(TPO)are used to evaluate the activity of catalysts under the influence of composition,atomic ration, H2O, calcinations temperature and mass ration between catalysts and soot. Results show that Cu-Mo-O had high activity among double metal oxide catalysts. Among multicomponent metal oxide catalysts, Cu-K-Mo-O had high activity when atomic ratio Cu: K: Mo = 1:1:2 and mass ration between catalysts and soot equals 5: 1. Under this condition, soot ignition temperature of Cu-K-Mo-O catalyst was 327 degrees C. H2O addition and calcinations temperature had little influence on it,which is one kind of compatible catalyst for soot control and catalytic regeneration from diesel emissions.

  15. A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation

    NASA Astrophysics Data System (ADS)

    Jiang, Minhong; Wang, Baowei; Yao, Yuqin; Li, Zhenhua; Ma, Xinbin; Qin, Shaodong; Sun, Qi

    2013-11-01

    The CeO2-Al2O3 supports prepared with impregnation (IM), deposition precipitation (DP), and solution combustion (SC) methods for MoO3/CeO2-Al2O3 catalyst were investigated in the sulfur-resistant methanation. The supports and catalysts were characterized by N2-physisorption, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy (RS), and temperature-programmed reduction (TPR). The N2-physisorption results indicated that the DP method was favorable for obtaining better textural properties. The TEM and RS results suggested that there is a CeO2 layer on the surface of the support prepared with DP method. This CeO2 layer not only prevented the interaction between MoO3 and γ-Al2O3 to form Al2(MoO4)3 species, but also improved the dispersion of MoO3 in the catalyst. Accordingly, the catalysts whose supports were prepared with DP method exhibited the best catalytic activity. The catalysts whose supports were prepared with SC method had the worst catalytic activity. This was caused by the formation of Al2(MoO4)3 and crystalline MoO3. Additionally, the CeO2 layer resulted in the instability of catalysts in reaction process. The increasing of calcination temperature of supports reduced the catalytic activity of all catalysts. The decrease extent of the catalysts whose supports were prepared with DP method was the lowest as the CeO2 layer prevented the interaction between MoO3 and γ-Al2O3.

  16. Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction.

    PubMed

    Shi, Yi; Zhou, Yue; Yang, Dong-Rui; Xu, Wei-Xuan; Wang, Chen; Wang, Feng-Bin; Xu, Jing-Juan; Xia, Xing-Hua; Chen, Hong-Yuan

    2017-11-01

    Water-splitting devices for hydrogen generation through electrolysis (hydrogen evolution reaction, HER) hold great promise for clean energy. However, their practical application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. We previously reported that HER can be largely enhanced through finely tuning the energy level of molybdenum sulfide (MoS 2 ) by hot electron injection from plasmonic gold nanoparticles. Under this inspiration, herein, we propose a strategy to improve the HER performance of MoS 2 by engineering its energy level via direct transition-metal doping. We find that zinc-doped MoS 2 (Zn-MoS 2 ) exhibits superior electrochemical activity toward HER as evidenced by the positively shifted onset potential to -0.13 V vs RHE. A turnover of 15.44 s -1 at 300 mV overpotential is achieved, which by far exceeds the activity of MoS 2 catalysts reported. The large enhancement can be attributed to the synergistic effect of electronic effect (energy level matching) and morphological effect (rich active sites) via thermodynamic and kinetic acceleration, respectively. This design opens up further opportunities for improving electrocatalysts by incorporating promoters, which broadens the understanding toward the optimization of electrocatalytic activity of these unique materials.

  17. Selective conversion of {Mo132} Keplerate ion into 4-electron reduced crown-capped Keggin derivative [Te5Mo15O57](8-). A key intermediate to single-phase M1 multielement MoVTeO light-alkanes oxidation catalyst.

    PubMed

    Canioni, Romain; Marchal-Roch, Catherine; Leclerc-Laronze, Nathalie; Haouas, Mohamed; Taulèlle, Francis; Marrot, Jérôme; Paul, Sebastien; Lamonier, Carole; Paul, Jean-François; Loridant, Stéphane; Millet, Jean-Marc M; Cadot, Emmanuel

    2011-06-14

    {Mo(132)} Keplerate anion reacts with tellurites to give a soluble precursor to produce in hydrothermal conditions single-phase M1 MoVTeO light-alkanes oxidation catalyst. Characterization of this Te-containing intermediate by single-crystal X-ray diffraction, (125)Te NMR, UV-visible and redox titration reveals a molybdotellurite anion as a crown-capped Keggin derivative. This journal is © The Royal Society of Chemistry 2011

  18. The black rock series supported SCR catalyst for NO x removal.

    PubMed

    Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan

    2017-09-01

    Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO 2 -TiO 2 sols and regulating its catalytic active constituents with V 2 O 5 and MoO 3 . Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N 2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR), and NH 3 -temperature programmed desorption (NH 3 -TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen O α , well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO 2 -based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO 2 and H 2 O exceeding 85% at temperatures from 300 to 450 °C.

  19. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction

    DOE PAGES

    Yao, Siyu; Zhang, Xiao; Zhou, Wu; ...

    2017-06-22

    Here, the water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoCmore » at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.« less

  20. The Variation of Catalyst and Carrier Gas on Anisole Deoxygenation Reaction

    NASA Astrophysics Data System (ADS)

    Ariyani, D.; Dwi Nugrahaningtyas, Khoirina; Heraldy, E.

    2018-03-01

    This research aims to determine the best catalyst and carrier gas in anisole deoxygenation reaction. The reaction was carried out over a flow system with a variation of catalyst CoMo A (CoMo/USY reduction), CoMo B (CoMo/USY oxidation-reduction), and CoMo C (CoMo/ZAA oxidation-reduction). In addition, variation of carrier gas nitrogen and hydrogen was investigated. The result was analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS). The deoxygenation anisole result showed that CoMo A catalyst with hydrogen as the carrier gas has the highest total product yield (50.72 %), intermediate product yield (38.49 % in phenol and 6.99 % in benzaldehyde), and deoxygenation yield (5.24 %). The CoMo C catalyst exhibited the most selective deoxygenation product. The nitrogen carrier gas with the CoMo C catalyst has the best selectivity of benzene product (93.92 %).

  1. The enhancement of CuO modified V2O5-WO3/TiO2 based SCR catalyst for Hg° oxidation in simulated flue gas

    NASA Astrophysics Data System (ADS)

    Chen, Chuanmin; Jia, Wenbo; Liu, Songtao; Cao, Yue

    2018-04-01

    CuO modified V2O5-WO3/TiO2 based SCR catalysts prepared by improved impregnation method were investigated to evaluate the catalytic activity for elemental mercury (Hg°) oxidation in simulated flue gas at 150-400 °C. Nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It was found that V0.8WTi-Cu3 catalyst exhibited the superior Hg° oxidation activity and wide operating temperature window at the gas hourly space velocity (GHSV) of 3 × 105 h-1. The BET and XRD results showed that CuO was well loaded and highly dispersed on the catalysts surface. The XPS results suggested that the addition of CuO generated abundant chemisorbed oxygen, which was due to the synergistic effect between CuO and V2O5. The existence of the redox cycle of V4+ + Cu2+ ↔ V5+ + Cu+ in V0.8WTi-Cu3 catalyst enhanced Hg° oxidation activity. The effects of flue gas components (O2, NO, SO2 and H2O) on Hg° oxidation over V0.8WTi-Cu3 catalyst were also explored. Moreover, the co-presence of NO and NH3 remarkably inhibited Hg° oxidation, which was due to the competitive adsorption and reduction effect of NH3 at SCR condition. Fortunately, this inhibiting effect was gradually scavenged with the decrease of GHSV. The mechanism of Hg° oxidation was also investigated.

  2. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts

    NASA Astrophysics Data System (ADS)

    Lin, Lili; Zhou, Wu; Gao, Rui; Yao, Siyu; Zhang, Xiao; Xu, Wenqian; Zheng, Shijian; Jiang, Zheng; Yu, Qiaolin; Li, Yong-Wang; Shi, Chuan; Wen, Xiao-Dong; Ma, Ding

    2017-03-01

    Polymer electrolyte membrane fuel cells (PEMFCs) running on hydrogen are attractive alternative power supplies for a range of applications, with in situ release of the required hydrogen from a stable liquid offering one way of ensuring its safe storage and transportation before use. The use of methanol is particularly interesting in this regard, because it is inexpensive and can reform itself with water to release hydrogen with a high gravimetric density of 18.8 per cent by weight. But traditional reforming of methanol steam operates at relatively high temperatures (200-350 degrees Celsius), so the focus for vehicle and portable PEMFC applications has been on aqueous-phase reforming of methanol (APRM). This method requires less energy, and the simpler and more compact device design allows direct integration into PEMFC stacks. There remains, however, the need for an efficient APRM catalyst. Here we report that platinum (Pt) atomically dispersed on α-molybdenum carbide (α-MoC) enables low-temperature (150-190 degrees Celsius), base-free hydrogen production through APRM, with an average turnover frequency reaching 18,046 moles of hydrogen per mole of platinum per hour. We attribute this exceptional hydrogen production—which far exceeds that of previously reported low-temperature APRM catalysts—to the outstanding ability of α-MoC to induce water dissociation, and to the fact that platinum and α-MoC act in synergy to activate methanol and then to reform it.

  3. First-principles study on the electronic structure and elastic properties of Mo2NiB2 doped with V

    NASA Astrophysics Data System (ADS)

    Li, Jinming; Li, Xiaobo; Gao, Haiyun; Peng, Dian

    2018-04-01

    The content of this study is to analyze the electronic structure and elastic properties that the different structures of Mo2NiB2 and doping with V of the tetragonal M3B2 (Mo2Ni1‑xVxB2 and Mo2‑yNi1‑yV2yB2) (x = 0.25, 0.5, 0.75 and y = 0.125, 0.25, 0.375) by first-principles calculations based on density functional theory (DFT) combined with the projection-plus-wave method. But the calculated formation energy shows that V atoms prefer to substitute the Mo and Ni atoms of the tetragonal Mo2NiB2. Moreover, with the increase of V content, the formation enthalpy of tetragonal Mo2NiB2 is reduced, and the formation enthalpy of Mo1.625Ni0.625V0.75B2 is the least as ‑53.23 kJ/mol. The calculated elastic constant suffices the condition of mechanical stability, indicate that they are stable. The calculated elastic modulus illustrates that Mo2NiB2 having better mechanical properties when V elements are at Mo and Ni sites instead of Ni sites. The calculated and analyzed density of states of Mo1.625Ni0.625V0.75B2 has the smallest the density of states at the Fermi level indicating that it has the more stable structure. For the theoretical analysis of the first-principles calculations, the addition of 15 atom% of the V and V doping modes of Mo and Ni are preferentially replaced by V atoms of Mo2NiB2 ternary boride has the best performance.

  4. Cobalt Covalent Doping in MoS2 to Induce Bifunctionality of Overall Water Splitting.

    PubMed

    Xiong, Qizhong; Wang, Yun; Liu, Peng-Fei; Zheng, Li-Rong; Wang, Guozhong; Yang, Hua-Gui; Wong, Po-Keung; Zhang, Haimin; Zhao, Huijun

    2018-05-28

    The layer-structured MoS 2 is a typical hydrogen evolution reaction (HER) electrocatalyst but it possesses poor activity for the oxygen evolution reaction (OER). In this work, a cobalt covalent doping approach capable of inducing HER and OER bifunctionality into MoS 2 for efficient overall water splitting is reported. The results demonstrate that covalently doping cobalt into MoS 2 can lead to dramatically enhanced HER activity while simultaneously inducing remarkable OER activity. The catalyst with optimal cobalt doping density can readily achieve HER and OER onset potentials of -0.02 and 1.45 V (vs reversible hydrogen electrode (RHE)) in 1.0 m KOH. Importantly, it can deliver high current densities of 10, 100, and 200 mA cm -2 at low HER and OER overpotentials of 48, 132, 165 mV and 260, 350, 390 mV, respectively. The reported catalyst activation approach can be adapted for bifunctionalization of other transition metal dichalcogenides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies

    DOE PAGES

    Li, Hong; Tsai, Charlie; Koh, Ai Leen; ...

    2015-11-09

    As a promising non-precious catalyst for the hydrogen evolution reaction, molybdenum disulphide (MoS 2) is known to contain active edge sites and an inert basal plane. Activating the MoS 2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS 2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bindmore » directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔG H) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Furthermore, proper combinations of S-vacancy and strain yield the optimal ΔG H = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.« less

  6. Small-signal amplifier based on single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Radisavljevic, Branimir; Whitwick, Michael B.; Kis, Andras

    2012-07-01

    In this letter we demonstrate the operation of an analog small-signal amplifier based on single-layer MoS2, a semiconducting analogue of graphene. Our device consists of two transistors integrated on the same piece of single-layer MoS2. The high intrinsic band gap of 1.8 eV allows MoS2-based amplifiers to operate with a room temperature gain of 4. The amplifier operation is demonstrated for the frequencies of input signal up to 2 kHz preserving the gain higher than 1. Our work shows that MoS2 can effectively amplify signals and that it could be used for advanced analog circuits based on two-dimensional materials.

  7. Supported molybdenum oxides as effective catalysts for the catalytic fast pyrolysis of lignocellulosic biomass

    DOE PAGES

    Murugappan, Karthick; Mukarakate, Calvin; Budhi, Sridhar; ...

    2016-07-12

    The catalytic fast pyrolysis (CFP) of pine was investigated over 10 wt% MoO 3/TiO 2 and MoO 3/ZrO 2 at 500 °C and H 2 pressures ≤ 0.75 bar. The product distributions were monitored in real time using a molecular beam mass spectrometer (MBMS). Both supported MoO 3 catalysts show different levels of deoxygenation based on the cumulative biomass to MoO 3 mass ratio exposed to the catalytic bed. For biomass to MoO 3 mass ratios <1.5, predominantly olefinic and aromatic hydrocarbons are produced with no detectable oxygen-containing species. For ratios ≥ 1.5, partially deoxygenated species comprised of furans andmore » phenols are observed, with a concomitant decrease of olefinic and aromatic hydrocarbons. For ratios ≥ 5, primary pyrolysis vapours break through the bed, indicating the onset of catalyst deactivation. Product quantification with a tandem micropyrolyzer-GCMS setup shows that fresh supported MoO 3 catalysts convert ca. 27 mol% of the original carbon into hydrocarbons comprised predominantly of aromatics (7 C%), olefins (18 C%) and paraffins (2 C%), comparable to the total hydrocarbon yield obtained with HZSM-5 operated under similar reaction conditions. In conclusion, post-reaction XPS analysis on supported MoO 3/ZrO 2 and MoO 3/TiO 2 catalysts reveal that ca. 50% of Mo surface species exist in their partially reduced forms (i.e., Mo 5+ and Mo 3+), and that catalyst deactivation is likely associated to coking.« less

  8. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    DOE PAGES

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; ...

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄• nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts weremore » highly active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and C nH₂ n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and C nH₂ n₊₂ (n > 2) hydrocarbons (Co case).« less

  9. Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method.

    PubMed

    Bleta, Rudina; Schiavo, Benedetto; Corsaro, Natale; Costa, Paula; Giaconia, Alberto; Interrante, Leonardo; Monflier, Eric; Pipitone, Giuseppe; Ponchel, Anne; Sau, Salvatore; Scialdone, Onofrio; Tilloy, Sébastien; Galia, Alessandro

    2018-04-18

    Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al 2 O 3 catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditana microalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV-visible spectroscopy, X-ray diffraction, N 2 -adsorption-desorption, and H 2 -temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass.

  10. MoRe-based tunnel junctions and their characteristics

    NASA Astrophysics Data System (ADS)

    Shaternik, V.; Larkin, S.; Noskov, V.; Chubatyy, V.; Sizontov, V.; Miroshnikov, A.; Karmazin, A.

    2008-02-01

    Perspective Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide-normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (~50-100 nm) MoRe superconducting films are deposited on Al2O3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency, clear Shapiro steps in the measured I-V curves were observed and discussed.

  11. Characterization of Deactivated Bio-oil Hydrotreating Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huamin; Wang, Yong

    Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase ofmore » the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.« less

  12. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells.

    PubMed

    Hu, Yan; Chua, Daniel H C

    2016-06-15

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt(-1) as compared to standard carbon black of 7.4 W.mgPt(-1) under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  13. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    PubMed Central

    Hu, Yan; Chua, Daniel H. C.

    2016-01-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt−1 as compared to standard carbon black of 7.4 W.mgPt−1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support. PMID:27302135

  14. Alkali promoted molybdenum (IV) sulfide based catalysts, development and characterization for alcohol synthesis from carbon monoxide and hydrogen

    NASA Astrophysics Data System (ADS)

    Molina, Belinda Delilah

    For more than a century transition metal sulfides (TMS) have been the anchor of hydro-processing fuels and upgrading bitumen and coal in refineries worldwide. As oil supplies dwindle and environmental laws become more stringent, there is a greater need for cleaner alternative fuels and/or synthetic fuels. The depletion of oil reserves and a rapidly increasing energy demand worldwide, together with the interest to reduce dependence on foreign oil makes alcohol production for fuels and chemicals via the Fischer Tropsch synthesis (FTS) very attractive. The original Fischer-Tropsch (FT) reaction is the heart of all gas-to-liquid technologies; it creates higher alcohols and hydrocarbons from CO/H2 using a metal catalyst. This research focuses on the development of alkali promoted MoS2-based catalysts to investigate an optimal synthesis for their assistance in the production of long chain alcohols (via FTS) for their use as synthetic transportation liquid fuels. Properties of catalytic material are strongly affected by every step of the preparation together with the quality of the raw materials. The choice of a laboratory method for preparing a given catalyst depends on the physical and chemical characteristics desired in the final composition. Characterization methods of K0.3/Cs0.3-MoS2 and K0.3 /Cs0.3-Co0.5MoS2 catalysts have been carried out through Scanning Electron Microscopy (SEM), BET porosity and surface analysis, Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). Various characterization methods have been deployed to correlate FTS products versus crystal and morphological properties of these heterogeneous catalysts. A lab scale gas to liquid system has been developed to evaluate its efficiency in testing FT catalysts for their production of alcohols.

  15. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method.

    PubMed

    Park, Kyung Ho; Mohapatra, D; Reddy, B Ramachandra

    2006-11-16

    The petroleum refining industry makes extensive use of hydroprocessing catalysts. These catalysts contain environmentally critical and economically valuable metals such as Mo, V, Ni and Co. In the present study, a simple hydrometallurgical processing of spent hydrodesulphurization (HDS) catalyst for the recovery of molybdenum using sodium carbonate and hydrogen peroxide mixture was investigated. Recovery of molybdenum was largely dependent on the concentrations of Na2CO3 and H2O2 in the reaction medium, which in turn controls the pH of leach liquor and the presence of Al and Ni as impurities. Under the optimum leaching conditions (40 g L(-1) Na2CO3, 6 vol.% H2O2, room temperature, 1h) about 85% recovery of Mo was achieved. The leach liquor was processed by the carbon adsorption method, which selectively adsorbs Mo at pH around 0.75. Desorption of Mo was selective at 15 vol.% NH4OH. With a single stage contact, it was found possible to achieve >99%, adsorption and desorption efficiency. Using this method, recovery of molybdenum as MoO3 product of 99.4% purity was achieved.

  16. Influence of oxygen-, nitrogen-, and sulfur-containing compounds on the hydrodeoxygenation of phenols over sulfided CoMo/[gamma]-Al[sub 2]O[sub 3] and NiMo/[gamma]-Al[sub 2]O[sub 3] catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, E.; Delmon, B.

    1993-11-01

    The hydrodeoxygenation (HDO) of phenols is a key reaction of the hydroprocessing of bio-oils, because phenolic molecules represent an important part of these oils and they are among the most difficult to deoxygenate. This reaction is also a very good reaction test for the characterization of the hydrogenation and hydrogenolysis functions of hydrotreating catalysts. In this work, the influence of competitors on the activity and selectivity of 4-methylphenol HDO over conventional CoMo and NiMo hydrotreating catalysts was evaluated in batch reaction tests. The inhibiting strength followed the order H[sub 2]O << 2-ethylphenol < H[sub 2]S < NH[sub 3]. In allmore » cases, the hydrogenolysis path was more inhibited than the hydrogenation path, indicating a higher adsorption strength and electrophilicity of associated sites. The inhibition was quantified according to a Langmuir adsorption concept. The deviations from this model were attributed to a distribution of the adsorption strength. As opposed to other competitors, hydrogen sulfide slightly promotes the hydrogenation activity of CoMo but not of NiMo. These observations were interpreted as the result of an interconversion of the hydrogenolysis and hydrogenation active sites.« less

  17. Adsorption of thiophene on silica-supported Mo clusters

    NASA Astrophysics Data System (ADS)

    Komarneni, M.; Kadossov, E.; Justin, J.; Lu, M.; Burghaus, U.

    2010-07-01

    The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoS x clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H 4C 4S desorbs molecularly at 190-400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 10 13/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H 4C 4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H 2, H 2S, and mostly alkynes are detected in the gas phase as decomposition products. H 4C 4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H 4C 4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H 2 and H 2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O 2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H 2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C 4H 4S has been determined. At thermal impact energies ( Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the

  18. Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts

    NASA Astrophysics Data System (ADS)

    Hong, Sangyeob; Kumar, D. Praveen; Reddy, D. Amaranatha; Choi, Jiha; Kim, Tae Kyu

    2017-02-01

    Charge carrier recombination and durability issues are major problems in photocatalytic hydrogen (H2) evolution processes. Thus, there is a very important necessitate to extend an efficient photocatalyst to control charge-carrier dynamics in the photocatalytic system. We have developed copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts with CdS nanorods for controlling charge carriers without recombination for use in photocatalytic H2 evolution under simulated solar light irradiation. Effective control and utilization of charge carriers are possible by loading Cu2MoS4 nanosheets onto the CdS nanorods. The loading compensates for the restrictions of CdS, and stimulated synergistic effects, such as efficient photoexcited charge separation, lead to an improvement in photostability because of the layered structure of the Cu2MoS4nanosheets. These layered Cu2MoS4 nanosheets have emerged as novel and active replacements for precious noble metal co-catalysts in photocatalytic H2 production by water splitting. We have obtained superior H2 production rates by using Cu2MoS4 loaded CdS nanorods. The physicochemical properties of the composites are analyzed by diverse characterization techniques.

  19. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen.

    PubMed

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J; Batson, Philip E; Gupta, Gautam; Mohite, Aditya D; Dong, Liang; Er, Dequan; Shenoy, Vivek B; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

  20. Cobalt nanoparticles encapsulated in nitrogen-rich carbon nanotubes as efficient catalysts for organic pollutants degradation via sulfite activation.

    PubMed

    Wu, Deming; Ye, Peng; Wang, Manye; Wei, Yi; Li, Xiaoxia; Xu, Aihua

    2018-06-15

    The activation of sulfite by heterogeneous catalysts displays a great potential in the development of new sulfate radials based technologies for wastewater treatment. Herein, cobalt nanoparticles embedded in N-doped carbon nanotubes (Co@NC) were prepared by a simple pyrolysis method. Due to the synergistic effects of the cobalt nanoparticles and N-doped carbon nanotubes, the Co@NC catalyst intrinsically shows an outstanding efficiency, excellent reusability and high stability in the catalytic oxidation of methyl orange (MO) in the presence of sulfite and dioxygen. The structure and efficiency of the catalyst was significantly affected by the content of cobalt and pyrolysis temperature. Several quenching experiments and electron paramagnetic resonance were carried out to investigate the catalytic mechanism. It is found that hydroxyl and sulfate radicals worked together to degrade MO in the system. The formation and decomposition of peroxymonosulfate may be an important route of these reactive radicals production. The effect of different anions, bicarbonate concentration, initial solution pH and dye types on the performance of the catalyst was also studied. This study can open a new approach for design and preparation of encapsulated cobalt in carbon materials as effective catalysts for pollutants degradation via sulfite activation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    PubMed

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Mahmood, Javeed; Li, Feng; Jung, Sun-Min; Okyay, Mahmut Sait; Ahmad, Ishfaq; Kim, Seok-Jin; Park, Noejung; Jeong, Hu Young; Baek, Jong-Beom

    2017-05-01

    The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications. For an energy-efficient HER, a catalyst must be able to trigger proton reduction with minimal overpotential and have fast kinetics. The most efficient catalysts in acidic media are platinum-based, as the strength of the Pt-H bond is associated with the fastest reaction rate for the HER. The use of platinum, however, raises issues linked to cost and stability in non-acidic media. Recently, non-precious-metal-based catalysts have been reported, but these are susceptible to acid corrosion and are typically much inferior to Pt-based catalysts, exhibiting higher overpotentials and lower stability. As a cheaper alternative to platinum, ruthenium possesses a similar bond strength with hydrogen (˜65 kcal mol-1), but has never been studied as a viable alternative for a HER catalyst. Here, we report a Ru-based catalyst for the HER that can operate both in acidic and alkaline media. Our catalyst is made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure (Ru@C2N). The Ru@C2N electrocatalyst exhibits high turnover frequencies at 25 mV (0.67 H2 s-1 in 0.5 M H2SO4 solution; 0.75 H2 s-1 in 1.0 M KOH solution) and small overpotentials at 10 mA cm-2 (13.5 mV in 0.5 M H2SO4 solution; 17.0 mV in 1.0 M KOH solution) as well as superior stability in both acidic and alkaline media. These performances are comparable to, or even better than, the Pt/C catalyst for the HER.

  3. Adsorption of Vanadium (V) from SCR Catalyst Leaching Solution and Application in Methyl Orange.

    PubMed

    Sha, Xuelong; Ma, Wei; Meng, Fanqing; Wang, Ren; Fuping, Tian; Wei, Linsen

    2016-12-01

      In this study, we explored an effective and low-cost catalyst and its adsorption capacity and catalytic capacity for Methyl Orange Fenton oxidation degradation were investigated. The catalyst was directly prepared by reuse of magnetic iron oxide (Fe3O4) after saturated adsorption of vanadium (V) from waste SCR (Selective Catalytic Reduction) catalyst. The obtained catalyst was characterized by FTIR, XPS and the results showed that vanadium (V) adsorption process of Fe3O4 nanoparticles was non-redox reaction. The effects of pH, adsorption kinetics and equilibrium isotherms of adsorption were assessed. Adsorption of vanadium (V) ions by Fe3O4 nanoparticles could be well described by the Sips isotherm model which controlled by the mixed surface reaction and diffusion (MSRDC) adsorption kinetic model. The results show that vanadium (V) was mainly adsorbed on external surface of the Fe3O4 nanoparticles. The separation-recovering tungsten (VI) and vanadium (V) from waste SCR catalyst alkaline solution through pH adjustment was also investigated in this study. The results obtained from the experiments indicated that tungsten (VI) was selectively adsorbed from vanadium (V)/tungsten (VI) mixed solution in certain acidic condition by Fe3O4 nanoparticle to realize their recovery. Tungsten (V) with some impurity can be obtained by releasing from adsorbent, which can be confirmed by ICP-AES. The Methyl Orange degradation catalytic performance illustrated that the catalyst could improve Fenton reaction effectively at pH = 3.0 compare to Fe3O4 nanoparticles alone. Therefore, Fe3O4 nanoparticle adsorbed vanadium (V) has a potential to be employed as a heterogeneous Fenton-like catalyst in the present contribution, and its catalytic activity was mainly evaluated in terms of the decoloration efficiency of Methyl Orange.

  4. Anti-site defected MoS2 sheet for catalytic application

    NASA Astrophysics Data System (ADS)

    Sharma, Archana; Husain, Mushahid; Khan, Mohd. Shahid

    2018-04-01

    To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to investigate CO oxidation on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (anti-site defect). The stronger interaction between Mo metal with O2 molecule as compared with CO molecule suggests high catalytic activity. The complete oxidation of CO is studied in a two-step procedure using Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms with a low overall energy barrier of 0.35 eV. Creation of anti-site defect makes the surface of MoS2 nanosheet catalytically active for the CO oxidation to take place.

  5. Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis

    NASA Astrophysics Data System (ADS)

    Mitov, M.; Chorbadzhiyska, E.; Nalbandian, L.; Hubenova, Y.

    2017-07-01

    The development of cost-effective cathodes, operating at neutral pH and ambient temperatures, is a crucial challenge for the practical application of microbial electrolysis cell (MEC) technology. In this study, NiW and NiMo co-deposits produced by electroplating on Ni-foam are explored as cathodes in MEC. The fabricated electrodes exhibit higher corrosion stability and enhanced electrocatalytic activity towards hydrogen evolution reaction in neutral electrolyte compared to the bare Ni-foam. NiW/Ni-foam electrodes possess six times higher intrinsic catalytic activity, estimated from data obtained by linear voltammetry and chronoamperometry. The newly developed electrodes are applied as cathodes in single-chamber membrane-free MEC reactors, inoculated with wastewater and activated sludge from a municipal wastewater treatment plant. Cathodic hydrogen recovery of 79% and 89% by using NiW and NiMo cathodes, respectively, is achieved at applied voltage of 0.6 V. The obtained results reveal potential for practical application of used catalysts in MEC.

  6. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  7. A nondestructive method for estimation of the fracture toughness of CrMoV rotor steels based on ultrasonic nonlinearity.

    PubMed

    Jeong, Hyunjo; Nahm, Seung-Hoon; Jhang, Kyung-Young; Nam, Young-Hyun

    2003-09-01

    The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K(IC)) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating the K(IC) consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimate K(IC) using the K(IC) versus excess temperature (i.e., T-FATT) correlation that is available in the literature for CrMoV rotor steel.

  8. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOEpatents

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  9. Mild Hydroprocessing with Dispersed Catalyst of Highly Asphaltenic Pitch

    NASA Astrophysics Data System (ADS)

    Isquierdo, Fernanda

    Asphaltene are known to have diverse negative impacts on heavy oil extraction and hydroprocessing. This research then, explores the optimal conditions to convert asphaltenes into lighter material using mild conditions of pressure and temperature, and investigates changes in asphaltene structure during hydroprocessing. Feedstock and products were characterized by Simulated Distillation, Microdeasphalting, Sulfur content, X-ray diffraction, X-ray photoelectron spectroscopy, and Nuclear magnetic resonance spectroscopy. Solid catalysts were analyzed by Themogravimetric analysis, X-ray diffraction, and Dynamic light scattering. Based on the results obtained from X-ray diffraction and Nuclear magnetic resonance spectroscopy analysis a mechanism for the asphaltene hydroprocessing at mild conditions is proposed in which the alky peripheric portion from the original asphaltenes is partially removed during the reaction. The consequence of that process being an increase in the stacking of the aromatics sheets in the remaining asphaltenes. Also, this study investigates different for ultradispersed catalyst compositions, where CoWS, CoMoS, NiWS, FeWS, NiMo/NaHFeSi 2O6 and NaHFeSi2O6 showed a high asphaltene conversion as determined by asphaltene microdeasphalting, FeMoS and NaHFeSi 2O6 presented a high Vacuum Residue as determined by distillation (SIMDIST) analysis conversion, and in terms of sulfur removal CoMoS gave the higher conversion. In addition, all the catalyst tested showed a coke production lower than 1%. Finally, a kinetic study for the pitch hydroprocessing using CoMoS as catalysts gave a global activation energy of 97.3 kJ/mol.

  10. MoS2 interactions with 1.5 eV atomic oxygen

    NASA Technical Reports Server (NTRS)

    Martin, J. A.; Cross, J. B.; Pope, L. E.

    1989-01-01

    Exposures of MoS2 to 1.5-eV atomic oxygen in an anhydrous environment reveal that the degree of oxidation is essentially independent of crystallite orientation, and that the surface-adsorbed reaction products are MoO3 and MoO2. A mixture of oxides and sulfide exists over a depth of about 90 A, and this layer has a low diffusion rate for oxygen. It is concluded that a protective oxide layer forms on MoS2 on exposure to the atomic-oxygen-rich environment of LEO.

  11. Effect of MoO3 on the synthesis of boron nitride nanotubes over Fe and Ni catalysts.

    PubMed

    Nithya, Jeghan Shrine Maria; Pandurangan, Arumugam

    2012-05-01

    Synthesis of boron nitride nanotubes at reduced temperature is important for industrial manufactures. In this study boron nitride nanotubes were synthesized by thermal evaporation method using B/Fe2O3/MoO3 and B/Ni2O3/MoO3 mixtures separately with ammonia as the nitrogen source. The growth of boron nitride nanotubes occurred at 1100 degrees C, which was relatively lower than other metal oxides assisted growth processes requiring higher than 1200 degrees C. MoO3 promoted formation of B2O2 and aided boron nitride nanotubes growth at a reduced temperature. The boron nitride nanotubes with bamboo shaped, nested cone structured and straight tubes like forms were evident from the high resolution transmission electron microscopy. Metallic Fe and Ni, formed during the process, were the catalysts for the growth of boron nitride nanotubes. Their formation was established by X-ray diffraction. FT Raman showed a peak due to B-N vibration of BNNTs close to 1370 cm(-1). Hence MoO3 assisted growth of boron nitride nanotubes is advantageous, as it significantly reduced the synthesis temperature.

  12. Study on the decomposition of trace benzene over V2O5-WO3/TiO2-based catalysts in simulated flue gas

    EPA Science Inventory

    Commercial and laboratory-prepared V2O5–WO3/TiO2-based catalysts with different compositions were tested for catalytic decomposition of chlorobenzene (ClBz) in simulated flue gas. Resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) was employe...

  13. Vanadium and tungsten release from V-based selective catalytic reduction diesel aftertreatment

    NASA Astrophysics Data System (ADS)

    Liu, Z. Gerald; Ottinger, Nathan A.; Cremeens, Christopher M.

    2015-03-01

    Vanadium-based selective catalytic reduction (V-SCR) catalysts are currently used for the reduction of nitrogen oxides (NOx) in worldwide diesel applications including Euro IV, V, and VI as well as U.S. nonroad Tier 4 Final. Although V-SCR catalysts are attractive because of their high NOx conversion, low cost, resistance to sulfur poisoning, and ability to reduce hydrocarbon emissions, there is concern that V-SCR washcoat material (e.g., vanadium and tungsten) and its derivatives may be released into the atmosphere, potentially harming human health and the environment. In this study, vanadium and tungsten release measurements are made with both a reactor- and engine-based approach in order to determine the potential release of these metals from diesel exhaust aftertreatment systems that contain a V-SCR catalyst. Results for a commercially available V-SCR reveal that both V and W release begin at 500 °C, and both reactor- and engine-based methods are capable of measuring qualitatively similar release. Emissions with the engine-based method are higher at all temperatures evaluated, likely due to this method's ability to capture particle-phase and vapor-phase emissions which become particle-bound after their evolution from the catalyst surface. Certification relevant data (NRTC and NRSC) from a nonroad engine is used to understand probable emissions from V-SCR aftertreatment architectures. Finally, results from a V-SCR catalyst formulated for improved thermal durability illustrate that it is possible to increase the maximum temperature for V-SCR catalysts. This comprehensive understanding of the temperature dependence of vanadium and tungsten volatility can be used to further analyze the full impact of diesel aftertreatment on exhaust emissions and their impact on human health and environmental toxicity.

  14. New insides in the characterization of HDS industrial catalysts by HAADF-STEM

    NASA Astrophysics Data System (ADS)

    Del Angel, Paz; Ponce, Arturo; Arellano, Josefina; Yacaman, Miguel J.; Hernandez-Pichardo, Martha; Montoya, J. Ascencion; Escobar, Jose

    2015-03-01

    Hydrodesulfurization (HDS) catalysts are of great importance in the petroleum industry. Transition metal sulphides catalysts of Ni(Co)Mo(W)/Al2O3 are widely used for hydrotreating reactions, like hydrodenitrogenation and HDS. One of the main issue in these catalysts is to understand the mechanism of the reaction, where MoS2 plays the most important role in the catalytic activity. We studied an industrial NiMo/Alumina sulfide catalyst highly active by using aberration-corrected HAADF-STEM techniques. The used catalysts was a state-of- the art commercial nickel-molybdenum alumina-supported formulation, including organic agent modifier. This type of material belongs to a novel family of catalysts specially designed for ultra-low sulfur production from straight-run gas oil (SRGO), cycle oil, coker gas oil, or their combinations at operating conditions of commercial interest in hydrotreating units at industrial scale. Aberration corrected HAADF-STEM allowed to observe the nanostructure and location of MoS2 and his interaction with the alumina. The results indicate that the MoS2 is highly dispersed on the alumina, however the location of Ni is one of the task of this kind of catalyst.

  15. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    PubMed

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell

    PubMed Central

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Laberty-Robert, Christel; Campidelli, Stéphane; de Bettignies, Rémi; Artero, Vincent; Palacin, Serge; Jousselme, Bruno

    2013-01-01

    An organic solar cell based on a poly-3-hexylthiophene (P3HT): phenyl-C61-butyric acid (PCBM) bulk hetero-junction was directly coupled with molybdenum sulfide resulting in the design of a new type of photocathode for the production of hydrogen. Both the light-harvesting system and the catalyst were deposited by low-cost solution-processed methods, i.e. spin coating and spray coating respectively. Spray-coated MoS3 films are catalytically active in strongly acidic aqueous solutions with the best efficiencies for thicknesses of 40 to 90 nm. The photocathodes display photocurrents higher than reference samples, without catalyst or without coupling with a solar cell. Analysis by gas chromatography confirms the light-induced hydrogen evolution. The addition of titanium dioxide in the MoS3 film enhances electron transport and collection within thick films and therefore the performance of the photocathode. PMID:24404434

  17. One-step electrochemical deposition of Schiff base cobalt complex as effective water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Binbin; Wang, Yan; Zhan, Shuzhong; Ye, Jianshan

    2017-02-01

    Schiff base metal complexes have been applied in many fields, especially, a potential homogeneous catalyst for water splitting. However, the high overpotential, time consumed synthesis process and complicated working condition largely limit their application. In the present work, a one-step approach to fabricate Schiff base cobalt complex modified electrode is developed. Microrod clusters (MRC) and rough spherical particles (RSP) can be obtained on the ITO electrode through different electrochemical deposition condition. Both of the MRC and RSP present favorable activity for oxygen evolution reaction (OER) compared to the commercial Co3O4, taking an overpotential of 650 mV and 450 mV to drive appreciable catalytic current respectively. The highly active and stable RSP shows a Tafel plot of 84 mV dec-1 and negligible decrease of the current density for 12 h bulk electrolysis. The synthesis strategy of effective and stable catalyst in this work provide a simple method to fabricate heterogeneous OER catalyst with Schiff base metal complex.

  18. Characteristics of a commercially aged Ni-Mo/Al2O3 hydrotreating catalyst: component distribution, nature of coke and effects of regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanor, J.M.

    1984-01-01

    Information concerning the morphology and behavior of active components on commercially aged catalyst, the effects of regeneration conditions on activity, and insights into the nature of coke and contaminant metal deposits could lead to improved catalysts and operating conditions , yielding significant economic returns. Spent Ni-Mo/Al2O3 hydrotreating catalyst from a commercial hydrotreater was examined using TGA, SEM, STEM, XPS, and a microreactor. Information concerning intraparticle distributions of active components, characteristics of the coke and metal deposits, and catalytic activity for fresh, spent and regenerated catalyst was used to draw general conclusions concerning hydrotreating catalyst deactivation. It was found that catalyticmore » activity was reduced and the nature of the hydrogenation function was altered due to bulk migration and agglomeration of molybdenum. This process was found to be accelerated by high-temperature regeneration. Results also indicated that iron deposits might catalyze formation of coke. Tentative generalizations and suggestions on improved reactor operation are presented.« less

  19. A first-principles study of CO hydrogenation into methane on molybdenum carbides catalysts

    NASA Astrophysics Data System (ADS)

    Qi, Ke-Zhen; Wang, Gui-Chang; Zheng, Wen-Jun

    2013-08-01

    The reaction mechanisms for the CO hydrogenation to produce CH4 on both fcc-Mo2C (100) and hcp-Mo2C (101) surfaces are investigated using density functional theory calculations with the periodic slab model. Through systematic calculations for the mechanisms of the CO hydrogenation on the two surfaces, we found that the reaction mechanisms are the same on both fcc and hcp Mo2C catalysts, that is, CO → HCO → H2CO → H2COH → CH2 → CH3 → CH4. The activation energy of the rate-determining step (CH3 + H → CH4) on fcc-Mo2C (100) (0.84 eV) is lower than that on hcp-Mo2C (101) (1.20 eV), and that is why catalytic activity of fcc-Mo2C is higher than hcp-Mo2C for CO hydrogenation. Our calculated results are consistent with the experimental observations. The activity difference of these two surfaces mainly comes from the co-adsorption energy difference between initial state (IS) and transition state (TS), that is, the co-adsorption energy difference between IS and TS is - 0.04 eV on fcc Mo2C (100), while it is as high as 0.68 eV on hcp Mo2C (101), and thus leading to the lower activation barrier for the reaction of CH3 + H → CH4 on fcc-Mo2C (100) compared to that of hcp-Mo2C (101).

  20. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  1. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  2. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  3. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.; Mahajan, Devinder

    1986-01-01

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  4. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  5. 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting

    NASA Astrophysics Data System (ADS)

    Wu, Chengrong; Liu, Bitao; Wang, Jun; Su, Yongyao; Yan, Hengqing; Ng, Chuntan; Li, Cheng; Wei, Jumeng

    2018-05-01

    Searching for a cost-effective, high efficient and stable bifunctional electrocatalyst for overall water-splitting is critical to renewable energy systems. In this study, three-dimensional (3D) curved nanosheets of Mo-doped Ni3S2 grown on nickel foam were successfully synthesized via a one-step hydrothermal process. The hydrogen-evolution reaction (HER) and the oxygen-evolution reaction (OER) in alkaline environment of this 3D catalyst are investigated in detail. The results show that it possesses lower overpotential, high current densities and small Tafel slopes both in OER and HER. For HER, the catalysts show excellent electrochemical performance, demonstrating a low over-potential of 212 mV at 10 mA cm-2 with a large decrease of 127 mV compared to the undoped Ni3S2. And it also shows a lower overpotential of 260 mV at 10 mA cm-2 which decreases 30 mV for OER. In addition, it is only need 1.67 V for the overall water splitting at 10 mA cm-2 which is 70 mV. It found that the Mo element would change the morphology of Ni3S2 and induce much more active sites for HER and OER. The as-prepared Mo-doped Ni3S2 bi-functional electrocatalyst could act as the promising electrode materials for water splitting.

  6. Catalytic properties of a CoMo/Al[sub 2]O[sub 3] catalyst presulfided with alkyl polysulfides: Comparison with conventional sulfiding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestel, J. van; Leglise, J.; Duchet, J.C.

    1994-02-01

    A CoMo/Al[sub 2]O[sub 3] hydrotreating catalyst has been sulfided in different ways: (i) by conventional in situ sulfiding in a high-pressure reactor with a H[sub 2]S/H[sub 2] or dimethyldisulfide (DMDS)/H[sub 2] mixture at 350[degrees]C and 4 MPa; or (ii) by a preliminary presulfidation with di-tert-nonyl or di-tert-dodecyl pentasulfides followed by one of the above conventional in situ sulfidations. The presulfidation was performed in two steps: impregnation of the oxidic catalyst with the polysulfide and then thermal treatment under flowing nitrogen at 130[degrees]C. The catalysts were evaluated for their catalytic properties at 280-350[degrees]C and 4 MPa for the simultaneous hydrodesulfurization ofmore » thiophene and hydrogenation of cyclohexene. Compared to H[sub 2]S/H[sub 2], in situ DMDS/H[sub 2] sulfiding of the CoMo/Al[sub 2]O[sub 3] catalyst enhanced the C-S hydrogenolysis at 280[degrees]C but not the hydrogenation; however, the apparent activation energy for hydrogenation was markedly increased. The presulfidation with the polysulfides following by H[sub 2]S/H[sub 2] sulfidation yielded improved activities at 280[degrees]C for both hydrogenation and C-S bond breakage and did not influence the apparent activation energies. The highest activities were obtained by combining presulfiding and DMDS/H[sub 2] sulfidation. These results are discussed in terms of the genesis of the supported sulfide phase with various sulfur species. 40 refs., 2 figs., 2 tabs.« less

  7. Anti-site defected MoS2 sheet-based single electron transistor as a gas sensor

    NASA Astrophysics Data System (ADS)

    Sharma, Archana; Husain, Mushahid; Srivastava, Anurag; Khan, Mohd. Shahid

    2018-05-01

    To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to study the adsorption of CO and CO2 gas molecules on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (MoS). The strong interaction between Mo metal with pristine MoS2 sheet suggests its strong binding nature. Doping Mo into MoS2 sheet enhances CO and CO2 adsorption strength. The sensing response of MoS-doped MoS2 system to CO and CO2 gas molecules is obtained in the single electron transistor (SET) environment by varying bias voltage. Doping reduces charging energy of the device which results in fast switching of the device from OFF to ON state.

  8. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production [Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production directly observed using environmental transmission electron microscopy

    DOE PAGES

    Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...

    2015-12-01

    Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less

  9. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.

  10. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE PAGES

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin; ...

    2016-05-19

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  11. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  12. Structure and electronic properties of Cu nanoclusters supported on Mo 2C(001) and MoC(001) surfaces

    DOE PAGES

    Posada-Pérez, Sergio; Viñes, Francesc; Rodríguez, José A.; ...

    2015-09-15

    In this study, the atomic structure and electronic properties of Cu n nanoclusters (n = 4, 6, 7, and 10) supported on cubic nonpolar δ-MoC(001) and orthorhombic C- or Mo-terminated polar β-Mo 2C(001) surfaces have been investigated by means of periodic density functional theory based calculations. The electronic properties have been analyzed by means of the density of states, Bader charges, and electron localization function plots. The Cu nanoparticles supported on β-Mo 2C(001), either Mo- or C-terminated, tend to present a two-dimensional structure whereas a three-dimensional geometry is preferred when supported on δ-MoC(001), indicating that the Mo:C ratio and themore » surface polarity play a key role determining the structure of supported clusters. Nevertheless, calculations also reveal important differences between the C- and Mo-terminated β-Mo 2C(001) supports to the point that supported Cu particles exhibit different charge states, which opens a way to control the reactivity of these potential catalysts.« less

  13. Facilitated and selective oxidation of thiophenic sulfur compounds using MoOx/Al₂O₃-H₂O₂ system under ultrasonic irradiation.

    PubMed

    Akbari, Azam; Omidkhah, Mohammadreza; Towfighi Darian, Jafar

    2015-03-01

    Oxidative desulfurization of thiophenic sulfur compounds of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) with MoOx/Al₂O₃ catalyst and H₂O₂ oxidant has been facilitated and more selective under ultrasonic irradiation. The catalyst with the optimum 10% of Mo loading consisted of isolated tetrahedral molybdenum oxide species based on FTIR analysis. The increase of Mo loading to 15% and 20% caused to generation of polymolybdate and MoO₃ crystals which decreased desulfurization activity. Sonication enhanced the apparent reaction rate constants in oxidation of all three sulfur compounds. An increase in the Arrhenius factor (A0), which is the total number of collisions per second, could explain the acceleration in the rate constants by sonication. The apparent activated energy (Ea) of BT oxidation was reduced from 96.6 to 75.3 kJ/mol by using ultrasound. This indicated that ultrasound had also a chemical effect, like a catalytic influence, in the acceleration of BT removal. DBT oxidation was reduced when investigated in the presence of tetralin, naphthalene and 2-methyl naphthalene as the model aromatic compounds of actual light oils. A higher selectivity toward DBT elimination in the presence of aromatics was obtained by sonication when compared with the silent treatment. Ultrasound cleaned the catalyst surface from adsorbed aromatics. On the basis of the obtained results, a mechanistic proposal for this desulfurization was explained. Oxidation was performed by nucleophilic attack of sulfur atom to the molybdenum peroxide species of tetrahedral molybdates, which was more advanced by sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Normal and grazing incidence pulsed laser deposition of nanostructured MoSx hydrogen evolution catalysts from a MoS2 target

    NASA Astrophysics Data System (ADS)

    Fominski, V. Yu.; Romanov, R. I.; Fominski, D. V.; Dzhumaev, P. S.; Troyan, I. A.

    2018-06-01

    films that consisted of densely packed 30-50 nm nanoparticles. The GI-PLD films possessed a greater density of catalytically active sites with a distinct local atomic configuration including edge sites of the layered MoS2 nanophase and diverse S ligands in the amorphous phase, which contained Mo3-S clusters. At a modest loading of ∼300 μg/cm2 on glassy carbon substrates and an overpotential of -140 mV, these films activated H2 production with geometric current densities up to -10 mA/cm2.

  15. Sol-gel (template) synthesis of macroporous Mo-based catalysts for hydrothermal oxidation of radionuclide-organic complexes

    NASA Astrophysics Data System (ADS)

    Papynov, E. K.; Palamarchuk, M. S.; Mayorov, V. Yu; Modin, E. B.; Portnyagin, A. S.; Sokol'nitskaya, T. A.; Belov, A. A.; Tananaev, I. G.; Avramenko, V. A.

    2017-07-01

    Molybdenum compounds are industrially demanding as heterogeneous catalysts for oxidation of various organic substances. Highly porous structure of molybdenum-containing catalysts avoids surface's colmatation and prevents blocking catalytic sites that makes these materials play a key role in processes of hydrothermal oxidation of radionuclide organic complexes. The study presents an original way of sol-gel synthesis of new macroporous molybdenum compounds using ;core-shell; colloid template (polymer latex) as poreforming agent. We have described three individual routs of template removal via thermal decomposition to obtain porous materials based on molybdenum compounds. Thermal treatment conditions (temperature, gaseous atmosphere) have been studied with respect to their influence on composition, structure and catalytic properties of synthesized molybdenum systems. The optimal way to synthesis of crystal molybdenum (VI) oxide with ordered porous structure (mean pore size 100-160 nm) has been suggested. Catalytic properties of macroporous molybdenum materials have been investigated in the process of liquid phase and hydrothermal oxidation of such organic substances thiazine and stable Co-EDTA complex. It was shown that macroporous molybdenum oxides could be applied as prospective catalysts for hydrothermal oxidation of organic radionuclide complexes during the processing of radioactive waste.

  16. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts.

    PubMed

    Yu, Ming-Feng; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Mi; Prabowo, Bayu; Li, Wen-Wei; Chen, Tong; Yan, Jian-Hua

    2016-08-01

    Vanadium oxide-based catalysts were developed for the destruction of vapour phase PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). A vapour phase PCDD/Fs generating system was designed to supply stable PCDD/Fs steam with initial concentration of 3.2 ng I-TEQ Nm(-3). Two kinds of titania (nano-TiO2 and conventional TiO2) and alumina were used as catalyst supports. For vanadium-based catalysts supported on nano-TiO2, catalyst activity is enhanced with operating temperature increasing from 160 to 300 °C and then reduces with temperature rising further to 350 °C. It is mainly due to the fact that high volatility of organic compounds at 350 °C suppresses adsorption of PCDD/Fs on catalysts surface and then further inhibits the reaction between catalyst and PCDD/Fs. The optimum loading of vanadium on nano-TiO2 support is 5 wt.% where vanadium oxide presents highly dispersed amorphous state according to the Raman spectra and XRD patterns. Excessive vanadium will block the pore space and form microcrystalline V2O5 on the support surface. At the vanadium loading of 5 wt.%, nano-TiO2-supported catalyst performs best on PCDD/Fs destruction compared to Al2O3 and conventional TiO2. Chemical states of vanadium in the fresh, used and reoxidized VOx(5 %)/TiO2 catalysts at different operating temperature are also analysed by XPS.

  17. Growth behavior of carbon nanotubes on multilayered metal catalyst film (Al/Fe/Mo) in chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cui, H.; Eres, G.; Howe, J. Y.; Puretzky, A.; Varela, M.; Geohegan, D. B.; Lowndes, D. H.

    2003-03-01

    The temperature- and time- dependences of carbon nanotube (CNT) growth by chemical vapor deposition are studied using a multilayered Al/Fe/Mo catalyst on silicon substrates. Within the 600 - 1100 ^oC temperature range in these studies, narrower temperature ranges were determined for the growth of aligned multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). Aligned MWCNT growth is favored at lower temperatures ( ˜700 ^oC). At 900 ^oC, in contrast to earlier work, double-walled carbon nanotubes (DWCNTs) are found more abundant than SWCNTs. At further elevated temperature, highly defective carbon structures are produced. Defects also are found to accumulate faster than the ordered graphitic structure if the growth of CNTs is extended to long growth durations. Atomic force microscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, and Raman spectroscopy are used to characterize the catalyst and various types of CNTs.

  18. The conversion of CO 2 to methanol on orthorhombic β-Mo 2C and Cu/β-Mo 2C catalysts: Mechanism for admetal induced change in the selectivity and activity

    DOE PAGES

    Posada-Pérez, Sergio; Ramírez, Pedro J.; Gutiérrez, Ramón A.; ...

    2016-02-01

    Here, the conversion of CO 2 into methanol catalyzed by β-Mo 2C and Cu/β-Mo 2C surfaces has been investigated by means of a combined experimental and theoretical study. Experiments have shown the direct activation and dissociation of the CO 2 molecule on bare β-Mo 2C, whereas on Cu/β-Mo 2C, CO 2 must be assisted by hydrogen for its conversion. Methane and CO are the main products on the clean surface and methanol production is lower. However, the deposition of Cu clusters avoids methane formation and increases methanol production even above that corresponding to a model of the technical catalyst. DFTmore » calculations on surface models of both possible C- and Mo-terminations corroborate the experimental observations. Calculations for the clean Mo-terminated surface reveal the existence of two possible routes for methane production (C + 4H → CH 4; CH 3O + 3H → CH 4 + H 2O) which are competitive with methanol synthesis, displaying slightly lower energy barriers. On the other hand, a model for Cu deposited clusters on the Mo-terminated surface points towards a new route for methanol and CO production avoiding methane formation. The new route is a direct consequence of the generation of a Mo 2C–Cu interface. The present experimental and theoretical results entail the interesting catalytic properties of Mo 2C as an active support of metallic nanoparticles, and also illustrate how the deposition of a metal can drastically change the activity and selectivity of a carbide substrate for CO 2 hydrogenation.« less

  19. Single crystal structure and SHG of defect pyrochlores CsB{sup V}MoO{sub 6} (B{sup V}=Nb,Ta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukina, D.G., E-mail: dianafuk@yandex.ru; Suleimanov, E.V.; Yavetskiy, R.P.

    2016-09-15

    The crystal structure and non-linear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} defect pyrochlores have been studied. The single crystals of these compounds grown by the flux method possess an octahedral faceting and reach up to 50 µm in size. The crystal structures of CsB{sup V}MoO{sub 6} (B{sup V}=Nb, Ta) were investigated by X-ray diffraction method. Both compounds crystallize in the cubic symmetry with noncentrosymmetric space group F-43m. The second harmonic generation of CsNbMoO{sub 6} and CsTaMoO{sub 6}was found to be 1.6×10{sup −2} and 8.5×10{sup −4} of lithium niobate, correspondingly. It has been determined that distortions of [MO{sub 6}]more » polyhedra (M=Nb, Ta, Mo) as well as polarizability and covalency of Nb–O and Ta–O bonds have a great effect on the second harmonic generation. - Highlights: • CsNbMoO{sub 6} and CsTaMoO{sub 6} homogeneous single crystals have been grown. • The crystal structure of CsTaMoO{sub 6} has been studied. • Nonlinear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} have been found. • The microscopic origin of the second harmonic generation (SHG) response have been identified.« less

  20. Self-Supported Ni(P, O)x·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution.

    PubMed

    Hua, Wei; Liu, Huanyan; Wang, Jian-Gan; Wei, Bingqing

    2017-12-06

    Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O) x ·MoO x nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P, O) x and amorphous MoO x , as well as three-dimensional porous conductive nickel scaffold, the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including a small overpotential of 59 mV at 10 mA cm -2 , a low Tafel slope of 54 mV dec -1 , and excellent cycling stability.

  1. Self-Supported Ni(P, O)x·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution

    PubMed Central

    Hua, Wei; Liu, Huanyan

    2017-01-01

    Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O)x·MoOx nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P, O)x and amorphous MoOx, as well as three-dimensional porous conductive nickel scaffold, the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including a small overpotential of 59 mV at 10 mA cm−2, a low Tafel slope of 54 mV dec-1, and excellent cycling stability. PMID:29210991

  2. A combined experimental and theoretical spectroscopic protocol for determination of the structure of heterogeneous catalysts: developing the information content of the resonance Raman spectra of M1 MoVO x .

    PubMed

    Kubas, Adam; Noak, Johannes; Trunschke, Annette; Schlögl, Robert; Neese, Frank; Maganas, Dimitrios

    2017-09-01

    Absorption and multiwavelength resonance Raman spectroscopy are widely used to investigate the electronic structure of transition metal centers in coordination compounds and extended solid systems. In combination with computational methodologies that have predictive accuracy, they define powerful protocols to study the spectroscopic response of catalytic materials. In this work, we study the absorption and resonance Raman spectra of the M1 MoVO x catalyst. The spectra were calculated by time-dependent density functional theory (TD-DFT) in conjunction with the independent mode displaced harmonic oscillator model (IMDHO), which allows for detailed bandshape predictions. For this purpose cluster models with up to 9 Mo and V metallic centers are considered to represent the bulk structure of MoVO x . Capping hydrogens were used to achieve valence saturation at the edges of the cluster models. The construction of model structures was based on a thorough bonding analysis which involved conventional DFT and local coupled cluster (DLPNO-CCSD(T)) methods. Furthermore the relationship of cluster topology to the computed spectral features is discussed in detail. It is shown that due to the local nature of the involved electronic transitions, band assignment protocols developed for molecular systems can be applied to describe the calculated spectral features of the cluster models as well. The present study serves as a reference for future applications of combined experimental and computational protocols in the field of solid-state heterogeneous catalysis.

  3. One-Step Preparation of Large Area Films of Oriented MoS2 Nanoparticles on Multilayer Graphene and Its Electrocatalytic Activity for Hydrogen Evolution

    PubMed Central

    He, Jinbao; Fernández, Cristina; Primo, Ana

    2018-01-01

    MoS2 is a promising material to replace Pt-based catalysts for the hydrogen evolution reaction (HER), due to its excellent stability and high activity. In this work, MoS2 nanoparticles supported on graphitic carbon (about 20 nm) with a preferential 002 facet orientation have been prepared by pyrolysis of alginic acid films on quartz containing adsorbed (NH4)2MoS4 at 900 °C under Ar atmosphere. Although some variation of the electrocatalytic activity has been observed from batch to batch, the MoS2 sample exhibited activity for HER (a potential onset between 0.2 and 0.3 V vs. SCE), depending on the concentrations of (NH4)2MoS4 precursor used in the preparation process. The loading and particle size of MoS2, which correlate with the amount of exposed active sites in the sample, are the main factors influencing the electrocatalytic activity. PMID:29361756

  4. Bio-Diesel Production from Deoxygenation Reaction Over Ce0.6Zr0.4O2 Supported Transition Metal (Ni, Cu, Co, and Mo) Catalysts.

    PubMed

    Shim, Jae-Oh; Jeong, Dae-Woon; Jang, Won-Jun; Jeon, Kyung-Won; Jeon, Byong-Hun; Kim, Seong-Heon; Roh, Hyun-Seog; Na, Jeong-Geol; Han, Sang Sup; Ko, Chang Hyun

    2016-05-01

    Ce0.6Zr0.4O2 supported transition metal (Me = Ni, Cu, Co, and Mo) catalysts have been investigated to screen for the catalytic activity and selectivity for deoxygenation reaction of oleic acid. Me-Ce0.6Zr0.4O2 catalysts were prepared by a co-precipitation method. Ni-Ce0.6Zr0.4O2 catalyst exhibited much higher oleic acid conversion, selectivity for C9 to C17 compounds, and oxygen removal efficiency than the others. This is mainly ascribed to the presence of free Ni species, synergy effects between Ni and Ce0.6Zr0.4O2, and the highest BET surface area.

  5. Development of GREET Catalyst Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al 2O3, and Pt/ γ-Al 2O 3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  6. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.

    PubMed

    Zee, David Z; Chantarojsiri, Teera; Long, Jeffrey R; Chang, Christopher J

    2015-07-21

    Climate change, rising global energy demand, and energy security concerns motivate research into alternative, sustainable energy sources. In principle, solar energy can meet the world's energy needs, but the intermittent nature of solar illumination means that it is temporally and spatially separated from its consumption. Developing systems that promote solar-to-fuel conversion, such as via reduction of protons to hydrogen, could bridge this production-consumption gap, but this effort requires invention of catalysts that are cheap, robust, and efficient and that use earth-abundant elements. In this context, catalysts that utilize water as both an earth-abundant, environmentally benign substrate and a solvent for proton reduction are highly desirable. This Account summarizes our studies of molecular metal-polypyridyl catalysts for electrochemical and photochemical reduction of protons to hydrogen. Inspired by concept transfer from biological and materials catalysts, these scaffolds are remarkably resistant to decomposition in water, with fast and selective electrocatalytic and photocatalytic conversions that are sustainable for several days. Their modular nature offers a broad range of opportunities for tuning reactivity by molecular design, including altering ancillary ligand electronics, denticity, and/or incorporating redox-active elements. Our first-generation complex, [(PY4)Co(CH3CN)2](2+), catalyzes the reduction of protons from a strong organic acid to hydrogen in 50% water. Subsequent investigations with the pentapyridyl ligand PY5Me2 furnished molybdenum and cobalt complexes capable of catalyzing the reduction of water in fully aqueous electrolyte with 100% Faradaic efficiency. Of particular note, the complex [(PY5Me2)MoO](2+) possesses extremely high activity and durability in neutral water, with turnover frequencies at least 8500 mol of H2 per mole of catalyst per hour and turnover numbers over 600 000 mol of H2 per mole of catalyst over 3 days at an

  7. Acetylene and Ethylene Adsorption on a β-Mo 2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres

    Mo 2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo 2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied in this paper on a β-Mo 2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo 2C) surfaces. The geometry andmore » electronic properties of the clean δ-MoC(001) and β-Mo 2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo 2C(100) than on δ-MoC(001). The C termination in β-Mo 2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. Finally, the results of this work suggest that the β-Mo 2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CH x fragments.« less

  8. Acetylene and Ethylene Adsorption on a β-Mo 2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions

    DOE PAGES

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; ...

    2017-08-18

    Mo 2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo 2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied in this paper on a β-Mo 2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo 2C) surfaces. The geometry andmore » electronic properties of the clean δ-MoC(001) and β-Mo 2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo 2C(100) than on δ-MoC(001). The C termination in β-Mo 2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. Finally, the results of this work suggest that the β-Mo 2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CH x fragments.« less

  9. MoSi2-Base Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2003-01-01

    Addition of 30 to 50 vol% of Si3N4 particulate to MoSi2 eliminated its low temperature catastrophic failure, improved room temperature fracture toughness and the creep resistance. The hybrid composite SCS-6/MoSi2-Si3N4 did not show any matrix cracking and exhibited excellent mechanical and environmental properties. Hi-Nicalon continuous fiber reinforced MoSi2-Si3N4 also showed good strength and toughness. A new MoSi2-base composite containing in-situ whisker-type (Beta)Si3N4 grains in a MoSi2 matrix is also described.

  10. Comparison of iridium- and ruthenium-based, Pt-surface-enriched, nanosize catalysts for the oxygen-reduction reaction

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Goor, M.; Alon, M.; Tsizin, S.; Burstein, L.; Rosenberg, Y.; Popov, I.; Peled, E.

    2016-02-01

    Pt-surface-enriched nanosize catalysts (Pt-SENS catalysts) with ruthenium and iridium cores, supported on XC72, were synthesized and characterized. The structure and composition of the catalysts are determined by Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Scanning Transmission Electron Microscopy (STEM) and X-Ray Diffraction (XRD). Electrochemical characterization tests, including oxygen-reduction-catalysis activity and durability studies of catalysts are performed with the use of cyclic-voltammetry and rotating-disk-electrode (RDE) techniques at room temperature. The ORR activity of the homemade catalysts is also compared to ORR activity of commercial 50%Pt/C catalyst. It is determined that the Ir-based catalyst (Pt/Ir/XC72) shows higher ORR activity in terms of A g-1 of Pt (at 0.85 V vs. RHE) than the Ru-based catalyst (Pt/Ru/XC72) and the commercial 50%Pt/C. The Ru-based catalyst shows similar ORR activity in terms of A g-1 of Pt, to that of the commercial 50%Pt/C, but with much lower durability.

  11. Preparation of MoO2/g-C3N4 composites with a high surface area and its application in deep desulfurization from model oil

    NASA Astrophysics Data System (ADS)

    Hou, Liang-pei; Zhao, Rong-xiang; Li, Xiu-ping; Gao, Xiao-han

    2018-03-01

    A series of catalysts of composition X-MoO2/g-C3N4 (X = 0, 0.5, 1, 3, 5 wt.%) were successfully synthesized by calcination of a mixture of (NH4)6Mo7O24·4H2O and g-C3N4. Oxidative desulfurization experiments were conducted using X-MoO2/g-C3N4 as a catalyst, H2O2 as an oxidant, and ionic liquids (ILs) as extraction agents. Catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller analysis (BET). Characterization results suggested that MoO2 was present in the catalyst and its crystallinity improved with increased Mo-loading. The catalysts had a larger specific surface area due to the presence of MoO2 dispersed on g-C3N4. Experimental results showed that 3%-MoO2/g-C3N4 had the highest catalytic activity among all the catalysts tested. A desulfurization rate of 96.0% was achieved under optimal conditions. Through gas chromatography-mass spectrometry (GC-MS) analysis, it was shown that dibenzothoiphene sulfone was the sole product of the oxidation desulfurization reaction. An apparent activation energy of 61.1 kJ/mol was estimated based on Arrhenius equation. The activity of 3%-MoO2/g-C3N4 slightly decreased after six runs. A possible mechanism for the reaction has been proposed.

  12. Biospectroscopy for studying the influences of anti-diabetic metals (V, Cr, Mo, and W) to the insulin signaling pathway

    NASA Astrophysics Data System (ADS)

    Safitri, Anna; Levina, Aviva; Lee, Joonsup; Carter, Elizabeth A.; Lay, Peter A.

    2017-03-01

    The prevalence of diabetes, particularly with respect to type 2 diabetes, has reached epidemic proportions and continues to grow worldwide. One of the potential therapeutic targets in the treatment of type 2 diabetes involves the role of protein tyrosine phosphatases in the negative regulation of insulin signaling. The complexes of V(V/IV), Cr(III), W(VI), and Mo(VI), have all been proposed as possible drugs in the treatment of diabetes mellitus. Anti-diabetic activities of V(V/IV), Cr(III), Mo(VI), and W(VI) compounds are likely to be based on similar mechanisms, which involve phosphorylation/dephosphorylation reactions in the glucose uptake and metabolism. In order to clearly understand biological activities and phosphorylation/dephosphorylation reactions involved in anti-diabetic actions of Cr(III), V(V/IV), Mo(VI), and W(VI) complexes, the current research involves the use of cultured insulin-sensitive cells treated with these compounds. These reactions were investigated through vibrational spectroscopy. Protein phosphorylation/dephosphorylation induced conformational changes in secondary protein structure from α-helix to β-sheet, and these changes were detected by the IR spectra, which showed changes in the wavenumber and intensities of signals within the composite protein amide I band.

  13. Orthorhombic MoO3 nanobelts based NO2 gas sensor

    NASA Astrophysics Data System (ADS)

    Mane, A. A.; Moholkar, A. V.

    2017-05-01

    Molybdenum trioxide (MoO3) nanobelts have been deposited onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD patterns reveal that films are polycrystalline having an orthorhombic crystal structure. Raman spectra confirm that the films are orthorhombic in phase. The XPS study shows the presence of two well resolved spectral lines of Mo-3d core levels appearing at the binding energy values of 232.82 eV and 235.95 eV corresponding to Mo-3d5/2 and Mo-3d3/2, respectively. These binding energy values are assigned to Mo6+ oxidation state of fully oxidized MoO3. The FE-SEM micrographs show the formation of nanobelts-like morphology. The AFM micrographs reveal that the RMS surface roughness increases from 16.5 nm to 17.5 nm with increase in film thickness from 470 nm to 612 nm and then decreases to 16 nm for 633 nm film thickness. The band gap energy is found to be decreased from 3.40 eV to 3.38 eV. To understand the electronic transport phenomenon in MoO3 thin films, dielectric properties are studied. For 612 nm film thickness, the highest NO2 gas response of 68% is obtained at an operating temperature of 200 °C for 100 ppm concentration with response and recovery times of 15 s and 150 s, respectively. The lower detection limit is found to be 10 ppm which is half of the immediately dangerous to life or health (IDLH) value of 20 ppm. Finally, NO2 gas sensing mechanism in an orthorhombic MoO3 crystal structure is discussed in detail.

  14. Molybdenum Carbides, Active and In Situ Regenerable Catalysts in Hydroprocessing of Fast Pyrolysis Bio-Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae-Soon; Zacher, Alan H.; Wang, Huamin

    We assessed molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60-h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oils below 2 wt% andmore » 0.01 mg KOH g-1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60-h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are promising catalytic materials which could lead to a significant cost reduction in hydroprocessing bio-oils. This paper highlights areas for future research which will be needed to further understand carbide structure-function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  15. Dispersed catalysts for co-processing and coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockrath, B.; Parfitt, D.; Miller, R.

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second areamore » of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.« less

  16. Photo-neutron reaction cross-sections for natMo in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kapote Noy, R.; Schwengner, R.; Kim, K.; Zaman, M.; Shin, S. G.; Gey, Y.; Massarczyk, R.; John, R.; Junghans, A.; Wagner, A.; Cho, M.-H.

    2016-07-01

    The natMo( γ, xn)90, 91, 99Mo reaction cross-sections were experimentally determined for the bremsstrahlung end-point energies of 12, 14, 16, 45, 50, 55, 60 and 70MeV by activation and off-line γ -ray spectrometric technique and using the 20MeV electron linac (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The natMo( γ, xn)88, 89, 90, 91, 99Mo reaction cross-sections as a function of photon energy were also calculated using the computer code TALYS 1.6. The flux-weighted average cross-sections were obtained from the literature data and the calculated values of TALYS based on mono-energetic photons and are found to be in general agreement with the present results. The flux-weighted average experimental and theoretical cross-sections for the natMo( γ, xn)88, 89, 90, 91, 99Mo reactions increase with the bremsstrahlung end-point energy, which indicates the role of excitation energy. After a certain energy, the individual natMo( γ, xn) reaction cross-sections decrease with the increase of bremsstrahlung energy due to opening of other reactions, which indicates sharing of energy in different reaction channels. The 100Mo( γ, n) reaction cross-section is important for the production of 99Mo , which is a probable alternative to the 98Mo(n, γ) and 235U(n, f ) reactions.

  17. Transesterification of diethyl oxalate with phenol over sol-gel MoO(3)/TiO(2) catalysts.

    PubMed

    Kotbagi, Trupti; Nguyen, Duy Luan; Lancelot, Christine; Lamonier, Carole; Thavornprasert, Kaew-Arpha; Wenli, Zhu; Capron, Mickaël; Jalowiecki-Duhamel, Louise; Umbarkar, Shubhangi; Dongare, Mohan; Dumeignil, Franck

    2012-08-01

    The transesterification of diethyl oxalate (DEO) with phenol to form diphenyl oxalate (DPO) has been carried out in the liquid phase over very efficient MoO(3)/TiO(2) solid-acid sol-gel catalysts. A selectivity of 100 % with a remarkable maximum yield of 88 % were obtained, which opens the route to downstream phosgene-free processes for the synthesis of polycarbonates. Interpretation of the results of various acidity measurements (NH(3) and pyridine desorption, methanol oxidation as a probe reaction) allowed us to identify the catalytic sites as Lewis acid sites. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Selective Catalytic Reduction of NO with NH3 Over V-MCM-41 Catalyst.

    PubMed

    Kwon, Woo Hyun; Park, Sung Hoon; Kim, Ji Man; Park, Su Bin; Jung, Sang-Chul; Kim, Sang Chai; Jeon, Jong-Ki; Park, Young-Kwon

    2016-02-01

    V-MCM-41, a mesoporous catalyst doped with V2O5, was applied for the first time to the removal of atmospheric NO. The quantity of V2O5 added was 10 wt% and 30 wt%. The characteristics of the synthesized catalysts were examined using XRD, N2 soprtion, and NH3-TPD. With increasing quantity of V2O5 added, specific surface area decreased and pore size increased. When the quantity of V2O5 was 10 wt%, the MCM-41 structure was retained, whereas considerable collapse of mesoporous structure was observed when 30 wt% V2O5 was added. The examination of acid characteristics using NH3-TPD showed that 30 wt% V-MCM-41 had the higher NH3 adsorption ability, implying that it would exhibit high activity for NH3 SCR reaction. In the NO removal experiments, 30 wt% V-MCM-41 showed much higher NO removal efficiency than 10 wt% V-MCM-41, which was attributed to its high NH3 adsorption ability.

  19. Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters

    DOE PAGES

    Hellstern, Thomas R.; Kibsgaard, Jakob; Tsai, Charlie; ...

    2017-09-22

    Molybdenum sulfides have been identified as promising materials for catalyzing the hydrogen evolution reaction (HER) in acid, with active edge sites that exhibit some of the highest turnover frequencies among nonpreciousmetal catalysts. The thiomolybdate [Mo 3S 13] 2- nanocluster catalyst contains a structural motif that resembles the active site of MoS 2 and has been reported to be among the most active forms of molybdenum sulfide. Herein, we improve the activity of the [Mo 3S 13] 2- catalysts through catalyst-support interactions. We synthesize [Mo 3S 13] 2- on gold, silver, glassy carbon, and copper supports to demonstrate the ability tomore » tune the hydrogen binding energy of [Mo 3S 13] 2- using catalyst-support electronic interactions and optimize HER activity.« less

  20. Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellstern, Thomas R.; Kibsgaard, Jakob; Tsai, Charlie

    Molybdenum sulfides have been identified as promising materials for catalyzing the hydrogen evolution reaction (HER) in acid, with active edge sites that exhibit some of the highest turnover frequencies among nonpreciousmetal catalysts. The thiomolybdate [Mo 3S 13] 2- nanocluster catalyst contains a structural motif that resembles the active site of MoS 2 and has been reported to be among the most active forms of molybdenum sulfide. Herein, we improve the activity of the [Mo 3S 13] 2- catalysts through catalyst-support interactions. We synthesize [Mo 3S 13] 2- on gold, silver, glassy carbon, and copper supports to demonstrate the ability tomore » tune the hydrogen binding energy of [Mo 3S 13] 2- using catalyst-support electronic interactions and optimize HER activity.« less

  1. Electron tomography and fractal aspects of MoS2 and MoS2/Co spheres.

    PubMed

    Ramos, Manuel; Galindo-Hernández, Félix; Arslan, Ilke; Sanders, Toby; Domínguez, José Manuel

    2017-09-26

    A study was made by a combination of 3D electron tomography reconstruction methods and N 2 adsorption for determining the fractal dimension for nanometric MoS 2 and MoS 2 /Co catalyst particles. DFT methods including Neimarke-Kiselev's method allowed to determine the particle porosity and fractal arrays at the atomic scale for the S-Mo-S(Co) 2D- layers that conform the spherically shaped catalyst particles. A structural and textural correlation was sought by further characterization performed by x-ray Rietveld refinement and Radial Distribution Function (RDF) methods, electron density maps, computational density functional theory methods and nitrogen adsorption methods altogether, for studying the structural and textural features of spherical MoS 2 and MoS 2 /Co particles. Neimark-Kiselev's equations afforded the evaluation of a pore volume variation from 10 to 110 cm 3 /g by cobalt insertion in the MoS 2 crystallographic lattice, which induces the formation of cavities and throats in between of less than 29 nm, with a curvature radius r k  < 14.4 nm; typical large needle-like arrays having 20 2D layers units correspond to a model consisting of smooth surfaces within these cavities. Decreasing D P , D B , D I and D M values occur when Co atoms are present in the MoS 2 laminates, which promote the formation of smoother edges and denser surfaces that have an influence on the catalytic properties of the S-Mo-S(Co) system.

  2. One-Pot Conversion of Epoxidized Soybean Oil (ESO) into Soy-Based Polyurethanes by MoCl₂O₂ Catalysis.

    PubMed

    Pantone, Vincenzo; Annese, Cosimo; Fusco, Caterina; Fini, Paola; Nacci, Angelo; Russo, Antonella; D'Accolti, Lucia

    2017-02-21

    An innovative and eco-friendly one-pot synthesis of bio-based polyurethanes is proposed via the epoxy-ring opening of epoxidized soybean oil (ESO) with methanol, followed by the reaction of methoxy bio-polyols intermediates with 2,6-tolyl-diisocyanate (TDI). Both synthetic steps, methanolysis and polyurethane linkage formation, are promoted by a unique catalyst, molybdenum(VI) dichloride dioxide (MoCl₂O₂), which makes this procedure an efficient, cost-effective, and environmentally safer method amenable to industrial scale-up.

  3. Exploring the Reaction Pathways of Bioglycerol Hydrodeoxygenation to Propene over Molybdena-Based Catalysts.

    PubMed

    Zacharopoulou, Vasiliki; Vasiliadou, Efterpi S; Lemonidou, Angeliki A

    2018-01-10

    The one-step reaction of glycerol with hydrogen to form propene selectively is a particularly challenging catalytic pathway that has not yet been explored thoroughly. Molybdena-based catalysts are active and selective to C-O bond scission; propene is the only product in the gas phase under the standard reaction conditions, and further hydrogenation to propane is impeded. Within this context, this work focuses on the exploration of the reaction pathways and the investigation of various parameters that affect the catalytic performance, such as the role of hydrogen on the product distribution and the effect of the catalyst pretreatment step. Under a hydrogen atmosphere, propene is produced primarily via 2-propenol, whereas under an inert atmosphere propanal and glycerol dissociation products are formed mainly. The reaction most likely proceeds through a reverse Mars-van Krevelen mechanism as partially reduced Mo species drive the reaction to the formation of the desired product. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and characterization of nanoscale molybdenum sulfide catalysts by controlled gas phase decomposition of Mo(CO){sub 6} and H{sub 2}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, M.R.; Petersen, J.L.; Kugler, E.L.

    1999-04-05

    Molybdenum sulfide catalysts with surface areas ranging from 16 to 120 m{sup 2}/g were prepared by the thermal decomposition of Mo(CO){sub 6} and H{sub 2}S vapors in a specially designed tubular reactor system. The gas phase decomposition (GPD) reactions performed at 500--1100 C produced only MoS{sub 2} when excess H{sub 2}S was used. The optimum temperature range for the high-yield production of MoS{sub 2} was from 500 to 700 C. By controlling the decomposition temperature, the Mo(CO){sub 6} partial pressure, or the inert gas flow rate, the surface area, oxidation state, chemical composition, and the grain size of the molybdenummore » sulfide product(s) were modified. At reactor temperatures between 300 and 400 C, lower valent molybdenum sulfide materials, which were sulfur deficient relative to MoS{sub 2}, were obtained with formal molybdenum oxidation states intermediate to those found for Chevrel phase compounds, M{prime}Mo{sub 6}S{sub 8} (M{prime} = Fe, Ni, Co) and MoS{sub 2}. By lowering the H{sub 2}S flow rate used for the GPD reaction at 1000 C, mixtures containing variable amounts of MoS{sub 2} and Mo{sub 2}S{sub 3} were produced. Thus, through the modification of critical reactor parameters used for these GPD reactions, fundamental material properties were controlled.« less

  5. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECT OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...

  6. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    PubMed

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 < MoF 3 < MoF 6 before sharply decreasing for MoF 9 , with a similar effect for the supported systems (MoF 0 ≈ MoF 9 < MoF 6 < MoF 3 ). This is consistent with the different kinetic behavior (zeroth order in alkyne for MoF 9 derivatives instead of first order for the others) and the isolation of stable metallacyclobutadiene intermediates of MoF 9 for both molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  7. Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes.

    PubMed

    Dai, Chu; Qing, Enping; Li, Yong; Zhou, Zhaoxin; Yang, Chao; Tian, Xike; Wang, Yanxin

    2015-12-21

    Advanced oxidation processes as a green technology have been adopted by combining the semiconductor catalyst MoSe2 with H2O2 under visible radiation. And novel three-dimensional self-assembled molybdenum diselenide (MoSe2) hierarchical microspheres from nanosheets were produced by using organic, selenium cyanoacetic acid sodium (NCSeCH2COONa) as the source of Se. The obtained products possess good crystallinity and present hierarchical structures with the average diameter of 1 μm. The band gap of MoSe2 microspheres is 1.68 eV and they present excellent photocatalytic activity under visible light irradiation in the MoSe2-H2O2 system. This effective photocatalytic mechanism was investigated in this study and can be attributed to visible-light-driven advanced oxidation processes.

  8. The Molybdenum(V) and Tungsten(VI) Oxoazides [MoO(N3 )3 ], [MoO(N3 )3 ⋅2 CH3 CN], [(bipy)MoO(N3 )3 ], [MoO(N3 )5 ](2-) , [WO(N3 )4 ], and [WO(N3 )4 ⋅CH3 CN].

    PubMed

    Haiges, Ralf; Skotnitzki, Juri; Fang, Zongtang; Dixon, David A; Christe, Karl O

    2015-12-14

    A series of novel molybdenum(V) and tungsten(VI) oxoazides was prepared starting from [MOF4 ] (M=Mo, W) and Me3 SiN3 . While [WO(N3 )4 ] was formed through fluoride-azide exchange in the reaction of Me3 SiN3 with WOF4 in SO2 solution, the reaction with MoOF4 resulted in a reduction of Mo(VI) to Mo(V) and formation of [MoO(N3 )3 ]. Carried out in acetonitrile solution, these reactions resulted in the isolation of the corresponding adducts [MoO(N3 )3 ⋅2 CH3 CN] and [WO(N3 )4 ⋅CH3 CN]. Subsequent reactions of [MoO(N3 )3 ] with 2,2'-bipyridine and [PPh4 ][N3 ] resulted in the formation and isolation of [(bipy)MoO(N3 )3 ] and [PPh4 ]2 [MoO(N3 )5 ], respectively. Most molybdenum(V) and tungsten(VI) oxoazides were fully characterized by their vibrational spectra, impact, friction and thermal sensitivity data and, in the case of [WO(N3 )4 ⋅CH3 CN], [(bipy)MoO(N3 )3 ], and [PPh4 ]2 [MoO(N3 )5 ], by their X-ray crystal structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oxidative Degradation of Methyl Orange Solution by Fe-MKSF Catalyst: Identification of Radical Species

    NASA Astrophysics Data System (ADS)

    Abdullah, N. H.; Selamat, M. K. A.; Nasuha, N.; Hassan, H.; Zubir, N. A.

    2018-06-01

    Iron–immobilized montmorillonite KSF (Fe-MKSF) has been recognized as promising catalyst in degrading persistence organic contaminants. However, detailed mechanistic insight during the catalysis which involving the formation and identification of radical species were remained indeterminate due to complex reaction. Inspiring by this gap, iron-immobilized clay (Fe-MKSF) was synthesized and used as heterogeneous catalyst in the oxidative degradation of methyl orange (MO) solution. Identification of radical species were determined through the inclusion of different types of radical scavenging agent during the Fenton-like reaction at optimum condition. Interestingly, dominant radical species were found to be hydroperoxyl radicals (•OOH) which subsequently followed by hydroxyl radicals (•OH) during the catalysis. Based on the percentage of MO removal, it was suggested that approximately 88% of the •OOH radicals existed at the interface of catalyst while 39% presence in bulk solution. Meanwhile, the interface •OH radicals promoted 38% of MO removal, whilst 4% by the bulk •OH radicals. Hence, these findings have conveyed novel insight on detailed radicals’ identification as well as its’ interaction during the catalysis.

  10. The research of axial corrosion fatigue on 10Ni3CrMoV steel

    NASA Astrophysics Data System (ADS)

    Xie, Xing; Yi, Hong; Xu, Jian; Xie, Kun

    2017-09-01

    Fatigue life had been studied with 10CrNi3MoV steel at different load ratios and in different environmental medias. The microstructure and micro-topography had been observed and analyzed by means of SEM, EDS and TEM. Our findings indicated that, the fatigue life of 10Ni3CrMoV steel in seawater was shorter than in air, the difference in longevity was larger with the decreasing of axis stress. Corrosion pits had a great influence on corrosion fatigue life.

  11. Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability

    NASA Astrophysics Data System (ADS)

    Huang, Guanping; Mao, Jie; Fan, Ronglei; Yin, Zhihao; Wu, Xi; Jie, Jiansheng; Kang, Zhenhui; Shen, Mingrong

    2018-01-01

    Many earth-abundant transition metal dichalcogenides (TMDs) have been employed as catalysts for H2 evolution reaction (HER); however, their impactful integration onto photocathodes for photoelectrochemical (PEC) HER is less developed. In this study, we directly sputtered a MoSe2 catalyst onto an n+p-Si photocathode for efficient and stable PEC-HER. An onset potential of 0.4 V vs. RHE, a saturated photocurrent of 29.3 mA/cm2, a fill factor of 0.32, and an energy conversion efficiency of 3.8% were obtained under 100 mA/cm2 Xe lamp illumination. Such superior PEC properties were ascribed to the nearly vertically standing two dimensional MoSe2 rough surface layer and the sharp interface between Si and MoSe2 with small charge transfer resistance. The balance between the reflectivity of the electrode surface and the absorptivity of MoSe2 was also discussed. In addition, the MoSe2 layer can protect the n+p-Si photocathode with a 120 h stability due to its initial growth on Si with high flatness and compactness. This study provides a path to the effective and scalable growth of TMDs onto the Si photocathode aiming for high efficiency and stability.

  12. Self-Protection Mechanism of Hexagonal WO3-Based DeNOx Catalysts against Alkali Poisoning.

    PubMed

    Zheng, Li; Zhou, Meijuan; Huang, Zhiwei; Chen, Yaxin; Gao, Jiayi; Ma, Zhen; Chen, Jianmin; Tang, Xingfu

    2016-11-01

    A good catalyst for efficiently controlling NO x emissions often demands strong resistance against alkali poisoning. Although the traditional ion-exchange model, based on acid-base reactions of alkalis with Brønsted acid sites, has been established over the past two decades, it is difficult to be used as a guideline to develop such an alkali-resistant catalyst. Here we establish a self-protection mechanism of deNO x catalysts against alkali poisoning by systematically studying the intrinsic nature of alkali resistance of V 2 O 5 /HWO (HWO = hexagonal WO 3 ) that shows excellent resistance to alkali poisoning in selective catalytic reduction of NO x with NH 3 (SCR). Synchrotron X-ray diffraction and absorption spectroscopies demonstrate that V 2 O 5 /HWO has spatially separated catalytically active sites (CASs) and alkali-trapping sites (ATSs). During the SCR process, ATSs spontaneously trap alkali ions such as K + , even if alkali ions initially block CASs, thus releasing CASs to realize the self-protection against alkali poisoning. X-ray photoelectron spectra coupled with theoretical calculations indicate that the electronic interaction between the alkali ions and ATSs with an energy saving is the driving force of the self-protection. This work provides a strategy to design alkali-resistant deNO x catalysts.

  13. Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering.

    PubMed

    Chen, Bang-Bao; Ma, De-Kun; Ke, Qing-Ping; Chen, Wei; Huang, Shao-Ming

    2016-03-07

    Edges often play a role as active centers for catalytic reactions in some nanomaterials. Therefore it is highly desirable to enhance catalytic activity of a material through modulating the microstructure of the edges. However, the study associated with edge engineering is less investigated and still at its preliminary stage. Here we report that Cu2MoS4 nanosheets with indented edges can be fabricated through a simple chemical etching route at room temperature, using Cu2MoS4 nanosheets with flat ones as sacrifice templates. Taking the electrocatalytic hydrogen evolution reaction (HER), photocatalytic degradation of rhodamine B (RhB) and conversion of benzyl alcohol as examples, the catalytic activity of Cu2MoS4 indented nanosheets (INSs) obtained through edge engineering was comparatively studied with those of Cu2MoS4 flat nanosheets (FNSs) without any modification. The photocatalytic tests revealed that the catalytic active sites of Cu2MoS4 nanosheets were associated with their edges rather than basal planes. Cu2MoS4 INSs were endowed with larger electrochemically active surface area (ECSA), more active edges and better hydrophilicity through the edge engineering. As a result, the as-fabricated Cu2MoS4 INSs exhibited an excellent HER activity with a small Tafel slope of 77 mV dec(-1), which is among the best records for Cu2MoS4 catalysts. The present work demonstrated the validity of adjusting catalytic activity of the material through edge engineering and provided a new strategy for designing and developing highly efficient catalysts.

  14. Environmentally Resistant Mo-Si-B-Based Coatings

    NASA Astrophysics Data System (ADS)

    Perepezko, J. H.; Sossaman, T. A.; Taylor, M.

    2017-06-01

    High-temperature applications have demonstrated aluminide-coated nickel-base superalloys to be remarkably effective, but are reaching their service limit. Alternate materials such as refractory (e.g., W, Mo) silicide alloys and SiC composites are being considered to extend high temperature capability, but the silica surfaces on these materials require coatings for enhanced environmental resistance. This can be accomplished with a Mo-Si-B-based coating that is deposited by a spray deposition of Mo followed by a chemical vapor deposition of Si and B by pack cementation to develop an aluminoborosilica surface. Oxidation of the as-deposited (Si + B)-pack coatings proceeds with partial consumption of the initial MoSi2 forming amorphous silica. This Si depletion leads to formation of a B-saturated Mo5Si3 (T1) phase. Reactions between the Mo and the B rich phases develop an underlying Mo5SiB2 (T2) layer. The T1 phase saturated with B has robust oxidation resistance, and the Si depletion is prevented by the underlying diffusion barrier (T2). Further, due to the natural phase transformation characteristics of the Mo-Si-B system, cracks or scratches to the outer silica and T1 layers can be repaired from the Si and B reservoirs of T2 + MoB layer to yield a self-healing characteristic. Mo-Si-B-based coatings demonstrate robust performance up to at least 1700 °C not only to the rigors of elevated temperature oxidation, but also to CMAS attack, hot corrosion attack, water vapor and thermal cycling.

  15. Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy.

    PubMed Central

    Butler, Clive S; Fairhurst, Shirley A; Ferguson, Stuart J; Thomson, Andrew J; Berks, Ben C; Richardson, David J; Lowe, David J

    2002-01-01

    The first electron nuclear double resonance (ENDOR) study of a member of the Mo-bis-molybdopterin guanine dinucleotide family of molybdoenzymes is presented, using the periplasmic nitrate reductase from Paracoccus pantotrophus. Rapid freeze-quenched time-resolved EPR revealed that during turnover the intensity of a Mo(V) EPR signal known as High-g [resting] increases. This signal is split by two interacting protons that are not solvent-exchangeable. X-band proton-ENDOR analysis resolved broad symmetrical resonance features that arose from four classes of protons weakly coupled to the Mo(V). Signals from two of these were lost upon exchange into deuterated buffer, suggesting that they may originate from OH(-) or H(2)O groups. One of these signals was also lost when the enzyme was redox-cycled in the presence of azide. Since these protons are very weakly coupled OH/H(2)O groups, they are not likely to be ligated directly to the Mo(V). This suggests that protonation of a Mo(VI)zO group does not occur on reduction to Mo(V), but most probably accompanies reduction of Mo(V) to Mo(IV). A resonance feature from a more strongly coupled proton, that was not lost following exchange into deuterated buffer, could also be resolved at 22-24 MHz. The anisotropy of this feature, determined from ENDOR spectra collected at a range of field positions, indicated a Mo-proton distance of approx. 3.2 A, consistent with this being one of the beta-methylene protons of a Mo-Cys ligand. PMID:11964184

  16. The Role of Electrode-Catalyst Interactions in Enabling Efficient CO2 Reduction with Mo(bpy)(CO)4 As Revealed by Vibrational Sum-Frequency Generation Spectroscopy.

    PubMed

    Neri, Gaia; Donaldson, Paul M; Cowan, Alexander J

    2017-10-04

    Group 6 metal carbonyl complexes ([M(bpy)(CO) 4 ], M = Cr, Mo, W) are potentially promising CO 2 reduction electrocatalysts. However, catalytic activity onsets at prohibitively negative potentials and is highly dependent on the nature of the working electrode. Here we report in situ vibrational SFG (VSFG) measurements of the electrocatalyst [Mo(bpy)(CO) 4 ] at platinum and gold electrodes. The greatly improved onset potential for electrocatalytic CO 2 reduction at gold electrodes is due to the formation of the catalytically active species [Mo(bpy)(CO) 3 ] 2- via a second pathway at more positive potentials, likely avoiding the need for the generation of [Mo(bpy)(CO) 4 ] 2- . VSFG studies demonstrate that the strength of the interaction between initially generated [Mo(bpy)(CO) 4 ] •- and the electrode is critical in enabling the formation of the active catalyst via the low energy pathway. By careful control of electrode material, solvent and electrolyte salt, it should therefore be possible to attain levels of activity with group 6 complexes equivalent to their much more widely studied group 7 analogues.

  17. Carbonate-mediated Mars-van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: facet-dependence and coordination-dependence.

    PubMed

    Liu, Bing; Li, Wenping; Song, Weiyu; Liu, Jian

    2018-06-13

    Carbonate intermediates have been reported to play an active role in CO oxidation over ceria-based catalysts in recent experimental studies. However, the detailed CO oxidation mechanism involving carbonate intermediates over ceria-based catalysts remains obscure. In this work, we carried out systematic density functional theory calculations corrected by on-site Coulomb interactions (DFT+U) to investigate the complete CO oxidation mechanism involving carbonate intermediates over cobalt-doped CeO2 catalysts, aiming to unravel how the carbonate participates in CO oxidation and shed light on the underlying factors that control the carbonate-mediated reaction mechanism. A novel carbonate-mediated Mars-van Krevelen (M-vK) mechanism was proposed, in which the carbonate acts as an active intermediate rather than a spectator and can react with CO to form CO2. This carbonate-mediated M-vK mechanism is facet-dependent because it is predominant on the (110) surface whereas the conventional M-vK mechanism is more favorable on (111) and (100) surfaces. The origin of facet-dependence was discussed by analyzing the geometric and electronic structures. It is found that the negatively charged bent CO2- intermediate formed on the (110) surface plays a critical role in the carbonate-mediated M-vK mechanism, whereas the formation of a neutral linear CO2 intermediate on (111) and (100) surfaces hinders the carbonate-mediated M-vK mechanism. The surface oxygen vacancy hinders the formation of carbonate intermediates, indicating that the carbonate-mediated M-vK mechanism is also vacancy-dependent. The formation of carbonate intermediates on different metal (Ti, V, W, Mo and Re) doped CeO2(110) surfaces was studied and the results indicate that the coordination environment of the dopant species is a key factor that determines the carbonate-mediated M-vK mechanism. This study provides atomic-scale insights into the reaction mechanism involving carbonate intermediates and the structure

  18. Stable metal–organic framework-supported niobium catalysts

    DOE PAGES

    Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong; ...

    2016-10-31

    In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less

  19. MoOx modified ZnGaO based transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Dutta, Titas; Gupta, P.; Bhosle, V.; Narayan, J.

    2009-03-01

    We report here the growth of high work function bilayered structures of thin MoOx (2.0MoOx layer, molybdenum exists in Mo4+, Mo5+, and Mo6+ oxidation states, and the ratio of (Mo4++Mo5+) to Mo6+ was determined to be ˜2:1. The bilayer films showed good optical transparency (≥80%) and low resistivity of ˜10-4 Ω cm. Different transport behavior of the MoOx/ZnGa0.05O films grown at different Ts (substrate temperature) was observed in temperature-dependent resistivity measurements. The bilayer film at higher Ts showed metallic conductivity behavior down to 113 K. Moreover, a blueshift of the absorption edge in the transmission spectrum was observed with the increase in Ts, indicating an increase in the carrier concentration. It was observed that the ZnGa0.05O films with ultrathin MoOx (˜1-2 nanometers) overlayer showed a higher work function (varying from 4.7 to 5.1 eV) as compared to the single layer ZnGa0.05O film work function (˜4.4 eV). A correlation between the surface work function and MoOx layer thickness is observed. The higher work function of the MoOx overlayer is envisaged to improve the transport of the carriers across the heterojunction in a solid state device, thus resulting an increase in device efficiency.

  20. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  1. Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst.

    PubMed

    Sordello, Fabrizio; Ghibaudo, Manuel; Minero, Claudio

    2017-07-19

    We report the electrosynthesis of a water oxidation catalyst based on Ag oxides (AgCat). The deposited AgCat is composed of mixed valence crystalline Ag oxides with the presence of particle aggregates whose size is ∼1 μm. This catalyst, coupled with TiO 2 and hematite, and under photoelectrochemical conditions, substantially increases photocurrents in a wide range of applied potentials compared with bare and Co-Pi-modified photocatalysts. AgCat can sustain current densities comparable with other water oxidation catalysts. Dark bulk electrolysis demonstrated that AgCat is stable and can sustain high turnover number in operative conditions. Oxygen evolution from water occurs in mild conditions: pH = 2-13, room temperature and pressure, and moderate overpotentials (600 mV) compatible with the coupling with semiconducting oxides as sensitizers. Using hematite in sustained electrolysis O 2 production is significant, both in the dark and under irradiation, after an initial slow induction time in which modification of surface species occurs.

  2. Prediction of a low-temperature N2 dissociation catalyst exploiting near-IR–to–visible light nanoplasmonics

    PubMed Central

    Martirez, John Mark P.; Carter, Emily A.

    2017-01-01

    Despite more than a century of advances in catalyst and production plant design, the Haber-Bosch process for industrial ammonia (NH3) synthesis still requires energy-intensive high temperatures and pressures. We propose taking advantage of sunlight conversion into surface plasmon resonances in Au nanoparticles to enhance the rate of the N2 dissociation reaction, which is the bottleneck in NH3 production. We predict that this can be achieved through Mo doping of the Au surface based on embedded multireference correlated wave function calculations. The Au component serves as a light-harvesting antenna funneling energy onto the Mo active site, whereby excited-state channels (requiring 1.4 to 1.45 eV, near-infrared–to–visible plasmon resonances) may be accessed. This effectively lowers the energy barriers to 0.44 to 0.77 eV/N2 (43 to 74 kJ/mol N2) from 3.5 eV/N2 (335 kJ/mol N2) in the ground state. The overall process requires three successive surface excitation events, which could be facilitated by amplified resonance energy transfer due to plasmon local field enhancement. PMID:29291247

  3. Synthesis of seaweed based carbon acid catalyst by thermal decomposition of ammonium sulfate for biodiesel production

    NASA Astrophysics Data System (ADS)

    Ee, Tang Zo; Lim, Steven; Ling, Pang Yean; Huei, Wong Kam; Chyuan, Ong Hwai

    2017-04-01

    Experiment was carried out to study the feasibility of biomass derived solid acid catalyst for the production of biodiesel using Palm Fatty Acid Distillate (PFAD). Malaysia indigenous seaweed was selected as the biomass to be carbonized as the catalyst support. Sulfonation of seaweed based carbon material was carried out by thermal decomposition of ammonium sulfate, (NH4)2SO4. The effects of carbonization temperature at 200 to 600°C on the catalyst physical and chemical properties were studied. The effect of reaction parameters on the fatty acid methyl ester (FAME) yield was studied by varying the concentration of ammonium sulfate (5.0 to 40.0 w/v%) and thermal decomposition time (15 to 90 min). Characterizations of catalyst were carried out to study the catalyst surface morphology with Scanning Electron Microscope (SEM), acid density with back titration and functional group attached with FT-IR. Results showed that when the catalyst sulfonated with 10.0 w/v% ammonium sulfate solution and heated to 235°C for 30 min, the highest FAME yield achieved was 23.7% at the reaction condition of 5.0 wt.% catalyst loading, esterification time of 4 h, methanol to PFAD molar ratio of 20:1 at 100°C reaction temperature.

  4. Synthesis of porous CoMoO4 nanorods as a bifunctional cathode catalyst for a Li-O2 battery and superior anode for a Li-ion battery.

    PubMed

    Wang, Liangjun; Cui, Xinhang; Gong, Lili; Lyu, Zhiyang; Zhou, Yin; Dong, Wenhao; Liu, Jia; Lai, Min; Huo, Fengwei; Huang, Wei; Lin, Ming; Chen, Wei

    2017-03-17

    We report the synthesis of porous CoMoO 4 nanorods and their applications in lithium oxygen (Li-O 2 ) and lithium ion (Li-ion) batteries. The unique porous structures of CoMoO 4 nanorods can promote the permeation of electrolyte and benefit the transport of lithium ion. When employed as the cathode catalyst for a Li-O 2 battery, CoMoO 4 nanorods deliver an improved discharge capacity (4680 mA h g -1 ), lower charge potential and better cycle stability (41 cycles at 500 mA h g -1 capacity limit) compared with the bare carbon. When employed as an anode in Li-ion batteries, CoMoO 4 nanorods can retain a capacity of 603 mA h g -1 after 300 cycles (400 mA g -1 ) and exhibit excellent rate capability.

  5. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOEpatents

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  6. Heptamolybdate: a highly active sulfide oxygenation catalyst.

    PubMed

    Porter, Ashlin G; Hu, Hanfeng; Liu, Xuemei; Raghavan, Adharsh; Adhikari, Sarju; Hall, Derrick R; Thompson, Dylan J; Liu, Bin; Xia, Yu; Ren, Tong

    2018-05-29

    The sulfide oxygenation activities of both heptamolybdate ([Mo7O24]6-, [1]6-) and its peroxo adduct [Mo7O22(O2)2]6- ([2]6-) were examined in this contribution. [Mo7O22(O2)2]6- was prepared in a yield of 65% from (NH4)6[Mo7O24] (1a) upon treatment of 10 equiv. of H2O2 and structurally identified through single crystal X-ray diffraction study. (nBu4N)6[Mo7O22(O2)2] (2b) is an efficient catalyst for the sequential oxygenation of methyl phenyl sulfide (MPS) by H2O2 to the corresponding sulfoxide and subsequently sulfone with a 100% utility of H2O2. Surprisingly, (nBu4N)6[Mo7O24] (1b) is a significantly faster catalyst than 2b for MPS oxygenation under identical conditions. The pseudo-first order kcat constants from initial rate kinetics are 54 M-1 s-1 and 19 M-1 s-1 for 1b and 2b, respectively. Electrospray ionization mass spectrometry (ESI-MS) investigation of 1b under the catalytic reaction conditions revealed that [Mo2O11]2- is likely the main active species in sulfide oxygenation by H2O2.

  7. Bimetal catalysts

    DOEpatents

    Ng, K. Y. Simon; Salley, Steve O.; Wang, Huali

    2017-10-03

    A catalyst comprises a carbide or nitride of a metal and a promoter element. The metal is selected from the group consisting of Mo, W, Co, Fe, Rh or Mn, and the promoter element is selected from the group consisting of Ni, Co, Al, Si, S or P, provided that the metal and the promoter element are different. The catalyst also comprises a mesoporous support having a surface area of at least about 170 m.sup.2 g.sup.-1, wherein the carbide or nitride of the metal and the promoter element is supported by the mesoporous support, and is in a non-sulfided form and in an amorphous form.

  8. Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiao; Wang, Wanwan; Zhu, Baichuan; Qian, Fangfang; Fang, Zhen

    2018-03-01

    NASICON-type Na3V2(PO4)3 (NVP) with superior electrochemical performance has attracted enormous attention with the development of sodium ion batteries. The structural aggregation as well as poor conductivity of NVP hinder its application in high rate perforamance cathode with long stablity. In this paper, Na3V2- x Mo x (PO4)3@C was successfully prepared through two steps method, including sol-gel and solid state thermal reduction. The optimal doping amount of Mo was defined by experiment. When x was 0.15, the Na3V1.85Mo0.15(PO4)3@C sample has the best cycle performance and rate performance. The discharge capacity of Na3V1.85Mo0.15(PO4)3@C could reach 117.26 mA·h·g-1 at 0.1 C. The discharge capacity retention was found to be 94.5% after 600 cycles at 5 C.

  9. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    DOE PAGES

    Youker, Amanda J.; Chemerisov, Sergey D.; Kalensky, Michael; ...

    2013-01-01

    Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal) reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration onmore » Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.« less

  10. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds

    PubMed Central

    Liu, Xuesong; Berto, Filippo

    2018-01-01

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140

  11. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.

    PubMed

    Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J

    2018-04-24

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  12. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan

    1999-03-29

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with themore » use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a

  13. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production.

    PubMed

    Liu, Yun; Zhou, Xiaoli; Ding, Tao; Wang, Chunde; Yang, Qing

    2015-11-21

    The design and synthesis of robust, high-performance and low-cost three-dimensional (3D) hierarchical structured materials for the electrochemical reduction of water to generate hydrogen is of great significance for practical water splitting applications. In this study, we develop an in situ space-confined method to synthesize an MoS2-based 3D hierarchical structure, in which the MoS2 nanosheets grow in the confined nanopores of metal-organic frameworks (MOFs)-derived 3D carbons as electrocatalysts for efficient hydrogen production. Benefiting from its unique structure, which has more exposed active sites and enhanced conductivity, the as-prepared MoS2/3D nanoporous carbon (3D-NPC) composite exhibits remarkable electrocatalytic activity for the hydrogen evolution reaction (HER) with a small onset overpotential of ∼0.16 V, large cathodic currents, small Tafel slope of 51 mV per decade and good durability. We anticipate that this in situ confined growth provides new insights into the construction of high performance catalysts for energy storage and conversion.

  14. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothimurugesan, K.; Goodwin, J.G.; Spivey, J.J.

    1997-03-26

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRS) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modem coal gasifiers. This is because in addition to reasonable F-T activity, the FT catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less

  15. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothimurugesan, K.; Goodwin, J.S.; Spivey, J.J.

    1997-09-22

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO and H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a seriousmore » problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less

  16. A study of the formation, purification and application as a SWNT growth catalyst of the nanocluster [HxPMo12O40[subset]H4Mo72Fe30(O2CMe)15O254(H2O)98].

    PubMed

    Anderson, Robin E; Colorado, Ramon; Crouse, Christopher; Ogrin, Douglas; Maruyama, Benji; Pender, Mark J; Edwards, Christopher L; Whitsitt, Elizabeth; Moore, Valerie C; Koveal, Dorothy; Lupu, Corina; Stewart, Michael P; Smalley, Richard E; Tour, James M; Barron, Andrew R

    2006-07-07

    The synthetic conditions for the isolation of the iron-molybdenum nanocluster FeMoC [HxPMo12O40 [subset]H4Mo72Fe30(O2CMe)15O254(H2O)98], along with its application as a catalyst precursor for VLS growth of SWNTs have been studied. As-prepared FeMoC is contaminated with the Keplerate cage [H4Mo72Fe30(O2CMe)15O254(H2O)98] without the Keggin [HxPMo12O40]n- template, however, isolation of pure FeMoC may be accomplished by Soxhlet extraction with EtOH. The resulting EtOH solvate is consistent with the replacement of the water ligands coordinated to Fe being substituted by EtOH. FeMoC-EtOH has been characterized by IR, UV-vis spectroscopy, MS, XPS and 31P NMR. The solid-state 31P NMR spectrum for FeMoC-EtOH (delta-5.3 ppm) suggests little effect of the paramagnetic Fe3+ centers in the Keplerate cage on the Keggin ion's phosphorous. The high chemical shift anisotropy, and calculated T1 (35 ms) and T2 (8 ms) values are consistent with a weak magnetic interaction between the Keggin ion's phosphorus symmetrically located within the Keplerate cage. Increasing the FeCl2 concentration and decreasing the pH of the reaction mixture optimizes the yield of FeMoC. The solubility and stability of FeMoC in H2O and MeOH-H2O is investigated. The TGA of FeMoC-EtOH under air, Ar and H2 (in combination with XPS) shows that upon thermolysis the resulting Fe : Mo ratio is highly dependent on the reaction atmosphere: thermolysis in air results in significant loss of volatile molybdenum components. Pure FeMoC-EtOH is found to be essentially inactive as a pre-catalyst for the VLS growth of single-walled carbon nanotubes (SWNTs) irrespective of the substrate or reaction conditions. However, reaction of FeMoC with pyrazine (pyz) results in the formation of aggregates that are found to be active catalysts for the growth of SWNTs. Activation of FeMoC may also be accomplished by the addition of excess iron. The observation of prior work's reported growth of SWNTs from FeMoC is discussed with respect

  17. Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions

    PubMed Central

    Tian, He; Tan, Zhen; Wu, Can; Wang, Xiaomu; Mohammad, Mohammad Ali; Xie, Dan; Yang, Yi; Wang, Jing; Li, Lain-Jong; Xu, Jun; Ren, Tian-Ling

    2014-01-01

    Recently, two-dimensional materials such as molybdenum disulphide (MoS2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5–20 cm2/V·s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V·s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics. PMID:25109609

  18. Comparison of Two Preparation Methods on Catalytic Activity and Selectivity of Ru-Mo/HZSM5 for Methane Dehydroaromatization

    DOE PAGES

    Petkovic, Lucia M.; Ginosar, Daniel M.

    2014-01-01

    Catalytic performance of Mo/HZSM5 and Ru-Mo/HZSM5 catalysts prepared by vaporization-deposition of molybdenum trioxide and impregnation with ammonium heptamolybdate was analyzed in terms of catalyst activity and selectivity, nitrogen physisorption analyses, temperature-programmed oxidation of carbonaceous residues, and temperature-programmed reduction. Vaporization-deposition rendered the catalyst more selective to ethylene and coke than the catalyst prepared by impregnation. This result was assigned to lower interaction of molybdenum carbide with the zeolite acidic sites.

  19. Bi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolution

    PubMed Central

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Eom, KwangSup; Lee, Doh C.; Joh, Han-Ik; Fuller, Thomas F.

    2017-01-01

    Amorphous molybdenum sulfide (MoSx) is covalently anchored to reduced graphene oxide (r-GO) via a simple one-pot reaction, thereby inducing the reduction of GO and simultaneous doping of heteroatoms on the GO. The oxygen atoms form a bridged between MoSx and GO and play a crucial role in the fine dispersion of the MoSx particles, control of planar MoSx growth, and increase of exposed active sulfur sites. This bridging leads to highly efficient (−157 mV overpotential and 41 mV/decade Tafel slope) and stable (95% versus initial activity after 1000 cycles) electrocatalyst for hydrogen evolution. PMID:28106126

  20. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyinka A. Adeyiga

    2001-09-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use ofmore » Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5}{sup +} selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition

  1. All the catalytic active sites of MoS 2 for hydrogen evolution

    DOE PAGES

    Li, Guoqing; Zhang, Du; Qiao, Qiao; ...

    2016-11-29

    MoS 2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS 2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated tomore » be 7.5 s –1 (65–75 mV/dec), 3.2 s –1 (65–85 mV/dec), and 0.1 s –1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS 2 is higher than that in low crystalline quality MoS 2, which may be related with the proximity of different local crystalline structures to the vacancies.« less

  2. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    PubMed

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 < y < 1), MMo(x)O(y) (M = Fe, Co, Ni, Ca, Mn, Zn, Mg, or Cd; x = 1, y = 4; x = 3, y = 8), MoS2, MoSe2, (MoO2)2P2O7, LiMoO2, Li2MoO3, etc. possess multiple valence states and exhibit rich chemistry. They are very attractive candidates for efficient electrochemical energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  3. A new V-doped Bi2(O,S)3 oxysulfide catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes.

    PubMed

    Abay, Angaw Kelemework; Kuo, Dong-Hau; Chen, Xiaoyun; Saragih, Albert Daniel

    2017-12-01

    A new type of convenient, and environmentally friendly, Vanadium (V)-doped Bi 2 (O,S) 3 oxysulfide catalyst with different V contents was successfully synthesized via a simple and facile method. The obtained V-doped Bi 2 (O,S) 3 solid solution catalysts were fully characterized by conventional methods. The catalytic performance of the samples was tested by using the reduction of 2-nitroaniline (2-NA) in aqueous solution. The reduction/decolorization of methylene blue (MB) and rhodamine B (RhB) was also chosen to evaluate the universality of catalysts. It was observed that the introduction of V can improve the catalytic performance, and 20%V-Bi 2 (O,S) 3 was found to be the optimal V doping concentration for the reduction of 2-NA, MB, and RhB dyes. For comparative purposes, a related V-free Bi 2 (O, S) 3 oxysulfide material was synthesized and tested as the catalyst. The superior activity of V-doped Bi 2 (O,S) 3 over pure Bi 2 (O,S) 3 was ascribed mainly to an increase in active sites of the material and also due to the presence of synergistic effects. The presence of V 5+ as found from XPS analysis may interact with Bi atoms and enhancing the catalytic activity of the sample. In the catalytic reduction of 2-NA, MB and RhB, the obtained V-doped Bi 2 (O,S) 3 oxysulfide catalyst exhibited excellent catalytic activity as compared with other reported catalysts. Furthermore this highly efficient, low-cost and easily reusable V-doped Bi 2 (O,S) 3 catalyst is anticipated to be of great potential in catalysis in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Measurement and Estimation of the 99Mo Production Yield by 100Mo(n,2n)99Mo

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Tsukada, Kazuaki; Sato, Nozomi; Watanabe, Satoshi; Saeki, Hideya; Kawabata, Masako; Hashimoto, Shintaro; Nagai, Yasuki

    2017-11-01

    We, for the first time, measured the yield of 99Mo, the mother nuclide of 99mTc used in nuclear medicine diagnostic procedures, produced by the 100Mo(n,2n)99Mo reaction with accelerator neutrons. The neutrons with a continuous energy spectrum from the thermal energy up to about 40 MeV were provided by the C(d,n) reaction with 40 MeV deuteron beams. It was proved that the 99Mo yield agrees with that estimated by using the latest data on neutrons from the C(d,n) reaction and the evaluated cross section of the 100Mo(n,2n)99Mo reaction given in the Japanese Evaluated Nuclear Data Library. On the basis of the agreement, a systematic calculation was carried out to search for an optimum condition that enables us to produce as much 99Mo as possible with a good 99Mo/100Mo value from an economical point of view. The calculated 99Mo yield from a 150 g 100MoO3 sample indicated that about 30% of the demand for 99Mo in Japan can be met with a single accelerator capable of 40 MeV, 2 mA deuteron beams. Here, by referring to an existing 18F-fluorodeoxyglucose (FDG) distribution system we assumed that 99mTc radiopharmaceuticals formed after separating 99mTc from 99Mo can be delivered to hospitals from a radiopharmaceutical company within 6 h. The elution of 99mTc from 99Mo twice a day would meet about 50% of the demand for 99Mo.

  5. Low temperature destruction of PCDD/Fs over V2O5-CeO2/TiO2 catalyst with ozone.

    PubMed

    Yu, Ming-Feng; Lin, Xiao-Qing; Yan, Mi; Li, Xiao-Dong; Chen, Tong; Yan, Jian-Hua

    2016-09-01

    Catalytic destruction of PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans) over V2O5-CeO2/TiO2 catalyst was investigated at a low temperature range of 140-180 °C, in the absence and presence of ozone (200 ppm). Nano-TiO2 support was used to prepare the catalyst by step impregnation method. A stable PCDD/Fs-generating system was established to support the catalytic destruction tests. In the presence of ozone alone, destruction efficiencies of PCDD/Fs are between 32.2 and 43.1 % with temperature increasing from 140 to 180 °C. The activity of V2O5-CeO2/TiO2 catalyst alone on PCDD/Fs destruction is also studied. The increase of temperature from 140 to 180 °C enhances the activity of catalyst with destruction efficiencies increasing from 54.7 to 73.4 %. However, ozone addition greatly enhances the catalytic activity of V2O5-CeO2/TiO2 catalyst on PCDD/Fs decomposition. At 180 °C, the destruction efficiency of PCDD/Fs achieved with V2O5-CeO2/TiO2 catalyst and ozone is above 86.0 %. It indicates that the combined use of ozone and catalyst reduces the reaction temperature of PCDD/Fs oxidation and offers a new method to destroy PCDD/Fs with high destruction efficiency at a low temperature. Furthermore, the destruction efficiencies of 17 toxic PCDD/F congeners, achieved with ozone alone, catalyst alone, and catalyst/ozone are analyzed.

  6. Exploration of nucleoprotein α-MoRE and XD interactions of Nipah and Hendra viruses.

    PubMed

    Shang, Xu; Chu, Wenting; Chu, Xiakun; Xu, Liufang; Longhi, Sonia; Wang, Jin

    2018-04-24

    Henipavirus, including Hendra virus (HeV) and Nipah virus (NiV), is a newly discovered human pathogen genus. The nucleoprotein of Henipavirus contains an α-helical molecular recognition element (α-MoRE) that folds upon binding to the X domain (XD) of the phosphoprotein (P). In order to explore the conformational dynamics of free α-MoREs and the underlying binding-folding mechanism with XD, atomic force field-based and hybrid structure-based MD simulations were carried out. In our empirical force field-based simulations, characteristic structures and helicities of α-MoREs reveal the co-existence of partially structured and disordered conformations, as in the case of the well characterized cognate measles virus (MeV) α-MoRE. In spite of their overall similarity, the two α-MoREs display subtle helicity differences in their C-terminal region, but much different from that of MeV. For the α-MoRE/XD complexes, the results of our hybrid structure-based simulations provide the coupled binding-folding landscapes, and unveil a wide conformational selection mechanism at early binding stages, followed by a final induce-fit mechanism selection process. However, the HeV and NiV complexes have a lower binding barrier compared to that of MeV. Moreover, the HeV α-MoRE/XD complex shows much less coupling effects between binding and folding compared to that from both NiV and MeV. Our analysis revealed that contrary to NiV and MeV, the N- and C-terminal regions of the HeV α-MoRE maintains a low helicity also in the bound form.

  7. Catalyseur d'hydrocraquage à base de sulfure de NiMo déposé sur une zéolithe HEMT modifiée

    NASA Astrophysics Data System (ADS)

    Baalala, M.; Becue, T.; Leglise, J.; Manoli, J. M.; van Gestel, J. N. M.; Lamotte, J.; Bensitel, M.; Goupil, J. M.; Cornet, D.

    1999-02-01

    Treating a NH4EMT zeolite with a solution of (NH4)2SiF6 at 80 °C affords a solid containing amorphous SiO2 intimately mixed with the zeolite. This acidic support EMT-Si was loaded with NiMo sulfide in order to prepare a bifunctional catalyst, which was tested for the hydrogenation of benzene and the hydrocracking of n-heptane. This NiMo/EMT-Si catalyst was found more active for hydrogenation than the analogous NiMo/HY. This is ascribed to a higher dispersion of the NiMo sulfide, which is almost equally shared between the internal mesopores in the modified EMT solid, and the fissures, which were created throughout the zeolite grains upon inserting the NiMo sulfide. The catalyst with the EMT-Si support was also found more active than the NiMo/HY for the hydrocracking of heptane, with a slightly higher selectivity into heptane isomers. Le traitement d'une zéolithe NH4EMT par une solution de (NH4)2SiF6 fournit un solide comportant une phase SiO2 amorphe intimement mélangée aux parties intactes de la zéolithe. Sur ce support acide EMT-Si, on a greffé un sulfure de NiMo afin de préparer un catalyseur bifonctionnel qui a été testé dans les réactions d'hydrogénation du benzène et d'hydrocraquage du n-heptane. Ce catalyseur NiMo/EMT-Si s'avère plus actif en hydrogénation que son analogue NiMo/HY, en raison d'une meilleure dispersion du sulfure de NiMo. Sur le solide EMT modifié, le sulfure se répartit à peu près également entre les mésopores internes et les fissures crées dans les grains de zéolithe lors de l'insertion du sulfure de NiMo. Au contraire sur le support Y, une partie du sulfure est externe aux grains de zéolithe et inactive en catalyse. Le catalyseur NiMo/EMT-Si est aussi trouvé plus actif que le NiMo/HY en hydrocraquage du n-heptane, et un peu plus sélectif en isomères.

  8. Recent advances in ruthenium complex-based light-driven water oxidation catalysts.

    PubMed

    Xue, Long-Xin; Meng, Ting-Ting; Yang, Wei; Wang, Ke-Zhi

    2015-11-01

    The light driven splitting of water is one of the most attractive approaches for direct conversion of solar energy into chemical energy in the future. Ruthenium complexes as the water oxidation catalysts (WOCs) and light sensitizers have attracted increasing attention, and have made a great progress. This mini-review highlights recent progress on ruthenium complex-based photochemical and photoelectrochemical water oxidation catalysts. The recent representative examples of these ruthenium complexes that are in homogeneous solution or immobilized on solid electrodes, are surveyed. In particular, special attention has been paid on the supramolecular dyads with photosensitizer and WOC being covalently hold together, and grafted onto the solid electrode. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A novel multi-functional magnetic Fe-Ti-V spinel catalyst for elemental mercury capture and callback from flue gas.

    PubMed

    Yang, Shijian; Guo, Yongfu; Yan, Naiqiang; Wu, Daqing; He, Hongping; Xie, Jiangkun; Qu, Zan; Yang, Chen; Jia, Jinping

    2010-11-28

    A novel magnetic Fe-Ti-V spinel catalyst showed an excellent performance for elemental mercury capture at 100 °C, and the formed HgO can be catalytically decomposed by the catalyst at 300 °C to reclaim elemental mercury and regenerate the catalyst.

  10. Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chong; Kong, Desheng; Hsu, Po -Chun

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS 2 (FLV-MoS 2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection.more » The bandgap of MoS 2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS 2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS 2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS 2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO 2. Moreover, by using a 5 nm copper film on top of the FLV-MoS 2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.« less

  11. Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light

    DOE PAGES

    Liu, Chong; Kong, Desheng; Hsu, Po -Chun; ...

    2016-08-15

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS 2 (FLV-MoS 2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection.more » The bandgap of MoS 2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS 2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS 2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS 2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO 2. Moreover, by using a 5 nm copper film on top of the FLV-MoS 2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.« less

  12. Syntheses, structures and properties of two new organic-inorganic hybrid materials based on ε-Zn Keggin units {ε-PMo(V)8Mo(VI)4O(40-x)(OH)(x)Zn4}.

    PubMed

    Miao, Hao; Hu, Gonghao; Guo, Jiuyu; Wan, Hongxiang; Mei, Hua; Zhang, Yu; Xu, Yan

    2015-01-14

    Two novel organic-inorganic hybrids, Na[PMo(V)8Mo(VI)4O38(OH)2Zn4][pyim]2·1.5H2O [ε(pyim)2] (pyim = 2-(2-pyridyl)-imidazole) and [PMo(V)8Mo(VI)4O37(OH)3Zn4]2[pyim]6·4H2O [ε2(pyim)6], based on ε-Zn Keggin units {ε-PMo(V)8Mo(VI)4O(40-x)(OH)(x)Zn4}, have been successfully synthesized under hydrothermal conditions by controlling the pH values. Structural analysis indicates that the framework of ε(pyim)2 is a 1D chain constructed by monomeric ε-Zn units modified by pyim ligands, while ε2(pyim)6 is an isolated structural compound with dimeric ε-Zn units modified by pyim ligands. This is the first isolated structure of the ε-Keggin POMs system. The luminescent and electrochemical properties of ε(pyim)2 and ε2(pyim)6 were investigated. ε2(pyim)6 also shows high catalytic activity for the esterification of phosphoric acid with equimolar lauryl alcohol to monoalkyl phosphate ester (MAP).

  13. Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst.

    PubMed

    Akbari, Azam; Omidkhah, Mohammadreza; Darian, Jafar Towfighi

    2014-03-01

    A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.

  14. Enhanced electrocatalytic activity of MoS(x) on TCNQ-treated electrode for hydrogen evolution reaction.

    PubMed

    Chang, Yung-Huang; Nikam, Revannath D; Lin, Cheng-Te; Huang, Jing-Kai; Tseng, Chien-Chih; Hsu, Chang-Lung; Cheng, Chia-Chin; Su, Ching-Yuan; Li, Lain-Jong; Chua, Daniel H C

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo(5+) and S2(2-) species in the MoSx, especially with S2(2-) serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g(-1) cm(-2) h(-1) (286 mmol g(-1) cm(-2) h(-1)) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

  15. Two-dimensional materials as catalysts for energy conversion

    DOE PAGES

    Siahrostami, Samira; Tsai, Charlie; Karamad, Mohammadreza; ...

    2016-08-24

    Although large efforts have been dedicated to studying two-dimensional materials for catalysis, a rationalization of the associated trends in their intrinsic activity has so far been elusive. In the present work we employ density functional theory to examine a variety of two-dimensional materials, including, carbon based materials, hexagonal boron nitride ( h-BN), transition metal dichalcogenides (e.g. MoS 2, MoSe 2) and layered oxides, to give an overview of the trends in adsorption energies. By examining key reaction intermediates relevant to the oxygen reduction, and oxygen evolution reactions we find that binding energies largely follow the linear scaling relationships observed formore » pure metals. Here, this observation is very important as it suggests that the same simplifying assumptions made to correlate descriptors with reaction rates in transition metal catalysts are also valid for the studied two-dimensional materials. By means of these scaling relations, for each reaction we also identify several promising candidates that are predicted to exhibit a comparable activity to the state-of-the-art catalysts.« less

  16. Low temperature catalyst system for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  17. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    PubMed

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application.

  18. Dimeric [Mo₂S₁₂]²⁻ Cluster: A Molecular Analogue of MoS₂ Edges for Superior Hydrogen-Evolution Electrocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhongjie; Luo, Wenjia; Ma, Lu

    2015-12-07

    Proton reduction is one of the most fundamental and important reactions in nature. MoS2 edges have been identified as the active sites for hydrogen evolution reaction (HER) electrocatalysis. Designing molecular mimics of MoS2 edge sites is an attractive strategy to understand the underlying catalytic mechanism of different edge sites and improve their activities. Herein we report a dimeric molecular analogue [Mo₂S₁₂]²⁻, as the smallest unit possessing both the terminal and bridging disulfide ligands. Our electrochemical tests show that [Mo₂S₁₂]²⁻ is a superior heterogeneous HER catalyst under acidic conditions. Computations suggest that the bridging disulfide ligand of [Mo₂S₁₂]²⁻ exhibits a hydrogenmore » adsorption free energy near zero (-0.05eV). This work helps shed light on the rational design of HER catalysts and biomimetics of hydrogen-evolving enzymes.« less

  19. Role of the Edge Properties in the Hydrogen Evolution Reaction on MoS2.

    PubMed

    Lazar, Petr; Otyepka, Michal

    2017-04-06

    Molybdenum disulfide, in particular its edges, has attracted considerable attention as possible substitute for platinum catalysts in the hydrogen evolution reaction (HER). The complex nature of the reaction complicates its detailed experimental investigations, which are mostly indirect and sample dependent. Therefore, density functional theory calculations were employed to study how the properties of the MoS 2 Mo-edge influence the thermodynamics of hydrogen adsorption onto the edge. The effect of the computational model (one-dimensional nanostripe), border symmetry imposed by its length, sulfur saturation of the edge, and dimensionality of the material are discussed. Hydrogen adsorption was found to depend critically on the coverage of extra sulfur at the Mo edge. The bare Mo-edge and fully sulfur-covered Mo-edge are catalytically inactive. The most favorable hydrogen binding towards HER was found for the Mo-edge covered by sulfur monomers. This edge provides hydrogen adsorption free energies positioned around -0.25 eV at up to 50 % hydrogen coverage, close to the experimental values of overpotential needed for the HER reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Self-assembled 3D sphere-like SrMoO4 and SrMoO4:Ln3+ (Ln=Eu, Sm, Tb, Dy) microarchitectures: facile sonochemical synthesis and optical properties.

    PubMed

    Zhang, Junjun; Li, Ruiqing; Liu, Lu; Li, Linlin; Zou, Lianchun; Gan, Shucai; Ji, Guijuan

    2014-09-01

    Three-dimensional (3D) well-defined SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures of obvious sphere-like shape have been successfully synthesized using a large-scale and facile sonochemical route without using any catalysts or templates. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectra were used to characterize the samples. The intrinsic structural feature of SrMoO4 and external factor, namely the ultrasonic time and the pH value, are responsible for the ultimate shape evolutions of the product. The possible formation mechanism for the product is presented. Additionally, the PL properties of SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures were investigated in detail. The Ln(3+) ions doped SrMoO4 samples exhibit respective bright red-orange, yellow, green and white light of Eu(3+), Sm(3+), Tb(3+) and Dy(3+) under ultraviolet excitation, and have potential application in the field of color display. Simultaneously, this novel and efficient pathway could open new opportunities for further investigating about the properties of molybdate materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    NASA Astrophysics Data System (ADS)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  2. Synthesis of iron based hydrocracking catalysts

    DOEpatents

    Farcasiu, Malvina; Eldredge, Patricia A.; Ladner, Edward P.

    1993-01-01

    A method of preparing a fine particle iron based hydrocracking catalyst and the catalyst prepared thereby. An iron (III) oxide powder and elemental sulfur are reacted with a liquid hydrogen donor having a hydroaromatic structure present in the range of from about 5 to about 50 times the weight of iron (III) oxide at a temperature in the range of from about 180.degree. C. to about 240.degree. C. for a time in the range of from about 0 to about 8 hours. Various specific hydrogen donors are disclosed. The catalysts are active at low temperature (<350.degree. C.) and low pressure.

  3. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  4. Structures of Mo2Oy- and Mo2Oy (y=2, 3, and 4) studied by anion photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Yoder, Bruce L; Maze, Joshua T; Raghavachari, Krishnan; Jarrold, Caroline Chick

    2005-03-01

    The competitive structural isomers of the Mo(2)O(y) (-)Mo(2)O(y) (y=2, 3, and 4) clusters are investigated using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. The PE spectrum and calculations for MoO(3) (-)MoO(3) are also presented to show the level of agreement to be expected between the spectra and calculations. For MoO(3) (-) and MoO(3), the calculations predict symmetric C(3v) structures, an adiabatic electron affinity of 3.34 eV, which is above the observed value 3.17(2) eV. However, there is good agreement between observed and calculated vibrational frequencies and band profiles. The PE spectra of Mo(2)O(2) (-) and Mo(2)O(3) (-) are broad and congested, with partially resolved vibrational structure on the lowest energy bands observed in the spectra. The electron affinities (EA(a)s) of the corresponding clusters are 2.24(2) and 2.33(7) eV, respectively. Based on the calculations, the most stable structure of Mo(2)O(2) (-) is Y shaped, with the two Mo atoms directly bonded. Assignment of the Mo(2)O(3) (-) spectrum is less definitive, but a O-Mo-O-Mo-O structure is more consistent with overall electronic structure observed in the spectrum. The PE spectrum of Mo(2)O(4) (-) shows cleanly resolved vibrational structure and electronic bands, and the EA of the corresponding Mo(2)O(4) is determined to be 2.13(4) eV. The structure most consistent with the observed spectrum has two oxygen bridge bonds between the Mo atoms.

  5. Single-layer transition metal sulfide catalysts

    DOEpatents

    Thoma, Steven G [Albuquerque, NM

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  6. Ni-Doping Effects on Oxygen Removal from an Orthorhombic Mo 2 C (001) Surface: A Density Functional Theory Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mingxia; Cheng, Lei; Choi, Jae-Soon

    Density functional theory (DFT) calculations were used to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T-Mo) and C-terminated (Tc) Mo2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such as Ni adsorbed on T-Mo and Tc Mo2C(001)more » surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T-Mo Mo2C(001) and Tc Mo2C(001) surfaces. This computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo2C and Ni-doped Mo2C catalysts, which had been passivated and stored in an oxygen environment.« less

  7. Calcium and lanthanum solid base catalysts for transesterification

    DOEpatents

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  8. Synthesis and characterization of catalysts for the selective transformation of biomass-derived materials

    NASA Astrophysics Data System (ADS)

    Ghampson, Isaac Tyrone

    The experimental work in this thesis focuses on generating catalysts for two intermediate processes related to the thermal conversion of lignocellulosic biomass: the synthesis and characterization of mesoporous silica supported cobalt catalysts for the Fischer-Tropsch reaction, and an exploration of the reactivity of bulk and supported molybdenum-based nitride catalysts for the hydrodeoxygenation (HDO) of guaiacol, a lignin model compound. The first section of the work details the synthesis of a series of silica-supported cobalt Fischer-Tropsch catalysts with pore diameters ranging from 2-23 nm. Detailed X-ray diffraction measurements were used to determine the composition and particle diameters of the metal fraction, analyzed as a three-phase system containing Cofcc, Cohcp and CoO particles. Catalyst properties were determined at three stages in catalyst history: (1) after the initial calcination step to thermally decompose the catalyst precursor into Co3O4, (2) after the hydrogen reduction step to activate the catalyst to Co and (3) after the FT reaction. From the study, it was observed that larger pore diameters supported higher turnover frequency; smaller pore diameters yielded larger mole fraction of CoO; XRD on post-reduction and post-FTS catalyst samples indicated significant changes in dispersivity after reduction. In the next section, the catalytic behaviors of unsupported, activated carbon-, alumina-, and SBA-15 mesoporous silica-supported molybdenum nitride catalysts were evaluated for the hydrodeoxygenation of guaiacol (2-methoxy phenol) at 300°C and 5 MPa. The nitride catalysts were prepared by thermal decomposition of bulk and supported ammonium heptamolybdate to form MoO 3 followed by nitridation in either flowing ammonia or a nitrogen/hydrogen mixture. The catalytic properties were strongly affected by the nitriding and purging treatment as well as the physical and chemical properties of support. The overall reaction was influenced by the

  9. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JAMES G. GOODWIN, JR.; JAMES J. SPIVEY; K. JOTHIMURUGESAN

    1998-09-17

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and

  10. Surface studies of heterogeneous catalysts by time-of-flight secondary ion mass spectrometry.

    PubMed

    Grams, Jacek

    2010-01-01

    The aim of this paper was to present potentialities of time-of-flight secondary ion mass spectrometry (ToF- SIMS) in the studies of heterogeneous catalysts. The results of ToF-SIMS investigations of Co/Al2O3, Mo/Al2O3, Co-Mo/Al2O3, Au/Al2O3, Pt/TiO2 and Pd/TiO2 systems were described. It was demonstrated that, in this case, an application of ToF-SIMS makes possible the determination of surface composition of investigated catalysts (including an identification of surface contaminants), characterization of interactions between an active phase and support, estimation of active phase dispersion on the analyzed surface, comparison of the degree of metal oxidation after treatment of the catalyst in different conditions, investigation of catalyst deactivation processes (formation of new chemical compounds, adsorption of various impurities and poisons on the catalyst surface) and determination of organic precursors of catalysts.

  11. THE ROLE OF CATALYST PROPERTIES ON METHANOL OXIDATION OVER V2O5-TIO2 USING OZONE

    EPA Science Inventory

    Oxidation of methanol over V2O5 catalysts supported on anatase TiO2 that were prepared using sol-gel formation and impregnation procedures were investigated. The effects of incorporating Mg in sol-gel to influence the properties of the catalyst w...

  12. Confined Molybdenum Phosphide in P-Doped Porous Carbon as Efficient Electrocatalysts for Hydrogen Evolution.

    PubMed

    Li, Ji-Sen; Zhang, Shuai; Sha, Jing-Quan; Wang, Hao; Liu, Ming-Zhu; Kong, Ling-Xin; Liu, Guo-Dong

    2018-05-09

    Highly efficient electrocatalysts for hydrogen evolution reactions (HER) are crucial for electrochemical water splitting, where high-cost and low-abundance Pt-based materials are the benchmark catalysts for HER. Herein, we report the fabrication of MoP nanoparticles confined in P-doped porous carbon (MoP@PC) via a metal-organic framework-assisted route for the first time. Remarkably, due to the synergistic effects of MoP nanocrystals, P dopant, and porous carbon, the resulting MoP@PC composite exhibits superior HER catalytic activity with an onset overpotential of 97 mV, a Tafel slope of 59.3 mV dec -1 , and good long-term durability, which compares to those of most reported MoP-based HER catalysts. Most importantly, the work opens a new route in the development of high-performance nonprecious HER electrocatalysts derived from MOFs.

  13. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    NASA Technical Reports Server (NTRS)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  14. {Mo96La8} eggshell ring and self-assembly to {Mo132} Keplerate through Mo-blue intermediate, involved in UV-photolysis of [Mo7O24](6-)/carboxylic acid system at pH 4.

    PubMed

    Yamase, Toshihiro; Kumagai, Shun; Prokop, Petra V; Ishikawa, Eri; Tomsa, Adrian-Raul

    2010-10-18

    The prolonged UV-photolysis of aqueous solutions containing [Mo(7)O(24)](6-) and C(2)H(5)CO(2)H (as electron donor) at pH 3.9-4.1 generates the carboxylate-coordinated {Mo(132)} Keplerate (1a) isolated as a formamidinium/ammonium-mixed salt, [HC(NH(2))(2)](26)(NH(4))(28)[Mo(V)(60)Mo(VI)(72)O(372)(H(2)O)(48)(C(2)H(5)CO(2))(36)((i)C(3)H(7)CO(2))(6)]·16H(2)O (1), through the Mo-blue intermediate (2). The coordination of 2 to La(3+) gives rise to the formation of the chain structure of the C(2)-symmetric {Mo(96)La(8)} eggshell rings, formulated by H(22)[Mo(V)(20)Mo(VI)(76)O(301)(H(2)O)(29){La(H(2)O)(6)}(2)]{La(H(2)O)(5)}(6)]·54.5H(2)O (3). The eggshell-ring geometry results from the insertion of [Mo(VI)(2)O(7)(H(2)O)](2-) (spacer) into the equator outer ring of the wheel-shaped Mo-blue, and 10 {(Mo(VI))(Mo(VI)(5))} pentagonal subunits alternately above and below the equator outer ring are connected by eight La(3+) and two {Mo(VI)(2)} linkers within two inner rings. The neighboring eggshell rings are linked through two Mo-O-Mo bonds formed by dehydrative condensation between the {Mo(VI)(2)} linkers to result in the chain structure. Together with the results of the elemental analysis and IR, electronic absorption, (13)C NMR, and ESI-MS spectra for 2, the ring profile analysis of 3 let us identify 2 with a carbolylate-coordinated Mo-blue ring of high nuclearity. The Mo(VI)→Mo(V) photoreductive change of 2 to the 60-electron reduced Keplerate in the presence of C(2)H(5)CO(2)H involves both degradation of the outer ring and splitting of the binuclear linkers, which leads to the formation of [(Mo(VI))Mo(VI)(5)O(21)(H(2)O)(4)(carboxylate)](7-) pentagonal subunits and [Mo(V)(2)O(4)(carboxylate)](+)/[Mo(V)O(2)(carboxylate)(1/2)](0.5+)-mixed linkers for 1.

  15. Vertical MoSe2-MoO x p-n heterojunction and its application in optoelectronics.

    PubMed

    Chen, Xiaoshuang; Liu, Guangbo; Hu, Yunxia; Cao, Wenwu; Hu, PingAn; Hu, Wenping

    2018-01-26

    The hybrid n-type 2D transition-metal dichalcogenide (TMD)/p-type oxide van der Waals (vdW) heterojunction nanosheets consist of 2D layered MoSe 2 (the n-type 2D material) and MoO x (the p-type oxide) which are grown on SiO 2 /Si substrates for the first time via chemical vapor deposition technique, displaying the regular hexagon structures with the average length dimension of sides of ∼8 μm. Vertical MoSe 2 -MoO x p-n heterojunctions demonstrate obviously current-rectifying characteristic, and it can be tuned via gate voltage. What is more, the photodetector based on vertical MoSe 2 -MoO x heterojunctions displays optimal photoresponse behavior, generating the responsivity, detectivity, and external quantum efficiency to 3.4 A W -1 , 0.85 × 10 8 Jones, and 1665.6%, respectively, at V ds  = 5 V with the light wavelength of 254 nm under 0.29 mW cm -2 . These results furnish a building block on investigating the flexible and transparent properties of vdW and further optimizing the structure of the devices for better optoelectronic and electronic performance.

  16. Vertical MoSe2-MoO x p-n heterojunction and its application in optoelectronics

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoshuang; Liu, Guangbo; Hu, Yunxia; Cao, Wenwu; Hu, PingAn; Hu, Wenping

    2018-01-01

    The hybrid n-type 2D transition-metal dichalcogenide (TMD)/p-type oxide van der Waals (vdW) heterojunction nanosheets consist of 2D layered MoSe2 (the n-type 2D material) and MoO x (the p-type oxide) which are grown on SiO2/Si substrates for the first time via chemical vapor deposition technique, displaying the regular hexagon structures with the average length dimension of sides of ˜8 μm. Vertical MoSe2-MoO x p-n heterojunctions demonstrate obviously current-rectifying characteristic, and it can be tuned via gate voltage. What is more, the photodetector based on vertical MoSe2-MoO x heterojunctions displays optimal photoresponse behavior, generating the responsivity, detectivity, and external quantum efficiency to 3.4 A W-1, 0.85 × 108 Jones, and 1665.6%, respectively, at V ds = 5 V with the light wavelength of 254 nm under 0.29 mW cm-2. These results furnish a building block on investigating the flexible and transparent properties of vdW and further optimizing the structure of the devices for better optoelectronic and electronic performance.

  17. Facile and Low-cost Synthesis of Mesoporous Ti-Mo Bi-metal Oxide Catalysts for Biodiesel Production from Esterification of Free Fatty Acids in Jatropha curcas Crude Oil.

    PubMed

    Zhang, Qiuyun; Li, Hu; Yang, Song

    2018-05-01

    Mesoporous Ti-Mo bi-metal oxides with various titanium-molybdenum ratios were successfully fabricated via a facile approach by using stearic acid as a low-cost template agent. thermal gravity (TG) /differential scanning calorimetry (DSC) analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, nitrogen adsorption-desorption isotherm, NH 3 temperature-programmed desorption (NH 3 -TPD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements indicated these materials possessing mesoporous structure, sufficient pore size and high acid intensity. The catalytic performance of prepared catalysts was evaluated by esterification of free fatty acids in Jatropha curcas crude oil (JCCO) with methanol. The effects of various parameters on FFA conversion were investigated. The esterification conversion of 87.8% was achieved under the condition of 180°C, 2 h, methanol to JCCO molar ratio of 20:1 and 3.0 wt.% catalyst (relative to the weight of JCCO). The mesoporous catalysts were found to exhibit high activities toward the simultaneous esterification and transesterification of JCCO. Furthermore, the catalyst could be recovered with a good reusability.

  18. Benchmark experiment for the cross section of the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions

    NASA Astrophysics Data System (ADS)

    Takács, S.; Ditrói, F.; Aikawa, M.; Haba, H.; Otuka, N.

    2016-05-01

    As nuclear medicine community has shown an increasing interest in accelerator produced 99mTc radionuclide, the possible alternative direct production routes for producing 99mTc were investigated intensively. One of these accelerator production routes is based on the 100Mo(p,2n)99mTc reaction. The cross section of this nuclear reaction was studied by several laboratories earlier but the available data-sets are not in good agreement. For large scale accelerator production of 99mTc based on the 100Mo(p,2n)99mTc reaction, a well-defined excitation function is required to optimise the production process effectively. One of our recent publications pointed out that most of the available experimental excitation functions for the 100Mo(p,2n)99mTc reaction have the same general shape while their amplitudes are different. To confirm the proper amplitude of the excitation function, results of three independent experiments were presented (Takács et al., 2015). In this work we present results of a thick target count rate measurement of the Eγ = 140.5 keV gamma-line from molybdenum irradiated by Ep = 17.9 MeV proton beam, as an integral benchmark experiment, to prove the cross section data reported for the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions in Takács et al. (2015).

  19. Engineering Ni-Mo-S Nanoparticles for Hydrodesulfurization.

    PubMed

    Bodin, Anders; Christoffersen, Ann-Louise N; Elkjær, Christian F; Brorson, Michael; Kibsgaard, Jakob; Helveg, Stig; Chorkendorff, Ib

    2018-06-13

    Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo 75 Ni 25 metal target in a reactive atmosphere of Ar and H 2 S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered by a quadrupole mass filter and subsequently deposited on a planar substrate, such as a grid for electron microscopy or a microreactor. By varying the mass of the deposited nanoparticles, it is demonstrated that the Ni-Mo-S nanoparticles can be tuned into fullerene-like particles, flat-lying platelets, and upright-oriented platelets. The nanoparticle morphologies provide different abundances of Ni-Mo-S edge sites, which are commonly considered the catalytically important sites. Using a microreactor system, we assess the catalytic activity of the Ni-Mo-S nanoparticles for the HDS of dibenzothiophene. The measurements show that platelets are twice as active as the fullerene-like particles, demonstrating that the Ni-Mo-S edges are more active than basal planes for the HDS. Furthermore, the upright-standing orientation of platelets show an activity that is six times higher than the fullerene-like particles, demonstrating the importance of the edge site number and accessibility to reducing, e.g., sterical hindrance for the reacting molecules.

  20. Mössbauer study of modified iron-molybdenum catalysts for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Ivanov, K. I.; Mitov, I. G.; Krustev, St. V.; Boyanov, B. S.

    2010-03-01

    The preparation and catalytic properties of mixed Fe-Mo-W catalysts toward methanol oxidation are investigated. Mössbauer spectroscopy, X-ray diffraction and chemical studies revealed the formation of two types of solid solutions with compositions Fe2(MoxW1-xO4)3 and (MoxW1-x)O3. The solid solutions formed are characterized by high activity and selectivity upon methanol oxidation and are of interest in view of their practical application. Sodium-doped iron-molybdenum catalysts are also investigated and the NaFe(MoO4)2 formation was established.

  1. Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.).

    PubMed

    Kim, Hyun Jung; Han, Jung-Heon; Kim, Seungill; Lee, Heung Ryul; Shin, Jun-Sung; Kim, Jeong-Ho; Cho, Juok; Kim, Young Ho; Lee, Hee Jae; Kim, Byung-Dong; Choi, Doil

    2011-04-01

    A relationship between pepper trichome and pepper mottle virus (PepMoV) resistance was examined. In an intraspecific F(2) mapping population from the cross between Capsicum annuum CM334 (trichome-bearing and PepMoV resistant) and Chilsungcho (glabrous and PepMoV susceptible), major QTLs for both traits were identified by composite interval mapping in linkage group (LG) 24 corresponding a telomere region on pepper chromosome 10. Ptel1 of putative trichome enhancing locus was a common major QTL for trichome density on the main stem and calyx. Ptel1 apart from HpmsE031 at a 1.03 cM interval was specifically associated to the trichome density on the main stem, whereas Ptel2 near m104 marker on LG2 was specific for the calyx trichome. Epistatic analysis indicated that Ptel1 engaged in controlling the trichome density by mutual interactions with the organ-specific QTLs. For PepMoV resistance, two QTLs (Pep1 and Pep2) were identified on the LG 24. Pep1 was located with Ptel1 in the R-gene cluster (RGC) for potyvirus resistance including Pvr4 with broad spectrum resistance to potyviruses. Pep1 flanking TG420 marker seemed to be the major factors determining correlation with PepMoV resistance. These results indicate that the level of trichome density on pepper main stem can be used as a morphological marker for Pvr4 in pepper breeding.

  2. A Flexible Platform Containing Graphene Mesoporous Structure and Carbon Nanotube for Hydrogen Evolution

    PubMed Central

    Zhang, Rujing; Li, Xiao; Zhang, Li; Lin, Shuyuan

    2016-01-01

    It is of great significance to design a platform with large surface area and high electrical conductivity for poorly conductive catalyst for hydrogen evolution reaction (HER), such as molybdenum sulfide (MoSx), a promising and cost‐effective nonprecious material. Here, the design and preparation of a free‐standing and tunable graphene mesoporous structure/single‐walled carbon nanotube (GMS/SWCNT) hybrid membrane is reported. Amorphous MoSx is electrodeposited on this platform through a wet chemical process under mild temperature. For MoSx@GMS/SWCNT hybrid electrode with a low catalyst loading of 32 μg cm−2, the onset potential is near 113 mV versus reversible hydrogen electrode (RHE) and a high current density of ≈71 mA cm−2 is achieved at 250 mV versus RHE. The excellent HER performance can be attributed to the large surface area for MoSx deposition, as well as the efficient electron transport and abundant active sites on the amorphous MoSx surface. This novel catalyst is found to outperform most previously reported MoSx‐based HER catalysts. Moreover, the flexibility of the electrode facilitates its stable catalytic performance even in extremely distorted states. PMID:27980998

  3. [sup 95]Mo T[sub 1] measurements of Mo(CO)[sub 6] encapsulated in Na-Y zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cybulski, P.A.; Gillis, D.J.; Baird, M.C.

    1993-02-17

    On the basis of [sup 95]Mo T[sub 1] measurements made on samples of Mo(CO)[sub 6] encapsulated in dried Na-Y zeolite over the temperature range 223-323 K, it is confirmed that Mo(CO)[sub 6] experiences significant rotational freedom in the 13-[Angstrom] zeolite supercages. In addition, it is found that the activation energy for rotation is about 40 [plus minus] 4 kJ mol[sup [minus]1], and the ambient temperature rotational correlation time, [tau][sub c], is approximately 3 orders of magnitude longer than is [tau][sub c] in solution. These species are of interest as hydrogenation catalysts. 9 refs., 1 fig., 1 tab.

  4. Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouat, Aidan R.; Lohr, Tracy L.; Wegener, Evan C.

    2016-08-23

    A single-site molybdenum dioxo catalyst, (O c) 2Mo(=O) 2@C, was prepared via direct grafting of MoO 2Cl 2(dme) (dme = 1,2-dimethoxyethane) on high-surface- area activated carbon. The physicochemical and chemical properties of this catalyst were fully characterized by N 2 physisorption, ICP-AES/OES, PXRD, STEM, XPS, XAS, temperature-programmed reduction with H 2 (TPR-H 2), and temperature-programmed NH 3 desorption (TPD-NH 3). The single-site nature of the Mo species is corroborated by XPS and TPR-H 2 data, and it exhibits the lowest reported MoO x Tmax of reduction reported to date, suggesting a highly reactive MoVI center. (O c) 2Mo(=O) 2@C catalyzesmore » the transesterification of a variety of esters and triglycerides with ethanol, exhibiting high activity at moderate temperatures (60-90 °C) and with negligible deactivation. (O c) 2Mo(=O) 2@C is resistant to water and can be recycled at least three times with no loss of activity. The transesterification reaction is determined experimentally to be first order in [ethanol] and first order in [Mo] with ΔH = 10.5(8) kcal mol -1 and ΔS = -32(2) eu. The low energy of activation is consistent with the moderate conditions needed to achieve rapid turnover. This highly active carbon-supported single-site molybdenum dioxo species is thus an efficient, robust, and lowcost catalyst with significant potential for transesterification processes.« less

  5. The influence of catalysts on biofuel life cycle analysis (LCA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.

    Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al 2O 3, CoMo/γ-Al 2O 3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al 2O 3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gatemore » GHG emissions of 7.7 kg CO 2e/kg, could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO 2e/MJ for the in-situ process, 1.2 gCO 2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al 2O 3 had a greater GHG intensity (9.6 kg CO 2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less

  6. The influence of catalysts on biofuel life cycle analysis (LCA)

    DOE PAGES

    Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.; ...

    2017-01-21

    Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al 2O 3, CoMo/γ-Al 2O 3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al 2O 3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gatemore » GHG emissions of 7.7 kg CO 2e/kg, could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO 2e/MJ for the in-situ process, 1.2 gCO 2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al 2O 3 had a greater GHG intensity (9.6 kg CO 2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less

  7. Mo-doped V2O5 hierarchical nanorod/nanoparticle core/shell porous microspheres with improved performance for cathode of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Yu, Haolin; Zeng, Jianyun; Hao, Wen; Zhou, Peng; Wen, Xiaogang

    2018-05-01

    Mo-doped V2O5 hierarchical nanorod/nanoparticle core/shell porous microspheres (MVHPMs) were prepared via a simple hydrothermal approach using ammonium metavanadate and ammonium molybdate as precursors followed by a thermal annealing process. The samples were characterized by XRD, SEM, TEM, EDS, and XPS carefully; it confirmed that porous microspheres with uniform Mo doping in the V2O5 matrix were obtained, and it contains an inner core self-assembled with 1D nanorods and outer shell consisting of nanoparticles. A plausible growth mechanism of Mo-doped V2O5 (Mo-V2O5) porous microspheres is suggested. The unique microstructure made the Mo-V2O5 hierarchical microspheres a good cathode material for Li-ion battery. The results indicate the synthesized Mo-V2O5 hierarchical microspheres exhibit well-improved electrochemical performance compared to the undoped samples. It delivers a high initial reversible capacity of 282 mAh g-1 at 0.2 C, 208 mAh g-1 at 2 C, and 111 mAh g-1 at 10 C, and it also exhibits good cycling stabilities; a capacity of 144 mAh g-1 is obtained after 200 cycles at 6 C with a capacity retention of > 82%, which is much high than that of pure V2O5 (95 mAh g-1 with a capacity retention of 72%). [Figure not available: see fulltext.

  8. Room-temperature CO Thermoelectric Gas Sensor based on Au/Co3O4 Catalyst Tablet.

    PubMed

    Sun, L; Luan, W L; Wang, T C; Su, W X; Zhang, L X

    2017-02-17

    A carbon monoxide (CO) thermoelectric (TE) gas sensor was fabricated by affixing a Au/Co 3 O 4 catalyst tablet on a TE film layer. The Au/Co 3 O 4 catalyst tablet was prepared by a co-precipitation and tablet compression method and its possible catalytic mechanism was discussed by means of x-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, x-ray photoelectron spectroscopy, temperature-programmed reduction of hydrogen, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analysis. The optimal catalyst, with a Au content of 10 wt%, was obtained at a calcination temperature between 200 and 300 °C. The small size of the Au nanoparticles, high specific surface, the existence of Co 3+ and water-derived species contributed to  high catalytic activity. Based on the optimal Au/Co 3 O 4 catalyst tablet, the CO TE gas sensor worked at room temperature and showed a response voltage signal (ΔV) of 23 mV, high selectivity among hydrogen and methane, high stability, and a fast response time of 106 s for 30 000 ppm CO/air. In addition, a CO concentration in the range of 5000-30 000 ppm could obviously be detected and exhibited a linear relationship with ΔV. The CO TE gas sensor provides a promising option for the detection of CO gas at room temperature.

  9. The Chemistry of MoS2 and Related Compounds and Their Applications in Electrocatalysis and Photoelectrochemistry

    NASA Astrophysics Data System (ADS)

    Ding, Qi

    The increasing energy demand in our society has stimulated intensive research in the development of sustainable and renewable energy sources to lessen our strong dependence on fossil fuels. Hydrogen is a clean, storable, and high-energy density energy carrier, and is a promising sustainable solution to achieve an environmentally friendly fuel economy. Electrochemical and solar-driven photoelectrochemical water splitting is regarded as one of the most promising approaches to utilize renewable energy to product hydrogen fuel, yet Pt remains the best electrocatalyst for hydrogen evolution reaction (HER), the high cost of which ultimately limit the scalability of such technologies. Layered transition metal dichalcogenides (TMDCs) is a family of compounds that has attracted widespread attention due to their broad range of applications in electronics, optoelectronics, sensing, energy storage, and catalysis. My research has primarily focused on understanding the chemistry of MoS2 and related compounds, and developing rational approaches to enable these materials for efficient electrocatalytic and photoelectrochemical (PEC) hydrogen evolution. We demonstrated highly efficient and robust photocathodes based on heterostructures of chemically exfoliated metallic 1T-MoS2 and planar p-type Si for PEC-HER. Photocurrents up to 17.6 mA/cm2 at 0 V vs reversible hydrogen electrode (RHE) were achieved under simulated 1 sun irradiation, and excellent stability was demonstrated over long-term operation. Building upon the 1T-MoS2 groundwork, amorphous ternary compounds MoQxCly (Q = S, Se) were then developed as excellent catalysts for HER. The preparation of MoQxCly requires much lower temperature and easier fabrication, yet the PEC performance of MoSxCly-based photocathode is even better than 1T-MoS2-based photocathode. Moreover, when MoSxCly is incorporated with n+pp+ Si micropyramids (MPs), we demonstrate the highest current density ever reported for Si-based photocathodes

  10. Ni-Doping Effects on Oxygen Removal from an Orthorhombic Mo 2C (001) Surface: A Density Functional Theory Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mingxia; Cheng, Lei; Choi, Jae-Soon

    Density functional theory (DFT) calculations were used in this paper to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T Mo) and C-terminated (T C) Mo 2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo 2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such asmore » Ni adsorbed on T Mo and T C Mo 2C(001) surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T Mo Mo 2C(001) and T C Mo 2C(001) surfaces. Finally, this computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo 2C and Ni-doped Mo 2C catalysts, which had been passivated and stored in an oxygen environment.« less

  11. Ni-Doping Effects on Oxygen Removal from an Orthorhombic Mo 2C (001) Surface: A Density Functional Theory Study

    DOE PAGES

    Zhou, Mingxia; Cheng, Lei; Choi, Jae-Soon; ...

    2017-12-22

    Density functional theory (DFT) calculations were used in this paper to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T Mo) and C-terminated (T C) Mo 2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo 2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such asmore » Ni adsorbed on T Mo and T C Mo 2C(001) surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T Mo Mo 2C(001) and T C Mo 2C(001) surfaces. Finally, this computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo 2C and Ni-doped Mo 2C catalysts, which had been passivated and stored in an oxygen environment.« less

  12. Selective Fragmentation of Biorefinery Corncob Lignin into p-Hydroxycinnamic Esters with a Supported ZnMoO4 Catalyst.

    PubMed

    Wang, Shuizhong; Gao, Wa; Li, Helong; Xiao, Ling-Ping; Sun, Run-Cang; Song, Guoyong

    2018-04-16

    Lignin is the largest renewable resource of bio-aromatics, and catalytic fragmentation of lignin into phenolic monomers is increasingly recognized as an important starting point for lignin valorization. Herein, we reported zinc molybdate (ZnMoO4) supported on MCM-41 can catalyze fragmentation of biorefinery technical lignin, enzymatic mild acidolysis lignin and native lignin derived from corncob, to give lignin oily products containing 15 to 37.8 wt% phenolic monomers, in which the high selectivities towards methyl coumarate 1 and methyl ferulate 2 were obtained (up to 78%). The effects of some key parameters such as the influences of solvent, reaction temperature, time, H2 pressure and catalyst dosage were examined in view of activity and selectivity. The loss of zinc atom in catalyst is appointed as a primary cause of deactivation, and catalytic activity and selectivity can be well-preserved for at least six times by thermal calcination. The high selectivity to compounds 1 and 2 make them easily separated and purified from lignin oily product, thus providing sustainable monomers for preparation of functional polyetheresters and polyesters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrodésazotation de la pyridine sous pression atmosphérique catalysée par des oxynitrures de Ni, Mo, et des oxynitrures mixtes MoNi, MoPNi, AlNi et AlPNi

    NASA Astrophysics Data System (ADS)

    Elkamel, K.; Elidrissi, M.; Yacoubi, A.; Nadiri, A.; Abouarnadasse, S.

    1998-11-01

    Hydrodenitrogenation of pyridine has been realised, under atmospheric pressure, in the presence of oxynitride catalysts of molybdenum, nickel and their solid solutions as well as on mixed catalysts MoNi, MoPNi, AlNi and AlPNi. In all cases, the main reaction products are n-pentane and N-pentylpiperidine, at any conversion. Kinetic results suggest that the conversion of pyridine, on nickel oxynitride, proceeds through successive steps with hydrogenation as rate-limiting. Molybdenum oxynitride and Mo-Ni-N solid solutions tested in the temperature range 500 circC-450 circC, showed a good structural and catalytic stability, but a low catalytic activity. On the other hand, nickel oxynitride catalyst yielded higher activity at much lower temperatures (190 circC-250 circC). X-rays analysis indicates that the used catalyst was entirely reduced to metallic nickel, which is the active phase. Under the same experimental conditions, mixed catalysts are relatively less active but more selective than nickel oxynitride into n-pentane formation. La réaction d'hydrodésazotation de la pyridine a été réalisée, sous pression atmosphérique, en présence de catalyseurs oxynitrures de molybdène, de nickel et leurs solutions solides ainsi que sur les catalyseurs mixtes MoNi, MoPNi, AlNi et AlPNi. Dans tous les cas, les principaux produits de réaction observés sont le n-pentane et la N- pentylpipéridine, quel que soit le taux de conversion. Les résultats cinétiques obtenus en régime intégral, en présence de l'oxynitrure de nickel, suggèrent un schéma réactionnel successif où l'hydrogénation de la pyridine serait l'étape limitante. L'oxynitrure de molybdène et les solutions solides Mo-Ni-N, testés à des températures supérieures ou égales à 500 circC, ont montré une bonne stabilité catalytique et structurale mais une faible activité catalytique. En revanche, l'oxynitrure de nickel présente une activité catalytique plus importante à des températures de r

  14. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

  15. V-doped TiO2 supported Pt as a promising oxygen reduction reaction catalyst: Synthesis, characterization and in-situ evaluation in proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Bharti, Abha; Cheruvally, Gouri

    2017-09-01

    This study deals with the synthesis and characterization of V-doped, TiO2 supported Pt catalyst (Pt/V-TiO2) for oxygen reduction reaction (ORR) and its in-situ performance investigation in proton exchange membrane (PEM) fuel cell. Pt/V-TiO2 nanocomposite catalyst is prepared via a facile sol-gel and microwave assisted, modified chemical reduction route and its performance is compared with the undoped TiO2 supported catalyst, Pt/TiO2 prepared in an identical way. The prepared Pt/V-TiO2 and Pt/TiO2 catalysts are employed as cathode catalyst in PEM fuel cell and compared with standard Pt/C catalyst. Their comparative studies are conducted with physical and electrochemical techniques. In-situ electrochemical characterization studies show improved ORR catalytic activity of Pt/V-TiO2 compared to Pt/TiO2. Furthermore, both Pt/TiO2 and Pt/V-TiO2 are more stable than Pt/C when subjected to 6000 voltammetric cycles in the range of 0.2-1.2 V vs. standard hydrogen electrode in operating fuel cell conditions, losing only <20% of its electrochemical surface area as compared to 50% loss exhibited by Pt/C. This study thus demonstrates Pt/V-TiO2 nanocomposite material as a potential cathode catalyst for PEM fuel cell with immense scope for further investigation.

  16. Mechanically Activated Combustion Synthesis of MoSi 2-Based Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafirovich, Evgeny

    2015-09-30

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicatemore » surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that

  17. MoS2‐Based Nanocomposites for Electrochemical Energy Storage

    PubMed Central

    Wang, Tianyi; Chen, Shuangqiang; Xue, Huaiguo

    2016-01-01

    Typical layered transition‐metal chalcogenide materials, in particular layered molybdenum disulfide (MoS2) nanocomposites, have attracted increasing attention in recent years due to their excellent chemical and physical properties in various research fieldsHere, a general overview of synthetic MoS2 based nanocomposites via different preparation approaches and their applications in energy storage devices (Li‐ion battery, Na‐ion battery, and supercapacitor) is presented. The relationship between morphologies and the electrochemical performances of MoS2‐based nanocomposites in the three typical and promising rechargeable systems is also discussed. Finally, perspectives on major challenges and opportunities faced by MoS2‐based materials to address the practical problems of MoS2‐based materials are presented. PMID:28251051

  18. Characterization and electron-energy-loss spectroscopy on NiV and NiMo superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, S.H.

    1986-01-01

    NiV superlattices with periods (A) ranging from 15 to 80 A, and NiMo superlattices with from 14 to 110 A were studied using X-ray Diffraction (XRD), Electron Diffraction (ED), Energy-Dispersive X-Ray (EDX) microanalysis, and Electron Energy Loss Spectroscopy (EELS). Both of these systems have sharp superlattice-to-amorphous (S-A) transitions at about empty set = 17A. Superlattices with empty set around the S-A boundary were found to have large local variations in the in-plane grain sizes. Except for a few isolated regions, the chemical composition of the samples were found to be uniform. In samples prepared at Argonne National Laboratory (ANL), mostmore » places studied with EELS showed changes in the EELS spectrum with decreasing empty set. An observed growth in a plasmon peak at approx. 10ev in both NiV and NiMo as empty set decreased down to 19 A is attributed to excitation of interface plasmons. Consistent with this attribution, the peak height shrank in the amorphous samples. The width of this peak is consistent with the theory. The sift in this peak down to 9 ev with decreasing empty set in NiMo is not understood.« less

  19. The catalytic activity of CoMo/USY on deoxygenation reaction of anisole in a batch reactor

    NASA Astrophysics Data System (ADS)

    Nugrahaningtyas, K. D.; Putri, I. F.; Heraldy, E.; Hidayat, Y.

    2018-04-01

    The catalytic hydrodeoxigenation of the bio oil model compounds (biomass pyrolysis results) typically uses sulphide catalysts. In this study, we studied the activity of non-sulphide catalyst, the effect of temperature and reaction time on anisole deoxygenation. The catalytic activity was performed in a batch reactor, using N2 gas at 1 bar of pressure. The product was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The result showed that the Co-Mo/USY catalyst perform a highest activity and produce pentamethylbenzene, an oxygen free products, when reaction time is 2 hours. The Co-Mo/USY catalysts has the value of the total yield of the product increased with time increase drastically.

  20. Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe3)(CO)2H, CpMo(PMe3)2(CO)H, [CpMo(μ-O)(μ-O2CH)]2, and [Cp*Mo(μ-O)(μ-O2CH)]2.

    PubMed

    Neary, Michelle C; Parkin, Gerard

    2017-02-06

    The molecular structures of CpMo(PMe 3 )(CO) 2 H and CpMo(PMe 3 ) 2 (CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3 )(CO) 2 H and CpMo(PMe 3 ) 2 (CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H-Mo-CO moiety are displaced towards the hydride ligand. While Cp R Mo(PMe 3 ) 3-x (CO) x H (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts for the release of H 2 from formic acid, the carbonyl derivatives, Cp R Mo(CO) 3 H, are also observed to form dinuclear formate compounds, namely, [Cp R Mo(μ-O)(μ-O 2 CH)] 2 . The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2 CH)] 2 and [Cp*Mo(μ-O)(μ-O 2 CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2 CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO-1) orbitals. The σ 2 δ* 2 configuration thus corresponds to a formal direct Mo-Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo-Mo bond, whereas a Mo═Mo double bond is required in the absence of lone-pair donation.

  1. Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30}n Based Soft Oxometalate

    NASA Astrophysics Data System (ADS)

    Das, Santu; Roy, Soumyajit

    Finding an alternative energy resource which can produce clean energy at a low cost is one of the major concerns of our times. The conversion of light energy into chemical energy is one key step forward in the direction. With that end in view photochemical water oxidation to produce oxygen plays a crucial role. In the present paper we have synthesized a soft oxometalate {PMo12O40@Mo72Fe30}n(1) from its well-known precursor polyoxometalate constituent [Muller et al., Chem. Commun. 1, 657 (2001)]. It is known that in the matter of catalysis, high surface area, possibility of heterogenization, recoverability makes soft oxometalates (SOMs) attractive as catalytic materials. Here we exploit such advantages of SOMs. The SOM based material acts as an active catalyst for photochemical water oxidation reaction with a maximum turnover number of 20256 and turnover frequency of 24.11min-1. The catalyst material is stable under photochemical reaction conditions and therefore can be reused for multiple photo catalytic water oxidation reaction cycles.

  2. Multifunctional Interlayer Based on Molybdenum Diphosphide Catalyst and Carbon Nanotube Film for Lithium-Sulfur Batteries.

    PubMed

    Luo, Yufeng; Luo, Nannan; Kong, Weibang; Wu, Hengcai; Wang, Ke; Fan, Shoushan; Duan, Wenhui; Wang, Jiaping

    2018-02-01

    A multifunctional interlayer, composed of molybdenum diphosphide (MoP 2 ) nanoparticles and a carbon nanotube (CNT) film, is introduced into a lithium-sulfur (Li-S) battery system to suppress polysulfide migration. Molybdenum diphosphide acts as the catalyst and can capture polysulfides and improve the polysulfide conversion activity during the discharge/charge processes. The CNT film acts as a conductive skeleton to support the MoP 2 nanoparticles and to ensure their uniform distribution. The CNT film physically hinders polysulfide migration, acts as a current collector, and provides abundant electron pathways. The Li-S battery containing the multifunctional MoP 2 /CNT interlayer exhibits excellent electrochemical performance. It delivers a reversible specific capacity of 905 mA h g -1 over 100 cycles at 0.2 C, with a capacity decay of 0.152% per cycle. These results suggest the introduction of the multifunctional CNT/MoP 2 interlayer as an effective and practical method for producing high-performance Li-S batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of sustainable Palladium-based catalysts for removal of persistent contaminants from drinking water

    NASA Astrophysics Data System (ADS)

    Shuai, Danmeng

    Pd-based catalytic reduction has emerged as an advanced treatment technology for drinking water decontamination, and a suite of persistent contaminants including oxyanions, N-nitrosoamines, and halogenated compounds are amenable to catalytic reduction. The primary goal of this study is to develop novel Pd-based catalysts with enhanced performance (i.e., activity, selectivity, and sustainability) to remove contaminants from drinking water. The effects of water quality (i.e., co-contaminants in water matrix), catalyst support, and catalyst metal were explored, and they provide insights for preparing catalysts with faster kinetics, higher selectivity, and extended lifetime. Azo dyes are wide-spread contaminants, and they are potentially co-exisiting with target contaminants amenable for catalytic removal. The probe azo dye methyl orange (MO) enhanced catalytic reduction kinetics of a suite of oxyanions (i.e., nitrate, nitrite, bromate, chlorate, and perchlorate) and diatrizoate significantly but not N-nitrosodimethylamine (NDMA) with a variety of Pd-based catalysts. Nitrate was selected as a probe contaminant, and several different azo dyes (i.e., (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. A hydrogen atom shuttling mechanism was proposed and a kinetic model was proposed based on Bronsted-Evans-Polanyi (BEP) theory, and they suggest sorbed azo dyes and reduced hydrazo dyes shuttle hydrogen atoms to oxyanions or diatrizoate to enhance their reduction kinetics. Next, vapor-grown carbon nanofiber (CNF) supports were used to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). In order to evaluate the amount of interior versus exterior loading of Pd nanoparticles, a fast and accurate geometric

  4. Programmable Schottky Junctions Based on Ferroelectric Gated MoS2 Transistors

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Song, Jingfeng; Drcharme, Stephen; Hong, Xia

    We report a programmable Schottky junction based on MoS2 field effect transistors with a SiO2 back gate and a ferroelectric copolymer poly(vinylidene-fluoride-trifluorethylene) (PVDF) top gate. We fabricated mechanically exfoliated single layer MoS2 flakes into two point devices via e-beam lithography, and deposited on the top of the devices ~20 nm PVDF thin films. The polarization of the PVDF layer is controlled locally by conducting atomic force microscopy. The devices exhibit linear ID-VD characteristics when the ferroelectric gate is uniformly polarized in one direction. We then polarized the gate into two domains with opposite polarization directions, and observed that the ID-VD characteristics of the MoS2 channel can be modulated between linear and rectified behaviors depending on the back gate voltage. The nonlinear ID-VD relation emerges when half of the channel is in the semiconductor phase while the other half is in the metallic phase, and it can be well described by the thermionic emission model with a Schottky barrier of ~0.5 eV. The Schottky junction can be erased by re-write the entire channel in the uniform polarization state. Our study facilitates the development of programmable, multifunctional nanoelectronics based on layered 2D TMDs..

  5. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    PubMed

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    DOEpatents

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.; Majda, Marcin

    2016-11-22

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (over a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.

  7. Bulk-surface relationship of an electronic structure for high-throughput screening of metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Kweun, Joshua Minwoo; Li, Chenzhe; Zheng, Yongping; Cho, Maenghyo; Kim, Yoon Young; Cho, Kyeongjae

    2016-05-01

    Designing metal-oxides consisting of earth-abundant elements has been a crucial issue to replace precious metal catalysts. To achieve efficient screening of metal-oxide catalysts via bulk descriptors rather than surface descriptors, we investigated the relationship between the electronic structure of bulk and that of the surface for lanthanum-based perovskite oxides, LaMO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Through density functional theory calculations, we examined the d-band occupancy of the bulk and surface transition-metal atoms (nBulk and nSurf) and the adsorption energy of an oxygen atom (Eads) on (001), (110), and (111) surfaces. For the (001) surface, we observed strong correlation between the nBulk and nSurf with an R-squared value over 94%, and the result was interpreted in terms of ligand field splitting and antibonding/bonding level splitting. Moreover, the Eads on the surfaces was highly correlated with the nBulk with an R-squared value of more than 94%, and different surface relaxations could be explained by the bulk electronic structure (e.g., LaMnO3 vs. LaTiO3). These results suggest that a bulk-derived descriptor such as nBulk can be used to screen metal-oxide catalysts.

  8. [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36-: a molecular quantum spin icosidodecahedron.

    PubMed

    Botar, Bogdan; Kögerler, Paul; Hill, Craig L

    2005-07-07

    Self-assembly of aqueous solutions of molybdate and vanadate under reducing, mildly acidic conditions results in a polyoxomolybdate-based {Mo72V30} cluster compound Na8K16(VO)(H2O)5[K10 subset{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20].150H2O, 1, a quantum spin-based Keplerate structure.

  9. An EXAFS study on the so-called {open_quotes}Co-Mo-S{close_quotes} phase in Co/C and CoMo/C, compared with a Moessbauer emission spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craje, M.W.J.; Kraan, A.M. van der; Louwers, S.P.A.

    1992-06-25

    EXAFS was used in this paper to study 4 sulfided catalysts that have the same structure as their {sup 57}Co counterparts characterized by Mossbauer emission spectroscopy. The {open_quotes}Co-Mo-S{close_quotes} phase in Co/C is similar to CoMo/C due to a very highly dispersed Co species. Without Mo, the sulfidic Co results in a Co{sub 9}S{sub 8} phase during sulfidation at 673K, Mo prevents Co sintering in CoMo/C. 37 refs., 6 figs., 2 tabs.

  10. Reactivity and Characterization of Solid State Hydrodesulfurization Catalysts.

    NASA Astrophysics Data System (ADS)

    Lindner, James Henry

    1990-01-01

    The identification of the phase responsible for hydrodesulfurization (HDS) activity has been the subject of extensive research. In this study, model solid state catalysts prepared from elemental starting materials were synthesized, characterized, and then used to desulfurize thiophene at temperatures ranging from 200-400 ^circC and a pressure of one atmosphere. The results of this work indicate that an increased HDS activity can be correlated with the presence of a poorly crystalline molybdenum sulfide-like phase detected by XRD, HREM, or AEM. The formation of this sulfur-deficient, non-stoichiometric phase could be accomplished by either removing sulfur directly from the catalyst synthesis mixture to yield a non-stoichiometric MoS_{ rm 2-x} moiety, or by introducing a transition metal promoter such as Fe, Co, Ni, or Cu into the system. The promoter atoms induced structural changes in the molybdenum sulfide edge planes by effectively scavenging sulfur during catalyst synthesis to form promoter sulfide species, which enhanced the formation of a non-stoichiometric, highly active molybdenum sulfide. This morphological effect was the primary function of the promoter in this system. All model catalysts displayed similar structure in the (0002) basal plane of MoS_2; however, only the catalytically active samples showed a high concentration of defects and disorder in the (1010), (1011), and (1012) edge planes. The HREM images obtained from these edge planes and their correlation with HDS activity dramatically illustrated the importance of the often-discussed edge plane structure of MoS_2 and its significance on HDS catalysis. Normalization of the HDS activities for the solid state models and a commercial catalyst with O_2 or CO chemisorption uptakes suggested that a similarity may exist between the catalytically active sites of these materials. In-situ XPS revealed that increasing promoter atom concentrations resulted in a more complete reduction of the promoter atom; but

  11. Selective hydrodesulfurization of 4,6-dimethyldibenzothiophene in the dominant presence of naphthalene over hybrid CoMo/A{sub 2}O{sub 3} and Ru/Al{sub 2}Al{sub 2}O{sub 3} catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoda, T.; Nagao, S.; Ma, X.

    1995-12-31

    Hydrodesulfurization of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in decane containing significant amount of naphthalene was examined over a hybrid of CoMo/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3} to design the selective hydrogenation and successive desulfurization of 4,6-DMDBT in aromatic moiety, and its activity was compared to those of CoMo/Al{sub 2}O{sub 3}, NiMo/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3} in their single use. HDS activity of 4,6-DMDBT over NiMo/Al{sub 2}O{sub 3} was inferior to CoMo/Al{sub 2}O{sub 3}, although that of highest hydrogenation activity for naphthalene. The hybrid showed the highest activity for HDS of 4,6-DMDBT among these catalysts without excess hydrogenation of nahthalene.

  12. Effect of 2,6-Bis-(1-hydroxy-1,1-diphenyl-methyl) Pyridine as Organic Additive in Sulfide NiMoP/γ-Al₂O₃ Catalyst for Hydrodesulfurization of Straight-Run Gas Oil.

    PubMed

    Santolalla-Vargas, Carlos Eduardo; Santes, Victor; Meneses-Domínguez, Erick; Escamilla, Vicente; Hernández-Gordillo, Agileo; Gómez, Elizabeth; Sánchez-Minero, Felipe; Escobar, José; Díaz, Leonardo; Goiz, Oscar

    2017-08-15

    The effect of 2,6-bis-(1-hydroxy-1,1-diphenyl-methyl) pyridine (BDPHP) in the preparation of NiMoP/γ-Al₂O₃ catalysts have been investigated in the hydrodesulfurization (HDS) of straight-run gas oil. The γ-Al₂O₃ support was modified by surface impregnation of a solution of BDPHP to afford BDPHP/Ni molar ratios (0.5 and 1.0) in the final composition. The highest activity for NiMoP materials was found when the molar ratio of BDPHP/Ni was of 0.5. X-ray diffraction (XRD) results revealed that NiMoP (0.5) showed better dispersion of MoO₃ than the NiMoP (1.0). Fourier transform infrared spectroscopy (FT-IR) results indicated that the organic additive interacts with the γ-Al₂O₃ surface and therefore discards the presence of Mo or Ni complexes. Raman spectroscopy suggested a high Raman ratio for the NiMoP (0.5) sample. The increment of the Mo=O species is related to a major availability of Mo species in the formation of MoS₂. The temperature programmed reduction (TPR) results showed that the NiMoP (0.5) displayed moderate metal-support interaction. Likewise, X-ray photoelectron spectroscopy (XPS) exhibited higher sulfurization degree for NiMoP (0.5) compared with NiMoP (1.0). The increment of the MoO₃ dispersion, the moderate metal-support interaction, the increase of sulfurization degree and the increment of Mo=O species provoked by the BDPHP incorporation resulted in a higher gas oil HDS activity.

  13. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts.

    PubMed

    Yang, Chia Cheng; Chang, Shu Hao; Hong, Bao Zhen; Chi, Kai Hsien; Chang, Moo Been

    2008-10-01

    Development of effective PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran) control technologies is essential for environmental engineers and researchers. In this study, a PCDD/F-containing gas stream generating system was developed to investigate the efficiency and effectiveness of innovative PCDD/F control technologies. The system designed and constructed can stably generate the gas stream with the PCDD/F concentration ranging from 1.0 to 100ng TEQ Nm(-3) while reproducibility test indicates that the PCDD/F recovery efficiencies are between 93% and 112%. This new PCDD/F-containing gas stream generating device is first applied in the investigation of the catalytic PCDD/F control technology. The catalytic decomposition of PCDD/Fs was evaluated with two types of commercial V(2)O(5)-WO(3)/TiO(2)-based catalysts (catalyst A and catalyst B) at controlled temperature, water vapor content, and space velocity. 84% and 91% PCDD/F destruction efficiencies are achieved with catalysts A and B, respectively, at 280 degrees C with the space velocity of 5000h(-1). The results also indicate that the presence of water vapor inhibits PCDD/F decomposition due to its competition with PCDD/F molecules for adsorption on the active vanadia sites for both catalysts. In addition, this study combined integral reaction and Mars-Van Krevelen model to calculate the activation energies of OCDD and OCDF decomposition. The activation energies of OCDD and OCDF decomposition via catalysis are calculated as 24.8kJmol(-1) and 25.2kJmol(-1), respectively.

  14. Investigation of Silica-Supported Vanadium Oxide Catalysts by High-Field 51 V Magic-Angle Spinning NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaegers, Nicholas R.; Wan, Chuan; Hu, Mary Y.

    Supported V2O5/SiO2 catalysts were studied using solid state 51V MAS NMR at a sample spinning rate of 36 kHz and at a magnetic field of 19.975 T for a better understanding of the coordination of the vanadium oxide as a function of environmental conditions . Structural transformations of the supported vanadium oxide species between the catalyst in the dehydrated state and hydrated state under an ambient environment were revisited to examine the degree of oligomerization and the effect of water. The experimental results indicate the existence of a single dehydrated surface vanadium oxide species that resonates at -675 ppm andmore » two vanadium oxide species under ambient conditions that resonate at -566 and -610 ppm, respectively. No detectable structural difference was found as a function of vanadium oxide loading on SiO2 (3% V2O5/SiO2 and 8% V2O5/SiO2). Quantum chemistry simulations of the 51V NMR chemical shifts on predicted surface structures were used as an aide in understanding potential surface vanadium oxide species on the silica support. The results suggest the formation of isolated surface VO4 units for the dehydrated catalysts with the possibility of dimer and cyclic trimer presence. The absence of bridging V-O-V vibrations (~200-300 cm-1) in the Raman spectra [Gao et al. J. Phys. Chem. B 1998, 102, 10842-10852], however, indicates that the isolated surface VO4 sites are the dominant dehydrated surface vanadia species on silica. Upon exposure to water, hydrolysis of the bridging V-O-Si bonds is most likely responsible for the decreased electron shielding experienced by vanadium. No indicators for the presence of hydrated decavanadate clusters or hydrated vanadia gels previously proposed in the literature were detected in this study.« less

  15. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms.

    PubMed

    Wang, Shuhua; Xie, Yaling; Yan, Weifu; Wu, Xuee; Wang, Chin-Tsan; Zhao, Feng

    2018-05-22

    Solid wastes are currently produced in large amounts. Although bioleaching of metals from solid wastes is an economical and sustainable technology, it has seldom been used to recycle metals from abandoned catalyst. In this study, the bioleaching of vanadium from V 2 O 5 -WO 3 /TiO 2 catalyst were comprehensively investigated through five methods: Oligotrophic way, Eutrophic way, S-mediated way, Fe-mediated way and Mixed way of S-mediated and Fe-mediated. The observed vanadium bioleaching effectiveness of the assayed methods was follows: S-mediated > Mixed > Oligotrophic > Eutrophic > Fe-mediated, which yielded the maximum bioleaching efficiencies of approximately 90%, 35%, 33%, 20% and 7%, respectively. The microbial community analysis suggested that the predominant genera Acidithiobacillus and Sulfobacillus from the S-mediated bioleaching way effectively catalyzed the vanadium leaching, which could have occurred through the indirect mechanism from the microbial oxidation of S 0 . In addition, the direct mechanism, involving direct electron transfer between the catalyst and the microorganisms that attached to the catalyst surface, should also help the vanadium to be leached more effectively. Therefore, this work provides guidance for future research and practical application on the treatment of waste V 2 O 5 -WO 3 /TiO 2 catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Photo-oxidation catalysts

    DOEpatents

    Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  17. Measurement of formation cross-section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) reactions.

    PubMed

    Badwar, Sylvia; Ghosh, Reetuparna; Lawriniang, Bioletty M; Vansola, Vibha; Sheela, Y S; Naik, Haladhara; Naik, Yeshwant; Suryanarayana, Saraswatula V; Jyrwa, Betylda; Ganesan, Srinivasan

    2017-11-01

    The formation cross-section of medical isotope 99 Mo from the 98 Mo(n,γ) reaction at the neutron energy of 0.025eV and from the 100 Mo(n,2n) reaction at the neutron energies of 11.9 and 15.75MeV have been determined by using activation and off-line γ-ray spectrometric technique. The thermal neutron energy of 0.025eV was used from the reactor critical facility at BARC, Mumbai, whereas the average neutron energies of 11.9 and 15.75MeV were generated using 7 Li(p,n) reaction in the Pelletron facility at TIFR, Mumbai. The experimentally determined cross-sections were compared with the evaluated nuclear data libraries of ENDF/B-VII.1, CENDL-3.1, JENDL-4.0 and JEFF-3.2 and are found to be in close agreement. The 100 Mo(n,2n) 99 Mo reaction cross-sections were also calculated theoretically by using TALYS-1.8 and EMPIRE-3.2 computer codes and compared with the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pilot-scale evaluation of a novel TiO2-supported V2O5 catalyst for DeNOx at low temperatures at a waste incinerator.

    PubMed

    Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo

    2017-03-01

    The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO 2 -supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO 2 -supported V 2 O 5 catalyst coated (with a loading of 7wt% of impregnated V 2 O 5 ) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m 3 h -1 ) using real exhaust gas from the waste incinerator. The experimental results showed that the V 2 O 5 /TiO 2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts.

    PubMed

    Kwak, Joon Young; Hwang, Jeonghyun; Calderon, Brian; Alsalman, Hussain; Munoz, Nini; Schutter, Brian; Spencer, Michael G

    2014-08-13

    The electrical properties of multilayer MoS2/graphene heterojunction transistors are investigated. Temperature-dependent I-V measurements indicate the concentration of unintentional donors in exfoliated MoS2 to be 3.57 × 10(11) cm(-2), while the ionized donor concentration is determined as 3.61 × 10(10) cm(-2). The temperature-dependent measurements also reveal two dominant donor levels, one at 0.27 eV below the conduction band and another located at 0.05 eV below the conduction band. The I-V characteristics are asymmetric with drain bias voltage and dependent on the junction used for the source or drain contact. I-V characteristics of the device are consistent with a long channel one-dimensional field-effect transistor model with Schottky contact. Utilizing devices, which have both graphene/MoS2 and Ti/MoS2 contacts, the Schottky barrier heights of both interfaces are measured. The charge transport mechanism in both junctions was determined to be either thermionic-field emission or field emission depending on bias voltage and temperature. On the basis of a thermionic field emission model, the barrier height at the graphene/MoS2 interface was determined to be 0.23 eV, while the barrier height at the Ti/MoS2 interface was 0.40 eV. The value of Ti/MoS2 barrier is higher than previously reported values, which did not include the effects of thermionic field emission.

  20. Development of attrition resistant iron-based Fischer-Tropsch catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-09-20

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use ofmore » Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results a steady loss of catalyst from the reactor. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (1) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University (2) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (3) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to effects of pretreating procedures, using H{sub 2}, CO and syngas (H{sub 2}/CO = 0.67) as reductants, on the performance (activity, selectivity and stability with time) of a precipitated iron catalyst (100Fe/5Cu/4.2K/10SiO{sub 2} on a mass basis ) during F-T synthesis were studied in a fixed-bed reactor.« less

  1. Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting.

    PubMed

    Xi, Wenguang; Yan, Gang; Tan, Huaqiao; Xiao, Liguang; Cheng, Sihang; Khan, Shifa Ullah; Wang, Yonghui; Li, Yangguang

    2018-06-19

    Transition metal (TM) oxides and hydroxides are one of the important candidates for the development of durable and low-cost electrocatalysts towards water splitting. The key issue is exploring effective methods to improve their electrocatalytic activity. Herein, we report a new type of P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet array (abbr. P-Ni(OH)2/NiMoO4) grown on Ni foam (NF), which can act as a highly efficient electrocatalyst towards overall water splitting. Such a composite was obtained by a three-step preparation process. In the first two hydrothermal reactions, the crystalline Ni(OH)2 hierarchical nanosheet arrays were grown on NF and then the low crystallinity NiMoO4 was grafted on the Ni(OH)2 nanosheets. In the third phosphorization step, P element was doped into the composite Ni(OH)2/NiMoO4. Electrocatalytic experiments show that P-Ni(OH)2/NiMoO4 possesses a smaller overpotential (60 mV) and lower Tafel slope (130 mV dec-1) toward HER in 1 M KOH. When it was employed as an integrated water splitting catalyst, only a potential of 1.55 V was required to achieve a current density of 10 mA cm-2. This catalytic activity is even better than those of electrolyzers constructed with noble metals Pt/C∥IrO2. The superior electrocatalytic performance of P-Ni(OH)2/NiMoO4 can be attributed to the high quality of crystalline Ni(OH)2 nanosheet arrays grown on NF, which dramatically improve the conductivity. Furthermore, the hierarchical structure not only increases the surface area and exposes more catalytically active sites, but also provides a superaerophobic surface, which helps to accelerate the release of generated bubbles. Moreover, the synergistic effects between P-Ni(OH)2 and P-NiMoO4 efficiently promote the HER and OER processes also. This work may suggest new a way to explore TM oxide/hydroxide-based durable electrocatalysts with highly efficient electrocatalytic activities towards overall water splitting.

  2. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    PubMed

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  4. Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klier, K.; Herman, R.G.; Richards-Babb, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H[sub 2]/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS[sub 2], RuS[sub 2], TaS[sub 2], and NbS[sub 2]. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS[sub 2], RuS[sub 2], and NbS[sub 2] were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS[sub 2] theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS[sub 2] led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS[sub 2] were used to obtain the NbS[sub 2] and RuS[sub 2] theoretical valence bands.« less

  5. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (overmore » a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.« less

  6. Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst.

    PubMed

    Krár, Márton; Kovács, Sándor; Kalló, Dénes; Hancsók, Jeno

    2010-12-01

    The importance of the economical production and usage of new generation biofuels, the so-called bio gas oil (paraffins from triglycerides) and the results of the investigation for their productability on the CoMo/Al(2)O(3) catalyst, which was activated by reduction, are presented. The conversion of triglycerides, the yield of total organic fractions and the target product, furthermore the type and ratio of deoxygenation reactions were determined as a function of process parameters. The advantageous process parameters were found (380 degrees C, 40-60 bar, 500-600 Nm(3)/m(3) H(2)/sunflower oil ratio, 1.0 h(-1)), where the conversion of triglycerides was 100% and the yield of the target fraction [high paraffin containing (>99%) gas oil boiling range product] was relatively high (73.7-73.9%). The deoxygenation of triglycerides the reduction as well as the decarboxylation/decarbonylation reactions took place. The yield of the target fractions did not achieve the theoretical values (81.4-86.5%). That is why it is necessary to separate the target fraction and recirculate the heavy fraction. 2010 Elsevier Ltd. All rights reserved.

  7. Impact of diatom growth on trace metal dynamics (Mn, Mo, V, U)

    NASA Astrophysics Data System (ADS)

    Osterholz, Helena; Simon, Heike; Beck, Melanie; Maerz, Joeran; Rackebrandt, Siri; Brumsack, Hans-Jürgen; Feudel, Ulrike; Simon, Meinhard

    2014-03-01

    In order to examine the specific role of diatoms in cycling of the trace metals manganese (Mn), molybdenum (Mo), vanadium (V), and uranium (U) Thalassiosira rotula, Skeletonema marinoi, Chaetoceros decipiens, and Rhizosolenia setigera were grown in batch cultures axenically and inoculated with three different bacterial strains isolated from the North Sea. Algal and bacterial growth, concentrations of trace metals and dissolved organic carbon (DOC) were monitored over time and showed that Mn and V were removed from the dissolved phase whereas Mo and U were not. R. setigera and T. rotula exhibited lowest growth and lowest removal whereas S. marinoi grew best and removed highest fractions of Mn and V. The high potential of Mn removal by S. marinoi was also evident from its 7 × higher Mn/P elemental ratio relative to T. rotula. The presence of bacteria modified the timing of the growth of S. marinoi but not directly trace metal removal whereas bacteria enhanced trace metal removal in the cultures of T. rotula and C. decipiens. Modeling of phytoplankton growth, concentrations of Mn and DOC fraction in axenic T. rotula cultures indicated that processes of binding and desorption of Mn to excreted organic components are important to explain the varying proportions of dissolved Mn and thus must be considered as an active component in Mn cycling. The results show distinct differences in the potential of the diatoms in the removal of Mn and V and that bacteria can play an active role in this context. S. marinoi presumably is an important player in Mn and V dynamics in coastal marine systems.

  8. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    PubMed

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Method of Heating a Foam-Based Catalyst Bed

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  10. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centeno, A.; Laurent, E.; Delmon, B.

    1995-07-01

    The present work corresponds to part of a program aimed at upgrading oil obtained by pyrolysis of biomass by hydrotreatment (hydrodeoxygenation HDO). CoMo sulfide catalysts, nonsupported, supported on different supports (alumina, carbon, silica), or modified by K or Pt, were used. The authors used a model reacting mixture containing compounds representative of the molecules that must react to permit a primary stabilisation of the pyrolytic oil: 4-methy lacetophenone (4-MA), diethylsebacate (DES), and guaiacol (GUA). In the reaction of the carbonyl group of the 4-MA it is shown that no important role is played by any acid-base mechanism; dispersion determines themore » activity. Acidity of the support influences the formation of active sites for decarboxylation and hydrogenation of the carboxyl group of DES. It was confirmed that guaiacol-type molecules lead to coking reactions. The role of acidity in the mechanism of these reactions is confirmed, but the modifications made in the catalysts in this work are still not sufficient to control coke deposition. The catalysts supported on carbon lead to the direct elimination of the methoxyl group of the guaiacol. Carbon, on the whole, seems to be a promising support. This work suggests that appropriate modifications of the hydrotreating catalysts can lead to a more effective process for stabilisation of the bio-oils by reaction with hydrogen. 55 refs., 3 figs., 5 tabs.« less

  11. Reactivity of cyclopentadienyl molybdenum compounds towards formic acid: Structural characterization of CpMo(PMe 3)(CO) 2H, CpMo(PMe 3) 2(CO)H, [CpMo(μ-O)(μ-O 2CH)] 2, and [Cp*Mo(μ-O)(μ-O 2CH)] 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neary, Michelle C.; Parkin, Gerard

    Here, the molecular structures of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H–Mo–CO moiety are displaced towards the hydride ligand. While CpRMo(PMe 3) 3–x(CO) xH (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts formore » the release of H 2 from formic acid, the carbonyl derivatives, CpRMo(CO)3H, are also observed to form dinuclear formate compounds, namely, [Cp RMo(μ-O)(μ-O 2CH)] 2. The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2CH)] 2 and [Cp*Mo(μ-O)(μ-O 2CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO–1) orbitals. The σ 2δ *2 configuration thus corresponds to a formal direct Mo–Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo–Mo bond, whereas a Mo=Mo double bond is required in the absence of lone-pair donation.« less

  12. Reactivity of cyclopentadienyl molybdenum compounds towards formic acid: Structural characterization of CpMo(PMe 3)(CO) 2H, CpMo(PMe 3) 2(CO)H, [CpMo(μ-O)(μ-O 2CH)] 2, and [Cp*Mo(μ-O)(μ-O 2CH)] 2

    DOE PAGES

    Neary, Michelle C.; Parkin, Gerard

    2017-01-19

    Here, the molecular structures of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H–Mo–CO moiety are displaced towards the hydride ligand. While CpRMo(PMe 3) 3–x(CO) xH (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts formore » the release of H 2 from formic acid, the carbonyl derivatives, CpRMo(CO)3H, are also observed to form dinuclear formate compounds, namely, [Cp RMo(μ-O)(μ-O 2CH)] 2. The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2CH)] 2 and [Cp*Mo(μ-O)(μ-O 2CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO–1) orbitals. The σ 2δ *2 configuration thus corresponds to a formal direct Mo–Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo–Mo bond, whereas a Mo=Mo double bond is required in the absence of lone-pair donation.« less

  13. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditionsmore » as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).« less

  14. Two-Dimensional MoS2 Confined Co(OH)2 Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes.

    PubMed

    Luo, Yuting; Li, Xu; Cai, Xingke; Zou, Xiaolong; Kang, Feiyu; Cheng, Hui-Ming; Liu, Bilu

    2018-05-22

    The development of abundant and cheap electrocatalysts for the hydrogen evolution reaction (HER) has attracted increasing attention over recent years. However, to achieve low-cost HER electrocatalysis, especially in alkaline media, is still a big challenge due to the sluggish water dissociation kinetics as well as the poor long-term stability of catalysts. In this paper we report the design and synthesis of a two-dimensional (2D) MoS 2 confined Co(OH) 2 nanoparticle electrocatalyst, which accelerates water dissociation and exhibits good durability in alkaline solutions, leading to significant improvement in HER performance. A two-step method was used to synthesize the electrocatalyst, starting with the lithium intercalation of exfoliated MoS 2 nanosheets followed by Co 2+ exchange in alkaline media to form MoS 2 intercalated with Co(OH) 2 nanoparticles (denoted Co-Ex-MoS 2 ), which was fully characterized by spectroscopic studies. Electrochemical tests indicated that the electrocatalyst exhibits superior HER activity and excellent stability, with an onset overpotential and Tafel slope as low as 15 mV and 53 mV dec -1 , respectively, which are among the best values reported so far for the Pt-free HER in alkaline media. Furthermore, density functional theory calculations show that the cojoint roles of Co(OH) 2 nanoparticles and MoS 2 nanosheets result in the excellent activity of the Co-Ex-MoS 2 electrocatalyst, and the good stability is attributed to the confinement of the Co(OH) 2 nanoparticles. This work provides an imporant strategy for designing HER electrocatalysts in alkaline solutions, and can, in principle, be expanded to other materials besides the Co(OH) 2 and MoS 2 used here.

  15. Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO2 for hydroconversion of methyl laurate

    NASA Astrophysics Data System (ADS)

    Nie, Ziyang; Zhang, Zhena; Chen, Jixiang

    2017-10-01

    SiO2 supported bifunctional MoP catalysts modified with different metal promoters (Ni, Ru, Pd, Pt), where Mo/Ni and Mo/M(M = Ru, Pd and Pt) atomic ratios was respectively 10 and 40, were prepared by TPR method from the phosphate precursors. It was found that the introduction of metal promoters facilitated the reduction of phosphate precursor and enhanced the dispersion of MoP. However, the MoP catalyst acidity was scarcely influenced by the small amount of metal promoters. In the hydroconversion of methyl laurate, the promoters enhanced the MoP catalyst activity for conversion of methyl laurate and hydrogenation of alkenes (intermediate), but reduced isomerization ability. Among the promoters, Ru was an optimum to decrease selectivity to alkenes while maintain high selectivity to iso-alkanes, and Mo40RuP showed better stability than MoP. At 380 °C and 3.0 MPa, the conversion of methyl laurate, the total selectivity to C11 and C12 hydrocarbons and the selectivity to iso-alkanes maintained at 100%, ∼94% and ∼30% on Mo40RuP during 102 h, respectively. The good stability of Mo40RuP is ascribed to that the presence of Ru prevented the sintering of MoP particles and suppressed carbon deposition.

  16. Hydrodesulfurization of dibenzothiophene on a CoMo/Al{sub 2}O{sub 3} catalyst: Reaction network and kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanrysselberghe, V.; Froment, G.F.

    1996-10-01

    The hydrodesulfurization of dibenzothiophene on a commercial CoMo/Al{sub 2}O{sub 3} catalyst was studied in a multiphase reactor. The operating conditions were varied over the following range: temperatures, 513--573 K; total pressures, 50--80 bar; molar hydrogen to hydrocarbon ratios, 1.1--4.1. Hougen-Watson rate equations for the hydrogenolysis of dibenzothiophene into biphenyl and H{sub 2}S, for the hydrogenation of dibenzothiophene into tetra- and hexahydrodibenzothiophene, for the hydrogenation of biphenyl into cyclohexylbenzene, and for the subsequent hydrogenation of cyclohexylbenzene into bicyclohexyl were developed. Two different types of active sites were considered: {sigma} sites for hydrogenolysis and {tau} sites for hydrogenation. The surface reaction betweenmore » adsorbed reactants and two competitively adsorbed hydrogen atoms was found to be the rate-determining step for both types of reaction.« less

  17. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst.

    PubMed

    Li, Xufang; Chen, Weiyu; Ma, Luming; Wang, Hongwu; Fan, Jinhong

    2018-03-01

    An Fe-based catalyst was used as a heterogeneous catalyst for the ozonation of industrial wastewater, and key operational parameters (pH and catalyst dosage) were studied. The results indicated that the Fe-based catalyst significantly improved the mineralization of organic pollutants in wastewater. TOC (total organic carbon) removal was high, at 78.7%, with a catalyst concentration of 200 g/L, but only 31.6% with ozonation alone. The Fe-based catalyst significantly promoted ozone decomposition by 70% in aqueous solution. Hydroxyl radicals (·OH) were confirmed to be existed directly via EPR (electron paramagnetic resonance) experiments, and ·OH were verified to account for about 34.4% of TOC removal with NaHCO 3 as a radical scavenger. Through characterization by SEM-EDS (field emission scanning electron microscope with energy-dispersive spectrometer), XRD (X-ray powder diffraction) and XPS (X-ray photoelectron spectroscopy), it was deduced that FeOOH on the surface of the catalyst was the dominant contributor to the catalytic efficiency. The catalyst was certified as having good stability and excellent reusability based on 50 successive operations and could be used as a filler simultaneously. Thereby, it is a promising catalyst for practical industrial wastewater advanced treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Data requirements to model creep in 9Cr-1Mo-V steel

    NASA Technical Reports Server (NTRS)

    Swindeman, R. W.

    1988-01-01

    Models for creep behavior are helpful in predicting response of components experiencing stress redistributions due to cyclic loads, and often the analyst would like information that correlates strain rate with history assuming simple hardening rules such as those based on time or strain. On the one hand, much progress has been made in the development of unified constitutive equations that include both hardening and softening through the introduction of state variables whose evolutions are history dependent. Although it is difficult to estimate specific data requirements for general application, there are several simple measurements that can be made in the course of creep testing and results reported in data bases. The issue is whether or not such data could be helpful in developing unified equations, and, if so, how should such data be reported. Data produced on a martensitic 9Cr-1Mo-V-Nb steel were examined with these issues in mind.

  19. Covalent heterogenization of discrete bis(8-quinolinolato)dioxomolybdenum(VI) and dioxotungsten(VI) complexes by a metal-template/metal-exchange method: Cyclooctene epoxidation catalysts with enhanced performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Chattopadhyay, Soma; Shibata, Tomohiro

    A metal-template/metal-exchange method was used to imprint covalently attached bis(8- quinolinolato)dioxomolybdenum(VI) and dioxotungsten(VI) complexes onto large surface-area, mesoporous SBA-15 silica to obtain discrete MoO2 VIT and WO2 VIT catalysts bearing different metal loadings, respectively. Homogeneous counterparts, MoO2 VIN and WO2 VIN, as well as randomly ligandgrafted heterogeneous analogues, MoO2 VIG and WO2 VIG, were also prepared for comparison. X-ray absorption fine structure (XAFS), pair distribution function (PDF) and UV–vis data demonstrate that MoO2 VIT and WO2 VIT adopt a more solution-like bis(8-quinolinol) coordination environment than MoO2 VIG and WO2 VIG, respectively. Correspondingly, the templated MoVI and WVI catalysts show superiormore » performances to their randomly grafted counterparts and neat analogues in the epoxidation of cyclooctene. It is found that the representative MoO2 VIT-10% catalyst can be recycled up to five times without significant loss of reactivity, and heterogeneity test confirms the high stability of MoO2 VIT-10% catalyst against leaching of active species into solution. The homogeneity of the discrete bis(8-quinolinol) metal spheres templated on SBA-15 should be responsible for the superior performances.« less

  20. Nanostructure characterisation of flow-formed Cr-Mo-V steel using transmission Kikuchi diffraction technique.

    PubMed

    Birosca, S; Ding, R; Ooi, S; Buckingham, R; Coleman, C; Dicks, K

    2015-06-01

    Nowadays flow-forming has become a desired near net shape manufacturing method as it provides excellent mechanical properties with improved surface finish and significant manufacturing cost reduction. However, the material is subjected to excessive plastic deformation during flow-forming process, generating a very fine and complex microstructure. In addition, the intense dislocation density and residual stress that is generated in the component during processing makes the microstructure characterisation using conventional micro-analytical tools challenging. Thus, the microstructure/property relationship study in such a material is rather difficult. In the present study a flow-formed Cr-Mo-V steel nanostructure and crystallographic texture were characterised by means of Transmission Kikuchi Diffraction (TKD). Here, TKD is shown to be a powerful technique in revealing very fine martensite laths within an austenite matrix. Moreover, fine precipitates in the order of 20-70 nm on the martensite lath boundaries were clearly imaged and characterised. This greatly assisted in understanding the preferable site formation of the carbides in such a complex microstructure. The results showed that the actual TKD spatial resolution was in the range of 5-10 nm using 25 kV for flow-formed Cr-Mo-V steel. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Stability of High-Performance Pt-Based Catalysts for Oxygen Reduction Reactions.

    PubMed

    Lin, Rui; Cai, Xin; Zeng, Hao; Yu, Zhuoping

    2018-04-01

    Due to their environmental sustainability and high efficiency, proton-exchange-membrane fuel cells (PEMFCs) are expected to be an essential type of energy source for electric vehicles, energy generation, and the space industry in the coming decades. Here, the recent developments regarding shape-controlled nanostructure catalysts are reviewed, with a focus on the stability of high-performance Pt-based catalysts and related mechanisms. The catalysts, which possess great activity, are still far from meeting the requirements of their applications, due to stability issues, especially in membrane electrode assemblies (MEAs). Thus, solutions toward the comprehensive performance of Pt-based catalysts are discussed here. The research trends and related theories that can promote the application of Pt-based catalysts are also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  3. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  4. A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo 2C Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Weiming; Jiang, Zhifeng; Chen, Jingguang G.

    It is desirable to convert biomass-derived furfural to 2-methylfuran through the hydrodeoxygenation (HDO) reaction using an inexpensive catalyst with high stability. In this work, Mo 2C was used as an alternative substrate to replace precious Pt to support monolayer Fe for the HDO reaction of furfural. The HDO activity and stability of Fe/Pt(111) and Fe/Mo 2C/Mo(110) surfaces were compared. Density functional theory calculations and vibrational spectroscopy results indicated that both surfaces bonded to furfural with similar adsorption geometries and should be active toward the furfural HDO reaction. Temperature programmed desorption experiments confirmed a similar HDO activity between the two surfaces,more » with Fe/Mo 2C/Mo(110) being more thermally stable than Fe/Pt(111). As a result, the combined theoretical and experimental results demonstrated that Fe/Mo 2C should be a promising non-precious metal catalyst for the HDO reaction of furfural to produce 2-methylfuran.« less

  5. A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo 2C Surfaces

    DOE PAGES

    Wan, Weiming; Jiang, Zhifeng; Chen, Jingguang G.

    2018-01-19

    It is desirable to convert biomass-derived furfural to 2-methylfuran through the hydrodeoxygenation (HDO) reaction using an inexpensive catalyst with high stability. In this work, Mo 2C was used as an alternative substrate to replace precious Pt to support monolayer Fe for the HDO reaction of furfural. The HDO activity and stability of Fe/Pt(111) and Fe/Mo 2C/Mo(110) surfaces were compared. Density functional theory calculations and vibrational spectroscopy results indicated that both surfaces bonded to furfural with similar adsorption geometries and should be active toward the furfural HDO reaction. Temperature programmed desorption experiments confirmed a similar HDO activity between the two surfaces,more » with Fe/Mo 2C/Mo(110) being more thermally stable than Fe/Pt(111). As a result, the combined theoretical and experimental results demonstrated that Fe/Mo 2C should be a promising non-precious metal catalyst for the HDO reaction of furfural to produce 2-methylfuran.« less

  6. Synthesis and Characterization of AlCl3 Impregnated Molybdenum Oxide as Heterogeneous Nano-Catalyst for the Friedel-Crafts Acylation Reaction in Ambient Condition.

    PubMed

    Jadhav, Arvind H; Chinnappan, Amutha; Hiremath, Vishwanath; Seo, Jeong Gil

    2015-10-01

    Aluminum trichloride (AlCl3) impregnated molybdenum oxide heterogeneous nano-catalyst was prepared by using simple impregnation method. The prepared heterogeneous catalyst was characterized by powder X-ray diffraction, FT-IR spectroscopy, solid-state NMR spectroscopy, SEM imaging, and EDX mapping. The catalytic activity of this protocol was evaluated as heterogeneous catalyst for the Friedel-Crafts acylation reaction at room temperature. The impregnated MoO4(AlCl2)2 catalyst showed tremendous catalytic activity in Friedel-Crafts acylation reaction under solvent-free and mild reaction condition. As a result, 84.0% yield of acyl product with 100% consumption of reactants in 18 h reaction time at room temperature was achieved. The effects of different solvents system with MoO4(AlCl2)2 catalyst in acylation reaction was also investigated. By using optimized reaction condition various acylated derivatives were prepared. In addition, the catalyst was separated by simple filtration process after the reaction and reused several times. Therefore, heterogeneous MoO4(AlCl2)2 catalyst was found environmentally benign catalyst, very convenient, high yielding, and clean method for the Friedel-Crafts acylation reaction under solvent-free and ambient reaction condition.

  7. Selective hydrodesulfurization of 4,6-dimethyl-dibenzothiophene in the dominant presence of naphthalene over hybrid CoMo/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3} catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoda, Takaaki; Nagao, Shinichi; Ma, Xiaoliang

    1995-12-31

    It has been revealed that significant desulfurization of refractory 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene (4,6-DMDBT) is very essential to achive the low sulfur level of gas oil requested by the current regulation. Their direct desulfurization through the interaction of their sulfur atom with the catalyst surface is sterically hindered by its neighbouring methyl groups. The substrate is found kinetically to be hydrogenated at one of its phenyl rings prior to the desulfurization in order to reduce the steric hindrance through non-planaring configuration (2-4). NiMo / Al{sub 2}O{sub 3} was reported to be superior to CoMo / Al{sub 2}O{sub 3} in the deepmore » desulufurization, because of its higher hydrogenation activity. However, such a hydrogenation route suffers severe inhibition by aromatic species in their dominant presence, because 4,6-DMDBT must compete with the aromatic species to the hydrogenation sites on the catalysts. The aromatic species up to 30 wt % in the gas oil was that completely stop the desulfurization of the particular substrate. The catalyst for the selective hydrogenation of 4,6-DMDBT in the dominant aromatic partners is most wanted to achive its extensive desulfurization in the gas oil, although there have been reported activities of various transition metal sulfides for HDS of dibenzothiophene, and hydrogenation of aromatic hydrocarbons.« less

  8. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures.

    PubMed

    Abhijith, T; Kumar, T V Arun; Reddy, V S

    2017-03-03

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO 3 ) between two tris-(8-hydroxyquinoline)aluminum (Alq 3 ) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 10 3 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO 3 layer thickness and its location in the Alq 3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO 3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  9. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures

    NASA Astrophysics Data System (ADS)

    Abhijith, T.; Kumar, T. V. Arun; Reddy, V. S.

    2017-03-01

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO3) between two tris-(8-hydroxyquinoline)aluminum (Alq3) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 103 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO3 layer thickness and its location in the Alq3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  10. Catalysts and process development for two-stage liquefaction. First quarterly report, January 1, 1992--March 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.

    Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The project is being carried out under contract to the United States Department of Energy. As discussed in the previous quarterly report, promising results were obtained by liquefying Illinois No. 6 bituminous and Black Thunder subbituminous coals using oil-soluble catalysts Molyvan L and molybdenum octoate. In this quarter, the liquefaction of Black Thunder coal was continued. Runs were made in catalytic/thermal (C/T) mode with supported AMOCAT{trademark} 1C (NiMo) and AMOCAT{trademark} 1B (Mo) catalysts. Although the initialmore » performance in these runs was good (90% conversion with no resid production), both catalysts deactivated rapidly. Spent catalysts showed severe coke deposition as well as formation of a calcium-rich shell on the catalyst surface. Overall, C/T liquefaction is not a good process option for Black Thunder coal.« less

  11. 99Mo Yield Using Large Sample Mass of MoO3 for Sustainable Production of 99Mo

    NASA Astrophysics Data System (ADS)

    Tsukada, Kazuaki; Nagai, Yasuki; Hashimoto, Kazuyuki; Kawabata, Masako; Minato, Futoshi; Saeki, Hideya; Motoishi, Shoji; Itoh, Masatoshi

    2018-04-01

    A neutron source from the C(d,n) reaction has the unique capability of producing medical radioisotopes such as 99Mo with a minimum level of radioactive waste. Precise data on the neutron flux are crucial to determine the best conditions for obtaining the maximum yield of 99Mo. The measured yield of 99Mo produced by the 100Mo(n,2n)99Mo reaction from a large sample mass of MoO3 agrees well with the numerical result estimated with the latest neutron data, which are a factor of two larger than the other existing data. This result establishes an important finding for the domestic production of 99Mo: approximately 50% of the demand for 99Mo in Japan could be met using a 100 g 100MoO3 sample mass with a single accelerator of 40 MeV, 2 mA deuteron beams.

  12. Structural investigation of MO ṡ P2O5ṡ Li2O (MO = Fe2O3 or V2O5) glass systems by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin I.; Racolta, Dania

    2014-11-01

    Glasses from the systems xMO ṡ(100-x )[ P2O5ṡ Li2O ] (MO = Fe2O3 or V2O5) with 0 ≤ x ≤ mol % were prepared in the same conditions and characterized by IR spectroscopy. It was established the mode in which both Fe2O3 and V2O5 influences the local structure of these glasses. The iron ions generally modify in a different way the local structure of these glasses then vanadium ions. The results shown that phosphate units are the main structural units of glass system and the iron and vanadium ions are located in the network.

  13. Gasoline-fueled solid oxide fuel cell using MoO2-Based Anode

    NASA Astrophysics Data System (ADS)

    Hou, Xiaoxue; Marin-Flores, Oscar; Kwon, Byeong Wan; Kim, Jinsoo; Norton, M. Grant; Ha, Su

    2014-12-01

    This short communication describes the performance of a solid oxide fuel cell (SOFC) fueled by directly feeding premium gasoline to the anode without using external reforming. The novel component of the fuel cell that enables such operation is the mixed conductivity of MoO2-based anode. Using this anode, a fuel cell demonstrating a maximum power density of 31 mW/cm2 at 0.45 V was successfully fabricated. Over a 24 h period of operation, the open cell voltage remained stable at ∼0.92 V. Scanning electron microscopy (SEM) examination of the anode surface pre- and post-testing showed no evidence of coking.

  14. Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis

    PubMed Central

    Malcolmson, Steven J.; Meek, Simon J.; Sattely, Elizabeth S.; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    Discovery of efficient catalysts is one of the most compelling objectives of modern chemistry. Chiral catalysts are in particularly high demand, as they facilitate synthesis of enantiomerically enriched small molecules that are critical to developments in medicine, biology and materials science1. Especially noteworthy are catalysts that promote—with otherwise inaccessible efficiency and selectivity levels—reactions demonstrated to be of great utility in chemical synthesis. Here we report a class of chiral catalysts that initiate alkene metathesis1 with very high efficiency and enantioselectivity. Such attributes arise from structural fluxionality of the chiral catalysts and the central role that enhanced electronic factors have in the catalytic cycle. The new catalysts have a stereogenic metal centre and carry only monodentate ligands; the molybdenum-based complexes are prepared stereoselectively by a ligand exchange process involving an enantiomerically pure aryloxide, a class of ligands scarcely used in enantioselective catalysis2,3. We demonstrate the application of the new catalysts in an enantioselective synthesis of the Aspidosperma alkaloid, quebrachamine, through an alkene metathesis reaction that cannot be promoted by any of the previously reported chiral catalysts. PMID:19011612

  15. MoNbTaV Medium-Entropy Alloy

    DOE PAGES

    Yao, Hongwei; Qiao, Jun -Wei; Gao, Michael; ...

    2016-05-19

    Guided by CALPHAD (Calculation of Phase Diagrams) modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å) obeys the rule of mixtures (ROM), but the Vickers microhardness (4.95 GPa) and the yield strength (1.5 GPa) are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Inmore » conclusion, thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.« less

  16. Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films

    NASA Technical Reports Server (NTRS)

    Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.

    2014-01-01

    We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.

  17. Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MO x–Al 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachrach, Mark; Morlanes-Sanchez, Natalia; Canlas, Christian P.

    2014-09-11

    Catalysts consisting of Pd nanoparticles supported on highly dispersed TiO x–Al 2O 3, TaO x–Al 2O 3, and MoO x–Al 2O 3 are studied for catalytic quinoline hydrogenation and selective C–N bond cleavage at 275 °C and 20 bar H 2. Lastly, the Pd/MO x–Al 2O 3 materials exhibit significantly greater aromatic product selectivity and thus 10–15 % less required H 2 for a given level of denitrogenation relative to an unmodified Pd/Al 2O 3 catalyst.

  18. Study on the decomposition of trace benzene over V2O5–WO3/TiO2-based catalysts in simulated flue gas

    EPA Science Inventory

    Trace levels (1 and 10 ppm) of gaseous benzene were catalytically decomposed in a fixed-bed catalytic reactor with monolithic oxides of vanadium and tungsten supported on titanium oxide (V2O5–WO3/TiO2) catalysts under conditions simulating the cooling of waste incineration flue g...

  19. Reducible oxide based catalysts

    DOEpatents

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  20. [Adsorption and removal of gas-phase Hg(0) over a V2O5/AC catalyst in the presence of SO2].

    PubMed

    Wang, Jun-wei; Yang, Jian-li; Liu, Zhen-yu

    2009-12-01

    The adsorption and removal behaviors of gas-phase Hg(0) over V2O5/AC and AC were studied under a simulated flue gas (containing N2, SO2, O2) in a fixed-bed reactor. The influences of the V2O5, loading, SO2 concentration and adsorption temperature on Hg0 adsorption were investigated. The speciation of mercury adsorbed was determined by X-ray photoelectron spectroscopy (XPS). It was found that the V2O5/AC catalyst has a much higher capability than AC for Hg(0) adsorption and removal, mainly because of the catalytic oxidation activity of V2O5. The Hg(0) adsorption capability depends on the V2O5 content of the V2O5/AC catalyst. The amounts of mercury adsorbed increase from 75.9 microg x g(-1) to 89.6 microg x g(-1) (in the absence of O2) and from 115.9 microg x g(-1) to 185.5 microg x g(-1) (in the presence of O2) as the V2O5 loading increases from 0.5% to 1.0%, which are much higher than those over AC under the same conditions (9.6 microg x g(-1) and 23.3 microg x g(-1)). SO2 in the flue gas enhances Hg(0) adsorption over the V2O5/AC catalyst, which is due to the reaction of SO2 and Hg(0) on V2O3/AC. But as the SO2 concentration increases from 500 x 10(-6) to 2000 x 10(-6), the amount of mercury adsorbed has only a slight increase. The optimal temperature for Hg(0) adsorption over the V2O5/AC catalyst is around 150 degrees C, at which the amounts of mercury adsorbed are up to 98.5 microg x g(-1) (in the absence of O2) and 187.7 microg x g(-1) (in the presence of O2). The XPS results indicate the formation of Hg(0) and HgSO4 on the surface of the V2O5/AC catalyst, which confirms the role of V2O5 and SO2.

  1. Green synthesis of layered 1T-MoS2/reduced graphene oxide nanocomposite with excellent catalytic performances for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Meng, Nannan; Cheng, Jian; Zhou, Yifeng; Nie, Wangyan; Chen, Pengpeng

    2017-02-01

    A green and facile process was developed to prepare layered octahedral phase MoS2/reduced graphene oxide (1T-MoS2/RGO) nanocomposite by a Vitamin C-assisted self-assemble method, in which graphene oxide (GO) and LiMoS2 were used as starting materials. Catalytic performances of 1T-MoS2/RGO were evaluated by hydrogenation of 4-nitrophenol (4-NP). It was demonstrated that the prepared 1T-MoS2/RGO nanocomposite presented excellent catalytic performance and cycling stability for 4-NP reduction, which made it a promising noble-metal-free catalyst. Additionally, broadening work suggested some other RGO-based metal nanocomposite with well-defined porous structure could be also generated via this facile self-assembly method.

  2. Effects of Mo, Cr, and V Additions on Tensile and Charpy Impact Properties of API X80 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Han, Seung Youb; Shin, Sang Yong; Seo, Chang-Hyo; Lee, Hakcheol; Bae, Jin-Ho; Kim, Kisoo; Lee, Sunghak; Kim, Nack J.

    2009-08-01

    In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.

  3. Attrition Resistant Iron-Based Catalysts For F-T SBCRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyinka A. Adeyiga

    2006-01-31

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+ H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-(FE) based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment; makes the separation of catalyst from the oil/wax product very difficult, if not impossible; and results in a steady loss of catalyst from the reactor. Under a previous Department of Energy (DOE)/University Research Grant (UCR) grant, Hampton University reported, for the first time, the development of demonstrably attrition-resistant Fe F-T synthesis catalysts having good activity, selectivity, and attrition resistance. These catalysts were prepared by spray drying Fe catalysts with potassium (K), copper (Cu), and silica (SiO{sub 2}) as promoters. SiO{sub 2} was also used as a binder for spray drying. These catalysts were tested for activity and selectivity in a laboratory-scale fixed-bed reactor. Fundamental understanding of attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried HPR-43 catalyst having average particle size (aps) of 70 {micro}m with high attrition resistance. This HPR-43 attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5+} selectivity of >78% and methane selectivity of less than 5% at

  4. Nature's polyoxometalate chemistry: X-ray structure of the Mo storage protein loaded with discrete polynuclear Mo-O clusters.

    PubMed

    Kowalewski, Björn; Poppe, Juliane; Demmer, Ulrike; Warkentin, Eberhard; Dierks, Thomas; Ermler, Ulrich; Schneider, Klaus

    2012-06-13

    Some N(2)-fixing bacteria prolong the functionality of nitrogenase in molybdenum starvation by a special Mo storage protein (MoSto) that can store more than 100 Mo atoms. The presented 1.6 Å X-ray structure of MoSto from Azotobacter vinelandii reveals various discrete polyoxomolybdate clusters, three covalently and three noncovalently bound Mo(8), three Mo(5-7), and one Mo(3) clusters, and several low occupied, so far undefinable clusters, which are embedded in specific pockets inside a locked cage-shaped (αβ)(3) protein complex. The structurally identical Mo(8) clusters (three layers of two, four, and two MoO(n) octahedra) are distinguishable from the [Mo(8)O(26)](4-) cluster formed in acidic solutions by two displaced MoO(n) octahedra implicating three kinetically labile terminal ligands. Stabilization in the covalent Mo(8) cluster is achieved by Mo bonding to Hisα156-N(ε2) and Gluα129-O(ε1). The absence of covalent protein interactions in the noncovalent Mo(8) cluster is compensated by a more extended hydrogen-bond network involving three pronounced histidines. One displaced MoO(n) octahedron might serve as nucleation site for an inhomogeneous Mo(5-7) cluster largely surrounded by bulk solvent. In the Mo(3) cluster located on the 3-fold axis, the three accurately positioned His140-N(ε2) atoms of the α subunits coordinate to the Mo atoms. The formed polyoxomolybdate clusters of MoSto, not detectable in bulk solvent, are the result of an interplay between self- and protein-driven assembly processes that unite inorganic supramolecular and protein chemistry in a host-guest system. Template, nucleation/protection, and catalyst functions of the polypeptide as well as perspectives for designing new clusters are discussed.

  5. Biofuel Production from Jatropha Bio-Oil Derived Fast Pyrolysis: Effect and Mechanism of CoMoS Supported on Al2O3

    NASA Astrophysics Data System (ADS)

    Rodseanglung, T.; Ratana, T.; Phongaksorn, M.; Tungkamani, S.

    2018-03-01

    The aims of this research was to understand the CoMo/Al2O3 sulfide catalyst effect to remove oxygen-containing and nitrogen-containing molecules from Jatropha bio-oil derived fast pyrolysis converted to biofuels via hydrotreating process. The activity and selectivity of CoMo/γ-Al2O3 sulfided catalysts in hydrodeoxygenation (HDO) of Jatropha bio-oil derived fast pyrolysis was evaluated in a Parr batch reactor under 50 bar of H2 atmosphere for 2 h at 300 320 and 340 °C. It appeared that the CoMo/Al2O3 sulfide catalyst have high performance in activity for promoting the fatty acid, fatty ester, fatty amide and fatty nitrile compounds were converted to paraffin/olefin (Diesel range), this could be the CUS site on supported Al2O3 catalyst. The difference in selectivity products allowed us to propose a reaction scheme.

  6. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.

    PubMed

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai

    2014-04-01

    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Layer-separated MoS2 bearing reduced graphene oxide formed by an in situ intercalation-cum-anchoring route mediated by Co(OH)2 as a Pt-free electrocatalyst for oxygen reduction.

    PubMed

    Illathvalappil, Rajith; Unni, Sreekuttan M; Kurungot, Sreekumar

    2015-10-28

    A significant improvement in the electrochemical oxygen reduction reaction (ORR) activity of molybdenum sulphide (MoS2) could be accomplished by its layer separated dispersion on graphene mediated by cobalt hydroxide (Co(OH)2) through a hydrothermal process (Co(OH)2-MoS2/rGO). The activity makeover in this case is found to be originated from a controlled interplay of the favourable modulations achieved in terms of electrical conductivity, more exposure of the edge planes of MoS2 and a promotional role played by the coexistence of Co(OH)2 in the proximity of MoS2. Co(OH)2-MoS2/rGO displays an oxygen reduction onset potential of 0.855 V and a half wave potential (E1/2) of 0.731 V vs. RHE in 0.1 M KOH solution, which are much higher than those of the corresponding values (0.708 and 0.349 V, respectively) displayed by the as synthesized pristine MoS2 (P-MoS2) under identical experimental conditions. The Tafel slope corresponding to oxygen reduction for Co(OH)2-MoS2/rGO is estimated to be 63 mV dec(-1) compared to 68 mV dec(-1) displayed by the state-of-the-art Pt/C catalyst. The estimated number of electrons transferred during oxygen reduction for Co(OH)2-MoS2/rGO is in the range of 3.2-3.6 in the potential range of 0.77 V to 0.07 V, which again stands out as valid evidence on the much favourable mode of oxygen reduction accomplished by the system compared to its pristine counterpart. Overall, the present study, thus, demonstrates a viable strategy of tackling the inherent limitations, such as low electrical conductivity and limited access to the active sites, faced by the layered structures like MoS2 to position them among the group of potential Pt-free electrocatalysts for oxygen reduction.

  8. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Miao, Bei; Wu, Zhipeng; Xu, Han; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-11-01

    Current catalysts used for ethanol oxidation reaction (EOR) cannot effectively prevent CH3COOH formation, and thus become a major hindrance for direct ethanol fuel cell applications. We report an Ir catalyst that shows great promise for a complete EOR based on density functional theory calculations using PBE functional. The reaction barrier on Ir(1 0 0) was found to be 2.10 eV for CH3COOH formation, which is much higher than currently used Pd and Pt, and 0.57 eV for Csbnd C bond cleavage in CHCO species, which are comparable to Pd and Pt. The result suggests future directions for studying optimal complete EOR catalysts.

  9. PREPARATION, CHARACTERIZATION AND ACTIVITY OF AL2O3-SUPPORTED V2O5 CATALYSTS

    EPA Science Inventory

    A series of activated alumina supported vanadium oxide catalysts with various V2O5 loadings ranging from 5 to 25 wt% has been prepared by wet impregnation technique. A combination of various physico-chemical techniques such as BET surface areas, oxygen chemisorption, X-ray diffra...

  10. A recyclable and highly active Co{sub 3}O{sub 4} nanoparticles/titanate nanowire catalyst for organic dyes degradation with peroxymonosulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhili; Chen, Shihua; Li, Yonghe

    2014-09-15

    Sodium ions of TNWs were exchanged with hydrogen ions, and this protocol was very suitable for capturing high density of cobalt ions. Meanwhile, the fabricated Co{sub 3}O{sub 4}/TNWs nano-material presented a highly catalytic and stable activity for dye degradation. - Highlights: • Co{sub 3}O{sub 4} nanoparticles were deposited on the pretreated TNWs surface. • The TNWs treated by hydrogen ions captures higher density of cobalt ions. • The Co{sub 3}O{sub 4}/TNWs catalyst possesses highly efficiency for dyes degradation with oxone. - Abstract: In this paper, we reported a recyclable and highly active porous catalyst of titanate nanowires (TNWs) coated withmore » well-distributed Co{sub 3}O{sub 4} nanoparticles (NPs) (Co{sub 3}O{sub 4}/TNWs). Sodium ions of TNWs were exchanged with hydrogen ions in the dilute nitric acid, and this protocol was very suitable for capturing cobalt ions. X-ray diffraction (XRD) demonstrated the existence of Co{sub 3}O{sub 4} phase with unique lattice planes, such as (2 2 0), (3 1 1) and (5 1 1). Electron microscopes (FE-SEM and TEM) indicated that the Co{sub 3}O{sub 4} NPs with an average diameter of 22 ± 3 nm were coated uniformly on TNWs surface (average diameter: 37 ± 5.5 nm), and the Co{sub 3}O{sub 4} NPs mainly exposed their (2 2 0) and (2 2 2) active planes. XPS analysis confirms the formation of Co{sub 3}O{sub 4} phase by the presence of Co 2p peaks at 780.1 eV (2p 3/2) and 795.5 eV (2p 1/2). Methylene blue (MB) and other organic dyes (rhodamine B (RhB) and methyl orange (MO)) were chosen as target compounds for catalytic degradation under indoor scattering light. Compared to the original Co{sub 3}O{sub 4}/TNWs catalyst, the catalytic efficiency of nanoscaled catalyst with oxone for MB was about 15 times higher, and the MB solution (10 mg L{sup −1}) was completely degraded within 8 min. The catalytic activity of recycled catalyst used in the sixth run still remained very active, and the degradation time for MB was only

  11. Methane Conversion to Ethylene and Aromatics on PtSn Catalysts

    DOE PAGES

    Gerceker, Duygu; Motagamwala, Ali Hussain; Rivera-Dones, Keishla R.; ...

    2017-02-03

    Pt and PtSn catalysts supported on SiO 2 and H-ZSM-5 were studied for methane conversion under nonoxidative conditions. Addition of Sn to Pt/SiO 2 increased the turnover frequency for production of ethylene by a factor of 3, and pretreatment of the catalyst at 1123 K reduced the extent of coke formation. Pt and PtSn catalysts supported on H-ZSM-5 zeolite were prepared to improve the activity and selectivity to non-coke products. Ethylene formation rates were 20 times faster over a PtSn(1:3)/H-ZSM-5 catalyst with SiO 2:Al 2O 3 = 280 in comparison to those over PtSn(3:1)/SiO 2. H-ZSM-5-supported catalysts were also activemore » for the formation of aromatics, and the rates of benzene and naphthalene formation were increased by using more acidic H-ZSM-5 supports. These catalysts operate through a bifunctional mechanism, in which ethylene is first produced on highly dispersed PtSn nanoparticles and then is subsequently converted to benzene and naphthalene on Brønsted acid sites within the zeolite support. The most active and stable PtSn catalyst forms carbon products at a rate, 2.5 mmol of C/((mol of Pt) s), which is comparable to that of state-of-the-art Mo/H-ZSM-5 catalysts with same metal loading operated under similar conditions (1.8 mmol of C/((mol of Mo) s)). Scanning transmission electron microscopy measurements suggest the presence of smaller Pt nanoparticles on H-ZSM-5-supported catalysts, in comparison to SiO 2-supported catalysts, as a possible source of their high activity. As a result, a microkinetic model of methane conversion on Pt and PtSn surfaces, built using results from density functional theory calculations, predicts higher coupling rates on bimetallic and stepped surfaces, supporting the experimental observations that relate the high catalytic activity to small PtSn particles.« less

  12. Oxidation resistant Mo-Mo2B-silica and Mo-Mo2B-silicate composites for high temperature applications

    NASA Astrophysics Data System (ADS)

    Cochran, J. K.; Daloz, W. L.; Marshall, P. E.

    2011-12-01

    Development of Mo composites based on the Mo-Si-B system has been demonstrated as a possible new route to achieving a high temperature Mobased material. In this new system, the silicide phases are replaced directly with silica or other silicate materials. These composites avoid the high ductile to brittle transition temperature observed for Mo-Si-B alloys by removing the Si that exists in solid solution in Mo at equilibrium with its silicides. A variety of compositions is tested for room temperature ductility and oxidation resistance. A system based upon Mo, Mo2B, and SrO·Al2O3·(SiO2)2 is shown to possess both ductility at 80 vol.% Mo and oxidation resistance at 60 vol.%. These composites can be produced using a powder processing approach and fired to greater than 95% theoretical density with a desirable microstructure of isolated boride and silicate phases within a ductile Mo matrix.

  13. Performance evaluation of platinum-molybdenum carbide nanocatalysts with ultralow platinum loading on anode and cathode catalyst layers of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Saha, Shibely; Cabrera Rodas, José Andrés; Tan, Shuai; Li, Dongmei

    2018-02-01

    An alternative catalyst platform, consisting of a phase-pure transition carbide (TMC) support and Pt nanoparticles (NPs) in the range of subnanometer to < 2.7 nm, is established that can be used in both anode and cathode catalyst layers. While some TMCs with low Pt loadings have demonstrated similar activity as commercial Pt catalyst in idealized disk electrode screening tests, few to none have been applied in a realistic fuel cell membrane electrode assembly (MEA). We recently reported that β-Mo2C hollow nanotubes modified with Pt NPs via atomic layer deposition (ALD) possess better activity and durability than 20% Pt/C. This paper presents systematic evaluation of the Pt/Mo2C catalysts in a MEA, investigating effects of different MEA preparation techniques, gas diffusion layers (GDL) and various Pt loadings in the ultralow range (<0.04 mg/cm2) on MEA performance. Most importantly, we demonstrate, for the first time, that Pt/Mo2C catalyst on both anode and cathode, with a loading of 0.02 mg (Pt) cm-2, generated peak power density of 414 mW cm-2 that corresponds to 10.35 kWgPt-1 using hydrogen (H2) and oxygen (O2). Accelerated degradation tests (ADT) on Pt/Mo2C catalysts show 111% higher power density than commercial 20% Pt/C after the vigorous ADT.

  14. Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Li, Ping; Yang, Zhi; Shen, Juanxia; Nie, Huagui; Cai, Qiran; Li, Luhua; Ge, Mengzhan; Gu, Cancan; Chen, Xi'an; Yang, Keqin; Zhang, Lijie; Chen, Ying; Huang, Shaoming

    2016-02-10

    Electrochemically splitting water for hydrogen evolution reaction (HER) has been viewed as a promising approach to produce renewable and clean hydrogen energy. However, searching for cheap and efficient HER electrocatalysts to replace the currently used Pt-based catalysts remains an urgent task. Herein, we develop a one-step carbon nanotube (CNT) assisted synthesis strategy with CNTs' strong adsorbability to mediate the growth of subnanometer-sized MoS(x) on CNTs. The subnanometer MoS(x)-CNT hybrids achieve a low overpotential of 106 mV at 10 mA cm(-2), a small Tafel slope of 37 mV per decade, and an unprecedentedly high turnover frequency value of 18.84 s(-1) at η = 200 mV among all reported non-Pt catalysts in acidic conditions. The superior performance of the hybrid catalysts benefits from the presence of a higher number of active sites and the abundant exposure of unsaturated S atoms rooted in the subnanometer structure, demonstrating a new class of subnanometer-scale catalysts.

  15. Effect of parameters on picosecond laser ablation of Cr12MoV cold work mold steel

    NASA Astrophysics Data System (ADS)

    Wu, Baoye; Liu, Peng; Zhang, Fei; Duan, Jun; Wang, Xizhao; Zeng, Xiaoyan

    2018-01-01

    Cr12MoV cold work mold steel, which is a difficult-to-machining material, is widely used in the mold and dye industry. A picosecond pulse Nd:YVO4 laser at 1064 nm was used to conduct the study. Effects of operation parameters (i.e., laser fluence, scanning speed, hatched space and number of scans) were studied on ablation depth and quality of Cr12MoV at the repetition rate of 20 MHz. The experimental results reveal that all the four parameters affect the ablation depth significantly. While the surface roughness depends mainly on laser fluence or scanning speed and secondarily on hatched space or number of scans. For laser fluence and scanning speed, three distinct surface morphologies were observed experiencing transition from flat (Ra < 1.40 μm) to bumpy (Ra = 1.40 - 2.40 μm) eventually to rough (Ra > 2.40 μm). However, for hatched space and number of scan, there is a small bumpy and rough zone or even no rough zone. Mechanisms including heat accumulation, plasma shielding and combustion reaction effects are proposed based on the ablation depth and processing morphology. By appropriate management of the laser fluence and scanning speed, high ablation depth with low surface roughness can be obtained at small hatched space and high number of scans.

  16. Rhenium doping induced structural transformation in mono-layered MoS2 with improved catalytic activity for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Shi, Wenwu; Wang, Zhiguo; Qing Fu, Yong

    2017-10-01

    This paper reports a new design methodology to improve catalytic activities of catalysts based on 2D transition metal dichalcogenides through elemental doping which induces structural transformations. Effects of rhenium (Re) doping on structural stability/phase transformation and catalytic activity of mono-layered trigonal prismatic (2H) MoS2 were investigated using density functional theory as one example. Results show that 2H-Mo1-x Re x S2 transforms into 1T‧-Mo1-x Re x S2MoS2 as the value of x is larger than 0.4, and the transfer of the electron from Re to Mo is identified as the main reason for this structural transformation. The 1T‧-Mo1-x Re x S2 shows a good catalytic activity for the hydrogen evolution reaction when 0.75  ⩽  x  ⩽  0.94.

  17. Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore.

    PubMed

    Zakrzewska-Koltuniewicz, Grażyna; Herdzik-Koniecko, Irena; Cojocaru, Corneliu; Chajduk, Ewelina

    2014-06-30

    The paper deals with experimental design and optimization of leaching process of uranium and associated metals from low-grade, Polish ores. The chemical elements of interest for extraction from the ore were U, La, V, Mo, Yb and Th. Sulphuric acid has been used as leaching reagent. Based on the design of experiments the second-order regression models have been constructed to approximate the leaching efficiency of elements. The graphical illustrations using 3-D surface plots have been employed in order to identify the main, quadratic and interaction effects of the factors. The multi-objective optimization method based on desirability approach has been applied in this study. The optimum condition have been determined as P=5 bar, T=120 °C and t=90 min. Under these optimal conditions, the overall extraction performance is 81.43% (for U), 64.24% (for La), 98.38% (for V), 43.69% (for Yb) and 76.89% (for Mo) and 97.00% (for Th). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Novel synthesis of manganese and vanadium mixed oxide (V{sub 2}O{sub 5}/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Soleimani, Shima

    2014-03-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidationmore » using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential

  19. Effect of fly ash on catalytic removal of gaseous dioxins over V{sub 2}O{sub 5}-WO{sub 3} catalyst of a sinter plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Hao Chang; Kai Hsien Chi; Chi Wei Young

    2009-10-01

    A PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran)-containing gas stream generating system was developed to investigate the efficiency and effectiveness of V{sub 2}O{sub 5}-WO{sub 3} catalyst for PCDD/F destruction. Catalytic decomposition of PCDD/Fs (simulated gas streams) was evaluated with lab-scale pelletized and plate-type catalyst based on V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} at controlled temperature, space velocity, and inlet PCDD/F concentration. Due to the lower porosity of the pelletized catalyst, PCDD/F destruction efficiencies reach 72.9-83.2% for different levels of inlet PCDD/F concentrations (1.08-3.04 ng-TEQ/Nm{sup 3}) of the gas stream (space velocity: 5000 h-1). As the surface area is increased from 287 m{sup 2}/m{supmore » 3} (plate-type A) to 550 m{sup 2}/m{sup 3} (plate-type B), the PCDD/F destruction achieved with plate-type catalyst increases from 76.0% to 85.3% at 320{sup o}C (space velocity: 5000 h{sup -1}). In addition, the results of pilot-scale experiment (real flue gases of a sinter plant) indicate that relatively lower PCDD/F destruction efficiencies (62.1-65.7%) were achieved with the plate-type B catalyst as the solid-phase PCDD/F and fly ash passed through the reactor (space velocity: 5000 h{sup -1}). Overall, the lab-scale and pilot-scale experiments indicate that PCDD/F destructions achieved with pelletized and plate-type catalysts strongly depend on the operating temperature of the catalyst. The results also indicate that the presence of fly ash lowers PCDD/F destruction due to significant PCDD/F formation via de novo synthesis at 320{sup o}C. 20 refs., 5 figs., 3 tabs.« less

  20. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity.

    PubMed

    Wang, Xinxing; Nan, Fuxin; Zhao, Jinlong; Yang, Tao; Ge, Tong; Jiao, Kui

    2015-02-15

    A label-free and ultrasensitive electrochemical DNA biosensor, based on thin-layer molybdenum disulfide (MoS2) nanosheets sensing platform and differential pulse voltammetry detection, is constructed in this paper. The thin-layer MoS2 nanosheets were prepared via a simple ultrasound exfoliation method from bulk MoS2, which is simpler and no distortion compared with mechanical cleavage and lithium intercalation. Most importantly, this procedure allows the formation of MoS2 with enhanced electrochemical activity. Based on the high electrochemical activity and different affinity toward ssDNA versus dsDNA of the thin-layer MoS2 nanosheets sensing platform, the tlh gene sequence assay can be performed label-freely from 1.0 × 10(-16)M to 1.0 × 10(-10)M with a detection limit of 1.9 × 10(-17)M. Without labeling and the use of amplifiers, the detection method described here not only expands the application of MoS2, but also offers a viable alternative for DNA analysis, which has the priority in sensitivity, simplicity, and costs. Moreover, the proposed sensing platform has good electrocatalytic activity, and can be extended to detect more targets, such as guanine and adenine, which further expands the application of MoS2. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Pt/SnO2-based CO-oxidation catalysts for CO2 lasers

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Schryer, David R.; Hess, Robert V.; Brown, Kenneth G.; Van Norman, John D.

    1990-01-01

    The activity of Pt/SnO2-based CO-oxidation catalysts has been maximized by optimizing pretreatment conditions and catalyst formulation. The role of H2O in activating these catalysts and of CO2 retention in deactivating them has been determined as has the interaction of these catalysts with rare-isotope C(0-18) and (O-18)2.

  2. High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction

    NASA Astrophysics Data System (ADS)

    Peng, Hongliang; Mo, Zaiyong; Liao, Shijun; Liang, Huagen; Yang, Lijun; Luo, Fan; Song, Huiyu; Zhong, Yiliang; Zhang, Bingqing

    2013-05-01

    Proton exchange membrane fuel cells are promising candidates for a clean and efficient energy conversion in the future, the development of carbon based inexpensive non-precious metal ORR catalyst has becoming one of the most attractive topics in fuel cell field. Herein we report a Fe- and N- doped carbon catalyst Fe-PANI/C-Mela with graphene structure and the surface area up to 702 m2 g-1. In 0.1 M HClO4 electrolyte, the ORR onset potential for the catalyst is high up to 0.98 V, and the half-wave potential is only 60 mV less than that of the Pt/C catalyst (Loadings: 51 μg Pt cm-2). The catalyst shows high stability after 10,000 cyclic voltammetry cycles. A membrane electrode assembly made with the catalyst as a cathode is tested in a H2-air single cell, the maximum power density reached ~0.33 W cm2 at 0.47 V.

  3. Assembly of a basket-like {Sr ⊂ P6Mo18O73} cage from 0D dimmer to 2D network and its photo-/electro-catalytic properties.

    PubMed

    Zhang, He; Lv, Jing-Hua; Yu, Kai; Wang, Chun-mei; Wang, Chun-xiao; Sun, Di; Zhou, Bai-bin

    2015-07-28

    A series of basket-like heteropoly blues, formulated as (H4bth)[{Cu(H2O)}2{Sr ⊂ P6MoV2MoVI16O73}]·4H2O (1), {H2bih}3[{FeII(H2O)2}{Sr ⊂ P6MoV2MoVI16O73}]·2H2O (2), (H2bih)3[{CoII(H2O)2}{Sr ⊂ P6MoV2MoVI16O73}]·2H2O (3), (H2bih)3[{NiII(H2O)2}{Sr ⊂ P6MoV2MoVI16O73}]·2H2O (4), (H2bih)2(H2bip)[{Zn (H2O)0.5}{Sr ⊂ P6MoV2MoVI16O73}]·5.5H2O (5), (bth = 1,6-bis(triazole)hexane; bih = 1,6-bis(imidazol)hexane; bip = 1,5-bis(imidazol)pentane) have been synthesized hydrothermally and fully characterized. The structural analysis shows that all the compounds contain two electron reduced polyanions [Sr ⊂ P6MoV2MoVI16O73]8− (abbreviated as {P6Mo18O73}), which consists of a tetra vacant γ-Dawson-type{P2Mo14} unit and a “handle”-shaped {P4Mo4} segment encapsulating a Sr2+ cation in the central cavity. Compound 1 is a 6-connected two-dimensional (2D) layer, which represents the first 2D assembly of basket-type polyoxometalates. Compounds 2–4 are isostructural one-dimensional zigzag chains linked by an M(H2O)2 linker (M = iron for 2, cobalt for 3, and nickel for 4). Compound 5 is a dimeric cluster supported by a binuclear {Zn2(H2O)} unit. The optical band gaps of 1–5 reveal their semiconductive natures. The compounds if used as photocatalysts exhibit a universal high efficiency degradation ability for dyes such as methylene blue, Rhodamine B, and Azon phloxine. The lifetime and reaction mechanism of the catalysts were investigated with a series of experiments. The compounds also show good bifunctional electrocatalytic behavior for the oxidation of ascorbic acid (AA) and reduction of nitrite ions.

  4. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    PubMed

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. CeHIO6·4H2O: A novel, highly efficient catalyst for degrading organic dyes without light illumination at room temperature

    NASA Astrophysics Data System (ADS)

    Ma, Xinping; Li, Jiayin; Liu, Haoran; Tang, Jianting

    2018-07-01

    It is still desirable to obtain the catalysts to degrade organic dye pollutants at room temperature, which meets the current demands of pollutant-removing and energy-saving simultaneously. By a facile precipitation method, we prepared in this work a new, highly efficient CeHIO6·4H2O catalyst. By characterization, it was found that the CeHIO6·4H2O sample is in nature a yellow inorganic semiconductor with particle size of 0.2-10 μm, band gap of 2.75 eV, low surface area of 1.52 m2 g-1 and amorphous structure. The CeHIO6·4H2O catalyst showed high activity in degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) in the dark at room temperature. After being used for 3 cycles, it did not undergo significant loss of activity and kept its chemical composition unchanged in the degradation experiments. More importantly, its activity is remarkably higher than that of the previously reported Ce(IO3)4, CeGeO4, ZrHIO6·4H2O and Ce-doped MoO3 analogues. The major active species and the catalytic mechanism for the dye degradation were proposed.

  6. Multifunctional tunneling devices based on graphene/h-BN/MoSe2 van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Ruiqing; Wang, Feng; Yin, Lei; Xu, Kai; Ahmed Shifa, Tofik; Wen, Yao; Zhan, Xueying; Li, Jie; Jiang, Chao; Wang, Zhenxing; He, Jun

    2017-04-01

    The vertically stacked devices based on van der Waals heterostructures (vdWHs) of two-dimensional layered materials (2DLMs) have attracted considerable attention due to their superb properties. As a typical structure, graphene/hexagonal boron nitride (h-BN)/graphene vdWH has been proved possible to make tunneling devices. Compared with graphene, transition metal dichalcogenides possess intrinsic bandgap, leading to high performance of electronic devices. Here, tunneling devices based on graphene/h-BN/MoSe2 vdWHs are designed for multiple functions. On the one hand, the device shows a typical tunneling field-effect transistor behavior. A high on/off ratio of tunneling current (5 × 103) and an ultrahigh current rectification ratio (7 × 105) are achieved, which are attributed to relatively small electronic affinity of MoSe2 and optimized thickness of h-BN. On the other hand, the same structure also realizes 2D non-volatile memory with a high program/erase current ratio (>105), large memory window (˜150 V from ±90 V), and good retention characteristic. These results could enhance the fundamental understanding of tunneling behavior in vdWHs and contribute to the design of ultrathin rectifiers and memory based on 2DLMs.

  7. Optically tuned terahertz modulator based on annealed multilayer MoS2.

    PubMed

    Cao, Yapeng; Gan, Sheng; Geng, Zhaoxin; Liu, Jian; Yang, Yuping; Bao, Qiaoling; Chen, Hongda

    2016-03-08

    Controlling the propagation properties of terahertz waves is very important in terahertz technologies applied in high-speed communication. Therefore a new-type optically tuned terahertz modulator based on multilayer-MoS2 and silicon is experimentally demonstrated. The terahertz transmission could be significantly modulated by changing the power of the pumping laser. With an annealing treatment as a p-doping method, MoS2 on silicon demonstrates a triple enhancement of terahertz modulation depth compared with the bare silicon. This MoS2-based device even exhibited much higher modulation efficiency than the graphene-based device. We also analyzed the mechanism of the modulation enhancement originated from annealed MoS2, and found that it is different from that of graphene-based device. The unique optical modulating properties of the device exhibit tremendous promise for applications in terahertz switch.

  8. Supramolecular water oxidation with Ru-bda-based catalysts.

    PubMed

    Richmond, Craig J; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni

    2014-12-22

    Extremely slow and extremely fast new water oxidation catalysts based on the Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s(-1) , respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook; Liu, Yayuan; Wang, Haotian; Wang, Shuang; Yan, Kai; Lin, Dingchang; Maraccini, Peter A.; Parker, Kimberly M.; Boehm, Alexandria B.; Cui, Yi

    2016-12-01

    Solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (∼50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS2 showed a ∼15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l-1) under simulated visible light.

  10. 4-d magnetism: Electronic structure and magnetism of some Mo-based alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2017-02-01

    We report results of a first-principles density-functional study of alloys of the 4 d -element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4 d -element Tc, which showed the presence of half-metallic states with integer magnetic moment (1μB) per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4 d -based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of 2μB per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.

  11. Enhanced photocatalytic activity and synthesis of ZnO nanorods/MoS2 composites

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shen, Hao; Duan, Libing; Liu, Ruidi; Li, Qiang; Zhang, Qian; Zhao, Xiaoru

    2018-05-01

    A stable and recyclable organic degradation catalyst based on MoS2 functionalized ZnO nanorods was introduced. ZnO nanorods were synthesized on the glass substrates (2 cm*2 cm) by sol-gel method and hydrothermal method and functionalized with MoS2 via an argon flow annealing method. The structure and morphology of the as-prepared samples were characterized by XRD, SEM and TEM. Results showed that a small amount of MoS2 was successfully wrapped on the surfaces of ZnO nanorods. XPS analyses showed the existence of Zn-S between ZnO and MoS2, indicating that the MoS2 was combined with ZnO through chemical bonds and formed the ZnO/MoS2 heterostructure. PL results revealed that ZnO/MoS2 had lower fluorescence spectra indicating an electron transport channel between ZnO and MoS2 which separated electrons and holes. Photocatalytic experiment showed that ZnO/MoS2 composites showed a better photodegradation performance of Rhodamine B (RhB) after functionalized with MoS2 under the UV light irradiation which could be attributed to the separation and transfer of photogenerated electrons and holes between ZnO and MoS2. Meanwhile, the high active adsorption sites on the edges of MoS2 also accelerated the degradation process. Furthermore, the scavengers were used to investigate the major active species and results indicated that h+ was the major reactive species for the degradation.

  12. Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication.

    PubMed

    Takase, Mohammed; Chen, Yao; Liu, Hongyang; Zhao, Ting; Yang, Liuqing; Wu, Xiangyang

    2014-09-01

    The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  14. Hydrogen Doping into MoO3 Supports toward Modulated Metal-Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts.

    PubMed

    Xie, Lifang; Chen, Ting; Chan, Hang Cheong; Shu, Yijin; Gao, Qingsheng

    2018-03-16

    As promising supports, reducible metal oxides afford strong metal-support interactions to achieve efficient catalysis, which relies on their band states and surface stoichiometry. In this study, in situ and controlled hydrogen doping (H doping) by means of H 2 spillover was employed to engineer the metal-support interactions in hydrogenated MoO x -supported Ir (Ir/H-MoO x ) catalysts and thus promote furfural hydrogenation to furfuryl alcohol. By easily varying the reduction temperature, the resulting H doping in a controlled manner tailors low-valence Mo species (Mo 5+ and Mo 4+ ) on H-MoO x supports, thereby promoting charge redistribution on Ir and H-MoO x interfaces. This further leads to clear differences in H 2 chemisorption on Ir, which illustrates its potential for catalytic hydrogenation. As expected, the optimal Ir/H-MoO x with controlled H doping afforded high activity (turnover frequency: 4.62 min -1 ) and selectivity (>99 %) in furfural hydrogenation under mild conditions (T=30 °C, PH2 =2 MPa), which means it performs among the best of current catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Reforming and oxidative dehydrogenation of ethane with CO 2 as a soft oxidant over bimetallic catalysts

    DOE PAGES

    Myint, MyatNoeZin; Yan, Binhang; Wan, Jie; ...

    2016-02-26

    An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less

  16. Reforming and oxidative dehydrogenation of ethane with CO 2 as a soft oxidant over bimetallic catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myint, MyatNoeZin; Yan, Binhang; Wan, Jie

    An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less

  17. A combined experimental and theoretical spectroscopic protocol for determination of the structure of heterogeneous catalysts: developing the information content of the resonance Raman spectra of M1 MoVOx † †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01771e Click here for additional data file.

    PubMed Central

    Kubas, Adam; Noak, Johannes

    2017-01-01

    Absorption and multiwavelength resonance Raman spectroscopy are widely used to investigate the electronic structure of transition metal centers in coordination compounds and extended solid systems. In combination with computational methodologies that have predictive accuracy, they define powerful protocols to study the spectroscopic response of catalytic materials. In this work, we study the absorption and resonance Raman spectra of the M1 MoVOx catalyst. The spectra were calculated by time-dependent density functional theory (TD-DFT) in conjunction with the independent mode displaced harmonic oscillator model (IMDHO), which allows for detailed bandshape predictions. For this purpose cluster models with up to 9 Mo and V metallic centers are considered to represent the bulk structure of MoVOx. Capping hydrogens were used to achieve valence saturation at the edges of the cluster models. The construction of model structures was based on a thorough bonding analysis which involved conventional DFT and local coupled cluster (DLPNO-CCSD(T)) methods. Furthermore the relationship of cluster topology to the computed spectral features is discussed in detail. It is shown that due to the local nature of the involved electronic transitions, band assignment protocols developed for molecular systems can be applied to describe the calculated spectral features of the cluster models as well. The present study serves as a reference for future applications of combined experimental and computational protocols in the field of solid-state heterogeneous catalysis. PMID:28989667

  18. Promotional Effects of In on Non-Oxidative Methane Transformation Over Mo-ZSM-5

    DOE PAGES

    Zhang, Yang; Kidder, Michelle; Ruther, Rose E.; ...

    2016-08-16

    In this paper, we present a new class of catalysts, InMo-ZSM- 5, which can be prepared by indium impregnation of Mo-ZSM- 5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C 2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM- 5 remains comparable to that of Mo-ZSM- 5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM- 5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM- 5more » and mechanical mixture 1In+2Mo-ZSM- 5 suggest that In and Mo need to be in close proximity to suppress coke formation. Finally, this is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS- 5.« less

  19. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts.

    PubMed

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-02-29

    Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding.

    PubMed

    Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu

    2017-09-06

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.

  1. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding

    PubMed Central

    Chen, Tao; Wang, Haojun

    2017-01-01

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening. PMID:28878190

  2. Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase

    NASA Astrophysics Data System (ADS)

    Bankar, Prashant K.; Ratha, Satyajit; More, Mahendra A.; Late, Dattatray J.; Rout, Chandra Sekhar

    2017-10-01

    In this paper we report, large scale synthesis of α and β-NiMoO4 by a facile hydrothermal method and we observed that urea plays important role on the growth of β-NiMoO4 nanosheets. We have also carried out field emission (FE) investigations of α and β-NiMoO4 at a base pressure of ∼1 × 10-8 mbar. The obtained turn-on field at emission current density of 1 μA/cm2 for β-NiMoO4 nanosheets and α -NiMoO4 is 1.3 V/μm and 2.2 V/μm respectively were observed. The maximum field emission current density of 1.006 mA/cm2at an applied electric field of 2.7 V/μm was achieved for β-NiMoO4 nanosheets. Furthermore, we found that the β-NiMoO4 nanosheets possess good field emission performance compared to α-NiMoO4. The results indicate that NiMoO4can be used as a promising material in FE applications with possibility of tuning field emission performance by controlling the phase.

  3. New Defective Brannerite-Type Vanadates. I. Synthesis and Study of Mn 1- x- yφ xNa yV 2-2 x-yMo 2 x+yO 6 Solid Solutions

    NASA Astrophysics Data System (ADS)

    Masłowska, Bogna; Ziółkowski, Jacek

    1994-05-01

    MnV 2O 6 of the brannerite-type structure (below 540°C) doped with MoO 3 and Na 2O forms isomorphous solid solutions MnNaφ = Mn 1- x-yφ xNa yV 2-2 x-yMo 2 x+ yO 6 (φ cation vacancy in the original Mn position), belonging to the pseudoternary MnV 2O 6-NaVMoO 6-MoO 3 system. Particular cases are MnNa = Mn 1- yNa y V 2- yMo yO 6 ( x = 0), Mnφ = Mn 1- xφ xV 2-2 xMo 2 xO 6 ( y = 0), and Naφ = Na 1- xφ xV 1- xMo 1+ xO 6 ( x + y = 1). MnV 2O 6 and NaVMoO 6 show miscibility in the entire composition range (MnNa). The opposite boundary of MnNaφ passes through the (100 x, 100 y) points (45, 0), (33, 30), and (30, 70). The phase diagram of the pseudobinary MnV 2O 6-NaVMoO 6 system (determined with DTA) shows (i) a narrow double-lens-type solidus-liquidus gap at high values of y , (ii) two peritectic meltings at lower y (yielding the high temperature β-MnNa and Mn 2V 2O 7), and (iii) little area of β-MnNa. Lattice parameters of MnNa (determined with X-ray diffraction) reveal small deviations from Vegard's law. As the ionic radii of both dopants (Na + and Mo 6+) are, respectively, larger than those of mother ions (Mn 2+ and V 5+), the unit cell increases in all directions with rising y along the MnNa series of solid solutions. However, due to the anisotropy of the structure, parameter c is strongly sensitive to Na/Mn substitution, b is ruled by Mo/V, and a is weakly influenced by Mo/V. Close analogy to the behavior of the previously studied MnV 2O 6-LiVMoO 6-MoO 6 system is discussed.

  4. Sub 20 meV Schottky barriers in metal/MoTe2 junctions

    NASA Astrophysics Data System (ADS)

    Townsend, Nicola J.; Amit, Iddo; Craciun, Monica F.; Russo, Saverio

    2018-04-01

    The newly emerging class of atomically-thin materials has shown a high potential for the realisation of novel electronic and optoelectronic components. Amongst this family, semiconducting transition metal dichalcogenides (TMDCs) are of particular interest. While their band gaps are compatible with those of conventional solid state devices, they present a wide range of exciting new properties that is bound to become a crucial ingredient in the future of electronics. To utilise these properties for the prospect of electronics in general, and long-wavelength-based photodetectors in particular, the Schottky barriers formed upon contact with a metal and the contact resistance that arises at these interfaces have to be measured and controlled. We present experimental evidence for the formation of Schottky barriers as low as 10 meV between MoTe2 and metal electrodes. By varying the electrode work functions, we demonstrate that Fermi level pinning due to metal induced gap states at the interfaces occurs at 0.14 eV above the valence band maximum. In this configuration, thermionic emission is observed for the first time at temperatures between 40 K and 75 K. Finally, we discuss the ability to tune the barrier height using a gate electrode.

  5. Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil

    NASA Astrophysics Data System (ADS)

    Murguia-Flores, Fabiola; Arndt, Sandra; Ganesan, Anita L.; Murray-Tortarolo, Guillermo; Hornibrook, Edward R. C.

    2018-06-01

    Soil bacteria known as methanotrophs are the sole biological sink for atmospheric methane (CH4), a potent greenhouse gas that is responsible for ˜ 20 % of the human-driven increase in radiative forcing since pre-industrial times. Soil methanotrophy is controlled by a plethora of factors, including temperature, soil texture, moisture and nitrogen content, resulting in spatially and temporally heterogeneous rates of soil methanotrophy. As a consequence, the exact magnitude of the global soil sink, as well as its temporal and spatial variability, remains poorly constrained. We developed a process-based model (Methanotrophy Model; MeMo v1.0) to simulate and quantify the uptake of atmospheric CH4 by soils at the global scale. MeMo builds on previous models by Ridgwell et al. (1999) and Curry (2007) by introducing several advances, including (1) a general analytical solution of the one-dimensional diffusion-reaction equation in porous media, (2) a refined representation of nitrogen inhibition on soil methanotrophy, (3) updated factors governing the influence of soil moisture and temperature on CH4 oxidation rates and (4) the ability to evaluate the impact of autochthonous soil CH4 sources on uptake of atmospheric CH4. We show that the improved structural and parametric representation of key drivers of soil methanotrophy in MeMo results in a better fit to observational data. A global simulation of soil methanotrophy for the period 1990-2009 using MeMo yielded an average annual sink of 33.5 ± 0.6 Tg CH4 yr-1. Warm and semi-arid regions (tropical deciduous forest and open shrubland) had the highest CH4 uptake rates of 602 and 518 mg CH4 m-2 yr-1, respectively. In these regions, favourable annual soil moisture content ( ˜ 20 % saturation) and low seasonal temperature variations (variations < ˜ 6 °C) provided optimal conditions for soil methanotrophy and soil-atmosphere gas exchange. In contrast to previous model analyses, but in agreement with recent observational data

  6. Hydrodeoxygenation of coal using organometallic catalyst precursors

    NASA Astrophysics Data System (ADS)

    Kirby, Stephen R.

    2002-04-01

    coals. Trends within the data were similar to those reported by other authors. Based on the conclusions from both the model compound studies and the coal analysis, predictions were made of the catalyst precursors' performance in the HDO of the three selected coals. It was concluded that CoMo-T2 is a desirable catalyst precursor for the HDO of coals (particularly low-rank coals), but that an optimum set of conditions must be determined to take full advantage of its HDO ability. (Abstract shortened by UMI.)

  7. Spectroscopic Characterization of YedY: The Role of Sulfur Coordination in a Mo(V) Sulfite Oxidase Family Enzyme Form

    PubMed Central

    Yang, Jing; Rothery, Richard; Sempombe, Joseph

    2011-01-01

    Electronic paramagnetic resonance, electronic absorption, and magnetic circular dichroism spectroscopies have been performed on YedY, a SUOX fold protein with a Mo domain that is remarkably similar to that found in chicken sulfite oxidase, A. thaliana plant sulfite oxidase, and the bacterial sulfite dehydrogenase from S. novella. Low-energy dithiolene→Mo and cysteine thiolate→Mo charge transfer bands have been assigned for the first time in a Mo(V) form of a SUOX fold protein, and the spectroscopic data have been used to interpret the results of bonding calculations. The analysis shows that second coordination sphere effects modulate dithiolene and cysteine sulfur covalency contributions to the Mo bonding scheme. Namely, a more acute Ooxo-Mo-SCys-C dihedral angle results in increased cysteine thiolate S→Mo charge transfer and a high g1 in the EPR spectrum. The spectrosocopic results, coupled with the available structural data, indicate that these second coordination sphere effects may play key roles in modulating the active site redox potential, facilitating hole superexchange pathways for electron transfer regeneration, and affecting the type of reactions catalyzed by sulfite oxidase family enzymes. PMID:19860477

  8. Measurement of proximity induced superconductivity in MoTe2

    NASA Astrophysics Data System (ADS)

    Wang, Wudi; Liu, Minhao; Gibson, Quinn; Cava, Â. R. J.; Ong, N. P.

    MoTe2 is predicted to have type-II Weyl nodes and many of its novel transport properties have been predicted and studied. Here we reported an experiment on the superconductivity in MoTe2 induced by proximity effect. We fabricated a SQUIPT-like device on mechanical exfoliated MoTe2 micro flakes via nanofabrication. The device contains an Aluminum tunneling probe with AlOx barrier and Al contact. We measured tunneling current from probe to the sample. By fitting the differential conductance (dI/dV), we obtained the superconducting gaps in MoTe2. The dependence of gap in MoTe2 on temperature and magnetic field was measured. We also measured the current-phase relation in Al-MoTe2-Al Josephson junctions with an inductance based measurement technique.

  9. Synthesis, structure, and catalytic performance in cyclooctene epoxidation of a molybdenum oxide/bipyridine hybrid material: {[MoO3(bipy)][MoO3(H2O)]}n.

    PubMed

    Abrantes, Marta; Amarante, Tatiana R; Antunes, Margarida M; Gago, Sandra; Paz, Filipe A Almeida; Margiolaki, Irene; Rodrigues, Alírio E; Pillinger, Martyn; Valente, Anabela A; Gonçalves, Isabel S

    2010-08-02

    The reaction of [MoO(2)Cl(2)(bipy)] (1) (bipy = 2,2'-bipyridine) with water in a Teflon-lined stainless steel autoclave (100 degrees C, 19 h), in an open reflux system with oil bath heating (12 h) or in a microwave synthesis system (120 degrees C, 4 h), gave the molybdenum oxide/bipyridine hybrid material {[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n) (2) as a microcrystalline powder in yields of 72-92%. The crystal structure of 2 determined from synchrotron X-ray powder diffraction data is composed of two distinct neutral one-dimensional polymers: an organic-inorganic polymer, [MoO(3)(bipy)](n), and a purely inorganic chain, [MoO(3)(H(2)O)](n), which are interconnected by O-H...O hydrogen bonding interactions. Compound 2 is a moderately active, stable, and selective catalyst for the epoxidation of cis-cyclooctene at 55 degrees C with tert-butylhydroperoxide (tBuOOH, 5.5 M in decane or 70% aqueous) as the oxidant. Biphasic solid-liquid or triphasic solid-organic-aqueous mixtures are formed, and 1,2-epoxycyclooctane is the only reaction product. When n-hexane is employed as a cosolvent and tBuOOH(decane) is the oxidant, the catalytic reaction is heterogeneous in nature, and the solid catalyst can be recycled and reused without a loss of activity. For comparison, the catalytic performance of the precursor 1 was also investigated. The IR spectra of solids recovered after catalysis indicate that 1 transforms into the organic-inorganic polymer [MoO(3)(bipy)] when the oxidant is tBuOOH(decane) and compound 2 when the oxidant is 70% aqueous tBuOOH.

  10. Adsorption of DNA/RNA nucleobases onto single-layer MoS2 and Li-Doped MoS2: A dispersion-corrected DFT study

    NASA Astrophysics Data System (ADS)

    Sadeghi, Meisam; Jahanshahi, Mohsen; Ghorbanzadeh, Morteza; Najafpour, Ghasem

    2018-03-01

    The kind of sensing platform in nano biosensor plays an important role in nucleic acid sequence detection. It has been demonstrated that graphene does not have an intrinsic band gap; therefore, transition metal dichalcogenides (TMDs) are desirable materials for electronic base detection. In the present work, a comparative study of the adsorption of the DNA/RNA nucleobases [Adenine (A), Cytosine (C) Guanine (G), Thymine (T) and Uracil (U)] onto the single-layer molybdenum disulfide (MoS2) and Li-doped MoS2 (Li-MoS2) as a sensing surfaces was investigated by using Dispersion-corrected Density Functional Theory (D-DFT) calculations and different measure of equilibrium distances, charge transfers and binding energies for the various nucleobases were calculated. The results revealed that the interactions between the nucleobases and the MoS2 can be strongly enhanced by introducing metal atom, due to significant charge transfer from the Li atom to the MoS2 when Lithium is placed on top of the MoS2. Furthermore, the binding energies of the five nucleobases were in the range of -0.734 to -0.816 eV for MoS2 and -1.47 to -1.80 eV for the Li-MoS2. Also, nucleobases were adsorbed onto MoS2 sheets via the van der Waals (vdW) force. This high affinity and the renewable properties of the biosensing platform demonstrated that Li-MoS2 nanosheet is biocompatible and suitable for nucleic acid analysis.

  11. A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH 3 by Supported V 2O 5 –WO 3/TiO 2 Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jun-Kun; Wachs, Israel E.

    We report the selective catalytic reduction (SCR) of NO x with NH 3 to harmless N 2 and H 2O plays a crucial role in reducing highly undesirable NO x acid gas emissions from large utility boilers, industrial boilers, municipal waste plants, and incinerators. The supported V 2O 5 –WO 3/TiO 2 catalysts have become the most widely used industrial catalysts for these SCR applications since introduction of this technology in the early 1970s. Lastly, this Perspective examines the current fundamental understanding and recent advances of the supported V 2O 5 –WO 3/TiO 2 catalyst system: (i) catalyst synthesis, (ii)more » molecular structures of titaniasupported vanadium and tungsten oxide species, (iii) surface acidity, (iv) catalytic active sites, (v) surface reaction intermediates, (vi) reaction mechanism, (vii) ratedetermining- step, and (viii) reaction kinetics.« less

  12. A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH 3 by Supported V 2O 5 –WO 3/TiO 2 Catalysts

    DOE PAGES

    Lai, Jun-Kun; Wachs, Israel E.

    2018-06-04

    We report the selective catalytic reduction (SCR) of NO x with NH 3 to harmless N 2 and H 2O plays a crucial role in reducing highly undesirable NO x acid gas emissions from large utility boilers, industrial boilers, municipal waste plants, and incinerators. The supported V 2O 5 –WO 3/TiO 2 catalysts have become the most widely used industrial catalysts for these SCR applications since introduction of this technology in the early 1970s. Lastly, this Perspective examines the current fundamental understanding and recent advances of the supported V 2O 5 –WO 3/TiO 2 catalyst system: (i) catalyst synthesis, (ii)more » molecular structures of titaniasupported vanadium and tungsten oxide species, (iii) surface acidity, (iv) catalytic active sites, (v) surface reaction intermediates, (vi) reaction mechanism, (vii) ratedetermining- step, and (viii) reaction kinetics.« less

  13. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  14. Amplified impedimetric immunosensor based on instant catalyst for sensitive determination of ochratoxin A.

    PubMed

    Tang, Juan; Huang, Yapei; Zhang, Cengceng; Liu, Huiqiong; Tang, Dianping

    2016-12-15

    A new impedimetric immunosensor for the fast determination of ochratoxin A (OTA) in food samples was developed based on the instant catalyst as enhancer. Initially, the signal tags were prepared via co-immobilization of anti-OTA antibody and amine-terminated dendrimer (PAMAM) on the graphene oxide nanosheets through the covalent interaction, which were utilized as a good platform for combining manganese ion (anti-OTA-GO-PAMAM-Mn(2+)). Upon target OTA introduction, a competitive-type immunoreaction was implemented between the analyte and the immobilized OTA-BSA on the electrode for the anti-OTA antibody on the graphene oxide nanosheets labels. After a competitive immunoassay format, the anti-OTA-GO-PAMAM-Mn(2+) were captured onto the electrode surface, which could induce the in situ formation of MnO2via classical redox reaction between Mn(2+) and KMnO4 on the immunesensing platform. Moreover, the generated MnO2 nanoparticles act as efficient catalyst could catalyze the 4-chloro-1-naphthol (4-CN) oxidation without H2O2 to generate an insoluble precipitation on the platform. Under the optimal conditions, the instant catalyst based impedimetric immunosensor displayed a wide dynamic working range between 0.1pgmL(-1) and 30ngmL(-1). The detection limit (LOD) of the assay was 0.055pgmL(-1). The developed method exhibited high selectivity and can be used for the determination of OTA in real red wine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Optically transparent thin-film transistors based on 2D multilayer MoS₂ and indium zinc oxide electrodes.

    PubMed

    Kwon, Junyeon; Hong, Young Ki; Kwon, Hyuk-Jun; Park, Yu Jin; Yoo, Byungwook; Kim, Jiwan; Grigoropoulos, Costas P; Oh, Min Suk; Kim, Sunkook

    2015-01-21

    We report on optically transparent thin film transistors (TFTs) fabricated using multilayered molybdenum disulfide (MoS2) as the active channel, indium tin oxide (ITO) for the back-gated electrode and indium zinc oxide (IZO) for the source/drain electrodes, respectively, which showed more than 81% transmittance in the visible wavelength. In spite of a relatively large Schottky barrier between MoS2 and IZO, the n-type behavior with a field-effect mobility (μ(eff)) of 1.4 cm(2) V(-1) s(-1) was observed in as-fabricated transparent MoS2 TFT. In order to enhance the performances of transparent MoS2 TFTs, a picosecond pulsed laser was selectively irradiated onto the contact region of the IZO electrodes. Following laser annealing, μ(eff) increased to 4.5 cm(2) V(-1) s(-1), and the on-off current ratio (I(on)/I(off)) increased to 10(4), which were attributed to the reduction of the contact resistance between MoS2 and IZO.

  16. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.

    PubMed

    Vabbina, PhaniKiran; Choudhary, Nitin; Chowdhury, Al-Amin; Sinha, Raju; Karabiyik, Mustafa; Das, Santanu; Choi, Wonbong; Pala, Nezih

    2015-07-22

    Two dimensional (2D) Molybdenum disulfide (MoS2) has evolved as a promising material for next generation optoelectronic devices owing to its unique electrical and optical properties, such as band gap modulation, high optical absorption, and increased luminescence quantum yield. The 2D MoS2 photodetectors reported in the literature have presented low responsivity compared to silicon based photodetectors. In this study, we assembled atomically thin p-type MoS2 with graphene to form a MoS2/graphene Schottky photodetector where photo generated holes travel from graphene to MoS2 over the Schottky barrier under illumination. We found that the p-type MoS2 forms a Schottky junction with graphene with a barrier height of 139 meV, which results in high photocurrent and wide spectral range of detection with wavelength selectivity. The fabricated photodetector showed excellent photosensitivity with a maximum photo responsivity of 1.26 AW(-1) and a noise equivalent power of 7.8 × 10(-12) W/√Hz at 1440 nm.

  17. Defect processes in Be12X (X = Ti, Mo, V, W)

    NASA Astrophysics Data System (ADS)

    Jackson, M. L.; Burr, P. A.; Grimes, R. W.

    2017-08-01

    The stability of intrinsic point defects in Be12X intermetallics (where X  =  Ti, V, Mo or W) are predicted using density functional theory simulations and discussed with respect to fusion energy applications. Schottky disorder is found to be the lowest energy complete disorder process, closely matched by Be Frenkel disorder in the cases of Be12V and Be12Ti. Antitisite and X Frenkel disorder are of significantly higher energy. Small clusters of point defects including Be divacancies, Be di-interstitials and accommodation of the X species on two Be sites were considered. Some di-interstitial, divacancy and X2Be combinations exhibit negative binding enthalpy (i.e. clustering is favourable), although this is orientationally dependent. None of the Be12X intermetallics are predicted to exhibit significant non-stoichiometry, ruling out non-stoichiometry as a mechanism for accommodating Be depletion due to neutron transmutation.

  18. Stress Corrosion Cracking Facet Crystallography of Ti-8Al-1Mo-1V (Preprint)

    DTIC Science & Technology

    2011-05-01

    fractography and electron backscatter diffraction. The results indicate that most facets are formed nearly perpendicular to the loading direction on...of Ti-8Al- 1Mo-1V have been characterized using quantitative fractography and electron backscatter diffraction. The results indicate that most facets...EBSD and quantitative tilt fractography [27;29] allow for determination of the crystallographic fracture plane to an accuracy between 1o [29] and

  19. Few-layer MoSe₂ possessing high catalytic activity towards iodide/tri-iodide redox shuttles.

    PubMed

    Lee, Lawrence Tien Lin; He, Jian; Wang, Baohua; Ma, Yaping; Wong, King Young; Li, Quan; Xiao, Xudong; Chen, Tao

    2014-02-14

    Due to the two-dimensional confinement of electrons, single- and few-layer MoSe₂ nanostructures exhibit unusual optical and electrical properties and have found wide applications in catalytic hydrogen evolution reaction, field effect transistor, electrochemical intercalation, and so on. Here we present a new application in dye-sensitized solar cell as catalyst for the reduction of I₃(-) to I(-) at the counter electrode. The few-layer MoSe₂ is fabricated by surface selenization of Mo-coated soda-lime glass. Our results show that the few-layer MoSe₂ displays high catalytic efficiency for the regeneration of I(-) species, which in turn yields a photovoltaic energy conversion efficiency of 9.00%, while the identical photoanode coupling with "champion" electrode based on Pt nanoparticles on FTO glass generates efficiency only 8.68%. Thus, a Pt- and FTO-free counter electrode outperforming the best conventional combination is obtained. In this electrode, Mo film is found to significantly decrease the sheet resistance of the counter electrode, contributing to the excellent device performance. Since all of the elements in the electrode are of high abundance ratios, this type of electrode is promising for the fabrication of large area devices at low materials cost.

  20. Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst

    PubMed Central

    Pohl, Marga-Martina; Agapova, Anastasiya

    2018-01-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts. PMID:29888329

  1. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    PubMed

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  2. Mo1-xWxSe2-Based Schottky Junction Photovoltaic Cells.

    PubMed

    Yi, Sum-Gyun; Kim, Sung Hyun; Park, Sungjin; Oh, Donggun; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Yoo, Kyung-Hwa

    2016-12-14

    We developed Schottky junction photovoltaic cells based on multilayer Mo 1-x W x Se 2 with x = 0, 0.5, and 1. To generate built-in potentials, Pd and Al were used as the source and drain electrodes in a lateral structure, and Pd and graphene were used as the bottom and top electrodes in a vertical structure. These devices exhibited gate-tunable diode-like current rectification and photovoltaic responses. Mo 0.5 W 0.5 Se 2 Schottky diodes with Pd and Al electrodes exhibited higher photovoltaic efficiency than MoSe 2 and WSe 2 devices with Pd and Al electrodes, likely because of the greater adjusted band alignment in Mo 0.5 W 0.5 Se 2 devices. Furthermore, we showed that Mo 0.5 W 0.5 Se 2 -based vertical Schottky diodes yield a power conversion efficiency of ∼16% under 532 nm light and ∼13% under a standard air mass 1.5 spectrum, demonstrating their remarkable potential for photovoltaic applications.

  3. Particle Characteristics and Densification of W6Mo5Cr4V2Co5Nb Overspray Powder

    NASA Astrophysics Data System (ADS)

    Pi, Ziqiang; Lu, Xin; Yang, Fei; Liu, Bowen; Jia, Chengchang; Qu, Xuanhui; Zheng, Wei; Wu, Lizhi; Shao, Qingli

    2018-05-01

    W6Mo5Cr4V2Co5Nb (825 K) alloy was prepared by a two-step sintering process from overspray 825 K alloy powder. The overspray powder characteristics and the microstructure and mechanical properties of the as-sintered 825 K alloy were investigated. Results showed that two types of carbides formed a network structure in the overspray powder, which had spherical or quasispherical shape: one was MC carbide that was rich in vanadium (V), and the other was M2C carbide enriched with vanadium (V) and tungsten (W). The sintered 825 K alloy contained M6C and MC carbides, of which M6C was rich in tungsten (W) and molybdenum (Mo), and both of these two carbides were uniformly distributed in the alloy matrix. The alloy had relative density of 98.43%, hardness of HRC 51.8, and superior bending strength of 2042 MPa. These mechanical properties can meet the requirements of most engineering applications.

  4. On the Reaction Mechanism of Acetaldehyde Decomposition on Mo(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Karim, Ayman M.; Wang, Yong

    2012-02-16

    The strong Mo-O bond strength provides promising reactivity of Mo-based catalysts for the deoxygenation of biomass-derived oxygenates. Combining the novel dimer saddle point searching method with periodic spin-polarized density functional theory calculations, we investigated the reaction pathways of a acetaldehyde decomposition on the clean Mo(110) surface. Two reaction pathways were identified, a selective deoxygenation and a nonselective fragmentation pathways. We found that acetaldehyde preferentially adsorbs at the pseudo 3-fold hollow site in the η2(C,O) configuration on Mo(110). Among four possible bond (β-C-H, γ-C-H, C-O and C-C) cleavages, the initial decomposition of the adsorbed acetaldehyde produces either ethylidene via the C-Omore » bond scission or acetyl via the β-C-H bond scission while the C-C and the γ-C-H bond cleavages of acetaldehyde leading to the formation of methyl (and formyl) and formylmethyl are unlikely. Further dehydrogenations of ethylidene into either ethylidyne or vinyl are competing and very facile with low activation barriers of 0.24 and 0.31 eV, respectively. Concurrently, the formed acetyl would deoxygenate into ethylidyne via the C-O cleavage rather than breaking the C-C or the C-H bonds. The selective deoxygenation of acetaldehyde forming ethylene is inhibited by relatively weaker hydrogenation capability of the Mo(110) surface. Instead, the nonselective pathway via vinyl and vinylidene dehydrogenations to ethynyl as the final hydrocarbon fragment is kinetically favorable. On the other hand, the strong interaction between ethylene and the Mo(110) surface also leads to ethylene decomposition instead of desorption into the gas phase. This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). This work was financially

  5. Enhanced photoresponse of monolayer molybdenum disulfide (MoS2) based on microcavity structure

    NASA Astrophysics Data System (ADS)

    Lu, Yanan; Yang, Guofeng; Wang, Fuxue; Lu, Naiyan

    2018-05-01

    There is an increasing interest in using monolayer molybdenum disulfide (MoS2) for optoelectronic devices because of its inherent direct band gap characteristics. However, the weak absorption of monolayer MoS2 restricts its applications, novel concepts need to be developed to address the weakness. In this work, monolayer MoS2 monolithically integrates with plane microcavity structure, which is formed by the top and bottom chirped distributed Bragg reflector (DBR), is demonstrated to improve the absorption of MoS2. The optical absorption is 17-fold enhanced, reaching values over 70% at work wavelength. Moreover, the monolayer MoS2-based photodetector device with microcavity presents a significantly increased photoresponse, demonstrating its promising prospects in MoS2-based optoelectronic devices.

  6. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Branko N.; Weidner, John

    2016-01-07

    activity and stability of the catalyst are due to synergistic effect of the catalytic activity and stability of ACCS-2, its enhanced hydrophobicity as well as activity of compressive Pt* lattice catalysts. For the first time, we report a carbon based support which is stable under simulated start-up/shut down operating conditions. Five 25cm 2 MEA’s were fabricated at USC using Pt*/ACCS-2 cathode catalyst for independent evaluation at National Renewable Energy. In the Final NREL report they summarize their results as follow: (1) Initial ORR activity and performance of the USC MEA’s Pt*/ACCS-2 under oxygen air, evaluated at NREL were comparable to that measured and reported by USC in their report: (2) Cyclic durability studies indicate that Pt*/ACCS-2 catalysts has minimal losses in activity and performant under 1-1.5 V potential cycling indicating a robust corrosion resistant support.« less

  7. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.

    PubMed

    Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot

    2017-09-19

    Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.

  8. Transesterification of palm oil using sodium silicate base catalyst from geothermal sludge

    NASA Astrophysics Data System (ADS)

    Perdana, I.; Nugrahanti, N.; Sofiyah; Bendiyasa, I. M.

    2016-11-01

    The use of solid base catalysts in biodiesel synthesis is becoming more preferable because of their superiority over homogeneous catalysts. In the present work, a strong base catalyst of sodium silicate synthesized from silica-rich geothermal sludge was used in a transesterification of palm oil with methanol. The catalyst was calcined at 400°C for three hours with a temperature ramp of 20°C/min. The transesterification was carried out at varying temperature in the range of 50 - 70°C for 60 minutes with a methanol-palm oil molar ratio of 8.8:1. The catalyst-palm oil ratio was varied in the range of 1 - 5% (w/w). In order to investigate kinetics of reaction, at a certain interval of time samples were taken consecutively during the reaction. Experimental results showed that the sodium silicate was very active in the transesterification of palm oil with methanol. Reaction temperature at 60°C was sufficient to reach a conversion level as high as 93% in a relatively short reaction period. Meanwhile, the high conversion was still achievable with the use of 1 % (w/w) catalyst. In addition, a lumped model of reaction kinetics was adequate to approach the experimental data with a calculated activation energy of 15.73 kcal/mole. Results of the present work suggested that sodium silicate synthesized from local resources of geothermal sludge would become potential solid base catalyst in biodiesel synthesis.

  9. CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation.

    PubMed

    Zang, Yang; Lei, Jianping; Hao, Qing; Ju, Huangxian

    2016-03-15

    This work developed a CdS/MoS2 heterojunction-based photoelectrochemical biosensor for sensitive detection of DNA under the enhanced chemiluminescence excitation of luminol catalyzed by hemin-DNA complex. The CdS/MoS2 photocathode was prepared by the stepwise assembly of MoS2 and CdS quantum dots (QDs) on indium tin oxide (ITO), and achieved about 280% increasing of photocurrent compared to pure CdS QDs electrode due to the formation of heterostructure. High photoconversion efficiency in the photoelectrochemical system was identified to be the rapid spatial charge separation of electron-hole pairs by the extension of electron transport time and electron lifetime. In the presence of target DNA, the catalytic hairpin assembly was triggered, and simultaneously the dual hemin-labeled DNA probe was introduced to capture DNA/CdS/MoS2 modified ITO electrode. Thus the chemiluminescence emission of luminol was enhanced via hemin-induced mimetic catalysis, leading to the physical light-free photoelectrochemical strategy. Under optimized conditions, the resulting photoelectrode was proportional to the logarithm of target DNA concentration in the range from 1 fM to 100 pM with a detection limit of 0.39 fM. Moreover, the cascade amplification biosensor demonstrated high selectivity, desirable stability and good reproducibility, showing great prospect in molecular diagnosis and bioanalysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    NASA Astrophysics Data System (ADS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  11. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    NASA Astrophysics Data System (ADS)

    Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan

    2013-02-01

    The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  12. C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.

    PubMed

    Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng

    2018-01-24

    Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.

  13. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation

    PubMed Central

    Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong; Xu, Yun-Fei; Jiang, Jun; Gao, Qiang; Li, Jun; Yu, Shu-Hong

    2015-01-01

    The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly active catalyst for hydrogen evolution reaction that is constructed by in situ growth of molybdenum disulfide on the surface of cobalt diselenide. In acidic media, the molybdenum disulfide/cobalt diselenide catalyst exhibits fast hydrogen evolution kinetics with onset potential of −11 mV and Tafel slope of 36 mV per decade, which is the best among the non-noble metal hydrogen evolution catalysts and even approaches to the commercial platinum/carbon catalyst. The high hydrogen evolution activity of molybdenum disulfide/cobalt diselenide hybrid is likely due to the electrocatalytic synergistic effects between hydrogen evolution-active molybdenum disulfide and cobalt diselenide materials and the much increased catalytic sites. PMID:25585911

  14. Ozone assisted oxidation of gaseous PCDD/Fs over CNTs-containing composite catalysts at low temperature.

    PubMed

    Wang, Qiulin; Tang, Minghui; Peng, Yaqi; Du, Cuicui; Lu, Shengyong

    2018-05-01

    Ozone assisted carbon nanotubes (CNTs) supported vanadium oxide/titanium dioxide (V/Ti-CNTs) or vanadium oxide-manganese oxide/titanium dioxide (V-Mn/Ti-CNTs) catalysts towards gaseous PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) catalytic oxidations at low temperature (150 °C) were investigated. The removal efficiency (RE) and decomposition efficiency (DE) of PCDD/Fs achieved with V-Mn/Ti-CNTs alone were 95% and 45% at 150 °C under a space velocity (SV) of 14000 h -1 ; yet, these values reached 99% and 91% when catalyst and low concentration (50 ppm) ozone were used in combined. The ozone promotion effect on catalytic activity was further enhanced with the addition of manganese oxide (MnO x ) and CNTs. Adding MnO x and CNTs in V/Ti catalysts facilitated the ozone decomposition (creating more active species on catalyst surface), thus, improved ozone utilization (demanding relatively lower ozone addition concentration). On the other hand, this study threw light upon ozone promotion mechanism based on the comparison of catalyst properties (i.e. components, surface area, surface acidity, redox ability and oxidation state) before and after ozone treatment. The experimental results indicate that a synergistic effect exists between catalyst and ozone: ozone is captured and decomposed on catalyst surface; meanwhile, the catalyst properties are changed by ozone in return. Reactive oxygen species from ozone decomposition and the accompanied catalyst properties optimization are crucial reasons for catalyst activation at low temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-02-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.

  16. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang

    2016-01-01

    Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of

  17. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.

    PubMed

    Yin, Jun; Shan, Shiyao; Ng, Mei Shan; Yang, Lefu; Mott, Derrick; Fang, Weiqin; Kang, Ning; Luo, Jin; Zhong, Chuan-Jian

    2013-07-23

    The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.

  18. Richardson constant and electrostatics in transfer-free CVD grown few-layer MoS2/graphene barristor with Schottky barrier modulation >0.6eV

    NASA Astrophysics Data System (ADS)

    Jahangir, Ifat; Uddin, M. Ahsan; Singh, Amol K.; Koley, Goutam; Chandrashekhar, M. V. S.

    2017-10-01

    We demonstrate a large area MoS2/graphene barristor, using a transfer-free method for producing 3-5 monolayer (ML) thick MoS2. The gate-controlled diodes show good rectification, with an ON/OFF ratio of ˜103. The temperature dependent back-gated study reveals Richardson's coefficient to be 80.3 ± 18.4 A/cm2/K and a mean electron effective mass of (0.66 ± 0.15)m0. Capacitance and current based measurements show the effective barrier height to vary over a large range of 0.24-0.91 eV due to incomplete field screening through the thin MoS2. Finally, we show that this barristor shows significant visible photoresponse, scaling with the Schottky barrier height. A response time of ˜10 s suggests that photoconductive gain is present in this device, resulting in high external quantum efficiency.

  19. Holey Reduced Graphene Oxide Coupled with an Mo2 N-Mo2 C Heterojunction for Efficient Hydrogen Evolution.

    PubMed

    Yan, Haijing; Xie, Ying; Jiao, Yanqing; Wu, Aiping; Tian, Chungui; Zhang, Xiaomeng; Wang, Lei; Fu, Honggang

    2018-01-01

    An in situ catalytic etching strategy is developed to fabricate holey reduced graphene oxide along with simultaneous coupling with a small-sized Mo 2 N-Mo 2 C heterojunction (Mo 2 N-Mo 2 C/HGr). The method includes the first immobilization of H 3 PMo 12 O 40 (PMo 12 ) clusters on graphite oxide (GO), followed by calcination in air and NH 3 to form Mo 2 N-Mo 2 C/HGr. PMo 12 not only acts as the Mo heterojunction source, but also provides the Mo species that can in situ catalyze the decomposition of adjacent reduced GO to form HGr, while the released gas (CO) and introduced NH 3 simultaneously react with the Mo species to form an Mo 2 N-Mo 2 C heterojunction on HGr. The hybrid exhibits superior activity towards the hydrogen evolution reaction with low onset potentials of 11 mV (0.5 m H 2 SO 4 ) and 18 mV (1 m KOH) as well as remarkable stability. The activity in alkaline media is also superior to Pt/C at large current densities (>88 mA cm -2 ). The good activity of Mo 2 N-Mo 2 C/HGr is ascribed to its small size, the heterojunction of Mo 2 N-Mo 2 C, and the good charge/mass-transfer ability of HGr, as supported by a series of experiments and theoretical calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Keplerate cluster (Mo-132) mediated electrostatic assembly of nanoparticles.

    PubMed

    Gooch, Jonathan; Jalan, Abhishek A; Jones, Stephanie; Hine, Corey R; Alam, Rabeka; Garai, Somenath; Maye, Mathew M; Müller, Achim; Zubieta, Jon

    2014-10-15

    The electrostatic assembly between a series of differently charged Mo-132-type Keplerates present in the compounds (NH4)42[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(CH3COO)}30].ca. {300 H2O+10 CH3COONH4} (Mo-132a), (NH4)72-n[{(H2O)81-n+(NH4)n} {(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(SO4)}30].ca. 200 H2O (Mo-132b), and Na10(NH4)62[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(HPO4)}30]. ca. {300H2O+2Na(+)+2NH4(+)+4H2PO4(-)} (Mo-132c) with cationic gold nanoparticles (AuNPs) was investigated for the first time. The rapid electrostatic assembly from nanoscopic entities to micron scale aggregates was observed upon precipitation, which closely matched the point of aggregate electroneutrality. Successful assembly was demonstrated using UV-vis, DLS, TEM, and zeta-potential analysis. Results indicate that the point at which precipitation occurs is related to charge balance or electroneutrality, and that counterions at both the Mo-132 and AuNP play a significant role in assembly. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Characterization by 27Al NMR, X-ray absorption spectroscopy, and density functional theory techniques of the species responsible for benzene hydrogenation in Y zeolite-supported carburized molybdenum catalysts.

    PubMed

    Rocha, Angela S; da Silva, Victor Teixeira; Eon, Jean G; de Menezes, Sônia M C; Faro, Arnaldo C; Rocha, Alexandre B

    2006-08-17

    Carburized molybdenum catalysts supported on a dealuminated NaH-Y zeolite were prepared by carburization under a 20% methane in hydrogen flow of two precursors obtained by adsorption of molybdenum hexacarbonyl, one containing 5 wt % and the other 10 wt % Mo, and a third one was prepared by impregnation with aqueous ammonium heptamolybdate, containing 5 wt % Mo. The three catalysts displayed very distinct behaviors in the benzene hydrogenation reaction at atmospheric pressure and 363 K. By using XANES spectroscopy at the molybdenum L edge, EXAFS and XANES spectroscopy at the molybdenum K edge, and 27Al solid-state NMR spectroscopy, it was shown that different carburized molybdenum species exist in each sample. In the catalyst containing 10 wt % Mo, formation of molybdenum carbide nanoparticles was observed, with an estimated diameter of 1.8 nm. In the catalyst containing 5 wt % Mo and prepared by carburization of adsorbed molybdenum hexacarbonyl, formation of molybdenum oxycarbide dimers is proposed. In the latter case, density functional theory calculations have led to a dimer structure which is compatible with EXAFS results. In the catalyst prepared by impregnation with ammonium heptamolybdate solution followed by carburization, the molybdenum seems to interact with extraframework alumina to produce highly disordered mixed molybdenum-aluminum oxycarbides.

  2. Radio Frequency Transistors and Circuits Based on CVD MoS2.

    PubMed

    Sanne, Atresh; Ghosh, Rudresh; Rai, Amritesh; Yogeesh, Maruthi Nagavalli; Shin, Seung Heon; Sharma, Ankit; Jarvis, Karalee; Mathew, Leo; Rao, Rajesh; Akinwande, Deji; Banerjee, Sanjay

    2015-08-12

    We report on the gigahertz radio frequency (RF) performance of chemical vapor deposited (CVD) monolayer MoS2 field-effect transistors (FETs). Initial DC characterizations of fabricated MoS2 FETs yielded current densities exceeding 200 μA/μm and maximum transconductance of 38 μS/μm. A contact resistance corrected low-field mobility of 55 cm(2)/(V s) was achieved. Radio frequency FETs were fabricated in the ground-signal-ground (GSG) layout, and standard de-embedding techniques were applied. Operating at the peak transconductance, we obtain short-circuit current-gain intrinsic cutoff frequency, fT, of 6.7 GHz and maximum intrinsic oscillation frequency, fmax, of 5.3 GHz for a device with a gate length of 250 nm. The MoS2 device afforded an extrinsic voltage gain Av of 6 dB at 100 MHz with voltage amplification until 3 GHz. With the as-measured frequency performance of CVD MoS2, we provide the first demonstration of a common-source (CS) amplifier with voltage gain of 14 dB and an active frequency mixer with conversion gain of -15 dB. Our results of gigahertz frequency performance as well as analog circuit operation show that large area CVD MoS2 may be suitable for industrial-scale electronic applications.

  3. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study

    NASA Astrophysics Data System (ADS)

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-01

    The structural, electronic, and magnetic properties of single-walled Mo2C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo2C nanotubes can be rolled up from a graphene-like Mo2C monolayer with H- or T-type phase, i.e. H-Mo2C and T-Mo2C nanotubes. The armchair-type T-Mo2C nanotubes are more energetically stable than H-Mo2C nanotubes with the same diameter, while zigzag-type H-Mo2C nanotubes are more energetically stable than T-Mo2C nanotubes. In particular, (8, 0) H-Mo2C nanotube are more stable than Mo2C monolayer due to structural deformation. All Mo2C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo2C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  4. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study.

    PubMed

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-18

    The structural, electronic, and magnetic properties of single-walled Mo 2 C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo 2 C nanotubes can be rolled up from a graphene-like Mo 2 C monolayer with H- or T-type phase, i.e. H-Mo 2 C and T-Mo 2 C nanotubes. The armchair-type T-Mo 2 C nanotubes are more energetically stable than H-Mo 2 C nanotubes with the same diameter, while zigzag-type H-Mo 2 C nanotubes are more energetically stable than T-Mo 2 C nanotubes. In particular, (8, 0) H-Mo 2 C nanotube are more stable than Mo 2 C monolayer due to structural deformation. All Mo 2 C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo 2 C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  5. Effect of load ratio and saltwater corrosive environment on the initiation life of fatigue of 10Ni5CrMoV steel

    NASA Astrophysics Data System (ADS)

    Xie, Xing; Yi, Hong; Xu, Jian; Gen, Liming; Chen, Luyun

    2017-09-01

    Fatigue initiation life has been studied with 10CrNi5MoV steel for use in ocean engineering at different load ratios and in different environmental media. The microstructure and micro-topography have been observed and analyzed by means of SEM, EDS and EBSD. Our findings indicate that, the initiation life of 10Ni5CrMoV steel in seawater is shorter than that in air, and the difference in longevity is larger with the increasing of load ratio. Corrosion pits had a great influence on initial corrosion fatigue life.

  6. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  7. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  8. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-07-06

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  9. Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace

    NASA Astrophysics Data System (ADS)

    Zheng, Binjie; Chen, Yuanfu

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.

  10. Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization

    NASA Astrophysics Data System (ADS)

    Behúlová, M.; Grgač, P.; Čička, R.

    2017-11-01

    Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.

  11. Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Final technical progress report, September 1, 1988--August 31, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klier, K.; Herman, R.G.; Richards-Babb, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.« less

  12. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures

    PubMed Central

    Zhang, Wenjing; Chuu, Chih-Piao; Huang, Jing-Kai; Chen, Chang-Hsiao; Tsai, Meng-Lin; Chang, Yung-Huang; Liang, Chi-Te; Chen, Yu-Ze; Chueh, Yu-Lun; He, Jr-Hau; Chou, Mei-Yin; Li, Lain-Jong

    2014-01-01

    Due to its high carrier mobility, broadband absorption, and fast response time, the semi-metallic graphene is attractive for optoelectronics. Another two-dimensional semiconducting material molybdenum disulfide (MoS2) is also known as light- sensitive. Here we show that a large-area and continuous MoS2 monolayer is achievable using a CVD method and graphene is transferable onto MoS2. We demonstrate that a photodetector based on the graphene/MoS2 heterostructure is able to provide a high photogain greater than 108. Our experiments show that the electron-hole pairs are produced in the MoS2 layer after light absorption and subsequently separated across the layers. Contradictory to the expectation based on the conventional built-in electric field model for metal-semiconductor contacts, photoelectrons are injected into the graphene layer rather than trapped in MoS2 due to the presence of a perpendicular effective electric field caused by the combination of the built-in electric field, the applied electrostatic field, and charged impurities or adsorbates, resulting in a tuneable photoresponsivity. PMID:24451916

  13. Kinetic Resolution of Secondary Alcohols Using Amidine-Based Catalysts

    PubMed Central

    Li, Ximin; Jiang, Hui; Uffman, Eric W.; Guo, Lei; Zhang, Yuhua; Yang, Xing; Birman, Vladimir B.

    2012-01-01

    Kinetic resolution of racemic alcohols has been traditionally achieved via enzymatic enantioselective esterification and ester hydrolysis. However, there has long been considerable interest in devising nonenzymatic alternative methods for this transformation. Amidine-Based Catalysts (ABCs), a new class of enantioselective acyl transfer catalysts developed in our group, have demonstrated, inter alia, high efficacy in the kinetic resolution of benzylic, allylic and propargylic secondary alcohols and 2-substituted cycloalkanols, and thus provide a viable alternative to enzymes. PMID:22283696

  14. Activation of Noble Metals on Metal-Carbide Surfaces: Novel Catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez J. A.; Illas, F.

    2012-01-01

    This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show thatmore » Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO{sub 2} at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O{sub 2} and perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS{sub x} catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are

  15. Systematic Identification of Promoters for Methane Oxidation Catalysts Using Size- and Composition-Controlled Pd-Based Bimetallic Nanocrystals.

    PubMed

    Willis, Joshua J; Goodman, Emmett D; Wu, Liheng; Riscoe, Andrew R; Martins, Pedro; Tassone, Christopher J; Cargnello, Matteo

    2017-08-30

    Promoters enhance the performance of catalytic active phases by increasing rates, stability, and/or selectivity. The process of identifying promoters is in most cases empirical and relies on testing a broad range of catalysts prepared with the random deposition of active and promoter phases, typically with no fine control over their localization. This issue is particularly relevant in supported bimetallic systems, where two metals are codeposited onto high-surface area materials. We here report the use of colloidal bimetallic nanocrystals to produce catalysts where the active and promoter phases are colocalized to a fine extent. This strategy enables a systematic approach to study the promotional effects of several transition metals on palladium catalysts for methane oxidation. In order to achieve these goals, we demonstrate a single synthetic protocol to obtain uniform palladium-based bimetallic nanocrystals (PdM, M = V, Mn, Fe, Co, Ni, Zn, Sn, and potentially extendable to other metal combinations) with a wide variety of compositions and sizes based on high-temperature thermal decomposition of readily available precursors. Once the nanocrystals are supported onto oxide materials, thermal treatments in air cause segregation of the base metal oxide phase in close proximity to the Pd phase. We demonstrate that some metals (Fe, Co, and Sn) inhibit the sintering of the active Pd metal phase, while others (Ni and Zn) increase its intrinsic activity compared to a monometallic Pd catalyst. This procedure can be generalized to systematically investigate the promotional effects of metal and metal oxide phases for a variety of active metal-promoter combinations and catalytic reactions.

  16. 3D Polymer Hydrogel for High-Performance Atomic Fe and Mn Catalysts for Oxygen Reduction in Challenging Acids

    NASA Astrophysics Data System (ADS)

    Qiao, Zhi

    Current platinum group metal (PGM)-free carbon nanocomposite catalysts for the oxygen reduction reaction (ORR) in acidic electrolyte often suffer from rapid degradation associated with carbon corrosion due to the use of large amount of the amorphoous carbon black supports. Here, we developed a new concept of using freestanding 3D hydrogel to design support-free Fe-N-C catalysts. A 3D polyaniline (PANI)-based hydrogel approach was used for preparing a new type of single atomic iron site-rich catalyst, which has exhibited exceptionally enhanced activity and stability compared to conventional Fe-N-C catalysts supported on amorphous carbon blacks. The achieved performance metric on the hydrogel PANI-Fe catalysts is one of the best ever reported PGM-free catalysts, reaching a half-wave potential up to 0.83 V vs. RHE and only leaving 30 mV gap with Pt/C catalysts (60mugPt/cm 2) in challenging acidic media. Remarkable ORR stability was accomplished as well on the same catalyst evidenced by using harsh potential cycling tests. The well dispersion of atomic iron into partially graphitized carbon, featured with dominance of micropores and porous network structures, is capable of accommodating increased number of active sites, strengthening local bonding among iron, nitrogen and carbon, and facilitating mass transfer. On the other hand, in order to decrease the produced Fenton reagent, which will oxidize the proton exchange membrane and ionomer in membrane electrode assembly (MEA), we produce Mn-based catalysts by this novel hydrogel method. This is the first time that Mn-based catalysts can show such outstanding performance in acid media, whose half-wave potential is up to 0.80 V vs. RHE. The work related to the performance improvement is still in processing. We believe the 3D polymer hydrogel approach would be a new pathway to advance PGM-free catalysts.

  17. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Acharya, B.; Alexandre, J.; Bendtz, K.; Benes, P.; Bernabéu, J.; Campbell, M.; Cecchini, S.; Chwastowski, J.; Chatterjee, A.; de Montigny, M.; Derendarz, D.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Giacomelli, G.; Hasegan, D.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; King, M. G. L.; Kinoshita, K.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Milstead, D.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Păvălas, G. E.; Pinfold, J. L.; Platkevič, M.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Staszewski, R.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Trzebinski, M.; Tuszynski, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.

    2016-08-01

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nucleartrack detectors with surface area ~18m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb-1. No magnetic charge exceeding 0:5 g D (where g D is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤ m ≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1 g D ≤ | g| ≤ 6 g D, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1 g D ≤ | g| ≤ 4 g D. Under the assumption of Drell-Yan cross sections, mass limits are derived for | g| = 2 g D and | g| = 3 g D for the first time at the LHC, surpassing the results from previous collider experiments.

  18. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    PubMed

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  19. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    DOE PAGES

    Lu, Yongwu; Yu, Fei; Hu, Jin; ...

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe 2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less

  20. Quantitative analysis of charge trapping and classification of sub-gap states in MoS2 TFT by pulse I-V method.

    PubMed

    Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun

    2018-04-27

    The threshold voltage instabilities and huge hysteresis of MoS 2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS 2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS 2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS 2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.

  1. Quantitative analysis of charge trapping and classification of sub-gap states in MoS2 TFT by pulse I-V method

    NASA Astrophysics Data System (ADS)

    Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun

    2018-04-01

    The threshold voltage instabilities and huge hysteresis of MoS2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.

  2. Charge disproportionation in tetragonal La2MoO5, a small band gap semiconductor influenced by direct Mo-Mo bonding.

    PubMed

    Colabello, Diane M; Camino, Fernando E; Huq, Ashfia; Hybertsen, Mark; Khalifah, Peter G

    2015-01-28

    The structure of the novel compound La2MoO5 has been solved from powder X-ray and neutron diffraction data and belongs to the tetragonal space group P4/m (no. 83) with a = 12.6847(3) Å and c = 6.0568(2) Å and with Z = 8. It consists of equal proportions of bioctahedral (Mo2O10) and square prismatic (Mo2O8) dimers, both of which contain direct Mo-Mo bonds and are arranged in 1D chains. The Mo-Mo bond length in the Mo2O10 dimers is 2.684(8) Å, while there are two types of Mo2O8 dimers with Mo-Mo bonds lengths of 2.22(2) and 2.28(2) Å. Although the average Mo oxidation state in La2MoO5 is 4+, the very different Mo-Mo distances reflect the fact that the Mo2O10 dimers contain only Mo(5+) (d(1)), while the prismatic Mo2O8 dimers only contain Mo(3+) (d(3)), a result directly confirmed by density function theory calculations. This is due to the complete disproportionation of Mo(4+), a phenomenon which has not previously been observed in solid-state compounds. La2MoO5 is diamagnetic, behavior which is not expected for a nonmetallic transition-metal oxide whose cation sites have an odd number of d-electrons. The resistivity displays the Arrhenius-type activated behavior expected for a semiconductor with a band gap of 0.5 eV, exhibiting an unusually small transport gap relative to other diamagnetic oxides. Diffuse reflectance studies indicate that La2MoO5 is a rare example of a stable oxide semiconductor with strong infrared absorbance. It is shown that the d-orbital splitting associated with the Mo2O8 and Mo2O10 dimeric units can be rationalized using simple molecular orbital bonding concepts.

  3. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    NASA Astrophysics Data System (ADS)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  4. Catalytic combustion of styrene over copper based catalyst: inhibitory effect of water vapor.

    PubMed

    Pan, Hongyan; Xu, Mingyao; Li, Zhong; Huang, Sisi; He, Chun

    2009-07-01

    The effects of water vapor on the activity of the copper based catalysts with different supports such as CuO/gamma-Al2O3, CuO/SiO2 and CuO/TiO2 for styrene combustion were investigated. The catalytic activity of the catalysts was tested in the absence of and presence of water vapor and the catalysts were characterized. Temperature programmed desorption (TPD) experiments and diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) measurements were conducted in order to estimate and explain the water effects. Results showed that the existence of water vapor had a significant negative effect on the catalytic activity of these copper based catalysts due to the competition adsorption of water molecule. DRIFTS studies showed that the catalyst CuO/gamma-Al2O3 had the strongest adsorption of water, while the catalyst CuO/TiO2 had the weakest adsorption of water. H2O-TPD studies also indicated that the order of desorption activation energies of water vapor on the catalysts or the strength of interactions of water molecules with the surfaces of the catalysts was CuO/gamma-Al2O3>CuO/SiO2>CuO/TiO2. As a consequence of that, the CuO/TiO2 exhibited the better durability to water vapor, while CuO/gamma-Al2O3 had the poorest durability to water vapor among these three catalysts.

  5. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst

    NASA Astrophysics Data System (ADS)

    Jin, Zhao; Liu, Chang; Qi, Kun; Cui, Xiaoqiang

    2017-01-01

    Non-noble metal nanoparticles are becoming more and more important in catalysis recently. Cu/CuO nanoclusters on highly ordered TiO2 nanotube arrays are successfully developed by a surfactant-free photoreduction method. This non-noble metal Cu/CuO-TiO2 catalyst exhibits excellent catalytic activity and stability for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with the presence of sodium borohydride (NaBH4). The rate constant of this low-cost Cu/CuO based catalyst is even higher than that of the noble metal nanoparticles decorated on the same TiO2 substrate. The conversion efficiency remains almost unchanged after 7 cycles of recycling. The recycle process of this Cu/CuO-TiO2 catalyst supported by Ti foil is very simple and convenient compared with that of the common powder catalysts. This catalyst also exhibited great catalytic activity to other organic dyes, such as methylene blue (MB), rhodamine B (RhB) and methyl orange (MO). This highly efficient, low-cost and easily reusable Cu/CuO-TiO2 catalyst is expected to be of great potential in catalysis in the future.

  6. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation

    NASA Astrophysics Data System (ADS)

    Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu

    2018-03-01

    This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.

  7. Applications of molybdenum-95 NMR spectroscopy. 7. Studies of metal-metal bonded systems including aqueous molybdenum(IV) and molybdenum(V). Crystal and molecular structure of Na/sub 2/(Mo/sub 3/O/sub 4/((O/sub 2/CCH/sub 2/)/sub 2/NCH/sub 3/)/sub 3/). 7H/sub 2/O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghellar, S.F.; Hambley, T.W.; Brownlee, R.T.

    1983-03-23

    Solution /sup 95/Mo NMR studies are reported on spin-coupled polynuclear systems of Mo(V), Mo(IV), and Mo(II). Resonances occur at low fields compared to mononuclear species. The chemical shifts of the Mo(IV)-aquo ion in 4 M p-toluenesulfonic and methanesulfonic acid media and those of the Mo(IV) complexes containing oxalate, EDTA, and methyliminodiacetate ligands (whose solid-state structures are based on the (Mo/sub 3/O/sub 4/)/sup 4 +/ cluster) fall in the narrow range of 172 ppm spanning 990-1162 ppm. As the known chemical shift scale for the /sup 95/Mo nucleus covers 7000 ppm, this observation indicates that the /sup 95/Mo nucleus is inmore » a similar chemical environment in each of the species examined and, taken with published evidence, confirms formulation of the Mo(IV)-aquo ion as (Mo/sub 3/O/sub 4/(H/sub 2/O)/sub 9/)/sup 4 +/. Two resonances are detected in the above range for Mo(IV)/sub aq/ in 4 M hydrochloric acid and for ((Mo/sub 3/O/sub 4/)/sub 2/(PDTA)/sub 3/)/sup 4 -/. Additional resonances appear at 539-608 ppm in the methanesulfonic acid, hydrochloric acid, and EDTA systems when stored in air. These are assigned to (Mo/sup v//sub 2/O/sub 4/)/sup 2 +/-based species by comparison with the observed resonances of the Mo(V)-aquo ion, (Mo/sup v//sub 2/O/sub 4/(H/sub 2/O)/sub 6/)/sup 2 +/, in the relevant acid media and with (Mo/sup v//sub 2/O/sub 4/(EDTA))/sup 2 -/ in H/sub 2/O. The (Mo/sup v//sub 2/O/sub 4/(PDTA))/sup 2 -/ anion exhibits two resonances associated with inequivalent molybdenum sites. Resonances for (Mo/sup II//sub 2/(O/sub 2/CR)/sub 4/) (R = CF/sub 3/, n-Pr), which contain formal quadruple bonds, have been observed for the first time and are the most deshielded /sup 95/Mo NMR signals detected to date. The methyliminodiacetate complex, Na/sub 2/(Mo/sub 3/O/sub 4/((O/sub 2/CCH/sub 2/)/sub 2/NCH/sub 3/)/sub 3/).7H/sub 2/O, was isolated. Its crystal structure contains a discrete trinuclear (Mo/sup IV//sub 3/O/sub 4/((O/sub 2/CCH/sub 2

  8. Nano-structured Platinum-based Catalysts for the Complete Oxidation of Ethylene Glycol and Glycerol

    NASA Astrophysics Data System (ADS)

    Falase, Akinbayowa

    Direct alcohol fuel cells are a viable alternative to the traditional hydrogen PEM fuel cell. Fuel versatility, integration with existing distribution networks, and increased safety when handling these fuels increases their appeal for portable power applications. In order to maximize their utility, the liquid fuel must be fully oxidized to CO2 so as to harvest the full amount of energy. Methanol and ethanol are widely researched as potential fuels to power these devices, but methanol is a toxic substance, and ethanol has a much lower energy density than other liquids such as gasoline or glucose. Oxidation of complex fuels is difficult to realize, due to difficulty in breaking carbon-carbon bonding and poisoning of the catalysts by oxidative byproducts. In order to achieve the highest efficiency, an anode needs to be engineered in such a way as to maximize activity while minimizing poisoning effects of reaction byproducts. We have engineered an anode that uses platinum-based catalysts that is capable of completely oxidizing ethylene glycol and glycerol in neutral and alkaline media with little evidence of CO poisoning. We have constructed a hybrid anode consisting of a nano-structured PtRu electrocatayst with an NAD-dependent alcohol dehydrogenase for improved oxidation of complex molecules. A nano-structured PtRu catalyst was used to oxidize ethylene glycol and glycerol in neutral media. In situ infrared spectroscopy was used to verify complete oxidation via CO2 generation. There was no evidence of poisoning by CO species. A pH study was performed to determine the effect of pH on oxidative current. The peak currents did not trend at 60 mV/pH unit as would be expected from the Nernst equation, suggesting that adsorption of fuel to the surface of the electrode is not an electron-transfer step. We synthesized nano-structured PtRu, PtSn, and PtRuSn catalysts for oxidation of ethylene glycol and glycerol in alkaline media. The PtRu electrocatalyst the highest oxidative

  9. Molten salt-mediated formation of g-C3N4-MoS2 for visible-light-driven photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Li, Ni; Zhou, Jing; Sheng, Ziqiong; Xiao, Wei

    2018-02-01

    Construction of two-dimensional/two-dimensional (2D/2D) hybrid with well-defined composition and microstructure is a general protocol to achieve high-performance catalysts. We herein report preparation of g-C3N4-MoS2 hybrid by pyrolysis of affordable melamine and (NH4)2MoS4 in molten LiCl-NaCl-KCl at 550 °C. Molten salts are confirmed as ideal reaction media for formation of homogeneous hybrid. Characterizations suggest a strong interaction between g-C3N4 and MoS2 in the hybrid, which results in an enhanced visible-light-driven photocatalytic hydrogen generation of the hybrid with an optimal g-C3N4/MoS2 ratio. The present study highlights the merits of molten salt methods on preparation of 2D photocatalysts and provides a rational design of 2D/2D hybrid catalysts for advanced environmental and energy applications.

  10. Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film

    NASA Astrophysics Data System (ADS)

    Momose, Tomohiro; Nakamura, Atsushi; Daniel, Moraru; Shimomura, Masaru

    2018-02-01

    We report on the successful synthesis of a p-type, substitutional doping at S-site, MoS2 thin film using Phosphorous (P) as the dopant. MoS2 thin films were directly sulfurized for molybdenum films by chemical vapor deposition technique. Undoped MoS2 film showed n-type behavior and P doped samples showed p-type behavior by Hall-effect measurements in a van der Pauw (vdP) configuration of 10×10 mm2 area samples and showed ohmic behavior between the silver paste contacts. The donor and the acceptor concentration were detected to be ˜2.6×1015 cm-3 and ˜1.0×1019 cm-3, respectively. Hall-effect mobility was 61.7 cm2V-1s-1 for undoped and varied in the range of 15.5 ˜ 0.5 cm2V-1s-1 with P supply rate. However, the performance of field-effect transistors (FETs) declined by double Schottky barrier contacts where the region between Ni electrodes on the source/drain contact and the MoS2 back-gate cannot be depleted and behaves as a 3D material when used in transistor geometry, resulting in poor on/off ratio. Nevertheless, the FETs exhibit hole transport and the field-effect mobility showed values as high as the Hall-effect mobility, 76 cm2V-1s-1 in undoped MoS2 with p-type behavior and 43 cm2V-1s-1 for MoS2:P. Our findings provide important insights into the doping constraints for transition metal dichalcogenides.

  11. Shape-selective synthesis of Sn(MoO4)2 nanomaterials for catalysis and supercapacitor applications.

    PubMed

    Sakthikumar, K; Ede, Sivasankara Rao; Mishra, Soumyaranjan; Kundu, Subrata

    2016-06-07

    Size and shape-selective Sn(MoO4)2 nanomaterials have been synthesized for the first time using a simple hydrothermal route by the reaction of Sn(ii) chloride salt with sodium molybdate in CTAB micellar media under stirring at 60 °C temperature for about three hours. Needle-like and flake-like Sn(MoO4)2 nanomaterials were synthesized by optimizing the CTAB to metal salt molar ratio and by controlling other reaction parameters. The eventual diameter and length of the nanoneedles are ∼100 ± 10 nm and ∼850 ± 100 nm respectively. The average diameter of the flakes is ∼250 ± 50 nm. The synthesized Sn(MoO4)2 nanomaterials can be used in two potential applications, namely, catalytic reduction of nitroarenes and as an anodic material in electrochemical supercapacitors. From the catalysis study, it was observed that the Sn(MoO4)2 nanomaterials could act as a potential catalyst for the successful photochemical reduction of nitroarenes into their respective aminoarenes within a short reaction time. From the supercapacitor study, it was observed that the Sn(MoO4)2 nanomaterials of different shapes show different specific capacitance (Cs) values and the highest Cs value was observed for Sn(MoO4)2 nanomaterials having a flake-like morphology. The highest Cs value observed was 109 F g(-1) at a scan rate of 5 mV s(-1) for the flake-like Sn(MoO4)2 nanomaterials. The capacitor shows an excellent long cycle life along with 70% retention of the Cs value, even after 4000 consecutive cycles at a current density of 8 mA cm(-2). Other than the applications in catalysis and supercapacitors, the synthesized nanomaterials can find further applications in photoluminescence, sensor and other energy-related devices.

  12. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.

    PubMed

    Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan

    2014-01-15

    A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli. © 2013 Elsevier B.V. All rights reserved.

  13. Nano-array based monolithic catalysts: Concept, rational materials design and tunable catalytic performance

    DOE PAGES

    Ren, Zheng; Guo, Yanbing; Gao, Pu-Xian

    2015-03-20

    Monolithic catalysts, also known as structured catalysts, represent an important catalyst configuration widely used in automotive, chemical, and energy industries. However, several issues associated with washcoat based monolithic catalyst preparation are ever present, such as compromised materials utilization efficiency due to a less-than-ideal wash coating process, difficulty in precise and optimum microstructure control and lack of structure-property correlation. Here, in this mini-review, we introduce the concept of nano-array catalyst, a new type of monolithic catalyst featuring high catalyst utilization efficiency, good thermal/mechanical robustness, and catalytic performance tunability. A comprehensive overview is presented with detailed discussion of the strategies for nano-arraymore » catalyst preparation and rational catalytic activity adjustment enabled by the well-defined nano-array geometry. Specifically their scalable fabrication processes are reviewed in conjunction with discussion of their various catalytic oxidation reaction performances at low temperature. Finally, we hope this review will serve as a timely and useful research guide for rational design and utilization of the new type of monolithic catalysts.« less

  14. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Pronounced Photovoltaic Response from Multi-layered MoTe2 Phototransistor with Asymmetric Contact Form.

    PubMed

    Liu, Junku; Guo, Nan; Xiao, Xiaoyang; Zhang, Kenan; Jia, Yi; Zhou, Shuyun; Wu, Yang; Li, Qunqing; Xiao, Lin

    2017-11-22

    In this study, we fabricate air-stable p-type multi-layered MoTe 2 phototransistor using Au as electrodes, which shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially resolved photoresponse using scanning photocurrent microscopy, we found that the potential steps are formed in the vicinity of the electrodes/MoTe 2 interface due to the doping of the MoTe 2 by the metal contacts. The potential step dominates the separation of photoexcited electron-hole pairs in short-circuit condition or with small V sd biased. Based on these findings, we infer that the asymmetric contact cross-section between MoTe 2 -source and MoTe 2 -drain electrodes is the reason to form non-zero net current and photovoltaic response. Furthermore, MoTe 2 phototransistor shows a faster response in short-circuit condition than that with higher biased V sd within sub-millisecond, and its spectral range can be extended to the infrared end of 1550 nm.

  16. Pronounced Photovoltaic Response from Multi-layered MoTe2 Phototransistor with Asymmetric Contact Form

    NASA Astrophysics Data System (ADS)

    Liu, Junku; Guo, Nan; Xiao, Xiaoyang; Zhang, Kenan; Jia, Yi; Zhou, Shuyun; Wu, Yang; Li, Qunqing; Xiao, Lin

    2017-11-01

    In this study, we fabricate air-stable p-type multi-layered MoTe2 phototransistor using Au as electrodes, which shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially resolved photoresponse using scanning photocurrent microscopy, we found that the potential steps are formed in the vicinity of the electrodes/MoTe2 interface due to the doping of the MoTe2 by the metal contacts. The potential step dominates the separation of photoexcited electron-hole pairs in short-circuit condition or with small V sd biased. Based on these findings, we infer that the asymmetric contact cross-section between MoTe2-source and MoTe2-drain electrodes is the reason to form non-zero net current and photovoltaic response. Furthermore, MoTe2 phototransistor shows a faster response in short-circuit condition than that with higher biased V sd within sub-millisecond, and its spectral range can be extended to the infrared end of 1550 nm.

  17. Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base difunctional catalysts for transesterification.

    PubMed

    Zeng, Ruijie; Sheng, Hongting; Zhang, Yongcang; Feng, Yan; Chen, Zhi; Wang, Junfeng; Chen, Man; Zhu, Manzhou; Guo, Qingxiang

    2014-10-03

    A practical lanthanide(III)-catalyzed transesterification of carboxylic esters, weakly reactive carbonates, and much less-reactive ethyl silicate with primary and secondary alcohols was developed. Heterobimetallic dinuclear lanthanide alkoxide complexes [Ln2Na8{(OCH2CH2NMe2)}12(OH)2] (Ln = Nd (I), Sm (II), and Yb (III)) were used as highly active catalysts for this reaction. The mild reaction conditions enabled the transesterification of various substrates to proceed in good to high yield. Efficient activation of transesterification may be endowed by the above complexes as cooperative acid-base difunctional catalysts, which is proposed to be responsible for the higher reactivity in comparison with simple acid/base catalysts.

  18. Magnetic solid base catalyst CaO/CoFe2O4 for biodiesel production: Influence of basicity and wettability of the catalyst in catalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Pingbo; Han, Qiuju; Fan, Mingming; Jiang, Pingping

    2014-10-01

    A novel magnetic solid base catalyst CaO/CoFe2O4 was successfully prepared with CoFe2O4 synthesized by hydrothermal method as the magnetic core and applied to the transesterification of soybean oil for the production of biodiesel. The magnetic solid base catalysts were characterized by a series of techniques including CO2-TPD, powder XRD, TGA, TEM and the contact angle measurement of the water droplet. It was demonstrated that CaO/CoFe2O4 has stronger magnetic strength indicating perfect utility for repeated use and better basic strength. Compared with CaO/ZnFe2O4 and CaO/MnFe2O4, solid base catalyst CaO/CoFe2O4 has better catalytic performance, weaker hydroscopicity and stronger wettability, demonstrating that catalytic performance was relative to both basicity of catalyst and the full contact between the catalyst and the reactants, but the latter was a main factor in the catalytic system.

  19. Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkaline drainage in constructed wetlands--adsorption studies.

    PubMed

    Hua, T; Haynes, R J; Zhou, Y-F; Boullemant, A; Chandrawana, I

    2015-03-15

    The potential to remove Al, Mo, V, As and Ga from alkaline (pH 8.0-8.6) drainage originating from seawater neutralized bauxite processing residue storage areas using constructed wetland technology was studied in a laboratory study. Bauxite processing residue sand, bauxite, alum water treatment sludge and blast furnace slag were investigated as potential active filter materials. Al was shown to precipitate as Al(OH)3 in the pH range 7.0-8.0 in aqueous solution and 6.0-8.5 in the presence of silica sand particles that provided a surface for nucleation. For V As Mo and Ga, adsorption to the surfaces of the adsorbents decreased greatly at elevated pH values (>pH 6-9). Water treatment sludge and bauxite had a greater ability to adsorb V, As and Mo at high pH (As and V at pH 7-9 and Mo at pH 5-7) than processing sand and slag. Adsorption isotherm data for As and V onto all four adsorbent than processing sand and slag. Adsorption isotherm data for As and V onto all four adsorbent materials fitted equally well to the Langmuir and Freundlich equations but for Ga, and to a lesser extent Mo, the Freundlich equation gave higher R(2) values. For all four ions, the maximum adsorption capacity (Langmuir value qmax) was greatest for water treatment sludge. Bauxite adsorbed more Mo, Ga and V than residue sand or slag. The pseudo-second order equation gave a better fit to the experimental kinetic data than the pseudo-first order model suggesting that chemisorption rather than diffusion/exchange was the rate limiting step to adsorption. It was concluded that water treatment sludge and bauxite were the most effective adsorbents and that for effective removal of the target ions the pH of the drainage water needs to be decreased to 6.0-7.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Physical properties of monolithic U8 wt.%-Mo

    NASA Astrophysics Data System (ADS)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  1. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

    PubMed Central

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil–5 (ZSM-5), TiO2, and Al2O3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir–Hinshelwood or Eley–Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH3 catalyst are suggested. PMID:29600136

  2. Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.; Sidney, Barry D.; Miller, Irvin M.; Brown, Kenneth G.; Vannorman, John D.; Schryer, Jacqueline; Brown, David R.

    1990-01-01

    Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed.

  3. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    PubMed

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  4. Recovery of Cobalt from leach solution of spent oil Hydrodesulphurization catalyst using a synergistic system consisting of VersaticTM10 and Cyanex®272

    NASA Astrophysics Data System (ADS)

    Yuliusman; Ramadhan, I. T.; Huda, M.

    2018-03-01

    Catalyst are often used in the petroleum refinery industry, especially cobalt-based catalyst such as CoMoX. Every year, Indonesia’s oil industry produces around 1350 tons of spent hydrodesulphurization catalyst in which cobalt makes up for 7%wt. of them. Cobalt is a non-renewable and highly valuable resource. Taking into account the aforementioned reasons, this research was made to recover cobalt from spent hydrodesulphurization catalyst so that it can be reused by industries needing them. The methods used in the recovery of cobalt from the waste catalyst leach solution are liquid-liquid extraction using a synergistic system of VersaticTM 10 and Cyanex®272. Based on the experiments done using the aforementioned methods and materials, the optimum condition for the extraction process: concentration of VersaticTM 10 of 0.35 M, Cyanex®272 of 0.25 M, temperature of 23-25°C (room temperature), and pH of 6 with an extraction percentage of 98.80% and co-extraction of Ni at 93.51%.

  5. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  6. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  7. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  8. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    PubMed

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  9. Study on the decomposition of trace benzene over V2O5-WO3 ...

    EPA Pesticide Factsheets

    Commercial and laboratory-prepared V2O5–WO3/TiO2-based catalysts with different compositions were tested for catalytic decomposition of chlorobenzene (ClBz) in simulated flue gas. Resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) was employed to measure real-time, trace concentrations of ClBz contained in the flue gas before and after the catalyst. The effects of various parameters, including vanadium content of the catalyst, the catalyst support, as well as the reaction temperature on decomposition of ClBz were investigated. The results showed that the ClBz decomposition efficiency was significantly enhanced when nano-TiO2 instead of conventional TiO2 was used as the catalyst support. No promotion effects were found in the ClBz decomposition process when the catalysts were wet-impregnated with CuO and CeO2. Tests with different concentrations (1,000, 500, and 100 ppb) of ClBz showed that ClBz-decomposition efficiency decreased with increasing concentration, unless active sites were plentiful. A comparison between ClBz and benzene decomposition on the V2O5–WO3/TiO2-based catalyst and the relative kinetics analysis showed that two different active sites were likely involved in the decomposition mechanism and the V=O and V-O-Ti groups may only work for the degradation of the phenyl group and the benzene ring rather than the C-Cl bond. V2O5-WO3/TiO2 based catalysts, that have been used for destruction of a wide variet

  10. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  11. Improving the stability of subnano-MoO3/meso-SiO2 catalyst through amino-functionalization

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Wu, Wenpei; Yang, Qianfan; Wang, Wan-Hui; Bao, Ming

    Subnano-MoO3 clusters (below 1nm) have excellent catalytic activity on oxidative desulfurization (ODS). However, the stability is not very satisfactory due to the leaching of MoO3 during the reaction. To enhance the stability, here we developed a method by grafting NH2 to silica. NH2 could form coordination bond with MoO3, as proved by solid state 1H NMR, which can prevent MoO3 from leaching and thus significantly enhance the stability.

  12. A delafossite-based copper catalyst for sustainable Cl2 production by HCl oxidation.

    PubMed

    Mondelli, Cecilia; Amrute, Amol P; Schmidt, Timm; Pérez-Ramírez, Javier

    2011-07-07

    A copper catalyst based on a delafossite precursor (CuAlO(2)) displays high activity and extraordinary lifetime in the gas-phase oxidation of HCl to Cl(2), representing a cost-effective alternative to RuO(2)-based catalysts for chlorine recycling. This journal is © The Royal Society of Chemistry 2011

  13. High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure.

    PubMed

    Chen, Yan; Wang, Xudong; Wu, Guangjian; Wang, Zhen; Fang, Hehai; Lin, Tie; Sun, Shuo; Shen, Hong; Hu, Weida; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-03-01

    Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light-emitting devices, and photodiodes. In this work, high-performance photovoltaic photodetectors based on MoTe 2 /MoS 2 vertical heterojunctions are demonstrated by exfoliating-restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>10 5 ) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W -1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  15. Mechanical Alloying of W-Mo-V-Cr-Ta High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Das, Sujit; Robi, P. S.

    2018-04-01

    Recent years have seen the emergence of high-entropy alloys (HEAs) consisting of five or more elements in equi-atomic or near equi-atomic ratios. These alloys in single phase solid solution exhibit exceptional mechanical properties viz., high strength at room and elevated temperatures, reasonable ductility and stable microstructure over a wide range of temperatures making it suitable for high temperature structural materials. In spite of the attractive properties, processing of these materials remains a challenge. Reports regarding fabrication and characterisation of a few refractory HEA systems are available. The processing of these alloys have been carried out by arc melting of small button sized materials. The present paper discusses the development of a novel refractory W-Mo-V-Cr-Ta HEA powder based on a new alloy design concept. The powder mixture was milled for time periods up to 64 hours. Single phase alloy powder having body centred cubic structure was processed by mechanical alloying. The milling characteristics and extent of alloying during the ball milling were characterized using X-ray diffractiometre (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). A single phase solid solution alloy powder having body-centred cubic (BCC) structure with a lattice parameter of 3.15486 Å was obtained after milling for 32 hours.

  16. Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries.

    PubMed

    Hung, Yu-Han; Lu, Ang-Yu; Chang, Yung-Huang; Huang, Jing-Kai; Chang, Jeng-Kuei; Li, Lain-Jong; Su, Ching-Yuan

    2016-08-17

    In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 10(8) were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm(2) and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials.

  17. Few-Layer MoSe2 Possessing High Catalytic Activity towards Iodide/Tri-iodide Redox Shuttles

    PubMed Central

    Lee, Lawrence Tien Lin; He, Jian; Wang, Baohua; Ma, Yaping; Wong, King Young; Li, Quan; Xiao, Xudong; Chen, Tao

    2014-01-01

    Due to the two-dimensional confinement of electrons, single- and few-layer MoSe2 nanostructures exhibit unusual optical and electrical properties and have found wide applications in catalytic hydrogen evolution reaction, field effect transistor, electrochemical intercalation, and so on. Here we present a new application in dye-sensitized solar cell as catalyst for the reduction of I3− to I− at the counter electrode. The few-layer MoSe2 is fabricated by surface selenization of Mo-coated soda-lime glass. Our results show that the few-layer MoSe2 displays high catalytic efficiency for the regeneration of I− species, which in turn yields a photovoltaic energy conversion efficiency of 9.00%, while the identical photoanode coupling with “champion” electrode based on Pt nanoparticles on FTO glass generates efficiency only 8.68%. Thus, a Pt- and FTO-free counter electrode outperforming the best conventional combination is obtained. In this electrode, Mo film is found to significantly decrease the sheet resistance of the counter electrode, contributing to the excellent device performance. Since all of the elements in the electrode are of high abundance ratios, this type of electrode is promising for the fabrication of large area devices at low materials cost. PMID:24525919

  18. Photochemistry of Mo(CO) sub 6 in the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganske, J.A.; Rosenfeld, R.N.

    1989-03-09

    We report a study of the photochemistry of Mo(CO){sub 6} in the gas phase. Time-resolved infrared laser absorption spectroscopy is used to monitor the vibrational spectroscopy and lifetimes of the coordinatively unsaturated species formed upon photolyses at 351, 248, and 193 nm. The infrared spectra observed indicate that Mo(CO){sub 5} has C{sub 4v} symmetry, Mo(CO){sub 4} has C{sub 2v} symmetry, and Mo(CO){sub 3} has C{sub 3v} symmetry. All three unsaturated species undergo rapid association reactions with Mo(CO){sub 6} and with CO. Mo(CO){sub 5} recombines with CO with a high-pressure limiting rate constant of 2.0 ({plus minus}0.2) {times} 10{sup 6} Torr{supmore » {minus}1}s{sup {minus}1}. The corresponding rate constants for Mo(CO){sub 4} and Mo(CO){sub 3} are 7.5 ({plus minus}1.5) {times} 10{sup 6} and 1.8 ({plus minus}1.0) {times} 10{sup 7} Torr{sup {minus}1}s{sup {minus}1}, respectively.« less

  19. High Catalytic Efficiency of Nanostructured β-CoMoO₄ in the Reduction of the Ortho-, Meta- and Para-Nitrophenol Isomers.

    PubMed

    Al-Wadaani, Fahd; Omer, Ahmed; Abboudi, Mostafa; Oudghiri Hassani, Hicham; Rakass, Souad; Messali, Mouslim; Benaissa, Mohammed

    2018-02-09

    Nanostructured β-CoMoO₄ catalysts have been prepared via the thermal decomposition of an oxalate precursor. The catalyst was characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The efficiency of these nanoparticles in the reduction of ortho - and meta -nitrophenol isomers (2-NP, 3-NP, and 4-NP) to their corresponding aminophenols was tested using UV-visible spectroscopy measurements. It was found that, with a β-CoMoO₄ catalyst, NaBH₄ reduces 3-NP instantaneously, whilst the reduction of 2-NP and 4-NP is slower at 8 min. This difference is thought to arise from the lower acidity of 3-NP, where the negative charge of the phenolate could not be delocalized onto the oxygen atoms of the meta-nitro group.

  20. Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.

    PubMed

    Barskiy, Danila A; Ke, Lucia A; Li, Xingyang; Stevenson, Vincent; Widarman, Nevin; Zhang, Hao; Truxal, Ashley; Pines, Alexander

    2018-05-10

    Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.

  1. Molecular metal-Oxo catalysts for generating hydrogen from water

    DOEpatents

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  2. Effect of Co addition on the performance and structure of V/ZrCe catalyst for simultaneous removal of NO and Hg0 in simulated flue gas

    NASA Astrophysics Data System (ADS)

    Zhao, Lingkui; Li, Caiting; Du, Xueyu; Zeng, Guangming; Gao, Lei; Zhai, Yunbo; Wang, Teng; Zhang, Junyi

    2018-04-01

    The effect of CoOx addition on the performance and structure of V2O5/ZrO2-CeO2 catalyst for simultaneous removal of NO and Hg0 in simulated flue gas was investigated by various methods including SEM, BET, XRD, XPS, H2-TPR and FT-IR. It was found that the introduction of CoOx not only greatly enhanced the redox properties of catalysts, but also increased the catalytic performance for simultaneous removal of NO and Hg0. The CoOx-modified V2O5/ZrO2-CeO2 catalyst displayed excellent catalytic activity for NO conversion (89.6%) and Hg0 oxidation (88.9%) at 250 °C under SCR atmosphere. The synergistic effect among vanadium, cobalt, and the ZrCe support could induce oxygen vacancies formation and promote oxygen mobility via charge transfer. Besides, CoOx could assist vanadium species in rapidly changing the valence by the redox cycle of V5+ + Co2+ ↔ V4+ + Co3+. All the above features contribute to the excellent catalytic performance through CoOx addition.

  3. Enhanced hydrogen generation by hydrolysis of Mg doped with flower-like MoS2 for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Huang, Minghong; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Shao, Huaiyu; Zhu, Min

    2017-10-01

    In this work, flower-like MoS2 spheres are synthesized via a hydrothermal method and the catalytic activity of the as-prepared and bulk MoS2 on hydrolysis of Mg is systematically investigated for the first time. The Mg-MoS2 composites are prepared by ball milling and the hydrogen generation performances of the composites are investigated in 3.5% NaCl solution. The experimental results suggest that the as-prepared MoS2 exhibits better catalytic effect on hydrolysis of Mg compared to bulk MoS2. In particular, Mg-10 wt% MoS2 (as-prepared) composite milled for 1 h shows the best hydrogen generation properties and releases 90.4% of theoretical hydrogen generation capacity within 1 min at room temperature. The excellent catalytic effect of as-prepared MoS2 may be attributed to the following aspects: three-dimensional flower-like MoS2 architectures improve its dispersibility on Mg particles; make the composite more reactive; hamper the generated Mg(OH)2 from adhering to the surface of Mg; and increase the galvanic corrosion of Mg. In addition, a hydrogen generator based on the hydrolysis reaction of Mg-0.2 wt% MoS2 composite is manufactured and it can supply a maximum hydrogen flow rate of 2.5 L/min. The findings here demonstrate the as-prepared flower-like MoS2 can be a promising catalyst for hydrogen generation from Mg.

  4. Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters

    NASA Astrophysics Data System (ADS)

    Lauritsen, J. V.; Nyberg, M.; Vang, R. T.; Bollinger, M. V.; Clausen, B. S.; Topsøe, H.; Jacobsen, K. W.; Lægsgaard, E.; Nørskov, J. K.; Besenbacher, F.

    2003-03-01

    Nanostructures often have unusual properties that are linked to their small size. We report here on extraordinary chemical properties associated with the edges of two-dimensional MoS2 nanoclusters, which we show to be able to hydrogenate and break up thiophene (C4H4S) molecules. By combining atomically resolved scanning tunnelling microscopy images of single-layer MoS2 nanoclusters and density functional theory calculations of the reaction energetics, we show that the chemistry of the MoS2 nanoclusters can be associated with one-dimensional metallic states located at the perimeter of the otherwise insulating nanoclusters. The new chemistry identified in this work has significant implications for an important catalytic reaction, since MoS2 nanoclusters constitute the basis of hydrotreating catalysts used to clean up sulfur-containing molecules from oil products in the hydrodesulfurization process.

  5. Étude par RMN à l'état solide de catalyseurs oxydes du type Mo-P-Al

    NASA Astrophysics Data System (ADS)

    Quartararo, J.; Rigole, M.; Guelton, M.; Amoureux, J. P.; Grimblot, J.

    1999-10-01

    Solid state 27Al NMR and especially 27Al MQMAS is used to characterize the oxide Mo-P-Al hydrotreating catalysts. This application shows that NMR is an efficient method to determine the local structure of the elements in the amorphous catalysts. So, this permits to conclude that the association of the Mo and the P leads to the formation of aluminium phosphates and that differences in the structure depend on the method of preparation. La RMN du solide et notamment la méthode “MQMAS" de 27Al est utilisée pour caractériser en détail les catalyseurs d'hydrotraitement du type Mo-P-Al sous forme oxyde. Cette application montre que la RMN est un outil efficace pour déterminer la structure locale des éléments introduits dans les catalyseurs de caractère amorphe. Ainsi, elle permet d'établir que le Mo associé au P induit la formation de phosphates d'aluminium. Des différences de structure en fonction de la méthode de préparation sont également observées.

  6. The impact of multiphase behaviour on coke deposition in heavy oil hydroprocessing catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohui

    Coke deposition in heavy oil catalytic hydroprocessing remains a serious problem. The influence of multiphase behaviour on coke deposition is an important but unresolved question. A model heavy oil system (Athabasca vacuum bottoms (ABVB) + decane) and a commercial heavy oil hydrotreating catalyst (NiMo/gamma-Al 2O3) were employed to study the impact of multiphase behaviour on coke deposition. The model heavy oil mixture exhibits low-density liquid + vapour (L1V), high-density liquid + vapour (L2V), as well as low-density liquid + high-density liquid + vapour (L1L2V) phase behaviour at a typical hydroprocessing temperature (380°C). The L2 phase only arises for the ABVB composition range from 10 to 50 wt %. The phase behaviour undergoes transitions from V to L2V, to L1L2V, to L1V with increasing ABVB compositions at the pressure examined. The addition of hydrogen into the model heavy oil mixtures at a fixed mass ratio (0.0057:1) does not change the phase behaviour significantly, but shifts the phase regions and boundaries vertically from low pressure to high pressure. In the absence of hydrogen, the carbon content, surface area and pore volume losses for catalyst exposed to the L1 phase are greater than for the corresponding L2 phase despite a higher coke precursor concentration in L2 than in L1. By contrast, in the presence of hydrogen, the carbon content, surface area and pore volume losses for the catalyst exposed to the L2 phase are greater than for the corresponding L1 phase. The higher hydrogen concentration in L1 appears to reverse the observed results. In the presence of hydrogen, L2 was most closely associated with coke deposition, L1 less associated with coke deposition, and V least associated with coke deposition. Coke deposition is maximized in the phase regions where the L2 phase arises. This key result is inconsistent with expectation and coke deposition models where the extent of coke deposition, at otherwise fixed reaction conditions, is asserted to

  7. Ultrathin MoS2-coated Ag@Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production

    NASA Astrophysics Data System (ADS)

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Jun-Ming

    2018-03-01

    Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm-2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.

  8. Ultrathin MoS2-coated Ag@Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production.

    PubMed

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Jun-Ming

    2018-01-30

    Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS 2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS 2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS 2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS 2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm -2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.

  9. Recycling of waste spent catalyst in road construction and masonry blocks.

    PubMed

    Taha, Ramzi; Al-Kamyani, Zahran; Al-Jabri, Khalifa; Baawain, Mahad; Al-Shamsi, Khalid

    2012-08-30

    Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Pt-Au/MOx-CeO₂ (M = Mn, Fe, Ti) Catalysts for the Co-Oxidation of CO and H₂ at Room Temperature.

    PubMed

    Hong, Xiaowei; Sun, Ye; Zhu, Tianle; Liu, Zhiming

    2017-02-27

    A series of nanostructured Pt-Au/MO x -CeO₂ (M = Mn, Fe, Ti) catalysts were prepared and their catalytic performance for the co-oxidation of carbon monoxide (CO) and hydrogen (H₂) were evaluated at room temperature. The results showed that MO x promoted the CO oxidation of Pt-Au/CeO₂, but only the TiO₂ could enhance co-oxidation of CO and H₂ over Pt-Au/CeO₂. Related characterizations were conducted to clarify the promoting effect of MO x . Temperature-programmed reduction of hydrogen (H₂-TPR) and X-ray photoelectron spectroscopy (XPS) results suggested that MO x could improve the charge transfer from Au sites to CeO₂, resulting in a high concentration of Ce 3+ and cationic Au species which benefits for the CO oxidation. In-situ diffuse reflectance infrared Fourier transform spectroscopy (In-situ DRIFTS) results indicated that TiO₂ could facilitate the oxidation of H₂ over the Pt-Au/TiO₂-CeO₂ catalyst.

  11. Molybdenum nitrides as oxygen reduction reaction catalysts: Structural and electrochemical studies

    DOE PAGES

    Cao, Bingfei; Neuefeind, Joerg C.; Adzic, Radoslav R.; ...

    2015-02-09

    Monometallic (δ-MoN, Mo 5N 6, and Mo 2N) and bimetallic molybdenum nitrides (Co 0.6Mo 1.4N 2) were investigated as electrocatalysts for the oxygen reduction reaction (ORR), which is a key half-reaction in hydrogen fuel cells. Monometallic hexagonal molybdenum nitrides are found to exhibit improved activities over rock salt type molybdenum nitride (γ-Mo 2N), suggesting that improvements are due to either the higher molybdenum valence or a more favorable coordination environment in the hexagonal structures. Further enhancements in activity were found for hexagonal bimetallic cobalt molybdenum nitride (Co 0.6Mo 1.4N 2), resulting in a modest onset potential of 0.713 V versusmore » reversible hydrogen electrode (RHE). Co 0.6Mo 1.4N 2 exhibits good stability in acidic environments, and in the potential range lower than 0.5 V versus RHE, the ORR appears to proceed via a four-electron mechanism based on the analysis of rotating disc electrode results. A redetermination of the structures of the binary molybdenum nitrides was carried out using neutron diffraction data, which is far more sensitive to nitrogen site positions than X-ray diffraction data. In conclusion, the revised monometallic hexagonal nitride structures all share many common features with the Co 0.6Mo 1.4N 2 structure, which has alternating layers of cations in octahedral and trigonal prismatic coordination, and are thus not limited to only trigonal prismatic Mo environments (as was originally postulated for δ-MoN).« less

  12. Formation of Ultrafine Metal Particles by Gas-Evaporation VI. Bcc Metals, Fe, V, Nb, Ta, Cr, Mo and W

    NASA Astrophysics Data System (ADS)

    Saito, Yahachi; Mihama, Kazuhiro; Uyeda, Ryozi

    1980-09-01

    The crystal structures and habits of bcc metal particles have been investigated systematically by electron microscopy. The habits for the bcc structure are rhombic dodecahedra truncated by six {100} faces with various degrees of truncation from 0 to 100%. The truncation degree for Fe and V particles grown in the intermediate zone of a metal smoke is in good agreement with that for the Wulff polyhedron expected from the surface energies calculated for {110} and {100} faces. Particles of Cr, Mo and W have the A-15 type structure besides the ordinary bcc structure. The present results support the hypothesis that the A-15 type structure is stable when the particle size is small. The habits for the A-15 type structure are rhombic dodecahedra (Cr), {211} icositetrahedra (Cr and Mo) and rounded cubes (Mo and W).

  13. Advanced Catalysts for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.

    2006-01-01

    This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.

  14. Catalyst-free, III-V nanowire photovoltaics

    NASA Astrophysics Data System (ADS)

    Davies, D. G.; Lambert, N.; Fry, P. W.; Foster, A.; Krysa, A. B.; Wilson, L. R.

    2014-05-01

    We report on room temperature, photovoltaic operation of catalyst-free GaAs p-i-n junction nanowire arrays. Growth studies were first performed to determine the optimum conditions for controlling the vertical and lateral growth of the nanowires. Following this, devices consisting of axial p-i-n junctions were fabricated by planarising the nanowire arrays with a hard baked polymer. We discuss the photovoltaic properties of this proof-of-concept device, and significant improvements to be made during the growth.

  15. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    PubMed

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  16. Thermodynamic Constraints in Using AuM (M = Fe, Co, Ni, and Mo) Alloys as N₂ Dissociation Catalysts: Functionalizing a Plasmon-Active Metal.

    PubMed

    Martirez, John Mark P; Carter, Emily A

    2016-02-23

    The Haber-Bosch process for NH3 synthesis is arguably one of the greatest inventions of the 20th century, with a massive footprint in agriculture and, historically, warfare. Current catalysts for this reaction use Fe for N2 activation, conducted at high temperatures and pressures to improve conversion rate and efficiency. A recent finding shows that plasmonic metal nanoparticles can either generate highly reactive electrons and holes or induce resonant surface excitations through plasmonic decay, which catalyze dissociation and redox reactions under mild conditions. It is therefore appealing to consider AuM (M = Fe, Co, Ni, and Mo) alloys to combine the strongly plasmonic nature of Au and the catalytic nature of M metals toward N2 dissociation, which together might facilitate ammonia production. To this end, through density functional theory, we (i) explore the feasibility of forming these surface alloys, (ii) find a pathway that may stabilize/deactivate surface M substituents during fabrication, and (iii) define a complementary route to reactivate them under operational conditions. Finally, we evaluate their reactivity toward N2, as well as their ability to support a pathway for N2 dissociation with a low thermodynamic barrier. We find that AuFe possesses similar appealing qualities, including relative stability with respect to phase separation, reversibility of Fe oxidation and reduction, and reactivity toward N2. While AuMo achieves the best affinity toward N2, its strong propensity toward oxidation could greatly limit its use.

  17. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  18. Towards a uniform and large-scale deposition of MoS2 nanosheets via sulfurization of ultra-thin Mo-based solid films.

    PubMed

    Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro

    2016-04-29

    Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.

  19. MoSi2-Base Hybrid Composites from Aeroengine Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2000-01-01

    Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved low temperature accelerated oxidation resistance by forming a Si2ON2 protective scale and thereby eliminated catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness, and significantly lowered the CTE of the MoSi2 which eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited this excellent strength and toughness improvement up to 1673 K. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites due to improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. These hybrid composites remain competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  20. Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter Leckel

    2006-10-15

    Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the rangemore » of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.« less