Sample records for v1 na zivotne

  1. Acidosis Differentially Modulates Inactivation in NaV1.2, NaV1.4, and NaV1.5 Channels

    PubMed Central

    Vilin, Yury Y.; Peters, Colin H.; Ruben, Peter C.

    2012-01-01

    NaV channels play a crucial role in neuronal and muscle excitability. Using whole-cell recordings we studied effects of low extracellular pH on the biophysical properties of NaV1.2, NaV1.4, and NaV1.5, expressed in cultured mammalian cells. Low pH produced different effects on different channel subtypes. Whereas NaV1.4 exhibited very low sensitivity to acidosis, primarily limited to partial block of macroscopic currents, the effects of low pH on gating in NaV1.2 and NaV1.5 were profound. In NaV1.2 low pH reduced apparent valence of steady-state fast inactivation, shifted the τ(V) to depolarizing potentials and decreased channels availability during onset to slow and use-dependent inactivation (UDI). In contrast, low pH delayed open-state inactivation in NaV1.5, right-shifted the voltage-dependence of window current, and increased channel availability during onset to slow and UDI. These results suggest that protons affect channel availability in an isoform-specific manner. A computer model incorporating these results demonstrates their effects on membrane excitability. PMID:22701426

  2. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents

    PubMed Central

    2016-01-01

    Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between −30 and −40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli. PMID:26936982

  3. Membrane permeable local anesthetics modulate NaV1.5 mechanosensitivity

    PubMed Central

    Beyder, Arthur; Strege, Peter R.; Bernard, Cheryl; Farrugia, Gianrico

    2012-01-01

    Voltage-gated sodium selective ion channel NaV1.5 is expressed in the heart and the gastrointestinal tract, which are mechanically active organs. NaV1.5 is mechanosensitive at stimuli that gate other mechanosensitive ion channels. Local anesthetic and antiarrhythmic drugs act upon NaV1.5 to modulate activity by multiple mechanisms. This study examined whether NaV1.5 mechanosensitivity is modulated by local anesthetics. NaV1.5 channels wereexpressed in HEK-293 cells, and mechanosensitivity was tested in cell-attached and excised inside-out configurations. Using a novel protocol with paired voltage ladders and short pressure pulses, negative patch pressure (-30 mmHg) in both configurations produced a hyperpolarizing shift in the half-point of the voltage-dependence of activation (V1/2a) and inactivation (V1/2i) by about -10 mV. Lidocaine (50 µM) inhibited the pressure-induced shift of V1/2a but not V1/2i. Lidocaine inhibited the tonic increase in pressure-induced peak current in a use-dependence protocol, but it did not otherwise affect use-dependent block. The local anesthetic benzocaine, which does not show use-dependent block, also effectively blocked a pressure-induced shift in V1/2a. Lidocaine inhibited mechanosensitivity in NaV1.5 at the local anesthetic binding site mutated (F1760A). However, a membrane impermeable lidocaine analog QX-314 did not affect mechanosensitivity of F1760A NaV1.5 when applied from either side of the membrane. These data suggest that the mechanism of lidocaine inhibition of the pressure-induced shift in the half-point of voltage-dependence of activation is separate from the mechanisms of use-dependent block. Modulation of NaV1.5 mechanosensitivity by the membrane permeable local anesthetics may require hydrophobic access and may involve membrane-protein interactions. PMID:22874086

  4. Biphasic voltage-dependent inactivation of human NaV 1.3, 1.6 and 1.7 Na+ channels expressed in rodent insulin-secreting cells.

    PubMed

    Godazgar, Mahdieh; Zhang, Quan; Chibalina, Margarita V; Rorsman, Patrik

    2018-05-01

    Na + current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na + (Na V ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary β-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-β-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary β-cells, but not in HEK cells, inactivation of a single Na V subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that Na V channels adopt different inactivation behaviours depending on the local membrane environment. Pancreatic β-cells are equipped with voltage-gated Na + channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na + current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na + channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the β-cell. It has been proposed that the biphasic inactivation reflects the contribution of different Na V α-subunits. We tested this possibility by expression of TTX-resistant variants of the Na V subunits found in β-cells (Na V 1.3, Na V 1.6 and Na V 1.7) in insulin-secreting Ins1 cells and in non-β-cells (including HEK and CHO cells). We found that all Na V subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. Na V 1.7 inactivated at 15--20 mV more negative membrane potentials than Na V 1.3 and Na V 1.6 in Ins1 cells but this small difference is insufficient to solely

  5. Reduced expression of Na(v)1.6 sodium channels and compensation by Na(v)1.2 channels in mice heterozygous for a null mutation in Scn8a.

    PubMed

    Vega, Ana V; Henry, Diane L; Matthews, Gary

    2008-09-05

    The voltage-gated sodium channel alpha subunit Na(v)1.6, encoded by the Scn8a gene, accumulates at high density at mature nodes of Ranvier of myelinated axons, replacing the Na(v)1.2 channels found at nodes earlier in development. To investigate this preferential expression of Na(v)1.6 at adult nodes, we examined isoform-specific expression of sodium channels in mice heterozygous for a null mutation in Scn8a. Immunoblots from these +/- mice had 50% of the wild-type level of Na(v)1.6 protein, and their optic-nerve nodes of Ranvier had correspondingly less anti-Na(v)1.6 immunofluorescence. Protein level and nodal immunofluorescence of the Na(v)1.2 alpha subunit increased in Scn8a(+/-) mice, keeping total sodium channel expression approximately constant despite partial loss of Na(v)1.6 channels. The results are consistent with a model in which Na(v)1.6 and Na(v)1.2 compete for binding partners at sites of high channel density, such as nodes of Ranvier. We suggest that Na(v)1.6 channels normally occupy most of the molecular machinery responsible for channel clustering because they have higher binding affinity, and not because they are exclusively recognized by mechanisms for transport and insertion of sodium channels in myelinated axons. The reduced amount of Na(v)1.6 protein in Scn8a(+/-) mice is apparently insufficient to saturate the nodal binding sites, allowing Na(v)1.2 channels to compete more successfully.

  6. Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization.

    PubMed

    Driffort, Virginie; Gillet, Ludovic; Bon, Emeline; Marionneau-Lambot, Séverine; Oullier, Thibauld; Joulin, Virginie; Collin, Christine; Pagès, Jean-Christophe; Jourdan, Marie-Lise; Chevalier, Stéphan; Bougnoux, Philippe; Le Guennec, Jean-Yves; Besson, Pierre; Roger, Sébastien

    2014-12-11

    Na(V)1.5 voltage-gated sodium channels are abnormally expressed in breast tumours and their expression level is associated with metastatic occurrence and patients' death. In breast cancer cells, Na(V)1.5 activity promotes the proteolytic degradation of the extracellular matrix and enhances cell invasiveness. In this study, we showed that the extinction of Na(V)1.5 expression in human breast cancer cells almost completely abrogated lung colonisation in immunodepressed mice (NMRI nude). Furthermore, we demonstrated that ranolazine (50 μM) inhibited Na(V)1.5 currents in breast cancer cells and reduced Na(V)1.5-related cancer cell invasiveness in vitro. In vivo, the injection of ranolazine (50 mg/kg/day) significantly reduced lung colonisation by Na(V)1.5-expressing human breast cancer cells. Taken together, our results demonstrate the importance of Na(V)1.5 in the metastatic colonisation of organs by breast cancer cells and indicate that small molecules interfering with Na(V) activity, such as ranolazine, may represent powerful pharmacological tools to inhibit metastatic development and improve cancer treatments.

  7. Visceral and somatic pain modalities reveal NaV1.7‐independent visceral nociceptive pathways

    PubMed Central

    Hockley, James R. F.; González‐Cano, Rafael; McMurray, Sheridan; Tejada‐Giraldez, Miguel A.; McGuire, Cian; Torres, Antonio; Wilbrey, Anna L.; Cibert‐Goton, Vincent; Nieto, Francisco R.; Pitcher, Thomas; Knowles, Charles H.; Baeyens, José Manuel; Wood, John N.; Winchester, Wendy J.; Bulmer, David C.; Cendán, Cruz Miguel

    2017-01-01

    Key points Voltage‐gated sodium channels play a fundamental role in determining neuronal excitability.Specifically, voltage‐gated sodium channel subtype NaV1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown.Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling.These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality‐specific manner and help to direct drug discovery efforts towards novel visceral analgesics. Abstract Voltage‐gated sodium channel NaV1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor‐specific NaV1.7 knockout mouse (NaV1.7Nav1.8) and selective small‐molecule NaV1.7 antagonist PF‐5198007. NaV1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve–gut preparations in mouse, or following antagonism of NaV1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage‐gated sodium channel α subunits revealed NaV1.7 mRNA transcripts in nearly all retrogradely

  8. Pharmacological characterization of potent and selective NaV1.7 inhibitors engineered from Chilobrachys jingzhao tarantula venom peptide JzTx-V.

    PubMed

    Moyer, Bryan D; Murray, Justin K; Ligutti, Joseph; Andrews, Kristin; Favreau, Philippe; Jordan, John B; Lee, Josie H; Liu, Dong; Long, Jason; Sham, Kelvin; Shi, Licheng; Stöcklin, Reto; Wu, Bin; Yin, Ruoyuan; Yu, Violeta; Zou, Anruo; Biswas, Kaustav; Miranda, Les P

    2018-01-01

    Identification of voltage-gated sodium channel NaV1.7 inhibitors for chronic pain therapeutic development is an area of vigorous pursuit. In an effort to identify more potent leads compared to our previously reported GpTx-1 peptide series, electrophysiology screening of fractionated tarantula venom discovered the NaV1.7 inhibitory peptide JzTx-V from the Chinese earth tiger tarantula Chilobrachys jingzhao. The parent peptide displayed nominal selectivity over the skeletal muscle NaV1.4 channel. Attribute-based positional scan analoging identified a key Ile28Glu mutation that improved NaV1.4 selectivity over 100-fold, and further optimization yielded the potent and selective peptide leads AM-8145 and AM-0422. NMR analyses revealed that the Ile28Glu substitution changed peptide conformation, pointing to a structural rationale for the selectivity gains. AM-8145 and AM-0422 as well as GpTx-1 and HwTx-IV competed for ProTx-II binding in HEK293 cells expressing human NaV1.7, suggesting that these NaV1.7 inhibitory peptides interact with a similar binding site. AM-8145 potently blocked native tetrodotoxin-sensitive (TTX-S) channels in mouse dorsal root ganglia (DRG) neurons, exhibited 30- to 120-fold selectivity over other human TTX-S channels and exhibited over 1,000-fold selectivity over other human tetrodotoxin-resistant (TTX-R) channels. Leveraging NaV1.7-NaV1.5 chimeras containing various voltage-sensor and pore regions, AM-8145 mapped to the second voltage-sensor domain of NaV1.7. AM-0422, but not the inactive peptide analog AM-8374, dose-dependently blocked capsaicin-induced DRG neuron action potential firing using a multi-electrode array readout and mechanically-induced C-fiber spiking in a saphenous skin-nerve preparation. Collectively, AM-8145 and AM-0422 represent potent, new engineered NaV1.7 inhibitory peptides derived from the JzTx-V scaffold with improved NaV selectivity and biological activity in blocking action potential firing in both DRG neurons and C-fibers.

  9. Pharmacological characterization of potent and selective NaV1.7 inhibitors engineered from Chilobrachys jingzhao tarantula venom peptide JzTx-V

    PubMed Central

    Murray, Justin K.; Ligutti, Joseph; Andrews, Kristin; Favreau, Philippe; Jordan, John B.; Lee, Josie H.; Liu, Dong; Long, Jason; Sham, Kelvin; Shi, Licheng; Stöcklin, Reto; Wu, Bin; Yin, Ruoyuan; Yu, Violeta; Zou, Anruo; Biswas, Kaustav; Miranda, Les P.

    2018-01-01

    Identification of voltage-gated sodium channel NaV1.7 inhibitors for chronic pain therapeutic development is an area of vigorous pursuit. In an effort to identify more potent leads compared to our previously reported GpTx-1 peptide series, electrophysiology screening of fractionated tarantula venom discovered the NaV1.7 inhibitory peptide JzTx-V from the Chinese earth tiger tarantula Chilobrachys jingzhao. The parent peptide displayed nominal selectivity over the skeletal muscle NaV1.4 channel. Attribute-based positional scan analoging identified a key Ile28Glu mutation that improved NaV1.4 selectivity over 100-fold, and further optimization yielded the potent and selective peptide leads AM-8145 and AM-0422. NMR analyses revealed that the Ile28Glu substitution changed peptide conformation, pointing to a structural rationale for the selectivity gains. AM-8145 and AM-0422 as well as GpTx-1 and HwTx-IV competed for ProTx-II binding in HEK293 cells expressing human NaV1.7, suggesting that these NaV1.7 inhibitory peptides interact with a similar binding site. AM-8145 potently blocked native tetrodotoxin-sensitive (TTX-S) channels in mouse dorsal root ganglia (DRG) neurons, exhibited 30- to 120-fold selectivity over other human TTX-S channels and exhibited over 1,000-fold selectivity over other human tetrodotoxin-resistant (TTX-R) channels. Leveraging NaV1.7-NaV1.5 chimeras containing various voltage-sensor and pore regions, AM-8145 mapped to the second voltage-sensor domain of NaV1.7. AM-0422, but not the inactive peptide analog AM-8374, dose-dependently blocked capsaicin-induced DRG neuron action potential firing using a multi-electrode array readout and mechanically-induced C-fiber spiking in a saphenous skin-nerve preparation. Collectively, AM-8145 and AM-0422 represent potent, new engineered NaV1.7 inhibitory peptides derived from the JzTx-V scaffold with improved NaV selectivity and biological activity in blocking action potential firing in both DRG neurons and C

  10. Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a.

    PubMed

    Deuis, Jennifer R; Dekan, Zoltan; Wingerd, Joshua S; Smith, Jennifer J; Munasinghe, Nehan R; Bhola, Rebecca F; Imlach, Wendy L; Herzig, Volker; Armstrong, David A; Rosengren, K Johan; Bosmans, Frank; Waxman, Stephen G; Dib-Hajj, Sulayman D; Escoubas, Pierre; Minett, Michael S; Christie, Macdonald J; King, Glenn F; Alewood, Paul F; Lewis, Richard J; Wood, John N; Vetter, Irina

    2017-01-20

    Human genetic studies have implicated the voltage-gated sodium channel Na V 1.7 as a therapeutic target for the treatment of pain. A novel peptide, μ-theraphotoxin-Pn3a, isolated from venom of the tarantula Pamphobeteus nigricolor, potently inhibits Na V 1.7 (IC 50 0.9 nM) with at least 40-1000-fold selectivity over all other Na V subtypes. Despite on-target activity in small-diameter dorsal root ganglia, spinal slices, and in a mouse model of pain induced by Na V 1.7 activation, Pn3a alone displayed no analgesic activity in formalin-, carrageenan- or FCA-induced pain in rodents when administered systemically. A broad lack of analgesic activity was also found for the selective Na V 1.7 inhibitors PF-04856264 and phlotoxin 1. However, when administered with subtherapeutic doses of opioids or the enkephalinase inhibitor thiorphan, these subtype-selective Na V 1.7 inhibitors produced profound analgesia. Our results suggest that in these inflammatory models, acute administration of peripherally restricted Na V 1.7 inhibitors can only produce analgesia when administered in combination with an opioid.

  11. Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a

    PubMed Central

    Deuis, Jennifer R.; Dekan, Zoltan; Wingerd, Joshua S.; Smith, Jennifer J.; Munasinghe, Nehan R.; Bhola, Rebecca F.; Imlach, Wendy L.; Herzig, Volker; Armstrong, David A.; Rosengren, K. Johan; Bosmans, Frank; Waxman, Stephen G.; Dib-Hajj, Sulayman D.; Escoubas, Pierre; Minett, Michael S.; Christie, Macdonald J.; King, Glenn F.; Alewood, Paul F.; Lewis, Richard J.; Wood, John N.; Vetter, Irina

    2017-01-01

    Human genetic studies have implicated the voltage-gated sodium channel NaV1.7 as a therapeutic target for the treatment of pain. A novel peptide, μ-theraphotoxin-Pn3a, isolated from venom of the tarantula Pamphobeteus nigricolor, potently inhibits NaV1.7 (IC50 0.9 nM) with at least 40–1000-fold selectivity over all other NaV subtypes. Despite on-target activity in small-diameter dorsal root ganglia, spinal slices, and in a mouse model of pain induced by NaV1.7 activation, Pn3a alone displayed no analgesic activity in formalin-, carrageenan- or FCA-induced pain in rodents when administered systemically. A broad lack of analgesic activity was also found for the selective NaV1.7 inhibitors PF-04856264 and phlotoxin 1. However, when administered with subtherapeutic doses of opioids or the enkephalinase inhibitor thiorphan, these subtype-selective NaV1.7 inhibitors produced profound analgesia. Our results suggest that in these inflammatory models, acute administration of peripherally restricted NaV1.7 inhibitors can only produce analgesia when administered in combination with an opioid. PMID:28106092

  12. Inhibition of human Na(v)1.5 sodium channels by strychnine and its analogs.

    PubMed

    Yuan, Chunhua; Sun, Lirong; Zhang, Meng; Li, Shuji; Wang, Xuemin; Gao, Tianming; Zhu, Xinhong

    2011-08-15

    Strychnine and brucine from the seeds of the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors. In this study, we have characterized the pharmacological properties of strychnine and its analogs on human Na(v)1.5 channels to assess their potential therapeutic advantage in certain arrhythmias. Among the eight alkaloids, only strychnine and icajine exhibited inhibition potency on the Na(v)1.5 channel with the half-maximum inhibition (IC(50)) values of 83.1μM and 104.6μM, respectively. Structure-function analysis indicated that the increased bulky methoxy groups on the phenyl ring or the negatively charged oxygen atom may account for this lack of inhibition on the Na(v)1.5 channel. Strychnine and icajine may bind to the channel by cation-π interactions. The substitution with a large side chain on the phenyl ring or the increased molecular volume may alter the optimized position for the compound close to the binding sites of the channel. Strychnine and icajine bind to the Na(v)1.5 channel with a new mechanism that is different from TTX and local anesthetics. They bind to the outer vestibule of the channel pore with fast association and dissociation rates at resting state. Strychnine and icajine had little effect on steady-state fast inactivation but markedly shifted the slow inactivation of Na(v)1.5 currents toward more hyperpolarized potentials. The property of icajine influencing slow-inactivated state of Na(v)1.5 channel would be potential therapeutic advantages in certain arrhythmias. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Persistent modification of Na{sub v}1.9 following chronic exposure to insecticides and pyridostigmine bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutter, Thomas J., E-mail: tnutter@dental.ufl.edu; Cooper, Brian Y., E-mail: bcooper@dental.ufl.edu

    Many veterans of the 1991 Gulf War (GW) returned from that conflict with a widespread chronic pain affecting deep tissues. Recently, we have shown that a 60 day exposure to the insecticides permethrin, chlorpyrifos, and pyridostigmine bromide (NTPB) had little influence on nociceptor action potential forming Na{sub v}1.8, but increased K{sub v}7 mediated inhibitory currents 8 weeks after treatment. Using the same exposure regimen, we used whole cell patch methods to examine whether the influences of NTPB could be observed on Na{sub v}1.9 expressed in muscle and vascular nociceptors. During a 60 day exposure to NTPB, rats exhibited lowered musclemore » pain thresholds and increased rest periods, but these measures subsequently returned to normal levels. Eight and 12 weeks after treatments ceased, DRG neurons were excised from the sensory ganglia. Whole cell patch studies revealed little change in voltage dependent activation and deactivation of Na{sub v}1.9, but significant increases in the amplitude of Na{sub v}1.9 were observed 8 weeks after exposure. Cellular studies, at the 8 week delay, revealed that NTPB also significantly prolonged action potential duration and afterhyperpolarization (22 °C). Acute application of permethrin (10 μM) also increased the amplitude of Na{sub v}1.9 in skin, muscle and vascular nociceptors. In conclusion, chronic exposure to Gulf War agents produced long term changes in the amplitude of Na{sub v}1.9 expressed in muscle and vascular nociceptors. The reported increases in K{sub v}7 amplitude may have been an adaptive response to increased Na{sub v}1.9, and effectively suppressed behavioral pain measures in the post treatment period. Factors that alter the balance between Na{sub v}1.9 and K{sub v}7 could release spontaneous discharge and produce chronic deep tissue pain. - Highlights: • Rats were treated 60 days with permethrin, chlorpyrifos and pyridostigmine bromide. • 8 weeks after treatments, Nav1.9 activation and

  14. Localisation of SCN10A gene product Na(v)1.8 and novel pain-related ion channels in human heart.

    PubMed

    Facer, Paul; Punjabi, Prakash P; Abrari, Andleeb; Kaba, Riyaz A; Severs, Nicholas J; Chambers, John; Kooner, Jaspal S; Anand, Praveen

    2011-01-01

    We have shown that the gene SCN10A encoding the sodium channel Na(v)1.8 is a susceptibility factor for heart block and serious ventricular arrhythmia. Since Na(v)1.8 is known to be present in nerve fibres that mediate pain, it may be related to both cardiac pain and dysrhythmia. The localisation of Na(v)1.8 and other key nociceptive ion channels, including Na(v)1.7, Na(v)1.9, capsaicin receptor TRPV1, and purinergic receptor P2X(3), have not been reported in human heart. The aim of this study was to determine the distribution of Na(v)1.8, related sodium and other sensory channels in human cardiac tissue, and correlate their density with sympathetic nerves, regenerating nerves (GAP-43), and vascularity. Human heart atrial appendage tissues (n = 13) were collected during surgery for valve disease. Tissues were investigated by immunohistology using specific antibodies to Na(v)1.8 and other markers. Na(v)1.8 immunoreactivity was detected in nerve fibres and fascicles in the myocardium, often closely associated with small capillaries. Na(v)1.8 nerve fibres per mm(2) correlated significantly with vascular markers. Na(v)1.8-immunoreactivity was present also in cardiomyocytes with a similar distribution pattern to that seen with connexins, the specialised gap junction proteins of myocardial intercalated discs. Na(v)1.5-immunoreactivity was detected in cardiomyocytes but not in nerve fibres. Na(v)1.7, Na(v)1.9, TRPV1, P2X(3)/P2X(2), and GAP43 positive nerve fibres were relatively sparse, whereas sympathetic innervation and connexin43 were abundant. We conclude that sodium channel Na(v)1.8 is present in sensory nerves and cardiomyocytes of human heart. Na(v)1.8 and other pain channels provide new targets for the understanding and treatment of cardiac pain and dysrhythmia.

  15. Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy

    PubMed Central

    Blesneac, Iulia; Themistocleous, Andreas C.; Fratter, Carl; Conrad, Linus J.; Ramirez, Juan D.; Cox, James J.; Tesfaye, Solomon; Shillo, Pallai R.; Rice, Andrew S.C.; Tucker, Stephen J.

    2018-01-01

    Abstract Diabetic peripheral neuropathy (DPN) is a common disabling complication of diabetes. Almost half of the patients with DPN develop neuropathic pain (NeuP) for which current analgesic treatments are inadequate. Understanding the role of genetic variability in the development of painful DPN is needed for improved understanding of pain pathogenesis for better patient stratification in clinical trials and to target therapy more appropriately. Here, we examined the relationship between variants in the voltage-gated sodium channel NaV1.7 and NeuP in a deeply phenotyped cohort of patients with DPN. Although no rare variants were found in 78 participants with painless DPN, we identified 12 rare NaV1.7 variants in 10 (out of 111) study participants with painful DPN. Five of these variants had previously been described in the context of other NeuP disorders and 7 have not previously been linked to NeuP. Those patients with rare variants reported more severe pain and greater sensitivity to pressure stimuli on quantitative sensory testing. Electrophysiological characterization of 2 of the novel variants (M1852T and T1596I) demonstrated that gain of function changes as a consequence of markedly impaired channel fast inactivation. Using a structural model of NaV1.7, we were also able to provide further insight into the structural mechanisms underlying fast inactivation and the role of the C-terminal domain in this process. Our observations suggest that rare NaV1.7 variants contribute to the development NeuP in patients with DPN. Their identification should aid understanding of sensory phenotype, patient stratification, and help target treatments effectively. PMID:29176367

  16. ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors.

    PubMed

    Schmalhofer, William A; Calhoun, Jeffrey; Burrows, Rachel; Bailey, Timothy; Kohler, Martin G; Weinglass, Adam B; Kaczorowski, Gregory J; Garcia, Maria L; Koltzenburg, Martin; Priest, Birgit T

    2008-11-01

    Voltage-gated sodium (Na(V)1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to Na(V)1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding Na(V)1.7, cause channelopathy-associated indifference to pain (CIP), whereas gain-of-function mutations are associated with two inherited painful neuropathies. Although the human genetic data make Na(V)1.7 an attractive target for the development of analgesics, pharmacological proof-of-concept in experimental pain models requires Na(V)1.7-selective channel blockers. Here, we show that the tarantula venom peptide ProTx-II selectively interacts with Na(V)1.7 channels, inhibiting Na(V)1.7 with an IC(50) value of 0.3 nM, compared with IC(50) values of 30 to 150 nM for other heterologously expressed Na(V)1 subtypes. This subtype selectivity was abolished by a point mutation in DIIS3. It is interesting that application of ProTx-II to desheathed cutaneous nerves completely blocked the C-fiber compound action potential at concentrations that had little effect on Abeta-fiber conduction. ProTx-II application had little effect on action potential propagation of the intact nerve, which may explain why ProTx-II was not efficacious in rodent models of acute and inflammatory pain. Mono-iodo-ProTx-II ((125)I-ProTx-II) binds with high affinity (K(d) = 0.3 nM) to recombinant hNa(V)1.7 channels. Binding of (125)I-ProTx-II is insensitive to the presence of other well characterized Na(V)1 channel modulators, suggesting that ProTx-II binds to a novel site, which may be more conducive to conferring subtype selectivity than the site occupied by traditional local anesthetics and anticonvulsants. Thus, the (125)I-ProTx-II binding assay, described here, offers a new tool in the search for novel Na(V)1.7-selective blockers.

  17. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief

    PubMed Central

    Lee, Jun-Ho; Park, Chul-Kyu; Chen, Gang; Han, Qingjian; Xie, Rou-Gang; Liu, Tong; Ji, Ru-Rong; Lee, Seok-Yong

    2014-01-01

    Summary Voltage-gated sodium (NaV) channels control the upstroke of the action potentials in excitable cells. Multiple studies have shown distinct roles of NaV channel subtypes in human physiology and diseases, but subtype-specific therapeutics are lacking and the current efforts have been limited to small molecules. Here we present a monoclonal antibody that targets the voltage-sensor paddle of NaV1.7, the subtype critical for pain sensation. This antibody not only inhibits NaV1.7 with high selectivity but also effectively suppresses inflammatory and neuropathic pain in mice. Interestingly, the antibody inhibits acute and chronic itch, despite well-documented differences in pain and itch modulation. Using this antibody, we discovered that NaV1.7 plays a key role in spinal cord nociceptive and pruriceptive synaptic transmission. Our studies reveal that NaV1.7 is a target for itch management and the antibody has therapeutic potential for suppressing pain and itch. Our antibody strategy may have broad applications for voltage-gated cation channels. PMID:24856969

  18. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias.

    PubMed

    Wang, Hong-Gang; Zhu, Wandi; Kanter, Ronald J; Silva, Jonathan R; Honeywell, Christina; Gow, Robert M; Pitt, Geoffrey S

    2016-03-01

    Inherited autosomal dominant mutations in cardiac sodium channels (NaV1.5) cause various arrhythmias, such as long QT syndrome and Brugada syndrome. Although dozens of mutations throughout the protein have been reported, there are few reported mutations within a voltage sensor S4 transmembrane segment and few that are homozygous. Here we report analysis of a novel lidocaine-sensitive recessive mutation, p.R1309H, in the NaV1.5 DIII/S4 voltage sensor in a patient with a complex arrhythmia syndrome. We expressed the wild type or mutant NaV1.5 heterologously for analysis with the patch-clamp and voltage clamp fluorometry (VCF) techniques. p.R1309H depolarized the voltage-dependence of activation, hyperpolarized the voltage-dependence of inactivation, and slowed recovery from inactivation, thereby reducing the channel availability at physiologic membrane potentials. Additionally, p.R1309H increased the "late" Na(+) current. The location of the mutation in DIIIS4 prompted testing for a gating pore current. We observed an inward current at hyperpolarizing voltages that likely exacerbates the loss-of-function defects at resting membrane potentials. Lidocaine reduced the gating pore current. The p.R1309H homozygous NaV1.5 mutation conferred both gain-of-function and loss-of-function effects on NaV1.5 channel activity. Reduction of a mutation-induced gating pore current by lidocaine suggested a therapeutic mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Differential calcium sensitivity in NaV 1.5 mixed syndrome mutants.

    PubMed

    Abdelsayed, Mena; Baruteau, Alban-Elouen; Gibbs, Karen; Sanatani, Shubhayan; Krahn, Andrew D; Probst, Vincent; Ruben, Peter C

    2017-09-15

    SCN5a mutations may express gain-of-function (Long QT Syndrome-3), loss-of-function (Brugada Syndrome 1) or both (mixed syndromes), depending on the mutation and environmental triggers. One such trigger may be an increase in cytosolic calcium, accompanying exercise. Many mixed syndromes mutants, including ∆KPQ, E1784K, 1795insD and Q1909R, are found in calcium-sensitive regions. Elevated cytosolic calcium attenuates gain-of-function properties in ∆KPQ, 1795insD and Q1909R, but not in E1784K. By contrast, elevated cytosolic calcium further exacerbates gain-of-function in E1784K by destabilizing slow inactivation. Action potential modelling, using a modified O'Hara Rudy model, suggests that elevated heart rate rescues action potential duration in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Action potential simulations suggest that E1784K carriers have an increased intracellular sodium-to-calcium ratio under bradycardia and tachycardia conditions. Elevated cytosolic calcium, which is common during high heart rates, ameliorates or exacerbates the mixed syndrome phenotype depending on the genetic signature. Inherited arrhythmias may arise from mutations in the gene for SCN5a, which encodes the cardiac voltage-gated sodium channel, Na V 1.5. Mutants in Na V 1.5 result in Brugada Syndrome (BrS1), Long-QT Syndrome (LQT3) or mixed syndromes (an overlap of BrS1/LQT3). Exercise is a potential arrhythmogenic trigger in mixed syndromes. We aimed to determine the effects of elevated cytosolic calcium, which is common during exercise, in mixed syndrome Na V 1.5 mutants. We used whole-cell patch clamp to assess the biophysical properties of Na V 1.5 wild-type (WT), ∆KPQ, E1784K, 1795insD and Q1909R mutants in human embryonic kidney 293 cells transiently transfected with the Na V 1.5 α subunit (WT or mutants), β1 subunit and enhanced green fluorescent protein. Voltage-dependence and kinetics were measured at cytosolic calcium levels of approximately 0, 500 and 2500

  20. Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased NaV1.5 current and mechanosensitivity.

    PubMed

    Strege, Peter R; Mazzone, Amelia; Bernard, Cheryl E; Neshatian, Leila; Gibbons, Simon J; Saito, Yuri A; Tester, David J; Calvert, Melissa L; Mayer, Emeran A; Chang, Lin; Ackerman, Michael J; Beyder, Arthur; Farrugia, Gianrico

    2018-04-01

    The SCN5A-encoded voltage-gated mechanosensitive Na + channel Na V 1.5 is expressed in human gastrointestinal smooth muscle cells and interstitial cells of Cajal. Na V 1.5 contributes to smooth muscle electrical slow waves and mechanical sensitivity. In predominantly Caucasian irritable bowel syndrome (IBS) patient cohorts, 2-3% of patients have SCN5A missense mutations that alter Na V 1.5 function and may contribute to IBS pathophysiology. In this study we examined a racially and ethnically diverse cohort of IBS patients for SCN5A missense mutations, compared them with IBS-negative controls, and determined the resulting Na V 1.5 voltage-dependent and mechanosensitive properties. All SCN5A exons were sequenced from somatic DNA of 252 Rome III IBS patients with diverse ethnic and racial backgrounds. Missense mutations were introduced into wild-type SCN5A by site-directed mutagenesis and cotransfected with green fluorescent protein into HEK-293 cells. Na V 1.5 voltage-dependent and mechanosensitive functions were studied by whole cell electrophysiology with and without shear force. Five of 252 (2.0%) IBS patients had six rare SCN5A mutations that were absent in 377 IBS-negative controls. Six of six (100%) IBS-associated Na V 1.5 mutations had voltage-dependent gating abnormalities [current density reduction (R225W, R433C, R986Q, and F1293S) and altered voltage dependence (R225W, R433C, R986Q, G1037V, and F1293S)], and at least one kinetic parameter was altered in all mutations. Four of six (67%) IBS-associated SCN5A mutations (R225W, R433C, R986Q, and F1293S) resulted in altered Na V 1.5 mechanosensitivity. In this racially and ethnically diverse cohort of IBS patients, we show that 2% of IBS patients harbor SCN5A mutations that are absent in IBS-negative controls and result in Na V 1.5 channels with abnormal voltage-dependent and mechanosensitive function. NEW & NOTEWORTHY The voltage-gated Na + channel Na V 1.5 contributes to smooth muscle physiology and electrical

  1. Human Na(v)1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons.

    PubMed

    Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2015-05-01

    Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Na(v)1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Na(v)1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Na(v)1.8 channels. We also show that native human DRG neurons recapitulate these properties of Na(v)1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Na(v)1.8, which contribute to the firing properties of human DRG neurons.

  2. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglia neurons

    PubMed Central

    Schink, Martin; Leipolcf, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H.

    2016-01-01

    Dorsal root ganglia (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 µM) or low-intensity blue-light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8−/−), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and at higher concentrations progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure. PMID:26383867

  3. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons.

    PubMed

    Schink, Martin; Leipold, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H

    2016-01-01

    Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 μM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8(-/-)), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure.

  4. A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis

    PubMed Central

    Wu, Fenfen; Mi, Wentao; Burns, Dennis K.; Fu, Yu; Gray, Hillery F.; Struyk, Arie F.; Cannon, Stephen C.

    2011-01-01

    Hypokalemic periodic paralysis (HypoPP) is an ion channelopathy of skeletal muscle characterized by attacks of muscle weakness associated with low serum K+. HypoPP results from a transient failure of muscle fiber excitability. Mutations in the genes encoding a calcium channel (CaV1.1) and a sodium channel (NaV1.4) have been identified in HypoPP families. Mutations of NaV1.4 give rise to a heterogeneous group of muscle disorders, with gain-of-function defects causing myotonia or hyperkalemic periodic paralysis. To address the question of specificity for the allele encoding the NaV1.4-R669H variant as a cause of HypoPP and to produce a model system in which to characterize functional defects of the mutant channel and susceptibility to paralysis, we generated knockin mice carrying the ortholog of the gene encoding the NaV1.4-R669H variant (referred to herein as R669H mice). Homozygous R669H mice had a robust HypoPP phenotype, with transient loss of muscle excitability and weakness in low-K+ challenge, insensitivity to high-K+ challenge, dominant inheritance, and absence of myotonia. Recovery was sensitive to the Na+/K+-ATPase pump inhibitor ouabain. Affected fibers had an anomalous inward current at hyperpolarized potentials, consistent with the proposal that a leaky gating pore in R669H channels triggers attacks, whereas a reduction in the amplitude of action potentials implies additional loss-of-function changes for the mutant NaV1.4 channels. PMID:21881211

  5. SCN5A (NaV1.5) Variant Functional Perturbation and Clinical Presentation: Variants of a Certain Significance.

    PubMed

    Kroncke, Brett M; Glazer, Andrew M; Smith, Derek K; Blume, Jeffrey D; Roden, Dan M

    2018-05-01

    Accurately predicting the impact of rare nonsynonymous variants on disease risk is an important goal in precision medicine. Variants in the cardiac sodium channel SCN5A (protein Na V 1.5; voltage-dependent cardiac Na+ channel) are associated with multiple arrhythmia disorders, including Brugada syndrome and long QT syndrome. Rare SCN5A variants also occur in ≈1% of unaffected individuals. We hypothesized that in vitro electrophysiological functional parameters explain a statistically significant portion of the variability in disease penetrance. From a comprehensive literature review, we quantified the number of carriers presenting with and without disease for 1712 reported SCN5A variants. For 356 variants, data were also available for 5 Na V 1.5 electrophysiological parameters: peak current, late/persistent current, steady-state V1/2 of activation and inactivation, and recovery from inactivation. We found that peak and late current significantly associate with Brugada syndrome ( P <0.001; ρ=-0.44; Spearman rank test) and long QT syndrome disease penetrance ( P <0.001; ρ=0.37). Steady-state V1/2 activation and recovery from inactivation associate significantly with Brugada syndrome and long QT syndrome penetrance, respectively. Continuous estimates of disease penetrance align with the current American College of Medical Genetics classification paradigm. Na V 1.5 in vitro electrophysiological parameters are correlated with Brugada syndrome and long QT syndrome disease risk. Our data emphasize the value of in vitro electrophysiological characterization and incorporating counts of affected and unaffected carriers to aid variant classification. This quantitative analysis of the electrophysiological literature should aid the interpretation of Na V 1.5 variant electrophysiological abnormalities and help improve Na V 1.5 variant classification. © 2018 American Heart Association, Inc.

  6. Structure and function of splice variants of the cardiac voltage-gated sodium channel Na(v)1.5.

    PubMed

    Schroeter, Annett; Walzik, Stefan; Blechschmidt, Steve; Haufe, Volker; Benndorf, Klaus; Zimmer, Thomas

    2010-07-01

    Voltage-gated sodium channels mediate the rapid upstroke of the action potential in excitable tissues. The tetrodotoxin (TTX) resistant isoform Na(v)1.5, encoded by the SCN5A gene, is the predominant isoform in the heart. This channel plays a key role for excitability of atrial and ventricular cardiomyocytes and for rapid impulse propagation through the specific conduction system. During recent years, strong evidence has been accumulated in support of the expression of several Na(v)1.5 splice variants in the heart, and in various other tissues and cell lines including brain, dorsal root ganglia, breast cancer cells and neuronal stem cell lines. This review summarizes our knowledge on the structure and putative function of nine Na(v)1.5 splice variants detected so far. Attention will be paid to the distinct biophysical properties of the four functional splice variants, to the pronounced tissue- and species-specific expression, and to the developmental regulation of Na(v)1.5 splicing. The implications of alternative splicing for SCN5A channelopathies, and for a better understanding of genotype-phenotype correlations, are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Different role of TTX-sensitive voltage-gated sodium channel (NaV 1) subtypes in action potential initiation and conduction in vagal airway nociceptors.

    PubMed

    Kollarik, M; Sun, H; Herbstsomer, R A; Ru, F; Kocmalova, M; Meeker, S N; Undem, B J

    2018-04-15

    The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (Na V 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective Na V 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing Na V 1 blocking drugs for topical application to the respiratory tract. The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (Na V 1s). We evaluated the role of TTX-sensitive and TTX-resistant Na V 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel Na V 1.7 along with TTX-resistant Na V 1.8 and Na V 1.9. Tracheal nodose neurons also expressed Na V 1.7 but, less frequently, Na V 1.8 and Na V 1.9. Na V 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other Na V 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in

  8. Mice with an NaV1.4 sodium channel null allele have latent myasthenia, without susceptibility to periodic paralysis

    PubMed Central

    Wu, Fenfen; Mi, Wentao; Fu, Yu; Struyk, Arie

    2016-01-01

    Over 60 mutations of SCN4A encoding the NaV1.4 sodium channel of skeletal muscle have been identified in patients with myotonia, periodic paralysis, myasthenia, or congenital myopathy. Most mutations are missense with gain-of-function defects that cause susceptibility to myotonia or periodic paralysis. Loss-of-function from enhanced inactivation or null alleles is rare and has been associated with myasthenia and congenital myopathy, while a mix of loss and gain of function changes has an uncertain relation to hypokalaemic periodic paralysis. To better define the functional consequences for a loss-of-function, we generated NaV1.4 null mice by deletion of exon 12. Heterozygous null mice have latent myasthenia and a right shift of the force-stimulus relation, without evidence of periodic paralysis. Sodium current density was half that of wild-type muscle and no compensation by retained expression of the foetal NaV1.5 isoform was detected. Mice null for NaV1.4 did not survive beyond the second postnatal day. This mouse model shows remarkable preservation of muscle function and viability for haploinsufficiency of NaV1.4, as has been reported in humans, with a propensity for pseudo-myasthenia caused by a marginal Na+ current density to support sustained high-frequency action potentials in muscle. PMID:27048647

  9. 3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na4V2(PO4)3∥Na3V2(PO4)3.

    PubMed

    Yao, Xuhui; Zhu, Zixuan; Li, Qi; Wang, Xuanpeng; Xu, Xiaoming; Meng, Jiashen; Ren, Wenhao; Zhang, Xinhe; Huang, Yunhui; Mai, Liqiang

    2018-03-28

    Symmetric sodium-ion batteries (SIBs) are considered as promising candidates for large-scale energy storage owing to the simplified manufacture and wide abundance of sodium resources. However, most symmetric SIBs suffer from suppressed energy density. Here, a superior congeneric Na 4 V 2 (PO 4 ) 3 anode is synthesized via electrochemical preintercalation, and a high energy density symmetric SIB (Na 3 V 2 (PO 4 ) 3 as a cathode and Na 4 V 2 (PO 4 ) 3 as an anode) based on the deepened redox couple of V 4+ /V 2+ is built for the first time. When measured in half cell, both electrodes show stabilized electrochemical performance (over 3000 cycles). The symmetric SIBs exhibit an output voltage of 3.0 V and a cell-level energy density of 138 W h kg -1 . Furthermore, the sodium storage mechanism under the expanded measurement range of 0.01-3.9 V is disclosed through an in situ X-ray diffraction technique.

  10. High-Throughput Screening of Na(V)1.7 Modulators Using a Giga-Seal Automated Patch Clamp Instrument.

    PubMed

    Chambers, Chris; Witton, Ian; Adams, Cathryn; Marrington, Luke; Kammonen, Juha

    2016-03-01

    Voltage-gated sodium (Na(V)) channels have an essential role in the initiation and propagation of action potentials in excitable cells, such as neurons. Of these channels, Na(V)1.7 has been indicated as a key channel for pain sensation. While extensive efforts have gone into discovering novel Na(V)1.7 modulating compounds for the treatment of pain, none has reached the market yet. In the last two years, new compound screening technologies have been introduced, which may speed up the discovery of such compounds. The Sophion Qube(®) is a next-generation 384-well giga-seal automated patch clamp (APC) screening instrument, capable of testing thousands of compounds per day. By combining high-throughput screening and follow-up compound testing on the same APC platform, it should be possible to accelerate the hit-to-lead stage of ion channel drug discovery and help identify the most interesting compounds faster. Following a period of instrument beta-testing, a Na(V)1.7 high-throughput screen was run with two Pfizer plate-based compound subsets. In total, data were generated for 158,000 compounds at a median success rate of 83%, which can be considered high in APC screening. In parallel, IC50 assay validation and protocol optimization was completed with a set of reference compounds to understand how the IC50 potencies generated on the Qube correlate with data generated on the more established Sophion QPatch(®) APC platform. In summary, the results presented here demonstrate that the Qube provides a comparable but much faster approach to study Na(V)1.7 in a robust and reliable APC assay for compound screening.

  11. Pure Single-Crystalline Na1.1V3O7.9 Nanobelts as Superior Cathode Materials for Rechargeable Sodium-Ion Batteries.

    PubMed

    Yuan, Shuang; Liu, Yong-Bing; Xu, Dan; Ma, De-Long; Wang, Sai; Yang, Xiao-Hong; Cao, Zhan-Yi; Zhang, Xin-Bo

    2015-03-01

    Pure single-crystalline Na 1.1 V 3 O 7.9 nanobelts are successfully synthesized for the first time via a facile yet effective strategy. When used as cathode materials for Na-ion batteries, the novel nanobelts exhibit excellent electrochemical performance. Given the ease and effectiveness of the synthesis route as well as the very promising electrochemical performance, the results obtained may be extended to other next-generation cathode materials for Na-ion batteries.

  12. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-01-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models, and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain following local inflammation of the rat lumbar sensory ganglia. In normal DRG, quantitative PCR showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6′ immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C-cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8, because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7, because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain, and that some pain conditions may be primarily mediated by myelinated A-fiber sensory neurons. PMID:23622763

  13. Boron Substituted Na 3 V 2 (P 1 -x B x O 4 ) 3 Cathode Materials with Enhanced Performance for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Pu; Wang, Xiaofang; Wang, Tianshi

    The development of excellent performance of Na-ion batteries remains great challenge owing to the poor stability and sluggish kinetics of cathode materials. Herein, B substituted Na 3V 2P 3–xB xO 12 (0 ≤ x ≤ 1) as stable cathode materials for Na-ion battery is presented. A combined experimental and theoretical investigations on Na 3V 2P 3–xB xO 12 (0 ≤ x ≤ 1) are undertaken to reveal the evolution of crystal and electronic structures and Na storage properties associated with various concentration of B. X-ray diffraction results indicate that the crystal structure of Na 3V 2P 3–xB xO 12 (0more » ≤ x ≤ 1/3) consisted of rhombohedral Na 3V 2(PO 4) 3 with tiny shrinkage of crystal lattice. X-ray absorption spectra and the calculated crystal structures all suggest that the detailed local structural distortion of substituted materials originates from the slight reduction of V–O distances. Na 3V 2P 3-1/6B 1/6O 12 significantly enhances the structural stability and electrochemical performance, giving remarkable enhanced capacity of 100 and 70 mAh g -1 when the C-rate increases to 5 C and 10 C. Spin-polarized density functional theory (DFT) calculation reveals that, as compared with the pristine Na 3V 2(PO 4) 3, the superior electrochemical performance of the substituted materials can be attributed to the emergence of new boundary states near the band gap, lower Na + diffusion energy barriers, and higher structure stability.« less

  14. Direct evidence for high affinity blockade of NaV1.6 channel subtype by huwentoxin-IV spider peptide, using multiscale functional approaches.

    PubMed

    Gonçalves, Tânia C; Boukaiba, Rachid; Molgó, Jordi; Amar, Muriel; Partiseti, Michel; Servent, Denis; Benoit, Evelyne

    2018-05-01

    The Chinese bird spider huwentoxin-IV (HwTx-IV) is well-known to be a highly potent blocker of Na V 1.7 subtype of voltage-gated sodium (Na V ) channels, a genetically validated analgesic target, and thus promising as a potential lead molecule for the development of novel pain therapeutics. In the present study, the interaction between HwTx-IV and Na V 1.6 channel subtype was investigated using multiscale (from in vivo to individual cell) functional approaches. HwTx-IV was approximatively 2 times more efficient than tetrodotoxin (TTX) to inhibit the compound muscle action potential recorded from the mouse skeletal neuromuscular system in vivo, and 30 times more effective to inhibit nerve-evoked than directly-elicited muscle contractile force of isolated mouse hemidiaphragms. These results strongly suggest that the inhibition of nerve-evoked skeletal muscle functioning, produced by HwTx-IV, resulted from a toxin-induced preferential blockade of Na V 1.6, compared to Na V 1.4, channel subtype. This was confirmed by whole-cell automated patch-clamp experiments performed on human embryonic kidney (HEK)-293 cells overexpressing hNa V 1.1-1.8 channel subtypes. HwTx-IV was also approximatively 850 times more efficient to inhibit TTX-sensitive than TTX-resistant sodium currents recorded from mouse dorsal root ganglia neurons. Finally, based on our data, we predict that blockade of the Na V 1.6 channel subtype was involved in the in vivo toxicity of HwTx-IV, although this toxicity was more than 2 times lower than that of TTX. In conclusion, our results provide detailed information regarding the effects of HwTx-IV and allow a better understanding of the side-effect mechanisms involved in vivo and of channel subtype interactions resulting from the toxin activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Divergent actions of the pyrethroid insecticides S-bioallethrin, tefluthrin, and deltamethrin on rat Na{sub v}1.6 sodium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan Jianguo; Soderlund, David M., E-mail: dms6@cornell.ed

    2010-09-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}{sub 1} and {beta}{sub 2} auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 {mu}M), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were {approx}more » 9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 {mu}M), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 {mu}M), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin {approx} 15-fold and that tefluthrin was {approx} 10-fold more potent than deltamethrin as a use-dependent modifier of Na{sub v}1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Na{sub v}1.2 sodium channel coexpressed with the rat {beta}{sub 1} and {beta}{sub 2} subunits in oocytes showed that the Na{sub v}1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Na{sub v}1.2 isoform. These results implicate sodium channels containing the Na{sub v}1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.« less

  16. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel NaV1.2.

    PubMed

    Hovey, Liam; Fowler, C Andrew; Mahling, Ryan; Lin, Zesen; Miller, Mark Stephen; Marx, Dagan C; Yoder, Jesse B; Kim, Elaine H; Tefft, Kristin M; Waite, Brett C; Feldkamp, Michael D; Yu, Liping; Shea, Madeline A

    2017-05-01

    Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel Na V 1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat Na V 1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca 2+ ) 4 -CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca 2+ ) 4 -CaM, NMR demonstrated that Na V 1.2 IQ motif peptide (Na V 1.2 IQp ) exclusively made contacts with C-domain residues of CaM (CaM C ). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca 2+ ) 2 -CaM C bound to Na V 1.2 IQp . The polarity of (Ca 2+ ) 2 -CaM C relative to the IQ motif was opposite to that seen in apo CaM C -Na v 1.2 IQp (2KXW), revealing that CaM C recognizes nested, anti-parallel sites in Na v 1.2 IQp . Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaM N allowing interactions with non-IQ Na V 1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes

    PubMed Central

    Leipold, Enrico; Borges, Adolfo

    2012-01-01

    Scorpion β toxins, peptides of ∼70 residues, specifically target voltage-gated sodium (NaV) channels to cause use-dependent subthreshold channel openings via a voltage–sensor trapping mechanism. This excitatory action is often overlaid by a not yet understood depressant mode in which NaV channel activity is inhibited. Here, we analyzed these two modes of gating modification by β-toxin Tz1 from Tityus zulianus on heterologously expressed NaV1.4 and NaV1.5 channels using the whole cell patch-clamp method. Tz1 facilitated the opening of NaV1.4 in a use-dependent manner and inhibited channel opening with a reversed use dependence. In contrast, the opening of NaV1.5 was exclusively inhibited without noticeable use dependence. Using chimeras of NaV1.4 and NaV1.5 channels, we demonstrated that gating modification by Tz1 depends on the specific structure of the voltage sensor in domain 2. Although residue G658 in NaV1.4 promotes the use-dependent transitions between Tz1 modification phenotypes, the equivalent residue in NaV1.5, N803, abolishes them. Gating charge neutralizations in the NaV1.4 domain 2 voltage sensor identified arginine residues at positions 663 and 669 as crucial for the outward and inward movement of this sensor, respectively. Our data support a model in which Tz1 can stabilize two conformations of the domain 2 voltage sensor: a preactivated outward position leading to NaV channels that open at subthreshold potentials, and a deactivated inward position preventing channels from opening. The results are best explained by a two-state voltage–sensor trapping model in that bound scorpion β toxin slows the activation as well as the deactivation kinetics of the voltage sensor in domain 2. PMID:22450487

  18. Highly Durable Na2V6O16·1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery.

    PubMed

    Hu, Ping; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Yan, Mengyu; Li, Jiantao; Luo, Wen; Yang, Wei; Zhang, Wencui; Zhou, Liang; Zhou, Zhiqiang; Mai, Liqiang

    2018-03-14

    Rechargeable aqueous zinc-ion batteries are highly desirable for grid-scale applications due to their low cost and high safety; however, the poor cycling stability hinders their widespread application. Herein, a highly durable zinc-ion battery system with a Na 2 V 6 O 16 ·1.63H 2 O nanowire cathode and an aqueous Zn(CF 3 SO 3 ) 2 electrolyte has been developed. The Na 2 V 6 O 16 ·1.63H 2 O nanowires deliver a high specific capacity of 352 mAh g -1 at 50 mA g -1 and exhibit a capacity retention of 90% over 6000 cycles at 5000 mA g -1 , which represents the best cycling performance compared with all previous reports. In contrast, the NaV 3 O 8 nanowires maintain only 17% of the initial capacity after 4000 cycles at 5000 mA g -1 . A single-nanowire-based zinc-ion battery is assembled, which reveals the intrinsic Zn 2+ storage mechanism at nanoscale. The remarkable electrochemical performance especially the long-term cycling stability makes Na 2 V 6 O 16 ·1.63H 2 O a promising cathode for a low-cost and safe aqueous zinc-ion battery.

  19. Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals

    PubMed Central

    Liu, Zhen; Wang, Wei; Zhang, Tong-Zuo; Li, Gong-Hua; He, Kai; Huang, Jing-Fei; Jiang, Xue-Long; Murphy, Robert W.; Shi, Peng

    2014-01-01

    Hibernating mammals need to be insensitive to acid in order to cope with conditions of high CO2; however, the molecular basis of acid tolerance remains largely unknown. The African naked mole-rat (Heterocephalus glaber) and hibernating mammals share similar environments and physiological features. In the naked mole-rat, acid insensitivity has been shown to be conferred by the functional motif of the sodium ion channel NaV1.7. There is now an opportunity to evaluate acid insensitivity in other taxa. In this study, we tested for functional convergence of NaV1.7 in 71 species of mammals, including 22 species that hibernate. Our analyses revealed a functional convergence of amino acid sequences, which occurred at least six times independently in mammals that hibernate. Evolutionary analyses determined that the convergence results from both parallel and divergent evolution of residues in the functional motif. Our findings not only identify the functional molecules responsible for acid insensitivity in hibernating mammals, but also open new avenues to elucidate the molecular underpinnings of acid insensitivity in mammals. PMID:24352952

  20. Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals.

    PubMed

    Liu, Zhen; Wang, Wei; Zhang, Tong-Zuo; Li, Gong-Hua; He, Kai; Huang, Jing-Fei; Jiang, Xue-Long; Murphy, Robert W; Shi, Peng

    2014-02-07

    Hibernating mammals need to be insensitive to acid in order to cope with conditions of high CO2; however, the molecular basis of acid tolerance remains largely unknown. The African naked mole-rat (Heterocephalus glaber) and hibernating mammals share similar environments and physiological features. In the naked mole-rat, acid insensitivity has been shown to be conferred by the functional motif of the sodium ion channel NaV1.7. There is now an opportunity to evaluate acid insensitivity in other taxa. In this study, we tested for functional convergence of NaV1.7 in 71 species of mammals, including 22 species that hibernate. Our analyses revealed a functional convergence of amino acid sequences, which occurred at least six times independently in mammals that hibernate. Evolutionary analyses determined that the convergence results from both parallel and divergent evolution of residues in the functional motif. Our findings not only identify the functional molecules responsible for acid insensitivity in hibernating mammals, but also open new avenues to elucidate the molecular underpinnings of acid insensitivity in mammals.

  1. New Defective Brannerite-Type Vanadates. I. Synthesis and Study of Mn 1- x- yφ xNa yV 2-2 x-yMo 2 x+yO 6 Solid Solutions

    NASA Astrophysics Data System (ADS)

    Masłowska, Bogna; Ziółkowski, Jacek

    1994-05-01

    MnV 2O 6 of the brannerite-type structure (below 540°C) doped with MoO 3 and Na 2O forms isomorphous solid solutions MnNaφ = Mn 1- x-yφ xNa yV 2-2 x-yMo 2 x+ yO 6 (φ cation vacancy in the original Mn position), belonging to the pseudoternary MnV 2O 6-NaVMoO 6-MoO 3 system. Particular cases are MnNa = Mn 1- yNa y V 2- yMo yO 6 ( x = 0), Mnφ = Mn 1- xφ xV 2-2 xMo 2 xO 6 ( y = 0), and Naφ = Na 1- xφ xV 1- xMo 1+ xO 6 ( x + y = 1). MnV 2O 6 and NaVMoO 6 show miscibility in the entire composition range (MnNa). The opposite boundary of MnNaφ passes through the (100 x, 100 y) points (45, 0), (33, 30), and (30, 70). The phase diagram of the pseudobinary MnV 2O 6-NaVMoO 6 system (determined with DTA) shows (i) a narrow double-lens-type solidus-liquidus gap at high values of y , (ii) two peritectic meltings at lower y (yielding the high temperature β-MnNa and Mn 2V 2O 7), and (iii) little area of β-MnNa. Lattice parameters of MnNa (determined with X-ray diffraction) reveal small deviations from Vegard's law. As the ionic radii of both dopants (Na + and Mo 6+) are, respectively, larger than those of mother ions (Mn 2+ and V 5+), the unit cell increases in all directions with rising y along the MnNa series of solid solutions. However, due to the anisotropy of the structure, parameter c is strongly sensitive to Na/Mn substitution, b is ruled by Mo/V, and a is weakly influenced by Mo/V. Close analogy to the behavior of the previously studied MnV 2O 6-LiVMoO 6-MoO 6 system is discussed.

  2. 1D nanostructured Na7V4(P2O7)4(PO4) as high-potential and superior-performance cathode material for sodium-ion batteries.

    PubMed

    Deng, Chao; Zhang, Sen

    2014-06-25

    Tailoring materials into nanostructure offers unprecedented opportunities in the utilization of their functional properties. High-purity Na7V4(P2O7)4(PO4) with 1D nanostructure is prepared as a cathode material for rechargeable Na-ion batteries. An efficient synthetic approach is developed by carefully controlling the crystal growth in the molten sodium phosphate. Based on the XRD, XPS, TG, and morphological characterization, a molten-salt assisted mechanism for nanoarchitecture formation is revealed. The prepared Na7V4(P2O7)4(PO4) nanorod has rectangle sides and preferential [001] growth orientation. GITT evaluation indicates that the sodium de/intercalation of Na7V4(P2O7)4(PO4) nanorod involves V(3+)/V(4+) redox reaction and Na5V(3.5+)4(P2O7)4(PO4) as intermediate phase, which results in two pairs of potential plateaus at the equilibrium potentials of 3.8713 V (V(3+)/V(3.5+)) and 3.8879 V (V(3.5+)/V(4+)), respectively. The unique nanoarchitecture of the phase-pure Na7V4(P2O7)4(PO4) facilitates its reversible sodium de/intercalation, which is beneficial to the high-rate capability and the cycling stability. The Na7V4(P2O7)4(PO4) cathode delivers 80% of the capacity (obtained at C/20) at the 10 C rate and 95% of the initial capacity after 200 cycles. Therefore, it is feasible to design and fabricate an advanced rechargeable sodium-ion battery by employment of 1D nanostructured Na7V4(P2O7)4(PO4) as the cathode material.

  3. Scalable and template-free synthesis of nanostructured Na{sub 1.08}V{sub 6}O{sub 15} as high-performance cathode material for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Shili, E-mail: slzheng@ipe.ac.cn; Wang, Xinran; Yan, Hong

    2016-09-15

    Highlights: • Nanostructured Na{sub 1.08}V{sub 6}O{sub 15} was synthesized through additive-free sol-gel process. • Prepared Na{sub 1.08}V{sub 6}O{sub 15} demonstrated high capacity and sufficient cycling stability. • The reaction temperature was optimized to allow scalable Na{sub 1.08}V{sub 6}O{sub 15} fabrication. - Abstract: Developing high-capacity cathode material with feasibility and scalability is still challenging for lithium-ion batteries (LIBs). In this study, a high-capacity ternary sodium vanadate compound, nanostructured NaV{sub 6}O{sub 15}, was template-free synthesized through sol-gel process with high producing efficiency. The as-prepared sample was systematically post-treated at different temperature and the post-annealing temperature was found to determine the cycling stabilitymore » and capacity of NaV{sub 6}O{sub 15}. The well-crystallized one exhibited good electrochemical performance with a high specific capacity of 302 mAh g{sup −1} when cycled at current density of 0.03 mA g{sup −1}. Its relatively long-term cycling stability was characterized by the cell performance under the current density of 1 A g{sup −1}, delivering a reversible capacity of 118 mAh g{sup −1} after 300 cycles with 79% capacity retention and nearly 100% coulombic efficiency: all demonstrating its significant promise of proposed strategy for large-scale synthesis of NaV{sub 6}O{sub 15} as cathode with high-capacity and high energy density for LIBs.« less

  4. Development of a μO-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8*

    PubMed Central

    Deuis, Jennifer R.; Dekan, Zoltan; Inserra, Marco C.; Lee, Tzong-Hsien; Aguilar, Marie-Isabel; Craik, David J.; Lewis, Richard J.; Alewood, Paul F.; Mobli, Mehdi; Schroeder, Christina I.; Henriques, Sónia Troeira; Vetter, Irina

    2016-01-01

    The μO-conotoxins MrVIA, MrVIB, and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well described target for the treatment of pain; however, little is known about the residues or structural elements that define this activity. In this study, we determined the three-dimensional structure of MfVIA, examined its membrane binding properties, performed alanine-scanning mutagenesis, and identified residues important for its activity at human NaV1.8. A second round of mutations resulted in (E5K,E8K)MfVIA, a double mutant with greater positive surface charge and greater affinity for lipid membranes compared with MfVIA. This analogue had increased potency at NaV1.8 and was analgesic in the mouse formalin assay. PMID:27026701

  5. A novel µ-conopeptide, CnIIIC, exerts potent and preferential inhibition of NaV1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors

    PubMed Central

    Favreau, Philippe; Benoit, Evelyne; Hocking, Henry G; Carlier, Ludovic; D' hoedt, Dieter; Leipold, Enrico; Markgraf, René; Schlumberger, Sébastien; Córdova, Marco A; Gaertner, Hubert; Paolini-Bertrand, Marianne; Hartley, Oliver; Tytgat, Jan; Heinemann, Stefan H; Bertrand, Daniel; Boelens, Rolf; Stöcklin, Reto; Molgó, Jordi

    2012-01-01

    BACKGROUND AND PURPOSE The µ-conopeptide family is defined by its ability to block voltage-gated sodium channels (VGSCs), a property that can be used for the development of myorelaxants and analgesics. We characterized the pharmacology of a new µ-conopeptide (µ-CnIIIC) on a range of preparations and molecular targets to assess its potential as a myorelaxant. EXPERIMENTAL APPROACH µ-CnIIIC was sequenced, synthesized and characterized by its direct block of elicited twitch tension in mouse skeletal muscle and action potentials in mouse sciatic and pike olfactory nerves. µ-CnIIIC was also studied on HEK-293 cells expressing various rodent VGSCs and also on voltage-gated potassium channels and nicotinic acetylcholine receptors (nAChRs) to assess cross-interactions. Nuclear magnetic resonance (NMR) experiments were carried out for structural data. KEY RESULTS Synthetic µ-CnIIIC decreased twitch tension in mouse hemidiaphragms (IC50= 150 nM), and displayed a higher blocking effect in mouse extensor digitorum longus muscles (IC = 46 nM), compared with µ-SIIIA, µ-SmIIIA and µ-PIIIA. µ-CnIIIC blocked NaV1.4 (IC50= 1.3 nM) and NaV1.2 channels in a long-lasting manner. Cardiac NaV1.5 and DRG-specific NaV1.8 channels were not blocked at 1 µM. µ-CnIIIC also blocked the α3β2 nAChR subtype (IC50= 450 nM) and, to a lesser extent, on the α7 and α4β2 subtypes. Structure determination of µ-CnIIIC revealed some similarities to α-conotoxins acting on nAChRs. CONCLUSION AND IMPLICATIONS µ-CnIIIC potently blocked VGSCs in skeletal muscle and nerve, and hence is applicable to myorelaxation. Its atypical pharmacological profile suggests some common structural features between VGSCs and nAChR channels. PMID:22229737

  6. Pain thresholds, supra-threshold pain and lidocaine sensitivity in patients with erythromelalgia, including the I848Tmutation in NaV 1.7.

    PubMed

    Helås, T; Sagafos, D; Kleggetveit, I P; Quiding, H; Jönsson, B; Segerdahl, M; Zhang, Z; Salter, H; Schmelz, M; Jørum, E

    2017-09-01

    Nociceptive thresholds and supra-threshold pain ratings as well as their reduction upon local injection with lidocaine were compared between healthy subjects and patients with erythromelalgia (EM). Lidocaine (0.25, 0.50, 1.0 or 10 mg/mL) or placebo (saline) was injected intradermally in non-painful areas of the lower arm, in a randomized, double-blind manner, to test the effect on dynamic and static mechanical sensitivity, mechanical pain sensitivity, thermal thresholds and supra-threshold heat pain sensitivity. Heat pain thresholds and pain ratings to supra-threshold heat stimulation did not differ between EM-patients (n = 27) and controls (n = 25), neither did the dose-response curves for lidocaine. Only the subgroup of EM-patients with mutations in sodium channel subunits Na V 1.7, 1.8 or 1.9 (n = 8) had increased lidocaine sensitivity for supra-threshold heat stimuli, contrasting lower sensitivity to strong mechanical stimuli. This pattern was particularly clear in the two patients carrying the Na V 1.7 I848T mutations in whom lidocaine's hyperalgesic effect on mechanical pain sensitivity contrasted more effective heat analgesia. Heat pain thresholds are not sensitized in EM patients, even in those with gain-of-function mutations in Na V 1.7. Differential lidocaine sensitivity was overt only for noxious stimuli in the supra-threshold range suggesting that sensitized supra-threshold encoding is important for the clinical pain phenotype in EM in addition to lower activation threshold. Intracutaneous lidocaine dose-dependently blocked nociceptive sensations, but we did not identify EM patients with particular high lidocaine sensitivity that could have provided valuable therapeutic guidance. Acute pain thresholds and supra-threshold heat pain in controls and patients with erythromelalgia do not differ and have the same lidocaine sensitivity. Acute heat pain thresholds even in EM patients with the Na V 1.7 I848T mutation are normal and only nociceptor

  7. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  8. Characterization of the honeybee AmNaV1 channel and tools to assess the toxicity of insecticides.

    PubMed

    Gosselin-Badaroudine, Pascal; Moreau, Adrien; Delemotte, Lucie; Cens, Thierry; Collet, Claude; Rousset, Matthieu; Charnet, Pierre; Klein, Michael L; Chahine, Mohamed

    2015-07-23

    Pollination is important for both agriculture and biodiversity. For a significant number of plants, this process is highly, and sometimes exclusively, dependent on the pollination activity of honeybees. The large numbers of honeybee colony losses reported in recent years have been attributed to colony collapse disorder. Various hypotheses, including pesticide overuse, have been suggested to explain the disorder. Using the Xenopus oocytes expression system and two microelectrode voltage-clamp, we report the functional expression and the molecular, biophysical, and pharmacological characterization of the western honeybee's sodium channel (Apis Mellifera NaV1). The NaV1 channel is the primary target for pyrethroid insecticides in insect pests. We further report that the honeybee's channel is also sensitive to permethrin and fenvalerate, respectively type I and type II pyrethroid insecticides. Molecular docking of these insecticides revealed a binding site that is similar to sites previously identified in other insects. We describe in vitro and in silico tools that can be used to test chemical compounds. Our findings could be used to assess the risks that current and next generation pesticides pose to honeybee populations.

  9. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltagemore » dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels in

  10. Backbone resonance assignments of complexes of human voltage-dependent sodium channel NaV1.2 IQ motif peptide bound to apo calmodulin and to the C-domain fragment of apo calmodulin.

    PubMed

    Mahling, Ryan; Kilpatrick, Adina M; Shea, Madeline A

    2017-10-01

    Human voltage-gated sodium channel Na V 1.2 has a single pore-forming α-subunit and two transmembrane β-subunits. Expressed primarily in the brain, Na V 1.2 is critical for initiation and propagation of action potentials. Milliseconds after the pore opens, sodium influx is terminated by inactivation processes mediated by regulatory proteins including calmodulin (CaM). Both calcium-free (apo) CaM and calcium-saturated CaM bind tightly to an IQ motif in the C-terminal tail of the α-subunit. Our thermodynamic studies and solution structure (2KXW) of a C-domain fragment of apo 13 C, 15 N- CaM (CaM C ) bound to an unlabeled peptide with the sequence of rat Na V 1.2 IQ motif showed that apo CaM C (a) was necessary and sufficient for binding, and (b) bound more favorably than calcium-saturated CaM C . However, we could not monitor the Na V 1.2 residues directly, and no structure of full-length CaM (including the N-domain of CaM (CaM N )) was determined. To distinguish contributions of CaM N and CaM C , we used solution NMR spectroscopy to assign the backbone resonances of a complex containing a 13 C, 15 N-labeled peptide with the sequence of human Na V 1.2 IQ motif (Na V 1.2 IQp ) bound to apo 13 C, 15 N-CaM or apo 13 C, 15 N-CaM C . Comparing the assignments of apo CaM in complex with Na V 1.2 IQp to those of free apo CaM showed that residues within CaM C were significantly perturbed, while residues within CaM N were essentially unchanged. The chemical shifts of residues in Na V 1.2 IQp and in the C-domain of CaM were nearly identical regardless of whether CaM N was covalently linked to CaM C . This suggests that CaM N does not influence apo CaM binding to Na V 1.2 IQp .

  11. Gain-of-function mutation of a voltage-gated sodium channel NaV1.7 associated with peripheral pain and impaired limb development.

    PubMed

    Tanaka, Brian S; Nguyen, Phuong T; Zhou, Eray Yihui; Yang, Yong; Yarov-Yarovoy, Vladimir; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2017-06-02

    Dominant mutations in voltage-gated sodium channel Na V 1.7 cause inherited erythromelalgia, a debilitating pain disorder characterized by severe burning pain and redness of the distal extremities. Na V 1.7 is preferentially expressed within peripheral sensory and sympathetic neurons. Here, we describe a novel Na V 1.7 mutation in an 11-year-old male with underdevelopment of the limbs, recurrent attacks of burning pain with erythema, and swelling in his feet and hands. Frequency and duration of the episodes gradually increased with age, and relief by cooling became less effective. The patient's sister had short stature and reported similar complaints of erythema and burning pain, but with less intensity. Genetic analysis revealed a novel missense mutation in Na V 1.7 (2567G>C; p.Gly856Arg) in both siblings. The G856R mutation, located within the DII/S4-S5 linker of the channel, substitutes a highly conserved non-polar glycine by a positively charged arginine. Voltage-clamp analysis of G856R currents revealed that the mutation hyperpolarized (-11.2 mV) voltage dependence of activation and slowed deactivation but did not affect fast inactivation, compared with wild-type channels. A mutation of Gly-856 to aspartic acid was previously found in a family with limb pain and limb underdevelopment, and its functional assessment showed hyperpolarized activation, depolarized fast inactivation, and increased ramp current. Structural modeling using the Rosetta computational modeling suite provided structural clues to the divergent effects of the substitution of Gly-856 by arginine and aspartic acid. Although the proexcitatory changes in gating properties of G856R contribute to the pathophysiology of inherited erythromelalgia, the link to limb underdevelopment is not well understood. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. NaV channel variants in patients with painful and nonpainful peripheral neuropathy

    PubMed Central

    Wadhawan, Samir; Pant, Saumya; Golhar, Ryan; Kirov, Stefan; Thompson, John; Jacobsen, Leslie; Qureshi, Irfan; Ajroud-Driss, Senda; Freeman, Roy; Simpson, David M.; Smith, A. Gordon; Hoke, Ahmet

    2017-01-01

    Objective: To examine the incidence of nonsynonymous missense variants in SCN9A (NaV1.7), SCN10A (NaV1.8), and SCN11A (NaV1.9) in patients with painful and nonpainful peripheral neuropathy. Methods: Next-generation sequencing was performed on 457 patient DNA samples provided by the Peripheral Neuropathy Research Registry (PNRR). The patient diagnosis was as follows: 278 idiopathic peripheral neuropathy (67% painful and 33% nonpainful) and 179 diabetic distal polyneuropathy (77% painful and 23% nonpainful). Results: We identified 36 (SCN9A), 31 (SCN10A), and 15 (SCN11A) nonsynonymous missense variants, with 47.7% of patients carrying a low-frequency (minor allele frequency <5%) missense variant in at least 1 gene. The incidence of previously reported gain-of-function missense variants was low (≤3%), and these were detected in patients with and without pain. There were no significant differences in missense variant allele frequencies of any gene, or SCN9A haplotype frequencies, between PNRR patients with painful or nonpainful peripheral neuropathy. PNRR patient SCN9A and SCN11A missense variant allele frequencies were not significantly different from the Exome Variant Server, European American (EVS-EA) reference population. For SCN10A, there was a significant increase in the alternate allele frequency of the common variant p.V1073A and low-frequency variant pS509P in PNRR patients compared with EVS-EA and the 1000 Genomes European reference populations. Conclusions: These results suggest that identification of a genetically defined subpopulation for testing of NaV1.7 inhibitors in patients with peripheral neuropathy is unlikely and that additional factors, beyond expression of previously reported disease “mutations,” are more important for the development of painful neuropathy than previously discussed. PMID:29264398

  13. Effects of the β1 auxiliary subunit on modification of Rat Na{sub v}1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu

    We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased inmore » the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and

  14. Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Guangqiang; Jiang, Danlu; Wang, Hui; Lan, Xinzheng; Zhong, Honghai; Jiang, Yang

    2014-11-01

    A novel electrode material for sodium-ion batteries (NIBs), Na3V2(PO4)3 with a rhombohedral, Na+ superionic conductor (NASICON)-type structure, was synthesised via a solid-state carbon-thermal reduction reaction assisted by mechanochemical activation. Electron microscopy analysis showed that the synthesised Na3V2(PO4)3 particles had an average size of 300 nm, being coated with a uniform layer of carbon 3 nm in thickness. As a cathode material, Na3V2(PO4)3/C exhibited an initial specific discharge capacity of 98.17 mAh g-1 at 0.1C for potentials ranging from 2.5 to 3.8 V. This was owing to the V3+/V4+ redox couple, which corresponded to the two-phase transition between Na3V2(PO4)3 and NaV2(PO4)3. The cathode lost 4.92% of its discharge specific capacity after 50 cycles. As an anode material, Na3V2(PO4)3/C exhibited an initial specific discharge capacity of 63.2 mAh g-1 at 0.1C for potentials ranging from 1.0 to 2.5 V. This was owing to the V2+/V3+ redox couple, which corresponded to the two-phase transition between Na3V2(PO4)3 and Na4V2(PO4)3. The anode lost approximately 5.41% of its discharge specific capacity after 50 cycles. The three-dimensional channel structure of NaV2(PO4)3 and the changes induced in its lattice parameters during the charge/discharge processes were simulated on the basis of density functional theory.

  15. Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yanjun; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; He, Shengnan; Li, Long; Wang, Chao

    2018-02-01

    A prospective NASICON-type F-doped Na3V2(PO4)2.93F0.07/C (F-0.07-NVP/C) composite is synthesized by a solid-state reaction method. F-doping can restrain the structural degradation from Na3V2(PO4)3 to V2(PO4)3 and enhance the structural stability. Meanwhile, it can decrease the particle size to diminish the pathway of Na+ diffusion, which can increase ionic conductivity efficiently. The kinetic behavior is significantly improved and it is beneficial to reinforcing the electrochemical performance of F-doping composites. Compared with Undoped-NVP/C sample, F-0.07-NVP/C composite delivers a 113 mAh g-1 discharge capacity at 10 mA g-1, which is very close to the theoretical capacity (117 mAh g-1). As for cycle performance, a reversible capacity of 97.8 mAh g-1 can be obtained and it retains 86% capacity after 1000 cycles at 200 mA g-1. F-0.07-NVP/C composite presents the highest DNa+ (2.62 × 10-15 cm2s-1), two orders of magnitude higher than the undoped sample (4.8 × 10-17 cm2s-1). This outstanding electrochemical performance is ascribed to the synergetic effect from improved kinetic behavior and enhanced structural stability due to F-doping. Hence, the F-doped composite would be a promising cathode material in SIB for energy storage and conversion.

  16. Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiao; Wang, Wanwan; Zhu, Baichuan; Qian, Fangfang; Fang, Zhen

    2018-03-01

    NASICON-type Na3V2(PO4)3 (NVP) with superior electrochemical performance has attracted enormous attention with the development of sodium ion batteries. The structural aggregation as well as poor conductivity of NVP hinder its application in high rate perforamance cathode with long stablity. In this paper, Na3V2- x Mo x (PO4)3@C was successfully prepared through two steps method, including sol-gel and solid state thermal reduction. The optimal doping amount of Mo was defined by experiment. When x was 0.15, the Na3V1.85Mo0.15(PO4)3@C sample has the best cycle performance and rate performance. The discharge capacity of Na3V1.85Mo0.15(PO4)3@C could reach 117.26 mA·h·g-1 at 0.1 C. The discharge capacity retention was found to be 94.5% after 600 cycles at 5 C.

  17. Chronic lithium treatment up-regulates cell surface Na(V)1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: enhancement of Na(+) influx, Ca(2+) influx and catecholamine secretion after lithium withdrawal.

    PubMed

    Yanagita, Toshihiko; Maruta, Toyoaki; Nemoto, Takayuki; Uezono, Yasuhito; Matsuo, Kiyotaka; Satoh, Shinya; Yoshikawa, Norie; Kanai, Tasuku; Kobayashi, Hideyuki; Wada, Akihiko

    2009-09-01

    In cultured bovine adrenal chromaffin cells expressing Na(V)1.7 isoform of voltage-dependent Na(+) channels, we have previously reported that lithium chloride (LiCl) inhibits function of Na(+) channels independent of glycogen synthase kinase-3 (GSK-3) (Yanagita et al., 2007). Here, we further examined the effects of chronic lithium treatment on Na(+) channels. LiCl treatment (1-30 mM, > or = 12 h) increased cell surface [(3)H]saxitoxin ([(3)H]STX) binding by approximately 32% without altering the affinity of [(3)H]STX binding. This increase was prevented by cycloheximide and actinomycin D. SB216763 and SB415286 (GSK-3 inhibitors) also increased cell surface [(3)H]STX binding by approximately 31%. Simultaneous treatment with LiCl and SB216763 or SB415286 did not produce an increased effect on [(3)H]STX binding compared with either treatment alone. LiCl increased Na(+) channel alpha-subunit mRNA level by 32% at 24 h. LiCl accelerated alpha-subunit gene transcription by 35% without altering alpha-subunit mRNA stability. In LiCl-treated cells, LiCl inhibited veratridine-induced (22)Na(+) influx as in untreated cells. However, washout of LiCl after chronic treatment enhanced veratridine-induced (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion by approximately 30%. Washout of LiCl after 24 h treatment shifted concentration-response curve of veratridine upon (22)Na(+) influx upward, without altering its EC(50) value. Ptychodiscus brevis toxin-3 allosterically enhanced veratridine-induced (22)Na(+) influx by two-fold in untreated and LiCl-treated cells. Whole-cell patch-clamp analysis indicated that I-V curve and steady-state inactivation/activation curves were comparable between untreated and LiCl-treated cells. Thus, GSK-3 inhibition by LiCl up-regulated cell surface Na(V)1.7 via acceleration of alpha-subunit gene transcription, enhancing veratridine-induced Na(+) influx, Ca(2+) influx and catecholamine secretion.

  18. Multi-heteroatom doped carbon coated Na3V2(PO4)3 derived from ionic liquids.

    PubMed

    Zhang, Lu-Lu; Zhou, Ying-Xian; Li, Tao; Ma, Di; Yang, Xue-Lin

    2018-03-28

    Multi-heteroatom (N, S and F) doped carbon coated Na 3 V 2 (PO 4 ) 3 (labeled as NVP/C-ILs) derived from an ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM]TF2N) has been successfully fabricated. The as-prepared Na 3 V 2 (PO 4 ) 3 particles are well dispersed and closely coated with a multi-heteroatom (N, S and F) doped carbon layer. As a cathode for sodium-ion batteries, the NVP/C-ILs electrode exhibits high reversible specific capacity (117.5 mA h g -1 at 1C), superior rate performance (93.4 mA h g -1 at 10C) and excellent cycling stability (∼95% capacity retention ratio at 10C over 1000 cycles). The impressive electrochemical performance of NVP/C-ILs can be attributed to effectively conductive networks for electrons and Na + ions induced by a joint effect of N, S and F doping on carbon. The use of multi-heteroatom doped carbon coated Na 3 V 2 (PO 4 ) 3 provides a facile and effective strategy for the fabrication of high performance electrode materials with low intrinsic electrical conductivity.

  19. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Na{sub v}1.8 sodium channels expressed in Xenopus oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, J.-S.; Soderlund, David M.

    2006-03-15

    Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na{sub v}1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed withmore » kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na{sub v}1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound

  20. The V-ATPase subunit A is essential for salt tolerance through participating in vacuolar Na+ compartmentalization in Salicornia europaea.

    PubMed

    Lv, Sulian; Jiang, Ping; Tai, Fang; Wang, Duoliya; Feng, Juanjuan; Fan, Pengxiang; Bao, Hexigeduleng; Li, Yinxin

    2017-12-01

    The V-ATPase subunit A participates in vacuolar Na + compartmentalization in Salicornia europaea regulating V-ATPase and V-PPase activities. Na + sequestration into the vacuole is an efficient strategy in response to salinity in many halophytes. However, it is not yet fully understood how this process is achieved. Particularly, the role of vacuolar H + -ATPase (V-ATPase) in this process is controversial. Our previous proteomic investigation in the euhalophyte Salicornia europaea L. found a significant increase of the abundance of V-ATPase subunit A under salinity. Here, the gene encoding this subunit named SeVHA-A was characterized, and its role in salt tolerance was demonstrated by RNAi directed downregulation in suspension-cultured cells of S. europaea. The transcripts of genes encoding vacuolar H + -PPase (V-PPase) and vacuolar Na + /H + antiporter (SeNHX1) also decreased significantly in the RNAi cells. Knockdown of SeVHA-A resulted in a reduction in both V-ATPase and vacuolar H + -PPase (V-PPase) activities. Accordingly, the SeVHA-A-RNAi cells showed increased vacuolar pH and decreased cell viability under different NaCl concentrations. Further Na + staining showed the reduced vacuolar Na + sequestration in RNAi cells. Taken together, our results evidenced that SeVHA-A participates in vacuolar Na + sequestration regulating V-ATPase and V-PPase activities and thereby vacuolar pH in S. europaea. The possible mechanisms underlying the reduction of vacuolar V-PPase activity in SeVHA-A-RNAi cells were also discussed.

  1. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity.

    PubMed

    Schewe, Bettina; Blenau, Wolfgang; Walz, Bernd

    2012-04-15

    Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H(+)-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pH(i)) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pH(i) regulation microfluorometrically and show that: (1) under resting conditions, the application of Na(+)-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na(+)-dependent glutamate transporter; (2) the maintenance of resting pH(i) is Na(+), Cl(-), concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na(+) sensitive and requires V-ATPase activity; (4) the Na(+)/H(+) antiporter is not involved in pH(i) recovery after a NH(4)Cl prepulse; and (5) at least one Na(+)-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na(+)-dependent transporter maintain normal pH(i) values of pH 7.5. We have also detected the presence of a Na(+)-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pH(i)-regulating transporter, its activity affects steady-state pH(i) in C. vicina salivary gland cells.

  2. Controlled phase stability of highly Na-active triclinic structure in nanoscale high-voltage Na2-2xCo1+xP2O7 cathode for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Hee Jo; Kim, Jae-Chan; Dar, Mushtaq Ahmad; Kim, Dong-Wan

    2018-02-01

    With the increasing demand for high energy density in energy-storage systems, a high-voltage cathode is essential in rechargeable Li-ion and Na-ion batteries. The operating voltage of a triclinic-polymorph Na2CoP2O7, also known as the rose form, is above 4.0 V (vs. Na/Na+), which is relatively high compared to that of other cathode materials. Thus, it can be employed as a potential high-voltage cathode material in Na-ion batteries. However, it is difficult to synthesize a pure rose phase because of its low phase stability, thus limiting its use in high-voltage applications. Herein, compositional-engineered, rose-phase Na2-2xCo1+xP2O7/C (x = 0, 0.1 and 0.2) nanopowder are prepared using a wet-chemical method. The Na2-2xCo1+xP2O7/C cathode shows high electrochemical reactivity with Na ions at 4.0 V, delivering high capacity and high energy density.

  3. A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents.

    PubMed

    Rigby, J R; Poelzing, S

    2012-04-01

    Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, K(ir)2.1, and the channel encoding the cardiac fast sodium current, Na(v)1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses.

  4. Differential effects of five 'classical' scorpion {beta}-toxins on rNa{sub v}1.2a and DmNav1 provide clues on species-selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosmans, Frank; Martin-Eauclaire, Marie-France; Tytgat, Jan

    2007-01-01

    In general, scorpion {beta}-toxins have been well examined. However, few in-depth studies have been devoted to species selectivity and affinity comparisons on the different voltage-activated Na{sup +} channels since they have become available as cloned channels that can be studied in heterologous expression systems. As a result, their classification is largely historical and dates from early in vivo experiments on mice and cockroach and fly larvae. In this study, we aimed to provide an updated overview of selectivity and affinity of scorpion {beta}-toxins towards voltage-activated Na{sup +} channels of vertebrates or invertebrates. As pharmacological tools, we used the classic {beta}-toxinsmore » AaHIT, Css II, Css IV, Css VI and Ts VII and tested them on the neuronal vertebrate voltage-activated Na{sup +} channel, rNa{sub v}1.2a. For comparison, its invertebrate counterpart, DmNav1, was also tested. Both these channels were expressed in Xenopus laevis oocytes and the currents measured with the two-electrode voltage-clamp technique. We supplemented this data with several binding displacement studies on rat brain synaptosomes. The results lead us to propose a general classification and a novel nomenclature of scorpion {beta}-toxins based on pharmacological activity.« less

  5. Experimental studies of the NaK 1 3Δ state

    NASA Astrophysics Data System (ADS)

    Huennekens, J.; Prodan, I.; Marks, A.; Sibbach, L.; Galle, E.; Morgus, T.; Li, Li

    2000-11-01

    The NaK 1 3Δ state has been studied by the perturbation-facilitated optical-optical double resonance technique. Mixed singlet-triplet levels, A(2)1Σ+(vA,J)˜b(1)3Π(vb,J), were pumped from thermally populated rovibrational levels of the ground state, X(1)1Σ+(vX,J±1), using a single-mode cw dye laser. A single-mode cw Ti:Sapphire laser was then used to further excite the NaK molecules to various 1 3Δ(vΔ,NΔ,JΔ) rovibrational levels which were detected by observing collision-induced 3Λ→a(1)3Σ+ fluorescence in the green part of the spectrum. The measured energies of the 1 3Δ(vΔ,NΔ) levels were fit to a Dunham expansion, and the Dunham coefficients were used to construct the RKR potential curve. Absolute numbering of the 1 3Δ state vibrational levels was established by a comparison of experimental and calculated 1 3Δ(vΔ,NΔ,JΔ)←b(1)3Π(vb,Jb) absorption line strengths. A deperturbation program was used to determine the vibration-dependent 1 3Δ state spin-orbit interaction parameter. Hyperfine structure of the 1 3Δ state was studied, and the Fermi-contact interaction term for this state was determined to be ˜0.0111 cm-1.

  6. Study of Np(V) Sorption by Ionic Exchange on Na, K, Ca and Mg-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Benedicto, A.; Begg, J.; Zhao, P.; Kersting, A. B.; Zavarin, M.

    2012-12-01

    The transport behavior of actinides in soil and ground water are highly influenced by clay minerals due to their ubiquity in the environment, reactivity and colloidal properties. Neptunium(V) has been introduced in the environment as a result of nuclear weapons testing [e.g. 1, 2] and is a radionuclide of potential interest for safety assessment of high level radioactive waste disposal because its long half-life and high toxicity [3]. Surface complexation and ionic exchange have been identified as Np(V) sorption mechanisms onto montmorillonite. At pH below 5, Np(V) sorption is mainly attributed to ionic exchange. This study examines Np(V) ion exchange on Na, K, Ca and Mg forms of montmorillonite. Experiments were carried out using 237Np concentrations between 2 x 10-8 M and 5 x 10-6 M at three different ionic strengths 0.1, 0.01 and 0.001M. The pH was maintained at 4.5. Np(V) sorption to montmorillonite homoionized with monovalent cations (Na and K) demonstrated a markedly different behavior to that observed for montmorillonite homoionized with divalent cations (Ca and Mg). Np sorption to Na and K-montmorillonite was greater than Np sorption to Ca and Mg-montmorillonite. Isotherms with Na and K-montmorillonite showed a strong dependence on ionic strength: the percentage of Np adsorbed was near zero at 0.1M ionic strength, but increased to 30% at 0.001 M ionic strength. This suggests ionic exchange is the main Np adsorption mechanism under the experimental conditions investigated. Dependence on ionic strength was not observed in the Np sorption isotherms for Ca and Mg-montmorillonite indicating a low exchange capacity between Np and divalent cations. Modeling of the sorption experimental data will allow determination of the Na+↔NpO2+ and K+↔NpO2+ ionic exchange constants on montmorillonite. References: [1] A. R. Felmy; K. J. Cantrell; S. D. Conradson, Phys. Chem. Earth 2010, 35, 292-297 [2] D. K. Smith; D. L. Finnegan; S. M. Bowen, J. Environ. Radioact. 2003, 67

  7. Polar materials with isolated V 4+ S = 1/2 Triangles: NaSr 2V 3O 3(Ge 4O 13)Cl and KSr 2V 3O 3(Ge 4O 13)Cl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjeewa, Liurukara D.; McGuire, Michael A.; McMillen, Colin D.

    Here, crystals of ASr 2V 3O 3(Ge 4O 13)Cl, A = Na, K, were synthesized from high-temperature hydrothermal brines, and their structure and magnetic properties were investigated. These materials present a unique combination of a salt inclusion lattice, a polar crystal structure, and isolated V 4+ ( S = 1/2) trimer magnetic clusters. The structures consist of a trimeric V 3O 13 unit based on V 4+ ( S = 1/2), having rigorous 3-fold symmetry with a short V–V separation of 3.325(3) Å. The trinuclear V 4+ units are formed by three edge shared VO 6 octahedra sharing a centralmore » μ3-oxygen atom, which also imparts a polar sense on the structure. The V 3O 13 units are isolated from one another by tetranuclear Ge 4O 13 units, which are similarly arranged in a polar fashion, providing a unique opportunity to study the magnetic behavior of this triangular d 1 system as a discrete unit. Magnetization measurements indicate spin-1/2 per V atom at high temperature, and spin-1/2 per V 3 trimer at low temperature, where two V moments in each triangle are antiferromagnetically aligned and the third remains paramagnetic. The crossover between these two behaviors occurs between 20 and 100 K and is well-described by a model incorporating strong antiferromagnetic intra-trimer interactions and weak but nonzero inter-trimer interactions. More broadly, the study highlights the ability to obtain new materials with interesting structure–property relationships via chemistry involving unconventional solvents and reaction conditions.« less

  8. Polar materials with isolated V 4+ S = 1/2 Triangles: NaSr 2V 3O 3(Ge 4O 13)Cl and KSr 2V 3O 3(Ge 4O 13)Cl

    DOE PAGES

    Sanjeewa, Liurukara D.; McGuire, Michael A.; McMillen, Colin D.; ...

    2017-01-03

    Here, crystals of ASr 2V 3O 3(Ge 4O 13)Cl, A = Na, K, were synthesized from high-temperature hydrothermal brines, and their structure and magnetic properties were investigated. These materials present a unique combination of a salt inclusion lattice, a polar crystal structure, and isolated V 4+ ( S = 1/2) trimer magnetic clusters. The structures consist of a trimeric V 3O 13 unit based on V 4+ ( S = 1/2), having rigorous 3-fold symmetry with a short V–V separation of 3.325(3) Å. The trinuclear V 4+ units are formed by three edge shared VO 6 octahedra sharing a centralmore » μ3-oxygen atom, which also imparts a polar sense on the structure. The V 3O 13 units are isolated from one another by tetranuclear Ge 4O 13 units, which are similarly arranged in a polar fashion, providing a unique opportunity to study the magnetic behavior of this triangular d 1 system as a discrete unit. Magnetization measurements indicate spin-1/2 per V atom at high temperature, and spin-1/2 per V 3 trimer at low temperature, where two V moments in each triangle are antiferromagnetically aligned and the third remains paramagnetic. The crossover between these two behaviors occurs between 20 and 100 K and is well-described by a model incorporating strong antiferromagnetic intra-trimer interactions and weak but nonzero inter-trimer interactions. More broadly, the study highlights the ability to obtain new materials with interesting structure–property relationships via chemistry involving unconventional solvents and reaction conditions.« less

  9. K + block is the mechanism of functional asymmetry in bacterial Na v channels

    DOE PAGES

    Ngo, Van; Wang, Yibo; Haas, Stephan; ...

    2016-01-04

    Crystal structures of several bacterial Na v channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na v channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na vAb channel. This approach provided new insight into the mechanism of selective ion permeation inmore » bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K + ions can block the entrance to the selectivity filter of Na vAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place bymodest applied forces. In contrast to K +, three Na + ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na + ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K + block is equivalent to large applied potentials experimentally measured for two bacterial Na v channels to induce inward currents of K + ions. Here, these results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed

  10. Experimental Study of the NaK 3(1)Pi State.

    PubMed

    Laub; Mazsa; Webb; La Civita J; Prodan; Jabbour; Namiotka; Huennekens

    1999-02-01

    We report the results of an optical-optical double resonance experiment to determine the NaK 3(1)Pi state potential energy curve. In the first step, a narrow band cw dye laser (PUMP) is tuned to line center of a particular 2(A)1Sigma+(v', J') <-- 1(X)1Sigma+(v", J") transition, and its frequency is then fixed. A second narrowband tunable cw Ti:Sapphirelaser (PROBE) is then scanned, while 3(1)Pi --> 1(X)1Sigma+ violet fluorescence is monitored. The Doppler-free signals accurately map the 3(1)Pi(v, J) ro-vibrational energy levels. These energy levels are then fit to a Dunham expansion to provide a set of molecular constants. The Dunham constants, in turn, are used to construct an RKR potential curve. Resolved 3(1)Pi(v, J) --> 1(X)1Sigma+(v", J") fluorescence scans are also recorded with both PUMP and PROBE laser frequencies fixed. Comparison between observed and calculated Franck-Condon factors is used to determine the absolute vibrational numbering of the 3(1)Pi state levels and to determine the variation of the 3(1)Pi --> 1(X)1Sigma+ transitiondipole moment with internuclear separation. The recent theoretical calculation of the NaK 3(1)Pi state potential reported by Magnier and Millié (1996, Phys. Rev. A 54, 204) is in excellent agreement with the present experimental RKR curve. Copyright 1999 Academic Press.

  11. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation.

    PubMed

    Hedrich, Ulrike B S; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz; Mantegazza, Massimo; Lerche, Holger

    2014-11-05

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. Copyright © 2014 the authors 0270-6474/14/3414874-16$15.00/0.

  12. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  13. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  14. Ordered and disordered polymorphs of Na(Ni 2/3Sb 1/3)O₂: Honeycomb-ordered cathodes for Na-ion batteries

    DOE PAGES

    Ma, Jeffrey; Wu, Lijun; Bo, Shou -Hang; ...

    2015-04-14

    Na-ion batteries are appealing alternatives to Li-ion battery systems for large-scale energy storage applications in which elemental cost and abundance are important. Although it is difficult to find Na-ion batteries which achieve substantial specific capacities at voltages above 3 V (vs Na⁺/Na), the honeycomb-layered compound Na(Ni 2/3Sb 1/3)O₂ can deliver up to 130 mAh/g of capacity at voltages above 3 V with this capacity concentrated in plateaus at 3.27 and 3.64 V. Comprehensive crystallographic studies have been carried out in order to understand the role of disorder in this system which can be prepared in both “disordered” and “ordered” forms,more » depending on the synthesis conditions. The average structure of Na(Ni 2/3Sb 1/3)O₂ is always found to adopt an O3-type stacking sequence, though different structures for the disordered (R3¯ m, #166, a = b = 3.06253(3) Å and c = 16.05192(7) Å) and ordered variants ( C2/m, #12, a = 5.30458(1) Å, b = 9.18432(1) Å, c = 5.62742(1) Å and β = 108.2797(2)°) are demonstrated through the combined Rietveld refinement of synchrotron X-ray and time-of-flight neutron powder diffraction data. However, pair distribution function studies find that the local structure of disordered Na(Ni 2/3Sb 1/3)O₂ is more correctly described using the honeycomb-ordered structural model, and solid state NMR studies confirm that the well-developed honeycomb ordering of Ni and Sb cations within the transition metal layers is indistinguishable from that of the ordered phase. The disorder is instead found to mainly occur perpendicular to the honeycomb layers with an observed coherence length of not much more than 1 nm seen in electron diffraction studies. When the Na environment is probed through ²³Na solid state NMR, no evidence is found for prismatic Na environments, and a bulk diffraction analysis finds no evidence of conventional stacking faults. The lack of long range coherence is instead attributed to disorder among

  15. Structural analyses of Ca2+/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation

    PubMed Central

    Wang, Chaojian; Chung, Ben C.; Yan, Haidun; Wang, Hong-Gang; Lee, Seok-Yong; Pitt, Geoffrey S.

    2014-01-01

    Ca2+ regulates voltage-gated Na+ (NaV) channels and perturbed Ca2+ regulation of NaV function is associated with epilepsy syndromes, autism, and cardiac arrhythmias. Understanding the disease mechanisms, however, has been hindered by a lack of structural information and competing models for how Ca2+ affects NaV channel function. Here, we report the crystal structures of two ternary complexes of a human NaV cytosolic C-terminal domain (CTD), a fibroblast growth factor homologous factor, and Ca2+/calmodulin (Ca2+/CaM). These structures rule out direct binding of Ca2+ to the NaV CTD, and uncover new contacts between CaM and the NaV CTD. Probing these new contacts with biochemical and functional experiments allows us to propose a mechanism by which Ca2+ could regulate NaV channels. Further, our model provides hints towards understanding the molecular basis of the neurologic disorders and cardiac arrhythmias caused by NaV channel mutations. PMID:25232683

  16. High-Resolution Structure and Mechanism of an F/V-Hybrid Rotor Ring in a Na+-coupled ATP Synthase

    PubMed Central

    Matthies, Doreen; Zhou, Wenchang; Klyszejko, Adriana L.; Anselmi, Claudio; Yildiz, Özkan; Brandt, Karsten; Müller, Volker; Faraldo-Gómez, José D.; Meier, Thomas

    2014-01-01

    All rotary ATPases catalyze the interconversion of ATP and ADP-Pi through a mechanism that is coupled to the transmembrane flow of H+ or Na+. Physiologically, however, F/A-type enzymes specialize in ATP synthesis driven by downhill ion diffusion, while eukaryotic V-type ATPases function as ion pumps. To begin to rationalize the molecular basis for this functional differentiation, we solved the crystal structure of the Na+-driven membrane rotor of the Acetobacterium woodii ATP synthase, at 2.1 Å resolution. Unlike known structures, this rotor ring is a 9:1 heteromer of F- and V-type c-subunits, and therefore features a hybrid configuration of ion-binding sites along its circumference. Molecular and kinetic simulations are used to dissect the mechanisms of Na+ recognition and rotation of this c-ring, and to explain the functional implications of the V-type c-subunit. These structural and mechanistic insights indicate an evolutionary path between synthases and pumps involving adaptations in the rotor ring. PMID:25381992

  17. Experimental Study of the NaK 3 1Π State

    NASA Astrophysics Data System (ADS)

    Laub, E.; Mazsa, I.; Webb, S. C.; La Civita, J.; Prodan, I.; Jabbour, Z. J.; Namiotka, R. K.; Huennekens, J.

    1999-02-01

    We report the results of an optical-optical double resonance experiment to determine the NaK 31Π state potential energy curve. In the first step, a narrow band cw dye laser (PUMP) is tuned to line center of a particular 2(A)1Σ+(v‧,J‧) ← 1(X)1Σ+(v",J") transition, and its frequency is then fixed. A second narrowband tunable cw Ti:Sapphirelaser (PROBE) is then scanned, while 31Π → 1(X)1Σ+violet fluorescence is monitored. The Doppler-free signals accurately map the 31Π(v,J) ro-vibrational energy levels. These energy levels are then fit to a Dunham expansion to provide a set of molecular constants. The Dunham constants, in turn, are used to construct an RKR potential curve. Resolved 31Π(v,J) → 1(X)1Σ+(v",J") fluorescence scans are also recorded with both PUMP and PROBE laser frequencies fixed. Comparison between observed and calculated Franck-Condon factors is used to determine the absolute vibrational numbering of the 31Π state levels and to determine the variation of the 31Π → 1(X)1Σ+transitiondipole moment with internuclear separation. The recent theoretical calculation of the NaK 31Π state potential reported by Magnier and Millié (1996,Phys. Rev. A54, 204) is in excellent agreement with the present experimental RKR curve.

  18. FTIR spectra of the solid solutions (Na0.88K0.12)VO3, (Na0.5K0.5)VO3, and Na(V0.66P0.34)O3

    NASA Astrophysics Data System (ADS)

    de Waal, D.; Heyns, A. M.

    1992-03-01

    It is known that three different solid solutions, (Na0.88K0.12)VO3, (Na0.5K0.5)VO3 and Na(V0.66P0.34)O3, form in the (Na,K)(V,P)O3 system. These compounds all have monoclinic crystal structures similar to the pure alkali metal metavanadates containing small cations, e.g. Li+ and Na+ (Space group C2/c). Metavanadates with large cations like K+, Rb+, C+s and NH+4 form orthorhombic crystals, space group Pbcm. All those are structurally related to the silicate pyroxenes. Na(V0.66P0.34)O3 and (Na0.88K0.12)VO3 have the same modified diopside structure as (alpha) - NaVO3 while (Na0.5K0.5)VO3 adopts the true diopside structure. The infrared spectra of the three solid solutions are reported here in comparison with those of (alpha) -NaVO3 and KVO3. The results are also correlated with those obtained in two independent high pressure Raman studies of NH4VO3 and RbVO3 as the introduction of a larger cation like K+ should increase the pressure in the structure.

  19. High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5 MnO2 Nanosheet Assembled Nanowall Arrays.

    PubMed

    Jabeen, Nawishta; Hussain, Ahmad; Xia, Qiuying; Sun, Shuo; Zhu, Junwu; Xia, Hui

    2017-08-01

    The voltage limit for aqueous asymmetric supercapacitors is usually 2 V, which impedes further improvement in energy density. Here, high Na content Birnessite Na 0.5 MnO 2 nanosheet assembled nanowall arrays are in situ formed on carbon cloth via electrochemical oxidation. It is interesting to find that the electrode potential window for Na 0.5 MnO 2 nanowall arrays can be extended to 0-1.3 V (vs Ag/AgCl) with significantly increased specific capacitance up to 366 F g -1 . The extended potential window for the Na 0.5 MnO 2 electrode provides the opportunity to further increase the cell voltage of aqueous asymmetric supercapacitors beyond 2 V. To construct the asymmetric supercapacitor, carbon-coated Fe 3 O 4 nanorod arrays are synthesized as the anode and can stably work in a negative potential window of -1.3 to 0 V (vs Ag/AgCl). For the first time, a 2.6 V aqueous asymmetric supercapacitor is demonstrated by using Na 0.5 MnO 2 nanowall arrays as the cathode and carbon-coated Fe 3 O 4 nanorod arrays as the anode. In particular, the 2.6 V Na 0.5 MnO 2 //Fe 3 O 4 @C asymmetric supercapacitor exhibits a large energy density of up to 81 Wh kg -1 as well as excellent rate capability and cycle performance, outperforming previously reported MnO 2 -based supercapacitors. This work provides new opportunities for developing high-voltage aqueous asymmetric supercapacitors with further increased energy density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dysfunction of NaV1.4, a skeletal muscle voltage-gated sodium channel, in sudden infant death syndrome: a case-control study.

    PubMed

    Männikkö, Roope; Wong, Leonie; Tester, David J; Thor, Michael G; Sud, Richa; Kullmann, Dimitri M; Sweeney, Mary G; Leu, Costin; Sisodiya, Sanjay M; FitzPatrick, David R; Evans, Margaret J; Jeffrey, Iona J M; Tfelt-Hansen, Jacob; Cohen, Marta C; Fleming, Peter J; Jaye, Amie; Simpson, Michael A; Ackerman, Michael J; Hanna, Michael G; Behr, Elijah R; Matthews, Emma

    2018-04-14

    Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant death in high-income countries. Central respiratory system dysfunction seems to contribute to these deaths. Excitation that drives contraction of skeletal respiratory muscles is controlled by the sodium channel NaV1.4, which is encoded by the gene SCN4A. Variants in NaV1.4 that directly alter skeletal muscle excitability can cause myotonia, periodic paralysis, congenital myopathy, and myasthenic syndrome. SCN4A variants have also been found in infants with life-threatening apnoea and laryngospasm. We therefore hypothesised that rare, functionally disruptive SCN4A variants might be over-represented in infants who died from SIDS. We did a case-control study, including two consecutive cohorts that included 278 SIDS cases of European ancestry and 729 ethnically matched controls without a history of cardiovascular, respiratory, or neurological disease. We compared the frequency of rare variants in SCN4A between groups (minor allele frequency <0·00005 in the Exome Aggregation Consortium). We assessed biophysical characterisation of the variant channels using a heterologous expression system. Four (1·4%) of the 278 infants in the SIDS cohort had a rare functionally disruptive SCN4A variant compared with none (0%) of 729 ethnically matched controls (p=0·0057). Rare SCN4A variants that directly alter NaV1.4 function occur in infants who had died from SIDS. These variants are predicted to significantly alter muscle membrane excitability and compromise respiratory and laryngeal function. These findings indicate that dysfunction of muscle sodium channels is a potentially modifiable risk factor in a subset of infant sudden deaths. UK Medical Research Council, the Wellcome Trust, National Institute for Health Research, the British Heart Foundation, Biotronik, Cardiac Risk in the Young, Higher Education Funding Council for England, Dravet Syndrome UK, the Epilepsy Society, the Eunice Kennedy

  1. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance

    PubMed Central

    Zhao, H. B.; Hu, C. J.; Cheng, H. W.; Fang, J. H.; Xie, Y. P.; Fang, W. Y.; Doan, T. N. L.; Hoang, T. K. A.; Xu, J. Q.; Chen, P.

    2016-01-01

    A rechargeable hybrid aqueous battery (ReHAB) containing NASICON-type M3V2(PO4)3 (M = Li, Na) as the cathodes and Zinc metal as the anode, working in Li2SO4-ZnSO4 aqueous electrolyte, has been studied. Both of Li3V2(PO4)3 and Na3V2(PO4)3 cathodes can be reversibly charge/discharge with the initial discharge capacity of 128 mAh g−1 and 96 mAh g−1 at 0.2C, respectively, with high up to 84% of capacity retention ratio after 200 cycles. The electrochemical assisted ex-XRD confirm that Li3V2(PO4)3 and Na3V2(PO4)3 are relative stable in aqueous electrolyte, and Na3V2(PO4)3 showed more complicated electrochemical mechanism due to the co-insertion of Li+ and Na+. The effect of pH of aqueous electrolyte and the dendrite of Zn on the cycling performance of as designed MVP/Zn ReHABs were investigated, and weak acidic aqueous electrolyte with pH around 4.0–4.5 was optimized. The float current test confirmed that the designed batteries are stable in aqueous electrolytes. The MVP//Zn ReHABs could be a potential candidate for future rechargeable aqueous battery due to their high safety, fast dynamic speed and adaptable electrochemical window. Moreover, this hybrid battery broadens the scope of battery material research from single-ion-involving to double-ions -involving rechargeable batteries. PMID:27174224

  2. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance

    NASA Astrophysics Data System (ADS)

    Zhao, H. B.; Hu, C. J.; Cheng, H. W.; Fang, J. H.; Xie, Y. P.; Fang, W. Y.; Doan, T. N. L.; Hoang, T. K. A.; Xu, J. Q.; Chen, P.

    2016-05-01

    A rechargeable hybrid aqueous battery (ReHAB) containing NASICON-type M3V2(PO4)3 (M = Li, Na) as the cathodes and Zinc metal as the anode, working in Li2SO4-ZnSO4 aqueous electrolyte, has been studied. Both of Li3V2(PO4)3 and Na3V2(PO4)3 cathodes can be reversibly charge/discharge with the initial discharge capacity of 128 mAh g-1 and 96 mAh g-1 at 0.2C, respectively, with high up to 84% of capacity retention ratio after 200 cycles. The electrochemical assisted ex-XRD confirm that Li3V2(PO4)3 and Na3V2(PO4)3 are relative stable in aqueous electrolyte, and Na3V2(PO4)3 showed more complicated electrochemical mechanism due to the co-insertion of Li+ and Na+. The effect of pH of aqueous electrolyte and the dendrite of Zn on the cycling performance of as designed MVP/Zn ReHABs were investigated, and weak acidic aqueous electrolyte with pH around 4.0-4.5 was optimized. The float current test confirmed that the designed batteries are stable in aqueous electrolytes. The MVP//Zn ReHABs could be a potential candidate for future rechargeable aqueous battery due to their high safety, fast dynamic speed and adaptable electrochemical window. Moreover, this hybrid battery broadens the scope of battery material research from single-ion-involving to double-ions -involving rechargeable batteries.

  3. Ultrasonic-assisted solution combustion synthesis of porous Na3V2(PO4)3/C: formation mechanism and sodium storage performance

    NASA Astrophysics Data System (ADS)

    Chen, Qiuyun; Liu, Qing; Chu, Xiangcheng; Zhang, Yiling; Yan, Youwei; Xue, Lihong; Zhang, Wuxing

    2017-04-01

    Solution combustion synthesis (SCS) is an effective and rapid method for synthesizing nanocrystalline materials. However, the control over size, morphology, and microstructure are rather limited in SCS. Here, we develop a novel ultrasonic-assisted solution combustion route to synthesize the porous and nano-sized Na3V2(PO4)3/C composites, and reveal the effects of ultrasound on the structural evolution of NVP/C. Due to the cavitation effects generated from ultrasonic irradiation, the ultrasonic-assisted SCS can produce honeycomb precursor, which can be further transformed into porous Na3V2(PO4)3/C with reticular and hollow structures after thermal treatment. When used as cathode material for Na-ion batteries, the porous Na3V2(PO4)3/C delivers an initial discharge capacity of 118 mAh g-1 at 0.1 C and an initial coulombic efficiency of 85%. It can retain 93.8% of the initial capacity after 120 cycles at 0.2 C. The results demonstrate that ultrasonic-assisted SCS can be a new strategy to design crystalline nanomaterials with tunable microstructures.

  4. A neural network potential energy surface for the NaH2 system and dynamics studies on the H(2S) + NaH(X1Σ+) → Na(2S) + H2(X1Σg+) reaction.

    PubMed

    Wang, Shufen; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2017-08-02

    In order to study the dynamics of the reaction H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), a new potential energy surface (PES) for the ground state of the NaH 2 system is constructed based on 35 730 ab initio energy points. Using basis sets of quadruple zeta quality, multireference configuration interaction calculations with Davidson correction were carried out to obtain the ab initio energy points. The neural network method is used to fit the PES, and the root mean square error is very small (0.00639 eV). The bond lengths, dissociation energies, zero-point energies and spectroscopic constants of H 2 (X 1 Σ g + ) and NaH(X 1 Σ + ) obtained on the new NaH 2 PES are in good agreement with the experiment data. On the new PES, the reactant coordinate-based time-dependent wave packet method is applied to study the reaction dynamics of H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), and the reaction probabilities, integral cross-sections (ICSs) and differential cross-sections (DCSs) are obtained. There is no threshold in the reaction due to the absence of an energy barrier on the minimum energy path. When the collision energy increases, the ICSs decrease from a high value at low collision energy. The DCS results show that the angular distribution of the product molecules tends to the forward direction. Compared with the LiH 2 system, the NaH 2 system has a larger mass and the PES has a larger well at the H-NaH configuration, which leads to a higher ICS value in the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction. Because the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction releases more energy, the product molecules can be excited to a higher vibrational state.

  5. Regulation of branchial V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias).

    PubMed

    Tresguerres, Martin; Katoh, Fumi; Fenton, Heather; Jasinska, Edyta; Goss, Greg G

    2005-01-01

    To study the mechanisms of branchial acid-base regulation, Pacific spiny dogfish were infused intravenously for 24 h with either HCl (495+/- 79 micromol kg(-1) h(-1)) or NaHCO(3) (981+/-235 micromol kg(-1) h(-1)). Infusion of HCl produced a transient reduction in blood pH. Despite continued infusion of acid, pH returned to normal by 12 h. Infusion of NaHCO(3) resulted in a new steady-state acid-base status at approximately 0.3 pH units higher than the controls. Immunostained serial sections of gill revealed the presence of separate vacuolar proton ATPase (V-H(+)-ATPase)-rich or sodium-potassium ATPase (Na(+)/K(+)-ATPase)-rich cells in all fish examined. A minority of the cells also labeled positive for both transporters. Gill cell membranes prepared from NaHCO(3)-infused fish showed significant increases in both V-H(+)-ATPase abundance (300+/-81%) and activity. In addition, we found that V-H(+)-ATPase subcellular localization was mainly cytoplasmic in control and HCl-infused fish, while NaHCO(3)-infused fish demonstrated a distinctly basolateral staining pattern. Western analysis in gill membranes from HCl-infused fish also revealed increased abundance of Na(+)/H(+) exchanger 2 (213+/-5%) and Na(+)/K(+)-ATPase (315+/-88%) compared to the control.

  6. Layered P2-Na 2/3 Co 1/2 Ti 1/2 O 2 as a high-performance cathode material for sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabi, Noha; Doubaji, Siham; Hashimoto, Kazuki

    Layered oxides are regarded as promising cathode materials for sodium-ion batteries. We present Na2/3Co1/2Ti1/2O2 as a potential new cathode material for sodium-ion batteries. The crystal features and morphology of the pristine powder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cathode material is evaluated in galvanostatic charge-discharge and galvanostatic intermittent titration tests, as well as ex-situ X-ray diffraction analysis. Synthesized by a high-temperature solid state reaction, Na2/3Co1/2Ti1/2O2 crystallizes in P2-type structure with P6(3)/mmc space group. The material presents reversible electrochemical behavior and delivers a specific discharge capacity of 100 mAh g(-1) when tested in Na halfmore » cells between 2.0 and 4.2 V (vs. Na+/Na), with capacity retention of 98% after 50 cycles. Furthermore, the electrochemical cycling of this titanium-containing material evidenced a reduction of the potential jumps recorded in the NaxCoO2 parent phase, revealing a positive impact of Ti substitution for Co. The ex-situ XRD measurements confirmed the reversibility and stability of the material. No structural changes were observed in the XRD patterns, and the P2-type structure was stable during the charge/discharge process between 2.0 and 4.2 V vs. Na+/Na. These outcomes will contribute to the progress of developing low cost electrode materials for sodium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.« less

  7. Determination of 20Ne(p ,γ )21Na cross sections from Ep=500 -2000 keV

    NASA Astrophysics Data System (ADS)

    Lyons, S.; Görres, J.; deBoer, R. J.; Stech, E.; Chen, Y.; Gilardy, G.; Liu, Q.; Long, A. M.; Moran, M.; Robertson, D.; Seymour, C.; Vande Kolk, B.; Wiescher, M.; Best, A.

    2018-06-01

    Background: The reaction 20Ne(p ,γ )21Na influences the nucleosynthesis of Ne, Na, and Mg isotopes while contributing to hydrogen burning in several stellar sites, such as red giants, asymptotic giant branch (AGB) stars, massive stars, and oxygen-neon (ONe) novae. In the relevant temperature range for these environments (T = 0.05-0.5 GK), the main contributions to this reaction rate are from the direct capture process as well as the high-energy tail of a subthreshold resonance in the ground-state transition at Ex = 2425 keV in the 21Na compound nucleus. Purpose: The previous measurement of this reaction reports cross sections with large uncertainties for the ground-state transition. At higher energies, where the subthreshold resonance makes a smaller contribution to the total cross section, only upper limits are provided. This work aims to reduce the uncertainty in the cross section where direct capture dominates, as well as provide cross-section data in previously unmeasured regions. Method: The 20Ne(p ,γ )21Na reaction was measured over a wide proton energy range (Ep = 0.5-2.0 MeV) at θlab = 90∘. Transitions to the ground state and to the 332 and 2425 keV excited states were observed. The primary transitions to these three bound states were utilized in an R -matrix analysis to determine the contributions of the direct capture and the subthreshold resonance to the total cross section. Results: The cross sections of the present measurements have been found to be in good agreement with the previous data at low energy. Significantly improved cross-section measurements have been obtained over the Ep = 1300-1900 keV region. The narrow resonance at Ec.m. = 1113 keV (Ex = 3544.3 keV) has also been remeasured and its strength has been found to be in good agreement with previous measurements. Conclusions: An extrapolation of the S factor of 20Ne(p ,γ )21Na has been made to low energies using the R -matrix fit. The reaction rate from the subthreshold resonance was

  8. A computational study of Na behavior on graphene

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Sopiha, Kostiantyn; Kulish, Vadym V.; Tan, Teck L.; Manzhos, Sergei; Persson, Clas

    2015-04-01

    We present the first ab initio and molecular dynamics study of Na adsorption and diffusion on ideal graphene that considers Na-Na interaction and dispersion forces. From density functional theory (DFT) calculations using the generalized gradient approximation (GGA), the binding energy (vs. the vacuum reference state) of -0.75 eV is higher than the cohesive energy of Na metal (E1.07 eV). The binding energy approaches the Na metal cohesive energy (EcohDFT - D = - 1.21 eV) when dispersion correction is included (DFT-D), with Eb = -1.14 eV. Both DFT and DFT-D predict that the increase of Na concentration on graphene results in formation of Na complexes. This is evidenced by smaller Bader charge on Na atoms of Na dimer, 0.55e (0.48e for DFT) compared to 0.86e (for both DFT and DFT-D) for the single atom adsorption as well as by the formation of a Nasbnd Na bond identified by analysis of the electron density. These results suggest that ideal graphene is not a promising anode material for Na-ion batteries. Analysis of diffusion pathways for a Na dimer shows that the dimer remains stable during the diffusion, and computed migration barriers are significantly lower for the dimer than that for the single atom diffusion. This indicates that Na-Na interaction should be taken into account during the analysis of Na transport on graphene. Finally, we show that the typical defects (vacancy and divacancy) induce significant strengthening of the Nasbnd C interaction. In particular, the largest change to the interaction is computed for vacancy-defected graphene, where the found lowest binding energy (vs. the metal reference state) is about 1.15 eV (1.21 eV for DFT) lower than that for ideal graphene.

  9. Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles as a janus electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Karegeya, Claude; Mahmoud, Abdelfattah; Hatert, Frédéric; Vertruyen, Bénédicte; Cloots, Rudi; Lippens, Pierre-Emmanuel; Boschini, Frédéric

    2018-06-01

    A solvothermal method was used to prepare Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles, a new promising electrode material for lithium-ion batteries. The composition and the crystal structure were determined by 57Fe Mössbauer spectroscopy and powder X-ray diffraction Rietveld refinements and confirmed by magnetic measurements. The structural formula □0.75Na1.25Ni1.25Fe1.75(PO4)3 was obtained showing a significant amount of Na vacancies, which enhances Li diffusion. Na1.25Ni1.25Fe1.75(PO4)3 was used as negative and positive electrode material and shows excellent electrochemical performances. As negative electrode in the voltage range 0.03-3.5 V vs. Li+/Li, the first discharge at current density of 40 mA g-1 delivers a specific capacity of 1186 mAh g-1, which is almost three times its theoretical capacity (428 mAh g-1). Then, reversible capacity of 550 mAh g-1 was obtained at 50 mA g-1 with high rate capability (150 mAh g-1 at 500 mA g-1) and capacity retention of 350 cycles. As positive electrode material, specific capacities of about 145 and 99 mAh g-1 were delivered at current densities of 5 and 50 mA g-1, respectively, in the voltage range of 1.5-4.5 V vs. Li+/Li. In addition, we show that the use of solvothermal synthesis contributes to the synthesis of small sized particles leading to good electrochemical performances.

  10. Observation of double-well potential of NaH C 1Σ+ state: Deriving the dissociation energy of its ground state

    NASA Astrophysics Data System (ADS)

    Chu, Chia-Ching; Huang, Hsien-Yu; Whang, Thou-Jen; Tsai, Chin-Chun

    2018-03-01

    Vibrational levels (v = 6-42) of the NaH C 1Σ+ state including the inner and outer wells and the near-dissociation region were observed by pulsed optical-optical double resonance fluorescence depletion spectroscopy. The absolute vibrational quantum number is identified by comparing the vibrational energy difference of this experiment with the ab initio calculations. The outer well with v up to 34 is analyzed using the Dunham expansion and a Rydberg-Klein-Rees (RKR) potential energy curve is constructed. A hybrid double-well potential combined with the RKR potential, the ab initio calculation, and a long-range potential is able to describe the whole NaH C 1Σ+ state including the higher vibrational levels (v = 35-42). The dissociation energy of the NaH C 1Σ+ state is determined to be De(C) = 6595.10 ± 5 cm-1 and then the dissociation energy of the NaH ground state De(X) = 15 807.87 ± 5 cm-1 can be derived.

  11. Peierls instability as the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers

    NASA Astrophysics Data System (ADS)

    Kang, Myung Ho; Kwon, Se Gab; Jung, Sung Chul

    2018-03-01

    Density functional theory (DFT) calculations are used to investigate the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers. In the coverage definition, one monolayer refers to one Na atom per surface Si atom, so this surface contains an odd number of electrons (i.e., three Si dangling-bond electrons plus two Na electrons) per 3 × 1 unit cell. Interestingly, this odd-electron surface has been ascribed to a Mott-Hubbard insulator to account for the measured insulating band structure with a gap of about 0.8 eV. Here, we instead propose a Peierls instability as the origin of the experimental band gap. The concept of Peierls instability is fundamental in one-dimensional metal systems but has not been taken into account in previous studies of this surface. Our DFT calculations demonstrate that the linear chain structure of Si dangling bonds in this surface is energetically unstable with respect to a × 2 buckling modulation, and the buckling-induced band gap of 0.79 eV explains well the measured insulating nature.

  12. Crystal Structure of the Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chaojian; Chung, Ben C.; Yan, Haidun

    2012-11-13

    Voltage-gated Na{sup +} (Na{sub V}) channels initiate neuronal action potentials. Na{sub V} channels are composed of a transmembrane domain responsible for voltage-dependent Na{sup +} conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human NaV CTD, an FHF, and Ca{sup 2+}-free CaM at 2.2 {angstrom}.more » Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in NaV channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual NaV CTD isoforms for distinctive FHFs.« less

  13. Half-metallicity in new Heusler alloys NaTO2 (T=Sc, Ti, V, Cr, and Mn): A first-principles study

    NASA Astrophysics Data System (ADS)

    Rajabi, Kh; Ahmadian, F.

    2018-03-01

    On the basis of the full-potential linearized augmented plane wave (FPLAPW) method within density functional theory (DFT), electronic structure and magnetic properties of Heusler alloys NaTO2 (T = Sc, Ti, V, Cr, and Mn) were investigated. The negative values of formation energy showed that these compounds can be experimentally synthesized. Results showed that in all compounds, AlCu2Mn-type structure was the most favorable one. The NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys were HM ferromagnets except NaScO2 (in both structures which were nonmagnetic semiconductors) and NaVO2 (in AlCu2Mn-type structure which was a magnetic semiconductor). The origin of half-metallicity was also verified in HM alloys. NaCrO2 and NaVO2 alloys had higher half-metallic band gaps in comparison with Heusler alloys including and excluding transition metals. The total magnetic moments of HM NaTO2 (T = Ti, V, Cr, and Mn) alloys obeyed Slater-Pauling rule (Mtot = Ztot-12). Among NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys, NaCrO2 had the highest robustness of half-metallicity with variation of lattice constant in both structures.

  14. Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells

    PubMed Central

    Strege, Peter; Beyder, Arthur; Bernard, Cheryl; Crespo-Diaz, Ruben; Behfar, Atta; Terzic, Andre; Ackerman, Michael; Farrugia, Gianrico

    2012-01-01

    NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine. PMID:23018927

  15. Solution phase synthesis of Na{sub 0.28}V{sub 2}O{sub 5} nanobelts into nanorings and the electrochemical performance in Li battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaraju, Ganganagappa, E-mail: nagarajugn@rediffmail.com; Department of Chemistry, Central College Campus, Bangalore University, Bangalore; Chandrappa, Gujjarahalli Thimmanna

    2012-11-15

    Graphical abstract: Hydrothermal method has been adopted first time to prepare Na{sub 0.28}V{sub 2}O{sub 5} nanorings/nanobelts without using any organic surfactant/solvents at 130–160 °C for 1–2 days. TEM analyses reveal that the products consist of nanorings of width about 500 nm and thickness of about 100 nm with inner diameter of 5–7 m. Nanobelts of width 70–100 nm and several tens of micrometers in length are observed. The electrochemical results show that Na{sub 0.28}V{sub 2}O{sub 5} exhibits an initial discharge capacity of 320 mAh g{sup −1} and its capacity still retained 175 mAh g{sup −1} even after 69 cycles. Highlights:more » ► We are the first to report Na{sub 0.28}V{sub 2}O{sub 5} nanorings/nanobelts by solution method. ► Synthesis via hydrothermal method at 130–160 °C/1–2d in acidic medium. ► We have carried out without using any surfactant/templates/organic solvents. ► Shows discharge capacity of 320 mAh g{sup −1} and reach 175 mAh g{sup −1} after 69 cycles. ► A probable reaction mechanism for Na{sub 0.28}V{sub 2}O{sub 5} nanorings formation is also proposed. -- Abstract: In this paper, we are the first to report a simple one step hydrothermal method to synthesize Na{sub 0.28}V{sub 2}O{sub 5} nanorings/nanobelts without using any organic surfactant/solvents at 130–160 °C for 1–2 days. The obtained products have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, morphology by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and electrochemical discharge–charge test for lithium battery. XRD pattern exhibit a monoclinic Na{sub 0.28}V{sub 2}O{sub 5} structure. FTIR spectrum shows band at 958 cm{sup −1} is assigned to V=O stretching vibration, which is sensitive to intercalation and suggests that Na{sup +} ions are inserted between the vanadium oxide layers. TEM analyses reveal

  16. A Study of Electrochemical Machining of Ti-6Al-4V in NaNO3 solution

    NASA Astrophysics Data System (ADS)

    Li, Hansong; Gao, Chuanping; Wang, Guoqian; Qu, Ningsong; Zhu, Di

    2016-10-01

    The titanium alloy Ti-6Al-4V is used in many industries including aviation, automobile manufacturing, and medical equipment, because of its low density, extraordinary corrosion resistance and high specific strength. Electrochemical machining (ECM) is a non-traditional machining method that allows applications to all kinds of metallic materials in regardless of their mechanical properties. It is widely applied to the machining of Ti-6Al-4V components, which usually takes place in a multicomponent electrolyte solution. In this study, a 10% NaNO3 solution was used to make multiple holes in Ti-6Al-4V sheets by through-mask electrochemical machining (TMECM). The polarization curve and current efficiency curve of this alloy were measured to understand the electrical properties of Ti-6Al-4V in a 10% NaNO3 solution. The measurements show that in a 10% NaNO3 solution, when the current density was above 6.56 A·cm-2, the current efficiency exceeded 100%. According to polarization curve and current efficiency curve, an orthogonal TMECM experiment was conducted on Ti-6Al-4V. The experimental results suggest that with appropriate process parameters, high-quality holes can be obtained in a 10% NaNO3 solution. Using the optimized process parameters, an array of micro-holes with an aperture of 2.52 mm to 2.57 mm and maximum roundness of 9 μm were produced using TMECM.

  17. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode

    NASA Astrophysics Data System (ADS)

    Li, Sijie; Ge, Peng; Zhang, Chenyang; Sun, Wei; Hou, Hongshuai; Ji, Xiaobo

    2017-10-01

    Na3V2(PO4)3 (NVP) is a very promising cathode material in sodium ion battery for rapidly emerging large-scale energy storage with its classical 3D NASCION structure. However, the cycling life and rate performances are restricted its low electronic conductivity. To overcome these, the double carbon-wrapped Na3V2(PO4)3 composite is firstly designed through rheological phase approach, delivering enhanced electrochemical properties. The unique double carbon layers are composed of uniform amorphous carbons as protecting framework for stabilizing the structure, as well as the graphitized carbon sheets playing the role of conductive network for better electronic conductivity. This double carbon-wrapped Na3V2(PO4)3 composite exhibits a high reversible capacity of 99.8 mAh g-1 over 500 cycles at 1 C (110 mA g-1), yielding the coulombic efficiency of ∼99.8%. Meanwhile, it displays an initial capacity of 73 mAh g-1 at 100 C and remains 55 mAh g-1 at an ultra-rate of 200 C. Even after cycling at 200 C over 12 000 cycles, the Na+-storage capacity of 40 mAh g-1 with a retention of 72.7% is still obtained, highlighting its excellent long cycling life and remarkable rate performances.

  18. Experimental Studies of the NaK 3^1Π and 1^3Δ States

    NASA Astrophysics Data System (ADS)

    Prodan, I. D.; Marks, A.; Sibbach, L.; Laub, E.; Mazsa, I.; Webb, S.; La Civita, J.; Galle, E.; Jabbour, Z. J.; Namiotka, R. K.; Morgus, T.; Huennekens, J.; Li, Li

    2000-06-01

    We report the results of optical-optical double resonance experiments designed to study the 3^1Π and 1^3Δ states of NaK. In the first step, a narrow band cw dye laser (PUMP) was tuned to excite a particular 2(A)^1Σ^+(v_A, J') level [or 2(A)^1Σ^+(v_A, J') ~ 1(b)^3Π(v_b, J') mixed level], and its frequency was then fixed. A second narrow band tunable cw Ti:Sapphire laser (PROBE) was then scanned over transitions to various 3^1Π(v_Π, J) [or 1^3Δ(v_Δ, J)] levels while 3^1Π arrow 1(X)^1Σ^+ violet fluorescence [or collision-induced ^3Λ arrow 1(a)^3Σ^+ green fluorescence] was monitored. The Doppler-free signals accurately map the 3^1Π and 1^3Δ state ro-vibrational energy levels. These energy levels were then fit to Dunham expansions to provide experimental molecular constants, allowing the construction of RKR potential curves that have been compared to recent theoretical calculations. Comparison between observed and calculated Franck-Condon factors was used to determine variation of the 3^1Πarrow1(X)^1Σ^+ transition dipole moment with internuclear separation. A deperturbation analysis of the 1^3Δ state was performed to determine the spin-orbit constant for that state. The 1^3Δ state hyperfine structure, due to the Fermi contact interaction between the electron spin and the sodium atom nuclear spin, was also studied.

  19. Effect of stabilization annealing on SCC susceptibility of β-annealed Ti-6Al-4V alloy in 0.6 M NaCl solution

    NASA Astrophysics Data System (ADS)

    Jeong, Daeho; Park, Jiho; Ahn, Soojin; Sung, Hyokyung; Kwon, Yongnam; Kim, Sangshik

    2018-01-01

    The effect of stabilization annealing on the stress corrosion cracking (SCC) susceptibility of β-annealed Ti-6Al-4V (Ti64) alloy was examined in an aqueous 0.6 M NaCl solution under various applied potentials of +0.1, -0.05 and -0.1 V vs Ecorr, respectively, at a strain rate of 10 -6 s -1. The stabilization annealing substantially improved the resistance to SCC of β-annealed Ti64 alloy in 0.6 M NaCl solution under cathodic applied potentials, while the effect was marginal under an anodic applied potential. It was also noted that the areal fraction between ductile and brittle fracture of β-annealed Ti64 specimens, which were slow strain rate tested in 0.6 M NaCl solution, varied with stabilization annealing and applied potentials. The effect of stabilization annealing on the SCC behavior of β-annealed Ti64 alloy in SCC-causing environment was discussed based on the micrographic and fractographic observation.

  20. The 21 Na (p,γ) 22 Mg reaction from Ec.m. =200 to 1103 keV in novae and x-ray bursts

    NASA Astrophysics Data System (ADS)

    D'Auria, J. M.; Azuma, R. E.; Bishop, S.; Buchmann, L.; Chatterjee, M. L.; Chen, A. A.; Engel, S.; Gigliotti, D.; Greife, U.; Hunter, D.; Hussein, A.; Hutcheon, D.; Jewett, C. C.; José, J.; King, J. D.; Laird, A. M.; Lamey, M.; Lewis, R.; Liu, W.; Olin, A.; Ottewell, D.; Parker, P.; Rogers, J.; Ruiz, C.; Trinczek, M.; Wrede, C.

    2004-06-01

    The long-lived radioactive nuclide 22 Na ( t1/2 =2.6 yr) is an astronomical observable for understanding the physical processes of oxygen-neon novae. Yields of 22Na in these events are sensitive to the unknown total rate of the 21 Na (p,γ) 22 Mg reaction. Using a high intensity 21 Na beam at the TRIUMF-ISAC facility, the strengths of seven resonances in 22 Mg , of potential astrophysical importance, have been directly measured at center of mass energies from Ec.m. =200 to 1103 keV . We report the results obtained for these resonances and their respective contributions to the 21 Na (p,γ) 22 Mg rate in novae and x-ray bursts, and their impact on 22 Na production in novae.

  1. Superconductivity could occur Na-supersaturated NaCl

    NASA Astrophysics Data System (ADS)

    Hanaki, Koji

    1997-04-01

    A flow-into electron and a flow-out hole mean flow-into of two unit electric c harges. Even if an exciton consisting of an electron and a hole is a neutral q uasi-particle, overlapping of excitons, namely, the bose condensation changes into a superconductor where half the electric current is due to holes moving t oward the reverse direction. The Meisner effect of the bose condensation comes from the precession of the each exciton under the magnetic field^1. Moreo ver, the present mechanism is supported with that superconducting material alw ays has two kinds of carriers. The superconductivity of NaCl comes from the ab ove-mentioned theory. Free stable holes at first and then electrons are produc ed in NaCl when considerable number of Cl^- lattice vacancies are brought in NaCl mainly because some electrons in the Cl-3p filled band fall into the v acancies. The coexistence of two kinds of stable carriers does not always mean the presence of excitons like VO with electrons not paired and localized in e ach V atom though. While, the absorption spectrum of the NaCl has already conf irmed the presence of excitons; the strength of the spectrum seems to indicate the formation of the bose condensation. Thus we could expect a new supercondu ctor. 1) Hanaki B.Am.P.Soc.,40-1(1995)568

  2. Painful Na-channelopathies: an expanding universe.

    PubMed

    Waxman, Stephen G

    2013-07-01

    The universe of painful Na-channelopathies--human disorders caused by mutations in voltage-gated sodium channels--has recently expanded in three dimensions. We now know that mutations of sodium channels cause not only rare genetic 'model disorders' such as inherited erythromelalgia and channelopathy-associated insensitivity to pain but also common painful neuropathies. We have learned that mutations of NaV1.8, as well as mutations of NaV1.7, can cause painful Na-channelopathies. Moreover, recent studies combining atomic level structural models and pharmacogenomics suggest that the goal of genomically guided pain therapy may not be unrealistic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. [Excitation and relaxation of metastable state NaK(1 3Pi) at high vibrational levels].

    PubMed

    Luan, Nan-Nan; Cai, Qin; Zhang, Li-Ping; Dai, Kang; Shen, Yi-Fan

    2011-11-01

    The authors have investigated collision vibrational energy transfer rate constants in NaK[1 3Pi(v)] and He system. Pump laser excitation of the spin-forbidden band was used to produce very highly vibrationally excited metastable state NaK[1 3Pi (v = 22, 21, 20)]. The probe laser was used to excite the 1 3Pi (v = 22, 21, 20) to 5 3Pi(v'). Laser induced fluorescence (LIF) from 5 3Pi --> 1 3Sigma+ transition was used to follow the collision dynamics. The semilog plots of time-resolved LIF was obtained. The slopes yielded the effective lifetimes. From such data several Stern-Volmer plots could be constructed and the relaxation rate constants could be extracted for the sum of all processes that give rise to the decay of the prepared vibrational state. The rate constants (in units of 10(-11) cm3 x s(-1)) for v being 22, 21 and 20 are 1.4 +/- 0.1, 1.2 +/- 0.1 and 1.0 +/- 0.1, respectively. The vibrational relaxation rate is increasing with vibrational quantum number. In order to determine the importance of multiquantum relaxation, it is necessary to measure the relative population of both the prepared state and collisionally populated states. By the kinetic equations governing up to Delta(v) = 2 transitions, the time dependence of populations of the vibrational states were obtained. With the help of the integrating the population equations over all time, the importance of the two-quantum relaxation could be studied experimentally. By varying the delay between the pump and the probe laser, the He pressure dependent vibrational state specific decay could be measured. The time evolutions and relative intensities of the three states v = 22, 21 and 20 by preparing v = 22 were obtained. Using experimental data the rate constants (in units of 10(-11) cm3 x s(-1)) for v = 22 --> 21 and v = 22 --> 20 are 0.67 +/- 0.15 and 0.49 +/- 0.12, respectively. The single quantum relaxation accounts for only about 48% of the total relaxation out of v = 22. Multi-quantum relaxation (Delta(v

  4. High-resolution infrared studies of the v 10, v 11, v 14, and v 18 levels of [1.1.1]propellane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Robynne W.; Masiello, Tony; Martin, Matthew A.

    2012-11-15

    This paper is a continuation of earlier work for which the high resolution infrared spectrum of [1.1.1]propellane was measured and its k and l structure resolved for the first time. Here we present results from an analysis of more than 16,000 transitions involving three fundamental bands v 10 (E'-A1'), v 11 (E'-A1'), v 14 (A2''-A1') and two difference bands (v 10- v 18) (E'-E'') and (v 11-v 18) (E'-E"). Additional information about v18 was also obtained from the difference band (v 15+v 18)-v 18 (E'-E") and the binary combination band (v 15+v 18) (E'-A1'). Through the use of the groundmore » state constants reported in an earlier paper [1], rovibrational constants have been determined for all the vibrational states involved in these bands. The rovibrational parameters for the v 18(E'') state were obtained from combination-differences and showed no need to include interactions with other states. The v 10(E') state analysis was also straight-forward, with only a weak Coriolis interaction with the levels of the v 14(A2'') state. The latter levels are much more affected by a strong Coriolis interaction with the levels of the nearby v 11(E') state and also by a small but significant interaction with another state, presumably the v16(E'') state, that is not directly observed. Gaussian calculations (B3LYP/cc-pVTZ) computed at the anharmonic level aided the analyses by providing initial values for many of the parameters. These theoretical results generally compare favorably with the final parameter values deduced from the spectral analyses. Finally, evidence was obtained for several level crossings between the rotational levels of the v 11 and v 14 states and, using a weak coupling term corresponding to a Δk = ±5, Δl = ∓1 matrix element, it was possible to find transitions from the ground state that, combined with transitions to the same upper state, give a value of C 0 = 0.1936519(4) cm -1. This result, combined with the value of B 0 = 0.28755833(14) cm-1 reported

  5. Effect of Al substitution on the enhanced electrochemical performance and strong structure stability of Na3V2(PO4)3/C composite cathode for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yanjun; Xu, Youlong; Sun, Xiaofei; Wang, Chao

    2018-01-01

    In this study, a promising cathode material in Na-ion batteries, Al-doped NASICON-type Na3V2-xAlx(PO4)3/C (0 ≤ × ≤0.03) samples are synthesized and characterized. The doping effects on the crystal structure are investigated by XRD and XPS, indicating that low dose of Al3+ doping generates no damage on the structure of the material, and aluminum is substituted for the vanadium site successfully. Electron microscopy and Raman data show that amorphous carbon coated on the matrix can enhance the electron conductivity. The electrochemical kinetic response of Al3+ doping are tested based on "slow-charge and rapid-discharge" electrochemical mode, results from before and after the cycles show that the doping samples have strong structure stability and excellent electrochemical performance because of low internal resistances and high ion conductivity. Thus, Na3V1.98Al0.02(PO4)3/C exhibits an initial reversible capacity of 102.7 mAh g-1 at 10 mA g-1 in the potential range between 2.3 and 3.8 V and delivers a discharge value of 95 mAh g-1vs. 59.9 mAh g-1 of NVP/C at current density of 70 mA g-1 discharge after 50 cycles. The ionic conductivity of Na3V1.98Al0.02(PO4)3/C sample at 3.4 V after 50 cycles at 10 mA g-1 charge 200 mA g-1 discharge is 1.31 × 10-12 cm2s-1, four orders of magnitude higher than the undoped one(7.79 × 10-17 cm2s-1).

  6. Concentration dependence of Li+/Na+ diffusion in manganese hexacyanoferrates

    NASA Astrophysics Data System (ADS)

    Takachi, Masamitsu; Fukuzumi, Yuya; Moritomo, Yutaka

    2016-06-01

    Manganese hexacyanoferrates (Mn-HCFs) with a jungle-gym-type structure are promising cathode materials for Li+/Na+ secondary batteries (LIBs/SIBs). Here, we investigated the diffusion constants D Li/D Na of Li+/Na+ against the Li+/Na+ concentration x Na/x Li and temperature (T) of A 1.32Mn[Fe(CN)6]0.833.6H2O (A = Li and Na). We evaluated the activation energy E\\text{a}\\text{Li}/E\\text{a}\\text{Na} of D Li/D Na against x Na/x Li. We found that E\\text{a}\\text{Na} steeply increases with x Na from 0.41 eV at x Na = 0.69 to 0.7 eV at 1.1. The increase in E\\text{a}\\text{Na} is ascribed to the occupancy effect of the Na+ site. The increase in E\\text{a}\\text{Li} is suppressed, probably because the number of Li+ sites is three times that of Na+ sites.

  7. Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs

    DOE PAGES

    Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...

    2016-06-13

    We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less

  8. 3D Interconnected Carbon Fiber Network-Enabled Ultralong Life Na3 V2 (PO4 )3 @Carbon Paper Cathode for Sodium-Ion Batteries.

    PubMed

    Kretschmer, Katja; Sun, Bing; Zhang, Jinqiang; Xie, Xiuqiang; Liu, Hao; Wang, Guoxiu

    2017-03-01

    Sodium-ion batteries (NIBs) are an emerging technology, which can meet increasing demands for large-scale energy storage. One of the most promising cathode material candidates for sodium-ion batteries is Na 3 V 2 (PO 4 ) 3 due to its high capacity, thermal stability, and sodium (Na) Superionic Conductor 3D (NASICON)-type framework. In this work, the authors have significantly improved electrochemical performance and cycling stability of Na 3 V 2 (PO 4 ) 3 by introducing a 3D interconnected conductive network in the form of carbon fiber derived from ordinary paper towel. The free-standing Na 3 V 2 (PO 4 ) 3 -carbon paper (Na 3 V 2 (PO 4 ) 3 @CP) hybrid electrodes do not require a metallic current collector, polymeric binder, or conducting additives to function as a cathode material in an NIB system. The Na 3 V 2 (PO 4 ) 3 @CP cathode demonstrates extraordinary long term cycling stability for 30 000 deep charge-discharge cycles at a current density of 2.5 mA cm -2 . Such outstanding cycling stability can meet the stringent requirements for renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Slowly inactivating component of Na+ current in peri-somatic region of hippocampal CA1 pyramidal neurons

    PubMed Central

    Park, Yul Young; Johnston, Daniel

    2013-01-01

    The properties of voltage-gated ion channels on the neuronal membrane shape electrical activity such as generation and backpropagation of action potentials, initiation of dendritic spikes, and integration of synaptic inputs. Subthreshold currents mediated by sodium channels are of interest because of their activation near rest, slow inactivation kinetics, and consequent effects on excitability. Modulation of these currents can also perturb physiological responses of a neuron that might underlie pathological states such as epilepsy. Using nucleated patches from the peri-somatic region of hippocampal CA1 neurons, we recorded a slowly inactivating component of the macroscopic Na+ current (which we have called INaS) that shared many biophysical properties with the persistent Na+ current, INaP, but showed distinctively faster inactivating kinetics. Ramp voltage commands with a velocity of 400 mV/s were found to elicit this component of Na+ current reliably. INaS also showed a more hyperpolarized I-V relationship and slower inactivation than those of the fast transient Na+ current (INaT) recorded in the same patches. The peak amplitude of INaS was proportional to the peak amplitude of INaT but was much smaller in amplitude. Hexanol, riluzole, and ranolazine, known Na+ channel blockers, were tested to compare their effects on both INaS and INaT. The peak conductance of INaS was preferentially blocked by hexanol and riluzole, but the shift of half-inactivation voltage (V1/2) was only observed in the presence of riluzole. Current-clamp measurements with hexanol suggested that INaS was involved in generation of an action potential and in upregulation of neuronal excitability. PMID:23236005

  10. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na 3V 2(PO 4) 3 cathode materials for sodium ion batteries

    DOE PAGES

    Li, Hui; Yu, Xiqian; Bai, Ying; ...

    2015-01-01

    Na 3V 2-xMg x(PO 4) 3/C composites with different Mg 2+ doping contents (x=0, 0.01, 0.03, 0.05, 0.07 and 0.1) were prepared by a facile sol-gel method. The doping effects on the crystal structure were investigated by XRD, XPS and EXAFS. The results show that low dose doping Mg 2+ does not alter the structure of the material, and magnesium is successfully substituted for vanadium site. The Mg doped Na 3V 2-xMg x(PO 4) 3/C composites exhibit significant improvements on the electrochemistry performances in terms of the rate capability and cycle performance, especially for the Na 3V 1.95Mg 0.05(PO 4)more » 3/C. For example, when the current density increased from 1 C to 30 C, the specific capacity only decreased from 112.5 mAh g-1 to 94.2 mAh g -1 showing very good rate capability. Moreover, even cycling at a high rate of 20 C, an excellent capacity retention of 81% is maintained from the initial value of 106.4 mAh g-1 to 86.2 mAh g-1 at the 50th cycle. Enhanced rate capability and cycle performance can be attributed to the optimized particle size, structural stability and enhanced ionic and electronic conductivity induced by Mg doping.« less

  11. The NaK 1 1,3delta states: theoretical and experimental studies of fine and hyperfine structure of rovibrational levels near the dissociation limit.

    PubMed

    Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P

    2005-09-22

    Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

  12. Ranolazine vs phenytoin: greater effect of ranolazine on the transient Na(+) current than on the persistent Na(+) current in central neurons.

    PubMed

    Terragni, Benedetta; Scalmani, Paolo; Colombo, Elisa; Franceschetti, Silvana; Mantegazza, Massimo

    2016-11-01

    Voltage-gated Na(+) channels (NaV) are involved in pathologies and are important targets of drugs (NaV-blockers), e.g. some anti-epileptic drugs (AEDs). Besides the fast inactivating transient Na(+) current (INaT), they generate a slowly inactivating "persistent" current (INaP). Ranolazine, a NaV-blocker approved for treatment of angina pectoris, is considered a preferential inhibitor of INaP and has been proposed as a novel AED. Although it is thought that classic NaV-blockers used as AEDs target mainly INaT, they can also reduce INaP. It is important to disclose specific features of novel NaV-blockers, which could be necessary for their effect as AEDs in drug resistant patients. We have compared the action of ranolazine and of the classic AED phenytoin in transfected cells expressing the neuronal NaV1.1 Na(+) channel and in neurons of neocortical slices. Our results show that the relative block of INaT versus INaP of ranolazine and phenytoin is variable and depends on Na(+) current activation conditions. Strikingly, ranolazine blocks with less efficacy INaP and more efficacy INaT than phenytoin in conditions mimicking pathological states (i.e. high frequency firing and long lasting depolarizations). The effects are consistent with binding of ranolazine to both open/pre-open and inactivated states; larger INaT block at high stimulation frequencies is caused by the induction of a slow inactivated state. Thus, contrary than expected, ranolazine is not a better INaP blocker than phenytoin in central neurons, and phenytoin is not a better INaT blocker than ranolazine. Nevertheless, they show a complementary action and could differentially target specific pathological dysfunctions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, JF; Luo, C; Gao, T

    2015-01-01

    Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porousmore » hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.« less

  14. Magnetization and Hall effect under high pressure in NaV 6O 11

    NASA Astrophysics Data System (ADS)

    Naka, T.; Matsumoto, T.; Kanke, Y.; Murata, K.

    1995-02-01

    We have investigated the pressure dependences of magnetization and the Hall coefficient in the ferromagnetic vanadium oxide NaV 6O 11 up to 1.2 GPa. Structural transitions (hexagonal-hexagonal-orthorhombic) occur at TH = 245 K and TL = 35 K at ambient pressure. Meanwhile, the susceptibility obeys the Curie-Weiss law X = C/( T - θ) with antiferromagnetic correlation of θ < 0 at T > TH, with ferromagnetic correlation of θ < 0 at T < TH. The spontaneous magnetization appears below Tc = 64.2 K. With increasing pressure, Tc and magnetization M( T < Tc) decrease, while TH increases. The sign of the Hall coefficient changes continuously (negative-positive-negative) at around T ≈ 170 K and 75 K.

  15. Voltage-dependent neuromodulation of Na+ channels by D1-like dopamine receptors in rat hippocampal neurons.

    PubMed

    Cantrell, A R; Scheuer, T; Catterall, W A

    1999-07-01

    Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.

  16. Shape-Control of a 0D/1D NaFe0.9Mn0.1PO4 Nano-Complex by Electrospinning

    NASA Astrophysics Data System (ADS)

    Shin, Mi-Ra; Son, Jong-Tae

    2018-03-01

    NaFePO4 with a maricite structure was one of the most promising candidates for sodium ion batteries (SIBs) due to its advantages of environmental friendly and having low cost. However, it has low electrochemical conductivity and energy density, which impose limitations on its application as commercial cathode materials. In this study, other transition-metal ions such as Mn2+ were substituted into the iron (Fe2+) site in NaFePO4 to increase the surface area and the number of nanofibers in the prepared one-dimensional (1D) nano-sized material with 0D/1D dimensions to enhance the energy density. Also, the 0D/1D NaFe0.9Mn0.1PO4 cathode material has increased electrochemical conductivity because the fiber size was reduced to the nano-scale level by using the electrospinning method in order to decrease the diffusion path of Na-ions. The morphology of the 0D/1D nanofiber was evaluated by Field-emission scanning electron microscope and atomic force microscope analyses. The NaFe0.9Mn0.1PO4 nanofibers had a diameter of approximately 180 nm, while the spherical particle had a diameter 1 μm. The 0D/1D nano-sized cathode material show a discharge capacity of 27 mAhg -1 at a 0.05 C rate within the 2.0 4.5 V voltage range and a low R ct of 110 Ω.

  17. Expression of Na+-glucose cotransporter (SGLT1) in visceral and parietal mesothelium of rabbit pleura.

    PubMed

    Sironi, Chiara; Bodega, Francesca; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2007-10-15

    Indirect evidence for a solute-coupled liquid absorption from rabbit pleural space indicated that it should be caused by a Na(+)/H(+)-Cl(-)/HCO(3)(-) double exchanger and a Na(+)-glucose cotransporter [Agostoni, E., Zocchi, L., 1998. Mechanical coupling and liquid exchanges in the pleural space. In: Antony, V.B. (Ed.), Clinics in Chest Medicine: Diseases of the Pleura, vol. 19. Saunders, Philadelphia, pp. 241-260]. In this research we tried to obtain molecular evidence for Na(+)-glucose cotransporter (SGLT1) in visceral and parietal mesothelium of rabbit pleura. To this end we performed immunoblot assays on total protein extracts of scraped visceral or parietal mesothelium of rabbits. These showed two bands: one at 72kDa (m.w. of SGLT1), and one at 55kDa (which should also provide Na(+)-glucose cotransport). Both bands disappeared in assays in which SGLT1 antibody was preadsorbed with specific antigen. Molecular evidence for Na(+)/K(+) ATPase (alpha1 subunit) was also provided. Immunoblot assays for SGLT1 on cultured mesothelial cells of rabbit pleura showed a band at 72kDa, and in some cases also at 55kDa, irrespectively of treatment with a differentiating agent. Solute-coupled liquid absorption hinders liquid filtration through parietal mesothelium caused by Starling forces, and favours liquid absorption through visceral mesothelium caused by these forces.

  18. Studies of Inelastic Collisions of NaK and NaCs Molecules with Atomic Perturbers

    NASA Astrophysics Data System (ADS)

    Jones, Joshua A.

    We have investigated collisions of NaK molecules in the first excited state [2(A)1Sigma+], with Ar and He collision partners using laser-induced fluorescence spectroscopy (LIF) and polarization-labeling (PL) spectroscopy in a two-step excitation scheme. Additionally, we have investigated collisions of NaCs molecules in the first excited state [2(A)1Sigma +] with Ar and He perturbers using the LIF technique. We use a pump-probe, two-step excitation process. The pump laser prepares the molecule in a particular ro-vibrational (v, J) level in the A state. The probe laser frequency is scanned over transitions to the 31Π in NaK or to the 53Π in NaCs. In addition to observing strong direct lines, we also see weak collisional satellite lines that arise from collisions in the intermediate state that take the molecule from the prepared level (v, J) to level (v, J + Delta J). The ratio of the intensity of the collisional line to the intensity of the direct line in LIF and PL yield information about population and orientation transfer. Our results show a propensity for DeltaJ=even collisions of NaK with Ar and an even stronger propensity for collisions with He. Collisions of NaCs with Ar do not show any such J=even propensity. Preliminary investigations of collisions of NaCs with He seem to indicate a slight J=even propensity. In addition, we observe that rotationally inelastic collisions of excited NaK molecules with potassium atoms destroy almost all of the orientation, while collisions with argon destroy about one third to two thirds and collisions with helium destroy only about zero to one third of the initial orientation.

  19. Role of alkali carbonate and salt in topochemical synthesis of K1/2Na1/2NbO3 and NaNbO3 templates

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seok; Jeon, Jae-Ho; Choi, Si-Young

    2013-11-01

    Since the properties of lead-free piezoelectric materials have thus far failed to meet those of lead-based materials, either chemical doping or morphological texturing should be employed to improve the piezoelectric properties of lead-free piezoelectric ceramics. The goal of this study was to synthesize plate-like K1/2Na1/2NbO3 and NaNbO3 particles, which are the most favorable templates for morphological texturing of K1/2Na1/2NbO3 ceramics. To achieve this goal, Bi2.5Na3.5Nb5O18 precursors in a plate-like shape were first synthesized and subsequently converted into K1/2Na1/2NbO3 or NaNbO3 particles that retain the morphology of Bi2.5Na3.5Nb5O18. In this study, we found that sodium or potassium carbonate does not play a major role in converting the Bi2.5Na3.5Nb5O18 precursor to K1/2Na1/2NbO3 or NaNbO3, on the contrary to previous reports; however, the salt contributes to the conversion reaction. All synthesis processes have been performed via a molten salt method, and scanning electron microscopy, scanning probe microscopy, and inductively coupled plasma mass spectroscopy were used to characterize the synthesized K1/2Na1/2NbO3 or NaNbO3 templates.

  20. Studies of rotationally inelastic collisions of NaK and NaCs with Ar and He perturbers

    NASA Astrophysics Data System (ADS)

    Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Ashman, S.; Malenda, R. F.; Weiser, P.; Carlus, S.; Fragale, A.; Hickman, A. P.; Huennekens, J.

    2013-05-01

    We report studies of rotationally inelastic collisions of Ar and He atoms with the molecules NaK and NaCs prepared in various ro-vibrational levels of the A1Σ+ electronic state. We use laser induced fluorescence (LIF) and polarization labeling (PL) spectroscopy in a pump-probe, two step excitation process. The pump excites the molecule to a ro-vibrational level (v , J) in the A state. The probe laser is scanned over transitions to the 31 Π state in NaK or the 53 Π state in NaCs. In addition to strong direct lines, we observe weak satellite lines that arise from collision-induced transitions of the A state level (v , J) to (v , J + ΔJ) . The ratio of intensities of the satellite line to the direct line in LIF and PL yields information about population and orientation transfer. Preliminary results show a strong propensity for collisions with ΔJ =even for NaK; the propensity is larger for He than for Ar. Collisions of NaCs with He show a similar propensity, but collisions of NaCs with Ar do not. Theoretical calculations are also underway. For He-NaK, we have completed potential surface calculations using GAMESS and coupled channel scattering calculations of rotational energy transfer and transfer of orientation. Work supported by NSF and XSEDE.

  1. ECO2N V. 2.0: A New TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, L.; Spycher, N.; Doughty, C.

    2014-12-01

    ECO2N V2.0 is a fluid property module for the TOUGH2 simulator (Version 2.1) that was designed for applications to geologic sequestration of CO 2 in saline aquifers and enhanced geothermal reservoirs. ECO2N V2.0 is an enhanced version of the previous ECO2N V1.0 module (Pruess, 2005). It expands the temperature range up to about 300°C whereas V1.0 can only be used for temperatures below about 110°C. V2.0 includes a comprehensive description of the thermodynamics and thermophysical properties of H 2O - NaCl -CO 2 mixtures, that reproduces fluid properties largely within experimental error for the temperature, pressure and salinity conditions ofmore » interest (10 °C < T < 300 °C; P < 600 bar; salinity up to halite saturation). This includes density, viscosity, and specific enthalpy of fluid phases as functions of temperature, pressure, and composition, as well as partitioning of mass components H 2O, NaCl and CO 2 among the different phases. In particular, V2.0 accounts for the effects of water on the thermophysical properties of the CO 2-rich phase, which was ignored in V1.0, using a model consistent with the solubility models developed by Spycher and Pruess (2005, 2010). In terms of solubility models, V2.0 uses the same model for partitioning of mass components among the different phases (Spycher and Pruess, 2005) as V1.0 for the low temperature range (<99°C) but uses a new model (Spycher and Pruess, 2010) for the high temperature range (>109°C). In the transition range (99-109°C), a smooth interpolation is applied to estimate the partitioning as a function of the temperature. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO 2-rich) phase, as well as two-phase mixtures. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. This report gives technical specifications of ECO2N V2.0 and includes instructions for

  2. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.

    PubMed

    Byrt, Caitlin Siobhan; Xu, Bo; Krishnan, Mahima; Lightfoot, Damien James; Athman, Asmini; Jacobs, Andrew Keith; Watson-Haigh, Nathan S; Plett, Darren; Munns, Rana; Tester, Mark; Gilliham, Matthew

    2014-11-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  3. Polarization Spectroscopy and Collisions in NaK

    NASA Astrophysics Data System (ADS)

    Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.

    2009-05-01

    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v=16, J) <- X^1&+circ;(v=0, J±1) transition, creating an orientation (non-uniform MJ level distribution) in both levels. The linear polarized probe laser is scanned over various 3^1π(v=8, J' ±1) <- A^1&+circ;(v=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). In addition to strong direct transitions (J' = J), we also observe weak collisional satellite lines (J' = J±n with n = 1, 2, 3, ...) indicating that orientation is transferred to adjacent rotational levels during a collision. An LIF experiment (with linear polarized pump and probe beams) gives information on the collisional transfer of population. From these data, cross sections for both processes can be determined. We experimentally distinguish collisions of NaK with argon atoms from collisions with alkali atoms.

  4. The influence of excess K2O on the electrical properties of (K,Na)1/2Bi1/2TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Linhao; Li, Ming; Sinclair, Derek C.

    2018-04-01

    The solid solution (KxNa0.50-x)Bi0.50TiO3 (KNBT) between Na1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 (KBT) has been extensively researched as a candidate lead-free piezoelectric material because of its relatively high Curie temperature and good piezoelectric properties, especially near the morphotropic phase boundary (MPB) at x ˜ 0.10 (20 mol. % KBT). Here, we show that low levels of excess K2O in the starting compositions, i.e., (Ky+0.03Na0.50-y)Bi0.50TiO3.015 (y-series), can significantly change the conduction mechanism and electrical properties compared to a nominally stoichiometric KNBT series (KxNa0.50-x)Bi0.50TiO3 (x-series). Impedance spectroscopy measurements reveal significantly higher bulk conductivity (σb) values for y ≥ 0.10 samples [activation energy (Ea) ≤ 0.95 eV] compared to the corresponding x-series samples which possess bandgap type electronic conduction (Ea ˜ 1.26-1.85 eV). The largest difference in electrical properties occurs close to the MPB composition (20 mol. % KBT) where y = 0.10 ceramics possess σb (at 300 °C) that is 4 orders of magnitude higher than that of x = 0.10 and the oxide-ion transport number in the former is ˜0.70-0.75 compared to <0.05 in the latter (between 600 and 800 °C). The effect of excess K2O can be rationalised on the basis of the (K + Na):Bi ratio in the starting composition prior to ceramic processing. This demonstrates the electrical properties of KNBT to be sensitive to low levels of A-site nonstoichiometry and indicates that excess K2O in KNBT starting compositions to compensate for volatilisation can lead to undesirable high dielectric loss and leakage currents at elevated temperatures.

  5. Critical increase in Na-doping facilitates acceptor band movements that yields ~180 meV shallow hole conduction in ZnO bulk crystals

    PubMed Central

    Parmar, Narendra S.; Yim, Haena; Choi, Ji-Won

    2017-01-01

    Stable p-type conduction in ZnO has been a long time obstacle in utilizing its full potential such as in opto-electronic devices. We designed a unique experimental set-up in the laboratory for high Na-doping by thermal diffusion in the bulk ZnO single crystals. SIMS measurement shows that Na concentration increases by 3 orders of magnitude, to ~3 × 1020 cm−3 as doping temperature increases to 1200 °C. Electronic infrared absorption was measured for Na-acceptors. Absorption bands were observed near (0.20–0.24) eV. Absorption bands blue shifted by 0.04 eV when doped at 1200 °C giving rise to shallow acceptor level. NaZn band movements as a function of doping temperature are also seen in Photoluminescence emission (PL), Photoluminescence excitation (PLE) and UV-Vis transmission measurements. Variable temperature Hall measurements show stable p-type conduction with hole binding energy ~0.18 eV in ZnO samples that were Na-doped at 1200 °C. PMID:28272444

  6. β-NaVOPO 4 obtained by a low-temperature synthesis process: A new 3.3 V cathode for sodium-ion batteries

    DOE PAGES

    He, Guang; Huq, Ashfia; Manthiram, Arumugam; ...

    2016-02-02

    Vanadyl phosphates (VOPO 4) represent a class of attractive cathodes in lithium-ion batteries. However, the exploration of this type of materials in sodium-ion batteries is rare. Here, we report for the first time the synthesis of orthorhombic β-NaVOPO 4 by first chemically extracting lithium from beta-LiVOPO 4 and then inserting sodium into the obtained β-VOPO 4 by a microwave-assisted solvothermal process with NaI, which serves both as a reducing agent and sodium source. Intermediate Na xVOPO 4 compositions with x = 0.3, 0.5, and 0.8 have also been obtained by controlling the amount of NaI in the reaction mixture. Jointmore » Rietveld refinement of synchrotron X-ray diffraction (XRD) and neutron diffraction confirms that the fully sodiated β-NaVOPO 4 is isostructural with the lithium counterpart β-LiVOPO 4. Bond valence sum maps suggest that sodium ions possibly diffuse along the [010] direction in the lattice, similar to the ionic conduction pathway in β-LiVOPO 4. Although the initial discharge capacity is low due to the protons in the structure, it steadily increases with cycling with a long plateau at 3.3 V. As a result, ex situ XRD data of cycled β-VOPO 4 and β-NaVOPO 4 electrodes confirm the reversible reaction in sodium cells involving the V 4+/V 5+ redox couple.« less

  7. Na[superscript +] binding to meizothrombin desF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papaconstantinou, M.E.; Gandhi, P.S.; Chen, Z.

    2009-06-10

    Meizothrombin is the physiologically active intermediate generated by a single cleavage of prothrombin at R320 to separate the A and B chains. Recent evidence has suggested that meizothrombin, like thrombin, is a Na{sup +}-activated enzyme. In this study we present the first X-ray crystal structure of human meizothrombin desF1 solved in the presence of the active site inhibitor PPACK at 2.1 {angstrom} resolution. The structure reveals a Na{sup +} binding site whose architecture is practically identical to that of human thrombin. Stopped-flow measurements of Na{sup +} binding to meizothrombin desF1 document a slow phase of fluorescence change with a kmore » obs decreasing hyperbolically with increasing [Na{sup +}], consistent with the existence of three conformations in equilibrium, E*, E and E:Na{sup +}, as for human thrombin. Evidence that meizothrombin exists in multiple conformations provides valuable new information for studies of the mechanism of prothrombin activation.« less

  8. Giant strain with low cycling degradation in Ta-doped [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} lead-free ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoming; Tan, Xiaoli, E-mail: xtan@iastate.edu

    2016-07-21

    Non-textured polycrystalline [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}](Ti{sub 1−x}Ta{sub x})O{sub 3} ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d{sub 33}* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater thanmore » most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} ceramics show great potential for large displacement devices.« less

  9. Quinone Reduction by the Na+-Translocating NADH Dehydrogenase Promotes Extracellular Superoxide Production in Vibrio cholerae▿ †

    PubMed Central

    Lin, Po-Chi; Türk, Karin; Häse, Claudia C.; Fritz, Günter; Steuber, Julia

    2007-01-01

    The pathogenicity of Vibrio cholerae is influenced by sodium ions which are actively extruded from the cell by the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR). To study the function of the Na+-NQR in the respiratory chain of V. cholerae, we examined the formation of organic radicals and superoxide in a wild-type strain and a mutant strain lacking the Na+-NQR. Upon reduction with NADH, an organic radical was detected in native membranes by electron paramagnetic resonance spectroscopy which was assigned to ubisemiquinones generated by the Na+-NQR. The radical concentration increased from 0.2 mM at 0.08 mM Na+ to 0.4 mM at 14.7 mM Na+, indicating that the concentration of the coupling cation influences the redox state of the quinone pool in V. cholerae membranes. During respiration, V. cholerae cells produced extracellular superoxide with a specific activity of 10.2 nmol min−1 mg−1 in the wild type compared to 3.1 nmol min−1 mg−1 in the NQR deletion strain. Raising the Na+ concentration from 0.1 to 5 mM increased the rate of superoxide formation in the wild-type V. cholerae strain by at least 70%. Rates of respiratory H2O2 formation by wild-type V. cholerae cells (30.9 nmol min−1 mg−1) were threefold higher than rates observed with the mutant strain lacking the Na+-NQR (9.7 nmol min−1 mg−1). Our study shows that environmental Na+ could stimulate ubisemiquinone formation by the Na+-NQR and hereby enhance the production of reactive oxygen species formed during the autoxidation of reduced quinones. PMID:17322313

  10. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae

    PubMed Central

    Muras, Valentin; Dogaru-Kinn, Paul; Minato, Yusuke; Häse, Claudia C.

    2016-01-01

    ABSTRACT We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2′,7′-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo. The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na+-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min−1 mg−1 membrane protein) compared to membranes from the mutant lacking Na+-NQR (0.18 ± 0.01 μmol min−1 mg−1). Overexpression of plasmid-encoded Na+-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min−1 mg−1). By analyzing a variant of Na+-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae. The impact of superoxide formation by the Na+-NQR on the virulence of V. cholerae is discussed. IMPORTANCE In several studies, it was demonstrated that the Na+-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na+-NQR as the site of superoxide formation in the cytoplasm of V. cholerae. Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on

  11. Magnesium/Lithium-Ion Hybrid Battery with High Reversibility by Employing NaV3O8·1.69H2O Nanobelts as a Positive Electrode.

    PubMed

    Rashad, Muhammad; Li, Xianfeng; Zhang, Huamin

    2018-06-27

    Recently, magnesium-ion batteries (MIBs) have been under remarkable research focus owing to their appealingly high energy density and natural abundance of magnesium. Nevertheless, MIBs exhibit a very limited performance because of sluggish solid-state Mg 2+ ion diffusion and high polarizability, which hinder their progress toward commercialization. Herein, we report a Mg 2+ /Li + hybrid-ion battery (MLIB) with NaV 3 O 8 ·1.69H 2 O (NVO) nanobelts synthesized at room temperature working as the positive electrode. In the hybrid-ion system, Li + intercalates/deintercalates along with a small amount of Mg 2+ adsorption at the NVO cathode, whereas the anode side of the cell is dominated by Mg 2+ deposition/dissolution. As a result, the MLIB exhibits a much higher rate capability (i.e., 446 mA h g -1 at 20 mA g -1 ) than the previously reported MLIBs. MLIB maintains a high specific capacity of 200 mA h g -1 at 80 mA g -1 for 150 cycles, showing excellent stability. Moreover, the effect of different Li-ion concentrations (i.e., 0.5-2.0 M) in the electrolyte and cutoff voltage (ranging from 2 to 2.6 V) on the specific capacities are investigated. The current study highlights a strategy to exploit the Mg 2+ /Li + hybrid electrolyte system with various electrode materials for high-performance MIBs.

  12. Molecular evolution of respiratory syncytial virus subgroup A genotype NA1 and ON1 attachment glycoprotein (G) gene in central Vietnam.

    PubMed

    Yoshihara, Keisuke; Le, Minh Nhat; Nagasawa, Koo; Tsukagoshi, Hiroyuki; Nguyen, Hien Anh; Toizumi, Michiko; Moriuchi, Hiroyuki; Hashizume, Masahiro; Ariyoshi, Koya; Dang, Duc Anh; Kimura, Hirokazu; Yoshida, Lay-Myint

    2016-11-01

    We performed molecular evolutionary analyses of the G gene C-terminal 3rd hypervariable region of RSV-A genotypes NA1 and ON1 strains from the paediatric acute respiratory infection patients in central Vietnam during the 2010-2012 study period. Time-scaled phylogenetic analyses were performed using Bayesian Markov Chain Monte Carlo (MCMC) method, and pairwise distances (p-distances) were calculated. Bayesian Skyline Plot (BSP) was constructed to analyze the time-trend relative genetic diversity of central Vietnam RSV-A strains. We also estimated the N-glycosylation sites within G gene hypervariable region. Amino acid substitutions under positive and negative selection pressure were examined using Conservative Single Likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Internal Fixed Effects Likelihood (IFEL) and Mixed Effects Model for Episodic Diversifying Selection (MEME) models. The majority of central Vietnam ON1 strains detected in 2012 were classified into lineage 1 with few positively selected substitutions. As for the Vietnamese NA1 strains, four lineages were circulating during the study period with a few positive selection sites. Shifting patterns of the predominantly circulating NA1 lineage were observed in each year during the investigation period. Median p-distance of central Vietnam NA1 strains was wider (p-distance=0.028) than that of ON1 (p-distance=0.012). The molecular evolutionary rate of central Vietnam ON1 strains was estimated to be 2.55×10 -2 (substitutions/site/year) and was faster than NA1 (7.12×10 -3 (substitutions/site/year)). Interestingly, the evolutionary rates of both genotypes ON1 and NA1 strains from central Vietnam were faster than the global strains respectively. Furthermore, the shifts of N-glycosylation pattern within the G gene 3rd hypervariable region of Vietnamese NA1 strains were observed in each year. BSP analysis indicated the rapid growth of RSV-A effective population size in early 2012. These results

  13. Na+ Interactions with the Neutral Amino Acid Transporter ASCT1*

    PubMed Central

    Scopelliti, Amanda J.; Heinzelmann, Germano; Kuyucak, Serdar; Ryan, Renae M.; Vandenberg, Robert J.

    2014-01-01

    The alanine, serine, cysteine transporters (ASCTs) belong to the solute carrier family 1A (SLC1A), which also includes the excitatory amino acid transporters (EAATs) and the prokaryotic aspartate transporter GltPh. Acidic amino acid transport by the EAATs is coupled to the co-transport of three Na+ ions and one proton, and the counter-transport of one K+ ion. In contrast, neutral amino acid exchange by the ASCTs does not require protons or the counter-transport of K+ ions and the number of Na+ ions required is not well established. One property common to SLC1A family members is a substrate-activated anion conductance. We have investigated the number and location of Na+ ions required by ASCT1 by mutating residues in ASCT1 that correspond to residues in the EAATs and GltPh that are involved in Na+ binding. Mutations to all three proposed Na+ sites influence the binding of substrate and/or Na+, or the rate of substrate exchange. A G422S mutation near the Na2 site reduced Na+ affinity, without affecting the rate of exchange. D467T and D467A mutations in the Na1 site reduce Na+ and substrate affinity and also the rate of substrate exchange. T124A and D380A mutations in the Na3 site selectively reduce the affinity for Na+ and the rate of substrate exchange without affecting substrate affinity. In many of the mutants that reduce the rate of substrate transport the amplitudes of the substrate-activated anion conductances are not substantially affected indicating altered ion dependence for channel activation compared with substrate exchange. PMID:24808181

  14. Low-temperature glasslike properties in (NaCl)1-x(NaCN)x

    NASA Astrophysics Data System (ADS)

    Watson, Susan K.; Pohl, R. O.

    1995-04-01

    Thermal conductivity, internal friction, transverse sound velocity (60 mK to 300 K), and specific-heat data (100 mK to 40 K) for (NaCl)1-x(NaCN)x (x=0, 0.025, 0.05, 0.1, 0.76, 1) show a progression from crystalline to glasslike behavior as the CN- concentration is increased from 0 to 76 %. The evolution of glasslike properties is compared to that in other crystals in which glasslike properties evolve with increasing disorder, e.g., (KBr)1-x(KCN)x and Ba1-xLaxF2-x. For (KBr)1-x(KCN)x, Sethna and Chow have shown that as the concentration of the almost freely rotating CN- ions is increased the average potential barrier for CN- reorientation also increases through elastic quadrupolar interactions. For x~0.5, only a small density of low-energy states is left, which equals that observed in structural glasses. In Ba1-xLaxF2-x, on the other hand, the crystal field for small doping x is so large that no atomic motion occurs at low temperatures. (NaCl)1-x(NaCN)x is shown to represent an intermediate case, in that the crystal field is non-negligible at small x, yet glasslike low-energy excitations indicative of very small potential barrier heights evolve with increasing x. It is argued that random internal strains cause a decrease of the barrier heights in these crystals, which lead to the low-energy excitations. It is proposed that random strains have a similar effect in other disordered crystals as in Ba1-xLaxF2-x, which for small x show no low-energy mobile states, yet which for large x become glasslike.

  15. Na Diffusion in Quasi One-Dimensional Ion Conductor NaMn2O4 Observed by μ+SR

    NASA Astrophysics Data System (ADS)

    Umegaki, Izumi; Nozaki, Hiroshi; Harada, Masashi; Månsson, Martin; Sakurai, Hiroya; Kawasaki, Ikuto; Watanabe, Isao; Sugiyama, Jun

    A quasi one-dimensional (1D) compound, NaMn2O4, in which Mn2O4 zigzag chains form a 1D channel along the b-axis and Na ions locate at the center of the channel, is thought to be a good Na ionic conductor. In order to study Na-ion diffusion, we have measured μ+SR spectra using a powder sample in the temperature range between 100 and 500 K. A diffusive behavior was clearly observed above 325 K. Assuming a thermal activate process for jump diffusion of Na-ion between two nearest neighboring sites, a self diffusion coefficient of Na ion (DNa) and its activation energy (Ea) were estimated as DNa = (3.1 ± 0.2) × 10 - 11 cm2/s at 350 K and Ea = 180(9) meV.

  16. Pharmacology of the Nav1.1 domain IV voltage sensor reveals coupling between inactivation gating processes.

    PubMed

    Osteen, Jeremiah D; Sampson, Kevin; Iyer, Vivek; Julius, David; Bosmans, Frank

    2017-06-27

    The Na v 1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Na v ) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Na v 1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Na v channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Na v 1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Na v 1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Na v 1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Na v 1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Na v channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Na v 1.1 function.

  17. Advancement of technology towards developing Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Jamesh, Mohammed Ibrahim; Prakash, A. S.

    2018-02-01

    The Na-ion-batteries are considered much attention for the next-generation power-sources due to the high abundance of Na resources that lower the cost and become the alternative for the state of the art Li-ion batteries in future. In this review, the recently reported potential cathode and anode candidates for Na-ion-batteries are identified in-light-of-their high-performance for the development of Na-ion-full-cells. Further, the recent-progress on the Na-ion full-cells including the strategies used to improve the high cycling-performance (stable even up-to 50000 cycles), operating voltage (even ≥ 3.7 V), capacity (>350 mAhg-1 even at 1000 mAg-1 (based-on-mass-of-the-anode)), and energy density (even up-to 400 Whkg-1) are reviewed. In addition, Na-ion-batteries with the electrodes containing reduced graphene oxide, and the recent developments on symmetric Na-ion-batteries are discussed. Further, this paper identifies the promising Na-ion-batteries including the strategies used to assemble full-cell using hard-carbon-anodes, Na3V2(PO4)3 cathodes, and other-electrode-materials. Then, comparison between aqueous and non-aqueous Na-ion-batteries in terms of voltage and energy density has been given. Later, various types of electrolytes used for Na-ion-batteries including aqueous, non-aqueous, ionic-liquids and solid-state electrolytes are discussed. Finally, commercial and technological-developments on Na-ion-batteries are provided. The scientific and engineering knowledge gained on Na-ion-batteries afford conceivable development for practical application in near future.

  18. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation

    NASA Astrophysics Data System (ADS)

    Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu

    2018-03-01

    This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.

  19. Solvothermal synthesis and structural characterization of a three-dimensional metal organic polymer [NaZn(1,2,4-BTC)] (1,2,4-BTC=1,2,4-benzenetricarboxylate)

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Shi, Zhan; Li, Guanghua; Fan, Yong; Fu, Wensheng; Feng, Shouhua

    2004-01-01

    A new three-dimensional metal-organic polymer, [NaZn(1,2,4-BTC)] (where 1,2,4-BTC=1,2,4-benzenetricarboxylate), has been prepared under solvothermal conditions and characterized by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P2 1/ c, with cell parameters: a=9.7706(4) Å, b=12.3549(5) Å, c=6.8897(3) Å, β=91.640(2)°, V=831.35(6) Å 3 and Z=4. In the three-dimensional structure of the compound, each Zn atom is five-coordinated in distorted trigonal bipyramidal geometry, while the sixfold coordination of Na corresponds to a slightly distorted triangular prism. The organic ligand, 1,2,4-BTC, shows a novel and unprecedented coordination mode: 11 bonds to 10 metals with each carboxylate function exhibiting different linkages. It remains stable when desolvated and when heated up to 410 °C.

  20. SABRE: A New NaI(T1) Dark Matter Direct Detection Experiment

    NASA Astrophysics Data System (ADS)

    Shields, Emily; Xu, Jingke; Calaprice, Frank

    SABRE (Sodium-iodide with Active Background REjection) is a new NaI(Tl) experiment designed to test the DAMA/LIBRA claim for a positive WIMP-dark matter annual modulation signal. SABRE will consist of highly pure NaI(Tl) crystals in an active liquid scintillator veto that will be placed deep underground. The scintillator vessel will provide a veto against external backgrounds and those arising from detector components, especially the 3 keV signature from the decay of 40K in the crystal. Through the use of crystal purification techniques and the veto, we aim for a 40K background significantly lower than that of the DAMA/LIBRA experiment. We present our work developing low-background NaI(Tl) crystals using a highly pure NaI powder and the development of the veto.

  1. NA62 and NA48/2 results on search for Heavy Neutral Leptons

    NASA Astrophysics Data System (ADS)

    Lamanna, Gianluca; Aliberti, R.; Ambrosino, F.; Ammendola, R.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Barbanera, M.; Biagioni, A.; Bician, L.; Biino, C.; Bizzeti, A.; Blazek, T.; Bloch-Devaux, B.; Bonaiuto, V.; Boretto, M.; Bragadireanu, M.; Britton, D.; Brizioli, F.; Brunetti, M. B.; Bryman, D.; Bucci, F.; Capussela, T.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Checcucci, B.; Conovaloff, A.; Cooper, P.; Cortina Gil, E.; Corvino, M.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Doble, N.; Dobrich, B.; Duval, F.; Duk, V.; Engelfried, J.; Enik, T.; Estrada-Tristan, N.; Falaleev, V.; Fantechi, R.; Fascianelli, V.; Federici, L.; Fedotov, S.; Filippi, A.; Fiorini, M.; Fry, J.; Fu, J.; Fucci, A.; Fulton, L.; Gamberini, E.; Gatignon, L.; Georgiev, G.; Ghinescu, S.; Gianoli, A.; Giorgi, M.; Giudici, S.; Gonnella, F.; Goudzovski, E.; Graham, C.; Guida, R.; Gushchin, E.; Hahn, F.; Heath, H.; Husek, T.; Hutanu, O.; Hutchcroft, D.; Iacobuzio, L.; Iacopini, E.; Imbergamo, E.; Jenninger, B.; Kampf, K.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khotyantsev, A.; Kleimenova, A.; Korotkova, A.; Koval, M.; Kozhuharov, V.; Kucerova, Z.; Kudenko, Y.; Kunze, J.; Kurochka, V.; Kurshetsov, V.; Lanfranchi, G.; Lamanna, G.; Latino, G.; Laycock, P.; Lazzeroni, C.; Lenti, M.; Lehmann Miotto, G.; Leonardi, E.; Lichard, P.; Litov, L.; Lollini, R.; Lomidze, D.; Lonardo, A.; Lubrano, P.; Lupi, M.; Lurkin, N.; Madigozhin, D.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Marchevski, R.; Martellotti, S.; Massarotti, P.; Massri, K.; Maurice, E.; Medvedeva, M.; Mefodev, A.; Menichetti, E.; Migliore, E.; Minucci, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Moulson, M.; Movchan, S.; Napolitano, M.; Neri, I.; Newson, F.; Norton, A.; Noy, M.; Numao, T.; Obraztsov, V.; Ostankov, A.; Padolski, S.; Page, R.; Palladino, V.; Parkinson, C.; Pedreschi, E.; Pepe, M.; Perrin-Terrin, M.; Peruzzo, L.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pinzino, J.; Polenkevich, I.; Pontisso, L.; Potrebenikov, Yu.; Protopopescu, D.; Raggi, M.; Romano, A.; Rubin, P.; Ruggiero, G.; Ryjov, V.; Salamon, A.; Santoni, C.; Saracino, G.; Sargeni, F.; Semenov, V.; Sergi, A.; Shaikhiev, A.; Shkarovskiy, S.; Soldi, D.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Sturgess, A.; Swallow, J.; Trilov, S.; Valente, P.; Velghe, B.; Venditti, S.; Vicini, P.; Volpe, R.; Vormstein, M.; Wahl, H.; Wanke, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.

    2018-05-01

    In this paper we present new results on upper limits for the search of Heavy Neutral Leptons (HNL) with data collected by NA48/2 (2003-2004), NA62-RK (2007) and NA62 (2015) CERN experiments. The data collected with different trigger configuration allow to search for both long and short living heavy neutrinos in the mass range below the kaon mass. In addition the status of the search for K+ → π+vv with the NA62 detector will be briefly presented.

  2. Crebanine inhibits voltage-dependent Na+ current in guinea-pig ventricular myocytes.

    PubMed

    Xiao-Shan, He; Qing, Lin; Yun-Shu, Ma; Ze-Pu, Yu

    2014-01-01

    To study the effects of crebanine on voltage-gated Na(+) channels in cardiac tissues. Single ventricular myocytes were enzymatically dissociated from adult guinea-pig heart. Voltage-dependent Na(+) current was recorded using the whole cell voltage-clamp technique. Crebanine reversibly inhibited Na(+) current with an IC50 value of 0.283 mmol·L(-1) (95% confidence range: 0.248-0.318 mmol·L(-1)). Crebanine at 0.262 mmol·L(-1) caused a negative shift (about 12 mV) in the voltage-dependence of steady-state inactivation of Na(+) current, and retarded its recovery from inactivation, but did not affect its activation curve. In addition to blocking other voltage-gated ion channels, crebanine blocked Na(+) channels in guinea-pig ventricular myocytes. Crebanine acted as an inactivation stabilizer of Na(+) channels in cardiac tissues. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  3. Application of 23Na MRI to Monitor Chemotherapeutic Response in RIF-1 Tumors1

    PubMed Central

    Babsky, Andriy M; Hekmatyar, Shahryar K; Zhang, Hong; Solomon, James L; Bansal, Navin

    2005-01-01

    Abstract Effects of an alkylating anticancer drug, cyclophosphamide (Cp), on 23Na signal intensity (23Na SI) and water apparent diffusion coefficient (ADC) were examined in subcutaneously-implanted radiation-induced fibrosarcoma (RIF-1) tumors by in vivo 23Na and 1H magnetic resonance imaging (MRI). MRI experiments were performed on untreated control (n = 5) and Cp-treated (n = 6) C3H mice, once before Cp injection (300 mg/kg) then daily for 3 days after treatment. Tumor volumes were significantly lower in treated animals 2 and 3 days posttreatment. At the same time points, MRI experiments showed an increase in both 23Na SI and water ADC in treated tumors, whereas control tumors did not show any significant changes. The correlation between 23Na SI and water ADC changes was dramatically increased in the Cp-treated group, suggesting that the observed increases in 23Na SI and water ADC were caused by the same mechanism. Histologic sections showed decreased cell density in the regions of increased 23Na and water ADC SI. Destructive chemical analysis showed that Cp treatment increased the relative extracellular space and tumor [Na+]. We conclude that the changes in water ADC and 23Na SI were largely due to an increase in extracellular space. 23Na MRI and 1H water ADC measurements may provide valuable noninvasive techniques for monitoring chemotherapeutic responses. PMID:16026645

  4. Na(+) transport, and the E(1)P-E(2)P conformational transition of the Na(+)/K(+)-ATPase.

    PubMed Central

    Babes, A; Fendler, K

    2000-01-01

    We have used admittance analysis together with the black lipid membrane technique to analyze electrogenic reactions within the Na(+) branch of the reaction cycle of the Na(+)/K(+)-ATPase. ATP release by flash photolysis of caged ATP induced changes in the admittance of the compound membrane system that are associated with partial reactions of the Na(+)/K(+)-ATPase. Frequency spectra and the Na(+) dependence of the capacitive signal are consistent with an electrogenic or electroneutral E(1)P <--> E(2)P conformational transition which is rate limiting for a faster electrogenic Na(+) dissociation reaction. We determine the relaxation rate of the rate-limiting reaction and the equilibrium constants for both reactions at pH 6.2-8.5. The relaxation rate has a maximum value at pH 7.4 (approximately 320 s(-1)), which drops to acidic (approximately 190 s(-1)) and basic (approximately 110 s(-1)) pH. The E(1)P <--> E(2)P equilibrium is approximately at a midpoint position at pH 6.2 (equilibrium constant approximately 0.8) but moves more to the E(1)P side at basic pH 8.5 (equilibrium constant approximately 0.4). The Na(+) affinity at the extracellular binding site decreases from approximately 900 mM at pH 6.2 to approximately 200 mM at pH 8.5. The results suggest that during Na(+) transport the free energy supplied by the hydrolysis of ATP is mainly used for the generation of a low-affinity extracellular Na(+) discharge site. Ionic strength and lyotropic anions both decrease the relaxation rate. However, while ionic strength does not change the position of the conformational equilibrium E(1)P <--> E(2)P, lyotropic anions shift it to E(1)P. PMID:11053130

  5. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution† †Electronic supplementary information (ESI) available: Tables containing crystallographic data and structure refinements for Na[V(L)2]·2H2O(cr) (CCDC 1413557) (Table S1) and Na[VO2(HL)](cr) (CCDC 1418830) (Table S2), concentrations of the solution samples for NMR (Table S3), 13C NMR spectra of V(v)/glutaroimide-dioxime complexes in H2 17O (Fig. S1), ESI-MS spectra of V(v)/glutaroimide-dioxime complexes in 17O-enriched H2O diluted and sprayed in methanol (Fig. S2), and EPR spectra of Na[V(L)2]·2H2O(s) at 4 K and 300 K (Fig. S3). CCDC 1413557–1418830. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc03958d Click here for additional data file. Click here for additional data file.

    PubMed Central

    Leggett, C. J.; Parker, B. F.; Zhang, Z.; Dau, P. D.; Lukens, W. W.; Peterson, S. M.; Cardenas, A. J. P.; Warner, M. G.; Gibson, J. K.; Arnold, J.

    2016-01-01

    A non-oxido V(v) complex with glutaroimide-dioxime (H3L), a ligand for recovering uranium from seawater, was synthesized from aqueous solution as Na[V(L)2]·2H2O, and the structure determined by X-ray diffraction. It is the first non-oxido V(v) complex that has been directly synthesized in and crystallized from aqueous solution. The distorted octahedral structure contains two fully deprotonated ligands (L3–) coordinating to V5+, each in a tridentate mode via the imide N (R V–N = 1.96 Å) and oxime O atoms (R V–O = 1.87–1.90 Å). Using 17O-labelled vanadate as the starting material, concurrent 17O/51V/1H/13C NMR, in conjunction with ESI-MS, unprecedentedly demonstrated the stepwise displacement of the oxido V 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 O bonds by glutaroimide-dioxime and verified the existence of the “bare” V5

  6. A new global analytical potential energy surface of NaH2+ system and dynamical calculation for H(2S) + NaH+(X2Σ+) → Na+(1S) + H2(X1Σg+) reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Meiling; Li, Wentao; Yuan, Jiuchuang

    2018-05-01

    A new global potential energy surface (PES) of the NaH2+ system is constructed by fitting 27,621 ab initio energy points with the neural network method. The root mean square error of the new PES is only 4.1609 × 10-4 eV. Based on the new PES, dynamical calculations have been performed using the time-dependent quantum wave packet method. These results are then compared with the H(2S) + LiH+(X2Σ+) → Li+(1S) + H2(X1Σg+) reaction. The direct abstract mechanism is found to play an important role in the reaction because only forward scattering signals on the differential cross section results for all calculated collision energies.

  7. Rational Design of Na(Li1/3 Mn2/3 )O2 Operated by Anionic Redox Reactions for Advanced Sodium-Ion Batteries.

    PubMed

    Kim, Duho; Cho, Maenghyo; Cho, Kyeongjae

    2017-09-01

    In an effort to develop high-energy-density cathodes for sodium-ion batteries (SIBs), low-cost, high capacity Na(Li 1/3 Mn 2/3 )O 2 is discovered, which utilizes the labile O 2p-electron for charge compensation during the intercalation process, inspired by Li 2 MnO 3 redox reactions. Na(Li 1/3 Mn 2/3 )O 2 is systematically designed by first-principles calculations considering the Li/Na mixing enthalpy based on the site preference of Na in the Li sites of Li 2 MnO 3 . Using the anionic redox reaction (O 2- /O - ), this Mn-oxide is predicted to show high redox potentials (≈4.2 V vs Na/Na + ) with high charge capacity (190 mAh g -1 ). Predicted cathode performance is validated by experimental synthesis, characterization, and cyclic performance studies. Through a fundamental understanding of the redox reaction mechanism in Li 2 MnO 3 , Na(Li 1/3 Mn 2/3 )O 2 is designed as an example of a new class of promising cathode materials, Na(Li 1/3 M 2/3 )O 2 (M: transition metals featuring stabilized M 4+ ), for further advances in SIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A new high-energy cathode for a Na-ion battery with ultrahigh stability.

    PubMed

    Park, Young-Uk; Seo, Dong-Hwa; Kwon, Hyung-Soon; Kim, Byoungkook; Kim, Jongsoon; Kim, Haegyeom; Kim, Inkyung; Yoo, Han-Ill; Kang, Kisuk

    2013-09-18

    Large-scale electric energy storage is a key enabler for the use of renewable energy. Recently, the room-temperature Na-ion battery has been rehighlighted as an alternative low-cost technology for this application. However, significant challenges such as energy density and long-term stability must be addressed. Herein, we introduce a novel cathode material, Na1.5VPO4.8F0.7, for Na-ion batteries. This new material provides an energy density of ~600 Wh kg(-1), the highest value among cathodes, originating from both the multielectron redox reaction (1.2 e(-) per formula unit) and the high potential (~3.8 V vs Na(+)/Na) of the tailored vanadium redox couple (V(3.8+)/V(5+)). Furthermore, an outstanding cycle life (~95% capacity retention for 100 cycles and ~84% for extended 500 cycles) could be achieved, which we attribute to the small volume change (2.9%) upon cycling, the smallest volume change among known Na intercalation cathodes. The open crystal framework with two-dimensional Na diffusional pathways leads to low activation barriers for Na diffusion, enabling excellent rate capability. We believe that this new material can bring the low-cost room-temperature Na-ion battery a step closer to a sustainable large-scale energy storage system.

  9. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.

    2018-06-01

    The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.

  10. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery

    PubMed Central

    Lim, Soo Yeon; Kim, Heejin; Chung, Jaehoon; Lee, Ji Hoon; Kim, Byung Gon; Choi, Jeon-Jin; Chung, Kyung Yoon; Cho, Woosuk; Kim, Seung-Joo; Goddard, William A.; Jung, Yousung; Choi, Jang Wook

    2014-01-01

    Sodium ion batteries offer promising opportunities in emerging utility grid applications because of the low cost of raw materials, yet low energy density and limited cycle life remain critical drawbacks in their electrochemical operations. Herein, we report a vanadium-based ortho-diphosphate, Na7V4(P2O7)4PO4, or VODP, that significantly reduces all these drawbacks. Indeed, VODP exhibits single-valued voltage plateaus at 3.88 V vs. Na/Na+ while retaining substantial capacity (>78%) over 1,000 cycles. Electronic structure calculations reveal that the remarkable single plateau and cycle life originate from an intermediate phase (a very shallow voltage step) that is similar both in the energy level and lattice parameters to those of fully intercalated and deintercalated states. We propose a theoretical scheme in which the reaction barrier that arises from lattice mismatches can be evaluated by using a simple energetic consideration, suggesting that the presence of intermediate phases is beneficial for cell kinetics by buffering the differences in lattice parameters between initial and final phases. We expect these insights into the role of intermediate phases found for VODP hold in general and thus provide a helpful guideline in the further understanding and design of battery materials. PMID:24379365

  11. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery.

    PubMed

    Lim, Soo Yeon; Kim, Heejin; Chung, Jaehoon; Lee, Ji Hoon; Kim, Byung Gon; Choi, Jeon-Jin; Chung, Kyung Yoon; Cho, Woosuk; Kim, Seung-Joo; Goddard, William A; Jung, Yousung; Choi, Jang Wook

    2014-01-14

    Sodium ion batteries offer promising opportunities in emerging utility grid applications because of the low cost of raw materials, yet low energy density and limited cycle life remain critical drawbacks in their electrochemical operations. Herein, we report a vanadium-based ortho-diphosphate, Na7V4(P2O7)4PO4, or VODP, that significantly reduces all these drawbacks. Indeed, VODP exhibits single-valued voltage plateaus at 3.88 V vs. Na/Na(+) while retaining substantial capacity (>78%) over 1,000 cycles. Electronic structure calculations reveal that the remarkable single plateau and cycle life originate from an intermediate phase (a very shallow voltage step) that is similar both in the energy level and lattice parameters to those of fully intercalated and deintercalated states. We propose a theoretical scheme in which the reaction barrier that arises from lattice mismatches can be evaluated by using a simple energetic consideration, suggesting that the presence of intermediate phases is beneficial for cell kinetics by buffering the differences in lattice parameters between initial and final phases. We expect these insights into the role of intermediate phases found for VODP hold in general and thus provide a helpful guideline in the further understanding and design of battery materials.

  12. HYDRATE v1.5 OPTION OF TOUGH+ v1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, George

    HYDRATE v1.5 is a numerical code that for the simulation of the behavior of hydrate-bearing geologic systems, and represents the third update of the code since its first release [Moridis et al., 2008]. It is an option of TOUGH+ v1.5 [Moridis and Pruess, 2014], a successor to the TOUGH2 [Pruess et al., 1999, 2012] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. HYDRATE v1.5 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platformmore » (workstation, PC, Macintosh) for which such compilers are available. By solving the coupled equations of mass and heat balance, the fully operational TOUGH+HYDRATE code can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH 4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.5 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH 4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects.« less

  13. Effect of ENaC Modulators on Rat Neural Responses to NaCl

    PubMed Central

    Mummalaneni, Shobha; Qian, Jie; Phan, Tam-Hao T.; Rhyu, Mee-Ra; Heck, Gerard L.; DeSimone, John A.; Lyall, Vijay

    2014-01-01

    The effects of small molecule ENaC activators N,N,N-trimethyl-2-((4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanoyl)oxy)ethanaminium iodide (Compound 1) and N-(2-hydroxyethyl)-4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanamide (Compound 2), were tested on the benzamil (Bz)-sensitive NaCl chorda tympani (CT) taste nerve response under open-circuit conditions and under ±60 mV applied lingual voltage-clamp, and compared with the effects of known physiological activators (8-CPT-cAMP, BAPTA-AM, and alkaline pH), and an inhibitor (ionomycin+Ca2+) of ENaC. The NaCl CT response was enhanced at −60 mV and suppressed at +60 mV. In every case the CT response (r) versus voltage (V) curve was linear. All ENaC activators increased the open-circuit response (ro) and the voltage sensitivity (κ, negative of the slope of the r versus V curve) and ionomycin+Ca2+ decreased ro and κ to zero. Compound 1 and Compound 2 expressed a sigmoidal-saturating function of concentration (0.25–1 mM) with a half-maximal response concentration (k) of 0.49 and 1.05 mM, respectively. Following treatment with 1 mM Compound 1, 8-CPT-cAMP, BAPTA-AM and pH 10.3, the Bz-sensitive NaCl CT response to 100 mM NaCl was enhanced and was equivalent to the Bz-sensitive CT response to 300 mM NaCl. Plots of κ versus ro in the absence and presence of the activators or the inhibitor were linear, suggesting that changes in the affinity of Na+ for ENaC under different conditions are fully compensated by changes in the apical membrane potential difference, and that the observed changes in the Bz-sensitive NaCl CT response arise exclusively from changes in the maximum CT response (rm). The results further suggest that the agonists enhance and ionomycin+Ca2+ decreases ENaC function by increasing or decreasing the rate of release of Na+ from its ENaC binding site to the receptor cell cytosol, respectively. Irrespective of agonist type, the Bz-sensitive NaCl CT response demonstrated a maximum response enhancement

  14. NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery

    PubMed Central

    Lehmann-Horn, Frank; Fan, Chunxiang; Wolf, Markus; Winston, Vern; Merlini, Luciano

    2014-01-01

    Hypokalaemic periodic paralysis is typically associated with mutations of voltage sensor residues in calcium or sodium channels of skeletal muscle. To date, causative sodium channel mutations have been studied only for the two outermost arginine residues in S4 voltage sensor segments of domains I to III. These mutations produce depolarization of skeletal muscle fibres in response to reduced extracellular potassium, owing to an inward cation-selective gating pore current activated by hyperpolarization. Here, we describe mutations of the third arginine, R3, in the domain III voltage sensor i.e. an R1135H mutation which was found in two patients in separate families and a novel R1135C mutation identified in a third patient in another family. Muscle fibres from a patient harbouring the R1135H mutation showed increased depolarization tendency at normal and reduced extracellular potassium compatible with the diagnosis. Additionally, amplitude and rise time of action potentials were reduced compared with controls, even for holding potentials at which all NaV1.4 are fully recovered from inactivation. These findings may be because of an outward omega current activated at positive potentials. Expression of R1135H/C in mammalian cells indicates further gating defects that include significantly enhanced entry into inactivation and prolonged recovery that may additionally contribute to action potential inhibition at the physiological resting potential. After S4 immobilization in the outward position, mutant channels produce an inward omega current that most likely depolarizes the resting potential and produces the hypokalaemia-induced weakness. Gating current recordings reveal that mutations at R3 inhibit S4 deactivation before recovery, and molecular dynamics simulations suggest that this defect is caused by disrupted interactions of domain III S2 countercharges with S4 arginines R2 to R4 during repolarization of the membrane. This work reveals a novel mechanism of disrupted S

  15. 76 FR 20835 - Amendment of VOR Federal Airways V-1, V-7, V-11 and V-20; Kona, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ...; Airspace Docket No. 10-AWP-20] Amendment of VOR Federal Airways V-1, V-7, V-11 and V-20; Kona, HI AGENCY..., HI; V-1, V-7, V-11 and V-20. The FAA is taking this action due to procedural changes requiring..., (76 FR 13082), amends VOR Federal Airways V-1, V-7 V-11 and V-20; Kona, HI. These VHF Omnidirectional...

  16. Mechanism of Na accumulation at extended defects in Si from first-principles

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chan, Maria K. Y.

    2018-04-01

    Sodium (Na) impurities in silicon solar cells are considered to play an important role in potential-induced degradation (PID), a significant cause of solar cell degradation and failure. Shorting due to Na accumulation at extended defects has been suggested as a culprit for PID. However, it is not clear how the extended defects are decorated by Na impurities. Using first-principles density functional theory calculations, we find that Na impurities segregate from the bulk into extended defects such as intrinsic stacking faults and Σ3 (111) grain boundaries. The energy barrier required for Na to escape from the extended defects is substantial and similar to the sum of the barrier energy in bulk Si (1.1-1.2 eV) and the segregation energy to the stacking fault (˜0.7 eV). Surprisingly, the migration barrier for Na diffusion within the extended defects is even higher than the energy barrier for escaping. The results suggest that the extended defects likely accumulate Na as the impurities segregate to the defects from the bulk, rather than because of migration through the extended defects.

  17. The V1V2 EOS for Detonation Products

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2010-10-01

    Many equations of state (EOS) for detonation products have been proposed and used. Some of them are in analytical form and some in tabular form. The most popular is the Jones-Wilkins-Lee (JWL) EOS. One of the main parameters of a product's EOS is the so-called adiabatic gamma along its main isentrope (γs). For JWL EOSs γs(V) varies in a nonmonotonic way. Going down from the CJ point along the main isentrope, it first increases to create a hump, and then, as V goes to infinity, gamma decreases to perfect gas-like behavior with gamma around 1.3. But according to Davis [1], γs(V) should decrease monotonically with V. Accordingly, in this article we investigate the following: (1) Is the hump in γs(V) necessary? and (2) Is it possible to construct a product's EOS with a monotonic γs(V) that is consistent with experimental data? We find that (1) it is possible to construct a product's EOS without a hump in γs(V); and (2) without a hump in γs(V) there are not enough degrees of freedom to reproduce cylinder test data.

  18. Salt and cadmium stress tolerance caused by overexpression of the Glycine Max Na+/H+ Antiporter (GmNHX1) gene in duckweed (Lemna turionifera 5511).

    PubMed

    Yang, Lin; Han, Yujie; Wu, Di; Yong, Wang; Liu, Miaomiao; Wang, Sutong; Liu, Wenxin; Lu, Meiyi; Wei, Ying; Sun, Jinsheng

    2017-11-01

    Cadmium (Cd) pollution has aroused increasing attention due to its toxicity. It has been proved that Na + /H + Antiporter (NHX1) encodes a well-documented protein in Na + /H + trafficking, which leads to salt tolerance. This study showed that Glycine max Na + /H + Antiporter (GmNHX1) improved short-term cadmium and salt resistance in Lemna turionifera 5511. Expression of GmNHX1 prevented root from abscission and cell membrane damage, which also can enhance antioxidant system, inhibited of reactive oxygen species (ROS) accumulation and cause a less absorption of Cd under cadmium and salt stress. The cadmium tolerance suggested that NHX1 was involved under the cadmium stress. Copyright © 2017. Published by Elsevier B.V.

  19. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, Bingkun; Xue, Xianghui; Lu, Gaopeng; Kuo, Chengling; Dou, Xiankang; Gao, Qi; Qie, Xiushu; Wu, Jianfei; Tang, Yihuan

    2017-04-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region. The ionospheric observations made with two digisondes near the Na lidar, the thunderstorm model, ionosphere model, and Na chemistry model are all used to discuss the possible mechanisms responsible for the enhancement of Na layer after thunderstorms.

  20. Rabies Virus Infection in Eptesicus fuscus Bats Born in Captivity (Naïve Bats)

    PubMed Central

    Davis, April D.; Jarvis, Jodie A.; Pouliott, Craig; Rudd, Robert J.

    2013-01-01

    The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2. PMID:23741396

  1. Rabies virus infection in Eptesicus fuscus bats born in captivity (naïve bats).

    PubMed

    Davis, April D; Jarvis, Jodie A; Pouliott, Craig; Rudd, Robert J

    2013-01-01

    The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2.

  2. In Operando XRD and TXM Study on the Metastable Structure Change of NaNi 1/3Fe 1/3Mn 1/3O 2 under Electrochemical Sodium-Ion Intercalation

    DOE PAGES

    Xie, Yingying; Wang, Hong; Xu, Guiliang; ...

    2016-09-02

    In operando XRD and TXM-XANES approaches demonstrate that structure evolution in NaNi 1/3Fe 1/3Mn 1/3O 2 during cycling follows a continuous change, and the formation of a nonequilibrium solid solution phase in the existence of two phases. Here, an O3' and P3' monoclinic phase occur, and redox couples of Ni 3+/Ni 4+ and Fe 3+/Fe 4+ are mainly responsible in the charge voltage range from 4.0 to 4.3 V.

  3. Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the δ-NH4V4O10 electrode: a first-principles study.

    PubMed

    Sarkar, Tanmay; Kumar, Parveen; Bharadwaj, Mridula Dixit; Waghmare, Umesh

    2016-04-14

    A double layer δ-NH4V4O10, due to its high energy storage capacity and excellent rate capability, is a very promising cathode material for Li-ion and Na-ion batteries for large-scale renewable energy storage in transportation and smart grids. While it possesses better stability, and higher ionic and electronic conductivity than the most widely explored V2O5, the mechanisms of its cyclability are yet to be understood. Here, we present a theoretical cyclic voltammetry as a tool based on first-principles calculations, and uncover structural transformations that occur during Li(+)/Na(+) insertion (x) into (Lix/Nax)NH4V4O10. Structural distortions associated with single-phase and multi-phase structural changes during the insertion of Li(+)/Na(+), identified through the analysis of voltage profile and theoretical cyclic voltammetry are in agreement with the reported experimental electrochemical measurements on δ-NH4V4O10. We obtain an insight into its electronic structure with a lower band gap that is responsible for the high rate capability of (Lix/Nax) δ-NH4V4O10. The scheme of theoretical cyclic voltammetry presented here will be useful for addressing issues of cyclability and energy rate in other electrode materials.

  4. Quantitative (23) Na MRI of human knee cartilage using dual-tuned (1) H/(23) Na transceiver array radiofrequency coil at 7 tesla.

    PubMed

    Moon, Chan Hong; Kim, Jung-Hwan; Zhao, Tiejun; Bae, Kyongtae Ty

    2013-11-01

    To develop quantitative dual-tuned (DT) (1) H/(23) Na MRI of human knee cartilage in vivo at 7 Tesla (T). A sensitive (23) Na transceiver array RF coil was developed at 7T. B1 fields generated by the transceiver array coil were characterized and corrected in the (23) Na images. Point spread function (PSF) of the (23) Na images was measured, and the signal decrease due to partial-volume-effect was compensated in [(23) Na] quantification of knee cartilage. SNR and [(23) Na] in anterior femoral cartilage were measured from seven healthy subjects. SNR of (23) Na image with the transceiver array coil was higher than that of birdcage coil. SNR in the cartilage at 2-mm isotropic resolution was 26.80 ± 3.69 (n = 7). B1 transmission and reception fields produced by the DT coil at 7T were similar to each other. Effective full-width-half-maximum of (23) Na image was ∼5 mm at 2-mm resolution. Mean [(23) Na] was 288.13 ± 29.50 mM (n = 7) in the anterior femoral cartilage of normal subjects. We developed a new high-sensitivity (23) Na RF coil for knee MRI at 7T. Our (1) H/(23) Na MRI allowed quantitative measurement of [(23) Na] in knee cartilage by measuring PSF and cartilage thickness from (23) Na and (1) H image, respectively. Copyright © 2013 Wiley Periodicals, Inc.

  5. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  6. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE PAGES

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  7. Epigenetic silencing of Na,K-ATPase β1 subunit gene ATP1B1 by methylation in clear cell renal cell carcinoma

    PubMed Central

    Selvakumar, Ponniah; Owens, Tori A; David, Justin M; Petrelli, Nicholas J; Christensen, Brock C; Lakshmikuttyamma, Ashakumary; Rajasekaran, Ayyappan K

    2014-01-01

    The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression. PMID:24452105

  8. Epigenetic silencing of Na,K-ATPase β 1 subunit gene ATP1B1 by methylation in clear cell renal cell carcinoma.

    PubMed

    Selvakumar, Ponniah; Owens, Tori A; David, Justin M; Petrelli, Nicholas J; Christensen, Brock C; Lakshmikuttyamma, Ashakumary; Rajasekaran, Ayyappan K

    2014-04-01

    The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na(+) and uptake of K(+) across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β 1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients' tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2'-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.

  9. Optical and Magnetic Resonance Studies of Na-Diffused ZnO Bulk Single Crystals

    NASA Astrophysics Data System (ADS)

    Glaser, E. R.; Garces, N. Y.; Parmar, N. S.; Lynn, K. G.

    2013-03-01

    Photoluminescence (PL) and optically-detected magnetic resonance (ODMR) at 24 GHz were performed on bulk ZnO crystals after diffusion of Na impurities that were explored as an alternate doping source for p-type conductivity. PL at 2K revealed strong bandedge excitonic recombination at 3.361 eV and a broad ``orange'' PL band at 2.17 eV with FWHM of ~0.5 eV. This ``orange'' emission is very similar to that reported previously[1] from thermoluminescence measurements of intentionally Na-doped bulk ZnO and, thus, strongly suggests the incorporation and activation of the Na-diffused impurities. ODMR performed on this ``orange'' PL revealed two signals. The first was a sharp feature with g-value of ~1.96 and is a well-known ``fingerprint'' of shallow donors in ZnO. The second signal consisted of a pair of lines with an intensity ratio of ~3:1 and with g-tensors (g∥,g⊥ ~2.008-2.029) very similar to ESR signals attributed previously[2] to holes bound to Na impurities located at the axial and non-axial Zn host lattice sites in Na-doped ZnO. Thus, the ``orange'' PL can be tentatively assigned to radiative recombination between residual shallow donors and deep Na-related hole traps.

  10. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  11. Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method

    NASA Astrophysics Data System (ADS)

    Lan, Chang-Lin; Zhang, Yi; Lv, Tao; Xie, Bao-Lin; Peng, Meng; Yao, Ze-En; Chen, Jin-Gen; Kong, Xiang-Zhong

    2017-04-01

    The 232Th(n, γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VII.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code. Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)

  12. Dependence of Na+ pump current on external monovalent cations and membrane potential in rabbit cardiac Purkinje cells.

    PubMed Central

    Bielen, F V; Glitsch, H G; Verdonck, F

    1991-01-01

    1. The effect of membrane potential and various extracellular monovalent cations on the Na+ pump current (Ip) was studied on isolated, single Purkinje cells of the rabbit heart by means of whole-cell recording. 2. Ip was identified as current activated by external K+ or its congeners NH4+ and Tl+. The current was blocked by dihydroouabain (1-5 x 10(-4) M) over the whole range of membrane potentials tested. 3. In Na(+)-containing solution half-maximum Ip activation (K0.5) occurred at 0.4 mM-Tl+, 1.9 mM-K+ and 5.7 mM-NH4+ (holding potential, -20 mV). 4. The pump current (Ip)-voltage (V) relationship of the cells in Na(+)-containing media with K+ or its congeners at the tested concentrations greater than K0.5 displayed a steep positive slope at negative membrane potentials between -120 and -20 mV. Little voltage dependence of Ip was observed at more positive potentials up to +40 mV. At even more positive potentials Ip measured at 2 and 5.4 mM-K+ decreased. 5. Lowering the concentration of K+ or its congeners below the K0.5 value in Na(+)-containing solution induced a region of negative slope of the Ip-V curve at membrane potentials positive to -20 mV. 6. The shape of the Ip-V relationship remained unchanged when the K+ concentration (5.4 mM) of the Na(+)-containing medium was replaced by NH4+ or Tl+ concentrations of similar potency to activate Ip (20 mM-NH4+ or 2 mM-Tl+). 7. In Na(+)-free, choline-containing solution half-maximum Ip activation occurred at 0.13 mM-K+ (holding potential, -20 mV). 8. At negative membrane potentials the positive slope of the Ip-V curve was flatter in Na(+)-free than in Na(+)-containing media. A reduced voltage dependence of Ip persisted, regardless of whether choline ions or Li+ were used as a Na+ substitute. 9. Lowering the K+ concentration of the Na(+)-free, choline-containing solution to 0.05 mM evoked an extended region of negative slope in the Ip-V relationship at membrane potentials between -40 and +60 mV. 10. It is concluded that

  13. pH-Specific structural speciation of the ternary V(V)-peroxido-betaine system: a chemical reactivity-structure correlation.

    PubMed

    Gabriel, C; Kioseoglou, E; Venetis, J; Psycharis, V; Raptopoulou, C P; Terzis, A; Voyiatzis, G; Bertmer, M; Mateescu, C; Salifoglou, A

    2012-06-04

    Vanadium involvement in cellular processes requires deep understanding of the nature and properties of its soluble and bioavailable forms arising in aqueous speciations of binary and ternary systems. In an effort to understand the ternary vanadium-H(2)O(2)-ligand interactions relevant to that metal ion's biological role, synthetic efforts were launched involving the physiological ligands betaine (Me(3)N(+)CH(2)CO(2)(-)) and H(2)O(2). In a pH-specific fashion, V(2)O(5), betaine, and H(2)O(2) reacted and afforded three new, unusual, and unique compounds, consistent with the molecular formulation K(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·H(2)O (1), (NH(4))(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·0.75H(2)O (2), and {Na(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}(2)]}(n)·4nH(2)O (3). All complexes 1-3 were characterized by elemental analysis; UV/visible, FT-IR, Raman, and NMR spectroscopy in solution and the solid state; cyclic voltammetry; TGA-DTG; and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxido-betaine complexes containing [(V(V)═O)(O(2))(2)] units interacting through long V-O bonds. The two V(V) ions are bridged through the oxygen terminal of one of the peroxide groups bound to the vanadium centers. The betaine ligand binds only one of the two V(V) ions. In the case of the third complex 3, the two vanadium centers are not immediate neighbors, with Na(+) ions (a) acting as efficient oxygen anchors and through Na-O bonds holding the two vanadium ions in place and (b) providing for oxygen-containing ligand binding leading to a polymeric lattice. In 1 and 3, interesting 2D (honeycomb) and 1D (zigzag chains) topologies of potassium nine-coordinate polyhedra (1) and sodium octahedra (3), respectively, form. The collective physicochemical properties of the three ternary species 1-3 project the chemical role of the low molecular mass biosubstrate betaine in binding V(V

  14. Binding of benzocaine in batrachotoxin-modified Na+ channels. State- dependent interactions

    PubMed Central

    1994-01-01

    Hille (1977. Journal of General Physiology. 69:497-515) first proposed a modulated receptor hypothesis (MRH) to explain the action of benzocaine in voltage-gated Na+ channels. Using the MRH as a framework, we examined benzocaine binding in batrachotoxin (BTX)-modified Na+ channels under voltage-clamp conditions using either step or ramp command signals. We found that benzocaine binding is strongly voltage dependent. At -70 mV, the concentration of benzocaine that inhibits 50% of BTX-modified Na+ currents in GH3 cells (IC50) is 0.2 mM, whereas at +50 mV, the IC50 is 1.3 mM. Dose-response curves indicate that only one molecule of benzocaine is required to bind with one BTX-modified Na+ channel at -70 mV, whereas approximately two molecules are needed at +50 mV. Upon treatment with the inactivation modifier chloramine-T, the binding affinity of benzocaine is reduced significantly at -70 mV, probably as a result of the removal of the inactivated state of BTX- modified Na+ channels. The same treatment, however, enhances the binding affinity of cocaine near this voltage. External Na+ ions appear to have little effect on benzocaine binding, although they do affect cocaine binding. We conclude that two mechanisms underlie the action of local anesthetics in BTX-modified Na+ channels. Unlike open-channel blockers such as cocaine and bupivacaine, neutral benzocaine binds preferentially with BTX-modified Na+ channels in a closed state. Furthermore, benzocaine can be modified chemically so that it behaves like an open-channel blocker. This compound also elicits a use- dependent block in unmodified Na+ channels after repetitive depolarizations, whereas benzocaine does not. The implications of these findings for the MRH theory will be discussed. PMID:8195785

  15. Structure of the Nav1.4-β1 Complex from Electric Eel.

    PubMed

    Yan, Zhen; Zhou, Qiang; Wang, Lin; Wu, Jianping; Zhao, Yanyu; Huang, Gaoxingyu; Peng, Wei; Shen, Huaizong; Lei, Jianlin; Yan, Nieng

    2017-07-27

    Voltage-gated sodium (Na v ) channels initiate and propagate action potentials. Here, we present the cryo-EM structure of EeNa v 1.4, the Na v channel from electric eel, in complex with the β1 subunit at 4.0 Å resolution. The immunoglobulin domain of β1 docks onto the extracellular L5 I and L6 IV loops of EeNa v 1.4 via extensive polar interactions, and the single transmembrane helix interacts with the third voltage-sensing domain (VSD III ). The VSDs exhibit "up" conformations, while the intracellular gate of the pore domain is kept open by a digitonin-like molecule. Structural comparison with closed Na v PaS shows that the outward transfer of gating charges is coupled to the iris-like pore domain dilation through intricate force transmissions involving multiple channel segments. The IFM fast inactivation motif on the III-IV linker is plugged into the corner enclosed by the outer S4-S5 and inner S6 segments in repeats III and IV, suggesting a potential allosteric blocking mechanism for fast inactivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Multiple roles for the Na,K-ATPase subunits, Atp1a1 and Fxyd1, during brain ventricle development

    PubMed Central

    Chang, Jessica T.; Lowery, Laura Anne; Sive, Hazel

    2012-01-01

    Formation of the vertebrate brain ventricles requires both production of cerebrospinal fluid (CSF), and its retention in the ventricles. The Na,K-ATPase is required for brain ventricle development, and we show here that this protein complex impacts three associated processes. The first requires both the alpha subunit (Atp1a1) and the regulatory subunit, Fxyd1, and leads to formation of a cohesive neuroepithelium, with continuous apical junctions. The second process leads to modulation of neuroepithelial permeability, and requires Atp1a1, which increases permeability with partial loss of function and decreases it with overexpression. In contrast, fxyd1 overexpression does not alter neuroepithelial permeability, suggesting that its activity is limited to neuroepithelium formation. RhoA regulates both neuroepithelium formation and permeability, downstream of the Na,K-ATPase. A third process, likely to be CSF production, is RhoA-independent, requiring Atp1a1, but not Fxyd1. Consistent with a role for Na,K-ATPase pump function, the inhibitor ouabain prevents neuroepithelium formation, while intracellular Na+ increases after Atp1a1 and Fxyd1 loss of function. These data include the first reported role for Fxyd1 in the developing brain, and indicate that the Na,K-ATPase regulates three aspects of brain ventricle development essential for normal function - formation of a cohesive neuroepithelium, restriction of neuroepithelial permeability, and production of CSF. PMID:22683378

  17. Measurement of the strengths of the resonances at 417, 458, 611, 632 and 1222 keV in the 22Ne(p, γ)23Na reaction

    NASA Astrophysics Data System (ADS)

    Ferraro, Federico

    2018-01-01

    The 22Ne(p, γ)23Na reaction is part of the NeNa cycle of hydrogen burning. This cycle plays a key role in the nucleosynthesis of the elements between 20Ne and 27Al in red giant stars, asymptotic giant stars and classical nova explosions. The strengths of the resonances at proton energies above 400 keV are still affected by high uncertainty. In order to reduce this uncertainty, a precision study of some of the most intense resonances between 400 keV and 1250 keV has been performed at the HZDR 3 MV Tandetron. The target, made of 22Ne implanted in a 0.22 mm thick Ta backing, has been characterized using the 1222 keV and 458 keV resonances, well known in literature. Subsequently, the strengths of the resonances at 417, 458, 611, 632 and 1222 keV were determined. Two HPGe detectors equipped with active anti-Compton shielding have been used.

  18. New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Mieritz, Daniel; Seo, Dong-Kyun; Chan, Candace K.

    2017-03-01

    NASICON-type materials with general formula AxM2(PO4)3 (A = Li or Na, M = Ti, V, and Fe) are promising candidates for Li- and Na-ion batteries due to their open three-dimensional framework structure. Here we report the electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure. Micron-sized HTPS aggregates with crystallite grain size of ca. 23 nm are synthesized using a sol-gel synthesis in an acidic medium. The properties of the as-synthesized HTPS, ball-milled HTPS, and samples prepared as carbon composites using an in-situ glucose decomposition reaction are investigated. A capacity of 148 mAh g-1 corresponding to insertion of 2 Li+ per formula unit is observed in the ball-milled HTPS over the potential window of 1.5-3.4 V vs. Li/Li+. Lithiation at ca. 2.8 and 2.5 V is determined to occur through filling of the M1 and M2 sites, respectively. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) are used characterize the HTPS before and after cycling. Evaluation of the HTPS in a Na-ion cell is also performed. A discharge capacity of 93 mAh g-1 with sodiation at ca. 2.9 and 2.2 V vs. Na/Na+ is observed.

  19. 26 CFR 1.414(v)-1 - Catch-up contributions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false Catch-up contributions. 1.414(v)-1 Section 1.414(v)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.414(v)-1 Catch-up...

  20. 26 CFR 1.414(v)-1 - Catch-up contributions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Catch-up contributions. 1.414(v)-1 Section 1.414(v)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.414(v)-1 Catch-up...

  1. 26 CFR 1.414(v)-1 - Catch-up contributions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Catch-up contributions. 1.414(v)-1 Section 1.414(v)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.414(v)-1 Catch-up...

  2. 26 CFR 1.414(v)-1 - Catch-up contributions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Catch-up contributions. 1.414(v)-1 Section 1.414(v)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.414(v)-1 Catch-up...

  3. 26 CFR 1.414(v)-1 - Catch-up contributions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Catch-up contributions. 1.414(v)-1 Section 1.414(v)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.414(v)-1 Catch-up contributions...

  4. V&V of MCNP 6.1.1 Beta Against Intermediate and High-Energy Experimental Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashnik, Stepan G

    This report presents a set of validation and verification (V&V) MCNP 6.1.1 beta results calculated in parallel, with MPI, obtained using its event generators at intermediate and high-energies compared against various experimental data. It also contains several examples of results using the models at energies below 150 MeV, down to 10 MeV, where data libraries are normally used. This report can be considered as the forth part of a set of MCNP6 Testing Primers, after its first, LA-UR-11-05129, and second, LA-UR-11-05627, and third, LA-UR-26944, publications, but is devoted to V&V with the latest, 1.1 beta version of MCNP6. The MCNP6more » test-problems discussed here are presented in the /VALIDATION_CEM/and/VALIDATION_LAQGSM/subdirectories in the MCNP6/Testing/directory. README files that contain short descriptions of every input file, the experiment, the quantity of interest that the experiment measures and its description in the MCNP6 output files, and the publication reference of that experiment are presented for every test problem. Templates for plotting the corresponding results with xmgrace as well as pdf files with figures representing the final results of our V&V efforts are presented. Several technical “bugs” in MCNP 6.1.1 beta were discovered during our current V&V of MCNP6 while running it in parallel with MPI using its event generators. These “bugs” are to be fixed in the following version of MCNP6. Our results show that MCNP 6.1.1 beta using its CEM03.03, LAQGSM03.03, Bertini, and INCL+ABLA, event generators describes, as a rule, reasonably well different intermediate- and high-energy measured data. This primer isn’t meant to be read from cover to cover. Readers may skip some sections and go directly to any test problem in which they are interested.« less

  5. Na-Zn liquid metal battery

    NASA Astrophysics Data System (ADS)

    Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin

    2016-11-01

    A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.

  6. USEEIO v1.1-Matrices

    EPA Science Inventory

    This dataset provides the basic building blocks for the USEEIO v1.1 model and life cycle results per $1 (2013 USD) demand for all goods and services in the model in the producer's price (see BEA 2015). The methodology underlying USEEIO is described in Yang, Ingwersen et al., 2017...

  7. Serological Profile of Torque Teno Sus Virus Species 1 (TTSuV1) in Pigs and Antigenic Relationships between Two TTSuV1 Genotypes (1a and 1b), between Two Species (TTSuV1 and -2), and between Porcine and Human Anelloviruses

    PubMed Central

    Huang, Yao-Wei; Harrall, Kylie K.; Dryman, Barbara A.; Opriessnig, Tanja; Vaughn, Eric M.; Roof, Michael B.

    2012-01-01

    The family Anelloviridae includes human and animal torque teno viruses (TTVs) with extensive genetic diversity. The antigenic diversity among anelloviruses has never been assessed. Using torque teno sus virus (TTSuV) as a model, we describe here the first investigation of the antigenic relationships among different anelloviruses. Using a TTSuV genotype 1a (TTSuV1a) or TTSuV1b enzyme-linked immunosorbent assay (ELISA) based on the respective putative ORF1 capsid antigen and TTSuV1-specific real-time PCR, the combined serological and virological profile of TTSuV1 infection in pigs was determined and compared with that of TTSuV2. TTSuV1 is likely not associated with porcine circovirus-associated disease (PCVAD), because both the viral loads and antibody levels were not different between affected and unaffected pigs and because there was no synergistic effect of concurrent PCV2/TTSuV1 infections. We did observe a higher correlation of IgG antibody levels between anti-TTSuV1a and -TTSuV1b than between anti-TTSuV1a or -1b and anti-TTSuV2 antibodies in these sera, implying potential antigenic cross-reactivity. To confirm this, rabbit antisera against the putative capsid proteins of TTSuV1a, TTSuV1b, or TTSuV2 were generated, and the antigenic relationships among these TTSuVs were analyzed by an ELISA and by an immunofluorescence assay (IFA) using PK-15 cells transfected with one of the three TTSuV ORF1 constructs. The results demonstrate antigenic cross-reactivity between the two genotypes TTSuV1a and TTSuV1b but not between the two species TTSuV1a or -1b and TTSuV2. Furthermore, an anti-genogroup 1 human TTV antiserum did not react with any of the three TTSuV antigens. These results have important implications for an understanding of the diversity of anelloviruses as well as for the classification and vaccine development of TTSuVs. PMID:22811540

  8. Investigation of sodium insertion–extraction in olivine Na x FePO 4 (0 ≤ x ≤ 1) using first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracibar, A.; Carrasco, J.; Saurel, D.

    Olivine NaFePO4 has recently attracted the attention of the scientific community as a promising cathode material for Na-ion batteries. In this work we combine density functional theory (DFT) calculations and high resolution synchrotron X-ray diffraction (HRXRD) experiments to study the phase stability of NaxFePO4 along the whole range of sodium compositions (0 ≤ x ≤ 1). DFT calculations reveal the existence of two intermediate structures governing the phase stability at x = 2/3 and x = 5/6. This is in contrast to isostructural LiFePO4, which is a broadly used cathode in Li-ion batteries. Na2/3FePO4 and Na5/6FePO4 ground states both alignmore » vacancies diagonally within the ab plane, coupled to a Fe2+/Fe3+ alignment. HRXRD data for NaxFePO4 (2/3 < x < 1) materials show common superstructure reflections up to x = 5/6 within the studied compositions. The computed intercalation voltage profile shows a voltage difference of 0.16 V between NaFePO4 and Na2/3FePO4 in agreement with the voltage discontinuity observed experimentally during electrochemical insertion.« less

  9. Evaluation to the effect of B2O3-La2O3-SrO-Na2O-Al2O3 bonding agent on Ti6Al4V-porcelain bonding.

    PubMed

    Zhao, C Q; Wu, S Q; Lu, Y J; Gan, Y L; Guo, S; Lin, J J; Huang, T T; Lin, J X

    2016-10-01

    Low-fusing bonding agents have been widely applied in Ti-ceramics restorations. As an important category, borate bonding agents have great potentials in increasing Ti-porcelain bonding. The purpose of this study is to evaluate the effect of borate bonding agent with addition of Na2O and Al2O3 on Ti6Al4V-porcelain bonding. The thermal properties of borate bonding agent, such as glass transition temperature (Tg) and crystallization peak temperature (Tp), were investigated to establish the sintering process. And the coefficient of thermal expansion (CTE) was to evaluate the matching effect of porcelain to Ti6Al4V. The bond strength was analyzed by the three point bending test. The microscopic morphology of the borate bonding agent surface after sintering, the interface of Ti-borate bonding agent-porcelain, and the fracture mode after porcelains fracture, were studied to assess the influence of borate bonding agent on Ti6Al4V-ceramics. With the addition of Na2O and Al2O3, the porcelain residues were observed increased indication on the Ti6Al4V surface after porcelain fracture and the bond strength was acquired the maximum (49.45MPa) in the bonding agent composition of 75.70B2O3-5.92La2O3-11.84SrO-4.67Na2O-1.87Al2O3. Those results suggest that borate bonding agent is an effective way to improve the Ti6Al4V-ceramics bond strength. And the addition of Na2O and Al2O3 strengthen this effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Global distribution of NA1 genotype of respiratory syncytial virus and its evolutionary dynamics assessed from the past 11 years.

    PubMed

    Haider, Md Shakir Hussain; Deeba, Farah; Khan, Wajihul Hasan; Naqvi, Irshad H; Ali, Sher; Ahmed, Anwar; Broor, Shobha; Alsenaidy, Hytham A; Alsenaidy, Abdulrahman M; Dohare, Ravins; Parveen, Shama

    2018-06-01

    Respiratory syncytial virus (RSV) is a potent pathogen having global distribution. The main purpose of this study was to gain an insight into distribution pattern of the NA1 genotype of group A RSV across the globe together with its evolutionary dynamics. We focused on the second hypervariable region of the G protein gene and used the same for Phylogenetic, Bayesian and Network analyses. Eighteen percent of the samples collected from 500 symptomatic pediatric patients with acute respiratory tract infection (ARI) were found to be positive for RSV during 2011-15 from New Delhi, India. Of these, group B RSV was predominant and clustered into two different genotypes (BA and SAB4). Similarly, group A viruses clustered into two genotypes (NA1 and ON1). The data set from the group A viruses included 543 sequences from 23 different countries including 67 strains from India. The local evolutionary dynamics suggested consistent virus population of NA1 genotype in India during 2009 to 2014. The molecular clock analysis suggested that most recent common ancestor of group A and NA1 genotype have emerged in during the years 1953 and 2000, respectively. The global evolutionary rates of group A viruses and NA1 genotype were estimated to be 3.49 × 10 -3 (95% HPD, 2.90-4.17 × 10 -3 ) and 3.56 × 10 -3 (95% HPD, 2.91 × 10 -3 -4.18 × 10 -3 ) substitution/site/year, respectively. Analysis of the NA1 genotype of group A RSV reported during 11 years i.e. from 2004 to 2014 showed its dominance in 21 different countries across the globe reflecting its evolutionary dynamics. The Network analysis showed highly intricate but an inconsistent pattern of haplotypes of NA1 genotype circulating in the world. Present study seems to be first comprehensive attempt on global distribution and evolution of NA1 genotype augmenting the optimism towards the vaccine development. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Burtsev, V. E.; Chumakov, A. G.; Cooke, D.; Crivelli, P.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T.; Charitonidis, N.; Feshchenko, A.; Frolov, V. N.; Gardikiotis, A.; Gerassimov, S. G.; Gninenko, S. N.; Hösgen, M.; Jeckel, M.; Karneyeu, A. E.; Kekelidze, G.; Ketzer, B.; Kirpichnikov, D. V.; Kirsanov, M. M.; Konorov, I. V.; Kovalenko, S. G.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Kuleshov, S. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Mikhailov, Yu. V.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rojas, R.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Trifonov, A. Yu.; Vasilishin, B. I.; Vasquez Arenas, G.; Volkov, P. V.; Volkov, V.; Ulloa, P.; NA64 Collaboration

    2018-06-01

    We report the first results on a direct search for a new 16.7 MeV boson (X ) which could explain the anomalous excess of e+e- pairs observed in the excited Be* 8 nucleus decays. Because of its coupling to electrons, the X could be produced in the bremsstrahlung reaction e-Z →e-Z X by a 100 GeV e- beam incident on an active target in the NA64 experiment at the CERN Super Proton Synchrotron and observed through the subsequent decay into a e+e- pair. With 5.4 ×1010 electrons on target, no evidence for such decays was found, allowing us to set first limits on the X -e- coupling in the range 1.3 ×10-4≲ɛe≲4.2 ×10-4 excluding part of the allowed parameter space. We also set new bounds on the mixing strength of photons with dark photons (A') from nonobservation of the decay A'→e+e- of the bremsstrahlung A' with a mass ≲23 MeV .

  12. Luminorefrigeration: vibrational cooling of NaCs.

    PubMed

    Wakim, A; Zabawa, P; Haruza, M; Bigelow, N P

    2012-07-02

    We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X(1)Σ(+)(v ≥ 4) into the vibrational ground state X(1)Σ(+)(v=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X(1)Σ(+)(v=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, J(initial)=0-2 is only moderately affected resulting in J(final)=0-4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.

  13. Ultrahigh Storage and Fast Diffusion of Na and K in Blue Phosphorene Anodes.

    PubMed

    Mukherjee, Sankha; Kavalsky, Lance; Singh, Chandra Veer

    2018-03-14

    In the wake of blue phosphorene's (BP) computational discovery and experimental realization, it has emerged as a versatile material with interesting optical, electrical, and mechanical properties. In this study, using first principles density functional theory calculations, we have investigated the adsorption and diffusion of Na and K over monolayer BP to assess its suitability as Na-ion and K-ion battery anodes. The optimized adsorption energies were found to be -0.96 eV for Na and -1.54 eV for K, which are sufficiently large to ensure stability and safety during operation. In addition, BP could adsorb Na and K atoms up to a stoichiometric ratio of 1:1 which yields a high storage capacity of 865 mA h/g for both adatom species. Through examination of the electronic structure and projected density of states of BP as a function of Na/K concentration, we predict that the band gap of the system increasingly shrinks, and in the case of maximum K adsorption, the band gap diminishes completely. Additionally, the diffusion of Na and K over BP is observed to be ultrafast, especially for K, and anisotropic with modest energy barriers of 0.11 and 0.093 eV for Na and K, respectively. Building upon these findings, we employed vibrational analysis techniques with transition state theory to incorporate kinetic effects and predicted a diffusivity of 7.2 × 10 -5 cm 2 /s for Na and 8.58 × 10 -5 cm 2 /s for K on BP. Given these advantages, that is, ultrahigh capacity, electrical conductivity, and high Na/K diffusivity, we conclude that BP can be considered as an excellent candidate for anodes in Na- and K-ion batteries.

  14. Functional characterization of Na(+)/H(+) exchangers in primary cultures of prairie dog gallbladder.

    PubMed

    Narins, S C; Park, E H; Ramakrishnan, R; Garcia, F U; Diven, J N; Balin, B J; Hammond, C J; Sodam, B R; Smith, P R; Abedin, M Z

    2004-01-15

    Gallbladder Na(+) absorption is linked to gallstone formation in prairie dogs. We previously reported Na(+)/H(+) exchanger (NHE1-3) expression in native gallbladder tissues. Here we report the functional characterization of NHE1, NHE2 and NHE3 in primary cultures of prairie dog gallbladder epithelial cells (GBECs). Immunohistochemical studies showed that GBECs grown to confluency are homogeneous epithelial cells of gastrointestinal origin. Electron microscopic analysis of GBECs demonstrated that the cells form polarized monolayers characterized by tight junctions and apical microvilli. GBECs grown on Snapwells exhibited polarity and developed transepithelial short-circuit current, I(sc), (11.6 +/- 0.5 microA. cm(-2)), potential differences, V(t) (2.1 +/- 0.2 mV), and resistance, R(t) (169 +/- 12 omega. cm(2)). NHE activity in GBECs assessed by measuring dimethylamiloride-inhibitable (22)Na(+) uptake under a H(+) gradient was the same whether grown on permeable Snapwells or plastic wells. The basal rate of (22)Na(+) uptake was 21.4 +/- 1.3 nmol x mg prot(-1) x min(-1), of which 9.5 +/- 0.7 (approximately 45%) was mediated through apically-restricted NHE. Selective inhibition with HOE-694 revealed that NHE1, NHE2 and NHE3 accounted for approximately 6%, approximately 66% and approximately 28% of GBECs' total NHE activity, respectively. GBECs exhibited saturable NHE kinetics ( V(max) 9.2 +/- 0.3 nmol x mg prot(-1) x min(-1); K(m) 11.4 +/- 1.4 m M Na(+)). Expression of NHE1, NHE2 and NHE3 mRNAs was confirmed by RT-PCR analysis. These results demonstrate that the primary cultures of GBECs exhibit Na(+) transport characteristics similar to native gallbladder tissues, suggesting that these cells can be used as a tool for studying the mechanisms of gallbladder ion transport both under physiologic conditions and during gallstone formation.

  15. Periaqueductal gray knockdown of V2, not V1a and V1b receptor influences nociception in the rat. yj6676@yahoo.com.

    PubMed

    Yang, Jun; Yang, Yu; Chen, Jian-Min; Wang, Gen; Xu, Hong-Tao; Liu, Wen-Yan; Lin, Bao-Cheng

    2007-01-01

    Our pervious study has proved that arginine vasopressin (AVP) in periaqueductal gray (PAG) plays a role in antinociception. After establishing a model of local special gene knockdown, the nociceptive effect of vasopressin receptor subunit in PAG was investigated in the rat. Microinjection of short-interfering RNA (siRNA) into PAG, which targeted vasopressin receptor subtypes (V(1a), V(1b) and V(2)), locally weakened the associated mRNA expression and depressed the related receptor synthesis in a dose-dependent manner, in which the significant inhibitive effect occurred on from 7th day to 14th day following 1microg or 2microg siRNA administration. PAG knockdown of V(2) receptor gene markedly decreased pain threshold in from 6th day to 13th day after siRNA administration, whereas local knockdown of either V(1a) or V(1b) receptor gene could not influence pain threshold. The data suggest that V(2) rather than V(1a) and V(1b) receptor in PAG involves in nociception.

  16. Na+-dependent and Na+-independent betaine transport across the apical membrane of rat renal epithelium.

    PubMed

    Cano, Mercedes; Calonge, María L; Ilundáin, Anunciación A

    2015-10-01

    The low renal excretion of betaine indicates that the kidney efficiently reabsorbs the betaine filtered by the glomeruli but the mechanisms involved in such a process have been scarcely investigated. We have detected concentrative and non-concentrative betaine transport activity in brush-border membrane vesicles (BBMV) from rat renal cortex and medulla. The concentrative system is the Sodium/Imino-acid Transporter 1 (SIT1) because it is Na+- and Cl--dependent, electrogenic and is inhibited by an anti-SIT1 antibody. Its apparent affinity constant for betaine, Kt, is 1.1±0.5 mM and its maximal transport velocity, Vmax, 0.5±0.1 nmol betaine/mg protein/s. Inhibitors of the Na+/Cl-/betaine uptake are L-proline (75%) and cold betaine, L-carnitine and choline (40-60%). Neither creatine, TEA, taurine, β-alanine, GABA nor glycine significantly inhibited Na+/Cl-/betaine uptake. The non-concentrative betaine transport system is Na+- and H+-independent, electroneutral, with a Kt for betaine of 47±7 μM and a Vmax of 7.8±1 pmol betaine/mg protein/s. Its transport activity is nearly abolished by betaine, followed by L-carnitine (70-80%) and proline (40-50%), but a difference from the Na+/Cl-/betaine transport is that it is inhibited by TEA (approx. 50%) and unaffected by choline. The underlying carrier functions as an antiporter linking betaine entry into the BBMV with the efflux of either L-carnitine or betaine, an exchange unaffected by the anti-SIT1 antibody. As far as we know this is the first work reporting that betaine crosses the apical membrane of rat renal epithelium by SIT1 and by a Na+- and H+-independent transport system. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mutation of the Na+/K+-ATPase Atp1a1a.1 causes QT interval prolongation and bradycardia in zebrafish.

    PubMed

    Pott, Alexander; Bock, Sarah; Berger, Ina M; Frese, Karen; Dahme, Tillman; Keßler, Mirjam; Rinné, Susanne; Decher, Niels; Just, Steffen; Rottbauer, Wolfgang

    2018-05-08

    The genetic underpinnings that orchestrate the vertebrate heart rate are not fully understood yet, but of high clinical importance, since diseases of cardiac impulse formation and propagation are common and severe human arrhythmias. To identify novel regulators of the vertebrate heart rate, we deciphered the pathogenesis of the bradycardia in the homozygous zebrafish mutant hiphop (hip) and identified a missense-mutation (N851K) in Na + /K + -ATPase α1-subunit (atp1a1a.1). N851K affects zebrafish Na + /K + -ATPase ion transport capacity, as revealed by in vitro pump current measurements. Inhibition of the Na + /K + -ATPase in vivo indicates that hip rather acts as a hypomorph than being a null allele. Consequently, reduced Na + /K + -ATPase function leads to prolonged QT interval and refractoriness in the hip mutant heart, as shown by electrocardiogram and in vivo electrical stimulation experiments. We here demonstrate for the first time that Na + /K + -ATPase plays an essential role in heart rate regulation by prolonging myocardial repolarization. Copyright © 2018. Published by Elsevier Ltd.

  18. Measurements of $$\\pi ^\\pm $$ π ± , K $$^\\pm $$ ± , p and $${\\bar{\\text {p}}}$$ p ¯ spectra in proton-proton interactions at 20, 31, 40, 80 and 158  $$\\text{ GeV }/c$$ GeV / c with the NA61/SHINE spectrometer at the CERN SPS: The NA61/SHINE Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aduszkiewicz, A.; Ali, Y.; Andronov, E.

    Measurements of inclusive spectra and mean multiplicities ofmore » $$\\pi^\\pm$$, K$$^\\pm$$, p and $$\\bar{\\textrm{p}}$$ produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($$\\sqrt{s} = $$ 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter.« less

  19. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, B.; Xue, X.; Lu, G.; Dou, X.; Gao, Q.; Qie, X.; Wu, J.; Tang, Y.; Holzworth, R.

    2016-12-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region.

  20. Specificity of V1-V2 Orientation Networks in the Primate Visual Cortex

    PubMed Central

    Roe, Anna W.; Ts'o, Daniel Y.

    2015-01-01

    The computation of texture and shape involves integration of features of various orientations. Orientation networks within V1 tend to involve cells which share similar orientation selectivity. However, emergent properties in V2 require the integration of multiple orientations. We now show that, unlike interactions within V1, V1-V2 orientation interactions are much less synchronized and are not necessarily orientation dependent. We find V1-V2 orientation networks are of two types: a more tightly synchronized, orientation-preserving network and a less synchronized orientation-diverse network. We suggest that such diversity of V1-V2 interactions underlies the spatial and functional integration required for computation of higher order contour and shape in V2. PMID:26314798

  1. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation.

    PubMed

    Peters, Colin H; Yu, Alec; Zhu, Wandi; Silva, Jonathan R; Ruben, Peter C

    2017-01-01

    E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.

  2. Exclusion of Na+ via Sodium ATPase (PpENA1) Ensures Normal Growth of Physcomitrella patens under Moderate Salt Stress1

    PubMed Central

    Lunde, Christina; Drew, Damian P.; Jacobs, Andrew K.; Tester, Mark

    2007-01-01

    The bryophyte Physcomitrella patens is unlike any other plant identified to date in that it possesses a gene that encodes an ENA-type Na+-ATPase. To complement previous work in yeast (Saccharomyces cerevisiae), we determined the importance of having a Na+-ATPase in planta by conducting physiological analyses of PpENA1 in Physcomitrella. Expression studies showed that PpENA1 is up-regulated by NaCl and, to a lesser degree, by osmotic stress. Maximal induction is obtained after 8 h at 60 mm NaCl or above. No other abiotic stress tested led to significant increases in PpENA1 expression. In the gametophyte, strong expression was confined to the rhizoids, stem, and the basal part of the leaf. In the protonemata, expression was ubiquitous with a few filaments showing stronger expression. At 100 mm NaCl, wild-type plants were able to maintain a higher K+-to-Na+ ratio than the PpENA1 (ena1) knockout gene, but at higher NaCl concentrations no difference was observed. Although no difference in chlorophyll content was observed between ena1 and wild type at 100 mm NaCl, the impaired Na+ exclusion in ena1 plants led to an approximately 40% decrease in growth. PMID:17556514

  3. High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures

    NASA Astrophysics Data System (ADS)

    Babu, Binson; Shaijumon, M. M.

    2017-06-01

    Hybrid Na-ion capacitors bridge the performance gap between Na-ion batteries and supercapacitors and offer excellent energy and power characteristics. However, designing efficient anode and cathode materials with improved kinetics and long cycle life is essential for practical implementation of this technology. Herein, layered sodium titanium oxide hydroxide, Na2Ti2O4(OH)2, synthesized through hydrothermal technique, is studied as efficient anode material for hybrid Na-ion capacitor. Half-cell electrochemical studies vs. Na/Na+ showed excellent performance for Na2Ti2O4(OH)2 electrode, with ∼57.2% of the total capacity (323.3 C g-1 at 1.0 mV s-1) dominated by capacitive behavior and the remaining due to Na-intercalation. The obtained values are in good agreement with Trasatti plots indicating the potential of this material as efficient anode for hybrid Na-ion capacitor. Further, a full cell Na-ion capacitor is fabricated with Na2Ti2O4(OH)2 as anode and chemically activated Rice Husk Derived Porous Carbon (RHDPC-KOH) as cathode by using organic electrolyte. The hybrid device, operated at a maximum cell voltage of 4 V, exhibits stable electrochemical performance with a maximum energy density of ∼65 Wh kg-1 (at 500 W kg-1, 0.20 A g-1) and with more than ∼ 93% capacitive retention after 3000 cycles.

  4. Collisional Transfer of Population and Orientation in NaK

    NASA Astrophysics Data System (ADS)

    Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.

    2010-03-01

    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser- induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v'=16, J') <- X^1&+circ;(v''=0, J'±1) transition, creating an orientation (non-uniform MJ' level distribution) in both levels. The linearly polarized probe laser is scanned over various 3^1π(v, J'±1) <- A^1&+circ;(v'=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). Using both spectroscopic methods, analysis of weak collisional satellite lines adjacent to these directly populated lines, as a function of argon buffer gas pressure and cell temperature, allows us to discern separately the effects collisions with argon atoms and potassium atoms have on the population and orientation of the molecule. In addition, code has been written which provides a theoretical analysis of the process, through a solution of the density matrix equations of motion for the system.

  5. K+ and NH4(+) modulate gill (Na+, K+)-ATPase activity in the blue crab, Callinectes ornatus: fine tuning of ammonia excretion.

    PubMed

    Garçon, D P; Masui, D C; Mantelatto, F L M; McNamara, J C; Furriel, R P M; Leone, F A

    2007-05-01

    To better comprehend the mechanisms of ionic regulation, we investigate the modulation by Na+, K+, NH4(+) and ATP of the (Na+, K+)-ATPase in a microsomal fraction from Callinectes ornatus gills. ATP hydrolysis obeyed Michaelis-Menten kinetics with KM=0.61+/-0.03 mmol L(-1) and maximal rate of V=116.3+/-5.4 U mg(-1). Stimulation by Na+ (V=110.6+/-6.1 U mg(-1); K0.5=6.3+/-0.2 mmol L(-1)), Mg2+ (V=111.0+/-4.7 U mg(-1); K0.5=0.53+/-0.03 mmol L(-1)), NH4(+) (V=173.3+/-6.9 U mg(-1); K0.5=5.4+/-0.2 mmol L(-1)) and K+ (V=116.0+/-4.9 U mg(-1); K0.5=1.5+/-0.1 mmol L(-1)) followed a single saturation curve, although revealing site-site interactions. In the absence of NH4(+), ouabain (K(I)=74.5+/-1.2 micromol L(-1)) and orthovanadate inhibited ATPase activity by up to 87%; the inhibition patterns suggest the presence of F0F1 and K+-ATPases but not Na+-, V- or Ca2+-ATPase as contaminants. (Na+, K+)-ATPase activity was synergistically modulated by K+ and NH4(+). At 10 mmol L(-1) K+, increasing NH4(+) concentrations stimulated maximum activity to V=185.9+/-7.4 U mg(-1). However, at saturating NH4(+) (50 mmol L(-1)), increasing K+ concentrations did not stimulate activity further. Our findings provide evidence that the C. ornatus gill (Na+, K+)-ATPase may be particularly well suited for extremely efficient active NH4(+) excretion. At elevated NH4(+) concentrations, the enzyme is fully active, regardless of hemolymph K+ concentration, and K+ cannot displace NH4(+) from its exclusive binding sites. Further, the binding of NH4(+) to its specific sites induces an increase in enzyme apparent affinity for K+, which may contribute to maintaining K+ transport, assuring that exposure to elevated ammonia concentrations does not lead to a decrease in intracellular potassium levels. This is the first report of modulation by ammonium ions of C. ornatus gill (Na+, K+)-ATPase, and should further our understanding of NH4(+) excretion in benthic crabs.

  6. β decay of Na32

    NASA Astrophysics Data System (ADS)

    Mattoon, C. M.; Sarazin, F.; Hackman, G.; Cunningham, E. S.; Austin, R. A. E.; Ball, G. C.; Chakrawarthy, R. S.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Koopmans, K. A.; Leslie, J. R.; Phillips, A. A.; Schumaker, M. A.; Scraggs, H. C.; Schwarzenberg, J.; Smith, M. B.; Svensson, C. E.; Waddington, J. C.; Walker, P. M.; Washbrook, B.; Zganjar, E.

    2007-01-01

    The β-decay of Na32 has been studied using β-γ coincidences. New transitions and levels are tentatively placed in the level scheme of Mg32 from an analysis of γ-γ and β-γ-γ coincidences. The observation of the indirect feeding of the 2321 keV state in Mg32 removes some restrictions previously placed on the spin assignment for this state. No evidence of a state at 2117 keV in Mg32 is found. Previously unobserved weak transitions up to 5.4 MeV were recorded but could not be placed in the decay scheme of Na32.

  7. Desorption induced by electronic transitions of Na from SiO2: relevance to tenuous planetary atmospheres.

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2000-04-01

    The authors have studied the desorption induced by electronic transitions (DIET) of Na adsorbed on model mineral surfaces, i.e. amorphous, stoichiometric SiO2 films. They find that electron stimulated desorption (ESD) of atomic Na occurs for electron energy thresholds as low as ≡4 eV, that desorption cross-sections are high (≡1×10-19cm2 at 11 eV), and that desorbing atoms are 'hot', with suprathermal velocities. The estimated Na desorption rate from the lunar surface via ESD by solar wind electrons is a small fraction of the rate needed to sustain the Na atmosphere. However, the solar photon flux at energies ≥5 eV exceeds the solar wind electron flux by orders of magnitude; there are sufficient ultraviolet photons incident on the lunar surface to contribute substantially to the lunar Na atmosphere via PSD of Na from the surface.

  8. Effects of S(+)-efonidipine on the rabbit sinus node action potential and calcium channel subunits Ca(V)1.2, Ca(V)1.3 and Ca(V)3.1.

    PubMed

    Tanaka, Hikaru; Namekata, Iyuki; Ogawa, Toru; Tsuneoka, Yayoi; Komikado, Chisa; Takahara, Akira; Iida-Tanaka, Naoko; Izumi-Nakaseko, Hiroko; Tsuru, Hiromichi; Adachi-Akahane, Satomi

    2010-12-15

    The effect of S(+)-efonidipine on sinus node action potential and calcium channel α-subunits was examined. The slope of the phase 4 depolarization of isolated rabbit sinus node tissue was significantly reduced by S(+)-efonidipine (1 μM), slightly reduced by nifedipine (1 μM), but was not affected by R(-)-efonidipine. S(+)-efonidipine (1 μM), inhibited the expressed Ca(V)1.2, Ca(V)1.3 and Ca(V)3.1 channel currents by 75.7%, 75.3% and 94.0%, nifedipine 84.0%, 43.2% and 14.9%, and R(-)-efonidipine 30.0%, 19.6% and 92.8%, respectively. Thus, the prolongation of the phase 4 depolarization of the rabbit sinus node by S(+)-efonidipine may be explained by blockade of the Ca(V)1.3 channel current. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN.

    PubMed

    Banerjee, D; Burtsev, V E; Chumakov, A G; Cooke, D; Crivelli, P; Depero, E; Dermenev, A V; Donskov, S V; Dusaev, R R; Enik, T; Charitonidis, N; Feshchenko, A; Frolov, V N; Gardikiotis, A; Gerassimov, S G; Gninenko, S N; Hösgen, M; Jeckel, M; Karneyeu, A E; Kekelidze, G; Ketzer, B; Kirpichnikov, D V; Kirsanov, M M; Konorov, I V; Kovalenko, S G; Kramarenko, V A; Kravchuk, L V; Krasnikov, N V; Kuleshov, S V; Lyubovitskij, V E; Lysan, V; Matveev, V A; Mikhailov, Yu V; Peshekhonov, D V; Polyakov, V A; Radics, B; Rojas, R; Rubbia, A; Samoylenko, V D; Tikhomirov, V O; Tlisov, D A; Toropin, A N; Trifonov, A Yu; Vasilishin, B I; Vasquez Arenas, G; Volkov, P V; Volkov, V; Ulloa, P

    2018-06-08

    We report the first results on a direct search for a new 16.7 MeV boson (X) which could explain the anomalous excess of e^{+}e^{-} pairs observed in the excited ^{8}Be^{*} nucleus decays. Because of its coupling to electrons, the X could be produced in the bremsstrahlung reaction e^{-}Z→e^{-}ZX by a 100 GeV e^{-} beam incident on an active target in the NA64 experiment at the CERN Super Proton Synchrotron and observed through the subsequent decay into a e^{+}e^{-} pair. With 5.4×10^{10} electrons on target, no evidence for such decays was found, allowing us to set first limits on the X-e^{-} coupling in the range 1.3×10^{-4}≲ε_{e}≲4.2×10^{-4} excluding part of the allowed parameter space. We also set new bounds on the mixing strength of photons with dark photons (A^{'}) from nonobservation of the decay A^{'}→e^{+}e^{-} of the bremsstrahlung A^{'} with a mass ≲23  MeV.

  10. Phase transition studies of Na3Bi system under uniaxial strain

    NASA Astrophysics Data System (ADS)

    Nie, Tiaoping; Meng, Lijun; Li, Yanru; Luan, Yanhua; Yu, Jun

    2018-03-01

    We investigated the electronic properties and phase transitions of Na3Bi in four structural phases (space groups P63/mmc, P \\overline{3} c1, Fm \\overline{3} m and Cmcm) under constant-volume uniaxial strain using the first-principles method. For P63/mmc and P \\overline{3} c1-Na3Bi, an important phase transition from a topological Dirac semimetal (TDS) to a topological insulator appears under compression strain around 4.5%. The insulating gap increases with the increasing compressive strain and up to around 0.1 eV at a strain of 10%. However, both P63/mmc and P \\overline{3} c1-Na3Bi still keep the properties of a TDS within a tensile strain of 0-10%, although the Dirac points move away from the Γ point along Γ-A in reciprocal space as the tensile strain increases. The Na3Bi with space group Fm \\overline{3} m is identified as a topological semimetal with the inverted bands between Na-3s and Bi-6p and a parabolic dispersion in the vicinity of Γ point. Interestingly, for Fm \\overline{3} m-Na3Bi, both compression and tensile strain lead to a TDS which is identified by calculating surface Fermi arcs and topological invariants at time-reversal planes (k z   =  0 and k z   =  π/c) in reciprocal space. Additionally, we confirmed the high pressure phase Cmcm-Na3Bi is an ordinary insulator with a gap of about 0.62 eV. It is noteworthy that its gap almost keeps constant around 0.60 eV within a compression strain of 0-10%. In contrast, a remarkable phase transition from an insulator to a metal phase appears under tensile strain. Moreover, this phase transition is highly sensitive to tensile strain and takes place only at a strain 1.0%. These strain-induced electronic structures and phase transitions of the Na3Bi system in various phases are important due to their possible applications under high pressure in future electronic devices.

  11. A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue

    Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less

  12. A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8

    DOE PAGES

    Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue; ...

    2018-01-31

    Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less

  13. Structure, microstructure and infrared studies of Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3}-NaNbO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sumit K., E-mail: sumit.sxc13@gmail.com; Singh, S. N., E-mail: snsphyru@gmail.com; Prasad, K., E-mail: k.prasad65@gmail.com

    2016-05-06

    Lead-free solid solutions (1-x)Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3}-xNaNbO{sub 3} (0 ≤ x ≤ 1.0) were prepared by conventional ceramic fabrication technique. X-ray diffraction and Rietveld refinement analyses of these ceramics were carried out using X’Pert HighScore Plus software to determine the crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that NaNbO{sub 3} with orthorhombic structure was completely diffused into Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3} lattice having the rhombohedral-tetragonal symmetry. EDS and SEM studies were carried out in order to evaluate the quality and purity of the compounds. SEM images showed a change in grain shapemore » with the increase of NaNbO{sub 3} content. FTIR spectra confirmed the formation of solid solution.« less

  14. One- and two-electron reduced 1,2-diketone ligands in [CrIII(L*)3] (S = 0) and Na2(Et2O)2[VIV(LRed)3] (S = 1/2).

    PubMed

    Spikes, Geoffrey H; Sproules, Stephen; Bill, Eckhard; Weyhermüller, Thomas; Wieghardt, Karl

    2008-12-01

    The electronic structures of chromium and vanadium centers coordinated by three reduced 1,2-diketones have been elucidated by using density functional theory (DFT) calculations and a host of physical methods: X-ray crystallography; cyclic voltammetry; ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopy; and magnetic susceptibility measurements. The metal center in octahedral [CrIII(L*)3]0 (1), a CrIII (d3) ion is coupled antiferromagnetically to three monoanionic ligand pi-radicals affording an S ) 0 ground state. In contrast, Na2(Et2O)2[VIV(LRed)3] (2) (S ) 1/2), possesses a central VIV (d1) ion O,OE-coordinated to three closed-shell, doubly reduced ligands which in turn are coordinated by two Na cations enforcing a trigonal prismatic geometry at the vanadium center. 2 can be oxidized electrochemically by one and two electrons generating a monoanion, [V(L)3]1-, and a neutral species, [V(L)3]0, respectively. DFT calculations atthe B3LYP level show that the one-electron oxidized product contains an octahedral VIV ion coupled antiferromagnetically to one monoanionic ligand pi-radical [VIV(L*)(LRed)2]1- (S ) 0). In contrast, the two-electron oxidized product contains a VIII ion coupled antiferromagnetically to three ligand pi-radicals in an octahedral field[VIII(L*)3]0 (S ) 1/2).

  15. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field.

    PubMed

    Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng

    2017-02-15

    Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (E b ) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the E b can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm -1 electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H 2 molecule when no strain or E-field is applied; however, the absorption increases to five H 2 molecules under 15% biaxial strain and six H 2 molecules under both 15% biaxial strain combined with a 5.14 V nm -1 E-field. The average adsorption energies for H 2 of BN-(Na-mH 2 ) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H 2 ) 4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H 2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.

  16. Modulation of voltage-gated Na+ and K+ channels by pumiliotoxin 251D: a "joint venture" alkaloid from arthropods and amphibians.

    PubMed

    Vandendriessche, Thomas; Abdel-Mottaleb, Yousra; Maertens, Chantal; Cuypers, Eva; Sudau, Alexander; Nubbemeyer, Udo; Mebs, Dietrich; Tytgat, Jan

    2008-03-01

    Certain amphibians provide themselves with a chemical defense by accumulating lipophilic alkaloids into skin glands from dietary arthropods. Examples of such alkaloids are pumiliotoxins (PTXs). In general, PTXs are known as positive modulators of voltage-gated sodium channels (VGSCs). Unlike other PTXs, PTX 251D does not share this characteristic. However, mice and insect studies showed that PTX 251D is highly toxic and to date the basis of its toxicity remains unknown. In this work, we searched for the possible target of PTX 251D. The toxin was therefore made synthetically and tested on four VGSCs (mammalian rNa(v)1.2/beta(1), rNa(v)1.4/beta(1), hNa(v)1.5/beta(1) and insect Para/tipE) and five voltage-gated potassium channels (VGPCs) (mammalian rK(v)1.1-1.2, hK(v)1.3, hK(v)11.1 (hERG) and insect Shaker IR) expressed heterologously in Xenopus laevis oocytes, using the two-electrode voltage clamp technique. PTX 251D not only inhibited the Na(+) influx through the mammalian VGSCs but also affected the steady-state activation and inactivation. Interestingly, in the insect ortholog, the inactivation process was dramatically affected. Additionally, PTX 251D inhibited the K(+) efflux through all five tested VGPCs and slowed down the deactivation kinetics of the mammalian VGPCs. hK(v)1.3 was the most sensitive channel, with an IC(50) value 10.8+/-0.5 microM. To the best of our knowledge this is the first report of a PTX affecting VGPCs.

  17. Projectile n distributions following charge transfer of Ar+ and Na+ in a Na Rydberg target

    NASA Astrophysics Data System (ADS)

    MacAdam, K. B.; Gray, L. G.; Rolfes, R. G.

    1990-11-01

    The n distributions produced by charge transfer of Ar+ and Na+ ions in a target of Na(nl) Rydberg atoms were extensively measured at intermediate velocities. The 60-2100-eV ions bombarded a laser-excited atomic-beam target. The projectiles were neutralized by capture into Rydberg states of Ar and Na and were analyzed by field ionization in an inhomogeneous-field detector whose response over states and energies was carefully mapped. The choice of initially prepared Na states, 24d, 25s, 28d, 29s, 33d, and 34s, allowed a comparison of l=0 and >=2 targets at nearly equal binding energies over a range of reduced velocity v~=0.187 to 1.95. Capture populates m sublevels broadly, not merely m~=0. Overlapping contributions from adiabatic and diabatic modes of field ionization were accommodated in the analysis, which used a maximum-entropy-principle parametric form to fit the observed final-state distributions. The peak of the distributions, nmax, shifts upward from a value less than the initial state ni to a value one to three units higher than ni at v~ between 0.7 and 0.9 and ultimately shifts downward below ni as v~ is further increased. The distributions become significantly sharper where the maximum upward shift occurs. Two ratios were defined to express the widths of final-state distributions in relative terms, one measuring the spread of orbital kinetic energy and the other the spread of Bohr-orbit velocity. By these ratios a universal behavior over energies, states, and projectile species is observed, and small differences between l=0 and >=2 targets may be seen. A theoretical understanding of the present results, which span velocities where both molecular and perturbative theories are normally used, will require a quantal formulation that models the free-ranging response that is a hallmark of the high-quantum-number limit.

  18. 24Na at Ex=4.7 -5.9 MeV from 22Ne(3He,p )

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2018-04-01

    Abstract. Analysis of data from the 22Ne(3He,p ) 24Na reaction has been extended to include 18 angular distributions for states between 4.7 and 5.9 MeV. A distorted-wave Born-approximation analysis allows the determination of ℓ value(s) for most of them. Results for Jπ are compared with previous information. In general, agreement is good. Some apparent disagreements between current and past results are indicative of population of a different state in this reaction than the nearby one listed in the compilation.

  19. Modulation of contraction by intracellular Na+ via Na(+)-Ca2+ exchange in single shark (Squalus acanthias) ventricular myocytes.

    PubMed Central

    Näbauer, M; Morad, M

    1992-01-01

    1. The effect of direct alteration of intracellular Na+ concentration on contractile properties of whole-cell clamped shark ventricular myocytes was studied using an array of 256 photodiodes to monitor the length of the isolated myocytes. 2. In myocytes dialysed with Na(+)-free solution, the voltage dependence of Ca2+ current (ICa) and contraction were similar and bell shaped. Contractions activated at all voltages were completely suppressed by nifedipine (5 microM), and failed to show significant tonic components, suggesting dependence of the contraction on Ca2+ influx through the L-type Ca2+ channel. 3. In myocytes dialysed with 60 mM Na+, a ICa-dependent and a ICa-independent component of contraction could be identified. The Ca2+ current-dependent component was prominent in voltages between -30 to +10 mV. The ICa-independent contractions were maintained for the duration of depolarization, increased with increasing depolarization between +10 to +100 mV, and were insensitive to nifedipine. 4. In such myocytes, repolarization produced slowly decaying inward tail currents closely related to the time course of relaxation and the degree of shortening prior to repolarization. 5. With 60 mM Na+ in the pipette solution, positive clamp potentials activated decaying outward currents which correlated to the size of contraction. These outward currents appeared to be generated by the Na(+)-Ca(2+)-exchanger since they depended on the presence of intracellular Na+, and were neither suppressed by nifedipine nor by K+ channel blockers. 6. The results suggest that in shark (Squalus acanthias) ventricular myocytes, which lack functionally relevant Ca2+ release pools, both Ca2+ channel and the Na(+)-Ca2+ exchanger deliver sufficient Ca2+ to activate contraction, though the effectiveness of the latter mechanism was highly dependent on the [Na+]i. PMID:1338467

  20. Low temperature synthesis and characterization of Na–M–(O)–F phases with M=Ti, V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nava-Avendaño, Jessica; Ayllón, José A.; Frontera, Carlos

    2015-03-15

    Na{sub 5}Ti{sub 3}O{sub 3}F{sub 11} was prepared by the microwave assisted method, and presents a chiolite related structure with cell parameters a=10.5016(5), b=10.4025(5), and c=10.2911(5) Å and Cmca (no. 64) space group. From solvothermal synthesis at 100 °C the cryolite Na{sub 3−δ}VO{sub 1−δ}F{sub 5+δ} was prepared, which crystallizes in the monoclinic system with a=5.5403(2), b=5.6804(2), c=7.9523(2) Å, β=90.032(7)° cell parameters and P2{sub 1}/n (no. 14) space group. Under similar synthesis conditions but with higher HF concentration the chiolite-type phase Na{sub 5−δ}V{sub 3}F{sub 14} was achieved, which exhibits a=10.5482(2), b=10.4887(1) and c=10.3243(1) Å cell parameters and Cmc2{sub 1} (no. 36) spacemore » group. A single crystal also having the chiolite structure was synthesized at 200 °C which exhibits tetragonal symmetry (a=7.380(3) and c=10.381(11) Å and space group P4{sub 2}2{sub 1}2 (no. 94)). Bond valence sum indicates that it contains V{sup 4+} and therefore can be formulated as Na{sub 5}V{sub 3}O{sub 3}F{sub 11}. - Graphical abstract: Na{sub 5}M{sub 3}(O,F){sub 14} with M=Ti and V having chiolite structure and Na{sub 3−δ}VO{sub 1−δ}F{sub 5+δ} cryolite were prepared by means of microwave-assisted and solvothermal synthesis. - Highlights: • Na{sub 5}Ti{sub 3}O{sub 3}F{sub 11} chiolite was prepared by a microwave assisted method and characterized. • Na{sub 3−δ}VO{sub 1−δ}F{sub 5+δ} and Na{sub 5−δ}V{sub 3}F{sub 14} were prepared by solvothermal synthesis. • The compounds were structurally characterized by diffraction techniques. • O/F distribution was estimated by applying Pauling’s second rule.« less

  1. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    PubMed

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  2. E&V Guidebook, Version 1.1

    DTIC Science & Technology

    1989-08-15

    checklist 14.1] Chapter 3, Language-related issues, extracts from the Ada language reference manua! [,_D 1982] those features exp!icitly a!owcd to vay...welcome. Please send comments electronically (preferred) to szymansk~aja;po.sei.cmu.edu, or by regular mail to Mr. Raymond Szymanski , AFWAL/AAAF, Wright...of Tool Features for the Ada Programming Support Environment (APSE) 4-3 4.3 E&V Report: DoD APSE Analysis 4-4 4.4 Classification Schema/E&V Taxonomy

  3. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation

    PubMed Central

    Yu, Alec; Zhu, Wandi; Silva, Jonathan R.; Ruben, Peter C.

    2017-01-01

    E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation. PMID:28898267

  4. Suppression of NaNO3 crystal nucleation by glycerol: micro-Raman observation on the efflorescence process of mixed glycerol/NaNO3/water droplets.

    PubMed

    Yu, Jun-Ying; Zhang, Yun; Zeng, Guang; Zheng, Chuan-Ming; Liu, Yong; Zhang, Yun-Hong

    2012-02-09

    Although the hygroscopicity of a NaNO(3)/water microdroplet and a polyalcohol/water microdroplet, two of the most important aerosols in atmosphere, has been widely studied, little is known about the relationship between the hygroscopic behavior of mixed NaNO(3)/polyalcohol/water droplets and their structures on the molecular level. In this study, the hygroscopicity of mixed glycerol/NaNO(3)/water droplets deposited on a hydrophobic substrate was studied by micro-Raman spectroscopy with organic-to-inorganic molar ratios (OIRs) of 0.5, 1, and 2. In the mixed glycerol/NaNO(3)/water droplets, glycerol molecules tended to combine with Na(+) and NO(3)(-) ions by electrostatic interaction and hydrogen bonding, respectively. On the basis of the analyses of the changes of symmetric stretching (v(s)-CH(2)), asymmetric stretching (v(a)-CH(2)), their area ratio (Av(a)-CH(2)/Av(s)-CH(2)) of glycerol, and symmetric stretching band of NO(3)(-) (ν(1)-NO(3)(-)) with relative humidity (RH), it was found that the conformation of glycerol was transformed from αα mainly to γγ and partly to αγ with a decreasing RH in the mixed droplets, contrary to the case in the glycerol/water droplet. In addition, the glycerol with γγ and αγ conformation had strong interaction with Na(+) and NO(3)(-) respectively, which suppressed the formation of contact of ions and delayed the efflorescence relative humidity (ERH) for the mixed droplets compared to the NaNO(3)/water droplet. © 2012 American Chemical Society

  5. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors.

    PubMed

    Kumar, Vathan; Tan, Kian-Pin; Wang, Ying-Ming; Lin, Sheng-Wei; Liang, Po-Huang

    2016-07-01

    Severe acute respiratory syndrome (SARS) led to a life-threatening form of atypical pneumonia in late 2002. Following that, Middle East Respiratory Syndrome (MERS-CoV) has recently emerged, killing about 36% of patients infected globally, mainly in Saudi Arabia and South Korea. Based on a scaffold we reported for inhibiting neuraminidase (NA), we synthesized the analogues and identified compounds with low micromolar inhibitory activity against 3CL(pro) of SARS-CoV and MERS-CoV. Docking studies show that a carboxylate present at either R(1) or R(4) destabilizes the oxyanion hole in the 3CL(pro). Interestingly, 3f, 3g and 3m could inhibit both NA and 3CL(pro) and serve as a starting point to develop broad-spectrum antiviral agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH.H2O.

    PubMed

    Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang

    2004-10-04

    Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

  7. High-Performance Na-O2 Batteries Enabled by Oriented NaO2 Nanowires as Discharge Products.

    PubMed

    Khajehbashi, S Mohammad B; Xu, Lin; Zhang, Guobin; Tan, Shuangshuang; Zhao, Yan; Wang, Lai-Sen; Li, Jiantao; Luo, Wen; Peng, Dong-Liang; Mai, Liqiang

    2018-06-13

    Na-O 2 batteries are emerging rechargeable batteries due to their high theoretical energy density and abundant resources, but they suffer from sluggish kinetics due to the formation of large-size discharge products with cubic or irregular particle shapes. Here, we report the unique growth of discharge products of NaO 2 nanowires inside Na-O 2 batteries that significantly boosts the performance of Na-O 2 batteries. For this purpose, a high-spin Co 3 O 4 electrocatalyst was synthesized via the high-temperature oxidation of pure cobalt nanoparticles in an external magnetic field. The discharge products of NaO 2 nanowires are 10-20 nm in diameter and ∼10 μm in length, characteristics that provide facile pathways for electron and ion transfer. With these nanowires, Na-O 2 batteries have surpassed 400 cycles with a fixed capacity of 1000 mA h g -1 , an ultra-low over-potential of ∼60 mV during charging, and near-zero over-potential during discharging. This strategy not only provides a unique way to control the morphology of discharge products to achieve high-performance Na-O 2 batteries but also opens up the opportunity to explore growing nanowires in novel conditions.

  8. Insight into Ca-Substitution Effects on O3-Type NaNi1/3 Fe1/3 Mn1/3 O2 Cathode Materials for Sodium-Ion Batteries Application.

    PubMed

    Sun, Liqi; Xie, Yingying; Liao, Xiao-Zhen; Wang, Hong; Tan, Guoqiang; Chen, Zonghai; Ren, Yang; Gim, Jihyeon; Tang, Wan; He, Yu-Shi; Amine, Khalil; Ma, Zi-Feng

    2018-04-18

    O3-type NaNi 1/3 Fe 1/3 Mn 1/3 O 2 (NaNFM) is well investigated as a promising cathode material for sodium-ion batteries (SIBs), but the cycling stability of NaNFM still needs to be improved by using novel electrolytes or optimizing their structure with the substitution of different elements sites. To enlarge the alkali-layer distance inside the layer structure of NaNFM may benefit Na + diffusion. Herein, the effect of Ca-substitution is reported in Na sites on the structural and electrochemical properties of Na 1- x Ca x /2 NFM (x = 0, 0.05, 0.1). X-ray diffraction (XRD) patterns of the prepared Na 1- x Ca x /2 NFM samples show single α-NaFeO 2 type phase with slightly increased alkali-layer distance as Ca content increases. The cycling stabilities of Ca-substituted samples are remarkably improved. The Na 0.9 Ca 0.05 Ni 1/3 Fe 1/3 Mn 1/3 O 2 (Na 0.9 Ca 0.05 NFM) cathode delivers a capacity of 116.3 mAh g -1 with capacity retention of 92% after 200 cycles at 1C rate. In operando XRD indicates a reversible structural evolution through an O3-P3-P3-O3 sequence of Na 0.9 Ca 0.05 NFM cathode during cycling. Compared to NaNMF, the Na 0.9 Ca 0.05 NFM cathode shows a wider voltage range in pure P3 phase state during the charge/discharge process and exhibits better structure recoverability after cycling. The superior cycling stability of Na 0.9 Ca 0.05 NFM makes it a promising material for practical applications in sodium-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. L-changing depopulation of Na s and p Rydberg states by ion impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolfes, R.G.; Smith, D.B.; MacAdam, K.B.

    1988-04-01

    Ar/sup +/ and Na/sup +/ ion beams bombarding Na ns and np Rydberg-state targets at impact velocities near the Bohr-orbital velocity of the target atoms (i.e., v-italic-tildeapprox. =1) induce transitions to (n-1)l states (lgreater than or equal to2) with larger-than-geometric cross sections. Depopulation of ns states proceeds directly into the full n-1, lgreater than or equal to2 manifold rather than populating the np or (n-1)p states as the first of a sequence of dipole-allowed steps. Depopulation of np states leads to a distribution of final states that is dominated by the nearer or high-l part of the n-1 manifold. nmore » dependences of the cross section for ns depopulation are given at several energies for n = 32--41 and at a single energy for np, n = 26--32. The absolute cross section for Na(36s) depopulation falls gradually but steadily for reduced velocities v-italic-tilde increasing from 0.3 to 1.35. Bombardment of Na 39s and 39p states in applied fields 0--18.5 V/cm reveals that the final-state distributions become narrower as manifold states are Stark shifted close to the initial states. No theoretical results are available for direct comparison with these experiments, but the method of coupled channels seems to be the most suitable candidate.« less

  10. OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress.

    PubMed

    Suzuki, Kei; Yamaji, Naoki; Costa, Alex; Okuma, Eiji; Kobayashi, Natsuko I; Kashiwagi, Tatsuhiko; Katsuhara, Maki; Wang, Cun; Tanoi, Keitaro; Murata, Yoshiyuki; Schroeder, Julian I; Ma, Jian Feng; Horie, Tomoaki

    2016-01-19

    Na(+) exclusion from leaf blades is one of the key mechanisms for glycophytes to cope with salinity stress. Certain class I transporters of the high-affinity K(+) transporter (HKT) family have been demonstrated to mediate leaf blade-Na(+) exclusion upon salinity stress via Na(+)-selective transport. Multiple HKT1 transporters are known to function in rice (Oryza sativa). However, the ion transport function of OsHKT1;4 and its contribution to the Na(+) exclusion mechanism in rice remain to be elucidated. Here, we report results of the functional characterization of the OsHKT1;4 transporter in rice. OsHKT1;4 mediated robust Na(+) transport in Saccharomyces cerevisiae and Xenopus laevis oocytes. Electrophysiological experiments demonstrated that OsHKT1;4 shows strong Na(+) selectivity among cations tested, including Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4 (+), in oocytes. A chimeric protein, EGFP-OsHKT1;4, was found to be functional in oocytes and targeted to the plasma membrane of rice protoplasts. The level of OsHKT1;4 transcripts was prominent in leaf sheaths throughout the growth stages. Unexpectedly however, we demonstrate here accumulation of OsHKT1;4 transcripts in the stem including internode II and peduncle in the reproductive growth stage. Moreover, phenotypic analysis of OsHKT1;4 RNAi plants in the vegetative growth stage revealed no profound influence on the growth and ion accumulation in comparison with WT plants upon salinity stress. However, imposition of salinity stress on the RNAi plants in the reproductive growth stage caused significant Na(+) overaccumulation in aerial organs, in particular, leaf blades and sheaths. In addition, (22)Na(+) tracer experiments using peduncles of RNAi and WT plants suggested xylem Na(+) unloading by OsHKT1;4. Taken together, our results indicate a newly recognized function of OsHKT1;4 in Na(+) exclusion in stems together with leaf sheaths, thus excluding Na(+) from leaf blades of a japonica rice cultivar in the

  11. Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses

    PubMed Central

    Larsen, Brian Roland; Assentoft, Mette; Cotrina, Maria L.; Hua, Susan Z.; Nedergaard, Maiken; Kaila, Kai; Voipio, Juha; MacAulay, Nanna

    2015-01-01

    Bursts of network activity in the brain are associated with a transient increase in extracellular K+ concentration. The excess K+ is removed from the extracellular space by mechanisms proposed to involve Kir4.1-mediated spatial buffering, the Na+/K+/2Cl− cotransporter (NKCC1), and/or Na+/K+-ATPase activity. Their individual contribution to [K+]o management has been of extended controversy. The present study aimed, by several complementary approaches, to delineate the transport characteristics of Kir4.1, NKCC1, and Na+/K+-ATPase and to resolve their involvement in clearance of extracellular K+ transients. Primary cultures of rat astrocytes displayed robust NKCC1 activity with [K+]o increases above basal levels. Increased [K+]o produced NKCC1-mediated swelling of cultured astrocytes and NKCC1 could thereby potentially act as a mechanism of K+ clearance while concomitantly mediate the associated shrinkage of the extracellular space. In rat hippocampal slices, inhibition of NKCC1 failed to affect the rate of K+ removal from the extracellular space while Kir4.1 enacted its spatial buffering only during a local [K+]o increase. In contrast, inhibition of the different isoforms of Na+/K+-ATPase reduced post-stimulusclearance of K+ transients. The glia-specific α2/β2 subunit composition of Na+/K+-ATPase, when expressed in Xenopus oocytes, displayed a K+ affinity and voltage-sensitivity that would render this astrocyte-specific subunit composition specifically geared for controlling [K+]o during neuronal activity. In rat hippocampal slices, simultaneous measurements of the extracellular space volume revealed that neither Kir4.1, NKCC1, nor Na+/K+-ATPase accounted for the stimulus-induced shrinkage of the extracellular space. Thus, NKCC1 plays no role in activity-induced extracellular K+ recovery in native hippocampal tissue while Kir4.1 and Na+/K+-ATPase serve temporally distinct roles. PMID:24482245

  12. Na(+)-dependent transport of taurine is found only on the abluminal membrane of the blood-brain barrier.

    PubMed

    Rasgado-Flores, Hector; Mokashi, Ashwini; Hawkins, Richard A

    2012-01-01

    Luminal and abluminal plasma membranes were isolated from bovine brain microvessels and used to identify and characterize Na(+)-dependent and facilitative taurine transport. The calculated transmembrane potential was -59 mV at time 0; external Na(+) (or choline under putative zero-trans conditions) was 126 mM (T=25 °C). The apparent affinity constants of the taurine transporters were determined over a range of taurine concentrations from 0.24 μM to 11.4 μM. Abluminal membranes had both Na(+)-dependent taurine transport as well as facilitative transport while luminal membranes only had facilitative transport. The apparent K(m) for facilitative and Na(+)-dependent taurine transport were 0.06±0.02 μM and 0.7±0.1 μM, respectively. The Na(+)-dependent transport of taurine was voltage dependent over the range of voltages studied (-25 to -101 mV). The transport was over 5 times greater at -101 mV compared to when V(m) was -25 mV. The sensitivity to external osmolality of Na(+)-dependent transport was studied over a range of osmolalities (229 to 398 mOsm/kg H(2)O) using mannitol as the osmotic agent to adjust the osmolality. For these experiments the concentration of Na(+) was maintained constant at 50mM, and the calculated transmembrane potential was -59 mV. The Na(+)-dependent transport system was sensitive to osmolality with the greatest rate observed at 229 mOsm/kg H(2)O. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Structure and temperature-dependent phase transitions of lead-free Bi 1/2Na 1/2TiO 3-Bi 1/2K 1/2TiO 3-K 0.5Na 0.5NbO 3 piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Eva-Maria; Schmitt, Ljubomira Ana; Hinterstein, Manuel

    2014-05-28

    Structure and phase transitions of (1-y)((1-x)Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3)-yK 0.5Na 0.5NbO 3 (x; y) piezoceramics (0.1 ≤ x ≤ 0.4; 0 ≤ y ≤ 0.05) were investigated by transmission electron microscopy, neutron diffraction, temperature-dependent x-ray diffraction, and Raman spectroscopy. The local crystallographic structure at room temperature (RT) does not change by adding K 0.5Na 0.5NbO 3 to Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3 for x = 0.2 and 0.4. The average crystal structure and microstructure on the other hand develop from mainly long-range polar order with ferroelectric domains to short-range order with polar nanoregions displaying amore » more pronounced relaxor character. The (0.1; 0) and (0.1; 0.02) compositions exhibit monoclinic Cc space group symmetry, which transform into Cc + P4bm at 185 and 130 °C, respectively. This high temperature phase is stable at RT for the morphotropic phase boundary compositions of (0.1; 0.05) and all compositions with x = 0.2. For the compositions of (0.1; 0) and (0.1; 0.02), local structural changes on heating are evidenced by Raman; for all other compositions, changes in the long-range average crystal structure were observed.« less

  14. The NAv1.7 blocker protoxin II reduces burn injury-induced spinal nociceptive processing.

    PubMed

    Torres-Pérez, Jose Vicente; Adamek, Pavel; Palecek, Jiri; Vizcaychipi, Marcela; Nagy, Istvan; Varga, Angelika

    2018-01-01

    Controlling pain in burn-injured patients poses a major clinical challenge. Recent findings suggest that reducing the activity of the voltage-gated sodium channel Na v 1.7 in primary sensory neurons could provide improved pain control in burn-injured patients. Here, we report that partial thickness scalding-type burn injury on the rat paw upregulates Na v 1.7 expression in primary sensory neurons 3 h following injury. The injury also induces upregulation in phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB), a marker for nociceptive activation in primary sensory neurons. The upregulation in p-CREB occurs mainly in Na v 1.7-immunopositive neurons and exhibits a peak at 5 min and, following a decline at 30 min, a gradual increase from 1 h post-injury. The Na v 1.7 blocker protoxin II (ProTxII) or morphine injected intraperitoneally 15 min before or after the injury significantly reduces burn injury-induced spinal upregulation in phosphorylated serine 10 in histone H3 and phosphorylated extracellular signal-regulated kinase 1/2, which are both markers for spinal nociceptive processing. Further, ProTxII significantly reduces the frequency of spontaneous excitatory post-synaptic currents in spinal dorsal horn neurons following burn injury. Together, these findings indicate that using Na v 1.7 blockers should be considered to control pain in burn injury. • Burn injury upregulates Na v 1.7 expression in primary sensory neurons. • Burn injury results in increased activity of Na v 1.7-expressing primary sensory neurons. • Inhibiting Na v 1.7 by protoxin II reduces spinal nociceptive processing. • Na v 1.7 represents a potential target to reduce pain in burn injury.

  15. Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys.

    PubMed

    Baldwin, Mary K L; Kaskan, Peter M; Zhang, Bin; Chino, Yuzo M; Kaas, Jon H

    2012-02-15

    Connections of primary (V1) and secondary (V2) visual areas were revealed in macaque monkeys ranging in age from 2 to 16 weeks by injecting small amounts of cholera toxin subunit B (CTB). Cortex was flattened and cut parallel to the surface to reveal injection sites, patterns of labeled cells, and patterns of cytochrome oxidase (CO) staining. Projections from the lateral geniculate nucleus and pulvinar to V1 were present at 4 weeks of age, as were pulvinar projections to thin and thick CO stripes in V2. Injections into V1 in 4- and 8-week-old monkeys labeled neurons in V2, V3, middle temporal area (MT), and dorsolateral area (DL)/V4. Within V1 and V2, labeled neurons were densely distributed around the injection sites, but formed patches at distances away from injection sites. Injections into V2 labeled neurons in V1, V3, DL/V4, and MT of monkeys 2-, 4-, and 8-weeks of age. Injections in thin stripes of V2 preferentially labeled neurons in other V2 thin stripes and neurons in the CO blob regions of V1. A likely thick stripe injection in V2 at 4 weeks of age labeled neurons around blobs. Most labeled neurons in V1 were in superficial cortical layers after V2 injections, and in deep layers of other areas. Although these features of adult V1 and V2 connectivity were in place as early as 2 postnatal weeks, labeled cells in V1 and V2 became more restricted to preferred CO compartments after 2 weeks of age. Copyright © 2011 Wiley-Liss, Inc.

  16. Selection of drug-resistant HIV-1 during the early phase of viral decay is uncommon in treatment-naïve patients initiated on a three- or four-drug antiretroviral regimen including lamivudine.

    PubMed

    Bergroth, Tobias; Ekici, Halime; Gisslén, Magnus; Loes, Sabine Kinloch-de; Goh, Li-Ean; Freedman, Andrew; Lampe, Fiona; Johnson, Margaret A; Sönnerborg, Anders

    2009-01-01

    Therapy failure due to drug resistance development is a common phenomenon in HIV-infected patients. However, when the drug pressure leads to the earliest selection of drug-resistant HIV-1 populations is still unclear. In this study, the extent to which selection of the HIV-1 reverse transcriptase M184I/V mutations occur during the initial phase of viral decay in treatment-naïve HIV-1 infected patients receiving antiretroviral therapy (ART) was examined. Plasma virus from three cohorts of treatment-naïve patients initiating quadruple (n = 43), triple (n = 14) or dual (n = 15) lamivudine-containing ART were analyzed for M184I/V during the first 6 months of therapy using direct sequencing and a sensitive selective real-time PCR method. Among quadruple ART patients, who all were treated at primary HIV-1 infection, only one patient developed M184V after 6 weeks of therapy, having had wild-type virus at baseline. No mutations were found in chronically infected patients on triple ART. In patients on dual therapy, M184I/V mutants were found frequently. Selection of M184I/V mutants was found to be rare during the initial phase of viral decay after initiation of ART in adherent patients given a three or four-drug combination, in contrast to those receiving a less potent regimen. The results suggest that triple and quadruple lamivudine + PI or PI/r containing ART given to treatment-naïve adherent patients is potent enough to prevent development of resistance during the first months of therapy.

  17. Studies of Rotationally and Vibrationally Inelastic Collisions of NaK with Atomic Perturbers

    NASA Astrophysics Data System (ADS)

    Richter, Kara M.

    This dissertation discusses investigations of vibrationally and rotationally inelastic collisions of NaK with argon, helium and potassium as collision partners. We have investigated collisions of NaK molecules in the 2(A) 1Sigma+, state with argon and helium collision partners in a laser-induced fluorescence (LIF) experiment. The pump laser prepares the molecules in particular ro-vibrational (v, J) levels in the 2(A) 1Sigma+, state. These excited molecules then emit fluorescence as they make transitions back to the ground [2(X)1Sigma +] state, and this fluorescence is collected by a Bomem Fourier-transform spectrometer. Weak collisional satellite lines appear flanking strong, direct lines in the recorded spectra. These satellite lines are due to collisions of the NaK molecule in the 2(A)1Sigma+, state with noble gas and alkali atom perturbers, which carry population to nearby rotational levels [(v, J) →(v, J + DeltaJ)] or to various rotational levels of nearby vibrational levels, [(v, J)→ (v + Deltav, J + DeltaJ)]. Ratios of the intensity of each collisional line to the intensity of the direct line then yields information pertaining to the transfer of population in the collision. Our results show a propensity for DeltaJ = even collisions of NaK with noble gas atoms, which is slightly more pronounced for collisions with helium than with argon. Such a DeltaJ = even propensity was not observed in the vibrationally inelastic collisions. Although it would be desirable to operate in the single collision regime, practical considerations make that difficult to achieve. Therefore, we have developed a method to estimate the effects of multiple collisions on our measured rate coefficients and have obtained approximate corrected values.

  18. Rotationally inelastic collisions of He and Ar with NaK: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Price, T. J.; Towne, A. C.; Richter, K.; Jones, J.; Hickman, A. P.; Huennekens, J.; Faust, C.; Malenda, R. F.; Ross, A. J.; Crozet, P.; Talbi, D.; Forrey, R. C.

    2016-05-01

    Rotationally inelastic thermal collisions of NaK A1Σ+ molecules with He and Ar have been studied at Lehigh and Lyon. In both laboratories, a pump laser excites a particular ro-vibrational level A1Σ+ (v , J). Strong transitions from the pumped (v , J) level and weaker transitions from collisionally-populated levels (v ,J' = J + ΔJ) occur. Ratios of line intensities yield information about population and orientation transfer. At Lyon, we also identify v changing collisions. A strong propensity for ΔJ = even transitions is observed for He and Ar. Theoretical calculations are underway; we've calculated He-NaK and Ar-NaK potential surfaces using GAMESS and performed coupled channel scattering calculations for JM -->J'M' transitions. Semiclassical formulas for the cross sections have been obtained and agree well with our quantum mechanical calculations. Using the vector model, where J precesses with polar angle θ about the z-axis, we derived the distribution of final polar angles θ' and final M' states. We identify a special case where the θ' distribution is a Lorentzian centered at θ. Work supported by NSF, XSEDE and CNRS (PICS).

  19. Condition of Si crystal formation by vaporizing Na from NaSi

    NASA Astrophysics Data System (ADS)

    Morito, Haruhiko; Karahashi, Taiki; Yamane, Hisanori

    2012-09-01

    NaSi was heated at various Na vapor pressures (pNa 0.1-1.2 atm) and temperatures (973-1173 K) to investigate the condition of Si crystal formation from NaSi by Na evaporation. Silicon single crystals 1-3 mm in diameter were grown by evaporation of Na from Na-Si melt at 1173 K and pNa=0.74 atm.

  20. Sodium Channel Nav1.8 Underlies TTX-Resistant Axonal Action Potential Conduction in Somatosensory C-Fibers of Distal Cutaneous Nerves.

    PubMed

    Klein, Amanda H; Vyshnevska, Alina; Hartke, Timothy V; De Col, Roberto; Mankowski, Joseph L; Turnquist, Brian; Bosmans, Frank; Reeh, Peter W; Schmelz, Martin; Carr, Richard W; Ringkamp, Matthias

    2017-05-17

    Voltage-gated sodium (Na V ) channels are responsible for the initiation and conduction of action potentials within primary afferents. The nine Na V channel isoforms recognized in mammals are often functionally divided into tetrodotoxin (TTX)-sensitive (TTX-s) channels (Na V 1.1-Na V 1.4, Na V 1.6-Na V 1.7) that are blocked by nanomolar concentrations and TTX-resistant (TTX-r) channels (Na V 1.8 and Na V 1.9) inhibited by millimolar concentrations, with Na V 1.5 having an intermediate toxin sensitivity. For small-diameter primary afferent neurons, it is unclear to what extent different Na V channel isoforms are distributed along the peripheral and central branches of their bifurcated axons. To determine the relative contribution of TTX-s and TTX-r channels to action potential conduction in different axonal compartments, we investigated the effects of TTX on C-fiber-mediated compound action potentials (C-CAPs) of proximal and distal peripheral nerve segments and dorsal roots from mice and pigtail monkeys ( Macaca nemestrina ). In the dorsal roots and proximal peripheral nerves of mice and nonhuman primates, TTX reduced the C-CAP amplitude to 16% of the baseline. In contrast, >30% of the C-CAP was resistant to TTX in distal peripheral branches of monkeys and WT and Na V 1.9 -/- mice. In nerves from Na V 1.8 -/- mice, TTX-r C-CAPs could not be detected. These data indicate that Na V 1.8 is the primary isoform underlying TTX-r conduction in distal axons of somatosensory C-fibers. Furthermore, there is a differential spatial distribution of Na V 1.8 within C-fiber axons, being functionally more prominent in the most distal axons and terminal regions. The enrichment of Na V 1.8 in distal axons may provide a useful target in the treatment of pain of peripheral origin. SIGNIFICANCE STATEMENT It is unclear whether individual sodium channel isoforms exert differential roles in action potential conduction along the axonal membrane of nociceptive, unmyelinated peripheral nerve

  1. V-1 regulates capping protein activity in vivo.

    PubMed

    Jung, Goeh; Alexander, Christopher J; Wu, Xufeng S; Piszczek, Grzegorz; Chen, Bi-Chang; Betzig, Eric; Hammer, John A

    2016-10-25

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1-null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1's ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their "actin phenotype."

  2. Approaching Piezoelectric Response of Pb-Piezoelectrics in Hydrothermally Synthesized Bi0.5(Na1- xK x)0.5TiO3 Nanotubes.

    PubMed

    Ghasemian, Mohammad Bagher; Rawal, Aditya; Liu, Yun; Wang, Danyang

    2018-06-20

    A large piezoelectric coefficient of 76 pm/V along the diameter direction, approaching that of lead-based piezoelectrics, is observed in hydrothermally synthesized Pb-free Bi 0.5 (Na 0.8 K 0.2 ) 0.5 TiO 3 nanotubes. The 30-50 nm diameter nanotubes are formed through a scrolling and wrapping mechanism without the need of a surfactant or template. A molar ratio of KOH/NaOH = 0.5 for the mineralizers yields the Na/K ratio of ∼0.8:0.2, corresponding to an orthorhombic-tetragonal (O-T) phase boundary composition. X-ray diffraction patterns along with transmission electron microscopy analysis ascertain the coexistence of orthorhombic and tetragonal phases with (110) and (001) orientations along the nanotube length direction, respectively. 23 Na NMR spectroscopy confirms the higher degree of disorder in Bi 0.5 (Na 1- x K x ) 0.5 TiO 3 nanotubes with O-T phase coexistence. These findings present a significant advance toward the application of Pb-free piezoelectric materials.

  3. 75 FR 6860 - Airworthiness Directives; International Aero Engines AG (IAE) V2500-A1, V2522-A5, V2524-A5, V2525...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-12

    ... Airworthiness Directives; International Aero Engines AG (IAE) V2500-A1, V2522-A5, V2524-A5, V2525-D5, V2527-A5, V2527E-A5, V2527M-A5, V2528-D5, V2530-A5, and V2533-A5 Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for all International Aero Engines AG (IAE) V2500-A1, V2525-D5 and V2528-D5...

  4. Metadynamics Simulations Reveal a Na+ Independent Exiting Path of Galactose for the Inward-Facing Conformation of vSGLT

    PubMed Central

    Bisha, Ina; Rodriguez, Alex; Laio, Alessandro; Magistrato, Alessandra

    2014-01-01

    Sodium-Galactose Transporter (SGLT) is a secondary active symporter which accumulates sugars into cells by using the electrochemical gradient of Na+ across the membrane. Previous computational studies provided insights into the release process of the two ligands (galactose and sodium ion) into the cytoplasm from the inward-facing conformation of Vibrio parahaemolyticus sodium/galactose transporter (vSGLT). Several aspects of the transport mechanism of this symporter remain to be clarified: (i) a detailed kinetic and thermodynamic characterization of the exit path of the two ligands is still lacking; (ii) contradictory conclusions have been drawn concerning the gating role of Y263; (iii) the role of Na+ in modulating the release path of galactose is not clear. In this work, we use bias-exchange metadynamics simulations to characterize the free energy profile of the galactose and Na+ release processes toward the intracellular side. Surprisingly, we find that the exit of Na+ and galactose is non-concerted as the cooperativity between the two ligands is associated to a transition that is not rate limiting. The dissociation barriers are of the order of 11–12 kcal/mol for both the ion and the substrate, in line with kinetic information concerning this type of transporters. On the basis of these results we propose a branched six-state alternating access mechanism, which may be shared also by other members of the LeuT-fold transporters. PMID:25522004

  5. Evidence for rotation of V1-ATPase

    PubMed Central

    Imamura, Hiromi; Nakano, Masahiro; Noji, Hiroyuki; Muneyuki, Eiro; Ohkuma, Shoji; Yoshida, Masasuke; Yokoyama, Ken

    2003-01-01

    VoV1-ATPase is responsible for acidification of eukaryotic intracellular compartments and ATP synthesis of Archaea and some eubacteria. From the similarity to FoF1-ATP synthase, VoV1-ATPase has been assumed to be a rotary motor, but to date there are no experimental data to support this. Here we visualized the rotation of single molecules of V1-ATPase, a catalytic subcomplex of VoV1-ATPase. V1-ATPase from Thermus thermophilus was immobilized onto a glass surface, and a bead was attached to the D or F subunit through the biotin-streptavidin linkage. In both cases we observed ATP-dependent rotations of beads, the direction of which was always counterclockwise viewed from the membrane side. Given that three ATP molecules are hydrolyzed per one revolution, rates of rotation agree consistently with rates of ATP hydrolysis at saturating ATP concentrations. This study provides experimental evidence that VoV1-ATPase is a rotary motor and that both D and F subunits constitute a rotor shaft. PMID:12598655

  6. Physical Parameters of Erupting Luminous Blue Variables: NGC 2363-V1 Caught in the Act

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Crowther, Paul A.; Smith, Linda J.; Robert, Carmelle; Roy, Jean-René; Hillier, D. John

    2001-01-01

    A quantitative study of the luminous blue variable NGC 2363-V1 in the Magellanic galaxy NGC 2366 (D=3.44 Mpc) is presented, based on ultraviolet and optical Hubble Space Telescope STIS spectroscopy. Contemporary WFPC2 and William Herschel Telescope imaging reveals a modest V-band brightness increase of ~0.2 mag per year between 1996 January-1997 November, reaching V=17.4 mag, corresponding to MV=-10.4 mag. Subsequently, V1 underwent a similar decrease in V-band brightness, together with a UV brightening of 0.35 mag from 1997 November to 1999 November. The optical spectrum of V1 is dominated by H emission lines, with Fe II, He I and Na I also detected. In the ultraviolet, a forest of Fe absorption features and numerous absorption lines typical of mid-B supergiants (such as Si II, Si III, Si IV, C III, C IV) are observed. From a spectral analysis with the non-LTE, line-blanketed code of Hillier & Miller, we derive stellar parameters of T*=11 kK, R*=420 Rsolar, log (L/Lsolar)=6.35 during 1997 November, and T*=13 kK, R*=315 Rsolar, log (L/Lsolar)=6.4 for 1999 July. The wind properties of V1 are also exceptional, with M~=4.4×10-4Msolar yr-1 and v∞~=300 km s-1, allowing for a clumped wind (filling factor=0.3) and assuming H/He~4 by number. The presence of Fe lines in the UV and optical spectrum of V1 permits an estimate of the heavy elemental abundance of NGC 2363 from our spectral synthesis. Although some deficiencies remain, allowance for charge exchange reactions in our calculations supports a SMC-like metallicity, that has previously been determined for NGC 2363 from nebular oxygen diagnostics. Considering a variety of possible progenitor stars, V1 has definitely undergone a giant eruption, with a substantial increase in stellar luminosity, radius, and almost certainly mass-loss rate, such that its stellar radius increased at an average rate of ~4 km s-1 during 1992 October-1995 February. The stellar properties of V1 are compared to other LBVs, including η Car

  7. P-type single-crystalline ZnO films obtained by (Na,N) dual implantation through dynamic annealing process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2018-02-01

    Single-crystalline ZnO films were grown by plasma-assisted molecular beam epitaxy technique on c-plane sapphire substrates. The films have been implanted with fixed fluence of 130 keV Na and 90 keV N ions at 460 °C. It is observed that dually-implanted single crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 1.24 × 1016-1.34 × 1017 cm-3, hole mobilities between 0.65 and 8.37 cm2 V-1 s-1, and resistivities in the range of 53.3-80.7 Ω cm by Hall-effect measurements. There are no other secondary phase appearing, with (0 0 2) (c-plane) orientation after ion implantation as identified by the X-ray diffraction pattern. It is obtained that Na and N ions were successfully implanted and activated as acceptors measured by XPS and SIMS results. Also compared to other similar studies, lower amount of Na and N ions make p-type characteristics excellent as others deposited by traditional techniques. It is concluded that Na and N ion implantation and dynamic annealing are essential in forming p-type single-crystalline ZnO films.

  8. V-1 regulates capping protein activity in vivo

    PubMed Central

    Jung, Goeh; Wu, Xufeng S.; Piszczek, Grzegorz; Chen, Bi-Chang; Betzig, Eric; Hammer, John A.

    2016-01-01

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1–null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1’s ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their “actin phenotype.” PMID:27791032

  9. Experimental and first-principles study of photoluminescent and optical properties of Na-doped CuAlO2: the role of the NaAl-2Na i complex

    NASA Astrophysics Data System (ADS)

    Liu, Ruijian; Li, Yongfeng; Yao, Bin; Ding, Zhanhui; Deng, Rui; Zhang, Ligong; Zhao, Haifeng; Liu, Lei

    2015-08-01

    We report that a band-tail emission at 3.08 eV, lower than near-band-edge energy, is observed in photoluminescence measurements of bulk Na-doped CuAlO2. The band-tail emission is attributed to Na-related defects. Electronic structure calculations based on the first-principles method demonstrate that the donor-acceptor compensated complex of NaAl-2Na i in Na-doped CuAlO2 plays a key role in leading to the band-tail emission and bandgap narrowing. Furthermore, Hall effect measurements indicates that the hole concentration in CuAlO2 is independent on Na doping, which is well understood by the donor-acceptor compensation effect of NaAl-2Na i complex.

  10. Glucocorticoids Suppress Renal Cell Carcinoma Progression by Enhancing Na,K-ATPase Beta-1 Subunit Expression

    PubMed Central

    Huynh, Thu P.; Barwe, Sonali P.; Lee, Seung J.; McSpadden, Ryan; Franco, Omar E.; Hayward, Simon W.; Damoiseaux, Robert; Grubbs, Stephen S.; Petrelli, Nicholas J.; Rajasekaran, Ayyappan K.

    2015-01-01

    Glucocorticoids are commonly used as palliative or chemotherapeutic clinical agents for treatment of a variety of cancers. Although steroid treatment is beneficial, the mechanisms by which steroids improve outcome in cancer patients are not well understood. Na,K-ATPase beta-subunit isoform 1 (NaK-β1) is a cell-cell adhesion molecule, and its expression is down-regulated in cancer cells undergoing epithelial-to mesenchymal-transition (EMT), a key event associated with cancer progression to metastatic disease. In this study, we performed high-throughput screening to identify small molecules that could up-regulate NaK-β1 expression in cancer cells. Compounds related to the glucocorticoids were identified as drug candidates enhancing NaK-β1 expression. Of these compounds, triamcinolone, dexamethasone, and fluorometholone were validated to increase NaK-β1 expression at the cell surface, enhance cell-cell adhesion, attenuate motility and invasiveness and induce mesenchymal to epithelial like transition of renal cell carcinoma (RCC) cells in vitro. Treatment of NaK-β1 knockdown cells with these drug candidates confirmed that these compounds mediate their effects through up-regulating NaK-β1. Furthermore, we demonstrated that these compounds attenuate tumor growth in subcutaneous RCC xenografts and reduce local invasiveness in orthotopically-implanted tumors. Our results strongly indicate that the addition of glucocorticoids in the treatment of RCC may improve outcome for RCC patients by augmenting NaK-β1 cell-cell adhesion function. PMID:25836370

  11. The first Fe-based Na+-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19

    DOE PAGES

    Kan, W. H.; Huq, A.; Manthiram, A.

    2015-05-15

    We report the synthesis, structure, and electrochemistry of the first Na +-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19. The Fe-based cathode has a reversible capacity of ca. 70 mAh g -1; ca. 1.7 Na + ions per formula can be inserted/extracted at an average voltage of 2.5 V versus Na +/Na.

  12. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  13. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    PubMed

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-02

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Network interactions: non-geniculate input to V1.

    PubMed

    Muckli, Lars; Petro, Lucy S

    2013-04-01

    The strongest connections to V1 are fed back from neighbouring area V2 and from a network of higher cortical areas (e.g. V3, V5, LOC, IPS and A1), transmitting the results of cognitive operations such as prediction, attention and imagination. V1 is therefore at the receiving end of a complex cortical processing cascade and not only at the entrance stage of cortical processing of retinal input. One elegant strategy to investigate this information-rich feedback to V1 is to eliminate feedforward input, that is, exploit V1's retinotopic organisation to isolate subregions receiving no direct bottom-up stimulation. We highlight the diverse mechanisms of cortical feedback, ranging from gain control to predictive coding, and conclude that V1 is involved in rich internal communication processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains.

    PubMed

    Hsu, Eric J; Zhu, Wandi; Schubert, Angela R; Voelker, Taylor; Varga, Zoltan; Silva, Jonathan R

    2017-03-06

    Functional eukaryotic voltage-gated Na + (Na V ) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical Na V channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair Na V channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery. © 2017 Hsu et al.

  16. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Valette, G; Garcia, G; Pascal, M; Maffrand, J P; Le Fur, G

    2002-01-01

    The involvement of vasopressin (AVP) in several pathological states has been reported recently and the selective blockade of the different AVP receptors could offer new clinical perspectives. During the past few years, various selective, orally active AVP V1a (OPC-21268, SR49059 (Relcovaptan)), V2 (OPC-31260, OPC-41061 (Tolvaptan), VPA-985 (Lixivaptan), SR121463, VP-343, FR-161282) and mixed V1a/V2 (YM-087 (Conivaptan), JTV-605, CL-385004) receptor antagonists have been intensively studied in various animal models and have reached, Phase IIb clinical trials for some of them. For many years now, our laboratory has focused on the identification of nonpeptide vasopressin antagonists with suitable oral bioavailability. Using random screening on small molecule libraries, followed by rational SAR and modelization, we identified a chemical series of 1-phenylsulfonylindolines which first yielded SR49059, a V1a receptor antagonist prototype. This compound displayed high affinity for animal and human V1a receptors and antagonized various V1a AVP-induced effects in vitro and in vivo (intracellular [Ca2+] increase, platelet aggregation, vascular smooth muscle cell proliferation, hypertension and coronary vasospasm). We and others have used this compound to study the role of AVP in various animal models. Recent findings from clinical trials show a potential interest for SR49059 in the treatment of dysmenorrhea and in Raynaud's disease. Structural modifications and simplifications performed in the SR49059 chemical series yielded highly specific V2 receptor antagonists (N-arylsulfonyl-oxindoles), amongst them SR121463 which possesses powerful oral aquaretic properties in various animal species and in man. SR121463 is well-tolerated and dose-dependently increases urine output and decreases urine osmolality. It induces free water-excretion without affecting electrolyte balance in contrast to classical diuretics (e.g. furosemide and hydrochlorothiazide). Notably, in cirrhotic rats

  17. 2D Electrides as Promising Anode Materials for Na-Ion Batteries from First-Principles Study.

    PubMed

    Hu, Junping; Xu, Bo; Yang, Shengyuan A; Guan, Shan; Ouyang, Chuying; Yao, Yugui

    2015-11-04

    Searching for suitable anodes with good performance is a key challenge for rechargeable Na-ion batteries (NIBs). Using the first-principles method, we predict that 2D nitrogen electride materials can be served as anode materials for NIBs. Particularly, we show that Ca2N meets almost all the requirements of a good NIB anode. Each formula unit of a monolayer Ca2N sheet can absorb up to four Na atoms, corresponding to a theoretical specific capacity of 1138 mAh·g(-1). The metallic character for both pristine Ca2N and its Na intercalated state NaxCa2N ensures good electronic conduction. Na diffusion along the 2D monolayer plane can be very fast even at room temperature, with a Na migration energy barrier as small as 0.084 eV. These properties are key to the excellent rate performance of an anode material. The average open-circuit voltage is calculated to be 0.18 V vs Na/Na(+) for the chemical stoichiometry of Na2Ca2N and 0.09 V for Na4Ca2N. The relatively low average open-circuit voltage is beneficial to the overall voltage of the cell. In addition, the 2D monolayers have very small lattice change upon Na intercalation, which ensures a good cycling stability. All these results demonstrate that the Ca2N monolayer could be an excellent anode material for NIBs.

  18. Thermal decomposition of sodium amide, NaNH2, and sodium amide hydroxide composites, NaNH2-NaOH.

    PubMed

    Jepsen, Lars H; Wang, Peikun; Wu, Guotao; Xiong, Zhitao; Besenbacher, Flemming; Chen, Ping; Jensen, Torben R

    2016-09-14

    Sodium amide, NaNH 2 , has recently been shown to be a useful catalyst to decompose NH 3 into H 2 and N 2 , however, sodium hydroxide is omnipresent and commercially available NaNH 2 usually contains impurities of NaOH (<2%). The thermal decomposition of NaNH 2 and NaNH 2 -NaOH composites is systematically investigated and discussed. NaNH 2 is partially dissolved in NaOH at T > 100 °C, forming a non-stoichiometric solid solution of Na(OH) 1-x (NH 2 ) x (0 < x < ∼0.30), which crystallizes in an orthorhombic unit cell with the space group P2 1 2 1 2 1 determined by synchrotron powder X-ray diffraction. The composite xNaNH 2 -(1 - x)NaOH (∼0.70 < x < 0.72) shows a lowered melting point, ∼160 °C, compared to 200 and 318 °C for neat NaNH 2 and NaOH, respectively. We report that 0.36 mol of NH 3 per mol of NaNH 2 is released below 400 °C during heating in an argon atmosphere, initiated at its melting point, T = 200 °C, possibly due to the formation of the mixed sodium amide imide solid solution. Furthermore, NaOH reacts with NaNH 2 at elevated temperatures and provides the release of additional NH 3 .

  19. Electronic structure and molecular dynamics of Na2Li

    NASA Astrophysics Data System (ADS)

    Malcolm, Nathaniel O. J.; McDouall, Joseph J. W.

    Following the first report (Mile, B., Sillman, P. D., Yacob, A. R. and Howard, J. A., 1996, J. chem. Soc. Dalton Trans , 653) of the EPR spectrum of the mixed alkali-metal trimer Na2Li a detailed study has been made of the electronic structure and structural dynamics of this species. Two isomeric forms have been found: one of the type, Na-Li-Na, of C , symmetry and another, Li-Na-Na, of C symmetry. Also, there are two linear saddle points which correspond to 'inversion' transition structures, and a saddle point of C symmetry which connects the two minima. A molecular dynamics investigation of these species shows that, at the temperature of the reported experiments (170 K), the C minimum is not 'static', but undergoes quite rapid inversion. At higher temperatures the C minimum converts to the C form, but by a mechanism very different from that suggested by minimum energy path considerations. 2 2v s s 2v 2v s

  20. Rotationally inelastic collisions of He and Ar with NaK: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Richter, K.; Price, T. J.; Jones, J.; Faust, C.; Hickman, A. P.; Huennekens, J.; Malenda, R. F.; Ross, A. J.; Harker, H.; Crozet, P.; Forrey, R. C.

    2015-05-01

    Rotationally inelastic collisions of NaK A1Σ+ molecules with He and Ar are studied. At Lehigh, we use pump-probe polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. At Lyon, Fourier transform (FT)-resolved LIF spectra are recorded. In both cases, the pump laser excites a particular ro-vibrational level A1Σ+ (v , J). We observe strong direct lines corresponding to transitions from the (v , J) level pumped, and weak satellite lines corresponding to transitions from collisionally-populated levels (v ,J' = J + ΔJ). The ratios of satellite to direct line intensities in LIF and PL yield population and orientation transfer information. A strong propensity for ΔJ = even transitions is observed for both He and Ar perturbers. In the FT fluorescence experiment we also observe v-changing collisions. Ab initio potential surface and scattering calculations are underway for collisions in the A1Σ+ and X1Σ+ states. For He-NaK we have calculated potential surfaces using GAMESS and carried out coupled channel scattering calculations of transfer of population, orientation, and alignment. Calculations of v-changing collision cross sections are also in progress. Work supported by NSF, XSEDE and CNRS (PICS).

  1. Evidence for a potential tumor suppressor role for the Na,K-ATPase ß1-subunit

    PubMed Central

    Inge, Landon J.; Rajasekaran, Sigrid A.; Yoshimoto, Koji; Mischel, Paul S.; McBride, William; Landaw, Elliot; Rajasekaran, Ayyappan K.

    2009-01-01

    Summary The Na,K-ATPase, consisting of two essential subunits (α, ß), plays a critical role in the regulation of ion homeostasis in mammalian cells. Recent studies indicate that reduced expression of the ß1 isoform (NaK-ß1) is commonly observed in carcinoma and is associated with events involved in cancer progression. In this study, we present evidence that repletion of NaK-ß1 in Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK), a highly tumorigenic cell line, inhibits anchorage independent growth and suppresses tumor formation in immunocompromised mice. Additionally, using an in vitro cell-cell aggregation assay, we showed that cell aggregates of NaK-ß1 subunit expressing MSV-MDCK cells have reduced extracellular regulated kinase (ERK) 1/2 activity compared with parental MSV-MDCK cells. Finally, using immunohistochemistry and fully quantitative image analysis approaches, we showed that the levels of phosphorylated ERK 1/2 are inversely correlated to the NaK-ß1 levels in the tumors. These findings reveal for the first time that NaK-ß1 has a potential tumor-suppressor function in epithelial cells. PMID:18228203

  2. Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment.

    PubMed

    Cardoso, Ariela M; Horn, Martha B; Ferret, Lizete S; Azevedo, Carla M N; Pires, Marçal

    2015-04-28

    Several researchers have reported zeolite synthesis using coal ash for a wide range of applications. However, little attention has been given to green processes, including moderate synthesis conditions, using waste as raw material and effluent reuse or reduction. In this study, Brazilian coal fly ashes were used for integrated synthesis of zeolites 4A and Na-P1 by two different routes and under moderate operating conditions (temperature and pressure). Both procedures produced zeolites with similar conversions (zeolite 4A at 82% purity and zeolite Na-P1 at 57-61%) and high CEC values (zeolites 4A: 4.5meqCa(2+)g(-1) and zeolites Na-P1: 2.6-2.8meqNH4(+)g(-1)). However, process 1 generated less effluent for the zeolite mass produced (7mLg(-1)), with low residual Si and Al levels and 74% of the Si available in the coal fly ash incorporated into the zeolite, while only 55% is used in process 2. For use as a builder in detergents, synthetic zeolite 4A exhibited conformity parameters equal to or greater than those of the commercial zeolite adopted as reference. Treatment of swine wastewater with zeolite Na-P1 resulted in a high removal capacity for total ammoniacal nitrogen (31mgg(-1)). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A Voltage Dependent Non-Inactivating Na+ Channel Activated during Apoptosis in Xenopus Oocytes

    PubMed Central

    Englund, Ulrika H.; Gertow, Jens; Kågedal, Katarina; Elinder, Fredrik

    2014-01-01

    Ion channels in the plasma membrane are important for the apoptotic process. Different types of voltage-gated ion channels are up-regulated early in the apoptotic process and block of these channels prevents or delays apoptosis. In the present investigation we examined whether ion channels are up-regulated in oocytes from the frog Xenopus laevis during apoptosis. The two-electrode voltage-clamp technique was used to record endogenous ion currents in the oocytes. During staurosporine-induced apoptosis a voltage-dependent Na+ current increased three-fold. This current was activated at voltages more positive than 0 mV (midpoint of the open-probability curve was +55 mV) and showed almost no sign of inactivation during a 1-s pulse. The current was resistant to the Na+-channel blockers tetrodotoxin (1 µM) and amiloride (10 µM), while the Ca2+-channel blocker verapamil (50 µM) in the bath solution completely blocked the current. The intracellular Na+ concentration increased in staurosporine-treated oocytes, but could be prevented by replacing extracellular Na+ whith either K+ or Choline+. Prevention of this influx of Na+ also prevented the STS-induced up-regulation of the caspase-3 activity, suggesting that the intracellular Na+ increase is required to induce apoptosis. Taken together, we have found that a voltage dependent Na+ channel is up-regulated during apoptosis and that influx of Na+ is a crucial step in the apoptotic process in Xenopus oocytes. PMID:24586320

  4. Integrated responses of Na+/HCO3- cotransporters and V-type H+-ATPases in the fish gill and kidney during respiratory acidosis.

    PubMed

    Perry, S F; Furimsky, M; Bayaa, M; Georgalis, T; Shahsavarani, A; Nickerson, J G; Moon, T W

    2003-12-30

    Using degenerate primers, followed by 3' and 5' RACE and "long" PCR, a continuous 4050-bp cDNA was obtained and sequenced from rainbow trout (Oncorhynchus mykiss) gill. The cDNA included an open reading frame encoding a deduced protein of 1088 amino acids. A BLAST search of the GenBank protein database demonstrated that the trout gene shared high sequence similarity with several vertebrate Na(+)/HCO(3)(-) cotransporters (NBCs) and in particular, NBC1. Protein alignment revealed that the trout NBC is >80% identical to vertebrate NBC1s and phylogenetic analysis provided additional evidence that the trout NBC is indeed a homolog of NBC1. Using the same degenerate primers, a partial cDNA (404 bp) for NBC was obtained from eel (Anguilla rostrata) kidney. Analysis of the tissue distribution of trout NBC, as determined by Northern blot analysis and real-time PCR, indicated high transcript levels in several absorptive/secretory epithelia including gill, kidney and intestine and significant levels in liver. NBC mRNA was undetectable in eel gill by real-time PCR. In trout, the levels of gill NBC1 mRNA were increased markedly during respiratory acidosis induced by exposure to hypercarbia; this response was accompanied by a transient increase in branchial V-type H(+)-ATPase mRNA levels. Assuming that the branchial NBC1 is localised to basolateral membranes of gill cells and operates in the influx mode (HCO(3)(-) and Na(+) entry into the cell), it would appear that in trout, the expression of branchial NBC1 is transcriptionally regulated to match the requirements of gill pHi regulation rather than to match trans-epithelial HCO(3)(-) efflux requirements for systemic acid-base balance. By analogy with mammalian systems, NBC1 in the kidney probably plays a role in the tubular reabsorption of both Na(+) and HCO(3)(-). During periods of respiratory acidosis, levels of renal NBC1 mRNA increased (after a transient reduction) in both trout and eel, presumably to increase HCO(3

  5. Coulomb excitation of radioactive 20, 21Na

    NASA Astrophysics Data System (ADS)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-12-01

    The low-energy structures of the radioactive nuclei 20, 21Na have been examined using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ˜ 5×106 ions/s were accelerated to 1.7MeV/A and Coulomb excited in a 0.5mg/cm^2 natTi target. Two TIGRESS HPGe clover detectors perpendicular to the beam axis were used for γ -ray detection, while scattered nuclei were observed by the Si detector BAMBINO. For 21Na , Coulomb excitation from the 3/2+ ground state to the first excited 5/2+ state was observed, while for 20Na , Coulomb excitation was observed from the 2+ ground state to the first excited 3+ and 4+ states. For both beams, B ( λ L) values were determined using the 2+ rightarrow 0+ de-excitation in 48Ti as a reference. The resulting B( E2) ↓ value for 21Na is 137±9 e^2fm^4, while the resulting B( λ L) ↓ values for 20Na are 55±6 e^2fm^4 for the 3+ rightarrow 2+ , 35.7±5.7 e^2 fm^4 for the 4+ rightarrow 2+ , and 0.154±0.030 μ_ N^2 for the 4+ rightarrow 3+ transitions. This analysis significantly improves the measurement of the 21Na B( E2) value, and provides the first experimental determination of B( λ L) values for the proton dripline nucleus 20Na .-1

  6. Direct detection of sub-GeV dark matter with scintillating targets

    DOE PAGES

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea; ...

    2017-07-28

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  7. Direct detection of sub-GeV dark matter with scintillating targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  8. Electrophysiological evidence for Na+-coupled bicarbonate transport in cultured rat hepatocytes.

    PubMed

    Fitz, J G; Persico, M; Scharschmidt, B F

    1989-03-01

    Recent observations suggest that hepatocytes exhibit basolateral electrogenic Na+-coupled HCO3- transport. In these studies, we have further investigated this transport mechanism in primary culture of rat hepatocytes using intracellular microelectrodes to measure membrane potential difference (PD) and the pH-sensitive fluorochrome 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein to measure intracellular pH (pHi). In balanced media containing 25 mM HCO3-, PD averaged -32.1 +/- 0.6 (SE) mV and pHi averaged 7.22 +/- 0.03. PD became more negative (hyperpolarized) when extracellular [HCO3-] was increased and less negative (depolarized) when extracellular HCO3- was decreased. Acute replacement of extracellular Na+ by choline also resulted in membrane depolarization of 18.0 +/- 1.6 mV, suggesting net transfer of negative charge. This decrease in PD upon Na+ removal was HCO3- -dependent, amiloride insensitive, and inhibited by the disulfonic stilbene 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS). PD also decreased upon acute exposure to SITS. The degree of depolarization seen with removal of Na+ or HCO3- correlated directly with resting PD (r = 0.81 and 0.95, respectively), suggesting a voltage-dependent mechanism. Removal of extracellular Na+ also decreased pHi to 7.06 +/- 0.02, and this acidification was decreased in the absence of HCO3- or in the presence of SITS or amiloride. These studies provide direct evidence for electrogenic Na+-coupled HCO3- transport in rat hepatocytes. Further, they suggest that it represents a major pathway for conductive movement of Na+ across the membrane and that it contributes, along with Na+-H+ exchange, to the intracellular acidification observed upon removal of extracellular Na+.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters

    PubMed Central

    Hirayama, Bruce A; Díez-Sampedro, Ana; Wright, Ernest M

    2001-01-01

    Electrophysiological methods were used to investigate the interaction of inhibitors with the human Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters. Inhibitor constants were estimated from both inhibition of substrate-dependent current and inhibitor-induced changes in cotransporter conformation. The competitive, non-transported inhibitors are substrate derivatives with inhibition constants from 200 nM (phlorizin) to 17 mM (esculin) for hSGLT1, and 300 nM (SKF89976A) to 10 mM (baclofen) for hGAT1. At least for hSGLT1, values determined using either method were proportional over 5-orders of magnitude. Correlation of inhibition to structure of the inhibitors resulted in a pharmacophore for glycoside binding to hSGLT1: the aglycone is coplanar with the pyranose ring, and binds to a hydrophobic/aromatic surface of at least 7×12Å. Important hydrogen bond interactions occur at five positions bordering this surface. In both hSGLT1 and hGAT1 the data suggests that there is a large, hydrophobic inhibitor binding site ∼8Å from the substrate binding site. This suggests an architectural similarity between hSGLT1 and hGAT1. There is also structural similarity between non-competitive and competitive inhibitors, e.g., phloretin is the aglycone of phlorizin (hSGLT1) and nortriptyline resembles SKF89976A without nipecotic acid (hGAT1). Our studies establish that measurement of the effect of inhibitors on presteady state currents is a valid non-radioactive method for the determination of inhibitor binding constants. Furthermore, analysis of the presteady state currents provide novel insights into partial reactions of the transport cycle and mode of action of the inhibitors. PMID:11588102

  10. 76 FR 13082 - Amendment of VOR Federal Airways V-1, V-7, V-11 and V-20; Kona, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... V-20; Kona, HI AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends four VHF Omnidirectional Range (VOR) Federal airways in the vicinity of Kona, HI; V- 1, V-7... Keahole Airport property Kailua-Kona, HI. This will enhance the management of aircraft operations over...

  11. Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of Na(x)V2O5·nH2O.

    PubMed

    Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-10-28

    Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 < x < 0.32) were prepared by careful control of an ion exchange process. The water content (0.23 > n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011

  12. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Wen; Zhang, Xudong; Jin, Chao; Wang, Yaoyao; Mossin, Susanne; Yue, Yuanzheng

    2017-02-01

    Electrode materials can display superior electrochemical performances and behavior via the nanoscale design. Here, the low-temperature synthesis of nano-glass ceramics (NGCs) is based on inheriting the network structure of yeast polyphosphate metabolism. The NGCs-3 sample synthesized with a molar ratio of Fe/V = 7:6 is composed of nano-domains of semiconducting oxide glass (Li2O-Na2O-Fe2O3-V2O5-P2O5, LNFVP), nanocrystalline particles (Li9Fe3P8O29, Li0.6V1.67O3.67 and VOPO4), and nanopores connected by interfaces. We have clarified the mixing ion transport mechanism and the electrochemical reactions, and the influences of molar ratio of Fe/V on the structure and electrochemical properties of NGCs. This nanoscale design offers a new possibility improved the electrochemical performances of Li+/Na+ mixed-ion batteries (LNMIBs). The NGCs-3 electrode exhibits a higher discharge capacity (145 mAh g-1) and energy storage density (525 Whkg-1) at 5C, and the capacity retention reaches 70% after 1000 cycles. More importantly, we have established a direct relationship between the electrochemical kinetics and nanostructure of NGC electrode materials.

  13. Extracellular acidosis and very low [Na+ ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells.

    PubMed

    Bonde, L; Boedtkjer, E

    2017-10-01

    The electroneutral Na + , HCO3- cotransporter NBCn1 and Na + /H + exchanger NHE1 regulate acid-base balance in vascular smooth muscle cells (VSMCs) and modify artery function and structure. Pathological conditions - notably ischaemia - can dramatically perturb intracellular (i) and extracellular (o) pH and [Na + ]. We examined effects of low [Na + ] o and pH o on NBCn1 and NHE1 activity in VSMCs of small arteries. We measured pH i by 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-based fluorescence microscopy of mouse mesenteric arteries and induced intracellular acidification by NH4+ prepulse technique. NBCn1 activity - defined as Na + -dependent, amiloride-insensitive net base uptake with CO 2 /HCO3- present - was inhibited equally when pH o decreased from 7.4 (22 mm HCO3-/5% CO 2 ) by metabolic (pH o 7.1/11 mm HCO3-: 22 ± 8%; pH o 6.8/5.5 mm HCO3-: 61 ± 7%) or respiratory (pH o 7.1/10% CO 2 : 35 ± 11%; pH o 6.8/20% CO 2 : 56 ± 7%) acidosis. Extracellular acidosis more prominently inhibited NHE1 activity - defined as Na + -dependent net acid extrusion without CO 2 /HCO3- present - at both pH o 7.1 (45 ± 9%) and 6.8 (85 ± 5%). Independently of pH o , lowering [Na + ] o from 140 to 70 mm reduced NBCn1 and NHE1 activity <20% whereas transport activities declined markedly (25-50%) when [Na + ] o was reduced to 35 mm. Steady-state pH i decreased more during respiratory (ΔpH i /ΔpH o  = 71 ± 4%) than metabolic (ΔpH i /ΔpH o  = 30 ± 7%) acidosis. Extracellular acidification inhibits NBCn1 and NHE1 activity in VSMCs. NBCn1 is equivalently inhibited when pCO 2 is raised or [HCO3-] o decreased. Lowering [Na + ] o inhibits NBCn1 and NHE1 markedly only below the typical physiological and pathophysiological range. We propose that inhibition of Na + -dependent net acid extrusion at low pH o protects against cellular Na + overload at the cost of intracellular acidification. © 2017 Scandinavian Physiological Society. Published by

  14. Na+/H+ and Na+/NH4+ exchange activities of zebrafish NHE3b expressed in Xenopus oocytes

    PubMed Central

    Ito, Yusuke; Kato, Akira; Hirata, Taku; Hirose, Shigehisa

    2014-01-01

    Zebrafish Na+/H+ exchanger 3b (zNHE3b) is highly expressed in the apical membrane of ionocytes where Na+ is absorbed from ion-poor fresh water against a concentration gradient. Much in vivo data indicated that zNHE3b is involved in Na+ absorption but not leakage. However, zNHE3b-mediated Na+ absorption has not been thermodynamically explained, and zNHE3b activity has not been measured. To address this issue, we overexpressed zNHE3b in Xenopus oocytes and characterized its activity by electrophysiology. Exposure of zNHE3b oocytes to Na+-free media resulted in significant decrease in intracellular pH (pHi) and intracellular Na+ activity (aNai). aNai increased significantly when the cytoplasm was acidified by media containing CO2-HCO3− or butyrate. Activity of zNHE3b was inhibited by amiloride or 5-ethylisopropyl amiloride (EIPA). Although the activity was accompanied by a large hyperpolarization of ∼50 mV, voltage-clamp experiments showed that Na+/H+ exchange activity of zNHE3b is electroneutral. Exposure of zNHE3b oocytes to medium containing NH3/NH4+ resulted in significant decreases in pHi and aNai and significant increase in intracellular NH4+ activity, indicating that zNHE3b mediates the Na+/NH4+ exchange. In low-Na+ (0.5 mM) media, zNHE3b oocytes maintained aNai of 1.3 mM, and Na+-influx was observed when pHi was decreased by media containing CO2-HCO3− or butyrate. These results provide thermodynamic evidence that zNHE3b mediates Na+ absorption from ion-poor fresh water by its Na+/H+ and Na+/NH4+ exchange activities. PMID:24401990

  15. Antigenicity of the 2015-2016 seasonal H1N1 human influenza virus HA and NA proteins.

    PubMed

    Clark, Amelia M; DeDiego, Marta L; Anderson, Christopher S; Wang, Jiong; Yang, Hongmei; Nogales, Aitor; Martinez-Sobrido, Luis; Zand, Martin S; Sangster, Mark Y; Topham, David J

    2017-01-01

    Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses) accounts for the limited effectiveness (around 40%) of vaccination against pH1N1-like viruses during the 2015-2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015-2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI) and HA-specific neutralizing serum antibody (Ab) titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2-4 fold lower for the 2015-2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI) Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to risk of

  16. Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, Seong-Min; Qiao, Ruimin; Yang, Wanli

    Two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V2CTx, where Tx are surface functional groups) was synthesized and studied as anode material for Na-ion batteries. V2CTx anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. The charge storage mechanism of V2CTx material during Na+ intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution of redox reaction of vanadium to the charge storage andmore » the reversible capacity of V2CTx during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO32- content and Na+ intercalation/deintercalation states in the V2CTx electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na+-intercalated V2CTx and the carbonate based non-aqueous electrolyte. The results of this study will provide valuable information for the further studies on V2CTx as anode material for Na-ion batteries and capacitors.« less

  17. High pressure experimental studies on Na3Fe(PO4)(CO3) and Na3Mn(PO4)(CO3): Extensive pressure behaviors of carbonophosphates family

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Huang, Weifeng; Wu, Xiang; Qin, Shan

    2018-04-01

    Carbon-bearing phases in the Earth's interior have profound implications for the long-term Earth carbon cycle. Here we investigate high-pressure behaviors of carbonophosphates bonshtedtite Na3Fe(PO4)(CO3) and sidorenkite Na3Mn(PO4)(CO3) in diamond anvil cells up to ∼12 GPa at room temperature. Modifications in in situ synchrotron X-ray diffraction patterns and Raman spectra confirm the structural stability of carbonophosphates within the pressure region. Fitting the third-order Birch-Murnaghan equation of state to the volume compression curve, the isothermal bulk modulus parameters are obtained to be K0 = 56(1) GPa, K0' = 3.3(1), V0 = 303.3(3) Å3 for Na3Fe(PO4)(CO3) and K0 = 54(1) GPa, K0' = 3.4(1), V0 = 313.4(2) Å3 for Na3Mn(PO4)(CO3). Crystallographic axes exhibit an elastic anisotropy with a more compressible c-axis relative to the ab-plane. An inverse linear correlation between the K0 value and the ionic radius of M2+ (M = Mg, Fe, Mn) is well determined for carbonophosphates. The pressure-dependence responsiveness of [PO4] and [CO3] in carbonophosphates show a negative relationship to the M2+ radius. We also discussed the effect of [PO4] group on the structural variations and high-pressure behaviors of carbonates. Furthermore, the geochemical properties of carbonophosphates hold implications to diamond genesis.

  18. Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance1

    PubMed Central

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; García-Ramírez, Liliana; Pantoja, Omar

    2005-01-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H+-ATPases from leaves and roots. TP Na+/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H+-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na+/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H+-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM. PMID:16244148

  19. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies

    PubMed Central

    Doria-Rose, Nicole A.; Schramm, Chaim A.; Gorman, Jason; Moore, Penny L.; Bhiman, Jinal N.; DeKosky, Brandon J.; Ernandes, Michael J.; Georgiev, Ivelin S.; Kim, Helen J.; Pancera, Marie; Staupe, Ryan P.; Altae-Tran, Han R.; Bailer, Robert T.; Crooks, Ema T.; Cupo, Albert; Druz, Aliaksandr; Garrett, Nigel J.; Hoi, Kam H.; Kong, Rui; Louder, Mark K.; Longo, Nancy S.; McKee, Krisha; Nonyane, Molati; O’Dell, Sijy; Roark, Ryan S.; Rudicell, Rebecca S.; Schmidt, Stephen D.; Sheward, Daniel J.; Soto, Cinque; Wibmer, Constantinos Kurt; Yang, Yongping; Zhang, Zhenhai; Mullikin, James C.; Binley, James M.; Sanders, Rogier W.; Wilson, Ian A.; Moore, John P.; Ward, Andrew B.; Georgiou, George; Williamson, Carolyn; Abdool Karim, Salim S.; Morris, Lynn; Kwong, Peter D.; Shapiro, Lawrence; Mascola, John R.

    2015-01-01

    Summary Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from CAPRISA-donor CAP256; each antibody contained the protruding tyrosine-sulfated, anionic antigen-binding loop (CDR H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30–38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation, an important vaccine insight. PMID:24590074

  20. Rare emergence of drug resistance in HIV-1 treatment-naïve patients receiving elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide for 144 weeks.

    PubMed

    Margot, Nicolas; Cox, Stephanie; Das, Moupali; McCallister, Scott; Miller, Michael D; Callebaut, Christian

    2018-06-01

    The single tablet regimen (STR) composed of elvitegravir (E), cobicistat (C), emtricitabine (F), and tenofovir alafenamide (TAF) (E/C/F/TAF) was compared to the STR composed of E, C, F, and tenofovir disoproxil fumarate (TDF) (E/C/F/TDF) in 2 phase 3 studies in 1733 HIV-1 infected treatment-naïve adults. Superior efficacy of E/C/F/TAF compared to E/C/F/TDF was demonstrated at Week 144 with 84% treatment success compared to 80%, respectively, along with significantly better outcomes of bone and renal safety. Analyze the emergence of HIV-1 resistance in treatment-naïve adults receiving E/C/F/TAF for 144 weeks. We conducted an integrated resistance analysis of the 2 Phase 3 studies, comprising pretreatment HIV-1 sequencing for all participants (N = 1733) and post-baseline HIV-1 resistance analysis for participants with virologic failure (HIV-1 RNA ≥400 copies/mL). Primary resistance-associated mutations (RAMs) were observed pre-treatment in 7.4% (NRTI-RAMs), 18.1% (NNRTI-RAMs), and 3.3% (PI-RAMs) of enrolled subjects. Baseline HIV-1 subtype or pre-existing RAMs did not affect E/C/F/TAF treatment response at week 144. Virologic failure resistance analyses were conducted for 28/866 (3.2%) and 30/867 (3.5%) patients in the E/C/F/TAF and E/C/F/TDF arms, respectively. Over the 3-year study, the rate of resistance emergence remained low at 1.4% in each group (12/866 in E/C/F/TAF; 12/867 in E/C/F/TDF). Resistant virus emerged in 24 patients who developed resistance to antiretrovirals in the regimens (E/C/F/TAF: M184V/I [1.3%], INSTI-RAMs [0.9%], K65R/N [0.2%]; E/C/F/TDF: M184V/I [1.0%], INSTI-RAMs [0.9%], K65R/N [0.5%]). Resistance emergence was rare (1.4%) with similar patterns of emergent mutations in both groups. M184V/I was the most prevalent RAM (1.2% overall). Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Spastin-Interacting Protein NA14/SSNA1 Functions in Cytokinesis and Axon Development

    PubMed Central

    Chang, Jaerak; Blackstone, Craig

    2014-01-01

    Hereditary spastic paraplegias (HSPs) are a genetically diverse group of inherited neurological disorders (SPG1-72) with the cardinal feature of prominent lower-extremity spasticity due to a length-dependent axonopathy of corticospinal motor neurons. The most frequent form of autosomal dominant HSP results from mutations of the SPG4 gene product spastin. This is an ATPase associated with diverse cellular activities (AAA) protein that binds to and severs microtubules. While spastin participates in crucial cellular processes such as cytokinesis, endosomal tubulation, and axon development, its role in HSP pathogenesis remains unclear. Spastin interacts in cells with the NA14 protein, a major target for auto-antibodies in Sjögren's syndrome (nuclear autoantigen 1; SSNA1). Our analysis of endogenous spastin and NA14 proteins in HeLa cells and rat cortical neurons in primary culture revealed a clear distribution of both proteins to centrosomes, with NA14 localizing specifically to centrioles. Stable NA14 knockdown in cell lines dramatically affected cell division, in particular cytokinesis. Furthermore, overexpression of NA14 in neurons significantly increased axon outgrowth and branching, while also enhancing neuronal differentiation. We postulate that NA14 may act as an adaptor protein regulating spastin localization to centrosomes, temporally and spatially regulating the microtubule-severing activity of spastin that is particularly critical during the cell cycle and neuronal development. PMID:25390646

  2. Effect of Cooling Rate on SCC Susceptibility of β-Processed Ti-6Al-4V Alloy in 0.6M NaCl Solution

    NASA Astrophysics Data System (ADS)

    Ahn, Soojin; Park, Jiho; Jeong, Daeho; Sung, Hyokyung; Kwon, Yongnam; Kim, Sangshik

    2018-03-01

    The effects of cooling rate on the stress corrosion cracking (SCC) susceptibility of β-processed Ti-6Al-4V (Ti64) alloy, including BA/S specimen with furnace cooling and BQ/S specimen with water quenching, were investigated in 0.6M NaCl solution under various applied potentials using a slow strain rate test technique. It was found that the SCC susceptibility of β-processed Ti64 alloy in aqueous NaCl solution decreased with fast cooling rate, which was particularly substantial under an anodic applied potential. The micrographic and fractographic analyses suggested that the enhancement with fast cooling rate was related to the random orientation of acicular α platelets in BQ/S specimen. Based on the experimental results, the effect of cooling rate on the SCC behavior of β-processed Ti64 alloy in aqueous NaCl solution was discussed.

  3. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms and thermodynamic description in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids that links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals, fluoride-silicate immiscibility in natural felsic melts, and metallurgical processes. Configurational properties of fluorosilicate melts are described by mixing on three site levels (sublattices): (1) alkali fluoride, polyhedral aluminofluoride and silicofluoride species and nonbridging terminations of the aluminosilicate network, (2) alkali-aluminate and silicate tetrahedra within the network and (3) bridging oxygen, nonbridging oxygen and terminal fluorine atoms on tetrahedral apices of the network. Abundances of individual chemical species are described by a homogeneous equilibrium representing melt depolymerization: F - (free) + O 0 (bridging) = F 0 (terminal) + O - (nonbridging) which corresponds to a replacement of an oxygen bridging two tetrahedra by a pair of terminations, one with F and the other with an O and a charge-balancing Na. In cryolite-bearing systems two additional interaction mechanisms occur: (1) the self-dissociation of octahedral aluminofluoride complexes: [AlF 6] = [AlF 4] + 2 [F], and (2) the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F. Portrayal of these equilibria in ternary Thompson reaction space allows for the decrease in the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the nonideal thermodynamic properties are represented by reaction energies of homogeneous equilibria, thus defining directly individual chemical species concentrations and configurational

  4. Phase diagram and neutron spin resonance of superconducting NaFe 1 - x Cu x As

    DOE PAGES

    Tan, Guotai; Song, Yu; Zhang, Rui; ...

    2017-02-03

    In this paper, we use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe 1-xCu xAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x≈2% with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x≈50%. Using transport measurements, we demonstrate that the resistivity in NaFe 1-xCu xAs exhibits non-Fermi-liquid behavior near x≈1.8%. Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis inmore » NaFe 0.98Cu 0.02As. The resonance is high in energy relative to the superconducting transition temperature T c but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe 1-xCu xAs is continuously connected to an antiferromagnetically ordered insulating phase near x≈50% with significant electronic correlations. Finally, therefore, electron correlations is an important ingredient of superconductivity in NaFe 1-xCu xAs and other iron pnictides.« less

  5. Rotationally inelastic collisions of He and Ar with NaK: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Malenda, R. F.; Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Hickman, A. P.; Huennekens, J.; Talbi, D.; Gatti, F.

    2012-06-01

    We are investigating collisions of the ground (X^1&+circ;) and first excited (A^1&+circ;) electronic states of NaK using both experimental and theoretical methods. Potential surfaces for HeNaK (fixed NaK bond length) are used for coupled channel calculations of cross sections for rotational energy transfer and also for collisional transfer of orientation and alignment. Additional calculations use the MCTDH wavepacket method. The measurements of the A state collisions involve a pump--probe excitation scheme using polarization labeling and laser-induced fluorescence spectroscopy. The pump excites a particular ro-vibrational level (v,J) of the A state from the X state, and the probe laser is scanned over various transitions to the 3^1π state. In addition to strong direct transitions, weak satellite lines are observed that arise from collisionally-induced transitions from the (v,J) level to (v,J'=J+δJ). This method provides information about the cross sections for transfer of population and orientation for A state levels, and it can be adapted to transitions starting in the X state. For the A state we observe a strong δJ=even propensity for both He and Ar perturbers. Preliminary results for the X state do not show this propensity.

  6. X-ray diffraction and infrared spectroscopy studies of Ba(Fe1/2Nb1/2)O3-(Na1/2Bi1/2)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Yadav, Anjana; Prasad, K.

    2018-05-01

    Ceramics (1-x)Ba(Fe1/2Nb1/2)O3-x(Na1/2Bi1/2)TiO3; 0≤x≤1.0 were prepared by conventional ceramic synthesis technique. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba(Fe1/2Nb1/2)O3 has cubic structure with space group Pm 3 ¯ m and Na1/2Bi1/2)TiO3 has rhombohedral structure with space group R3c. Addition of (Na1/2Bi1/2)TiO3 to Ba(Fe1/2Nb1/2)O3 resulted in the change of unit cell structure from cubic to tetragonal (P4/mmm) for x = 0.75 and the X-Ray diffraction peaks slightly shift towards higher Bragg's angle, suggesting slight decrease in unit cell volume. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain shapes with the increase of (Na1/2Bi1/2)TiO3 content. FTIR spectra confirmed the formation of perovskite type solid solutions.

  7. A fluorescent combinatorial logic gate with Na+, H+-enabled OR and H+-driven low-medium-high ternary logic functions.

    PubMed

    Spiteri, Jasmine M A; Mallia, Carl J; Scerri, Glenn J; Magri, David C

    2017-12-06

    A novel fluorescent molecular logic gate with a 'fluorophore-spacer 1 -receptor 1 -spacer 2 -receptor 2 ' format is demonstrated in 1 : 1 (v/v) methanol/water. The molecule consists of an anthracene fluorophore, and tertiary alkyl amine and N-(2-methoxyphenyl)aza-15-crown-5 ether receptors. In the presence of threshold concentrations of H + and Na + , the molecule switches 'on' as an AND logic gate with a fluorescence quantum yield of 0.21 with proton and sodium binding constants of log β H+ = 9.0 and log β Na+ = 3.2, respectively. At higher proton levels, protonation also occurs at the anilinic nitrogen atom ether with a log β H+ = 4.2, which allows for Na + , H + -enabled OR (OR + AND circuit) and H + -driven ternary logic functions. The reported molecule is compared and contrasted to classic anthracene-based Na + and H + logic gates. We propose that such logic-based molecules could be useful tools for probing the vicinity of Na + , H + antiporters in biological systems.

  8. Removal of As(V) and Sb(V) in aqueous solution by Mg/Al-layered double hydroxide-incorporated polyethersulfone polymer beads (PES-LDH).

    PubMed

    Lee, Sang-Ho; Choi, Heechul; Kim, Kyoung-Woong

    2018-03-13

    To develop a novel granular adsorbent to remove arsenic and antimony from water, calcined Mg/Al-layered double-hydroxide (CLDH)-incorporated polyethersulfone (PES) granular adsorbents (PES-LDH) were prepared using a core-shell method having 25% PES in an N,N-dimethylformamide solution. The PES-LDH displayed a spherical hollow shape having a rough surface and the average particle size of 1-2 mm. On the PES-LDH surface, nanosized CLDH (100-150 nm) was successfully immobilized by consolidation between PES and CLDH. The adsorption of Sb(V) by PES-LDH was found to be more favorable than for As(V), with the maximum adsorption capacity of As(V) and Sb(V) being 7.44 and 22.8 mg/g, respectively. The regeneration results indicated that a 0.5 M NaOH and 5 M NaCl mixed solution achieved an 80% regeneration efficiency in As(V) adsorption and desorption. However, the regeneration efficiency of Sb(V) gradually decreased due to its strong binding affinity, even though the PES-LDH showed much higher Sb(V) adsorption efficiency than As(V). This study suggested that PES-LDH could be a promising granular adsorbent for the remediation of As(V) and Sb(V) contained in wastewater.

  9. Structural and optical properties of Tb and Na-Tb co-doped Ca3V2O8 phosphors prepared by sol-gel process

    NASA Astrophysics Data System (ADS)

    Parab, Shambhu S.; Salker, A. V.

    2018-01-01

    A malic acid assisted sol-gel route was successfully employed to prepare two distinct series of green emitting Ca3V2O8 phosphors. In the first series, Tb was solely doped whereas in the second series Na and Tb were doped simultaneously in the Ca3V2O8 crystal lattice. X-ray diffraction studies proved the utility of adopted preparative method by confirming the monophasic formation of all compounds from both the series. Spectral analysis like Raman spectroscopy, UV-DRS were undertaken to analyse the local structure, crystallinity and absorptive characteristics. XPS validated the presence of desired oxidation states of all the elements present. Finally, photoluminescence studies were done to elucidate the scope of prepared compounds as green emitting phosphors and also to understand the effect of both doping schemes on the luminescence. Intense green emission was observed in both the cases. Tb concentration of 0.08 was found to be optimum in case of Tb singly doped compounds whereas Tb = 0.12 showed highest intensity among the Na-Tb co-doped samples. Moreover, a red shift in the excitation wavelength was observed after Na doping signifying a change in the local electronic environment which in turn has affected the luminescence pattern. Local crystallinity and vacancy concentrations were found to have a major say on the emission intensities.

  10. The Na+/K+-ATPase and the amyloid-beta peptide aβ1-40 control the cellular distribution, abundance and activity of TRPC6 channels.

    PubMed

    Chauvet, Sylvain; Boonen, Marielle; Chevallet, Mireille; Jarvis, Louis; Abebe, Addis; Benharouga, Mohamed; Faller, Peter; Jadot, Michel; Bouron, Alexandre

    2015-11-01

    The Na(+)/K(+)-ATPase interacts with the non-selective cation channels TRPC6 but the functional consequences of this association are unknown. Experiments performed with HEK cells over-expressing TRPC6 channels showed that inhibiting the activity of the Na(+)/K(+)-ATPase with ouabain reduced the amount of TRPC6 proteins and depressed Ca(2+) entry through TRPC6. This effect, not mimicked by membrane depolarization with KCl, was abolished by sucrose and bafilomycin-A, and was partially sensitive to the intracellular Ca(2+) chelator BAPTA/AM. Biotinylation and subcellular fractionation experiments showed that ouabain caused a multifaceted redistribution of TRPC6 to the plasma membrane and to an endo/lysosomal compartment where they were degraded. The amyloid beta peptide Aβ(1-40), another inhibitor of the Na(+)/K(+)-ATPase, but not the shorter peptide Aβ1-16, reduced TRPC6 protein levels and depressed TRPC6-mediated responses. In cortical neurons from embryonic mice, ouabain, veratridine (an opener of voltage-gated Na(+) channel), and Aβ(1-40) reduced TRPC6-mediated Ca(2+) responses whereas Aβ(1-16) was ineffective. Furthermore, when Aβ(1-40) was co-added together with zinc acetate it could no longer control TRPC6 activity. Altogether, this work shows the existence of a functional coupling between the Na(+)/K(+)-ATPase and TRPC6. It also suggests that the abundance, distribution and activity of TRPC6 can be regulated by cardiotonic steroids like ouabain and the naturally occurring peptide Aβ(1-40) which underlines the pathophysiological significance of these processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface.

    PubMed

    Zhou, Rui; Wei, Daqing; Cao, Jianyun; Feng, Wei; Cheng, Su; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2015-04-01

    The microarc oxidation (MAO) coating covered pure Ti plates are steam-hydrothermally treated in autoclaves containing NaOH solutions with different concentrations of 0, 0.001, 0.01, 0.1 and 1mol·L(-1). Due to the composition of Ti, O, Ca, P, Si and Na elements in the MAO coating, anatase and hydroxyapatite (HA) crystals are generated from the previously amorphous MAO coating after the steam-hydrothermal treatment. Meanwhile, it is noticed that the amount of HA crystals increases but showing a decline trend in aspect ratio in morphologies with the increasing of NaOH concentration. Interestingly, the steam-hydrothermally treated MAO coatings exhibit better bonding strength with Ti substrate (up to 43.8±1.1MPa) than that of the untreated one (20.1±3.1MPa). In addition, benefiting from the corrosive attack of the dissolved NaOH in water vapor on the MAO coating, Ti-OH is also formed on the steam-hydrothermally treated MAO coating surface, which can trigger apatite nucleation. Thus, the steam-hydrothermally treated MAO coatings exhibit good apatite-inducing ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers.

    PubMed

    Jones, J; Richter, K; Price, T J; Ross, A J; Crozet, P; Faust, C; Malenda, R F; Carlus, S; Hickman, A P; Huennekens, J

    2017-10-14

    We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A) 1 Σ + electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A) 1 Σ + state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A) 1 Σ + molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A) 1 Σ + with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A) 1 Σ + with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately

  13. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers

    NASA Astrophysics Data System (ADS)

    Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.

    2017-10-01

    We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very

  14. Comparison of the effect of NaOH and TE buffer on 25 to 100 eV electron induced damage to ΦX174 dsDNA

    NASA Astrophysics Data System (ADS)

    Kumar, S. V. K.; Murali, Megha; Kushwaha, Preksha

    2015-09-01

    In this article we report the usage of (1) ΦX174 dsDNA as a model for electron - DNA interaction studies, (2) semiconductor grade 100 silicon wafer, gold on chrome on glass, and tantalum foil substrates, drying process and effect of temperature, on the DNA film formation and its stability, (3) stability of DNA films formed from DNA suspended in nano pure water and with additives like NaOH and TE buffer, and (4) effect of 0.001 mM NaOH and TE buffer (at pH 7.5) additives on DNA damage induced by 25 to 100 eV electrons. The results show that when tantalum foils are used as a substrate, it results in films, which have DNA distributed fairly uniformly and is also stable against strand breaks affected due to the stress of the drying. Electron irradiation of DNA suspended in TE buffer result in the formation of only relaxed form. When the DNA is suspended in 0.001 mM NaOH and irradiated similarly, linear form and cross links are also formed, in addition to relaxed form. This could be likely due to the secondary electrons interacting with Na+ ions that are bound to the DNA causing a second strand break in the opposite strand. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  15. {sup 25}Na and {sup 25}Mg fragmentation on {sup 12}C at 9.23 MeV per nucleon at TRIUMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Onge, Patrick; Boisjoli, Mark; Fregeau, Marc-Olivier

    2012-10-20

    HERACLES is a multidetector that is used to study heavy-ion collisions, with ion beams with an energy range between 8 to 15 MeV per nucleon. It has 78 detectors axially distributed around the beam axis in 6 rings allowing detection of multiple charged fragments from nuclear reactions. HERACLES has 4 different types of detectors, BC408/BaF{sub 2} phoswich, Si/CsI(Tl) telescope, BC408/BC444 phoswich and CsI(Tl) detectors. The multidetector has been run with a radioactive {sup 25}Na beam and a stable {sup 25}Mg beam at 9.23 MeV per nucleon on a carbon target.

  16. Central endogenous angiotensin-(1-7) protects against aldosterone/NaCl-induced hypertension in female rats.

    PubMed

    Xue, Baojian; Zhang, Zhongming; Johnson, Ralph F; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2013-09-01

    In comparison to male rodents, females are protected against angiotensin (ANG) II- and aldosterone (Aldo)-induced hypertension. However, the mechanisms underlying this protective effect are not well understood. ANG-(1-7) is formed from ANG II by angiotensin-converting enzyme 2 (ACE2) and has an antihypertensive effect in the central nervous system (CNS). The present study tested the hypothesis that central ANG-(1-7) plays an important protective role in attenuating the development of Aldo/NaCl-hypertension in female rats. Systemic infusion of Aldo into intact female rats with 1% NaCl as their sole drinking fluid resulted in a slight increase in blood pressure (BP). Intracerebroventricular (icv) infusion of A-779, an ANG-(1-7) receptor (Mas-R) antagonist, significantly augmented the pressor effects of Aldo/NaCl. In contrast, systemic Aldo/NaCl induced a significant increase in BP in ovariectomized (OVX) female rats, and central infusion of ANG-(1-7) significantly attenuated this Aldo/NaCl pressor effect. The inhibitory effect of ANG-(1-7) on the Aldo/NaCl pressor effect was abolished by concurrent infusion of A-779. RT-PCR analyses showed that there was a corresponding change in mRNA expression of several renin-angiotensin system components, estrogen receptors and an NADPH oxidase subunit in the lamina terminalis. Taken together these results suggest that female sex hormones regulate an antihypertensive axis of the brain renin-angiotensin system involving ACE2/ANG-(1-7)/Mas-R that plays an important counterregulatory role in protecting against the development of Aldo/NaCl-induced hypertension.

  17. Natural Variants of AtHKT1 Enhance Na+ Accumulation in Two Wild Populations of Arabidopsis

    PubMed Central

    Rus, Ana; Baxter, Ivan; Muthukumar, Balasubramaniam; Gustin, Jeff; Lahner, Brett; Yakubova, Elena; Salt, David E

    2006-01-01

    Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na+ from the soil. Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that two coastal populations of Arabidopsis collected from Tossa del Mar, Spain, and Tsu, Japan (Ts-1 and Tsu-1, respectively), accumulate higher shoot levels of Na+ than do Col-0 and other accessions. We identify AtHKT1, known to encode a Na+ transporter, as being the causal locus driving elevated shoot Na+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence approximately 5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na+. Interestingly, and in contrast to the hkt11 null mutant, under NaCl stress conditions, this novel AtHKT1 allele not only does not confer NaCl sensitivity but also cosegregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; http://www.purdue.edu/dp/ionomics). Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the casual locus driving the natural variation in shoot Na+ accumulation we

  18. Investigation on Sr0.2Na0.8Nb1-xVxO3 (x=0.1, 0.2, 0.3) as new ceramic anode materials for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, Ke-Ji; Hussain, A. Mohammed; Wachsman, Eric D.

    2017-04-01

    Variants of SNNV (Sr0.2Na0.8Nb1-xVxO3, X = 0.1-0.3) ceramic oxides were synthesized via wet chemical method. SNNVs show high electronic conductivity of >100 S/cm when reduced in hydrogen at a relatively low temperature of 650 °C. In particular, 30% V-doped SNNV exhibited the highest conductivity of 300 S/cm at 450 °C. In order to investigate the fuel cell performance, Gd0.1Ce0.9O2-δ (GDC) based electrolyte-supported fuel cells were prepared to study the anode characteristics. Sr0.2Na0.8Nb0.9V0.1O3 (SNNV10)-GDC composite was used as an anode and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)-GDC as a cathode. Both electrodes were porous and sintered at 1050 °C for 2 h in air. The anode side of the fuel cell was infiltrated with 10 wt% GDC/Ni-GDC precursor to activate the anode for fuel oxidation. I-V characteristics were determined in gas conditions such as dry/humidified hydrogen and methane at 650 °C. With the infiltration Ni-GDC, peak power density (PPD) of 280 mW/cm2 and 220 mW/cm2 in dry H2 and CH4, respectively, were obtained at 650 °C, which is higher than GDC alone as infiltrate. The high resistances in the humidified conditions are attributed to the lower conductivity of SNNV10 in high PO2 atmospheres.

  19. High-resolution rovibrational study of the Coriolis-coupled v 12 and v 15 modes of [1.1.1]propellane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Robynne W; Masiello, Tony; Jariyasopit, Narumol

    Infrared spectra of the small strained cage molecule [1.1.1]propellane have been obtained at high resolution (0.0015 cm -1) and the J and K, l rovibrational structure has been resolved for the first time. We recently used combination-differences to obtain ground state parameters for propellane; over 4,100 differences from five fundamental and four combination bands were used in this process. The combination-difference approach eliminated errors due to localized perturbations in the upper state levels of the transitions and gave well-determined ground state parameters. In the current work, these ground state parameters were used in a determination of the upper state parametersmore » for the v 12(e') perpendicular and v 15(a 2") parallel bands. Over 4000 infrared transitions were fitted for each band, with J, K values ranging up to 71, 51 and 92, 90 respectively. While the transition frequencies for both bands can be fit nicely using separate analyses for each band, the strong intensity perturbations observed in the weaker v 12 band indicated that Coriolis coupling between the two modes was significant and should be included. Due to correlations with other parameters, the Coriolis coupling parameter ζ y 15,12a for the v 15 and v 12 interaction is poorly determined by a transition frequency fit alone. However, by combining the frequency fit with a fit of experimental intensities, a value of -0.42 was obtained, quite close to that predicted from the ab initio calculation (-0.44). This intensity fit also yielded a (∂μ z/∂Q 15)/(∂μ x/∂Q 12a) dipole derivative ratio of 36.5, in reasonable agreement with a value of 29.2 predicted by Gaussian ab initio density functional calculations using a cc-pVTZ basis. This ratio is unusually high due to large charge movement as the novel central Caxial-Caxial bond is displaced along the symmetry axis of the molecule for the v 15 mode.« less

  20. E&V (Evaluation and Validation) Reference Manual, Version 1.1

    DTIC Science & Technology

    1988-10-20

    E&V. This model will allow the user to arrive at E&V techniques through many different paths, and provides a means to extract useful information...electronically (preferred) to szymansk@ajpo.sei.cmu.edu or by regular mail to Mr. Raymond Szymanski , AFWAL/AAAF, Wright Patterson AFB, OH 45433-6543. ES-2 E&V...1, 1-3 illustrate the types of infor- mation to be extracted from each document. Chapter 2 provides a more detailed description of the structure and

  1. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    NASA Astrophysics Data System (ADS)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  2. Na-Ion Intercalation and Charge Storage Mechanism in Two-Dimensional Vanadium Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, Seong -Min; Qiao, Ruimin; Yang, W.

    We synthesized two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V 2CT x, where T x are surface functional groups) and studied as anode material for Na-ion batteries. V 2CT x anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. Furthermore, the charge storage mechanism of V 2CT x material during Na + intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution ofmore » redox reaction of vanadium to the charge storage and the reversible capacity of V 2CT x during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO 3 2- content and Na + intercalation/deintercalation states in the V 2CT x electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na +-intercalated V 2CT x and the carbonate based non-aqueous electrolyte. Our results of this study will provide valuable information for the further studies on V 2CT x as anode material for Na-ion batteries and capacitors.« less

  3. Na-Ion Intercalation and Charge Storage Mechanism in Two-Dimensional Vanadium Carbide

    DOE PAGES

    Bak, Seong -Min; Qiao, Ruimin; Yang, W.; ...

    2017-07-14

    We synthesized two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V 2CT x, where T x are surface functional groups) and studied as anode material for Na-ion batteries. V 2CT x anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. Furthermore, the charge storage mechanism of V 2CT x material during Na + intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution ofmore » redox reaction of vanadium to the charge storage and the reversible capacity of V 2CT x during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO 3 2- content and Na + intercalation/deintercalation states in the V 2CT x electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na +-intercalated V 2CT x and the carbonate based non-aqueous electrolyte. Our results of this study will provide valuable information for the further studies on V 2CT x as anode material for Na-ion batteries and capacitors.« less

  4. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2

    PubMed Central

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V1) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys8]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg8]-vasopressin (AVP) at V1 and vasopressin-2 (V2) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V1 and V2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [3H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V1) and cyclic adenosine monophosphate (V2). Binding potency at V1 and V2 was AVP>LVP>>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V1 than for V2. Cellular activity potency was also AVP>LVP>>terlipressin. Terlipressin was a partial agonist at V1 and a full agonist at V2; LVP was a full agonist at both V1 and V2. The in vivo response to terlipressin is likely due to the partial V1 agonist activity of terlipressin and full V1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors. PMID:29302194

  5. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    PubMed

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  6. Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies.

    PubMed

    Nejati, K; Hosseinian, A; Bekhradnia, A; Vessally, E; Edjlali, L

    2017-06-01

    It has been recently indicated that the Li-ion batteries may be replaced by Na-ion batteries because of their low safety, high cost, and low-temperature performance, and lack of the Li mineral reserves. Here, using density functional theory calculations, we studied the potential application of B 12 N 12 nanoclusters as anode in Na-ion batteries. Our calculations indicate that the adsorption energy of Na + and Na are about -23.4 and -1.4kcal/mol, respectively, and the pristine BN cage to improve suffers from a low cell voltage (∼0.92V) as an anode in Na-ion batteries. We presented a strategy to increase the cell voltage and performance of Na-ion batteries. We showed that encapsulation of different halides (X=F - , Cl - , or Br - ) into BN cage significantly increases the cell voltage. By increasing the atomic number of X, the Gibbs free energy change of cell becomes more negative and the cell voltage is increased up to 3.93V. The results are discussed based on the structural, energetic, frontier molecular orbital, charge transfer and electronic properties and compared with the performance of other nanostructured anodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. TOXICITY OF NATURAL DEEP EUTECTIC SOLVENT (NaDES) BETAINE:GLYCEROL IN RATS.

    PubMed

    Benlebna, Melha; Ruesgas-Ramon, Mariana; Bonafos, Beatrice; Fouret, Gilles; Casas, Françcois; Coudray, Charles; Durand, Erwann; Figueroa, Maria-Cruz; Feillet-Coudray, Christine

    2018-05-28

    The natural deep eutectic solvents (NaDES) are new natural solvents in green chemistry that in some cases have been shown to allow better extraction of plant bioactive molecules compared to conventional solvents and higher phenolic compounds absorption in rodents. However, there is a serious lack of information regarding their in vivo safety. The purpose of this study was to verify the safety of a NaDES (glycerol:betaine (mole ratio 2:1) + 10 % (v/v) of water) extract from green coffee beans, rich in polyphenols. Twelve 6-weeks-old male Wistar rats were randomized into two groups of 6 animals each and twice daily gavaged for 14 days either with 3 ml water or with 3 ml phenolic NaDES extract. Oral administration of phenolic NaDES extract induced mortality in 2 rats. In addition, it induced excessive water consumption, reduced dietary intake and weight loss, hepatomegaly, plasma oxidative stress associated with high blood lipid levels. In conclusion, this work demonstrated the toxicity of oral administration of the selected NaDES, under a short-term condition. This occurs despite the fact that this NaDES extract contains polyphenols, whose beneficial effects have been shown. Therefore, complementary work is needed to find the best dose and formulation of NaDES that are safe for the environment, animals and ultimately for humans.

  8. Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange.

    PubMed

    Montrose, M H; Murer, H

    1986-01-01

    Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05 +/- 0.01, n = 5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 microM amiloride or removal of extracellular Na+ (Na+o less than 1 mM). In contrast, when the cells recover from an acid load (caused by NH4 preincubation and removal), the recovery is largely Na+ dependent and is sensitive to 100 microM amiloride. These results suggest that with resting pH near neutrality, both Na+o/H+i and Na+i/H+o exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na+o/H+i exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a "set point" of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.

  9. Effective atomic number and electron density of amino acids within the energy range of 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina P.

    2016-08-01

    Photon attenuation coefficient calculation methods have been widely used to accurately study the properties of amino acids such as n-acetyl-L-tryptophan, n-acetyl-L-tyrosine, D-tryptophan, n-acetyl-L-glutamic acid, D-phenylalanine, and D-threonine. In this study, mass attenuation coefficients (μm) of these amino acids for 0.122-, 0.356-, 0.511-, 0.662-, 0.884-, 1.170, 1.275-, 1.330-MeV photons are determined using the radio-nuclides Co57, Ba133, Cs137, Na22, Mn54, and Co60. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The calculated attenuation coefficient values were then used to determine total atomic cross sections (σt), molar extinction coefficients (ε), electronic cross sections (σe), effective atomic numbers (Zeff), and effective electron densities (Neff) of the amino acids. Theoretical values were calculated based on the XCOM data. Theoretical and experimental values are found to be in a good agreement (error<5%). The variations of μm, σt, ε, σe, Zeff, and Neff with energy are shown graphically. The values of μm, σt, ε, σe are higher at lower energies, and they decrease sharply as energy increases; by contrast, Zeff and Neff were found to be almost constant.

  10. A 3.8-V earth-abundant sodium battery electrode

    PubMed Central

    Barpanda, Prabeer; Oyama, Gosuke; Nishimura, Shin-ichi; Chung, Sai-Cheong; Yamada, Atsuo

    2014-01-01

    Rechargeable lithium batteries have ushered the wireless revolution over last two decades and are now matured to enable green automobiles. However, the growing concern on scarcity and large-scale applications of lithium resources have steered effort to realize sustainable sodium-ion batteries, Na and Fe being abundant and low-cost charge carrier and redox centre, respectively. However, their performance is limited owing to low operating voltage and sluggish kinetics. Here we report a hitherto-unknown material with entirely new composition and structure with the first alluaudite-type sulphate framework, Na2Fe2(SO4)3, registering the highest-ever Fe3+/Fe2+ redox potential at 3.8 V (versus Na, and hence 4.1V versus Li) along with fast rate kinetics. Rare-metal-free Na-ion rechargeable battery system compatible with the present Li-ion battery is now in realistic scope without sacrificing high energy density and high power, and paves way for discovery of new earth-abundant sustainable cathodes for large-scale batteries. PMID:25030272

  11. Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries.

    PubMed

    Jena, Naresh K; Araujo, Rafael B; Shukla, Vivekanand; Ahuja, Rajeev

    2017-05-17

    Borophene, single atomic-layer sheet of boron ( Science 2015 , 350 , 1513 ), is a rather new entrant into the burgeoning class of 2D materials. Borophene exhibits anisotropic metallic properties whereas its hydrogenated counterpart borophane is reported to be a gapless Dirac material lying on the same bench with the celebrated graphene. Interestingly, this transition of borophane also rendered stability to it considering the fact that borophene was synthesized under ultrahigh vacuum conditions on a metallic (Ag) substrate. On the basis of first-principles density functional theory computations, we have investigated the possibilities of borophane as a potential Li/Na-ion battery anode material. We obtained a binding energy of -2.58 (-1.08 eV) eV for Li (Na)-adatom on borophane and Bader charge analysis revealed that Li(Na) atom exists in Li + (Na + ) state. Further, on binding with Li/Na, borophane exhibited metallic properties as evidenced by the electronic band structure. We found that diffusion pathways for Li/Na on the borophane surface are anisotropic with x direction being the favorable one with a barrier of 0.27 and 0.09 eV, respectively. While assessing the Li-ion anode performance, we estimated that the maximum Li content is Li 0.445 B 2 H 2 , which gives rises to a material with a maximum theoretical specific capacity of 504 mAh/g together with an average voltage of 0.43 V versus Li/Li + . Likewise, for Na-ion the maximum theoretical capacity and average voltage were estimated to be 504 mAh/g and 0.03 V versus Na/Na + , respectively. These findings unambiguously suggest that borophane can be a potential addition to the map of Li and Na-ion anode materials and can rival some of the recently reported 2D materials including graphene.

  12. Inactivation of Vibrio parahaemolyticus in shucked raw oyster ( Grassostrea gigas) and clam ( Venerupis phillippinarum) by using a combination of NaClO and gamma irradiation.

    PubMed

    Park, Shin Young; Ha, Sang-Do

    2018-01-01

    This study investigated the synergistic effects of sodium hypochlorite (NaClO) and gamma irradiation combination against Vibrio parahaemolyticus in shucked oysters and clams. V. parahaemolyticus decreased to 1.1-5.6 log 10 CFU/g in oysters and 1.1-5.7 log 10 CFU/g in clams by NaClO (20-80 ppm) + γ irradiation (0.1-2.0 kGy) combinations. V. parahaemolyticus was not detected by 60 or 80 ppm NaClO + 2.0 kGy. Synergistic reduction of >1 log was observed by 60 ppm NaClO + 0.3-2 kGy and 80 ppm NaClO + 0.5 or 2 kGy. Specifically, >2 log of the synergistic reduction was obtained by 60 or 80 ppm NaClO + 2 kGy. Furthermore, using the Weibull model, 5D values (5-log reductions) were calculated for 60 or 80 ppm NaClO + 0.5-0.9 kGy. No significant differences were observed for all sensory parameters between samples of 2.0 kGy + 0-80 ppm NaClO. This study suggests that 60 ppm NaClO + 2.0 kGy in reducing 7-log V. parahaemolyticus without any deteriorative changes of sensory qualities could be a potential strategy for post-harvest process in seafood processing and distribution to enhance the microbial safety of molluscan shellfish.

  13. Superior ionic and electronic properties of ReN2 monolayers for Na-ion battery electrodes.

    PubMed

    Zhang, Shi-Hao; Liu, Bang-Gui

    2018-08-10

    Excellent monolayer electrode materials can be used to design high-performance alkali-metal-ion batteries. Here, we propose two-dimensional ReN 2 monolayers as superior sodium-ion battery materials. Our total energy optimization results in a buckled tetragonal structure for the ReN 2 monolayer, and our phonon spectrum and elastic moduli prove that it is dynamically and mechanically stable. Further investigations show that it is metallic and still keeps its metallic feature after the adsorption of Na or K atoms, and the adsorption of Na (or K) atoms changes the lattice parameters by 3.2% (or 3.8%) at most. Its maximum capacity reaches 751 mA h g -1 for Na-ion batteries or 250 mA h g -1 for K-ion batteries, and the diffusion barrier is only 0.027 eV for the Na atom or 0.127 eV for the K atom. The small lattice changes, high storage capacity, metallic feature, and extremely low ion diffusion barriers make the ReN 2 monolayers a superior electrode material for Na-ion rechargeable batteries with ultrafast charging/discharging processes.

  14. Extreme variability among mammalian V1R gene families.

    PubMed

    Young, Janet M; Massa, Hillary F; Hsu, Li; Trask, Barbara J

    2010-01-01

    We report an evolutionary analysis of the V1R gene family across 37 mammalian genomes. V1Rs comprise one of three chemosensory receptor families expressed in the vomeronasal organ, and contribute to pheromone detection. We first demonstrate that Trace Archive data can be used effectively to determine V1R family sizes and to obtain sequences of most V1R family members. Analyses of V1R sequences from trace data and genome assemblies show that species-specific expansions previously observed in only eight species were prevalent throughout mammalian evolution, resulting in "semi-private" V1R repertoires for most mammals. The largest families are found in mouse and platypus, whose V1R repertoires have been published previously, followed by mouse lemur and rabbit (approximately 215 and approximately 160 intact V1Rs, respectively). In contrast, two bat species and dolphin possess no functional V1Rs, only pseudogenes, and suffered inactivating mutations in the vomeronasal signal transduction gene Trpc2. We show that primate V1R decline happened prior to acquisition of trichromatic vision, earlier during evolution than was previously thought. We also show that it is extremely unlikely that decline of the dog V1R repertoire occurred in response to selective pressures imposed by humans during domestication. Functional repertoire sizes in each species correlate roughly with anatomical observations of vomeronasal organ size and quality; however, no single ecological correlate explains the very diverse fates of this gene family in different mammalian genomes. V1Rs provide one of the most extreme examples observed to date of massive gene duplication in some genomes, with loss of all functional genes in other species.

  15. Microstructural control of new intercalation layered titanoniobates with large and reversible d-spacing for easy Na+ ion uptake

    PubMed Central

    Park, Hyunjung; Kwon, Jiseok; Choi, Heechae; Song, Taeseup; Paik, Ungyu

    2017-01-01

    Key issues for Na-ion batteries are the development of promising electrode materials with favorable sites for Na+ ion intercalation/deintercalation and an understanding of the reaction mechanisms due to its high activation energy and poor electrochemical reversibility. We first report a layered H0.43Ti0.93Nb1.07O5 as a new anode material. This anode material is engineered to have dominant (200) and (020) planes with both a sufficiently large d-spacing of ~8.3 Å and two-dimensional ionic channels for easy Na+ ion uptake, which leads to a small volume expansion of ~0.6 Å along the c direction upon Na insertion (discharging) and the lowest energy barrier of 0.19 eV in the [020] plane among titanium oxide–based materials ever reported. The material intercalates and deintercalates reversibly 1.7 Na ions (~200 mAh g−1) without a capacity fading in a potential window of 0.01 to 3.0 V versus Na/Na+. Na insertion/deinsertion takes place through a solid-solution reaction without a phase separation, which prevents coherent strain or stress in the microstructure during cycling and ensures promising sodium storage properties. These findings demonstrate a great potential of H0.43Ti0.93Nb1.07O5 as the anode, and our strategy can be applied to other layered metal oxides for promising sodium storage properties. PMID:28989960

  16. Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries.

    PubMed

    Eguía-Barrio, Aitor; Castillo-Martínez, Elizabeth; Zarrabeitia, Maider; Muñoz-Márquez, Miguel A; Casas-Cabanas, Montse; Rojo, Teófilo

    2015-03-14

    H2Ti3O7 was prepared as a single phase material by ionic exchange from Na2Ti3O7. The complete ionic exchange was confirmed by (1)H and (23)Na solid state Nuclear Magnetic Resonance (NMR). The atomic positions of H2Ti3O7 were obtained from the Rietveld refinement of powder X-ray diffraction (PXRD) and neutron diffraction experimental data, the latter collected at two different wavelengths to precisely determine the hydrogen atomic positions in the structure. All H(+) cations are hydrogen bonded to two adjacent [Ti3O7](2-) layers leading to the gliding of the layers and lattice centring with respect to the parent Na2Ti3O7. In contrast with a previous report where protons were located in two different positions of H2Ti3O7, 3 types of proton positions were found. Two of the three types of proton are bonded to the only oxygen linked to a single titanium atom forming an H-O-H angle close to that of the water molecule. H2Ti3O7 is able to electrochemically insert Na(+). The electrochemical insertion of sodium into H2Ti3O7 starts with a solid solution regime of the C-centred phase. Then, between 0.6 and 1.2 inserted Na(+) the reaction proceeds through a two phase reaction and a plateau at 1.3 V vs. Na(+)/Na is observed in the voltage-composition curve. The second phase resembles the primitive Na2Ti3O7 cell as detected by in situ PXRD. Upon oxidation, from 0.9 to 2.2 V, the PXRD pattern remains mostly unchanged probably due to H(+) removal instead of Na(+), with the capacity quickly fading upon cycling. Conditioning H2Ti3O7 for two cycles at 0.9-2.2 V before cycling in the 0.05-1.6 V range yields similar specific capacity and better retention than the original Na2Ti3O7 in the same voltage range.

  17. Antigenicity of the 2015–2016 seasonal H1N1 human influenza virus HA and NA proteins

    PubMed Central

    Anderson, Christopher S.; Wang, Jiong; Yang, Hongmei; Nogales, Aitor; Martinez-Sobrido, Luis; Zand, Martin S.; Sangster, Mark Y.; Topham, David J.

    2017-01-01

    Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses) accounts for the limited effectiveness (around 40%) of vaccination against pH1N1-like viruses during the 2015–2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015–2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI) and HA-specific neutralizing serum antibody (Ab) titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2–4 fold lower for the 2015–2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI) Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to risk of

  18. Expression, purification, and characterization of the Necator americanus aspartic protease-1 (Na-APR-1 (M74)) antigen, a component of the bivalent human hookworm vaccine.

    PubMed

    Seid, Christopher A; Curti, Elena; Jones, R Mark; Hudspeth, Elissa; Rezende, Wanderson; Pollet, Jeroen; Center, Lori; Versteeg, Leroy; Pritchard, Sonya; Musiychuk, Konstantin; Yusibov, Vidadi; Hotez, Peter J; Bottazzi, Maria Elena

    2015-01-01

    Over 400 million people living in the world's poorest developing nations are infected with hookworms, mostly of the genus Necator americanus. A bivalent human hookworm vaccine composed of the Necator americanus Glutathione S-Transferase-1 (Na-GST-1) and the Necator americanus Aspartic Protease-1 (Na-APR-1 (M74)) is currently under development by the Sabin Vaccine Institute Product Development Partnership (Sabin PDP). Both monovalent vaccines are currently in Phase 1 trials. Both Na-GST-1 and Na-APR-1 antigens are expressed as recombinant proteins. While Na-GST-1 was found to express with high yields in Pichia pastoris, the level of expression of Na-APR-1 in this host was too low to be suitable for a manufacturing process. When the tobacco plant Nicotiana benthamiana was evaluated as an expression system, acceptable levels of solubility, yield, and stability were attained. Observed expression levels of Na-APR-1 (M74) using this system are ∼300 mg/kg. Here we describe the achievements and obstacles encountered during process development as well as characterization and stability of the purified Na-APR-1 (M74) protein and formulated vaccine. The expression, purification and analysis of purified Na-APR-1 (M74) protein obtained from representative 5 kg reproducibility runs performed to qualify the Na-APR-1 (M74) production process is also presented. This process has been successfully transferred to a pilot plant and a 50 kg scale manufacturing campaign under current Good Manufacturing Practice (cGMP) has been performed. The 50 kg run has provided a sufficient amount of protein to support the ongoing hookworm vaccine development program of the Sabin PDP.

  19. Block of Inactivation-deficient Na+ Channels by Local Anesthetics in Stably Transfected Mammalian Cells

    PubMed Central

    Wang, Sho-Ya; Mitchell, Jane; Moczydlowski, Edward; Wang, Ging Kuo

    2004-01-01

    According to the classic modulated receptor hypothesis, local anesthetics (LAs) such as benzocaine and lidocaine bind preferentially to fast-inactivated Na+ channels with higher affinities. However, an alternative view suggests that activation of Na+ channels plays a crucial role in promoting high-affinity LA binding and that fast inactivation per se is not a prerequisite for LA preferential binding. We investigated the role of activation in LA action in inactivation-deficient rat muscle Na+ channels (rNav1.4-L435W/L437C/A438W) expressed in stably transfected Hek293 cells. The 50% inhibitory concentrations (IC50) for the open-channel block at +30 mV by lidocaine and benzocaine were 20.9 ± 3.3 μM (n = 5) and 81.7 ± 10.6 μM (n = 5), respectively; both were comparable to inactivated-channel affinities. In comparison, IC50 values for resting-channel block at −140 mV were >12-fold higher than those for open-channel block. With 300 μM benzocaine, rapid time-dependent block (τ ≈ 0.8 ms) of inactivation-deficient Na+ currents occurred at +30 mV, but such a rapid time-dependent block was not evident at −30 mV. The peak current at −30 mV, however, was reduced more severely than that at +30 mV. This phenomenon suggested that the LA block of intermediate closed states took place notably when channel activation was slow. Such closed-channel block also readily accounted for the LA-induced hyperpolarizing shift in the conventional steady-state inactivation measurement. Our data together illustrate that the Na+ channel activation pathway, including most, if not all, transient intermediate closed states and the final open state, promotes high-affinity LA binding. PMID:15545401

  20. Elemental abundance analyses with DAO spectrograms: XXXII. HR 6455 (A3 III), δ Aqr (A3 V), η Lep (F2 V), and 1 Boo (A1 V)

    NASA Astrophysics Data System (ADS)

    Yüce, K.; Adelman, S. J.; Gulliver, A. F.; Hill, G.

    2011-08-01

    We examine the sharp-lined stars HR 6455 (A3 III, v sin i = 8.7 km s-1) and η Lep (F2 V, v sin i = 13.5 km s-1) as well as δ Aqr (A3 V, v sin i = 81 km s-1) and 1 Boo (A1 V, v sin i = 59 km s-1) to increase the number consistently analyzed A and F stars using high dispersion and high S/N (≥200) spectrograms obtained with CCD detectors at the long Coudé camera of the 1.22-m telescope of the Dominion Astrophysical Observatory. Such studies contribute to understanding systematic abundance differences between normal and non-magnetic main-sequence band chemically peculiar A and early F stars. LTE fine analyses of HR 6455, δ Aqr, and 1 Boo using Kurucz's ATLAS suite programs show the same general elemental abundance trends with differences in the metal richness. Light and iron-peak element abundances are generally solar or overabundant while heavy element and rare earth element abundances are overabundant. HR 6455 is an evolved Am star while δ Aqr and 1 Boo show the phenomenon to different extents. Most derived abundances of η Lep are solar. Table 3 is available at the CDS via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/AN/332/681

  1. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia.

    PubMed

    Weiss, Jan; Pyrski, Martina; Jacobi, Eric; Bufe, Bernd; Willnecker, Vivienne; Schick, Bernhard; Zizzari, Philippe; Gossage, Samuel J; Greer, Charles A; Leinders-Zufall, Trese; Woods, C Geoffrey; Wood, John N; Zufall, Frank

    2011-04-14

    Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Na(v)1.7 in odour perception, we generated conditional null mice in which Na(v)1.7 was removed from all olfactory sensory neurons. In the absence of Na(v)1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell.

  2. Regulation of Blood Pressure by Targeting CaV1.2-Galectin-1 Protein Interaction.

    PubMed

    Hu, Zhenyu; Li, Guang; Wang, Jiong-Wei; Chong, Suet Yen; Yu, Dejie; Wang, Xiaoyuan; Soon, Jia Lin; Liang, Mui Cheng; Wong, Yuk Peng; Huang, Na; Colecraft, Henry M; Liao, Ping; Soong, Tuck Wah

    2018-04-12

    Background -L-type Ca V 1.2 channels play crucial roles in regulation of blood pressure. Galectin-1 (Gal-1), has been reported to bind to the I-II loop of Ca V 1.2 channels to reduce their current density. However, the mechanistic understanding for the down-regulation of Ca V 1.2 channels by Gal-1, and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. Methods - In vitro experiments involving co-IP, western blot, patch-clamp recordings, immunohistochemistry and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 down-regulates Ca V 1.2 channel in transfected HEK 293 cells, smooth muscle cells, arteries from Lgasl1 -/- mice, rat and human patients. In vivo experiments involving delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting Ca V 1.2-Gal-1 interaction on blood pressure monitored by tail cuff or telemetry methods. Results -Our study reveals that Gal-1 is a key regulator for proteasomal degradation of Ca V 1.2 channels. Gal-1 competed allosterically with Ca V β subunit for binding to the I-II loop of Ca V 1.2 channel. This competitive disruption of Ca V β binding led to Ca V 1.2 degradation by exposing the channels to poly-ubiquitination. Notably, we demonstrated that the inverse relationship of reduced Gal-1 and increased Ca V 1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice due to up-regulated Ca V 1.2 protein level in arteries. To directly regulate blood pressure by targeting the Ca V 1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1, by a mini-osmotic pump and this specific disruption of Ca V 1.2-Gal-1 coupling increased smooth muscle Ca V 1.2 currents, induced larger arterial contraction and caused hypertension in rats. In contrasting experiments, over-expression of Gal-1 in smooth muscle by a

  3. Na/beta-alumina/NaAlCl4, Cl2/C circulating cell

    NASA Technical Reports Server (NTRS)

    Cherng, Jing-Yih; Bennion, Douglas N.

    1987-01-01

    A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.

  4. Responses to Orientation Discontinuities in V1 and V2: Physiological Dissociations and Functional Implications

    PubMed Central

    Purpura, Keith P.; Victor, Jonathan D.

    2014-01-01

    Segmenting the visual image into objects is a crucial stage of visual processing. Object boundaries are typically associated with differences in luminance, but discontinuities in texture also play an important role. We showed previously that a subpopulation of neurons in V2 in anesthetized macaques responds to orientation discontinuities parallel to their receptive field orientation. Such single-cell responses could be a neurophysiological correlate of texture boundary detection. Neurons in V1, on the other hand, are known to have contextual response modulations such as iso-orientation surround suppression, which also produce responses to orientation discontinuities. Here, we use pseudorandom multiregion grating stimuli of two frame durations (20 and 40 ms) to probe and compare texture boundary responses in V1 and V2 in anesthetized macaque monkeys. In V1, responses to texture boundaries were observed for only the 40 ms frame duration and were independent of the orientation of the texture boundary. However, in transient V2 neurons, responses to such texture boundaries were robust for both frame durations and were stronger for boundaries parallel to the neuron's preferred orientation. The dependence of these processes on stimulus duration and orientation indicates that responses to texture boundaries in V2 arise independently of contextual modulations in V1. In addition, because the responses in transient V2 neurons are sensitive to the orientation of the texture boundary but those of V1 neurons are not, we suggest that V2 responses are the correlate of texture boundary detection, whereas contextual modulation in V1 serves other purposes, possibly related to orientation “pop-out.” PMID:24599456

  5. Role of Na+ conductance, Na+-H+ exchange, and Na+-K+-2Cl− symport in the regulatory volume increase of rat hepatocytes

    PubMed Central

    Wehner, Frank; Tinel, Hanna

    1998-01-01

    In rat hepatocytes under hypertonic stress, the entry of Na+ (which is thereafter exchanged for K+ via Na+-K+-ATPase) plays the key role in regulatory volume increase (RVI).In the present study, the contributions of Na+ conductance, Na+-H+ exchange and Na+-K+-2Cl− symport to this process were quantified in confluent primary cultures by means of intracellular microelectrodes and cable analysis, microfluorometric determinations of cell pH and buffer capacity, and measurements of frusemide (furosemide)/bumetanide-sensitive 86Rb+ uptake, respectively. Osmolarity was increased from 300 to 400 mosmol l−1 by addition of sucrose.The experiments indicate a relative contribution of approximately 4:1:1 to hypertonicity-induced Na+ entry for the above-mentioned transporters and the overall Na+ yield equalled 51 mmol l−1 (10 min)−1.This Na+ gain is in good agreement with the stimulation of Na+ extrusion via Na+-K+-ATPase plus the actual increase in cell Na+, namely 55 mmol l−1 (10 min)−1, as was determined on the basis of ouabain-sensitive 86Rb+ uptake and by means of Na+-sensitive microelectrodes, respectively.The overall increase in Na+ and K+ activity plus the expected concomitant increase in cell Cl− equalled 68 mmol l−1, which fits well with the increase in osmotic activity expected to occur from an initial cell shrinkage to 87.5 % and a RVI to 92.6 % of control, namely 53 mosmol l−1.The prominent role of Na+ conductance in the RVI of rat hepatocytes could be confirmed on the basis of the pharmacological profile of this process, which was characterized by means of confocal laser-scanning microscopy. PMID:9481677

  6. Transport properties and electronic structure of Na0.28PtSi

    NASA Astrophysics Data System (ADS)

    Itahara, Hiroshi; Suzumura, Akitoshi; Oh, Song-Yul

    2017-07-01

    We have investigated the electronic structure and properties of Na0.28PtSi, which is a Pt-based intermetallic compound with no reported physical properties. Na0.28PtSi powder with an average grain size of 15 µm was demonstrated to be stable in a strongly acidic aqueous solution. The ab initio calculations revealed that there is a band crossing the Fermi level and that the density of states (DOS) under the Fermi level mainly consists of d orbitals of Pt atoms. Here, we used the model of Na0.25PtSi with an approximately ordered structure (space group I4, full Na site occupation), which was set instead of the reported statistically disordered structure of Na0.28PtSi (I4/mcm, Na site occupancy: 0.258). The calculated electronic structure corresponded to the measured metallic properties of the Na0.28PtSi sintered body: i.e., the electrical resistivity of Na0.28PtSi was increased from 1.77 × 10-8 Ω m at 30 K to 2.67 × 10-7 Ω m at 300 K and the Seebeck coefficient was 0.11 µV K-1 at 300 K.

  7. The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films

    NASA Astrophysics Data System (ADS)

    Ahn, C. W.; Y Lee, S.; Lee, H. J.; Ullah, A.; Bae, J. S.; Jeong, E. D.; Choi, J. S.; Park, B. H.; Kim, I. W.

    2009-11-01

    We have fabricated K0.5Na0.5NbO3 (KNN) thin films on Pt substrates by a chemical solution deposition method and investigated the effect of K and Na excess (0-30 mol%) on ferroelectric and piezoelectric properties of KNN thin film. It was found that with increasing K and Na excess in a precursor solution from 0 to 30 mol%, the leakage current and ferroelectric properties were strongly affected. KNN thin film synthesized by using 20 mol% K and Na excess precursor solution exhibited a low leakage current density and well saturated ferroelectric P-E hysteresis loops. Moreover, the optimized KNN thin film had good fatigue resistance and a piezoelectric constant of 40 pm V-1, which is comparable to that of polycrystalline PZT thin films.

  8. Precursor Routes to Complex Ternary Intermetallics: Single-Crystal and Microcrystalline Preparation of Clathrate-I Na8Al8Si38 from NaSi + NaAlSi.

    PubMed

    Dong, Yongkwan; Chai, Ping; Beekman, Matt; Zeng, Xiaoyu; Tritt, Terry M; Nolas, George S

    2015-06-01

    Single crystals of the ternary clathrate-I Na8Al8Si38 were synthesized by kinetically controlled thermal decomposition (KCTD), and microcrystalline Na8Al8Si38 was synthesized by spark plasma sintering (SPS) using a NaSi + NaAlSi mixture as the precursor. Na8AlxSi46-x compositions with x ≤ 8 were also synthesized by SPS from precursor mixtures of different ratios. The crystal structure of Na8Al8Si38 was investigated using both Rietveld and single-crystal refinements. Temperature-dependent transport and UV/vis measurements were employed in the characterization of Na8Al8Si38, with diffuse-reflectance measurement indicating an indirect optical gap of 0.64 eV. Our results indicate that, when more than one precursor is used, both SPS and KCTD are effective methods for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.

  9. Quaternary structure and apical membrane sorting of the mammalian NaSi-1 sulfate transporter in renal cell lines.

    PubMed

    Regeer, Ralf R; Nicke, Annette; Markovich, Daniel

    2007-01-01

    NaSi-1 encodes a Na(+)-sulfate cotransporter expressed on the apical membrane of renal proximal tubular cells, which is responsible for body sulfate homeostasis. Limited information is available on NaSi-1 protein structure and the mechanisms controlling its apical membrane sorting. The aims of this study were to biochemically determine the quaternary structure of the rat NaSi-1 protein and to characterize its expression in renal epithelial cell lines. Hexahistidyl-tagged NaSi-1 (NaSi-1-His) proteins expressed in Xenopus oocytes, appeared as two bands of about 60 and 75 kDa. PNGase F treatment shifted both bands to 57 kDa while endoglycosidase H treatment led to a downward shift of the lower molecular mass band only. Mutagenesis of a putative N-glycosylation site (N591S) produced a single band that was not shifted by endoglycosidase H or PNGase F, confirming a single glycosylation site at residue 591. Blue native-PAGE and cross-linking experiments revealed dimeric complexes, suggesting the native form of NaSi-1 to be a dimer. Transient transfection of EGFP/NaSi-1 in renal epithelial cells (OK, LLC-PK1 and MDCK) demonstrated apical membrane sorting, which was insensitive to tunicamycin. Transfection of the EGFP/NaSi-1 N591S glycosylation mutant also showed apical expression, suggesting N591 is not essential for apical sorting. Treatment with cholesterol depleting compounds did not disrupt apical sorting, but brefeldin A led to misrouting to the basolateral membrane, suggesting that NaSi-1 sorting is through the ER to Golgi pathway. Our data demonstrates that NaSi-1 forms a dimeric protein which is glycosylated at N591, whose sorting to the apical membrane in renal epithelial cells is brefeldin A-sensitive and independent of lipid rafts or glycosylation.

  10. A 1microW 85nV/ radicalHz pseudo open-loop preamplifier with programmable band-pass filter for neural interface system.

    PubMed

    Chang, Sun-Il; Yoon, Euisik

    2009-01-01

    We report an energy efficient pseudo open-loop amplifier with programmable band-pass filter developed for neural interface systems. The proposed amplifier consumes 400nA at 2.5V power supply. The measured thermal noise level is 85nV/ radicalHz and input-referred noise is 1.69microV(rms) from 0.3Hz to 1 kHz. The amplifier has a noise efficiency factor of 2.43, the lowest in the differential topologies reported up to date to our knowledge. By programming the switched-capacitor frequency and bias current, we could control the bandwidth of the preamplifier from 138 mHz to 2.2 kHz to meet various application requirements. The entire preamplifier including band-pass filters has been realized in a small area of 0.043mm(2) using a 0.25microm CMOS technology.

  11. Upregulation of the sodium channel NaVβ4 subunit and its contributions to mechanical hypersensitivity and neuronal hyperexcitability in a rat model of radicular pain induced by local DRG inflammation

    PubMed Central

    Xie, Wenrui; Tan, Zhi-Yong; Barbosa, Cindy; Strong, Judith A.; Cummins, Theodore R.; Zhang, Jun-Ming

    2016-01-01

    High frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all the isoforms in adult DRG, NaV1.6 is the main carrier of TTX-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons the regulatory β4 subunit is potentially the endogenous blocker. We used in vivo siRNA mediated knockdown of NaVβ4 to examine its role in the DRG inflammation model. NaVβ4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRGs showed that NaVβ4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aβ neurons, and reduced repetitive firing and other measures of excitability. NaVβ4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression and this was reversed by NaVβ4 siRNA, based on immunohistochemistry and Western blotting. NaVβ4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch clamp recordings of TTX-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current; effects blocked by NaVβ4 siRNA. NaVβ4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6. PMID:26785322

  12. Spectroscopic properties of Sm3+ and V4+ ions in Na2O-SiO2-ZrO2 glasses

    NASA Astrophysics Data System (ADS)

    Neeraja, K.; Rao, T. G. V. M.; Kumar, A. Rupesh; Uma Lakshmi, V.; Veeraiah, N.; Rami Reddy, M.

    2013-12-01

    Na2O-SiO2-ZrO2 glasses of Sm3+ ions with and without V2O5 are characterized by spectroscopic and optical properties. The XRD and EDS spectra of the glass samples reveal an amorphous nature with different compositions within the glass matrix. The Infrared and Raman spectral studies are carried out and the existence of conventional structural units are analyzed in the glass network. The ESR spectra of the glass samples have indicating that a considerable proportion of vanadium ion exists in V4+ state. The optical absorption spectra of these glasses are recorded at room temperature, from the measured intensities of various absorption bands the Judd-Ofelt parameters Ω2, Ω4 and Ω6 are calculated. The photo-luminescence spectra recorded with excited wavelength 400 nm, five emission bands are observed; in this the energy transfer probability takes place between Sm3+ and V4+ ions.

  13. Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current.

    PubMed

    Dallas, Mark L; Yang, Zhaokang; Boyle, John P; Boycott, Hannah E; Scragg, Jason L; Milligan, Carol J; Elies, Jacobo; Duke, Adrian; Thireau, Jérôme; Reboul, Cyril; Richard, Sylvain; Bernus, Olivier; Steele, Derek S; Peers, Chris

    2012-10-01

    Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown. To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach. Patch-clamp electrophysiology and confocal Ca(2+) and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo. CO increased the sustained (late) component of the inward Na(+) current, resulting in prolongation of the action potential and the associated intracellular Ca(2+) transient. In more than 50% of myocytes these changes progressed to early after-depolarization-like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na(+) channel, Na(v)1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na(+) current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry. Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.

  14. Synthesis and characterization of a NaSICON series with general formula Na 2.8Zr 2-ySi 1.8-4yP 1.2+4yO 12 (0⩽ y⩽0.45)

    NASA Astrophysics Data System (ADS)

    Essoumhi, A.; Favotto, C.; Mansori, M.; Satre, P.

    2004-12-01

    In this work, we present the synthesis and the characterization of ionic conducting ceramics of NaSICON-type (Natrium super ionic conductor). The properties of this ceramic make it suitable for use in electrochemical devices. These solid electrolytes can be used as sensors for application in the manufacturing of potentiometric gas sensors, for the detection of pollutant emissions and for environment control. The family of NaSICON that we studied has as a general formula Na 2.8Zr 2-ySi 1.8-4yP 1.2+4yO 12 with 0⩽ y⩽0.45. The various compositions were synthesized by produced using the sol-gel method. The electric properties of these compositions were carried out by impedance spectroscopy. The results highlight the good conductivity of the Na 2.8Zr 1.775Si 0.9P 2.1O 12 composition.

  15. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons

    PubMed Central

    López Soto, Eduardo Javier; Agosti, Francina; Cabral, Agustina; Mustafa, Emilio Roman; Damonte, Valentina Martínez; Gandini, Maria Alejandra; Rodríguez, Silvia; Castrogiovanni, Daniel; Felix, Ricardo; Perelló, Mario

    2015-01-01

    The growth hormone secretagogue receptor type 1a (GHSR1a) has the highest known constitutive activity of any G protein–coupled receptor (GPCR). GHSR1a mediates the action of the hormone ghrelin, and its activation increases transcriptional and electrical activity in hypothalamic neurons. Although GHSR1a is present at GABAergic presynaptic terminals, its effect on neurotransmitter release remains unclear. The activities of the voltage-gated calcium channels, CaV2.1 and CaV2.2, which mediate neurotransmitter release at presynaptic terminals, are modulated by many GPCRs. Here, we show that both constitutive and agonist-dependent GHSR1a activity elicit a strong impairment of CaV2.1 and CaV2.2 currents in rat and mouse hypothalamic neurons and in a heterologous expression system. Constitutive GHSR1a activity reduces CaV2 currents by a Gi/o-dependent mechanism that involves persistent reduction in channel density at the plasma membrane, whereas ghrelin-dependent GHSR1a inhibition is reversible and involves altered CaV2 gating via a Gq-dependent pathway. Thus, GHSR1a differentially inhibits CaV2 channels by Gi/o or Gq protein pathways depending on its mode of activation. Moreover, we present evidence suggesting that GHSR1a-mediated inhibition of CaV2 attenuates GABA release in hypothalamic neurons, a mechanism that could contribute to neuronal activation through the disinhibition of postsynaptic neurons. PMID:26283199

  16. Synthesis and electrochemical properties of Li2/3Ni1/3Mn2/3O2 as a novel 5 V class positive electrode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chiba, Kazuki; Shikano, Masahiro; Sakaebe, Hikari

    2016-02-01

    A lithium nickel manganese oxide, O3-Li2/3Ni1/3Mn2/3O2, is synthesized from the precursor, P3-Na2/3Ni1/3Mn2/3O2, by a Na+/Li+ ion exchange reaction using molten salt. Post-heating at 300, 400, 500, 600, and 700 °C is carried out for 5 h in air. The products are characterized by powder XRD, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), SEM, 6Li-magic-angle-spinning-NMR, and electrochemical measurements. The charge/discharge profiles of O3-Li2/3Ni1/3Mn2/3O2, thermally treated at 500 °C, show a high-potential plateau region at 4.8 V. Furthermore, sloping voltage profiles are observed at an average voltage of 3.21 V. An initial discharge capacity of 257 mA h g-1 is obtained between 2.0 and 4.8 V with a current density of 15 mA g-1 at 25 °C. This capacity corresponds to 0.90 electron transfers per formula unit. This study shows that Post-heating of O3-Li2/3Ni1/3Mn2/3O2 is effective to improve its electrochemical properties.

  17. Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiannan; Ma, Lin; Wang, Haoying; Zhao, Yanfeng; Zhang, Jian; Hu, Shaozheng

    2015-03-01

    Novel band gap-tunable K-Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV-vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.55 eV to -0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K-Na co-doping.

  18. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanti, Goutam Kumar, E-mail: goutamjnu@hotmail.com; Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the presentmore » study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.« less

  19. Constraining the astrophysical 23Mg(p, γ)24Al reaction rate using the 23Na(d,p)24Na reaction

    NASA Astrophysics Data System (ADS)

    Bennett, E. A.; Catford, W. N.; Christian, G.; Dede, S.; Hallam, S.; Lotay, G.; Ota, S.; Saastamoinen, A.; Wilkinson, R.

    2017-09-01

    The 23Mg(p, γ)24Al reaction provides an escape from the Ne-Na cycle in classical novae and is therefore important in understanding nova nucleosynthesis in the A > 20 mass range. Although several resonances may contribute to the overall rate at novae temperatures, the resonance at 475 keV is thought to be dominant. The strength of this resonance has been directly measured using a radioactive 23Mg beam impinging on a windowless H2 gas target; however, recent high-precision 24Al mass measurements have called this result into question. Here we make an indirect measurement using the 23Na(d,p)24Na reaction in inverse kinematics to study the mirror state of the 475 keV resonance in 24Na. The experiment, performed at the Texas A&M Cyclotron Institute, utilized the TIARA silicon array, four HPGe detectors, and the MDM spectrometer to measure the excited states of the 24Na nucleus. Preliminary results from the experiment will be presented along with progress from the ongoing analysis.

  20. Analysis of the v2, v4 Infrared Hot Bands and v1 CARS Spectrum of 34S16O3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Jeffrey B.; Chrysostom, Engelene; Masiello, Tony

    2003-04-01

    High-resolution (0.0015 cm-1) infrared spectroscopy has been used to study the 34S16O3 IR-active hot bands originating from the v2 and v4 bending mode levels and terminating in the states 2v2 (l=0), v2+v4 (l=+1), and 2v4 (1=0,+2). The upper states are strongly coupled via Fermi resonance and indirect Coriolis interactions to the v1 symmetric stretching mode levels that are only directly accessible from the ground state via a Raman-active transition. A Coherent anti-Stokes Raman (CARS) spectrum of v1 for 34S16O3 is presented which is dramatically different from the corresponding one for 32S16O3. From the infrared transitions, accurate rovibrational constants are deducedmore » for all the mixed states, leading to deperturbed values for v1, a1B, and a1C of 1064.920(84), 0.000 834 5 (54), and 0.000 410(11) cm-1 respectively. The uncertainties in the last digits are shown in parentheses and represent two standard deviations. These parameters reproduce the unresolved Q-branch contour of the C ARS spectrum very well. Various other rotational and vibrational parameters have been determined, leading to values of Be= 0.349 760 6(33) cm-1 and re= 141.734 70(68) pm, values that are identical (within experimental error) to those found for 32S16O3.« less

  1. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2

    NASA Astrophysics Data System (ADS)

    Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias

    2018-04-01

    The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.

  2. First investigations on the quaternary system Na2O-K2O-CaO-SiO2: synthesis and crystal structure of the mixed alkali calcium silicate K1.08Na0.92Ca6Si4O15

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Mayerl, Michael Jean-Philippe; Schmidmair, Daniela; Krüger, Hannes; Tribus, Martina

    2018-04-01

    In the course of an exploratory study on the quaternary system Na2O-K2O-CaO-SiO2 single crystals of the first anhydrous sodium potassium calcium silicate have been obtained from slow cooling of a melt in the range between 1250 and 1050 °C. Electron probe micro analysis suggested the following idealized molar ratios of the oxides for the novel compound: K2O:Na2O:CaO:SiO2 = 1:1:12:8 (or KNaCa6Si4O15). Single-crystal diffraction measurements on a crystal with chemical composition K1.08Na0.92Ca6Si4O15 resulted in the following basic crystallographic data: monoclinic symmetry, space group P 21/ c, a = 8.9618(9) Å, b = 7.3594(6) Å, c = 11.2453(11) Å, β= 107.54(1)°, V = 707.2(1) Å3, Z = 2. Structure solution was performed using direct methods. The final least-squares refinement converged at a residual of R(|F|) = 0.0346 for 1288 independent reflections and 125 parameters. From a structural point of view, K1.08Na0.92Ca6Si4O15 belongs to the group of mixed-anion silicates containing [Si2O7]- and [SiO4]-units in the ratio 1:2. The mono- and divalent cations occupy a total of four crystallographically independent positions located in voids between the tetrahedra. Three of these sites are exclusively occupied by calcium. The fourth site is occupied by 54(1)% K and 46%(1) Na, respectively. Alternatively, the structure can be described as a heteropolyhedral framework based on corner-sharing silicate tetrahedra and [CaO6]-octahedra. The network can build up from kröhnkite-like [Ca(SiO4)2O2]-chains running along [001]. A detailed comparison with other A2B6Si4O15-compounds including topological and group-theoretical aspects is presented.

  3. A Kinetic Characterization of the Gill (Na+, K+)-ATPase from the Semi-terrestrial Mangrove Crab Cardisoma guanhumi Latreille, 1825 (Decapoda, Brachyura).

    PubMed

    Farias, Daniel L; Lucena, Malson N; Garçon, Daniela P; Mantelatto, Fernando L; McNamara, John C; Leone, Francisco A

    2017-10-01

    We provide a kinetic characterization of (Na + , K + )-ATPase activity in a posterior gill microsomal fraction from the semi-terrestrial mangrove crab Cardisoma guanhumi. Sucrose density gradient centrifugation reveals two distinct membrane fractions showing considerable (Na + , K + )-ATPase activity, but also containing other microsomal ATPases. The (Na + , K + )-ATPase, notably immuno-localized to the apical region of the epithelial pillar cells, and throughout the pillar cell bodies, has an M r of around 110 kDa and hydrolyzes ATP with V M  = 146.8 ± 6.3 nmol Pi min -1  mg protein -1 and K M  = 0.05 ± 0.003 mmol L -1 obeying Michaelis-Menten kinetics. While stimulation by Na + (V M  = 139.4 ± 6.9 nmol Pi min -1  mg protein -1 , K M  = 4.50 ± 0.22 mmol L -1 ) also follows Michaelis-Menten kinetics, modulation of (Na + , K + )-ATPase activity by MgATP (V M  = 136.8 ± 6.5 nmol Pi min -1 mg protein -1 , K 0.5  = 0.27 ± 0.04 mmol L -1 ), K + (V M  = 140.2 ± 7.0 nmol Pi min -1 mg protein -1 , K 0.5  = 0.17 ± 0.008 mmol L -1 ), and NH 4 + (V M  = 149.1 ± 7.4 nmol Pi min -1 mg protein -1 , K 0.5  = 0.60 ± 0.03 mmol L -1 ) shows cooperative kinetics. Ouabain (K I  = 52.0 ± 2.6 µmol L -1 ) and orthovanadate (K I  = 1.0 ± 0.05 µmol L -1 ) inhibit total ATPase activity by around 75%. At low Mg 2+ concentrations, ATP is an allosteric modulator of the enzyme. This is the first study to provide a kinetic characterization of the gill (Na + , K + )-ATPase in C. guanhumi, and will be useful in better comprehending the biochemical underpinnings of osmoregulatory ability in a semi-terrestrial mangrove crab.

  4. An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na+-Activated K+ Channels in Aplysia Neurons.

    PubMed

    Zhang, Yalan; Ni, Weiming; Horwich, Arthur L; Kaczmarek, Leonard K

    2017-02-22

    Mutations that alter levels of Slack (KCNT1) Na + -activated K + current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica , a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na + from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na + -activated K + channels in neurons. SIGNIFICANCE STATEMENT Slack Na + -activated K + channels (KCNT1, K Na 1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal

  5. Na8Au9.8(4)Ga7.2 and Na17Au5.87(2)Ga46.63: The diversity of pseudo 5-fold symmetries in the Na-Au-Ga system

    NASA Astrophysics Data System (ADS)

    Smetana, Volodymyr; Corbett, John D.; Miller, Gordon J.

    2013-11-01

    The Na-rich part (~30% Na) of the Na-Au-Ga system between NaAu2, NaGa4, and Na22Ga39 has been found to contain the ternary phases Na8Au9.8(4)Ga7.2 (I) and Na17Au5.87(2)Ga46.63 (II), according to the results of single crystal X-ray diffraction measurements. I is orthorhombic, Cmcm, a=5.3040(1), b=24.519(5), c=14.573(3) Å, and contains a network of clusters with local 5-fold symmetry along the a-axis. Such clusters are frequent building units in decagonal quasicrystals and their approximants. II is rhombohedral, R3¯m, a=16.325(2), c=35.242(7) Å, and contains building blocks that are structurally identical to the Bergman-type clusters as well as fused icosahedral units known with active metals, triels and late transition elements. II also contains a polycationic network with elements of the clathrate V type structure. Tight-binding electronic structure calculations using linear muffin-tin-orbital (LMTO) methods on idealized models of I and II indicate that both compounds are metallic with evident pseudogaps at the corresponding Fermi levels. The overall Hamilton bond populations are generally dominated by Au-Ga and Au-Au bonds in I and by Ga-Ga bonds in II; moreover, the Na-Au and Na-Ga contributions in I are unexpectedly large, ~20% of the total. A similar involvement of sodium in covalent bonding has also been found in the electron-richer i-Na13Au12Ga15 quasicrystal approximant.

  6. Rotationally inelastic collisions of He and Ar with NaK: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Richter, K.; Price, T.; Jones, J.; Faust, C.; Hickman, A. P.; Huennekens, J.; Malenda, R. F.; Ross, A. J.; Crozet, P.

    2014-05-01

    Rotationally inelastic collisions of NaK (A1Σ+) molecules with He and Ar have been studied. At Lehigh, we use a pump-probe scheme (the probe is scanned over transitions to the 31 Π state) with either polarization labeling (PL) or laser-induced fluorescence (LIF) spectroscopy. At Lyon, one-laser excitation is used with Fourier Transform (FT) fluorescence spectroscopy. In both cases, the pump laser excites a particular ro-vibrational level A1Σ+ (v , J). We observe strong direct lines corresponding to transitions from the (v , J) level pumped, and weak satellite lines corresponding to transitions from collisionally-populated levels (v ,J' = J + ΔJ). The ratios of satellite to direct line intensities in LIF and PL yield information about population and orientation transfer. A strong propensity for ΔJ = even transitions is observed for both He and Ar perturbers. In the FT fluorescence experiment we also observe v changing collisions. Theoretical calculations are also underway for collisions in both the A1Σ+ and X1Σ+ states. For He-NaK we have calculated potential surfaces using GAMESS and carried out coupled channel scattering calculations of transfer of population, orientation, and alignment. Work supported by NSF, XSEDE and CNRS (PICS).

  7. Chromospheric activity on the late-type star V1355 Ori using Lijiang 1.8-m and 2.4-m telescopes

    NASA Astrophysics Data System (ADS)

    Pi, Qing-Feng; Zhang, Li-Yun; Chang, Liang; Han, Xian-Ming; Lu, Hong-Peng; Zhang, Xi-Liang; Wang, Dai-Mei

    2016-10-01

    We obtained new high-resolution spectra using the Lijiang 1.8-m and 2.4-m telescopes to investigate the chromospheric activities of V1355 Ori as indicated in the behaviors of Ca ii H&K, Hδ, Hγ, Hβ, Na i D1, D2, Hα and Ca ii infrared triplet (IRT) lines. The observed spectra show obvious emissions above the continuum in Ca ii H&K lines, absorptions in the Hδ, Hγ, Hβ and Na i D1, D2 lines, variable behavior (filled-in absorption, partial emission with a core absorption component or emission above the continuum) in the Hα line, and weak self-reversal emissions in the strong filled-in absorptions of the Ca ii IRT lines. We used a spectral subtraction technique to analyze our data. The results show no excess emission in the Hδ and Hγ lines, very weak excess emissions in the Na i D1, D2 lines, excess emission in the Hβ line, clear excess emission in the Hα line, and excess emissions in the Ca ii IRT lines. The value of the ratio of EW8542/EW8498 is in the range 0.9 to 1.7, which implies that chromospheric activity might have been caused by plage events. The value of the ratio E Hα/E Hβ is above 3, indicating that the Balmer lines would arise from prominence-like material. We also found time variations in light curves associated with equivalent widths of chromospheric activity lines in the Na i D1, D2, Ca ii IRT and Hα lines in particular. These phenomena can be explained by plage events, which are consistent with the behavior of chromospheric activity indicators.

  8. Determination of fracture toughness of calcium phosphate coatings deposited onto Ti6Al4V substrate by using indentation technique

    NASA Astrophysics Data System (ADS)

    Aydin, Ibrahim; Cetinel, Hakan; Pasinli, Ahmet

    2012-09-01

    In this study, fracture toughness values of calcium phosphate (CaP) coatings deposited onto Ti6Al4V substrate were determined by using Vickers indentation method. In this new patent holding method, the activation processes were performed with NaOH and NaOH+H2O2 on the Ti6Al4V material surface. Thicknesses of CaP coatings were measured from cross-sections of the samples by using optical microscopy. Vickers indentation tests were performed by using microhardness tester. Young's modulus values of the coatings were determined by using ultra microhardness tester. As a result, fracture toughness (K1C) values of the CaP coatings produced by using two different activation processes, were calculated by using experimental study results. These were found to be 0.43 MPa m1/2 and 0.39 MPa m1/2, respectively. It was determined that the CaP coating on Ti6Al4V activated by NaOH+H2O2 had higher fracture toughness than the CaP coating on Ti6Al4V activated by NaOH.

  9. Structural and electrochemical properties of Fe-doped Na2Mn3-xFex(P2O7)2 cathode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Huatao; Zhao, Yanming; Zhang, Hui; Lian, Xin; Dong, Youzhong; Kuang, Quan

    2017-12-01

    A series of Fe-doped Na2Mn3-xFex(P2O7)2 (x = 0.0, 0.5, 1.0, 1.5 and 2.0) compounds have been successfully prepared by using sol-gel method. Rietveld refinement results indicate that single phase Na2Mn3-xFex(P2O7)2 with triclinic structure can be obtained within 0 ≤ x ≤ 2 although no Na2Fe3(P2O7)2 existing under our experimental conditions, and the cell parameters (including a, b, c and V) are decreasing with the increasing of x. Our results reveal that Na2Mn3(P2O7)2 exhibits an electrochemical activity in the voltage range of 1.5 V-4.5 V vs. Na+/Na when using as the cathode material for SIBs although it gives a limited rate capability and poor capacity retention. However, the electrochemical performance of Fe-doped Na2Mn3-xFex(P2O7)2 (0 ≤ x ≤ 2) can be improved significantly where cycle performance and rate capability can be improved significantly than that of the pristine one. Sodium ion diffusion coefficient can be increased by about two orders of magnitude with the Fe-doping content higher than x = 0.5.

  10. ECO2N V2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Spycher, Nicolas; Doughty, Christine

    2015-02-01

    ECO2N V2.0 is a fluid property module for the TOUGH2 simulator (Version 2.1) that was designed for applications to geologic sequestration of CO2 in saline aquifers and enhanced geothermal reservoirs. ECO2N V2.0 is an enhanced version of the previous ECO2N V1.0 module (Pruess, 2005). It expands the temperature range up to about 300oC whereas V1.0 can only be used for temperatures below about 110oC. V2.0 includes a comprehensive description of the thermodynamic and thermophysical properties of H2O - NaCl - CO2 mixtures, that reproduces fluid properties largely within experimental error for the temperature, pressure and salinity conditions 10 °C NaCl and CO2 among the different phases. In particular, V2.0 accounts for the effects of water on the thermophysical properties of the CO2-rich phase, which was ignored in V1.0, using a model consistent with the solubility models developed by Spycher and Pruess (2005, 2010). In terms of solubility models, V2.0 uses the same model for partitioning of mass components among the different phases (Spycher and Pruess, 2005) as V1.0 for the low temperature range (<99oC) but uses a new model (Spycher and Pruess, 2010) for the high temperature range (>109oC). In the transition range (99-109oC), a smooth interpolation is applied to estimate the partitioning as a function of the temperature. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO2-rich) phase, as well as two-phase (brine-CO2) mixtures. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. Note that the model cannot be applied to subcritical conditions that involves both liquid and gaseous CO2

  11. Effects of PKA phosphorylation on the conformation of the Na,K-ATPase regulatory protein FXYD1

    PubMed Central

    Teriete, Peter; Thai, Khang; Choi, Jungyuen; Marassi, Francesca M.

    2009-01-01

    FXYD1 (phospholemman) is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the Na,K-ATPase enzyme complex in specific tissues and specific physiological states. In heart and skeletal muscle sarcolemma, FXYD1 is also the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinase A and by protein kinase C, which phosphorylate the protein at conserved Ser residues in its cytoplasmic domain, altering its Na,K-ATPase regulatory activity. FXYD1 adopts an L-shaped α-helical structure with the transmembrane helix loosely connected to a cytoplasmic amphipathic helix that rests on the membrane surface. In this paper we describe NMR experiments showing that neither PKA phosphorylation at Ser68 nor the physiologically relevant phosphorylation mimicking mutation Ser68Asp induces major changes in the protein conformation. The results, viewed in light of a model of FXYD1 associated with the Na,K-ATPase α and β subunits, indicate that the effects of phosphorylation on the Na,K-ATPase regulatory activity of FXYD1 could be due primarily to changes in electrostatic potential near the membrane surface and near the Na+/K+ ion binding site of the Na,K-ATPase α subunit. PMID:19761758

  12. Vibrational wave packet dynamics in NaK: The A 1Σ+ state

    NASA Astrophysics Data System (ADS)

    Andersson, L. Mauritz; Karlsson, Hans O.; Goscinski, Osvaldo; Berg, Lars-Erik; Beutter, Matthias; Hansson, Tony

    1999-02-01

    A combined experimental and theoretical study of the vibrational wave packet dynamics for the NaK molecule in the A 1Σ+ state is presented. The experiment utilises a 790 nm one-colour femtosecond pump-probe scheme with detection of a previously not reported dissociation pathway of the 3 1Π+ state, leading to the Na(3p)+K(4s) product channel. The dissociation is suggested to proceed via either collisionally mediated processes or a molecular cascading process via the 4 1Σ+ state, which crosses several states correlating to the Na(3p)+K(4s) limit. Time-dependent quantum mechanical calculations are used for studying the dynamics in detail. Simulations are performed both for 790 nm and for 766 nm, to relate also to earlier studies. The previous interpretations of the probe processes are revised. Inclusion of vibrational and rotational temperature effects are shown to be crucial for explaining the shape of the signal and the vibrational period, and leads to excellent agreement with the experiments.

  13. Immunohistochemical analyses of alpha1 and alpha3 Na+/K+-ATPase subunit expression in medulloblastomas.

    PubMed

    Suñol, Mariona; Cusi, Victoria; Cruz, Ofelia; Kiss, Robert; Lefranc, Florence

    2011-03-01

    The levels of expression of the α1 and α3 subunits of the Na(+)/K(+)-ATPase (the NaK sodium pump) in medulloblastomas are unclear. This study investigated the expression of the NaK subunits using immunohistochemical methods in 29 medulloblastomas including 23 classic, three large-cell/anaplastic and three nodular/desmoplastic medulloblastomas, as well as in three atypical teratoid/rhabdoid tumors (AT/RTs). There was overexpression of the α1 or α3 NaK subunits in more than half of the medulloblastomas and atypical AT/RTs, with about one-third of these tumours displaying overexpression of both subunits. These preliminary data suggest that targeting these subunits in AT/RTs and medulloblastomas that overexpress these proteins may lead to therapeutic benefit. These findings warrant confirmation in larger numbers of patients than those used in this study. Moreover, it should be determined whether inhibition of the α1/α3 NaK subunits can be integrated into the risk stratification schemes already in use for medulloblastoma patients.

  14. Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures

    NASA Astrophysics Data System (ADS)

    Gröting, Melanie; Albe, Karsten

    2014-02-01

    In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

  15. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  16. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGES

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  17. Determination of neutron spectra within the energy of 1 keV to 1 MeV by means of reactor dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergeyeva, Victoria; Destouches, Christophe; Lyoussi, Abdallah

    2015-07-01

    The standard procedure for neutron reactor dosimetry is based on neutron irradiation of a target and its post-irradiation analysis by Gamma and/or X-ray spectrometry. Nowadays, the neutron spectra can be easily characterized for thermal and fast energies (respectively 0.025 eV and >1 MeV). In this work we propose a new target and an innovating post-irradiation technique of analysis in order to detect the neutron spectra within the energy of 1 keV to 1 MeV. This article will present the calculations performed for the selection of a suitable nuclear reaction and isotope, the results predicted by simulations, the irradiation campaign thatmore » is proposed and the post-irradiation technique of analysis. (authors)« less

  18. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity.

    PubMed

    Fruscione, Floriana; Valente, Pierluigi; Sterlini, Bruno; Romei, Alessandra; Baldassari, Simona; Fadda, Manuela; Prestigio, Cosimo; Giansante, Giorgia; Sartorelli, Jacopo; Rossi, Pia; Rubio, Alicia; Gambardella, Antonio; Nieus, Thierry; Broccoli, Vania; Fassio, Anna; Baldelli, Pietro; Corradi, Anna; Zara, Federico; Benfenati, Fabio

    2018-04-01

    See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article.Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of voltage

  19. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity

    PubMed Central

    Fruscione, Floriana; Valente, Pierluigi; Sterlini, Bruno; Romei, Alessandra; Baldassari, Simona; Fadda, Manuela; Prestigio, Cosimo; Giansante, Giorgia; Sartorelli, Jacopo; Rossi, Pia; Rubio, Alicia; Gambardella, Antonio; Nieus, Thierry; Broccoli, Vania; Fassio, Anna; Baldelli, Pietro; Corradi, Anna; Zara, Federico

    2018-01-01

    Abstract See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article. Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of

  20. Excitation functions for 7Be, 22,24Na production in Mg and Al by deuteron irradiations up to 50 MeV.

    PubMed

    Hermanne, A; Takács, S; Tárkányi, F; Adam-Rebeles, R; Ignatyuk, A

    2012-12-01

    New experimental data for production of (7)Be and (22,24)Na in deuteron irradiation of (nat)Mg and Al up to 50 MeV are presented. The induced activity, measured with HPGe spectroscopy, allows us to determine excitation functions of (nat)Mg(d,x) and (27)Al(d,x) reactions involved in the activation process with reference to (nat)Ti(d,x)(48)V monitor cross sections. A comparison with experimental literature values and results from updated theoretical codes is discussed. Thick target yields were derived from fits to our cross-sections and integrated personnel dose was calculated for different irradiation cycles and exposure scenarios around high power deuteron accelerator facilities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Global Carbon Project: the 2014 Global Carbon Budget (V.1.0, issued Sept. 2014 and V.1.1, issued May 2015)

    DOE Data Explorer

    Le Quere, C. [University of East Anglia, Norwich UK; Moriarty, R. [University of East Anglia, Norwich UK; Andrew, R. M. [Univ. of Oslo (Norway); Peters, G. P. [Univ. of Oslo (Norway); Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), Carbon Dioxide Information Analysis Center (CDIAC)

    2014-01-01

    The GCP provides an annual report of carbon dioxide emissions, land and ocean sinks and accumulation in the atmosphere, incorporating data from multiple research institutes from around the world. More information can be found at www.globalcarbonproject.org/carbonbudget. Each year's Global Carbon Budget is a collaborative effort of the global carbon cycle science community coordinated by the Global Carbon Project. The landing page for this dataset includes links to the 2014 report, V. 1.0, issued Sept2014 and V.1.1, issued May 2015. Many links to older years versions are also available from this landing page.

  2. Tributyltin sensitivity of vacuolar-type Na(+)-transporting ATPase from Enterococcus hirae.

    PubMed

    Chardwiriyapreecha, Soracom; Inoue, Tomohiro; Sugimoto, Naoko; Sekito, Takayuki; Yamato, Ichiro; Murata, Takeshi; Homma, Michio; Kakinuma, Yoshimi

    2009-10-01

    Tributyltin chloride (TBT), an environmental pollutant, is toxic to a variety of eukaryotic and prokaryotic organisms. Some members of F-ATP synthase (F-ATPase)/vacuolar type ATPase (V-ATPase) superfamily have been identified as the molecular target of this compound. TBT inhibited the activities of H(+)-transporting or Na(+)-transporting F-ATPase as well as H(+)-transporting V-ATPase originated from various organisms. However, the sensitivity to TBT of Na(+)-transporting V-ATPase has not been investigated. We examined the effect of TBT on Na(+)-transporting V-ATPase from an eubacterium Enterococus hirae. The ATP hydrolytic activity of E. hirae V-ATPase in purified form as well as in membrane-bound form was little inhibited by less than 10 microM TBT; IC50 for TBT inhibition of purified enzyme was estimated to be about 35 microM. Active sodium transport by E. hirae cells, indicating the in vivo activity of this V-ATPase, was not inhibited by 20 microM TBT. By contrast, IC50 of H(+)-transporting V-ATPase of the vacuolar membrane vesicles from Saccharomyces cerevisiae was about 0.2 microM. E. hirae V-ATPase is thus extremely less sensitive to TBT.

  3. Double-push skating versus V2 and V1 skating on uphill terrain in cross-country skiing.

    PubMed

    Stöggl, Thomas; Kampel, Wolfgang; Müller, Erich; Lindinger, Stefan

    2010-01-01

    The aims of the study were a) to compare the double-push skating technique with the V2 and the V1 skating techniques on an uphill terrain by a kinematic and kinetic analysis, b) to provide kinetic and kinematic data of the V1 technique at maximal skiing speeds, and c) to test the hypotheses that the double-push skating technique is faster compared with the V2 and the V1 skating techniques. Six elite skiers performed maximum speed sprints over a 60-m uphill section (7 degrees -10 degrees) using the double-push, the V2, and the V1 techniques. Pole and plantar forces and cycle characteristics were analyzed. The double-push skating technique was approximately 4.3% faster (P < 0.05) compared with the V2 skating technique and equally fast compared with the V1 skating technique. The double-push and the V2 techniques demonstrated longer cycle lengths, lower cycle rates (both P < 0.05), and equal poling frequencies and pole forces compared with the V1 technique. Cycle length, peak foot force, and knee extension ranges of motion and velocities were higher in the double-push technique compared with the V2 technique (all P values <0.05). Center of pressure was located more laterally in the double-push technique compared with the other two techniques (P < 0.05). All measured skiing speeds were drastically higher compared with former studies. The higher skiing speeds of the V1 and the double-push techniques compared with the V2 technique stress the mechanical advantage of those techniques on uphill terrain. Because of larger cycle lengths, lower cycle rate, longer recovery times, and equal poling frequency, the double-push technique might be seen as more economic on steep uphills compared with the V1 technique. From a tactical point of view compared with the V1 technique, the double-push technique needs less space due to less lateral displacement, and no technique transitions are necessary when entering and leaving an uphill section.

  4. Masking interrupts figure-ground signals in V1.

    PubMed

    Lamme, Victor A F; Zipser, Karl; Spekreijse, Henk

    2002-10-01

    In a backward masking paradigm, a target stimulus is rapidly (<100 msec) followed by a second stimulus. This typically results in a dramatic decrease in the visibility of the target stimulus. It has been shown that masking reduces responses in V1. It is not known, however, which process in V1 is affected by the mask. In the past, we have shown that in V1, modulations of neural activity that are specifically related to figure-ground segregation can be recorded. Here, we recorded from awake macaque monkeys, engaged in a task where they had to detect figures from background in a pattern backward masking paradigm. We show that the V1 figure-ground signals are selectively and fully suppressed at target-mask intervals that psychophysically result in the target being invisible. Initial response transients, signalling the features that make up the scene, are not affected. As figure-ground modulations depend on feedback from extrastriate areas, these results suggest that masking selectively interrupts the recurrent interactions between V1 and higher visual areas.

  5. Effect of Alkali Metal Cations on Slow Inactivation of Cardiac Na+ Channels

    PubMed Central

    Townsend, Claire; Horn, Richard

    1997-01-01

    Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate. PMID:9234168

  6. 239Pu(n,γ) from 10 eV to 1.3 MeV

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Kawano, T.; Ullmann, J.; Henderson, R. A.; Wu, C. Y.

    2018-02-01

    The 239Pu(n,γ) cross section has been measured from 10 eV to 1.3 MeV as part of an experimental campaign using the Detector for Advanced Neutron Capture Experiments (DANCE). The work represents a significant advance in experimental technique, with improved systematic uncertainties in key regions in the keV to MeV regime. In general the results of prior work are confirmed with improved uncertainties, particularly at the highest incident neutron energies.

  7. Honeycomb-Ordered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) as High-Voltage Layered Cathodes for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng -Fei; Guo, Yu -Jie; Duan, Hui

    Developing high-voltage layered cathodes for sodium-ion batteries (SIBs) has always been a severe challenge. Herein, a new family of honeycomb-layered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) with a monoclinic superstructure has been shown to combine good Na + (de)intercalation activity with a competitive 3.3 V high voltage. By coupling the electrochemical process with ex situ X-ray absorption spectroscopy as well as in situ X-ray diffraction, the charge compensation mechanism and structural evolution of these new cathodes are clearly investigated. Interestingly, both Ni 2+/Ni 3+ and Cu 2+/Cu 3+ participate in the redox reaction upon cycling,more » and the succession of single-phase, two-phase, or three-phase regions upon Na+ extraction/insertion were identified with rather good accuracy. Furthermore, this research strategy could provide insights into the structure–function–property relationships on a new series of honeycomb-ordered materials with the general formula Na 3Ni 1.5M 0.5BiO 6 and also serve as a bridge to guide future design of high-performance cathodes for SIBs.« less

  8. Honeycomb-Ordered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) as High-Voltage Layered Cathodes for Sodium-Ion Batteries

    DOE PAGES

    Wang, Peng -Fei; Guo, Yu -Jie; Duan, Hui; ...

    2017-11-01

    Developing high-voltage layered cathodes for sodium-ion batteries (SIBs) has always been a severe challenge. Herein, a new family of honeycomb-layered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) with a monoclinic superstructure has been shown to combine good Na + (de)intercalation activity with a competitive 3.3 V high voltage. By coupling the electrochemical process with ex situ X-ray absorption spectroscopy as well as in situ X-ray diffraction, the charge compensation mechanism and structural evolution of these new cathodes are clearly investigated. Interestingly, both Ni 2+/Ni 3+ and Cu 2+/Cu 3+ participate in the redox reaction upon cycling,more » and the succession of single-phase, two-phase, or three-phase regions upon Na+ extraction/insertion were identified with rather good accuracy. Furthermore, this research strategy could provide insights into the structure–function–property relationships on a new series of honeycomb-ordered materials with the general formula Na 3Ni 1.5M 0.5BiO 6 and also serve as a bridge to guide future design of high-performance cathodes for SIBs.« less

  9. Photoionisation of molecular wavepackets - the NaK( C1Σ +) case

    NASA Astrophysics Data System (ADS)

    Andersson, Renée; Kadi, Malin; Davidsson, Jan; Hansson, Tony

    2002-01-01

    The ultrafast photoionisation dynamics of NaK molecules in the C(3) 1Σ + state is investigated by pump-probe spectroscopy. The results are consistent with decreasing electronic transition dipole moment for photoionisation of the C state with increasing internuclear separation, due to increasing Na +K - ion pair character of the C state at the outer turning point of the wavepacket trajectory. Effects of a possible low-lying superexcited state cannot be ruled out, though, and in general future studies on ultrafast photoionisation processes need to address in more detail such effects.

  10. Calorimetric measurements on Li4C60 and Na4C60

    NASA Astrophysics Data System (ADS)

    Inaba, Akira; Miyazaki, Yuji; Michałowski, Paweł P.; Gracia-Espino, Eduardo; Sundqvist, Bertil; Wâgberg, Thomas

    2015-04-01

    We show specific heat data for Na4C60 and Li4C60 in the range 0.4-350 K for samples characterized by Raman spectroscopy and X-ray diffraction. At high temperatures, the two different polymer structures have very similar specific heats both in absolute values and in general trend. The specific heat data are compared with data for undoped polymeric and pristine C60. At high temperatures, a difference in specific heat between the intercalated and undoped C60 polymers of 100 J K-1 mol-1 is observed, in agreement with the Dulong-Petit law. At low temperatures, the specific heat data for Li4C60 and Na4C60 are modified by the stiffening of vibrational and librational molecular motion induced by the polymer bonds. The covalent twin bonds in Li4C60 affect these motions to a somewhat higher degree than the single intermolecular bonds in Na4C60. Below 1 K, the specific heats of both materials become linear in temperature, as expected from the effective dimensionality of the structure. The contribution to the total specific heat from the inserted metal ions can be well described by Einstein functions with TE = 386 K for Li4C60 and TE = 120 K for Na4C60, but for both materials we also observe a Schottky-type contribution corresponding to a first approximation to a two-level system with ΔE = 9.3 meV for Li4C60 and 3.1 meV for Na4C60, probably associated with jumps between closely spaced energy levels inside "octahedral-type" ionic sites. Static magnetic fields up to 9 T had very small effects on the specific heat below 10 K.

  11. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1.

    PubMed

    Vallon, Volker; Schroth, Jana; Lang, Florian; Kuhl, Dietmar; Uchida, Shinichi

    2009-09-01

    The Na-Cl cotransporter NCC is expressed in the distal convoluted tubule, activated by phosphorylation, and has been implicated in renal NaCl and K(+) homeostasis. The serum and glucocorticoid inducible kinase 1 (SGK1) contributes to renal NaCl retention and K(+) excretion, at least in part, by stimulating the epithelial Na(+) channel and Na(+)-K(+)-ATPase in the downstream segments of aldosterone-sensitive Na(+)/K(+) exchange. In this study we confirmed in wild-type mice (WT) that dietary NaCl restriction increases renal NCC expression and its phosphorylation at Thr(53), Thr(58), and Ser(71), respectively. This response, however, was attenuated in mice lacking SGK1 (Sgk1(-/-)), which may contribute to impaired NaCl retention in those mice. Total renal NCC expression and phosphorylation at Thr(53), Thr(58), and Ser(71) in WT were greater under low- compared with high-K(+) diet. This finding is consistent with a regulation of NCC to modulate Na(+) delivery to downstream segments of Na(+)/K(+) exchange, thereby modulating K(+) excretion. Dietary K(+)-dependent variation in renal expression of total NCC and phosphorylated NCC were not attenuated in Sgk1(-/-) mice. In fact, high-K(+) diet-induced NCC suppression was enhanced in Sgk1(-/-) mice. The hyperkalemia induced in Sgk1(-/-) mice by a high-K(+) diet may have augmented NCC suppression, thereby increasing Na(+) delivery and facilitating K(+) excretion in downstream segments of impaired Na(+)/K(+) exchange. In summary, changes in NaCl and K(+) intake altered NCC expression and phosphorylation, an observation consistent with a role of NCC in NaCl and K(+) homeostasis. The two maneuvers dissociated plasma aldosterone levels from NCC expression and phosphorylation, implicating additional regulators. Regulation of NCC expression and phosphorylation by dietary NaCl restriction appears to involve SGK1.

  12. Optical and Luminescence Properties of β-NaFeO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Sarbjit; Tangra, Ankush Kumar; Lotey, Gurmeet Singh

    2018-05-01

    β-NaFeO2 nanoparticles have been synthesized by sol-gel method and their morphological, structural and optical properties investigated. Transmission electron microscope study reveals that the size of the synthesis nanoparticles is 37 nm and they are possessing spherical symmetry. X-ray diffraction pattern shows the orthorhombic crystal structure of nanoparticles with space group Pn21 a. UV-visible spectra of β-NaFeO2 divulges that these nanoparticles have direct band gap 2.35 eV. The observed Fourier transform infrared spectroscopy spectra confirms the presence of Fe-Na bonding at 1074 cm-1. The photoluminescence study of these nanoparticles shows that these nanoparticles possesses various transition in the visible spectrum.

  13. Multichannel modeling and two-photon coherent transfer paths in NaK

    NASA Astrophysics Data System (ADS)

    Schulze, T. A.; Temelkov, I. I.; Gempel, M. W.; Hartmann, T.; Knöckel, H.; Ospelkaus, S.; Tiemann, E.

    2013-08-01

    We explore possible pathways for the creation of ultracold polar NaK molecules in their absolute electronic and rovibrational ground state starting from ultracold Feshbach molecules. In particular, we present a multichannel analysis of the electronic ground and K(4p)+Na(3s) excited-state manifold of NaK, analyze the spin character of both the Feshbach molecular state and the electronically excited intermediate states and discuss possible coherent two-photon transfer paths from Feshbach molecules to rovibronic ground-state molecules. The theoretical study is complemented by the demonstration of stimulated Raman adiabatic passage from the X1Σ+(v=0) state to the a3Σ+ manifold on a molecular beam experiment.

  14. TOUGH3 v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PAU, GEORGE; JUNG, YOOJIN; FINSTERLE, STEFAN

    2016-09-14

    TOUGH3 V1.0 capabilities to simulate multi-dimensional, multi-phase, multi-component, non-isothermal flow and transport in fractured porous media, with applications geosciences and reservoir engineering and other application areas. TOUGH3 V1.0 supports a number of different combinations of fluids and components (updated equation-of-state (EOS) modules from previous versions of TOUGH, including EOS1, EOS2, EOS3, EOS4, EOS5, EOS7, EOS7R, EOS7C, EOS7CA, EOS8, EOS9, EWASG, TMVOC, ECO2N, and ECO2M). This upgrade includes (a) expanded list of updated equation-of-state (EOS) modules, (b) new hysteresis models, (c) new implementation of parallel and solver functionalities, (d) new linear solver options based on PETSc libraries, (e) new automatic buildmore » system that automatically downloads and builds third-party libraries and TOUGH3, (f) new printout in CSV format, (g) dynamic memory allocation, (h) various user features, and (i) bug fixes.« less

  15. Threshold oxygen levels in Na(I) for the formation of NaCrO 2(s) on 18-8 stainless steels from accurate thermodynamic measurements

    NASA Astrophysics Data System (ADS)

    Sreedharan, O. M.; Madan, B. S.; Gnanamoorthy, J. B.

    1983-12-01

    The compound NaCrO 2(s) is an important corrosion product in sodium-cooled LMFBRs. The standard Gibbs energy of formation of NaCrO 2(s) is required for the computation of threshold oxygen levels in Na(1) for the formation of NaCrO 2(s) on 18-8 stainless steels. For this purpose the emf of the galvanic cell: Pt, NaCrO 2, Cr 2O 3, Na 2CrO 4/15 YSZ/O 2 ( P O 2 = 0.21 atm, air), Pt was measured over 784-1012 K to be: (E±4.4)(mV) = 483.67-0.34155 T(K). From this, the standard Gibbs energy of formation of NaCrO 2(s) from the elements ( ΔG f,T0) and from the oxides ( ΔG f,OX,T0) was calculated to be: [ΔG f,T0(NaCrO 2, s)±1.86] (kJ/mol) =-869.98 + 0.18575 T(K) , [ΔG f,OX,T0(NaCr0 2, s)±4.8] (kJ/mol) = -104.25-0.00856 T(K) . The molar heat capacity, C P0, of NaCrO 2(s) was measured by DSC to be (350-600 K): C P0(NaCrO 2, s) (J/K mol) = 27.15 + 0.1247 T (K) , From these data, values of -99.3 kJ/mol and 91.6 J/K mol were computed for ΔH f,2980 and S 2980 of NaCrO 2(s). The internal consistency was checked with the use of enthalpy data on Na 2CrO 4(s). From the standard Gibbs energy of formation of NaCrO 2(s) the equation logC 0(wppm) = 3.9905-3147.6 T(K) was derived, where C 0 is the threshold oxygen level for the formation of NaCrO 2(s) on 18-8 stainless steels.

  16. HIV-1 drug resistance genotyping from antiretroviral therapy (ART) naïve and first-line treatment failures in Djiboutian patients.

    PubMed

    Elmi Abar, Aden; Jlizi, Asma; Darar, Houssein Youssouf; Kacem, Mohamed Ali Ben Hadj; Slim, Amine

    2012-10-08

    In this study we report the prevalence of antiretroviral drug resistant HIV-1 genotypes of virus isolated from Djiboutian patients who failed first-line antiretroviral therapy (ART) and from ART naïve patients. A total of 35 blood samples from 16 patients who showed first-line ART failure (>1000 viral genome copies/ml) and 19 ART-naïve patients were collected in Djibouti from October 2009 to December 2009. Both the protease (PR) and reverse transcriptase (RT) genes were amplified and sequenced using National Agency for AIDS Research (ANRS) protocols. The Stanford HIV database algorithm was used for interpretation of resistance data and genotyping. Among the 16 patients with first-line ART failure, nine (56.2%) showed reverse transcriptase inhibitor-resistant HIV-1 strains: two (12.5%) were resistant to nucleoside (NRTI), one (6.25%) to non-nucleoside (NNRTI) reverse transcriptase inhibitors, and six (37.5%) to both. Analysis of the DNA sequencing data indicated that the most common mutations conferring drug resistance were M184V (38%) for NRTI and K103N (25%) for NNRTI. Only NRTI primary mutations K101Q, K103N and the PI minor mutation L10V were found in ART naïve individuals. No protease inhibitor resistant strains were detected. In our study, we found no detectable resistance in ∼ 44% of all patients who experienced therapeutic failure which was explained by low compliance, co-infection with tuberculosis and malnutrition. Genotyping revealed that 65.7% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. The results of this first study about drug resistance mutations in first-line ART failures show the importance of performing drug resistance mutation test which guides the choice of a second-line regimen. This will improve the management of HIV-infected Djiboutian patients. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2051206212753973.

  17. Human parainfluenza virus type 2 V protein inhibits caspase-1.

    PubMed

    Ohta, Keisuke; Matsumoto, Yusuke; Nishio, Machiko

    2018-04-01

    The multifunctional V protein of human parainfluenza virus type 2 (hPIV2) plays important roles in controlling viral genome replication, inhibiting the host interferon response and promoting virus growth. We screened a yeast two-hybrid library using V protein as bait to identify host factors that are important for other functions of V. One of several positive clones isolated from HeLa cell-derived cDNA library encodes caspase-1. We found that the C-terminal region of V interacts with the C-terminal region of caspase-1 in mammalian cells. Moreover, the V protein repressed caspase-1 activity and the formation of interleukin-1β (IL-1β) in a dose-dependent manner. IL-1β secretion induced by wild-type hPIV2 infection in human monocytic THP-1 cells was significantly lower than that induced by recombinant hPIV2 lacking V protein or having a mutant V. These data suggest that hPIV2 V protein inhibits caspase-1-mediated maturation of IL-1β via its interaction with caspase-1.

  18. 239Pu(n,γ) from 10 eV to 1.3 MeV

    DOE PAGES

    Mosby, Shea Morgan; Bredeweg, Todd Allen; Couture, Aaron Joseph; ...

    2018-02-01

    In this study, the 239Pu(n,γ) cross section has been measured from 10 eV to 1.3 MeV as part of an experimental campaign using the Detector for Advanced Neutron Capture Experiments (DANCE). The work represents a significant advance in experimental technique, with improved systematic uncertainties in key regions in the keV to MeV regime. In general the results of prior work are confirmed with improved uncertainties, particularly at the highest incident neutron energies.

  19. Doping-dependent anisotropic superconducting gap in Na1-δ(Fe1-xCox)As from London penetration depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kyuil; Tanatar, Makariy A.; Spyrison, Nicholas

    2012-07-30

    The London penetration depth was measured in single crystals of self-doped Na1-δFeAs (from under doping to optimal doping, Tc from 14 to 27 K) and electron-doped Na(Fe1-xCox)As with x ranging from undoped, x=0, to overdoped, x=0.1. In all samples, the low-temperature variation of the penetration depth exhibits a power-law dependence, Δλ(T)=ATn, with the exponent that varies in a domelike fashion from n˜1.1 in the underdoped, reaching a maximum of n˜1.9 in the optimally doped, and decreasing again to n˜1.3 on the overdoped side. While the anisotropy of the gap structure follows a universal domelike evolution, the exponent at optimal doping,more » n˜1.9, is lower than in other charge-doped Fe-based superconductors (FeSCs). The full-temperature range superfluid density, ρs(T)=λ(0)/λ(T)2, at optimal doping is also distinctly different from other charge-doped FeSCs but is similar to isovalently substituted BaFe2(As1-xPx)2, believed to be a nodal pnictide at optimal doping. These results suggest that the superconducting gap in Na(Fe1-xCox)As is highly anisotropic even at optimal doping.« less

  20. Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension

    PubMed Central

    Picard, Nicolas; Trompf, Katja; Yang, Chao-Ling; Miller, R. Lance; Carrel, Monique; Loffing-Cueni, Dominique; Fenton, Robert A.; Ellison, David H.

    2014-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na+ uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1−/−) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1−/− mice. Compared with WT mice, I-1−/− mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity. PMID:24231659

  1. Treasure Na-ion anode from trash coke by adept electrolyte selection

    NASA Astrophysics Data System (ADS)

    Cabello, Marta; Chyrka, Taras; Klee, Rafael; Aragón, María J.; Bai, Xue; Lavela, Pedro; Vasylchenko, Gennadiy M.; Alcántara, Ricardo; Tirado, José L.; Ortiz, Gregorio F.

    2017-04-01

    Converting 'trash' waste residua to active functional materials 'treasure' with high added value is being regarded as a promising way to achieve the sustainable energy demands. Carbonaceous materials cannot insert sodium except when graphite co-intercalates solvents such as diglyme. Here, we show that petroleum coke and shale coke annealed at different temperatures can also insert sodium by reversible intercalation phenomena in a diglyme-based electrolyte. The structural and morphological studies will reveal significant differences justifying their distinct electrochemical behavior. Galvanostatic tests exhibit a flat plateau at about 0.7 V ascribable to the reversible reaction. At the end of the discharge, a Stage-I ternary intercalation compound is detected. Two diglyme molecules are co-intercalated per alkali ion, as evidenced by 1-D Patterson diagrams, FTIR and TGA analyses. The full sodium-ion cell made with P-2500/NaPF6(diglyme)/Na3V2(PO4)3 delivered an initial reversible capacity of 75 mA h g-1 at C rate and an average potential of 2.7 V. Thus, the full cell provides an energy density of 202 W h kg-1. This sodium-ion system can be considered a promising power source that encourages the potential use of low-cost energy storage systems.

  2. 24Mg(p, α) 21Na reaction study for spectroscopy of 21Na

    DOE PAGES

    Cha, S. M.; Chae, K. Y.; Kim, A.; ...

    2015-11-03

    The Mg-24(p, alpha)Na-21 reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in Na-21 for the astrophysically important F-17(alpha, p)Ne-20 reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched Mg-24 solid targets were used. When recoiling He-4 particles from the Mg-24(p, alpha)Na-21 reaction we used a highly segmented silicon detector array to detect them; it measured the yields of He-4 particles over a range of angles simultaneously. A observed a new level at 6661 ± 5 keVmore » in the present work. The extracted angular distributions for the first four levels of Na-21 and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.« less

  3. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution

    DOE PAGES

    Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.; ...

    2016-01-14

    A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.

  4. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.

    A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.

  5. Na and Ca components of action potentials in amphioxus muscle cells

    PubMed Central

    Hagiwara, S.; Kidokoro, Y.

    1971-01-01

    1. The ionic mechanism of the action potential produced in lamella-like muscle cells of amphioxus, Branchiostoma californiense, was investigated with intracellular recording and polarization techniques. 2. The resting potential and action potential overshoot in normal saline are -53±5 mV (S.D.) and +29±10 mV (S.D.) respectively. 3. The action potential is eliminated by tetrodotoxin (3 μM) and by replacing NaCl in the saline with Tris-chloride but maintained by replacing Na with Li. 4. After elimination of the normal action potential by tetrodotoxin or replacing Na with Tris, the addition of procaine (7·3 mM) to the external saline makes the membrane capable of producing a regenerative potential change. 5. The peak potential of the regenerative response depends on external Ca concentration in a manner predicted by the Nernst equation with Ca concentrations close to normal. 6. The Ca dependent response is reversibly suppressed by Co or La ions. 7. Similar regenerative responses are obtained when Ca is substituted with Sr or Ba. 8. It is concluded that two independent mechanisms of ionic permeability increase occur in the membrane of amphioxus muscle cell, one to Na and the other to Ca. PMID:5158595

  6. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  7. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process.

    PubMed

    van der Weerden, Nicole L; Hancock, Robert E W; Anderson, Marilyn A

    2010-11-26

    The antifungal activity of the plant defensin NaD1 involves specific interaction with the fungal cell wall, followed by permeabilization of the plasma membrane and entry of NaD1 into the cytoplasm. Prior to this study, the role of membrane permeabilization in the activity of NaD1, as well as the relevance of cell wall binding, had not been investigated. To address this, the permeabilization of Fusarium oxysporum f. sp. vasinfectum hyphae by NaD1 was investigated and compared with that by other antimicrobial peptides, including the cecropin-melittin hybrid peptide CP-29, the bovine peptide BMAP-28, and the human peptide LL-37, which are believed to act largely through membrane disruption. NaD1 appeared to permeabilize cells via a novel mechanism that required the presence of the fungal cell wall. NaD1 and Bac2A, a linear variant of the bovine peptide bactenecin, were able to enter the cytoplasm of treated hyphae, indicating that cell death is accelerated by interaction with intracellular targets.

  8. The enhancement in optical and magnetic properties of Na-doped LaFeO3

    NASA Astrophysics Data System (ADS)

    Devi, E.; Kalaiselvi, B. J.

    2018-04-01

    La1-xNaxFeO3(x=0.00 and 0.05) were synthesized by sol-gel auto-combustion method. No evidence of impurity phase and the peak (121) slightly shift towards lower angle is confirmed by X-ray diffraction analysis (XRD). The UV-visible spectra show strong absorption peak centered at approximately 231 nm and the calculated optical band gap are found to be 2.73eV, 2.36eV for x = 0.00 and 0.05, respectively. The M-H loop of pure sample is anti-ferromagnetic, whereas those of the Na doped sample shows enhanced ferromagnetic behavior. The remnant magnetization (Mr), saturation magnetization (Ms) and coercive field (Hc) of Na-doped sample are enhanced to 1.06emu/g, 5.39emu/g and 182.84kOe, respectively.

  9. Mediator of DNA damage checkpoint 1 (MDC1) contributes to high NaCl-induced activation of the osmoprotective transcription factor TonEBP/OREBP.

    PubMed

    Kunin, Margarita; Dmitrieva, Natalia I; Gallazzini, Morgan; Shen, Rong-Fong; Wang, Guanghui; Burg, Maurice B; Ferraris, Joan D

    2010-08-11

    Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation. We identified 20 unique peptides from Mediator of DNA Damage Checkpoint 1 (MDC1) with high probability. The identification was confirmed by Western analysis. We used small interfering RNA knockdown of MDC1 to characterize its osmotic function. Knocking down MDC1 reduces high NaCl-induced increases in TonEBP/OREBP transcriptional and transactivating activity, but has no significant effect on its nuclear localization. We confirm six previously known phosphorylation sites in MDC1, but do not find evidence that high NaCl increases phosphorylation of MDC1. It is suggestive that MDC1 acts as a DNA damage response protein since hypertonicity reversibly increases DNA breaks, and other DNA damage response proteins, like ATM, also associate with TonEBP/OREBP and contribute to its activation by hypertonicity. MDC1 associates with TonEBP/OREBP and contributes to high NaCl-induced increase of that factor's transcriptional activity.

  10. NaI(Tl) scintillator read out with SiPM array for gamma spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, Tuchen; Fu, Qibin; Lin, Shaopeng; Wang, Biao

    2017-04-01

    The NaI(Tl) scintillator is widely used in gamma spectrometer with photomultiplier tube (PMT) readout. Recently developed silicon photomultiplier (SiPM) offers gain and efficiency similar to those of PMT, but with merits such as low bias voltage, compact volume, low cost, high ruggedness and magnetic resonance compatibility. In this study, 2-in. and 1-in. NaI(Tl) scintillators were readout with SiPM arrays, which were made by tiling multiple SiPMs each with an active area of 6×6 mm2 on a printed circuit board. The energy resolutions for 661.6 keV gamma rays, obtained with Φ2×2 in. scintillator coupled to 6×6 ch SiPM array and Φ1×1 in. scintillator coupled to 4×4 ch SiPM array were 7.6% and 7.8%, respectively, and were very close to the results obtained with traditional bialkali PMT (7.3% and 7.6%, respectively). Scintillator coupled to photodetector with smaller area was also studied by adding a light guide or using scintillator with tapered head. The latter showed better performance than using light guide. The 1-in. NaI(Tl) scintillator with tapered head coupled to 2×2 ch SiPM array achieved 7.7% energy resolution at 661.6 keV, the same as that obtained with standard Φ1×1 in. scintillator coupled to 4×4 ch SiPM array. While the 2-in. scintillator with similar geometry showed degraded energy resolution, 10.2% at 661.6 keV, but could still be used when high efficiency is preferred over energy resolution.

  11. Mass determination near N = 20 for Al and Na isotopes

    DOE PAGES

    Gallant, A. T.; Alanssari, M.; Bale, J. C.; ...

    2017-08-31

    We report on the mass measurements of 31;32Na and 29;34;35Al, performed with the TITAN Penning trap mass spectrometer at TRIUMF. The mass excesses were found to be 12246(14) keV and 18638(37) keV for 31;32Na and -18207:77(37) keV, -3000:5(29) keV, and -223:7(73) keV for 29;34;35Al, respectively. Our measurements con rm the observation of a crossover in the two-neutron separation energies of 33Mg and 34Al. We did not observe the recently reported, long-lived, isomeric state of 34Al, but, based on the previously measured half-lives, the mass value of the ground state was determined.

  12. Corrosion Properties of SAC305 Solder in Different Solution of HCl and NaCl

    NASA Astrophysics Data System (ADS)

    Nurwahida, M. Z.; Mukridz, M. M.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    Potentiodynamic polarization was used to studied the corrosion properties of SAC305 solder in different solution of 1.0 M HCl and 3.5 wt.% NaCl using the same scanning rate of 1.0 mV/s. The polarization curves indicated that corrosion in NaCl was less severe than in HCl solution based on corrosion current and passivation behavior obtained. Morphology and phases obtained after corrosion using SEM and XRD were analyzed. Microstructure analysis shows the present of compact corrosion product with presence of larger flake for polarization in NaCl compared to HCl. Phases present in XRD analysis confirmed the present of SnO and SnO2 corrosion product for sample from both solutions.

  13. Response of saliva Na/K ratio to changing Na supply of lactating cows under tropical conditions.

    PubMed

    Thiangtum, Wandee; Schonewille, J Thomas; Verstegen, Martin Wa; Arsawakulsudhi, Supot; Rukkwamsuk, Theera; Hendriks, Wouter H

    2017-06-01

    Factorial determination of the sodium (Na) requirement of heat-stressed lactating cows is hindered by accurate estimates of the Na losses through sweat. Direct studies, therefore, may be needed requiring information on the time course of healthy animals to become Na depleted and the subsequent rate of repletion. The rate of Na depletion and subsequent rate of Na repletion with two levels of dietary Na to lactating dairy cows housed under tropical conditions were investigated using the salivary Na/K. The 12 lactating cows (salivary Na/K ratio 14.6) rapidly developed clinical signs of Na deficiency, including pica, polyuria and polydipsia, reduced body weight and reduced milk yield when fed a low-Na ration (0.33 g kg -1 dry matter (DM)) for 3 weeks. Deficiency symptoms were associated with a rapid decrease in salivary Na/K ratio to <4.3 from 7 to 21 days. Subsequent repletion of the cows with NaCl to a ration concentration of 1.1 or 1.6 g Na kg -1 DM for 5 weeks did not restore salivary Na/K ratio to values of >6. A daily Na intake of heat-stressed lactating cows to a ration intake of 1.6 g Na kg -1 DM was insufficient to restore Na deficiency. One week was sufficient to deplete heat-stressed lactating cows of Na, allowing for rapid dose-response studies utilizing the salivary Na/K ratio as a parameter for Na status of cows under tropical conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Influence of interstitial V on structure and properties of ferecrystalline ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2})n for n=1, 2, 3, 4, 5, and 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falmbigl, M.; Putzky, D.; Ditto, J.

    2015-11-15

    A series of ferecrystalline compounds ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2}){sub n} with n=1–6 and a thin film V{sub 1+x}Se{sub 2} were synthesized utilizing the modulated elemental reactant technique. The effect of interstitial V-atoms ranging from 0.13≤x≤0.42 in different compounds on structure and electrical properties of these intergrowth compounds is reported. The presence of the interstitial V-atoms for n>1 was confirmed by Rietveld refinements as well as HAADF-STEM cross sections. The off-stoichiometry in the thin film V{sub 1.13}Se{sub 2} causes a suppression of the charge density wave, similar to the effect of non-stoichiometry observed for the bulk compound. The charge densitymore » wave of ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2}){sub 1,} however, is not affected by the non-stoichiometry due to its incorporation as volume inclusions or due to the quasi 2-dimensionality of the isolated VSe{sub 2} layer. In the compounds ([SnSe]{sub 1.15}){sub 1}(V{sub 1+x}Se{sub 2}){sub n} with n=2–6, the temperature dependence of the electrical resistivity approaches bulk-like behavior. - Highlights: • Ferecrystalline thin film compounds with interstitial V-atoms were synthesized. • Interstitial atoms cause an expansion of the superlattice. • The charge density wave transition in the V{sub 1.13}VSe{sub 2} film is strongly suppressed. • Interstitial V has a minor influence on the CDW transition of the ferecrystals.« less

  15. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-V(V)O2(+) cation.

    PubMed

    Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A

    2010-10-14

    The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.

  16. HIV-1 drug-resistance surveillance among treatment-experienced and -naïve patients after the implementation of antiretroviral therapy in Ghana.

    PubMed

    Nii-Trebi, Nicholas I; Ibe, Shiro; Barnor, Jacob S; Ishikawa, Koichi; Brandful, James A M; Ofori, Sampson B; Yamaoka, Shoji; Ampofo, William K; Sugiura, Wataru

    2013-01-01

    Limited HIV-1 drug-resistance surveillance has been carried out in Ghana since the implementation of antiretroviral therapy (ART). This study sought to provide data on the profile of HIV-1 drug resistance in ART-experienced and newly diagnosed individuals in Ghana. Samples were collected from 101 HIV-1-infected patients (32 ART-experienced cases with virological failure and 69 newly diagnosed ART-naïve cases, including 11 children), in Koforidua, Eastern region of Ghana, from February 2009 to January 2010. The pol gene sequences were analyzed by in-house HIV-1 drug-resistance testing. The most prevalent HIV-1 subtype was CRF02_AG (66.3%, 67/101) followed by unique recombinant forms (25.7%, 26/101). Among 31 ART-experienced adults, 22 (71.0%) possessed at least one drug-resistance mutation, and 14 (45.2%) had two-class-resistance to nucleoside and non-nucleoside reverse-transcriptase inhibitors used in their first ART regimen. Importantly, the number of accumulated mutations clearly correlated with the duration of ART. The most prevalent mutation was lamivudine-resistance M184V (n = 12, 38.7%) followed by efavirenz/nevirapine-resistance K103N (n = 9, 29.0%), and zidovudine/stavudine-resistance T215Y/F (n = 6, 19.4%). Within the viral protease, the major nelfinavir-resistance mutation L90M was found in one case. No transmitted HIV-1 drug-resistance mutation was found in 59 ART-naïve adults, but K103N and G190S mutations were observed in one ART-naïve child. Despite expanding accessibility to ART in Eastern Ghana, the prevalence of transmitted HIV-1 drug resistance presently appears to be low. As ART provision with limited options is scaled up nationwide in Ghana, careful monitoring of transmitted HIV-1 drug resistance is necessary.

  17. Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase

    PubMed Central

    Minato, Yusuke; Fassio, Sara R.; Reddekopp, Rylan L.; Häse, Claudia C.

    2014-01-01

    Two virulence factors produced by Vibrio cholerae, cholera toxin (CT) and toxin-corregulated pilus (TCP), are indispensable for cholera infection. ToxT is the central regulatory protein involved in activation of CT and TCP expression. We previously reported that lack of a respiration-linked sodium-translocating NADH–ubiquinone oxidoreductase (Na+-NQR) significantly increases toxT transcription. In this study, we further characterized this link and found that Na+-NQR affects toxT expression only at the early-log growth phase, whereas lack of Na+-NQR decreases CT production after the mid-log growth phase. Such decreased CT production was independent of toxT and ctxB transcription. Supplementing a respiratory substrate, L-lactate, into the growth media restored CT production in the nqrA-F mutant, suggesting that decreased CT production in the Na+-NQR mutant is dependent on electron transport chain (ETC) activity. This notion was supported by the observations that two chemical inhibitors, a Na+-NQR specific inhibitor 2-n-Heptyl-4-hydroxyquinoline N-oxide (HQNO) and a succinate dehydrogenase (SDH) inhibitor, thenoyltrifluoroacetone (TTFA), strongly inhibited CT production in both classical and El Tor biotype strains of V. cholerae. Accordingly, we propose the main respiratory enzyme of V. cholerae, as a potential drug target to treat cholera because human mitochondria do not contain Na+-NQR orthologs. PMID:24361395

  18. Nitration of the Pollen Allergen Bet v 1.0101 Enhances the Presentation of Bet v 1-Derived Peptides by HLA-DR on Human Dendritic Cells

    PubMed Central

    Mutschlechner, Sonja; Ferreira, Fatima; Lackner, Peter; Bohle, Barbara; Fischer, Gottfried F.; Vogt, Anne B.; Duschl, Albert

    2012-01-01

    Nitration of pollen derived allergens can occur by NO2 and ozone in polluted air and it has already been shown that nitrated major birch (Betula verrucosa) pollen allergen Bet v 1.0101 (Bet v 1) exhibits an increased potency to trigger an immune response. However, the mechanisms by which nitration might contribute to the induction of allergy are still unknown. In this study, we assessed the effect of chemically induced nitration of Bet v 1 on the generation of HLA-DR associated peptides. Human dendritic cells were loaded with unmodified Bet v 1 or nitrated Bet v 1, and the naturally processed HLA-DR associated peptides were subsequently identified by liquid chromatography-mass spectrometry. Nitration of Bet v 1 resulted in enhanced presentation of allergen-derived HLA-DR-associated peptides. Both the copy number of Bet v 1 derived peptides as well as the number of nested clusters was increased. Our study shows that nitration of Bet v 1 alters antigen processing and presentation via HLA-DR, by enhancing both the quality and the quantity of the Bet v 1-specific peptide repertoire. These findings indicate that air pollution can contribute to allergic diseases and might also shed light on the analogous events concerning the nitration of self-proteins. PMID:22348091

  19. Multiwavelength observations of NaSt1 (WR 122): equatorial mass loss and X-rays from an interacting Wolf-Rayet binary

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon; Smith, Nathan; Van Dyk, Schuyler D.; Morzinski, Katie M.; Close, Laird M.; Hinz, Philip M.; Males, Jared R.; Rodigas, Timothy J.

    2015-07-01

    NaSt1 (aka Wolf-Rayet 122) is a peculiar emission-line star embedded in an extended nebula of [N II] emission with a compact dusty core. The object was previously characterized as a Wolf-Rayet (WR) star cloaked in an opaque nebula of CNO-processed material, perhaps analogous to η Car and its Homunculus nebula, albeit with a hotter central source. To discern the morphology of the [N II] nebula we performed narrow-band imaging using the Hubble Space Telescope and Wide-field Camera 3. The images reveal that the nebula has a disc-like geometry tilted ≈12° from edge-on, composed of a bright central ellipsoid surrounded by a larger clumpy ring. Ground-based spectroscopy reveals radial velocity structure (±10 km s-1) near the outer portions of the nebula's major axis, which is likely to be the imprint of outflowing gas. Near-infrared adaptive-optics imaging with Magellan AO has resolved a compact ellipsoid of Ks-band emission aligned with the larger [N II] nebula, which we suspect is the result of scattered He I line emission (λ2.06 μm). Observations with the Chandra X-ray Observatory have revealed an X-ray point source at the core of the nebula that is heavily absorbed at energies <1 keV and has properties consistent with WR stars and colliding-wind binaries. We suggest that NaSt1 is a WR binary embedded in an equatorial outflow that formed as the result of non-conservative mass transfer. NaSt1 thus appears to be a rare and important example of a stripped-envelope WR forming through binary interaction, caught in the brief Roche lobe overflow phase.

  20. A mutant of the Buthus martensii Karsch antitumor-analgesic peptide exhibits reduced inhibition to hNav1.4 and hNav1.5 channels while retaining analgesic activity.

    PubMed

    Xu, Yijia; Meng, Xiangxue; Hou, Xue; Sun, Jianfang; Kong, Xiaohua; Sun, Yuqi; Liu, Zeyu; Ma, Yuanyuan; Niu, Ye; Song, Yongbo; Cui, Yong; Zhao, Mingyi; Zhang, Jinghai

    2017-11-03

    Scorpion toxins can kill other animals by inducing paralysis and arrhythmia, which limits the potential applications of these agents in the clinical management of diseases. Antitumor-analgesic peptide (AGAP), purified from Buthus martensii Karsch, has been proved to possess analgesic and antitumor activities. Trp 38 , a conserved aromatic residue of AGAP, might play an important role in mediating AGAP activities according to the sequence and homology-modeling analyses. Therefore, an AGAP mutant, W38G, was generated, and effects of both AGAP and the mutant W38G were examined by whole-cell patch clamp techniques on the sodium channels hNa v 1.4 and hNa v 1.5, which were closely associated with the biotoxicity of skeletal and cardiac muscles, respectively. The data showed that both W38G and AGAP inhibited the peak currents of hNa v 1.4 and hNa v 1.5; however, W38G induced a much weaker inhibition of both channels than AGAP. Accordingly, W38G exhibited much less toxic effect on both skeletal and cardiac muscles than AGAP in vivo The analgesic activity of W38G and AGAP were verified in vivo as well, and W38G retained analgesic activity similar to AGAP. Inhibition to both Na v 1.7 and Na v 1.8 was involved in the analgesic mechanism of AGAP and W38G. These findings indicated that Trp 38 was a key amino acid involved in the biotoxicity of AGAP, and the AGAP mutant W38G might be a safer alternative for clinical application because it retains the analgesic efficacy with less toxicity to skeletal and cardiac muscles. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. First-principles study of the electronic properties and discharge profile of AgNa(VO2F2)2

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.

    2014-03-01

    Implantable cardiac defibrillators (ICDs) require batteries with high capacities and high discharge rates to ensure the optimal operation of the device over several years. Ag2V4O11 has been a cathode material of choice for the ICDs owing to its high capacity and fast rate of electronic discharge. To reduce ICD size and improve ICD performance, a new cathode material would need to display a higher volumetric capacity and redox potential. Recently, the new cathode compound AgNa(VO2F2)2 (SSVOF) was synthesized and displayed favorable voltage for sodium-ion batteries. However, the discharge reaction has been unclear. In this presentation, we study the discharge reaction of SSVOF through DFT calculations. All calculations are performed within the PAW method using the GGA and GGA + U functionals. Among several possible reactions, we focus on the reaction Ag X + A --> AX + Ag, where X is Na(VO2F2)2 and A is Li or Na. In this reaction, the discharge occurs by replacing Ag with A. The calculated discharge potential for Li is 3.3 V in GGA and 2.9 V in GGA + U and that for Na is 3.1 V in GGA and 2.8 V in GGA + U . These values are consistent with the experimental ones. Supported by the DOE ER46536 Program.

  2. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization

    PubMed Central

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L.; Pinter, Abraham; Tomaras, Georgia D.; Ferrari, Guido; Montefiori, David C.

    2016-01-01

    ABSTRACT Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant “tier 2” isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with

  3. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization.

    PubMed

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L; Pinter, Abraham; Tomaras, Georgia D; Ferrari, Guido; Montefiori, David C; Hu, Shiu-Lok

    2016-10-01

    Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant "tier 2" isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting

  4. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.

    PubMed

    Kim, Dong-Min; Kim, Youngjin; Arumugam, Durairaj; Woo, Sang Won; Jo, Yong Nam; Park, Min-Sik; Kim, Young-Jun; Choi, Nam-Soon; Lee, Kyu Tae

    2016-04-06

    Thanks to the advantages of low cost and good safety, magnesium metal batteries get the limelight as substituent for lithium ion batteries. However, the energy density of state-of-the-art magnesium batteries is not high enough because of their low operating potential; thus, it is necessary to improve the energy density by developing new high-voltage cathode materials. In this study, nanosized Berlin green Fe2(CN)6 and Prussian blue Na(0.69)Fe2(CN)6 are compared as high-voltage cathode materials for magnesium batteries. Interestingly, while Mg(2+) ions cannot be intercalated in Fe2(CN)6, Na(0.69)Fe2(CN)6 shows reversible intercalation and deintercalation of Mg(2+) ions, although they have the same crystal structure except for the presence of Na(+) ions. This phenomenon is attributed to the fact that Mg(2+) ions are more stable in Na(+)-containing Na(0.69)Fe2(CN)6 than in Na(+)-free Fe2(CN)6, indicating Na(+) ions in Na(0.69)Fe2(CN)6 plays a crucial role in stabilizing Mg(2+) ions. Na(0.69)Fe2(CN)6 delivers reversible capacity of approximately 70 mA h g(-1) at 3.0 V vs Mg/Mg(2+) and shows stable cycle performance over 35 cycles. Therefore, Prussian blue analogues are promising structures for high-voltage cathode materials in Mg batteries. Furthermore, this co-intercalation effect suggests new avenues for the development of cathode materials in hybrid magnesium batteries that use both Mg(2+) and Na(+) ions as charge carriers.

  5. Experimental transmission of avian-like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs.

    PubMed

    Lloyd, Lucy E; Jonczyk, Magdalena; Jervis, Carley M; Flack, Deborah J; Lyall, John; Foote, Alasdair; Mumford, Jennifer A; Brown, Ian H; Wood, James L; Elton, Debra M

    2011-09-01

    Infection of pigs with swine influenza has been studied experimentally and in the field; however, little information is available on the natural transmission of this virus in pigs. Two studies in an experimental transmission model are presented here, one in immunologically naïve and one in a combination of vaccinated and naïve pigs. To investigate the transmission of a recent 'avian-like' swine H1N1 influenza virus in naive piglets, to assess the antibody response to a commercially available vaccine and to determine the efficiency of transmission in pigs after vaccination. Transmission chains were initiated by intranasal challenge of two immunologically naïve pigs. Animals were monitored daily for clinical signs and virus shedding. Pairs of pigs were sequentially co-housed, and once virus was detected in recipients, prior donors were removed. In the vaccination study, piglets were vaccinated and circulating antibody levels were monitored by haemagglutination inhibition assay. To study transmission in vaccinates, a pair of infected immunologically naïve animals was co-housed with vaccinated recipient pigs and further pairs of vaccinates were added sequentially as above. The chain was completed by the addition of naive pigs. Transmission of the H1N1 virus was achieved through a chain of six pairs of naïve piglets and through four pairs of vaccinated animals. Transmission occurred with minimal clinical signs and, in vaccinates, at antibody levels higher than previously reported to protect against infection. © 2011 Blackwell Publishing Ltd.

  6. VizieR Online Data Catalog: M30 V1-V3 variable light curves (Rosino, 1949)

    NASA Astrophysics Data System (ADS)

    Rosino, L.

    2013-05-01

    Time-series photographic photometry for the variable stars V1-V3 in M30. We add the light curve of V1 from Rosini, 1961, Contr. Asiago-Padova, 117, "Osservazioni di due variabili peculiari e d'una variabile tipo RR Lyrae in ammassi stellari" (4 data files).

  7. Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope

    PubMed Central

    Upadhyay, Chitra; Mayr, Luzia M.; Zhang, Jing; Kumar, Rajnish; Gorny, Miroslaw K.; Nádas, Arthur; Zolla-Pazner, Susan

    2014-01-01

    ABSTRACT Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4β7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking

  8. Efficient receptive field tiling in primate V1

    PubMed Central

    Nauhaus, Ian; Nielsen, Kristina J.; Callaway, Edward M.

    2017-01-01

    The primary visual cortex (V1) encodes a diverse set of visual features, including orientation, ocular dominance (OD) and spatial frequency (SF), whose joint organization must be precisely structured to optimize coverage within the retinotopic map. Prior experiments have only identified efficient coverage based on orthogonal maps. Here, we used two-photon calcium imaging to reveal an alternative arrangement for OD and SF maps in macaque V1; their gradients run parallel but with unique spatial periods, whereby low SF regions coincide with monocular regions. Next, we mapped receptive fields and find surprisingly precise micro-retinotopy that yields a smaller point-image and requires more efficient inter-map geometry, thus underscoring the significance of map relationships. While smooth retinotopy is constraining, studies suggest that it improves both wiring economy and the V1 population code read downstream. Altogether, these data indicate that connectivity within V1 is finely tuned and precise at the level of individual neurons. PMID:27499086

  9. POSTNATAL PHENOTYPE AND LOCALIZATION OF SPINAL CORD V1 DERIVED INTERNEURONS

    PubMed Central

    Alvarez, Francisco J.; Jonas, Philip C.; Sapir, Tamar; Hartley, Robert; Berrocal, Maria C.; Geiman, Eric J.; Todd, Andrew J.; Goulding, Martyn

    2010-01-01

    Developmental studies identified four classes (V0, V1, V2, V3) of embryonic interneurons in the ventral spinal cord. Very little however is known about their adult phenotypes. In order to further characterize interneuron cell types in the adult, the location, neurotransmitter phenotype, calcium-buffering protein expression and axon distributions of V1-derived neurons in the mouse spinal cord was determined. In the mature (P20 and older) spinal cord, most V1-derived neurons are located in lateral LVII and in LIX, few in medial LVII and none in LVIII. Approximately 40% express calbindin and/or parvalbumin, while few express calretinin. Of seven groups of ventral interneurons identified according to calcium-buffering protein expression, two groups (1 and 4) correspond with V1-derived neurons. Group 1 are Renshaw cells and intensely express calbindin and coexpress parvalbumin and calretinin. They represent 9% of the V1 population. Group 4 express only parvalbumin and represent 27% of V1-derived neurons. V1-derived group 4 neurons receive contacts from primary sensory afferents and are therefore proprioceptive interneurons and the most ventral neurons in this group receive convergent calbindin-IR Renshaw cell inputs. This subgroup resembles Ia inhibitory interneurons (IaINs) and represents 13% of V1-derived neurons. Adult V1-interneuron axons target LIX and LVII and some enter the deep dorsal horn. V1-axons do not cross the midline. V1 derived axonal varicosities were mostly (>80%) glycinergic and a third were GABAergic. None were glutamatergic or cholinergic. In summary, V1 interneurons develop into ipsilaterally projecting, inhibitory interneurons that include Renshaw cells, Ia inhibitory interneurons and other unidentified proprioceptive interneurons. PMID:16255029

  10. Derlin-1 promotes ubiquitylation and degradation of the epithelial Na+ channel, ENaC.

    PubMed

    You, Hui; Ge, Yamei; Zhang, Jian; Cao, Yizhi; Xing, Jing; Su, Dongming; Huang, Yujie; Li, Min; Qu, Shen; Sun, Fei; Liang, Xiubin

    2017-03-15

    Ubiquitylation of the epithelial Na + channel (ENaC) plays a critical role in cellular functions, including transmembrane transport of Na + , Na + and water balance, and blood pressure stabilization. Published studies have suggested that ENaC subunits are targets of ER-related degradation (ERAD) in yeast systems. However, the molecular mechanism underlying proteasome-mediated degradation of ENaC subunits remains to be established. Derlin-1, an E3 ligase mediator, links recognized target proteins to ubiquitin-mediated proteasomal degradation in the cytosol. In the present study, we found that derlin-1 suppressed the expression of ENaC at the protein level and that the subunit α-ENaC (also known as SCNN1A) physically interacted with derlin-1 at the membrane-anchored domains or the loop regions, and that derlin-1 initiated α-ENaC retrotranslocation. In addition, HUWE1, an endoplasmic reticulum (ER)-resident E3 ubiquitin ligase, was recruited and promoted K11-linked polyubiquitylation of α-ENaC and, hence, formation of an α-ENaC ubiquitin-mediated degradation complex. These findings suggest that derlin-1 promotes ENaC ubiquitylation and enhances ENaC ubiquitin- mediated proteasome degradation. The derlin-1 pathway therefore may represent a significant early checkpoint in the recognition and degradation of ENaC in mammalian cells. © 2017. Published by The Company of Biologists Ltd.

  11. Phase behavior of gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) and polyelectrolyte NaPAA.

    PubMed

    Pi, Yingying; Shang, Yazhuo; Peng, Changjun; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2006-07-01

    The phase behavior of aqueous mixtures of gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and oppositely charged polyelectrolyte sodium polyacrylate (NaPAA) has been studied experimentally. Compared to the mixtures of the traditional surfactant dodecyltrimethylammonium bromide (DTAB) and NaPAA, the gel phase region in the 12-6-12/NaPAA solution is larger. Element analysis reveals that NaPAA in the gel phase tends to replace the counterions of surfactant micelle and to release its own counterions. Spherical aggregates are observed in either top or bottom gel phase as detected by transmission electron microscopy. The addition of sodium bromide (NaBr) leads to a decrease in the gel phase region and the occurrence of a new cream phase.

  12. Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy.

    PubMed

    Rettenwander, Daniel; Redhammer, Günther J; Guin, Marie; Benisek, Artur; Krüger, Hannes; Guillon, Olivier; Wilkening, Martin; Tietz, Frank; Fleig, Jürgen

    2018-03-13

    NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σ bulk of sub-mm-sized flux grown Na 3 Sc 2 (PO 4 ) 3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies E a . Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σ bulk turned out to be as high as 3 × 10 -4 S cm -1  at RT ( E a, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals.

  13. Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy

    PubMed Central

    2018-01-01

    NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σbulk of sub-mm-sized flux grown Na3Sc2(PO4)3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies Ea. Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σbulk turned out to be as high as 3 × 10–4 S cm–1 at RT (Ea, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals. PMID:29606799

  14. AdE-1, a new inotropic Na(+) channel toxin from Aiptasia diaphana, is similar to, yet distinct from, known anemone Na(+) channel toxins.

    PubMed

    Nesher, Nir; Shapira, Eli; Sher, Daniel; Moran, Yehu; Tsveyer, Liora; Turchetti-Maia, Ana Luiza; Horowitz, Michal; Hochner, Binyamin; Zlotkin, Eliahu

    2013-04-01

    Heart failure is one of the most prevalent causes of death in the western world. Sea anemone contains a myriad of short peptide neurotoxins affecting many pharmacological targets, several of which possess cardiotonic activity. In the present study we describe the isolation and characterization of AdE-1 (ion channel modifier), a novel cardiotonic peptide from the sea anemone Aiptasia diaphana, which differs from other cnidarian toxins. Although AdE-1 has the same cysteine residue arrangement as sea anemone type 1 and 2 Na(+) channel toxins, its sequence contains many substitutions in conserved and essential sites and its overall homology to other toxins identified to date is low (<36%). Physiologically, AdE-1 increases the amplitude of cardiomyocyte contraction and slows the late phase of the twitch relaxation velocity with no induction of spontaneous twitching. It increases action potential duration of cardiomyocytes with no effect on its threshold and on the cell's resting potential. Similar to other sea anemone Na(+) channel toxins such as Av2 (Anemonia viridis toxin II), AdE-1 markedly inhibits Na(+) current inactivation with no significant effect on current activation, suggesting a similar mechanism of action. However, its effects on twitch relaxation velocity, action potential amplitude and on the time to peak suggest that this novel toxin affects cardiomyocyte function via a more complex mechanism. Additionally, Av2's characteristic delayed and early after-depolarizations were not observed. Despite its structural differences, AdE-1 physiologic effectiveness is comparable with Av2 with a similar ED(50) value to blowfly larvae. This finding raises questions regarding the extent of the universality of structure-function in sea anemone Na(+) channel toxins.

  15. MEASUREMENTS OF NEUTRON SPECTRA IN 0.8-GEV AND 1.6-GEV PROTON-IRRADIATED<2 OF 2>NA THICK TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarenko, Y. E.; Batyaev, V. F.; Zhivun, V. M.

    2001-01-01

    Measurements of neutron spectra in W, and Na targets irradiated by 0.8 GeV and 1.6 GeV protons are presented. Measurements were made by the TOF techniques using the proton beam from ITEP U-10 synchrotron. Neutrons were detected with BICRON-511 liquid scintillator-based detectors. The neutron detection efficiency was calculated via the SCINFUL and CECIL codes. The W results are compared with the similar data obtained elsewhere. The measured neutron spectra are compared with the LAHET and CEM2k code simulations results. Attempt is made to explain some observed disagreements between experiments and simulations. The presented results are of interest both in termsmore » of nuclear data buildup and as a benchmark of the up-to-date predictive power of the simulation codes used in designing the hybrid accelerator-driven system (ADS) facilities with sodium-cooled tungsten targets.« less

  16. Development and validation of the nasopharyngeal cancer scale among the system of quality of life instruments for cancer patients (QLICP-NA V2.0): combined classical test theory and generalizability theory.

    PubMed

    Wu, Jiayuan; Hu, Liren; Zhang, Gaohua; Liang, Qilian; Meng, Qiong; Wan, Chonghua

    2016-08-01

    This research was designed to develop a nasopharyngeal cancer (NPC) scale based on quality of life (QOL) instruments for cancer patients (QLICP-NA). This scale was developed by using a modular approach and was evaluated by classical test and generalizability theories. Programmed decision procedures and theories on instrument development were applied to create QLICP-NA V2.0. A total of 121 NPC inpatients were assessed using QLICP-NA V2.0 to measure their QOL data from hospital admission until discharge. Scale validity, reliability, and responsiveness were evaluated by correlation, factor, parallel, multi-trait scaling, and t test analyses, as well as by generalizability (G) and decision (D) studies of the generalizability theory. Results of multi-trait scaling, correlation, factor, and parallel analyses indicated that QLICP-NA V2.0 exhibited good construct validity. The significant difference of QOL between the treated and untreated NPC patients indicated a good clinical validity of the questionnaire. The internal consistency (α) and test-retest reliability coefficients (intra-class correlations) of each domain, as well as the overall scale, were all >0.70. Ceiling effects were not found in all domains and most facets, except for common side effects (24.8 %) in the domain of common symptoms and side effects, tumor early symptoms (27.3 %) and therapeutic side effects (23.2 %) in specific domain, whereas floor effects did not exist in each domain/facet. The overall changes in the physical and social domains were significantly different between pre- and post-treatments with a moderate effective size (standard response mean) ranging from 0.21 to 0.27 (p < 0.05), but these changes were not obvious in the other domains, as well as in the overall scale. Scale reliability was further confirmed by G coefficients and index of dependability, with more exact variance components based on generalizability theory. QLICP-NA V2.0 exhibited reasonable degrees of validity

  17. The protein source in embryo culture media influences birthweight: a comparative study between G1 v5 and G1-PLUS v5.

    PubMed

    Zhu, Jinliang; Li, Ming; Chen, Lixue; Liu, Ping; Qiao, Jie

    2014-07-01

    Does protein source or human serum albumin (HSA) in embryo culture media influence the subsequent birthweight? A significant difference was observed in gestational age- and gender-adjusted birthweight (Z scores) and the proportion of large-for-gestational age (LGA) babies between embryos cultured in G1 v5 and those cultured in G1-PLUS v5 media. It has been reported that the birthweights of singletons born from embryos cultured in Vitrolife are significantly higher than those cultured in the Cook group of media, and that G1-PLUS (Vitrolife, Gothenburg, Sweden) is associated with increased birth and placenta weights compared with Medicult ISMI. This study was a retrospective analysis of neonatal birthweights, and included 1097 singletons born from fresh embryo transfer cycles at the Center for Reproductive Medicine of Peking University Third Hospital between January 2011 and August 2012. The number of singletons born from G1 v5 culture media was 489, and the number of singletons born from G1-PLUS v5 media was 608. Patients <40 years of age with a BMI <30 kg/m² were analysed. Only data from newborns from singleton pregnancies and born alive after the 28th week of gestation were included. Patients with a vanishing twin or with pregnancy-related complications, such as diabetes and hypertension, were excluded, as were patients who received preimplantation genetic diagnosis or used donor oocytes. Multiple linear regression analysis was performed to determine the influence of individual factors on birthweights of singleton newborns. The birthweights and Z scores of singletons and LGA babies were compared between the G1 v5 and G1-PLUS v5 media groups. The absolute birthweights for singletons resulting from G1-PLUS v5 were not different from singletons resulting from G1 v5 (3375.9 ± 479.6 g versus 3333.2 ± 491.6 g, respectively; P = 0.14). However the Z scores for singletons from embryos cultured in G1-PLUS v5 were significantly higher than for singletons cultured in G1 v

  18. Unraveling the electrolyte properties of Na3SbS4 through computation and experiment

    NASA Astrophysics Data System (ADS)

    Rush, Larry E.; Hood, Zachary D.; Holzwarth, N. A. W.

    2017-12-01

    Solid-state sodium electrolytes are expected to improve next-generation batteries on the basis of favorable energy density and reduced cost. Na3SbS4 represents a new solid-state ion conductor with high ionic conductivities in the mS/cm range. Here, we explore the tetragonal phase of Na3SbS4 and its interface with metallic sodium anode using a combination of experiments and first-principles calculations. The computed Na-ion vacancy migration energies of 0.1 eV are smaller than the value inferred from experiment, suggesting that grain boundaries or other factors dominate the experimental systems. Analysis of symmetric cells of the electrolyte—Na/Na 3SbS4/Na —show that a conductive solid electrolyte interphase forms. Computer simulations infer that the interface is likely to be related to Na3SbS3 , involving the conversion of the tetrahedral SbS43 - ions of the bulk electrolyte into trigonal pyramidal SbS33 - ions at the interface.

  19. NASICON-related Na3.4Mn0.4Fe1.6(PO4)3

    PubMed Central

    Yatskin, Michael M.; Strutynska, Nataliya Yu.; Baumer, Vyacheslav N.; Ogorodnyk, Ivan V.; Slobodyanik, Nikolay S.

    2012-01-01

    The solid solution, sodium [iron(III)/manganese(II)] tris­(orthophosphate), Na3.4Mn0.4Fe1.6(PO4)3, was obtained using a flux method. Its crystal structure is related to that of NASICON-type compounds. The [(Mn/Fe)2(PO4)3] framework is built up from an (Mn/Fe)O6 octa­hedron (site symmetry 3.), with a mixed Mn/Fe occupancy, and a PO4 tetra­hedron (site symmetry .2). The Na+ cations are distributed over two partially occupied sites in the cavities of the framework. One Na+ cation (site symmetry -3.) is surrounded by six O atoms, whereas the other Na+ cation (site symmetry .2) is surrounded by eight O atoms. PMID:22807697

  20. Moderate temperature sodium cells. V - Discharge reactions and rechargeability of NiS and NiS2 positive electrodes in molten NaAlCl4

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Elliot, J. E.

    1984-01-01

    NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.

  1. Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhizhen; Xu, Kaiqi; Rong, Xiaohui; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan

    2017-12-01

    Solid electrolytes with high ionic conductivity and excellent electrochemical stability are of prime significance to enable the application of solid-state batteries in energy storage and conversion. In this study, solid composite polymer electrolytes (CPEs) based on sodium bis(trifluorosulfonyl) imide (NaTFSI) and poly (ethylene oxide) (PEO) incorporated with active ceramic filler (NASICON) are reported for the first time. With the addition of NASICON fillers, the thermal stability and electrochemical stability of the CPEs are improved. A high conductivity of 2.8 mS/cm (at 80 °C) is readily achieved when the content of the NASICON filler in the composite polymer reaches 50 wt%. Furthermore, Na3V2(PO4)3/CPE/Na solid-state batteries using this composite electrolyte display good rate and excellent cycle performance.

  2. Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance

    PubMed Central

    Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

  3. HIV-1 drug resistance in recently HIV-infected pregnant mother's naïve to antiretroviral therapy in Dodoma urban, Tanzania.

    PubMed

    Vairo, Francesco; Nicastri, Emanuele; Liuzzi, Giuseppina; Chaula, Zainab; Nguhuni, Boniface; Bevilacqua, Nazario; Forbici, Federica; Amendola, Alessandra; Fabeni, Lavinia; De Nardo, Pasquale; Perno, Carlo Federico; Cannas, Angela; Sakhoo, Calistus; Capobianchi, Maria Rosaria; Ippolito, Giuseppe

    2013-09-21

    HIV resistance affects virological response to therapy and efficacy of prophylaxis in mother-to-child-transmission. The study aims to assess the prevalence of HIV primary resistance in pregnant women naïve to antiretrovirals. Cross sectional baseline analysis of a cohort of HIV + pregnant women (HPW) enrolled in the study entitled Antiretroviral Management of Antenatal and Natal HIV Infection (AMANI, peace in Kiswahili language). The AMANI study began in May 2010 in Dodoma, Tanzania. In this observational cohort, antiretroviral treatment was provided to all women from the 28th week of gestation until the end of the breastfeeding period. Baseline CD4 cell count, viral load and HIV drug-resistance genotype were collected. Drug-resistance analysis was performed on 97 naïve infected-mothers. The prevalence of all primary drug resistance and primary non-nucleoside reverse-transcriptase inhibitors resistance was 11.9% and 7.5%, respectively. K103S was found in two women with no M184V detection. HIV-1 subtype A was the most commonly identified, with a high prevalence of subtype A1, followed by C, D, C/D recombinant, A/C recombinant and A/D recombinant. HIV drug- resistance mutations were detected in A1 and C subtypes. Our study reports an 11.9% prevalence rate of primary drug resistance in naïve HIV-infected pregnant women from a remote area of Tanzania. Considering that the non-nucleoside reverse-transcriptase inhibitors are part of the first-line antiretroviral regimen in Tanzania and all of Africa, resistance surveys should be prioritized in settings where antiretroviral therapy programs are scaled up.

  4. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes.

    PubMed

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-02-01

    Na-CO 2 batteries using earth-abundant Na and greenhouse gas CO 2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO 2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi-solid state Na-CO 2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride- co -hexafluoropropylene)]-4% SiO 2 /NaClO 4 -TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm -1 ), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na + plating/stripping (5.7 to 16.5 mA cm -2 ). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO 2 batteries to successfully cycle in wide CO 2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g -1 with a fixed capacity of 1000 mA·hour g -1 in pure CO 2 . Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg -1 ). This study makes quasi-solid state Na-CO 2 batteries an attractive prospect.

  5. Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes

    PubMed Central

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-01-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi–solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]–4% SiO2/NaClO4–TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm−1), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na+ plating/stripping (5.7 to 16.5 mA cm−2). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g−1 with a fixed capacity of 1000 mA·hour g−1 in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg−1). This study makes quasi–solid state Na-CO2 batteries an attractive prospect. PMID:28164158

  6. The β1 subunit of the Na,K-ATPase pump interacts with megalencephalic leucoencephalopathy with subcortical cysts protein 1 (MLC1) in brain astrocytes: new insights into MLC pathogenesis

    PubMed Central

    Brignone, Maria S.; Lanciotti, Angela; Macioce, Pompeo; Macchia, Gianfranco; Gaetani, Matteo; Aloisi, Francesca; Petrucci, Tamara C.; Ambrosini, Elena

    2011-01-01

    Megalencephalic leucoencephalopathy with subcortical cysts (MLC) is a rare congenital leucodystrophy caused by mutations in MLC1, a membrane protein of unknown function. MLC1 expression in astrocyte end-feet contacting blood vessels and meninges, along with brain swelling, fluid cysts and myelin vacuolation observed in MLC patients, suggests a possible role for MLC1 in the regulation of fluid and ion homeostasis and cellular volume changes. To identify MLC1 direct interactors and dissect the molecular pathways in which MLC1 is involved, we used NH2-MLC1 domain as a bait to screen a human brain library in a yeast two-hybrid assay. We identified the β1 subunit of the Na,K-ATPase pump as one of the interacting clones and confirmed it by pull-downs, co-fractionation assays and immunofluorescence stainings in human and rat astrocytes in vitro and in brain tissue. By performing ouabain-affinity chromatography on astrocyte and brain extracts, we isolated MLC1 and the whole Na,K-ATPase enzyme in a multiprotein complex that included Kir4.1, syntrophin and dystrobrevin. Because Na,K-ATPase is involved in intracellular osmotic control and volume regulation, we investigated the effect of hypo-osmotic stress on MLC1/Na,K-ATPase relationship in astrocytes. We found that hypo-osmotic conditions increased MLC1 membrane expression and favoured MLC1/Na,K-ATPase-β1 association. Moreover, hypo-osmosis induced astrocyte swelling and the reversible formation of endosome-derived vacuoles, where the two proteins co-localized. These data suggest that through its interaction with Na,K-ATPase, MLC1 is involved in the control of intracellular osmotic conditions and volume regulation in astrocytes, opening new perspectives for understanding the pathological mechanisms of MLC disease. PMID:20926452

  7. In Situ Tracking Kinetic Pathways of Li+/Na+ Substitution during Ion-Exchange Synthesis of LixNa1.5-xVOPO4F0.5.

    PubMed

    Park, Young-Uk; Bai, Jianming; Wang, Liping; Yoon, Gabin; Zhang, Wei; Kim, Hyungsub; Lee, Seongsu; Kim, Sung-Wook; Looney, J Patrick; Kang, Kisuk; Wang, Feng

    2017-09-13

    Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials with metastable structure for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li + /Na + substitution during solvothermal ion-exchange synthesis of Li x Na 1.5-x VOPO 4 F 0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-time observation, corroborated by first-principles calculations, reveals a selective replacement of Na + by Li + , leading to peculiar Na + /Li + /vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.

  8. Synaptic Correlates of Low-Level Perception in V1.

    PubMed

    Gerard-Mercier, Florian; Carelli, Pedro V; Pananceau, Marc; Troncoso, Xoana G; Frégnac, Yves

    2016-04-06

    The computational role of primary visual cortex (V1) in low-level perception remains largely debated. A dominant view assumes the prevalence of higher cortical areas and top-down processes in binding information across the visual field. Here, we investigated the role of long-distance intracortical connections in form and motion processing by measuring, with intracellular recordings, their synaptic impact on neurons in area 17 (V1) of the anesthetized cat. By systematically mapping synaptic responses to stimuli presented in the nonspiking surround of V1 receptive fields, we provide the first quantitative characterization of the lateral functional connectivity kernel of V1 neurons. Our results revealed at the population level two structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. First, subthreshold responses to oriented stimuli flashed in isolation in the nonspiking surround exhibited a geometric organization around the preferred orientation axis mirroring the psychophysical "association field" for collinear contour perception. Second, apparent motion stimuli, for which horizontal and feedforward synaptic inputs summed in-phase, evoked dominantly facilitatory nonlinear interactions, specifically during centripetal collinear activation along the preferred orientation axis, at saccadic-like speeds. This spatiotemporal integration property, which could constitute the neural correlate of a human perceptual bias in speed detection, suggests that local (orientation) and global (motion) information is already linked within V1. We propose the existence of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy are transiently updated and reshaped as a function of changes in the retinal flow statistics imposed during natural oculomotor exploration. The computational role of primary visual cortex in low-level perception remains debated. The expression of this "pop-out" perception is often assumed

  9. New double molybdate Na9Fe(MoO4)6: Synthesis, structure, properties

    NASA Astrophysics Data System (ADS)

    Savina, Aleksandra A.; Solodovnikov, Sergey F.; Basovich, Olga M.; Solodovnikova, Zoya A.; Belov, Dmitry A.; Pokholok, Konstantin V.; Gudkova, Irina A.; Stefanovich, Sergey Yu.; Lazoryak, Bogdan I.; Khaikina, Elena G.

    2013-09-01

    A new double molybdate Na9Fe(MoO4)6 was synthesized using solid state reactions and studied with X-ray powder diffraction, second harmonic generation (SHG) technique, differential scanning calorimetry, X-ray fluorescence analysis, Mössbauer and dielectric impedance spectroscopy. Single crystals of Na9Fe(MoO4)6 were obtained and its structure was solved (the space group R3¯, a=14.8264(2), c=19.2402(3) Å, V=3662.79(9) Å3, Z=6, R=0.0132). The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)3. The basic structure units are polyhedral clusters composed of central FeО6 octahedron sharing edges with three Na(1)О6 octahedra. The clusters share common vertices with bridging МоО4 tetrahedra to form an open 3D framework where the cavities are occupied by Na(2) and Na(3) atoms. The compound melts incongruently at 904.7±0.2 K. Arrhenius type temperature dependence of electric conductivity σ has been registered in solid state (σ=6.8×10-2 S сm-1 at 800 K), thus allowing considering Na9Fe(MoO4)6 as a new sodium ion conductor.

  10. Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes.

    PubMed

    Musyoka, Nicholas M; Petrik, Leslie F; Gitari, Wilson M; Balfour, Gillian; Hums, Eric

    2012-01-01

    This study was aimed at optimizing the synthesis conditions for pure phase zeolite Na-P1 from three coal fly ashes obtained from power stations in the Mpumalanga province of South Africa. Synthesis variables evaluated were: hydrothermal treatment time (12-48 hours), temperature (100-160°C) and varying molar quantities of water during the hydrothermal treatment step (H(2)O:SiO(2) molar ratio ranged between 0-0.49). The optimum synthesis conditions for preparing pure phase zeolite Na-P1 were achieved when the molar regime was 1 SiO(2): 0.36 Al(2)O(3): 0.59 NaOH: 0.49 H(2)O and ageing was done at 47°C for 48 hours. The optimum hydrothermal treatment time and temperature was 48 hours and 140°C, respectively. Fly ashes sourced from two coal-fired power plants (A, B) were found to produce nearly same high purity zeolite Na-P1 under identical conditions whereas the third fly ash (C) lead to a low quality zeolite Na-P1 under these conditions. The cation exchange capacity for the high pure phase was found to be 4.11 meq/g. These results highlight the fact that adjustment of reactant composition and presynthesis or synthesis parameters, improved quality of zeolite Na-P1 can be achieved and hence an improved potential for application of zeolites prepared from coal fly ash.

  11. Observation of photoassociation of ultracold sodium and cesium at the asymptote Na (3S1/2) + Cs (6P1/2)

    NASA Astrophysics Data System (ADS)

    Wu, Jizhou; Liu, Wenliang; Wang, Xiaofeng; Ma, Jie; Li, Dan; Sovkov, Vladimir B.; Xiao, Liantuan; Jia, Suotang

    2018-05-01

    We report on the production of ultracold heteronuclear NaCs* molecules in a dual-species magneto-optical trap through photoassociation. The electronically excited molecules are formed below the Na (3S1/2) + Cs (6P1/2) dissociation limit. 12 resonance lines are detected using trap-loss spectroscopy based on a highly sensitive modulation technique. The highest observed rovibrational level exhibits clear hyperfine structure, which is detected for the first time. This structure is simulated within a simplified model consisting of 4 coupled levels belonging to the initially unperturbed Hund's case "a" electronic states, which have been explored in our previous work that dealt with the Na (3S1/2) + Cs (6P3/2) asymptote [W. Liu et al., Phys. Rev. A 94, 032518 (2016)].

  12. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons.

    PubMed

    Zheng, Yi; Sanche, Léon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (∼4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  13. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    PubMed Central

    Zheng, Yi; Sanche, Léon

    2011-01-01

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (~4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons. PMID:20969428

  14. The NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Krivda, M.; NA62 Collaboration

    2013-08-01

    The main aim of the NA62 experiment (NA62 Technical Design Report, na62.web.cern.ch/NA62/Documents/TD_Full_doc_v1.pdf> [1]) is to study ultra-rare Kaon decays. In order to select rare events over the overwhelming background, central systems with high-performance, high bandwidth, flexibility and configurability are necessary, that minimize dead time while maximizing data collection reliability. The NA62 experiment consists of 12 sub-detector systems and several trigger and control systems, for a total channel count of less than 100,000. The GigaTracKer (GTK) has the largest number of channels (54,000), and the Liquid Krypton (LKr) calorimeter shares with it the largest raw data rate (19 GB/s). The NA62 trigger system works with 3 trigger levels. The first trigger level is based on a hardware central trigger unit, so-called L0 Trigger Processor (L0TP), and Local Trigger Units (LTU), which are all located in the experimental cavern. Other two trigger levels are based on software, and done with a computer farm located on surface. The L0TP receives information from triggering sub-detectors asynchronously via Ethernet; it processes the information, and then transmits a final trigger decision synchronously to each sub-detector through the Trigger and Timing Control (TTC) system. The interface between L0TP and the TTC system, which is used for trigger and clock distribution, is provided by the Local Trigger Unit board (LTU). The LTU can work in two modes: global and stand-alone. In the global mode, the LTU provides an interface between L0TP and TTC system. In the stand-alone mode, the LTU can fully emulate L0TP and so provides an independent way for each sub-detector for testing or calibration purposes. In addition to the emulation functionality, a further functionality is implemented that allows to synchronize the clock of the LTU with the L0TP and the TTC system. For testing and debugging purposes, a Snap Shot Memory (SSM) interface is implemented, that can work

  15. Silicon photomultipliers in scintillation detectors used for gamma ray energies up to 6.1 MeV

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Swiderski, L.; Szawłowski, M.

    2017-12-01

    Majority of papers concerning scintillation detectors with light readout by means of silicon photomultipliers refer to nuclear medicine or radiation monitoring devices where energy of detected gamma rays do not exceed 2 MeV. Detection of gamma radiation with higher energies is of interest to e.g. high energy physics and plasma diagnostics. The aim of this paper is to study applicability (usefulness) of SiPM light readout in detection of gamma rays up to 6.1 MeV in combination with various scintillators. The reported measurements were made with 3 samples of one type of Hamamatsu TSV (Through-Silicon Via technology) MPPC arrays. These 4x4 channel arrays have a 50 × 50 μm2 cell size and 12 × 12 mm2 effective active area. The following scintillators were used: CeBr3, NaI:Tl, CsI:Tl. During all the tests detectors were located in a climatic chamber. The studies are focused on optimization of the MPPC performance for practical use in detection of high energy gamma rays. The optimization includes selection of the optimum operating voltage in respect to the required energy resolution, dynamic range, linearity and pulse amplitude. The presented temperature tests show breakdown voltage dependence on the temperature change and define requirements for a power supply and gain stabilization method. The energy spectra for energies between 511 keV and 6.1 MeV are also presented and compared with data acquired with a classic photomultiplier XP5212B readout. Such a comparison allowed study of nonlinearity of the tested MPPCs, correction of the energy spectra and proper analysis of the energy resolution.

  16. Euryhaline pufferfish NBCe1 differs from nonmarine species NBCe1 physiology

    PubMed Central

    Plata, Consuelo; Kurita, Yukihiro; Kato, Akira; Hirose, Shigehisa; Romero, Michael F.

    2012-01-01

    Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO3 precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO3− secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na+/HCO3− cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li+/nHCO3− cotransport; HCO3− independent, DIDS-insensitive transport; and increased basal intracellular Na+ accumulation. fNBCe1 is a voltage-dependent Na+/nHCO3− cotransporter that rectifies, independently from the extracellular Na+ or HCO3− concentration, around −60 mV. Na+ removal (0Na+ prepulse) is necessary to produce the true HCO3−-elicited current. HCO3− addition results in huge outward currents with quick current decay. Kinetic analysis of HCO3− currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher Km) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = −80 mV; [HCO3−] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO3− secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence. PMID:22159080

  17. Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits.

    PubMed

    Ravindran, Arippa; Lao, Qi Zong; Harry, Jo Beth; Abrahimi, Parwiz; Kobrinsky, Evgeny; Soldatov, Nikolai M

    2008-06-10

    It is generally accepted that to generate calcium currents in response to depolarization, Ca(v)1.2 calcium channels require association of the pore-forming alpha(1C) subunit with accessory Ca(v)beta and alpha(2)delta subunits. A single calmodulin (CaM) molecule is tethered to the C-terminal alpha(1C)-LA/IQ region and mediates Ca2+-dependent inactivation of the channel. Ca(v)beta subunits are stably associated with the alpha(1C)-interaction domain site of the cytoplasmic linker between internal repeats I and II and also interact dynamically, in a Ca2+-dependent manner, with the alpha(1C)-IQ region. Here, we describe a surprising discovery that coexpression of exogenous CaM (CaM(ex)) with alpha(1C)/alpha(2)delta in COS1 cells in the absence of Ca(v)beta subunits stimulates the plasma membrane targeting of alpha(1C), facilitates calcium channel gating, and supports Ca2+-dependent inactivation. Neither real-time PCR with primers complementary to monkey Ca(v)beta subunits nor coimmunoprecipitation analysis with exogenous alpha(1C) revealed an induction of endogenous Ca(v)beta subunits that could be linked to the effect of CaM(ex). Coexpression of a calcium-insensitive CaM mutant CaM(1234) also facilitated gating of Ca(v)beta-free Ca(v)1.2 channels but did not support Ca2+-dependent inactivation. Our results show there is a functional matchup between CaM(ex) and Ca(v)beta subunits that, in the absence of Ca(v)beta, renders Ca2+ channel gating facilitated by CaM molecules other than the one tethered to LA/IQ to support Ca2+-dependent inactivation. Thus, coexpression of CaM(ex) creates conditions when the channel gating, voltage- and Ca2+-dependent inactivation, and plasma-membrane targeting occur in the absence of Ca(v)beta. We suggest that CaM(ex) affects specific Ca(v)beta-free conformations of the channel that are not available to endogenous CaM.

  18. DRG Voltage-Gated Sodium Channel 1.7 Is Upregulated in Paclitaxel-Induced Neuropathy in Rats and in Humans with Neuropathic Pain.

    PubMed

    Li, Yan; North, Robert Y; Rhines, Laurence D; Tatsui, Claudio Esteves; Rao, Ganesh; Edwards, Denaya D; Cassidy, Ryan M; Harrison, Daniel S; Johansson, Caj A; Zhang, Hongmei; Dougherty, Patrick M

    2018-01-31

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect experienced by cancer patients receiving treatment with paclitaxel. The voltage-gated sodium channel 1.7 (Na v 1.7) plays an important role in multiple preclinical models of neuropathic pain and in inherited human pain phenotypes, and its gene expression is increased in dorsal root ganglia (DRGs) of paclitaxel-treated rats. Hence, the potential of change in the expression and function of Na v 1.7 protein in DRGs from male rats with paclitaxel-related CIPN and from male and female humans with cancer-related neuropathic pain was tested here. Double immunofluorescence in CIPN rats showed that Na v 1.7 was upregulated in small DRG neuron somata, especially those also expressing calcitonin gene-related peptide (CGRP), and in central processes of these cells in the superficial spinal dorsal horn. Whole-cell patch-clamp recordings in rat DRG neurons revealed that paclitaxel induced an enhancement of ProTx II (a selective Na v 1.7 channel blocker)-sensitive sodium currents. Bath-applied ProTx II suppressed spontaneous action potentials in DRG neurons occurring in rats with CIPN, while intrathecal injection of ProTx II significantly attenuated behavioral signs of CIPN. Complementarily, DRG neurons isolated from segments where patients had a history of neuropathic pain also showed electrophysiological and immunofluorescence results indicating an increased expression of Na v 1.7 associated with spontaneous activity. Na v 1.7 was also colocalized in human cells expressing transient receptor potential vanilloid 1 and CGRP. Furthermore, ProTx II decreased firing frequency in human DRGs with spontaneous action potentials. This study suggests that Na v 1.7 may provide a potential new target for the treatment of neuropathic pain, including chemotherapy (paclitaxel)-induced neuropathic pain. SIGNIFICANCE STATEMENT This work demonstrates that the expression and function of the voltage-gated sodium channel Na

  19. Influenza A(H1N1)v in Germany: the first 10,000 cases.

    PubMed

    Gilsdorf, Andreas; Poggensee, Gabriele

    2009-08-27

    The analysis of the first 10,000 cases of influenza A(H1N1)v in Germany confirms findings from other sources that the virus is currently mainly causing mild diseases, affecting mostly adolescents and young adults. Overall hospitalisation rate for influenza A(H1N1)v was low (7%). Only 3% of the cases had underlying conditions and pneumonia was rare (0.4%). Both reporting and testing requirements have been adapted recently, taking into consideration the additional information available on influenza A(H1N1)v infections.

  20. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia.

    PubMed

    Rutter, A Richard; Ma, Qing-Ping; Leveridge, Mathew; Bonnert, Timothy P

    2005-11-07

    Coassociation of the vanilloid transient receptor potential (Trp) ion channels, TrpV1 and TrpV2, was investigated by immunoprecipitation and immunofluorescence in transfected mammalian cell lines, rat dorsal root ganglia and spinal cord. TrpV1/TrpV2 heteromeric complexes were coimmunoprecipitated from human embryonic kidney cells and F-11 dorsal root ganglion hybridoma cells following their transient coexpression. Immunofluorescent labelling of transfected F-11 cells revealed colocalization of TrpV1 and TrpV2 at the cell surface. Immunoprecipitation from rat dorsal root ganglion lysates identified a minor population of receptor complexes composed of TrpV1/TrpV2 heteromers, consistent with a small proportion of cells double-labelled with TrpV1 and TrpV2 antibodies in rat dorsal root ganglion sections. TrpV1/TrpV2 receptor complexes may represent a functionally distinct ion channel complex that may increase the diversity observed within the Trp ion channel family.

  1. Characterization of CaV1.2 exon 33 heterozygous knockout mice and negative correlation between Rbfox1 and CaV1.2 exon 33 expressions in human heart failure.

    PubMed

    Wang, Juejin; Li, Guang; Yu, Dejie; Wong, Yuk Peng; Yong, Tan Fong; Liang, Mui Cheng; Liao, Ping; Foo, Roger; Hoppe, Uta C; Soong, Tuck Wah

    2018-01-01

    Recently, we reported that homozygous deletion of alternative exon 33 of Ca V 1.2 calcium channel in the mouse resulted in ventricular arrhythmias arising from increased Ca V 1.2 Δ33 I CaL current density in the cardiomyocytes. We wondered whether heterozygous deletion of exon 33 might produce cardiac phenotype in a dose-dependent manner, and whether the expression levels of RNA splicing factors known to regulate alternative splicing of exon 33 might change in human heart failure. Unexpectedly, we found that exon 33 +/- cardiomyocytes showed similar Ca V 1.2 channel properties as wild-type cardiomyocyte, even though Ca V 1.2 Δ33 channels exhibit a gain-in-function. In human hearts, we found that the mRNA level of splicing factor Rbfox1, but not Rbfox2, was downregulated in dilated cardiomyopathy, and CACNA1C mRNA level was dramatically decreased in the both of dilated and ischemic cardiomyopathy. These data imply Rbfox1 may be involved in the development of cardiomyopathies via regulating the alternative splicing of Ca V 1.2 exon 33. (149 words).

  2. Fragments of the V1/V2 domain of HIV-1 glycoprotein 120 engineered for improved binding to the broadly neutralizing PG9 antibody.

    PubMed

    Morales, Javier F; Yu, Bin; Perez, Gerardo; Mesa, Kathryn A; Alexander, David L; Berman, Phillip W

    2016-09-01

    The V1/V2 domain of the HIV-1 envelope protein gp120 possesses two important epitopes: a glycan-dependent epitope recognized by the prototypic broadly neutralizing monoclonal antibody (bN-mAb), PG9, as well as an epitope recognized by non-neutralizing antibodies that has been associated with protection from HIV infection in the RV144 HIV vaccine trial. Because both of these epitopes are poorly immunogenic in the context of full length envelope proteins, immunization with properly folded and glycosylated fragments (scaffolds) represents a potential way to enhance the immune response to these specific epitopes. Previous studies showed that V1/V2 domain scaffolds could be produced from a few selected isolates, but not from many of the isolates that would be advantageous in a multivalent vaccine. In this paper, we used a protein engineering approach to improve the conformational stability and antibody binding activity of V1/V2 domain scaffolds from multiple diverse isolates, including several that were initially unable to bind the prototypic PG9 bN-mAb. Significantly, this effort required replicating both the correct glycan structure as well as the β-sheet structure required for PG9 binding. Although scaffolds incorporating the glycans required for PG9 binding (e.g., mannose-5) can be produced using glycosylation inhibitors (e.g., swainsonine), or mutant cell lines (e.g. GnTI(-) 293 HEK), these are not practical for biopharmaceutical production of proteins intended for clinical trials. In this report, we describe engineered glycopeptide scaffolds from three different clades of HIV-1 that bind PG9 with high affinity when expressed in a wildtype cell line suitable for biopharmaceutical production. The mutations that improved PG9 binding to scaffolds produced in normal cells included amino acid positions outside of the antibody contact region designed to stabilize the β-sheet and turn structures. The scaffolds produced address three major problems in HIV vaccine

  3. Mechanistic origin of low polarization in aprotic Na-O2 batteries.

    PubMed

    Ma, Shunchao; McKee, William C; Wang, Jiawei; Guo, Limin; Jansen, Martin; Xu, Ye; Peng, Zhangquan

    2017-05-21

    Research interest in aprotic sodium-air (Na-O 2 ) batteries is growing because of their considerably high theoretical specific energy and potentially better reversibility than lithium-air (Li-O 2 ) batteries. While Li 2 O 2 has been unequivocally identified as the major discharge product in Li-O 2 batteries containing relatively stable electrolytes, a multitude of discharge products, including NaO 2 , Na 2 O 2 and Na 2 O 2 ·2H 2 O, have been reported for Na-O 2 batteries and the corresponding cathodic electrochemistry remains incompletely understood. Herein, we provide molecular-level insights into the key mechanistic differences between Na-O 2 and Li-O 2 batteries based on gold electrodes in strictly dry, aprotic dimethyl sulfoxide electrolytes through a combination of in situ spectroelectrochemistry and density functional theory based modeling. While like Li-O 2 batteries, the formation of oxygen reduction products (i.e., O 2 - , NaO 2 and Na 2 O 2 ) in Na-O 2 batteries depends critically on the electrode potential, two factors lead to a better reversibility of Na-O 2 electrochemistry, and are therefore highly beneficial to a viable rechargeable metal-air battery design: (i) only O 2 - and NaO 2 , and no Na 2 O 2 , form down to as low as ∼1.5 V vs. Na/Na + during discharge; (ii) solid NaO 2 is quite soluble and its formation and oxidation can proceed through micro-reversible EC (a chemical reaction of the product after the electron transfer) and CE (a chemical reaction preceding the electron transfer) processes, respectively, with O 2 - as the key intermediate.

  4. Feature extraction inspired by V1 in visual cortex

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Xu, Yuelei; Zhang, Xulei; Ma, Shiping; Li, Shuai; Xin, Peng; Zhu, Mingning; Ma, Hongqiang

    2018-04-01

    Target feature extraction plays an important role in pattern recognition. It is the most complicated activity in the brain mechanism of biological vision. Inspired by high properties of primary visual cortex (V1) in extracting dynamic and static features, a visual perception model was raised. Firstly, 28 spatial-temporal filters with different orientations, half-squaring operation and divisive normalization were adopted to obtain the responses of V1 simple cells; then, an adjustable parameter was added to the output weight so that the response of complex cells was got. Experimental results indicate that the proposed V1 model can perceive motion information well. Besides, it has a good edge detection capability. The model inspired by V1 has good performance in feature extraction and effectively combines brain-inspired intelligence with computer vision.

  5. Exploring the {sup 22}Ne(p,γ){sup 23}Na reaction at LUNA and at HZDR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavanna, Francesca; Collaboration: LUNA Collaboration

    2014-05-09

    The {sup 22}Ne(p,γ){sup 23}Na reaction is involved in the hydrogen burning NeNa cycle. This determines the nucleosynthesis of the Ne and Na isotopes in the Red Giant Branch and Asymptotic Giant Branch phases of stellar evolution. In the energy range relevant for astrophysics (20 keV < E < 600 keV), the {sup 22}Ne(p,γ){sup 23}Na reaction rate is highly uncertain because of the contribution of a large number of resonances never measured directly. A related study is under preparation at the Laboratory for Underground Nuclear Astrophysics (LUNA), in the Gran Sasso National Laboratory, and it will cover the energy range 100more » keV < E < 400 keV. Meanwhile, a measurement at higher energies (i.e. 436 keV) has been carried out at the Tandetron accelerator of the HZDR (Helmholtz Zentrum Dresden Rossendorf) in Germany. Some preliminary results will be presented.« less

  6. Band gap engineering for graphene by using Na{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, S. J.; Lee, P. R.; Kim, J. G.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}.more » The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.« less

  7. HIV-1 drug resistance genotyping from antiretroviral therapy (ART) naïve and first-line treatment failures in Djiboutian patients

    PubMed Central

    2012-01-01

    Abstract In this study we report the prevalence of antiretroviral drug resistant HIV-1 genotypes of virus isolated from Djiboutian patients who failed first-line antiretroviral therapy (ART) and from ART naïve patients. Patients and methods A total of 35 blood samples from 16 patients who showed first-line ART failure (>1000 viral genome copies/ml) and 19 ART-naïve patients were collected in Djibouti from October 2009 to December 2009. Both the protease (PR) and reverse transcriptase (RT) genes were amplified and sequenced using National Agency for AIDS Research (ANRS) protocols. The Stanford HIV database algorithm was used for interpretation of resistance data and genotyping. Results Among the 16 patients with first-line ART failure, nine (56.2%) showed reverse transcriptase inhibitor-resistant HIV-1 strains: two (12.5%) were resistant to nucleoside (NRTI), one (6.25%) to non-nucleoside (NNRTI) reverse transcriptase inhibitors, and six (37.5%) to both. Analysis of the DNA sequencing data indicated that the most common mutations conferring drug resistance were M184V (38%) for NRTI and K103N (25%) for NNRTI. Only NRTI primary mutations K101Q, K103N and the PI minor mutation L10V were found in ART naïve individuals. No protease inhibitor resistant strains were detected. In our study, we found no detectable resistance in ∼ 44% of all patients who experienced therapeutic failure which was explained by low compliance, co-infection with tuberculosis and malnutrition. Genotyping revealed that 65.7% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. Conclusion The results of this first study about drug resistance mutations in first-line ART failures show the importance of performing drug resistance mutation test which guides the choice of a second-line regimen. This will improve the management of HIV-infected Djiboutian patients. Virtual slides The virtual slide(s) for this article can be found here

  8. Structure, stability, and photoluminescence in the anti-perovskites Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F (0≤x≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Eirin, E-mail: esulliv@ilstu.edu; Avdeev, Maxim; Blom, Douglas A.

    2015-10-15

    Single-phase ordered oxyfluorides Na{sub 3}WO{sub 4}F, Na{sub 3}MoO{sub 4}F and their mixed members Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F can be prepared via facile solid state reaction of Na{sub 2}MO{sub 4}·2H{sub 2}O (M=W, Mo) and NaF. Phases produced from incongruent melts are metastable, but lower temperatures allow for a facile one-step synthesis. In polycrystalline samples of Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F, the presence of Mo stabilizes the structure against decomposition to spinel phases. Photoluminescence studies show that upon excitation with λ=254 nm and λ=365 nm, Na{sub 3}WO{sub 4}F and Na{sub 3}MoO{sub 4}F exhibit broad emission maxima centered around 485 nm. Thesemore » materials constitute new members of the family of self-activating ordered oxyfluoride phosphors with anti-perovskite structures which are amenable to doping with emitters such as Eu{sup 3+}. - Graphical abstract: Directed synthesis of the ordered oxyfluorides Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F (0≤x≤1) has shown that a complete solid solution is attainable and provides the first example of photoluminescence in these materials. - Highlights: • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F is a complete solid solution with hexagonal anti-perovskite structure. • The presence of even small amounts of Mo stabilizes the structure against decomposition. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F has broad emissions centered ≈485 nm (λ{sub ex}=254 nm and λ{sub ex}=365 nm). • These materials constitute a new family of self-activated oxyfluoride phosphors. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F materials are amenable to doping with emitters such as Eu{sup 3+}.« less

  9. High-Resolution Rotational Spectrum, Dunham Coefficients, and Potential Energy Function of NaCl.

    PubMed

    Cabezas, C; Cernicharo, J; Quintana-Lacaci, G; Peña, I; Agundez, M; Prieto, L Velilla; Castro-Carrizo, A; Zuñiga, J; Bastida, A; Alonso, J L; Requena, A

    2016-07-13

    We report laboratory spectroscopy for the first time of the J = 1-0 and J = 2-1 lines of Na 35 Cl and Na 37 Cl in several vibrational states. The hyperfine structure has been resolved in both transitions for all vibrational levels, which permit us to predict with high accuracy the hyperfine splitting of the rotational transitions of the two isotopologues at higher frequencies. The new data have been merged with all previous works at microwave, millimeter, and infrared wavelengths and fitted to a series of mass-independent Dunham parameters and to a potential energy function. The obtained parameters have been used to compute a new dipole moment function, from which the dipole moment for infrared transitions up to Δ v = 8 has been derived. Frequency and intensity predictions are provided for all rovibrational transitions up to J = 150 and v = 8, from which the ALMA data of evolved stars can be modeled and interpreted.

  10. Recovery of V(V) from complex vanadium solution using capacitive deionization (CDI) with resin/carbon composite electrode.

    PubMed

    Bao, Shenxu; Duan, Jihua; Zhang, Yimin

    2018-05-25

    The resin-activated carbon composite (RAC) electrodes were fabricated and applied in capacitive deionization for recovery of V(V) from complex vanadium solution. The adsorption capacity of the RAC electrode for V(V) is extremely low and the reduction of V(V) is significant in low pH solution, but the adsorbed V(V) on the electrode increases obviously and the reduction of V(V) gradually diminishes with the rise of pH. However, as the pH is increased to 10, the adsorbed V(V) on the RAC electrode declines. The higher applied potential is beneficial to the adsorption of V(V) and 1.0 V is appropriate for the adsorption. The impurities ions (Al, P and Si) are mainly adsorbed in the electric double layers on the RAC electrode and V(V) is dominantly adsorbed by the resins in the electrode. The adsorbed impurity ions can be easily removed by diluted H 2 SO 4 and V(V) can be effectively eluted by 10% NaOH solution. The vanadium-bearing eluent can be recycled to recover and enrich vanadium from the complex solution. The performance of the RAC electrode keeps stable during the cyclic operation. This study may provide a promising and novel method for the recovery and separation of metals from aqueous solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment.

    PubMed

    Marchesi, Massimo; Thomson, Neil R; Aravena, Ramon; Sra, Kanwartej S; Otero, Neus; Soler, Albert

    2013-09-15

    The extent of carbon isotope fractionation during degradation of 1,1,1-trichloroethane (1,1,1-TCA) by a base-catalyzed persulfate (S₂O₈(2-)) treatment system was investigated. Significant destruction of 1,1,1-TCA was observed at a pH of ∼12. An increase in the NaOH:S₂O₈(2-) molar ratio from 0.2:1 to 8:1 enhanced the reaction rate of 1,1,1-TCA by a factor of ∼5 to yield complete (>99.9%) destruction. An average carbon isotope enrichment fractionation factor which was independent of the NaOH:S₂O₈(2-) molar ratio of -7.0 ± 0.2‰ was obtained. This significant carbon isotope fractionation and the lack of dependence on changes in the NaOH:S₂O₈(2-) molar ratio demonstrates that carbon isotope analysis can potentially be used in situ as a performance assessment tool to estimate the degradation effectiveness of 1,1,1-TCA by a base-catalyzed persulfate system. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Lift cruise fan V/STOL aircraft conceptual design study T-39 modification. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Elliott, D. W.

    1976-01-01

    The conversion of two T-39 aircraft into lift cruise fan research and technology vehicles is discussed. The concept is based upon modifying the T-39A (NA265-40) Sabreliner airframe into a V/STOL configuration by incorporating two LCF-459 lift cruise fans and three YJ-97 gas generators. The propulsion concept provides the thrust for horizontal flight or lift for vertical flight by deflection of bifurcated nozzles while maintaining engine out safety throughout the flight envelope. The configuration meets all the study requirements specified for the design with control powers in VTOL and conversion in excess of the requirement making it an excellent vehicle for research and development. The study report consists of two volumes; Volume 1 (Reference a) contains background data detailed description and technical substantiation of the aircraft. Volume 2 includes cost data, scheduling and program planning not addressed in Volume 1.

  13. Folded or Not? Tracking Bet v 1 Conformation in Recombinant Allergen Preparations

    PubMed Central

    Seutter von Loetzen, Christian; Schweimer, Kristian; Bellinghausen, Iris; Treudler, Regina; Simon, Jan C.; Vogel, Lothar; Völker, Elke; Randow, Stefanie; Reuter, Andreas; Rösch, Paul; Vieths, Stefan; Holzhauser, Thomas; Schiller, Dirk

    2015-01-01

    Background Recombinant Bet v 1a (rBet v 1a) has been used in allergy research for more than three decades, including clinical application of so-called hypoallergens. Quantitative IgE binding to rBet v 1a depends on its native protein conformation, which might be compromised upon heterologous expression, purification, or mutational engineering of rBet v 1a. Objective To correlate experimental/theoretical comparisons of IgE binding of defined molar ratios of folded/misfolded recombinant Bet v 1a variants and to determine accuracy and precision of immuno- and physicochemical assays routinely used to assess the quality of recombinant allergen preparations. Methods rBet v 1a and its misfolded variant rBet v 1aS112P/R145P were heterologously expressed and purified from Escherichia coli. Structural integrities and oligomerisation of the recombinant allergens were evaluated by 1H-nuclear magnetic resonance (1H-NMR), circular dichroism (CD) spectroscopy, and dynamic light scattering (DLS). IgE binding of defined combinations of rBet v 1a and rBet v 1aS112P/R145P was assessed using immunoblotting (IB), enzyme-linked immunosorbent assay (ELISA) and mediator release (MR) of humanized rat basophilic leukemia cells sensitized with serum IgE of subjects allergic to birch pollen. Experimental and theoretically expected results of the analyses were compared. Results 1H-NMR spectra of rBet v 1a and rBet v 1aS112P/R145P demonstrate a native and highly disordered protein conformations, respectively. The CD spectra suggested typical alpha-helical and beta-sheet secondary structure content of rBet v 1a and random coil for rBet v 1aS112P/R145P. The hydrodynamic radii (RH) of 2.49 ± 0.39 nm (rBet v 1a) and 3.1 ± 0.56 nm (rBet v 1aS112P/R145P) showed monomeric dispersion of both allergens in solution. Serum IgE of birch pollen allergic subjects bound to 0.1% rBet v 1a in the presence of 99.9% of non-IgE binding rBet v 1aS112P/R145P. Immunoblot analysis overestimated, whereas ELISA and

  14. Quenching of Excited Na due to He Collisions

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Stancil, P. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.

    2006-01-01

    The quenching and elastic scattering of excited Sodium by collisions with Helium have been investigated for energies between 10(exp -13) eV and 10 eV. With the ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained from multireference single- and double-excitation configuration interaction approach, we carried out scattering calculations by the quantum-mechanical molecular-orbital close-coupling method. Cross sections for quenching reactions and elastic collisions are presented. Quenching and elastic collisional rate coefficients as a function of temperature between 1 micro-K and 10,000 K are also obtained. The results are relevant to modeling non-LTE effects on Na D absorption lines in extrasolar planets and brown dwarfs.

  15. The V1a and V1b, but not V2, vasopressin receptor genes are expressed in the supraoptic nucleus of the rat hypothalamus, and the transcripts are essentially colocalized in the vasopressinergic magnocellular neurons.

    PubMed

    Hurbin, A; Boissin-Agasse, L; Orcel, H; Rabié, A; Joux, N; Desarménien, M G; Richard, P; Moos, F C

    1998-11-01

    We have identified and visualized the vasopressin (VP) receptors expressed by hypothalamic magnocellular neurons in supraoptic and paraventricular nuclei. To do this, we used RT-PCR on total RNA extracts from supraoptic nuclei or on single freshly dissociated supraoptic neurons, and in situ hybridization on frontal sections of hypothalamus of Wistar rats. The RT-PCR on supraoptic RNA extracts revealed that mainly V1a, but also V1b, subtypes of VP receptors are expressed from birth to adulthood. No V2 receptor messenger RNA (mRNA) was detected. Furthermore, the single-cell RT-nested PCR indicated that the V1a receptor mRNA is present in vasopressinergic magnocellular neurons. In light of these results, in situ hybridization was performed to visualize the V1a and V1b receptor mRNAs in supraoptic and paraventricular nuclei. Simultaneously, we coupled this approach to: 1) in situ hybridization detection of oxytocin or VP mRNAs; or 2) immunocytochemistry to detect the neuropeptides. This provided a way of identifying the neurons expressing perceptible amounts of V1a or V1b receptor mRNAs as vasopressinergic neurons. Here, we suggest that the autocontrol exerted specifically by VP on vasopressinergic neurons is mediated through, at least, V1a and V1b subtype receptors.

  16. Publications - RDF 2008-1 v. 1.0.1 | Alaska Division of Geological &

    Science.gov Websites

    main content DGGS RDF 2008-1 v. 1.0.1 Publication Details Title: Major-oxide, minor-oxide, and trace , S.E., and Jing, L., 2008, Major-oxide, minor-oxide, and trace-element geochemical data from rocks and Birch Creek; Hope Creek; Idaho Creek; Major Oxides; McManus Creek; Montana Creek; Polar Creek; Pool

  17. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Bie, Xiaofei; Kubota, Kei; Hosaka, Tomooki; Chihara, Kuniko; Komaba, Shinichi

    2018-02-01

    Electrochemical performance of Prussian blue analogues (PBAs) as positive electrode materials for non-aqueous Na-ion batteries is known to be highly dependent on their synthesis conditions according to the previous researches. Na-rich PBAs, NaxM[Fe(CN)6]·nH2O where M = Mn, Fe, Co, and Ni, are prepared via precipitation method under the same condition. The structure, chemical composition, morphology, valence of the transition metals, and electrochemical property of these samples are comparatively researched. The PBA with Mn shows large reversible capacity of 126 mAh g-1 in 2.0-4.2 V at a current density of 30 mA g-1 and the highest working voltage owning to high redox potential of Mn2+/3+ in MnN6 and Fe2+/3+ in FeC6. While, the PBA with Ni exhibits the best cyclability and rate performance though only 66 mAh g-1 is delivered. The significant differences in electrochemical behaviors of the PBAs originate from the various properties depending on different transition metals.

  18. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  19. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul; ...

    2015-11-17

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  20. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV.

    PubMed

    Zhang, C; Wu, S; Xue, X; Li, M; Qin, X; Li, W; Han, W; Zhang, Y

    2008-01-01

    Blockade of the programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) pathway can delay tumor growth and prolong the survival of tumor-bearing mice. The extracellular immunoglobulin (Ig) V domain of PD-1 is important for the interaction between PD-1 and PD-L1, suggesting that PD-1-IgV may be a potential target for anti-tumor immunotherapy. The extracellular sequence of human PD-1-IgV (hPD-1-IgV) was expressed in Escherichia coli and purified. The anti-tumor effect of hPD-1-IgV on tumor-bearing mice was tested. hPD-1-IgV recombinant protein could bind PD-L1 at molecular and cellular levels and enhance Cytotoxic T Lymphocyte (CTL) activity and anti-tumor effect on tumor-bearing mice in vivo. The percentage of CD4(+)CD25(+) T cells in tumor-bearing mice was decreased compared with control mice after administration of the recombinant protein. Our results suggest that inhibition of the interaction between PD-1 and PD-L1 by hPD-1-IgV may be a promising strategy for specific tumor immunotherapy.

  1. Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium.

    PubMed

    Lu, Zhongyan; Yao, Lei; Jiang, Zhengqian; Aschenbach, Jörg R; Martens, Holger; Shen, Zanming

    2016-01-01

    Low sodium content in feed and large amounts of salivary sodium secretion are essential requirements to efficient sodium reabsorption in the dairy cow. It is already known that Na(+)/H(+) exchange (NHE) of the ruminal epithelium plays a key role in Na(+) absorption, and its function is influenced by the presence of short-chain fatty acids (SCFA) and mucosal pH. By contrast, the functional role and regulation of NHE in omasal epithelium have not been completely understood. In the present study, we used model studies in small ruminants (sheep and goats) to investigate NHE-mediated Na(+) transport and the effects of pH and SCFA on NHE activity in omasal epithelium and on the expression of NHE isoform in omasal epithelial cells. Conventional Ussing chamber technique, primary cell culture, quantitative PCR, and Western blot were used. In native omasal epithelium of sheep, the Na(+) transport was electroneutral, and it was inhibited by the specific NHE3 inhibitor 3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopropylidene-2-methyl-acrylamide dihydrochloride, which decreased mucosal-to-serosal, serosal-to-mucosal, and net flux rates of Na(+) by 80% each. The application of low mucosal pH (6.4 or 5.8) in the presence of SCFA activated the Na(+) transport across omasal epithelium of sheep compared with that at pH 7.4. In cultured omasal epithelial cells of goats, mRNA and protein of NHE1, NHE2, and NHE3 were detected. The application of SCFA increased NHE1 mRNA and protein expression, which was most prominent when the culture medium pH decreased from 7.4 to 6.8. At variance, the mRNA and protein expression of NHE2 and NHE3 were decreased with low pH and SCFA, which was contrary to the published data from ruminal epithelial studies. In conclusion, this paper shows that (1) NHE1, NHE2, and NHE3 are expressed in omasal epithelium; (2) NHE3 mediates the major portion of transepithelial Na(+) transport in omasal epithelium; and (3) SCFA and acidic pH acutely

  2. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    USGS Publications Warehouse

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  3. Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries

    PubMed Central

    Huang, Weifeng; Zhou, Jing; Li, Biao; Ma, Jin; Tao, Shi; Xia, Dingguo; Chu, Wangsheng; Wu, Ziyu

    2014-01-01

    Na-ion batteries are gaining an increased recognition as the next generation low cost energy storage devices. Here, we present a characterization of Na3FePO4CO3 nanoplates as a novel cathode material for sodium ion batteries. First-principles calculations reveal that there are two paths for Na ion migration along b and c axis. In-situ and ex-situ Fe K-edge X-ray absorption near edge structure (XANES) point out that in Na3FePO4CO3 both Fe2+/Fe3+ and Fe3+/Fe4+ redox couples are electrochemically active, suggesting also the existence of a two-electron intercalation reaction. Ex-situ X-ray powder diffraction data demonstrates that the crystalline structure of Na3FePO4CO3 remains stable during the charging/discharging process within the range 2.0–4.55 V. PMID:24595232

  4. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  5. Insights into the Dual-Electrode Characteristics of Layered Na0.5Ni0.25Mn0.75O2 Materials for Sodium-Ion Batteries.

    PubMed

    Palanisamy, Manikandan; Kim, Hyun Woo; Heo, Seongwoo; Lee, Eungje; Kim, Youngsik

    2017-03-29

    Sodium-ion batteries are now close to replacing lithium-ion batteries because they provide superior alternative energy storage solutions that are in great demand, particularly for large-scale applications. To that end, the present study is focused on the properties of a new type of dual-electrode material, Na 0.5 Ni 0.25 Mn 0.75 O 2 , synthesized using a mixed hydroxy-carbonate route. Cyclic voltammetry confirms that redox couples, at high and low voltage ranges, are facilitated by the unique features and properties of this dual-electrode, through sodium ion deintercalation/intercalation into the layered Na 0.5 Ni 0.25 Mn 0.75 O 2 material. This material provides superior performance for Na-ion batteries, as evidenced by the fabricated sodium cell that yielded initial charge-discharge capacities of 125/218 mAh g -1 in the voltage range of 1.5-4.4 V at 0.5 C. At a low voltage range (1.5-2.6 V), the anode cell delivered discharge-charge capacities of 100/99 mAh g -1 with 99% capacity retention, which corresponds to highly reversible redox reaction of the Mn 4+/3+ reduction and the Mn 3+/4+ oxidation observed at 1.85 and 2.06 V, respectively. The symmetric Na-ion cell, fabricated using Na 0.5 Ni 0.25 Mn 0.75 O 2 , yielded initial charge-discharge capacities of 196/187 μAh at 107 μA. These results encourage the further development of new types of futuristic sodium-ion-battery-based energy storage systems.

  6. MOPITT V7 Level 1 & Level 2 Release Announcement

    Atmospheric Science Data Center

    2016-08-02

    ...  - MOPITT Level 1 Radiances   Several significant retrieval algorithm and product format changes are introduced in the V7 ... in the V7 User's Guide available on the MOPITT Data and Information landing pages. Featured improvements in the V7 retrieval products ...

  7. HIF and HOIL-1L-mediated PKCζ degradation stabilizes plasma membrane Na,K-ATPase to protect against hypoxia-induced lung injury.

    PubMed

    Magnani, Natalia D; Dada, Laura A; Queisser, Markus A; Brazee, Patricia L; Welch, Lynn C; Anekalla, Kishore R; Zhou, Guofei; Vagin, Olga; Misharin, Alexander V; Budinger, G R Scott; Iwai, Kazuhiro; Ciechanover, Aaron J; Sznajder, Jacob I

    2017-11-21

    Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α 1 -Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells ( Cre SPC /HOIL-1L fl/fl ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α 1 -Na,K-ATPase construct bearing an S18A (α 1 -S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α 1 -S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of Cre SPC/ HOIL-1L fl/fl mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.

  8. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion

    PubMed Central

    Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515

  9. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-08

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect

  10. Glutathionylation-Dependence of Na+-K+-Pump Currents Can Mimic Reduced Subsarcolemmal Na+ Diffusion

    PubMed Central

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J.; Rasmussen, Helge H.

    2016-01-01

    The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit

  11. Luminescence characteristics of Dy3+ activated Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphor

    NASA Astrophysics Data System (ADS)

    Wani, Javaid A.; Dhoble, N. S.; Dhoble, S. J.

    2012-11-01

    In this paper, we have reported a new Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ thermoluminescence (TL) phosphor prepared via the wet chemical method. Prepared phosphor was characterized by X-ray powder diffraction, photoluminescence (PL), TL and scanning electronmicroscopy techniques. The scanning electronmicroscopic image of Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ phosphor confirms the micron size of particles. Under the PL study, the characteristic emission spectrum of Dy 3+ corresponding to 4F 9/2→6H 15/2 (481 nm) and 4F 9/2→6H 13/2 (576 nm) transitions was observed. The TL property of the as prepared phosphor was also found to be good. TL intensity of Na 2Sr2Mg(BO 3)F 2:Dy 3+ phosphors at 0.99 kGy exposure of γ-irradiations was compared with standard CaSO 4:Dy phosphor. It was seen that TL intensity of Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphors is 1.1 times less compared with the standard CaSO 4:Dy TL dosimeter phosphor. The kinetic parameters are also discussed in detail. The values of activation energy E (eV) and frequency factor S (s -1) were found to be 0.57 eV and 1.25×106 s-1, respectively.

  12. Transformation from insulating p-type to semiconducting n-type conduction in CaCu3Ti4O12-related Na(Cu5/2Ti1/2)Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Ming; Sinclair, Derek C.

    2013-07-01

    A double doping mechanism of Na+ + 1/2 Ti4+ → Ca2+ + 1/2 Cu2+ on the general formula Ca1-xNax(Cu3-x/2Tix/2)Ti4O12 has been used to prepare a series of isostructural CaCu3Ti4O12 (CCTO)-type perovskites. A complete solid solution exists for 0 ≤ x ≤ 1 and all compositions exhibit incipient ferroelectric behaviour with higher than expected intrinsic relative permittivity. Although CCTO ceramics typically exhibit n-type semiconductivity (room temperature, RT, resistivity of ˜10-100 Ω cm), Na(Cu5/2Ti1/2)Ti4O12 (NCTO) ceramics sintered at 950 °C consist of two insulating bulk phases (RT resistivity > 1 GΩ cm), one p-type and the other n-type. With increasing sintering temperature/period, the p-type phase transforms into the n-type phase. During the transformation, the resistivity and activation energy for electrical conduction (Ea ˜ 1.0 eV) of the p-type phase remain unchanged, whereas the n-type phase becomes increasingly conductive with Ea decreasing from ˜ 0.71 to 0.11 eV with increasing sintering temperature. These changes are attributed to small variations in stoichiometry that occur during high temperature ceramic processing with oxygen-loss playing a crucial role.

  13. Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Azam, Sikander

    2014-05-01

    The electronic structure, charge density and Fermi surface of Na3VF6 compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn-Sham equations. The calculation show that Na3VF6 compound has metallic nature and the Fermi energy (EF) is assessed by overlapping of V-d state. The calculated density of states at the EF are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K2, 9.008 mJ/mol-K2 and 2.295 mJ/mol-K2 for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na3VF6 compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed.

  14. Direct Interaction of Jak1 and v-Abl Is Required for v-Abl-Induced Activation of STATs and Proliferation

    PubMed Central

    Danial, Nika N.; Losman, Julie A.; Lu, Tianhong; Yip, Natalie; Krishnan, Kartik; Krolewski, John; Goff, Stephen P.; Wang, Jean Y. J.; Rothman, Paul B.

    1998-01-01

    In Abelson murine leukemia virus (A-MuLV)-transformed cells, members of the Janus kinase (Jak) family of non-receptor tyrosine kinases and the signal transducers and activators of transcription (STAT) family of signaling proteins are constitutively activated. In these cells, the v-Abl oncoprotein and the Jak proteins physically associate. To define the molecular mechanism of constitutive Jak-STAT signaling in these cells, the functional significance of the v-Abl–Jak association was examined. Mapping the Jak1 interaction domain in v-Abl demonstrates that amino acids 858 to 1080 within the carboxyl-terminal region of v-Abl bind Jak1 through a direct interaction. A mutant of v-Abl lacking this region exhibits a significant defect in Jak1 binding in vivo, fails to activate Jak1 and STAT proteins, and does not support either the proliferation or the survival of BAF/3 cells in the absence of cytokine. Cells expressing this v-Abl mutant show extended latency and decreased frequency in generating tumors in nude mice. In addition, inducible expression of a kinase-inactive mutant of Jak1 protein inhibits the ability of v-Abl to activate STATs and to induce cytokine-independent proliferation, indicating that an active Jak1 is required for these v-Abl-induced signaling pathways in vivo. We propose that Jak1 is a mediator of v-Abl-induced STAT activation and v-Abl induced proliferation in BAF/3 cells, and may be important for efficient transformation of immature B cells by the v-abl oncogene. PMID:9774693

  15. Nanostructured Na2Ti9O19 for Hybrid Sodium-Ion Capacitors with Excellent Rate Capability.

    PubMed

    Bhat, Swetha S M; Babu, Binson; Feygenson, Mikhail; Neuefeind, Joerg C; Shaijumon, M M

    2018-01-10

    Herein, we report a new Na-insertion electrode material, Na 2 Ti 9 O 19 , as a potential candidate for Na-ion hybrid capacitors. We study the structural properties of nanostructured Na 2 Ti 9 O 19 , synthesized by a hydrothermal technique, upon electrochemical cycling vs Na. Average and local structures of Na 2 Ti 9 O 19 are elucidated from neutron Rietveld refinement and pair distribution function (PDF), respectively, to investigate the initial discharge and charge events. Rietveld refinement reveals electrochemical cycling of Na 2 Ti 9 O 19 is driven by single-phase solid solution reaction during (de)sodiation without any major structural deterioration, keeping the average structure intact. Unit cell volume and lattice evolution on discharge process is inherently related to TiO 6 distortion and Na ion perturbations, while the PDF reveals the deviation in the local structure after sodiation. Raman spectroscopy and X-ray photoelectron spectroscopy studies further corroborate the average and local structural behavior derived from neutron diffraction measurements. Also, Na 2 Ti 9 O 19 shows excellent Na-ion kinetics with a capacitve nature of 86% at 1.0 mV s -1 , indicating that the material is a good anode candidate for a sodium-ion hybrid capacitor. A full cell hybrid Na-ion capacitor is fabricated by using Na 2 Ti 9 O 19 as anode and activated porous carbon as cathode, which exhibits excellent electrochemical properties, with a maximum energy density of 54 Wh kg -1 and a maximum power density of 5 kW kg -1 . Both structural insights and electrochemical investigation suggest that Na 2 Ti 9 O 19 is a promising negative electrode for sodium-ion batteries and hybrid capacitors.

  16. Properties of V1 Neurons Tuned to Conjunctions of Visual Features: Application of the V1 Saliency Hypothesis to Visual Search behavior

    PubMed Central

    Zhaoping, Li; Zhe, Li

    2012-01-01

    From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target. PMID:22719829

  17. Properties of V1 neurons tuned to conjunctions of visual features: application of the V1 saliency hypothesis to visual search behavior.

    PubMed

    Zhaoping, Li; Zhe, Li

    2012-01-01

    From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target.

  18. Phase coexistence and high electrical properties in (KxNa0.96-xLi0.04)(Nb0.85Ta0.15)O3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Chang, Yunfei; Yang, Zupei; Ma, Difei; Liu, Zonghuai; Wang, Zenglin

    2009-03-01

    (KxNa0.96-xLi0.04)(Nb0.85Ta0.15)O3 lead-free piezoelectric ceramics were produced by conventional solid-state reaction method. The effects of K/Na ratio on the phase transitional behavior, Raman spectrum, microstructure, and dielectric, piezoelectric, and ferroelectric properties of the ceramics have been investigated. The phase structure of the ceramics undergoes a transition from orthorhombic to tetragonal phase with increasing x. A double-degenerate symmetric O-Nb-O stretching vibration v1 and a triply degenerate symmetric O-Nb-O bending vibration v5 are detected as relatively strong scattering in the Raman spectra. The peak shifts of v5 and v1 modes all have a discontinuity with x between 0.42 and 0.46, which may suggest the coexistence of orthorhombic and tetragonal phases in this range. Properly modifying x reduces the sintering temperature, promotes the grain growth behavior, and improves the density of the ceramics. The polymorphic phase transition (at To -t) is shifted to near room temperature by increasing x to 0.44 (K/Na ratio of about 0.85:1), and the coexistence of orthorhombic and tetragonal phases in the ceramics at x =0.44 results in the optimized electrical properties (d33=291 pC/N, kp=0.54, ɛr=1167, tan δ=0.018, To -t=35 °C, TC=351 °C, Pr=27.65 μC/cm2, and Ec=8.63 kV/cm). The results show that the equal K/Na ratio is not an essential condition in obtaining optimized electrical properties in (KxNa0.96-xLi0.04)(Nb0.85Ta0.15)O3 ceramics.

  19. β-delayed γ decay of 20Mg and the 19Ne(p , γ) 20 Na breakout reaction in Type I X-ray bursts

    NASA Astrophysics Data System (ADS)

    Glassman, B. E.; Pérez-Loureiro, D.; Wrede, C.; Allen, J.; Bardayan, D. W.; Bennett, M. B.; Brown, B. A.; Chipps, K. A.; Febbraro, M.; Friedman, M.; Fry, C.; Hall, M. R.; Hall, O.; Liddick, S. N.; O'Malley, P.; Ong, W. J.; Pain, S. D.; Prokop, C.; Schwartz, S. B.; Shidling, P.; Sims, H.; Thompson, P.; Zhang, H.

    2018-03-01

    Certain astrophysical environments such as thermonuclear outbursts on accreting neutron stars (Type-I X-ray bursts) are hot enough to allow for breakout from the Hot CNO hydrogen burning cycles to the rapid proton capture (rp) process. An important breakout reaction sequence is 15O(α,γ)19Ne(p,γ)20Na and the 19Ne(p,γ)20Na reaction rate is expected to be dominated by a single resonance at 457 keV above the proton threshold in 20Na. The resonance strength and, hence, reaction rate depends strongly on whether this 20Na state at an excitation energy of 2647 keV has spin and parity of 1+ or 3+. Previous 20Mg (Jπ =0+) β+ decay experiments have relied almost entirely on searches for β-delayed proton emission from this resonance in 20Na to limit the log ft value and, hence, Jπ. However there is a non-negligible γ-ray branch expected that must also be limited experimentally to determine the log ft value and constrain Jπ. We have measured the β-delayed γ decay of 20Mg to complement previous β-delayed proton decay work and provide the first complete limit based on all energetically allowed decay channels through the 2647 keV state. Our limit confirms that a 1+ assignment for this state is highly unlikely.

  20. Three-Dimensional Fibrous Network of Na0.21 MnO2 for Aqueous Sodium-Ion Hybrid Supercapacitors.

    PubMed

    Karikalan, Natarajan; Karuppiah, Chelladurai; Chen, Shen-Ming; Velmurugan, Murugan; Gnanaprakasam, Periyasami

    2017-02-16

    Sodium-ion hybrid supercapacitors are potential energy-storage devices and have recently received enormous interest. However, the development of cathode materials and the use of nonaqueous electrolyte remain a great challenge. Hence, aqueous Na-ion hybrid supercapacitors based on a three-dimensional network of NaMnO 2 were developed. The cathode material was synthesized by the electro-oxidation of potassium manganese hexacyanoferrate nanocubes. The oxidized compound was confirmed to be Na 0.21 MnO 2 by various physical characterization methods. Manganese dioxide is a well-characterized material for aqueous asymmetric pseudocapacitors, but its usage at high operating voltages is limited due to the electrochemical stability of water. Nevertheless, high-potential and high-performance aqueous supercapacitors exhibiting a cell potential of 2.7 V were developed. Further, the practical applicability of an asymmetric supercapacitor based on NaMnO 2 (cathode) and reduced graphene oxide (anode) was demonstrated by powering a 2.1V red LED. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Studies on Metabolism of 1,4-Dioxane

    DTIC Science & Technology

    2010-03-01

    altered strength, and stereotypes or bizarre behavior (e.g., self mutilation, walking backwards). f. Study conduct. The study described will be...from dioxane in drinking water that is the foundation of the EPA drinking water risk assessment. V.3.3 Laboratory Animals: V.3.3.1 Genus and Species...stimuli, altered strength, and stereotypes or bizarre behavior (e.g., self mutilation, walking backwards). V.4.1.2.3 Paralytics: N/A V.4.1.3 Literature

  2. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis.

    PubMed

    Møller, Inge S; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M; Roy, Stuart J; Coates, Juliet C; Haseloff, Jim; Tester, Mark

    2009-07-01

    Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants.

  3. Molecular Analysis of Arthrobacter Myovirus vB_ArtM-ArV1: We Blame It on the Tail

    PubMed Central

    Šimoliūnas, Eugenijus; Truncaitė, Lidija; Zajančkauskaitė, Aurelija; Nainys, Juozas; Kaupinis, Algirdas; Valius, Mindaugas; Meškys, Rolandas

    2017-01-01

    ABSTRACT This is the first report on a myophage that infects Arthrobacter. A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order Caudovirales. IMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages

  4. Isolation of a high-affinity Bet v 1-specific IgG-derived ScFv from a subject vaccinated with hypoallergenic Bet v 1 fragments.

    PubMed

    Gadermaier, E; Marth, K; Lupinek, C; Campana, R; Hofer, G; Blatt, K; Smiljkovic, D; Roder, U; Focke-Tejkl, M; Vrtala, S; Keller, W; Valent, P; Valenta, R; Flicker, S

    2018-01-09

    Recombinant hypoallergenic allergen derivatives have been used in clinical immunotherapy studies, and clinical efficacy seems to be related to the induction of blocking IgG antibodies recognizing the wild-type allergens. However, so far no treatment-induced IgG antibodies have been characterized. To clone, express, and characterize IgG antibodies induced by vaccination with two hypoallergenic recombinant fragments of the major birch pollen allergen, Bet v 1 in a nonallergic subject. A phage-displayed combinatorial single-chain fragment (ScFv) library was constructed from blood of the immunized subject and screened for Bet v 1-reactive antibody fragments. ScFvs were tested for specificity and cross-reactivity to native Bet v 1 and related pollen and food allergens, and epitope mapping was performed. Germline ancestor genes of the antibody were analyzed with the ImMunoGeneTics (IMGT) database. The affinity to Bet v 1 and cross-reactive allergens was determined by surface plasmon resonance measurements. The ability to inhibit patients' IgE binding to ELISA plate-bound allergens and allergen-induced basophil activation was assessed. A combinatorial ScFv library was obtained from the vaccinated donor after three injections with the Bet v 1 fragments. Despite being almost in germline configuration, ScFv (clone H3-1) reacted with high affinity to native Bet v 1 and homologous allergens, inhibited allergic patients' polyclonal IgE binding to Bet v 1, and partially suppressed allergen-induced basophil activation. Immunization with unfolded hypoallergenic allergen derivatives induces high-affinity antibodies even in nonallergic subjects which recognize the folded wild-type allergens and inhibit polyclonal IgE binding of allergic patients. © 2018 The Authors. Allergy Published by John Wiley & Sons Ltd.

  5. Role of estrogen and progesterone in the modulation of CNG-A1 and Na/K+-ATPase expression in the renal cortex.

    PubMed

    Gracelli, Jones B; Souza-Menezes, Jackson; Barbosa, Carolina M L; Ornellas, Felipe S; Takiya, Christina M; Alves, Leandro M; Wengert, Mira; Feltran, Georgia da Silva; Caruso-Neves, Celso; Moyses, Margareth R; Prota, Luiz F M; Morales, Marcelo M

    2012-01-01

    The steroid hormones, estrogen and progesterone, are involved mainly in the control of female reproductive functions. Among other effects, estrogen and progesterone can modulate Na(+) reabsorption along the nephron altering the body's hydroelectrolyte balance. In this work, we analyzed the expression of cyclic nucleotide-gated channel A1 (CNG-A1) and α1 Na(+)/K(+)-ATPase subunit in the renal cortex and medulla of female ovariectomized rats and female ovariectomized rats subjected to 10 days of 17β-estradiol benzoate (2.0 µg/kg body weight) and progesterone (1.7 mg/kg body weight) replacement. Na(+)/K(+) ATPase activity was also measured. Immunofluorescence localization of CNG-A1 in the cortex and medulla was performed in control animals. We observed that CNG-A1 is localized at the basolateral membrane of proximal and distal tubules. Female ovariectomized rats showed low expression of CNG-A1 and low expression and activity of Na(+)/K(+) ATPase in the renal cortex. When female ovariectomized rats were subjected to 17β-estradiol benzoate replacement, normalization of CNG-A1 expression and Na(+)/K(+) ATPase expression and activity was observed. The replacement of progesterone was not able to recover CNG-A1 expression and Na(+)/K(+) ATPase expression at the control level. Only the activity of Na(+)/K(+) ATPase was able to be recovered at control levels in animals subjected to progesterone replacement. No changes in expression and activity were observed in the renal medulla. The expression of CNG-A1 is higher in cortex compared to medulla. In this work, we observed that estrogen and progesterone act in renal tissues modulating CNG-A1 and Na(+)/K(+) ATPase and these effects could be important in Na(+) and water balance. Copyright © 2012 S. Karger AG, Basel.

  6. Enhanced tolerance to NaCl and LiCl stresses by over-expressing Caragana korshinskii sodium/proton exchanger 1 (CkNHX1) and the hydrophilic C terminus is required for the activity of CkNHX1 in Atsos3-1 mutant and yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Da-Hai, E-mail: gresea_young@hotmail.com; Department of Plant Physiology, Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Dornburger Strasse 159, 07743 Jena; Song, Li-Ying, E-mail: lysong@genetics.ac.cn

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer CkNHX1 was isolated from Caragana korshinskii. Black-Right-Pointing-Pointer CkNHX1 was expressed mainly in roots, and significantly induced by NaCl in stems. Black-Right-Pointing-Pointer Expression of CkNHX1 enhanced the resistance to NaCl and LiCl in yeast and Atsos3-1. Black-Right-Pointing-Pointer Expression of CkNHX1-{Delta}C had little effect on NaCl/LiCl tolerance in Atsos3-1. Black-Right-Pointing-Pointer C-terminal region of CkNHX1 is required for its Na{sup +} and Li{sup +} transporting activity. -- Abstract: Sodium/proton exchangers (NHX antiporters) play important roles in plant responses to salt stress. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na{sup +}/H{sup +} transporting activity. In thismore » study, CkNHX1 were isolated from Caragana korshinskii, a pea shrub with high tolerance to salt, drought, and cold stresses. Transcripts of CkNHX1 were detected predominantly in roots, and were significantly induced by NaCl stress in stems. Transgenic yeast and Arabidopsisthalianasos3-1 (Atsos3-1) mutant over-expressing CkNHX1 and its hydrophilic C terminus-truncated derivative, CkNHX1-{Delta}C, were generated and subjected to NaCl and LiCl stresses. Expression of CkNHX1 significantly enhanced the resistance to NaCl and LiCl stresses in yeast and Atsos3-1 mutant. Whereas, compared with expression of CkNHX1, the expression of CkNHX1-{Delta}C had much less effect on NaCl tolerance in Atsos3-1 and LiCl tolerance in yeast and Atsos3-1. All together, these results suggest that the predominant expression of CkNHX1 in roots might contribute to keep C. korshinskii adapting to the high salt condition in this plant's living environment; CkNHX1 could recover the phenotype of Atsos3-1 mutant; and the hydrophilic C-terminal region of CkNHX1 should be required for Na{sup +}/H{sup +} and Li{sup +}/H{sup +} exchanging activity of CkNHX1.« less

  7. In Situ Tracking Kinetic Pathways of Li + /Na + Substitution during Ion-Exchange Synthesis of Li xNa 1.5–x VOPO 4 F 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young-Uk; Bai, Jianming; Wang, Liping

    Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li +/Na + substitution during solvothermal ion-exchange synthesis of Li xNa 1.5-xVOPO 4F 0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-timemore » observation, corroborated by first-principles calculations, reveals a selective replacement of Na + by Li +, leading to peculiar Na +/Li +/vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.« less

  8. In Situ Tracking Kinetic Pathways of Li + /Na + Substitution during Ion-Exchange Synthesis of Li xNa 1.5–x VOPO 4 F 0.5

    DOE PAGES

    Park, Young-Uk; Bai, Jianming; Wang, Liping; ...

    2017-08-29

    Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li +/Na + substitution during solvothermal ion-exchange synthesis of Li xNa 1.5-xVOPO 4F 0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-timemore » observation, corroborated by first-principles calculations, reveals a selective replacement of Na + by Li +, leading to peculiar Na +/Li +/vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.« less

  9. MATISSE-v1.5 and MATISSE-v2.0: new developments and comparison with MIRAMER measurements

    NASA Astrophysics Data System (ADS)

    Simoneau, Pierre; Caillault, Karine; Fauqueux, Sandrine; Huet, Thierry; Labarre, Luc; Malherbe, Claire; Rosier, Bernard

    2009-05-01

    MATISSE is a background scene generator developed for the computation of natural background spectral radiance images and useful atmospheric radiatives quantities (radiance and transmission along a line of sight, local illumination, solar irradiance ...). The spectral bandwidth ranges from 0.4 to 14 μm. Natural backgrounds include atmosphere (taking into account spatial variability), low and high altitude clouds, sea and land. The current version MATISSE-v1.5 can be run on SUN and IBM workstations as well as on PC under Windows and Linux environment. An IHM developed under Java environment is also implemented. MATISSE-v2.0 recovers all the MATISSE-v1.5 functionalities, and includes a new sea surface radiance model depending on wind speed, wind direction and the fetch value. The release of this new version in planned for April 2009. This paper gives a description of MATISSE-v1.5 and MATISSE-v2.0 and shows preliminary comparison results between generated images and measured images during the MIRAMER campaign, which hold in May 2008 in the Mediterranean Sea.

  10. Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1)by bosentan: a mechanism for species differences in hepatotoxicity.

    PubMed

    Leslie, Elaine M; Watkins, Paul B; Kim, Richard B; Brouwer, Kim L R

    2007-06-01

    Bile acid accumulation in hepatocytes due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) has been proposed as a mechanism for bosentan-induced hepatotoxicity. The observation that bosentan does not induce hepatotoxicity in rats, although bosentan has been reported to inhibit rat Bsep and cause elevated serum bile acids, challenges this mechanism. The lack of hepatotoxicity could be explained if bosentan inhibited hepatocyte uptake as well as canalicular efflux of bile acids. In the current study, bosentan was found to be a more potent inhibitor of Na(+)-dependent taurocholate uptake in rat (IC(50) 5.4 microM) than human (IC(50) 30 microM) suspended hepatocytes. In addition, bosentan was a more potent inhibitor of taurocholate uptake by rat Na(+)-dependent taurocholate co-transporting polypeptide (Ntcp/Slc10a1) (IC(50) 0.71 microM) than human NTCP (SLC10A1) (IC(50) 24 microM) expressed in HEK293 cells. Thus, bosentan is a more potent inhibitor of Ntcp than NTCP, and this should result in less intrahepatocyte accumulation of bile acids in rats during bosentan treatment. To begin characterization of this species difference, two chimeric molecules were generated and expressed in HEK293 cells; NTCP(1-140)/Ntcp(141-362) and Ntcp(1-140)/NTCP(141-349). The mode of bosentan inhibition was noncompetitive for Ntcp, and competitive for NTCP (K(i) 18 microM) and NTCP(1-140)/Ntcp(141-362) (K(i) 1.7 microM); bosentan affected both the K(m) and V(max) of Ntcp(1-140)/NTCP(141-349) (K(i) 7.0 microM). The carboxyl portions of NTCP and Ntcp were found to confer species differences in basal taurocholate transport V(max). In conclusion, differential inhibition of Ntcp and NTCP may represent a novel mechanism for species differences in bosentan-induced hepatotoxicity.

  11. The Role of Na,k-Atpase α Subunit Serine 775 and Glutamate 779 in Determining the Extracellular K+And Membrane Potential–Dependent Properties of the Na,k -Pump

    PubMed Central

    Peluffo, R. Daniel; Argüello, José M.; Berlin, Joshua R.

    2000-01-01

    The roles of Ser775 and Glu779, two amino acids in the putative fifth transmembrane segment of the Na,K -ATPase α subunit, in determining the voltage and extracellular K + (K + o) dependence of enzyme-mediated ion transport, were examined in this study. HeLa cells expressing the α1 subunit of sheep Na,K -ATPase were voltage clamped via patch electrodes containing solutions with 115 mM Na+ (37°C). Na,K -pump current produced by the ouabain-resistant control enzyme (RD), containing amino acid substitutions Gln111Arg and Asn122Asp, displayed a membrane potential and K + o dependence similar to wild-type Na,K -ATPase during superfusion with 0 and 148 mM Na+-containing salt solutions. Additional substitution of alanine at Ser775 or Glu779 produced 155- and 15-fold increases, respectively, in the K + o concentration that half-maximally activated Na,K -pump current at 0 mV in extracellular Na+-free solutions. However, the voltage dependence of Na,K -pump current was unchanged in RD and alanine-substituted enzymes. Thus, large changes in apparent K + o affinity could be produced by mutations in the fifth transmembrane segment of the Na,K -ATPase with little effect on voltage-dependent properties of K + transport. One interpretation of these results is that protein structures responsible for the kinetics of K + o binding and/or occlusion may be distinct, at least in part, from those that are responsible for the voltage dependence of K + o binding to the Na,K -ATPase. PMID:10871639

  12. Adaptation of influenza A(H1N1)pdm09 virus in experimental mouse models.

    PubMed

    Prokopyeva, E A; Sobolev, I A; Prokopyev, M V; Shestopalov, A M

    2016-04-01

    In the present study, three mouse-adapted variants of influenza A(H1N1)pdm09 virus were obtained by lung-to-lung passages of BALB/c, C57BL/6z and CD1 mice. The significantly increased virulence and pathogenicity of all of the mouse-adapted variants induced 100% mortality in the adapted mice. Genetic analysis indicated that the increased virulence of all of the mouse-adapted variants reflected the incremental acquisition of several mutations in PB2, PB1, HA, NP, NA, and NS2 proteins. Identical amino acid substitutions were also detected in all of the mouse-adapted variants of A(H1N1)pdm09 virus, including PB2 (K251R), PB1 (V652A), NP (I353V), NA (I106V, N248D) and NS1 (G159E). Apparently, influenza A(H1N1)pdm09 virus easily adapted to the host after serial passages in the lungs, inducing 100% lethality in the last experimental group. However, cross-challenge revealed that not all adapted variants are pathogenic for different laboratory mice. Such important results should be considered when using the influenza mice model. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  14. Investigation of the thermonuclear 18Ne(α,p)21Na reaction rate via resonant elastic scattering of 21Na + p

    NASA Astrophysics Data System (ADS)

    Zhang, L. Y.; He, J. J.; Parikh, A.; Xu, S. W.; Yamaguchi, H.; Kahl, D.; Kubono, S.; Mohr, P.; Hu, J.; Ma, P.; Chen, S. Z.; Wakabayashi, Y.; Wang, H. W.; Tian, W. D.; Chen, R. F.; Guo, B.; Hashimoto, T.; Togano, Y.; Hayakawa, S.; Teranishi, T.; Iwasa, N.; Yamada, T.; Komatsubara, T.; Zhang, Y. H.; Zhou, X. H.

    2014-01-01

    The 18Ne(α,p)21Na reaction is thought to be one of the key breakout reactions from the hot CNO cycles to the rp process in type I x-ray bursts. In this work, the resonant properties of the compound nucleus 22Mg have been investigated by measuring the resonant elastic scattering of 21Na + p. An 89-MeV 21Na radioactive beam delivered from the CNS Radioactive Ion Beam Separator bombarded an 8.8 mg/cm2 thick polyethylene (CH2)n target. The 21Na beam intensity was about 2×105 pps, with a purity of about 70% on target. The recoiled protons were measured at the center-of-mass scattering angles of θc.m.≈175.2∘, 152.2∘, and 150.5∘ by three sets of ΔE-E telescopes, respectively. The excitation function was obtained with the thick-target method over energies Ex(22Mg)=5.5-9.2 MeV. In total, 23 states above the proton-threshold in 22Mg were observed, and their resonant parameters were determined via an R-matrix analysis of the excitation functions. We have made several new Jπ assignments and confirmed some tentative assignments made in previous work. The thermonuclear 18Ne(α,p)21Na rate has been recalculated based on our recommended spin-parity assignments. The astrophysical impact of our new rate has been investigated through one-zone postprocessing x-ray burst calculations. We find that the 18Ne(α,p)21Na rate significantly affects the peak nuclear energy generation rate, reaction fluxes, and onset temperature of this breakout reaction in these astrophysical phenomena.

  15. Tissue-specific changes in OGG1 and SOD mRNA expression caused by NaOCl exposure in black seabream ( Acanthopagrus schlegelii)

    NASA Astrophysics Data System (ADS)

    Park, Ho-Ra; Kim, Yong; Yeo, Won-Jun; Kim, Ji-Hye; Han, Kyung-Nam

    2017-09-01

    The DNA-damage defense mechanism was studied in black seabreams after oxidative stress caused by exposure to sodium hypochlorite (NaOCl). Liver, muscle, and brain tissues were obtained after different NaOCl-exposure times (0, 24, 48, 72, and 96 h) and concentrations (0.5, 1, 1.5, 2, and 3 mg/L), after which oxoguanine glycosylase (OGG1) and superoxide dismutase (SOD) mRNA-expression levels were analyzed. At all NaOCl concentrations tested, liver OGG1 expression increased to a maximum in a time-dependent manner after NaOCl exposure and then decreased. In muscles, OGG1 expression increased over time following exposure to a low concentration of NaOCl (0.5, 1, and 1.5 mg/L), whereas it showed a mixed pattern (both increases and decreases observed) in the high-concentration groups (2 and 3 mg/L). SOD mRNA expression increased over time, both in the liver and muscles. In the brain, both OGG1 and SOD mRNA expression levels were highest after exposure to the lowest NaOCl concentration (0.5 mg/L), whereas basal levels were maintained over time at higher concentrations. These results indicate that OGG1 and SOD provide resistance to oxidative stress in black seabreams. In addition, continuous exposure to oxidative stress can suppress enzyme expression, suggesting a risk for long-term exposure to NaOCl.

  16. Orally active, nonpeptide vasopressin V1 antagonists. A novel series of 1-(1-substituted 4-piperidyl)-3,4-dihdyro-2(1H)-quinolinone.

    PubMed

    Ogawa, H; Yamamura, Y; Miyamoto, H; Kondo, K; Yamashita, H; Nakaya, K; Chihara, T; Mori, T; Tominaga, M; Yabuuchi, Y

    1993-07-09

    A series of compounds has been synthesized and demonstrated to be antagonists of V1 receptors both in vitro and in vivo. These compounds are structurally related to the 1-(4-piperidyl)-2(1H)-quinolinones, including OPC-21268, an orally bioavailable AVP V1 antagonist with high V1 specificity. It has been found that the introduction of an acetamide group on the terminal alkoxy chain of 41-44 leads to an increase in oral activity. Certain of these compounds may have efficacy in the study of AVP V1 receptors.

  17. Operating principles of rotary molecular motors: differences between F1 and V1 motors

    PubMed Central

    Yamato, Ichiro; Kakinuma, Yoshimi; Murata, Takeshi

    2016-01-01

    Among the many types of bioenergy-transducing machineries, F- and V-ATPases are unique bio- and nano-molecular rotary motors. The rotational catalysis of F1-ATPase has been investigated in detail, and molecular mechanisms have been proposed based on the crystal structures of the complex and on extensive single-molecule rotational observations. Recently, we obtained crystal structures of bacterial V1-ATPase (A3B3 and A3B3DF complexes) in the presence and absence of nucleotides. Based on these new structures, we present a novel model for the rotational catalysis mechanism of V1-ATPase, which is different from that of F1-ATPases. PMID:27924256

  18. Study of inelastic processes in Li+-Ar, K+-Ar, and Na+-He collisions in the energy range 0.5-10 keV

    NASA Astrophysics Data System (ADS)

    Lomsadze, Ramaz A.; Gochitashvili, Malkhaz R.; Kezerashvili, Roman Ya; Schulz, Michael

    2017-11-01

    Absolute cross sections are measured for charge-exchange, ionization, and excitation processes within the same experimental setup for the Li{}+-Ar, K{}+-Ar, and Na{}+-He collisions in the ion energy range of 0.5-10 keV. The results of the measurements and schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes occur with high probabilities and electrons are predominantly captured in ground states. The contributions of various partial inelastic channels to the total ionization cross section are estimated, and a primary mechanism for the process is identified. In addition, the energy-loss spectrum is applied in order to estimate the relative contribution of different inelastic channels, and to determine the mechanisms for the ionization and for some excitation processes of Ar resonance lines for the {{{K}}}+-Ar collision system. The excitation cross sections for the helium and for the sodium doublet lines for the Na{}+-He collision system both reveal some unexpected features. A mechanism to explain this observation is suggested.

  19. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.

    PubMed

    Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn

    2014-04-02

    Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion

    PubMed Central

    Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn

    2014-01-01

    SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273