Sample records for v2 receptor antagonism

  1. Identification and mechanism of ABA receptor antagonism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2more » to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.« less

  2. Amelioration of Hypoglycemia Via Somatostatin Receptor Type 2 Antagonism in Recurrently Hypoglycemic Diabetic Rats

    PubMed Central

    Yue, Jessica T.Y.; Riddell, Michael C.; Burdett, Elena; Coy, David H.; Efendic, Suad; Vranic, Mladen

    2013-01-01

    Selective antagonism of somatostatin receptor type 2 (SSTR2) normalizes glucagon and corticosterone responses to hypoglycemic clamp in diabetic rats. The purpose of this study was to determine whether SSTR2 antagonism (SSTR2a) ameliorates hypoglycemia in response to overinsulinization in diabetic rats previously exposed to recurrent hypoglycemia. Streptozotocin diabetic rats (n = 19), previously subjected to five hypoglycemia events over 3 days, received an insulin bolus (10 units/kg i.v.) plus insulin infusion (50 mU/kg/min i.v.) until hypoglycemia ensued (≤3.9 mmol/L) (experimental day 1 [Expt-D1]). The next day (Expt-D2), rats were allocated to receive either placebo treatment (n = 7) or SSTR2a infusion (3,000 nmol/kg/min i.v., n = 12) 60 min prior to the same insulin regimen. On Expt-D1, all rats developed hypoglycemia by ∼90 min, while on Expt-D2, hypoglycemia was attenuated with SSTR2a treatment (nadir = 3.7 ± 0.3 vs. 2.7 ± 0.3 mmol/L in SSTR2a and controls, P < 0.01). Glucagon response to hypoglycemia on Expt-D2 deteriorated by 20-fold in the placebo group (P < 0.001) but improved in the SSTR2a group (threefold increase in area under the curve [AUC], P < 0.001). Corticosterone response deteriorated in the placebo-treated rats on Expt-D2 but increased twofold in the SSTR2a group. Catecholamine responses were not affected by SSTR2a. Thus, SSTR2 antagonism after recurrent hypoglycemia improves the glucagon and corticosterone responses and largely ameliorates insulin-induced hypoglycemia in diabetic rats. PMID:23434929

  3. Olfactory receptor antagonism between odorants

    PubMed Central

    Oka, Yuki; Omura, Masayo; Kataoka, Hiroshi; Touhara, Kazushige

    2004-01-01

    The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist–OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality. PMID:14685265

  4. Characterization of a novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasopressin V2 receptor antagonist.

    PubMed

    Yamamura, Y; Ogawa, H; Yamashita, H; Chihara, T; Miyamoto, H; Nakamura, S; Onogawa, T; Yamashita, T; Hosokawa, T; Mori, T

    1992-04-01

    1. OPC-31260, a benzazepine derivative, has been studied for its ability to antagonize the binding of arginine vasopressin (AVP) to receptors in rat liver (V1) and kidney (V2) plasma membranes, for antagonism of the antidiuretic action of AVP in alcohol-anaesthetized rats and for diuretic action in conscious normal rats. 2. OPC-31260 caused a competitive displacement of [3H]-AVP binding to both V1 and V2 receptors with IC50 values of 1.2 +/- 0.2 x 10(-6) M and 1.4 +/- 0.2 x 10(-8) M, respectively. 3. OPC-31260 at doses of 10 to 100 micrograms kg-1, i.v., inhibited the antidiuretic action of exogenously administered AVP in water-loaded, alcohol-anaesthetized rats in a dose-dependent manner. OPC-31260 did not exert an antidiuretic activity suggesting that it is not a partial V2 receptor agonist. 4. After oral administration at doses of 1 to 30 mg kg-1 in normal conscious rats, OPC-31260 dose-dependently increased urine flow and decreased urine osmolality. The diuretic action of OPC-31260 was characterized as aquaresis, the mode of diuretic action being different from previously known diuretic agents such as furosemide, hydrochlorothiazide and spironolactone. 5. The results indicate that OPC-31260 is a selective V2 receptor antagonist and behaves as an aquaretic agent. OPC-31260 will be a useful tool in studying the physiological role of AVP and in the treatment of various conditions characterized by water retention.

  5. Characterization of a novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasopressin V2 receptor antagonist

    PubMed Central

    Yamamura, Yoshitaka; Ogawa, Hidenori; Yamashita, Hiroshi; Chihara, Tomihiko; Miyamoto, Hisashi; Nakamura, Shigeki; Onogawa, Toshiyuki; Yamashita, Tatsuya; Hosokawa, Tetsumi; Mori, Toyoki; Tominaga, Michiaki; Yabuuchi, Youichi

    1992-01-01

    1 OPC-31260, a benzazepine derivative, has been studied for its ability to antagonize the binding of arginine vasopressin (AVP) to receptors in rat liver (V1) and kidney (V2) plasma membranes, for antagonism of the antidiuretic action of AVP in alcohol-anaesthetized rats and for diuretic action in conscious normal rats. 2 OPC-31260 caused a competitive displacement of [3H]-AVP binding to both V1 and V2 receptors with IC50 values of 1.2 ± 0.2 × 10-6 M and 1.4 ± 0.2 × 10-8 M, respectively. 3 OPC-31260 at doses of 10 to 100 μg kg-1, i.v., inhibited the antidiuretic action of exogenously administered AVP in water-loaded, alcohol-anaesthetized rats in a dose-dependent manner. OPC-31260 did not exert an antidiuretic activity suggesting that it is not a partial V2 receptor agonist. 4 After oral administration at doses of 1 to 30 mg kg-1 in normal conscious rats, OPC-31260 dose-dependently increased urine flow and decreased urine osmolality. The diuretic action of OPC-31260 was characterized as aquaresis, the mode of diuretic action being different from previously known diuretic agents such as furosemide, hydrochlorothiazide and spironolactone. 5 The results indicate that OPC-31260 is a selective V2 receptor antagonist and behaves as an aquaretic agent. OPC-31260 will be a useful tool in studying the physiological role of AVP and in the treatment of various conditions characterized by water retention. PMID:1387020

  6. Antagonism of V1b receptors promotes maternal motivation to retrieve pups in the MPOA and impairs pup-directed behavior during maternal defense in the mpBNST of lactating rats.

    PubMed

    Bayerl, Doris S; Kaczmarek, Veronika; Jurek, Benjamin; van den Burg, Erwin H; Neumann, Inga D; Gaßner, Barbara M; Klampfl, Stefanie M; Bosch, Oliver J

    2016-03-01

    Recent studies using V1b receptor (V1bR) knockout mice or central pharmacological manipulations in lactating rats highlighted the influence of this receptor for maternal behavior. However, its role in specific brain sites known to be important for maternal behavior has not been investigated to date. In the present study, we reveal that V1bR mRNA (qPCR) and protein levels (Western blot) within either the medial preoptic area (MPOA) or the medial-posterior part of the bed nucleus of the stria terminalis (mpBNST) did not differ between virgin and lactating rats. Furthermore, we characterized the effects of V1bR blockade via bilateral injections of the receptor subtype-specific antagonist SSR149415 within the MPOA or the mpBNST on maternal behavior (maternal care under non-stress and stress conditions, maternal motivation to retrieve pups in a novel environment, maternal aggression) and anxiety-related behavior in lactating rats. Blocking V1bR within the MPOA increased pup retrieval, whereas within the mpBNST it decreased pup-directed behavior, specifically licking/grooming the pups, during the maternal defense test. In addition, immediately after termination of the maternal defense test, V1bR antagonism in both brain regions reduced nursing, particularly arched back nursing. Anxiety-related behavior was not affected by V1bR antagonism in either brain region. In conclusion our data indicate that V1bR antagonism significantly modulates different aspects of maternal behavior in a brain region-dependent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia.

    PubMed

    Meskanen, Katarina; Ekelund, Heidi; Laitinen, Jarmo; Neuvonen, Pertti J; Haukka, Jari; Panula, Pertti; Ekelund, Jesper

    2013-08-01

    Histamine has important functions as regulator of several other key neurotransmitters. Patients with schizophrenia have lower histamine H1 receptor levels. Since a case report in 1990 of an effect of the H2 antagonist famotidine on negative symptoms in schizophrenia, some open-label trials have been performed, but no randomized controlled trial. Recently, it was shown that clozapine is a full inverse agonist at the H2 receptor. We performed a researcher-initiated, academically financed, double-blind, placebo-controlled, parallel-group, randomized trial with the histamine H2 antagonist famotidine in treatment-resistant schizophrenia. Thirty subjects with schizophrenia were randomized to have either famotidine (100 mg twice daily, n = 16) or placebo (n = 14) orally, added to their normal treatment regimen for 4 weeks. They were followed up weekly with the Scale for the Assessment of Negative Symptoms (SANS), the PANSS (Positive and Negative Syndrome Scale), and Clinical Global Impression (CGI) Scale. In the famotidine group, the SANS score was reduced by 5.3 (SD, 13.1) points, whereas in the placebo group the SANS score was virtually unchanged (mean change, +0.2 [SD, 9.5]). The difference did not reach statistical significance (P = 0.134) in Mann-Whitney U analysis. However, the PANSS Total score and the General subscore as well as the CGI showed significantly (P < 0.05) greater change in the famotidine group than in the placebo group. No significant adverse effects were observed. This is the first placebo-controlled, randomized clinical trial showing a beneficial effect of histamine H2 antagonism in schizophrenia. H2 receptor antagonism may provide a new alternative for the treatment of schizophrenia.

  8. Captodiamine, a putative antidepressant, enhances hypothalamic BDNF expression in vivo by synergistic 5-HT2c receptor antagonism and sigma-1 receptor agonism.

    PubMed

    Ring, Rebecca M; Regan, Ciaran M

    2013-10-01

    The putative antidepressant captodiamine is a 5-HT2c receptor antagonist and agonist at sigma-1 and D3 dopamine receptors, exerts an anti-immobility action in the forced swim paradigm, and enhances dopamine turnover in the frontal cortex. Captodiamine has also been found to ameliorate stress-induced anhedonia, reduce the associated elevations of hypothalamic corticotrophin-releasing factor (CRF) and restore the reductions in hypothalamic BDNF expression. Here we demonstrate chronic administration of captodiamine to have no significant effect on hypothalamic CRF expression through sigma-1 receptor agonism; however, both sigma-1 receptor agonism or 5-HT2c receptor antagonism were necessary to enhance BDNF expression. Regulation of BDNF expression by captodiamine was associated with increased phosphorylation of transcription factor CREB and mediated through sigma-1 receptor agonism but blocked by 5-HT2c receptor antagonism. The existence of two separate signalling pathways was confirmed by immunolocalisation of each receptor to distinct cell populations in the paraventricular nucleus of the hypothalamus. Increased BDNF induced by captodiamine was also associated with enhanced expression of synapsin, but not PSD-95, suggesting induction of long-term structural plasticity between hypothalamic synapses. These unique features of captodiamine may contribute to its ability to ameliorate stress-induced anhedonia as the hypothalamus plays a prominent role in regulating HPA axis activity.

  9. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Valette, G; Garcia, G; Pascal, M; Maffrand, J P; Le Fur, G

    2002-01-01

    The involvement of vasopressin (AVP) in several pathological states has been reported recently and the selective blockade of the different AVP receptors could offer new clinical perspectives. During the past few years, various selective, orally active AVP V1a (OPC-21268, SR49059 (Relcovaptan)), V2 (OPC-31260, OPC-41061 (Tolvaptan), VPA-985 (Lixivaptan), SR121463, VP-343, FR-161282) and mixed V1a/V2 (YM-087 (Conivaptan), JTV-605, CL-385004) receptor antagonists have been intensively studied in various animal models and have reached, Phase IIb clinical trials for some of them. For many years now, our laboratory has focused on the identification of nonpeptide vasopressin antagonists with suitable oral bioavailability. Using random screening on small molecule libraries, followed by rational SAR and modelization, we identified a chemical series of 1-phenylsulfonylindolines which first yielded SR49059, a V1a receptor antagonist prototype. This compound displayed high affinity for animal and human V1a receptors and antagonized various V1a AVP-induced effects in vitro and in vivo (intracellular [Ca2+] increase, platelet aggregation, vascular smooth muscle cell proliferation, hypertension and coronary vasospasm). We and others have used this compound to study the role of AVP in various animal models. Recent findings from clinical trials show a potential interest for SR49059 in the treatment of dysmenorrhea and in Raynaud's disease. Structural modifications and simplifications performed in the SR49059 chemical series yielded highly specific V2 receptor antagonists (N-arylsulfonyl-oxindoles), amongst them SR121463 which possesses powerful oral aquaretic properties in various animal species and in man. SR121463 is well-tolerated and dose-dependently increases urine output and decreases urine osmolality. It induces free water-excretion without affecting electrolyte balance in contrast to classical diuretics (e.g. furosemide and hydrochlorothiazide). Notably, in cirrhotic rats

  10. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism.

    PubMed

    Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P

    2012-02-01

    The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). The two isomers showed similar affinity and selectivity for κ receptors (K(i)  30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological

  11. OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist.

    PubMed

    Yamamura, Y; Ogawa, H; Chihara, T; Kondo, K; Onogawa, T; Nakamura, S; Mori, T; Tominaga, M; Yabuuchi, Y

    1991-04-26

    An orally effective, nonpeptide, vasopressin V1 receptor antagonist, OPC-21268, has been identified. This compound selectively antagonized binding to the V1 subtype of the vasopressin receptor in a competitive manner. In vivo, the compound acted as a specific antagonist of arginine vasopressin (AVP)-induced vasoconstriction. After oral administration in conscious rats, the compound also antagonized pressor responses to AVP. OPC-21268 can be used to study the physiological role of AVP and may be therapeutically useful in the treatment of hypertension and congestive heart failure.

  12. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling

    PubMed Central

    Brust, Tarsis F.; Hayes, Michael P.; Roman, David L.; Watts, Val J.

    2014-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, “third generation” antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution. PMID:25449598

  13. Human IgG1 antibodies antagonizing activating receptor NKG2D on natural killer cells

    PubMed Central

    Steigerwald, Jutta; Raum, Tobias; Pflanz, Stefan; Cierpka, Ronny; Mangold, Susanne; Rau, Doris; Hoffmann, Patrick; Kvesic, Majk; Zube, Christina; Linnerbauer, Stefanie; Lumsden, John; Sriskandarajah, Mirnaalini; Kufer, Peter; Baeuerle, Patrick A

    2009-01-01

    NKG2D is a surface receptor expressed on NK cells but also on CD8+ T cells, γδ T cells, and auto-reactive CD4+/CD28− T cells of patients with rheumatoid arthritis. Various studies suggested that NKG2D plays a critical role in autoimmune diseases, e.g., in diabetes, celiac disease and rheumatoid arthritis (RA), rendering the activating receptor a potential target for antibody-based therapies. Here, we describe the generation and characteristics of a panel of human, high-affinity anti-NKG2D IgG1 monoclonal antibodies (mAbs) derived by phage display. The lead molecule mAb E4 bound with an affinity (KD) of 2.7 ± 1.4 × 10−11 M to soluble and membrane-bound human NKG2D, and cross-reacted with NKG2D from cynomolgus macaque, indicating potential suitability for studies in a relevant primate model. MAb E4 potently antagonized the cytolytic activity of NKL cells against BaF/3-MICA cells expressing NKG2D ligand, and blocked the NKG2D ligand-induced secretion of TNFα, IFNγ and GM-CSF, as well as surface expression of CRTAM by NK cells cultured on immobilized MICA or ULBP-1 ligands. The antibody did not show a detectable loss of binding to NKG2D after seven days in human serum at 37°C, and resisted thermal inactivation up to 70°C. Based on these results, anti-human NKG2D mAb E4 provides an ideal candidate for development of a novel therapeutic agent antagonizing a key receptor of NK and cytotoxic T cells with implications in autoimmune diseases. PMID:20061825

  14. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  15. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  16. Unsurmountable antagonism of brain 5-hydroxytryptamine2 receptors by (+)-lysergic acid diethylamide and bromo-lysergic acid diethylamide.

    PubMed

    Burris, K D; Sanders-Bush, E

    1992-11-01

    Lysergic acid diethylamide (LSD) and its structural analogue 2-bromo-lysergic acid diethylamide (BOL) act as unsurmountable antagonists of serotonin-elicited contractions in smooth muscle preparations. Two different models, allosteric and kinetic, have been invoked to explain these findings. The present studies investigate the mechanism of antagonism of brain 5-hydroxytryptamine (5HT)2 receptors, utilizing cells transfected with 5HT2 receptor cDNA cloned from rat brain. A proximal cellular response, phosphoinositide hydrolysis, was examined in order to minimize possible postreceptor effects. Even though LSD behaved as a partial agonist and BOL as a pure antagonist, both drugs blocked the effect of serotonin in an unsurmountable manner, i.e., increasing concentrations of serotonin could not overcome the blocking effect of LSD or BOL. Radioligand binding studies showed that preincubation of membranes with either LSD or BOL reduced the density of [3H]ketanserin binding sites, suggesting that the drugs bind tightly to the 5HT2 receptor and are not displaced during the binding assay. Two additional experiments supported this hypothesis. First, the off-rate of [3H] LSD was slow (20 min), relative to that of [3H]ketanserin (approximately 4 min). Second, when the length of incubation with [3H]ketanserin was increased to 60 min, the LSD-induced decrease in Bmax was essentially eliminated. The possibility that LSD and BOL decrease [3H]ketanserin binding by interacting with an allosteric site was rejected, because neither drug altered the rate of dissociation of [3H]ketanserin. The most parsimonious interpretation of these results is that unsurmountable antagonism reflects prolonged occupancy of the receptor by slowly reversible antagonists.

  17. Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism.

    PubMed

    Kato, Akihiko S; Burris, Kevin D; Gardinier, Kevin M; Gernert, Douglas L; Porter, Warren J; Reel, Jon; Ding, Chunjin; Tu, Yuan; Schober, Douglas A; Lee, Matthew R; Heinz, Beverly A; Fitch, Thomas E; Gleason, Scott D; Catlow, John T; Yu, Hong; Fitzjohn, Stephen M; Pasqui, Francesca; Wang, He; Qian, Yuewei; Sher, Emanuele; Zwart, Ruud; Wafford, Keith A; Rasmussen, Kurt; Ornstein, Paul L; Isaac, John T R; Nisenbaum, Eric S; Bredt, David S; Witkin, Jeffrey M

    2016-12-01

    Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.

  18. Vascular Consequences of Aldosterone Excess and Mineralocorticoid Receptor Antagonism.

    PubMed

    Chrissobolis, Sophocles

    2017-01-01

    Aldosterone binds to mineralocorticoid receptors (MRs) on renal epithelial cells to regulate sodium and water reabsorption, and therefore blood pressure. Recently, the actions of aldosterone outside the kidney have been extensively investigated, with numerous reports of aldosterone having detrimental actions, including in the vasculature. Notably, elevated aldosterone levels are an independent cardiovascular risk factor, and in addition to causing an increase in blood pressure, aldosterone can have blood pressure-dependent and -independent effects commonly manifested in the vasculature in cardiovascular diseases, including oxidative stress, endothelial dysfunction, inflammation, remodeling, stiffening, and plaque formation. Receptor-dependent mechanisms mediating these actions include the MR expressed on vascular endothelial and smooth muscle cells, but also include the angiotensin II type 1 receptor, epidermal growth factor receptor and vascular endothelial growth factor receptor 1, with downstream mechanisms including NADPH oxidase, cyclooxygenase, glucose-6-phosphate dehydrogenase, poly-(ADP ribose) polymerase and placental growth factor. The beneficial actions of MR antagonism in experimental hypertension include improved endothelial function, reduced hypertrophy and remodeling, and in atherosclerosis beneficial actions include reduced plaque area, inflammation, oxidative stress and endothelial dysfunction. Aldosterone excess is detrimental and MR antagonism is beneficial in humans also. The emerging concept of the contribution of aldosterone/MR-induced immunity to vascular pathology will also be discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2

    PubMed Central

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V1) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys8]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg8]-vasopressin (AVP) at V1 and vasopressin-2 (V2) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V1 and V2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [3H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V1) and cyclic adenosine monophosphate (V2). Binding potency at V1 and V2 was AVP>LVP>>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V1 than for V2. Cellular activity potency was also AVP>LVP>>terlipressin. Terlipressin was a partial agonist at V1 and a full agonist at V2; LVP was a full agonist at both V1 and V2. The in vivo response to terlipressin is likely due to the partial V1 agonist activity of terlipressin and full V1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors. PMID:29302194

  20. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    PubMed

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  1. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: a current preclinical & clinical perspective.

    PubMed

    Mahmood, Danish

    2016-10-01

    Histamine H 3 receptors are present as autoreceptors on histaminergic neurons and as heteroreceptors on nonhistaminergic neurones. They control the release and synthesis of histamine and several other key neurotransmitters in the brain. H 3 antagonism may be a novel approach to develop a new class of antipsychotic medications given the gathering evidence reporting therapeutic efficacy in several central nervous system disorders. Several medications such as cariprazine, lurasidone, LY214002, bexarotene, rasagiline, raloxifene, BL-1020 and ITI-070 are being developed to treat the negative symptoms and cognitive impairments of schizophrenia. These medications works through diverse mechanisms which include agonism at metabotropic glutamate receptor (mGluR2/3), partial agonism at dopamine D 2 , D 3 and serotonin 5-HT 1A receptors, antagonism at D 2 , 5-HT 2A, 5-HT 2B and 5-HT 7 receptors, combined dopamine antagonism with GABA agonist activity, inhibition of monoamine oxidase-B, modulation of oestrogen receptor, and activation of nuclear retinoid X receptor. However, still specific safe therapy for psychosis remains at large. Schizophrenia is a severe neuropsychiatric disorder result both from hyper- and hypo-dopaminergic transmission causing positive and negative symptoms, respectively. Pharmacological stimulation of dopamine release in the prefrontal cortex has been a viable approach in treating negative symptoms and cognitive deficits of schizophrenia symptoms that are currently not well treated and continue to represent significant unmet medical challenges. Administration of H 3 antagonists/inverse agonists increase extracellular dopamine concentrations in rat prefrontal cortex, but not in the striatum suggesting that antagonism via H 3 receptor may be a potential target for treating negative symptoms and cognitive deficits associated with schizophrenia. Further, insights are emerging into the potential role of histamine H 3 receptors as a target of antiobesity

  2. Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat.

    PubMed

    Pereira, Mariana; Farrar, Andrew M; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D; Morrell, Joan I

    2011-01-01

    Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A(2A) receptors in striatal areas, including the nucleus accumbens. This study was conducted to determine if adenosine A(2A) receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. The adenosine A(2A) receptor antagonist MSX-3 (0.25-2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25-2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother-infant relationship.

  3. Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat

    PubMed Central

    Farrar, Andrew M.; Hockemeyer, Jörg; Müller, Christa E.; Salamone, John D.; Morrell, Joan I.

    2011-01-01

    Rationale Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A2A receptors in striatal areas, including the nucleus accumbens. Objective This study was conducted to determine if adenosine A2A receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. Methods The adenosine A2A receptor antagonist MSX-3 (0.25–2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Results Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25–2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Conclusions Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother–infant relationship. PMID:20848086

  4. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor*

    PubMed Central

    Lominadze, David; Tyagi, Neetu; Sen, Utpal; Ovechkin, Alexander; Tyagi, Suresh C.

    2012-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascualr dementia, stroke, and Alzheimer's disease. The -amino butyric acid (GABA) is a inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circualtion by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine -synthase, CBS −/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients. PMID:22886392

  5. Morphine-like Opiates Selectively Antagonize Receptor-Arrestin Interactions*

    PubMed Central

    Molinari, Paola; Vezzi, Vanessa; Sbraccia, Maria; Grò, Cristina; Riitano, Daniela; Ambrosio, Caterina; Casella, Ida; Costa, Tommaso

    2010-01-01

    The addictive potential of opioids may be related to their differential ability to induce G protein signaling and endocytosis. We compared the ability of 20 ligands (sampled from the main chemical classes of opioids) to promote the association of μ and δ receptors with G protein or β-arrestin 2. Receptor-arrestin binding was monitored by bioluminescence resonance energy transfer (BRET) in intact cells, where pertussis toxin experiments indicated that the interaction was minimally affected by receptor signaling. To assess receptor-G protein coupling without competition from arrestins, we employed a cell-free BRET assay using membranes isolated from cells expressing luminescent receptors and fluorescent Gβ1. In this system, the agonist-induced enhancement of BRET (indicating shortening of distance between the two proteins) was Gα-mediated (as shown by sensitivity to pertussis toxin and guanine nucleotides) and yielded data consistent with the known pharmacology of the ligands. We found marked differences of efficacy for G protein and arrestin, with a pattern suggesting more restrictive structural requirements for arrestin efficacy. The analysis of such differences identified a subset of structures showing a marked discrepancy between efficacies for G protein and arrestin. Addictive opiates like morphine and oxymorphone exhibited large differences both at δ and μ receptors. Thus, they were effective agonists for G protein coupling but acted as competitive enkephalins antagonists (δ) or partial agonists (μ) for arrestin. This arrestin-selective antagonism resulted in inhibition of short and long term events mediated by arrestin, such as rapid receptor internalization and down-regulation. PMID:20189994

  6. OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats.

    PubMed

    Yamamura, Y; Nakamura, S; Itoh, S; Hirano, T; Onogawa, T; Yamashita, T; Yamada, Y; Tsujimae, K; Aoyama, M; Kotosai, K; Ogawa, H; Yamashita, H; Kondo, K; Tominaga, M; Tsujimoto, G; Mori, T

    1998-12-01

    The pharmacological profile and the acute and chronic aquaretic effects of OPC-41061, a novel nonpeptide human arginine vasopressin (AVP) V2-receptor antagonist, were respectively characterized in HeLa cells expressing cloned human AVP receptors and in conscious male rats. OPC-41061 antagonized [3H]-AVP binding to human V2-receptors (Ki = 0.43 +/- 0.06 nM) more potently than AVP (Ki = 0. 78 +/- 0.08 nM) or OPC-31260 (Ki = 9.42 +/- 0.90 nM). OPC-41061 also inhibited [3H]-AVP binding to human V1a-receptors (Ki = 12.3 +/- 0.8 nM) but not to human V1b-receptors, indicating that OPC-41061 was 29 times more selective for V2-receptors than for V1a-receptors. OPC-41061 inhibited cAMP production induced by AVP with no intrinsic agonist activity. In rats, OPC-41061 inhibited [3H]-AVP binding to V1a-receptors (Ki = 325 +/- 41 nM) and V2-receptors (Ki = 1.33 +/- 0. 30 nM), showing higher receptor selectivity (V1a/V2 = 244) than with human receptors. A single oral administration of OPC-41061 in rats clearly produced dose-dependent aquaresis. In treatment by multiple OPC-41061 dosing for 28 days at 1 and 10 mg/kg p.o. in rats, significant aquaretic effects were seen throughout the study period. As the result of aquaresis, hemoconcentration was seen at 4 hr postdosing although, no differences were seen in serum osmolality, sodium, creatinine and urea nitrogen concentrations at 24 hr postdosing. Furthermore, there was no difference in serum AVP concentration, pituitary AVP content or the number and affinity of AVP receptors in the kidney and liver at trough throughout the study period. These results demonstrate that OPC-41061 is a highly potent human AVP V2-receptor antagonist and produces clear aquaresis after single and multiple dosing, suggesting the usefulness in the treatment of various water retaining states.

  7. Arginine vasopressin antagonizes the effects of prostaglandin E2 on the spontaneous activity of warm-sensitive and temperature-insensitive neurons in the medial preoptic area in rats.

    PubMed

    Xu, Jian-Hui; Hou, Xiao-Yu; Tang, Yu; Luo, Rong; Zhang, Jie; Liu, Chang; Yang, Yong-Lu

    2018-01-01

    Arginine vasopressin (AVP) plays an important role in thermoregulation and antipyresis. We have demonstrated that AVP could change the spontaneous activity of thermosensitive and temperature insensitive neurons in the preoptic area. However, whether AVP influences the effects of prostaglandin E 2 (PGE 2 ) on the spontaneous activity of neurons in the medial preoptic area (MPO) remains unclear. Our experiment showed that PGE 2 decreased the spontaneous activity of warm-sensitive neurons, and increased that of low-slope temperature-insensitive neurons in the MPO. AVP attenuated the inhibitory effect of PGE 2 on warm-sensitive neurons, and reversed the excitatory effect of PGE 2 on low-slope temperature-insensitive neurons, demonstrating that AVP antagonized the effects of PGE 2 on the spontaneous activity of these neurons. The effect of AVP was suppressed by an AVP V 1a receptor antagonist, suggesting that V 1a receptor mediated the action of AVP. We also demonstrated that AVP attenuated the PGE 2 -induced decrease in the prepotential's rate of rise in warm-sensitive neurons and the PGE 2 -induced increase in that in low-slope temperature-insensitive neurons through the V 1a receptor. Together, these data indicated that AVP antagonized the PGE 2 -induced change in the spontaneous activity of warm-sensitive and low-slope temperature-insensitive neurons in the MPO partly by reducing the PGE 2 -induced change in the prepotential of these neurons in a V 1a receptor-dependent manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  9. Identification of novel selective V2 receptor non-peptide agonists.

    PubMed

    Del Tredici, Andria L; Vanover, Kim E; Knapp, Anne E; Bertozzi, Sine M; Nash, Norman R; Burstein, Ethan S; Lameh, Jelveh; Currier, Erika A; Davis, Robert E; Brann, Mark R; Mohell, Nina; Olsson, Roger; Piu, Fabrice

    2008-10-30

    Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.

  10. Arctigenin antagonizes mineralocorticoid receptor to inhibit the transcription of Na/K-ATPase.

    PubMed

    Cheng, Ye; Zhou, Meili; Wang, Yan

    2016-01-01

    Hypertension is one of the most important risk factors in cardiovascular disease and is the most common chronic disease. Mineralocorticoid receptor (MR) antagonists have been successfully used in clinic for the treatment of hypertension. Our study aims to investigate whether Arctigenin can antagonize MR and inhibit the transcription of Na/K-ATPase. The yeast two-hybrid assay was used to screen natural products and Arctigenin was identified as an MR antagonist. The direct binding of Arctigenin to MR was determined using assays based on surface plasmon resonance, differential scanning calorimetry and fluorescence quenching. Furthermore, results from mammalian one-hybrid and transcriptional activation experiments also confirmed that Arctigenin can potently antagonize MR in cells. We demonstrated that Arctigenin can decrease the level of Na/K-ATPase mRNA by antagonizing MR in HK-2 cells. Our findings show that Arctigenin can effectively decrease Na/K-ATPase transcription; thus highlight its potential as an anti-hypertensive drug lead compound. Our current findings demonstrate that Arctigenin is an antagonist of MR and effectively decreases the Na/K-ATPase 1 gene expression. Our work provides a hint for the drug discovery against cardiovascular disease.

  11. NMDA Receptor Antagonism Impairs Reversal Learning in Developing Rats

    PubMed Central

    Chadman, Kathryn K.; Watson, Deborah J.; Stanton, Mark E.

    2014-01-01

    Four experiments examined the effect of dizocilpine maleate (MK-801), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, on reversal learning during development. On postnatal days (PND) 21, 26, or 30, rats were trained on spatial discrimination and reversal in a T-maze. When MK-801 was administered (intraperitoneally) before both acquisition and reversal, 0.18 mg/kg generally impaired performance, whereas doses of 0.06 mg/kg and 0.10 mg/kg, but not 0.03 mg/kg, selectively impaired reversal learning (Experiments 1 and 3). The selective effect on reversal was not a result of sensitization to the second dose of MK-801 (Experiment 2) and was observed when the drug was administered only during reversal in an experiment addressing state-dependent learning (Experiment 4). Spatial reversal learning is more sensitive to NMDA-receptor antagonism than is acquisition. No age differences in sensitivity to MK-801 were found between PND 21 and 30. PMID:17014258

  12. Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor alpha subunit form the strychnine-binding site.

    PubMed Central

    Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851

  13. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    PubMed Central

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  14. Cardiac Metabolic Deregulation Induced by the Tyrosine Kinase Receptor Inhibitor Sunitinib is rescued by Endothelin Receptor Antagonism

    PubMed Central

    Sourdon, Joevin; Lager, Franck; Viel, Thomas; Balvay, Daniel; Moorhouse, Rebecca; Bennana, Evangeline; Renault, Gilles; Tharaux, Pierre-Louis; Dhaun, Neeraj; Tavitian, Bertrand

    2017-01-01

    The growing field of cardio-oncology addresses the side effects of cancer treatment on the cardiovascular system. Here, we explored the cardiotoxicity of the antiangiogenic therapy, sunitinib, in the mouse heart from a diagnostic and therapeutic perspective. We showed that sunitinib induces an anaerobic switch of cellular metabolism within the myocardium which is associated with the development of myocardial fibrosis and reduced left ventricular ejection fraction as demonstrated by echocardiography. The capacity of positron emission tomography with [18F]fluorodeoxyglucose to detect the changes in cardiac metabolism caused by sunitinib was dependent on fasting status and duration of treatment. Pan proteomic analysis in the myocardium showed that sunitinib induced (i) an early metabolic switch with enhanced glycolysis and reduced oxidative phosphorylation, and (ii) a metabolic failure to use glucose as energy substrate, similar to the insulin resistance found in type 2 diabetes. Co-administration of the endothelin receptor antagonist, macitentan, to sunitinib-treated animals prevented both metabolic defects, restored glucose uptake and cardiac function, and prevented myocardial fibrosis. These results support the endothelin system in mediating the cardiotoxic effects of sunitinib and endothelin receptor antagonism as a potential therapeutic approach to prevent cardiotoxicity. Furthermore, metabolic and functional imaging can monitor the cardiotoxic effects and the benefits of endothelin antagonism in a theranostic approach. PMID:28824714

  15. Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex

    PubMed Central

    Toriumi, Kazuya; Mouri, Akihiro; Narusawa, Shiho; Aoyama, Yuki; Ikawa, Natsumi; Lu, Lingling; Nagai, Taku; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2012-01-01

    N-methyl--aspartate (NMDA) receptor is a glutamate receptor which has an important role on mammalian brain development. We have reported that prenatal treatment with phencyclidine (PCP), a NMDA receptor antagonist, induces long-lasting behavioral deficits and neurochemical changes. However, the mechanism by which the prenatal antagonism of NMDA receptor affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that prenatal NMDA receptor antagonism impaired the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and the subventricular zone. Furthermore, using a PCR array focused on neurogenesis and neuronal stem cells, we evaluated changes in gene expression causing the impairment of neuronal progenitor proliferation and found aberrant gene expression, such as Notch2 and Ntn1, in prenatal PCP-treated mice. Consequently, the density of glutamatergic neurons in the prefrontal cortex was decreased, probably resulting in glutamatergic hypofunction. Prenatal PCP-treated mice displayed behavioral deficits in cognitive memory and sensorimotor gating until adulthood. These findings suggest that NMDA receptors regulate the proliferation and maturation of progenitor cells for glutamatergic neuron during neurodevelopment, probably via the regulation of gene expression. PMID:22257896

  16. Antagonism of the Ethanol-Like Discriminative Stimulus Effects of Ethanol, Pentobarbital, and Midazolam in Cynomolgus Monkeys Reveals Involvement of Specific GABAA Receptor SubtypesS⃞

    PubMed Central

    Rogers, Laura S. M.; Grant, Kathleen A.

    2009-01-01

    The γ-aminobutyric acid (GABA)A receptors mediating the discriminative stimulus effects of ethanol were studied by comparing the potency of ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)benzodiazepine-3-carboxylate (Ro15-4513) and ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)-benzodiazepine-3-carboxylate (flumazenil, Ro15-1788) to antagonize ethanol, pentobarbital (PB), and midazolam substitution for ethanol. Ro15-4513 has high affinity for receptors containing α4/6 and α5 subunits and lower affinity for α1, α2, and α3 subunits. Flumazenil is nonselective for GABAA receptors containing α1, α2, α3, and α5 subunits and has low affinity for α4/6-containing receptors. Male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) were trained to discriminate ethanol (1.0 or 2.0 g/kg i.g., 30-min pretreatment) from water. Ethanol, PB, and midazolam dose-dependently substituted for ethanol (80% ethanol-appropriate responding). Ro15-4513 (0.003–0.56 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in a vast majority of monkeys tested (15/15, 16/17, and 11/12, respectively). In contrast, flumazenil (0.30–10.0 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in 9 of 16, 12 of 16, and 7 of 9 monkeys tested, respectively. In the monkeys showing antagonism with both Ro15-4513 and flumazenil, ethanol and PB substitution were antagonized more potently by Ro15-4513 than by flumazenil, whereas midazolam substitution was antagonized with similar potency. There were no sex or training dose differences, with the exception that flumazenil failed to antagonize ethanol substitution in males trained to discriminate 2.0 g/kg ethanol. GABAA receptors with high affinity for Ro15-4513 (i.e., containing α4/6 and α5 subunits) may be particularly important mediators of the multiple discriminative stimulus effects of ethanol

  17. Complement C5a receptor antagonism by protamine and poly-L-Arg on human leukocytes.

    PubMed

    Olsen, U B; Selmer, J; Kahl, J U

    1988-01-01

    It is shown that protamine selectively and dose-dependently inhibits complement C5a-induced leukocyte responses such as histamine release from basophils, chemiluminescence and beta-glucuronidase release from neutrophils. Protamine produces parallel rightward displacements of the C5a dose-response curves. The inhibitory capacity of the polypeptide is reversible and disappears following repeated washing of exposed cells. In neutrophils poly-L-Arg similarly and specifically antagonizes C5a-induced chemiluminescence and enzyme release. This polymer alone, however, degranulates basophils and neutrophils, leading to histamine and enzyme release, respectively. It is concluded that on human neutrophils the arginine-rich polycations protamine and poly-L-Arg exhibit a competitive C5a receptor antagonism. In addition, protamine inhibits the C5a receptors on basophils. It is hypothesized that molecular conformations of the arginine-rich polycations might bind reversibly to, and block negatively charged groups at the C5a-receptor sites.

  18. Chemodetection in fluctuating environments: receptor coupling, buffering, and antagonism.

    PubMed

    Lalanne, Jean-Benoît; François, Paul

    2015-02-10

    Variability in the chemical composition of the extracellular environment can significantly degrade the ability of cells to detect rare cognate ligands. Using concepts from statistical detection theory, we formalize the generic problem of detection of small concentrations of ligands in a fluctuating background of biochemically similar ligands binding to the same receptors. We discover that in contrast with expectations arising from considerations of signal amplification, inhibitory interactions between receptors can improve detection performance in the presence of substantial environmental variability, providing an adaptive interpretation to the phenomenon of ligand antagonism. Our results suggest that the structure of signaling pathways responsible for chemodetection in fluctuating and heterogeneous environments might be optimized with respect to the statistics and dynamics of environmental composition. The developed formalism stresses the importance of characterizing nonspecific interactions to understand function in signaling pathways.

  19. ENDOTHELIN-A RECEPTOR ANTAGONISM IN EMBRYO CULTURE: WINDOW OF SENSITIVITY AND TIMING OF DEFECT

    EPA Science Inventory

    BRANNEN, K.C., J.M. ROGERS, and E.S. HUNTER, Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina, and Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, North Carolina. Endothelin-A receptor antagonism in embryo culture: w...

  20. Cyclotides Isolated from an Ipecac Root Extract Antagonize the Corticotropin Releasing Factor Type 1 Receptor

    PubMed Central

    Fahradpour, Mohsen; Keov, Peter; Tognola, Carlotta; Perez-Santamarina, Estela; McCormick, Peter J.; Ghassempour, Alireza; Gruber, Christian W.

    2017-01-01

    Cyclotides are plant derived, cystine-knot stabilized peptides characterized by their natural abundance, sequence variability and structural plasticity. They are abundantly expressed in Rubiaceae, Psychotrieae in particular. Previously the cyclotide kalata B7 was identified to modulate the human oxytocin and vasopressin G protein-coupled receptors (GPCRs), providing molecular validation of the plants’ uterotonic properties and further establishing cyclotides as valuable source for GPCR ligand design. In this study we screened a cyclotide extract derived from the root powder of the South American medicinal plant ipecac (Carapichea ipecacuanha) for its GPCR modulating activity of the corticotropin-releasing factor type 1 receptor (CRF1R). We identified and characterized seven novel cyclotides. One cyclotide, caripe 8, isolated from the most active fraction, was further analyzed and found to antagonize the CRF1R. A nanomolar concentration of this cyclotide (260 nM) reduced CRF potency by ∼4.5-fold. In contrast, caripe 8 did not inhibit forskolin-, or vasopressin-stimulated cAMP responses at the vasopressin V2 receptor, suggesting a CRF1R-specific mode-of-action. These results in conjunction with our previous findings establish cyclotides as modulators of both classes A and B GPCRs. Given the diversity of cyclotides, our data point to other cyclotide-GPCR interactions as potentially important sources of drug-like molecules. PMID:29033832

  1. Antagonism of Human Formyl Peptide Receptor 1 with Natural Compounds and their Synthetic Derivatives

    PubMed Central

    Schepetkin, Igor A.; Khlebnikov, Andrei I.; Kirpotina, Liliya N.; Quinn, Mark T.

    2015-01-01

    Formyl peptide receptor 1 (FPR1) regulates a wide variety of neutrophil functional responses and plays an important role in inflammation and the pathogenesis of various diseases. To date, a variety of natural and synthetic molecules have been identified as FPR1 ligands. Here, we review current knowledge on natural products and natural product-inspired small-molecules reported to antagonize and/or inhibit the FPR1-mediated responses. Based on this literature, additional screening of selected commercially available natural compounds for their ability to inhibit fMLF-induced Ca2+ mobilization in human neutrophils and FPR1 transfected HL-60 cells, and pharmacophore modeling, natural products with potential as FPR1 antagonists are considered and discussed in this review. The identification and characterization of natural products that antagonize FPR1 activity may have potential for the development of novel therapeutics to limit or alter the outcome of inflammatory processes. PMID:26382576

  2. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    PubMed

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  3. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease

    PubMed Central

    Feng, Hong-Qiang; Weymouth, Nate D.; Rockey, Don C.

    2009-01-01

    Endothelin-1 (ET-1), a potent vasoactive peptide, plays an important role in the pathogenesis of liver disease and portal hypertension. Two major endothelin receptors (ET-A and ET-B) mediate biological effects, largely on the basis of their known downstream signaling pathways. We hypothesized that the different receptors are likely to mediate divergent effects in portal hypertensive mice. Liver fibrosis and cirrhosis and portal hypertension were induced in 8-wk-old male BALB/c mice by gavage with carbon tetrachloride (CCl4). Portal pressure was recorded acutely during intravenous infusion of endothelin receptor antagonists in normal or portal hypertensive mice. In vivo microscopy was used to monitor sinusoidal dynamics. Additionally, the effect of chronic exposure to endothelin antagonists was assessed in mice during induction of fibrosis and cirrhosis with CCl4 for 8 wk. Intravenous infusion of ET-A receptor antagonists into normal and cirrhotic mice reduced portal pressure whereas ET-B receptor antagonism increased portal pressure. A mixed endothelin receptor antagonist also significantly reduced portal pressure. Additionally, the ET-A receptor antagonist caused sinusoidal dilation, whereas the ET-B receptor antagonist caused sinusoidal constriction. Chronic administration of each the endothelin receptor antagonists during the induction of fibrosis and portal hypertension led to reduced fibrosis, a significant reduction in portal pressure, and altered sinusoidal dynamics relative to controls. Acute effects of endothelin receptor antagonists are likely directly on the hepatic and sinusoidal vasculature, whereas chronic endothelin receptor antagonism appears to be more complicated, likely affecting fibrogenesis and the hepatic microcirculation. The data imply a relationship between hepatic fibrogenesis or fibrosis and vasomotor responses. PMID:19299580

  4. Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers.

    PubMed

    Gong, Ping; Hong, Huixiao; Perkins, Edward J

    2015-01-01

    Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.

  5. Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant.

    PubMed

    Sarmiento, José M; Añazco, Carolina C; Campos, Danae M; Prado, Gregory N; Navarro, Javier; González, Carlos B

    2004-11-05

    In rat kidney, two alternatively spliced transcripts are generated from the V2 vasopressin receptor gene. The large transcript (1.2 kb) encodes the canonical V2 receptor, whereas the small transcript encodes a splice variant displaying a distinct sequence corresponding to the putative seventh transmembrane domain and the intracellular C terminus of the V2 receptor. This work showed that the small spliced transcript is translated in the rat kidney collecting tubules. However, the protein encoded by the small transcript (here called the V2b splice variant) is retained inside the cell, in contrast to the preferential surface distribution of the V2 receptor (here called the V2a receptor). Cells expressing the V2b splice variant do not exhibit binding to 3H-labeled vasopressin. Interestingly, we found that expression of the splice variant V2b down-regulates the surface expression of the V2a receptor, most likely via the formation of V2a.V2b heterodimers as demonstrated by co-immunoprecipitation and fluorescence resonance energy transfer experiments between the V2a receptor and the V2b splice variant. The V2b splice variant would then be acting as a dominant negative. The effect of the V2b splice variant is specific, as it does not affect the surface expression of the G protein-coupled interleukin-8 receptor (CXCR1). Furthermore, the sequence encompassing residues 242-339, corresponding to the C-terminal domain of the V2b splice variant, also down-regulates the surface expression of the V2a receptor. We suggest that some forms of nephrogenic diabetes insipidus are due to overexpression of the splice variant V2b, which could retain the wild-type V2a receptor inside the cell via the formation of V2a.V2b heterodimers.

  6. Molecular modeling of interactions of the non-peptide antagonist YM087 with the human vasopressin V1a, V2 receptors and with oxytocin receptors.

    NASA Astrophysics Data System (ADS)

    Giełdoń, Artur; Kaźmierkiewicz, Rajmund; Ślusarz, Rafał; Ciarkowski, Jerzy

    2001-12-01

    The nonapeptide hormones arginine vasopressin (CYFQNCPRG-NH2, AVP) and oxytocin (CYIQNCPLG-NH2, OT), control many essential functions in mammals. Their main activities include the urine concentration (via stimulation of AVP V2 receptors, V2R, in the kidneys), blood pressure regulation (via stimulation of vascular V1a AVP receptors, V1aR), ACTH control (via stimulation of V1b receptors, V1bR, in the pituitary) and labor and lactation control (via stimulation of OT receptors, OTR, in the uterus and nipples, respectively). All four receptor subtypes belong to the GTP-binding (G) protein-coupled receptor (GPCR) family. This work consists of docking of YM087, a potent non-peptide V1aR and V2R - but not OTR - antagonist, into the receptor models based on relatively new theoretical templates of rhodopsin (RD) and opiate receptors, proposed by Mosberg et al. (Univ. of Michigan, Ann Arbor, USA). It is simultaneously demonstrated that this RD template satisfactorily compares with the first historical GPCR structure of bovine rhodopsin (Palczewski et al., 2000) and that homology-modeling of V2R, V1aR and OTR using opiate receptors as templates is rational, based on relatively high (20-60%) sequence homology among the set of 4 neurophyseal and 4 opiate receptors. YM087 was computer-docked to V1aR, V2R and OTR using the AutoDock (Olson et al., Scripps Research Institute, La Jolla, USA) and subsequently relaxed using restrained simulated annealing and molecular dynamics, as implemented in AMBER program (Kollman et al., University of California, San Francisco, USA). From about 80 diverse configurations, sampled for each of the three ligand/receptor systems, 3 best energy-relaxed complexes were selected for mutual comparisons. Similar docking modes were found for the YM087/V1aR and YM087/V2R complexes, diverse from those of the YM087/OTR complexes, in agreement with the molecular affinity data.

  7. V2 Vasopressin Receptor (V2R) Mutations in Partial Nephrogenic Diabetes Insipidus Highlight Protean Agonism of V2R Antagonists*

    PubMed Central

    Takahashi, Kazuhiro; Makita, Noriko; Manaka, Katsunori; Hisano, Masataka; Akioka, Yuko; Miura, Kenichiro; Takubo, Noriyuki; Iida, Atsuko; Ueda, Norishi; Hashimoto, Makiko; Fujita, Toshiro; Igarashi, Takashi; Sekine, Takashi; Iiri, Taroh

    2012-01-01

    Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI. PMID:22144672

  8. σ Receptor Effects of N-Substituted Benztropine Analogs: Implications for Antagonism of Cocaine Self-Administration

    PubMed Central

    Hiranita, Takato; Hong, Weimin C.; Kopajtic, Theresa

    2017-01-01

    Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N-methyl (AHN1-055), N-allyl (AHN2-005), and N-butyl (JHW007) analogs of 3α-[bis(4′-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d-methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03–1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ1-receptor (σ1R) antagonists. Therefore, the present study examined binding of the BZT analogs to σRs, as well as their in vivo σR antagonist effects. Each of the BZT analogs displaced radiolabeled σR ligands with nanomolar affinity. Further, self-administration of the σR agonist DTG (0.1–3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D1-like [R(+)-SKF 81297, (±)-SKF 82958 (0.00032–0.01 mg/kg per injection each)], D2-like [R(–)-NPA (0.0001–0.0032 mg/kg per injection), (–)-quinpirole (0.0032–0.1 mg/kg per injection)], or μ-opioid (remifentanil, 0.0001–0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N-substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σR antagonism contributes to those actions. PMID:28442581

  9. σ Receptor Effects of N-Substituted Benztropine Analogs: Implications for Antagonism of Cocaine Self-Administration.

    PubMed

    Hiranita, Takato; Hong, Weimin C; Kopajtic, Theresa; Katz, Jonathan L

    2017-07-01

    Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N -methyl (AHN1-055), N -allyl (AHN2-005), and N -butyl (JHW007) analogs of 3 α -[bis(4'-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d -methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03-1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ 1 -receptor ( σ 1 R) antagonists. Therefore, the present study examined binding of the BZT analogs to σ Rs, as well as their in vivo σ R antagonist effects. Each of the BZT analogs displaced radiolabeled σ R ligands with nanomolar affinity. Further, self-administration of the σ R agonist DTG (0.1-3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D 1 -like [ R (+)-SKF 81297, (±)-SKF 82958 (0.00032-0.01 mg/kg per injection each)], D 2 -like [ R (-)-NPA (0.0001-0.0032 mg/kg per injection), (-)-quinpirole (0.0032-0.1 mg/kg per injection)], or μ -opioid (remifentanil, 0.0001-0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N -substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σ R antagonism contributes to those actions. U.S. Government work not protected by U.S. copyright.

  10. Heteromerization of the μ- and δ-Opioid Receptors Produces Ligand-Biased Antagonism and Alters μ-Receptor TraffickingS⃞

    PubMed Central

    Milan-Lobo, Laura

    2011-01-01

    Heteromerization of opioid receptors has been shown to alter opioid receptor pharmacology. However, how receptor heteromerization affects the processes of endocytosis and postendocytic sorting has not been closely examined. This question is of particular relevance for heteromers of the μ-opioid receptor (MOR) and δ-opioid receptor (DOR), because the MOR is recycled primarily after endocytosis and the DOR is degraded in the lysosome. Here, we examined the endocytic and postendocytic fate of MORs, DORs, and DOR/MOR heteromers in human embryonic kidney 293 cells stably expressing each receptor alone or coexpressing both receptors. We found that the clinically relevant MOR agonist methadone promotes endocytosis of MOR but also the DOR/MOR heteromer. Furthermore, we show that DOR/MOR heteromers that are endocytosed in response to methadone are targeted for degradation, whereas MORs in the same cell are significantly more stable. It is noteworthy that we found that the DOR-selective antagonist naltriben mesylate could block both methadone- and [d-Ala2,NMe-Phe4,Gly-ol5]-enkephalin-induced endocytosis of the DOR/MOR heteromers but did not block signaling from this heteromer. Together, our results suggest that the MOR adopts novel trafficking properties in the context of the DOR/MOR heteromer. In addition, they suggest that the heteromer shows “biased antagonism,” whereby DOR antagonist can inhibit trafficking but not signaling of the DOR/MOR heteromer. PMID:21422164

  11. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    PubMed Central

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  12. Impact of Muscarinic M3 Receptor Antagonism on the Risk of Type 2 Diabetes in Antidepressant-Treated Patients: A Case-Controlled Study.

    PubMed

    Tran, Yen-Hao; Schuiling-Veninga, Catharina C M; Bergman, Jorieke E H; Groen, Henk; Wilffert, Bob

    2017-06-01

    M 3 muscarinic receptor antagonism has been associated with glucose intolerance and disturbance of insulin secretion. Our objective was to examine the risk of type 2 diabetes mellitus (T2DM) in patients using antidepressants with and without M 3 muscarinic receptor antagonism (AD_antaM 3 and AD_nonantaM 3 , respectively). We designed a case-control study using a pharmacy prescription database. We selected a cohort of patients who initiated antidepressant use between the ages of 20 and 40 years and who did not receive any anti-diabetic prescriptions at baseline. Cases were defined as those who developed T2DM [i.e., receiving oral anti-diabetic medication, Anatomical Therapeutic Chemical (ATC) code A10B] during the follow-up period (1994-2014), and ten random controls were picked for each case from the cohort of patients who did not develop T2DM. A total of 530 cases with incident T2DM and 5300 controls were included. Compared with no use of antidepressants during the previous 2 years, recent (within the last 6 months) exposure to AD_antaM 3 was associated with a moderately increased risk of T2DM: adjusted odds ratio 1.55 (95% confidence interval 1.18-2.02). In the stratified analyses, this association was dose dependent (>365 defined daily doses) and significant for patients who were in the younger age group (<45 years at the end of follow-up), were female and had no co-morbidity. On the other hand, recent exposure to AD_nonantaM 3 was not associated with a risk for T2DM in any of our analyses. Our results suggest that exposure to AD_antaM 3 was associated with the development of T2DM among antidepressant users.

  13. Dual ACE-inhibition and angiotensin II AT1 receptor antagonism with curcumin attenuate maladaptive cardiac repair and improve ventricular systolic function after myocardial infarctionin rat heart.

    PubMed

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Ijaz Shah, Ahmed; Garner, Ron; Zhao, Zhi-Qing

    2015-01-05

    Curcumin has been shown to improve cardiac function by reducing degradation of extracellular matrix and inhibiting synthesis of collagen after ischemia. This study tested the hypothesis that attenuation of maladaptive cardiac repair with curcumin is associated with a dual ACE-inhibition and angiotensin II AT1 receptor antagonism after myocardial infarction. Sprague-Dawley rats were subjected to 45min ischemia followed by 7 and 42 days of reperfusion, respectively. Curcumin was fed orally at a dose of 150mg/kg/day only during reperfusion. Relative to the control animals, dietary treatment with curcumin significantly reduced levels of ACE and AT1 receptor protein as determined by Western blot assay, coincident with less locally-expressed ACE and AT1 receptor in myocardium and coronary vessels as identified by immunohistochemistry. Along with this inhibition, curcumin significantly increased protein level of AT2 receptor and its expression compared with the control. As evidenced by less collagen deposition in fibrotic myocardium, curcumin also reduced the extent of collagen-rich scar and increased mass of viable myocardium detected by Masson׳s trichrome staining. Echocardiography showed that the wall thickness of the infarcted anterior septum in the curcumin group was significantly greater than that in the control group. Cardiac contractile function was improved in the curcumin treated animals as measured by fraction shortening and ejection fraction. In cultured cardiac muscle cells, curcumin inhibited oxidant-induced AT1 receptor expression and promoted cell survival. These results suggest that curcumin attenuates maladaptive cardiac repair and enhances cardiac function, primarily mediated by a dual ACE-inhibition and AT1 receptor antagonism after myocardial infarction. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Pleiotrophin antagonizes Brd2 during neuronal differentiation

    PubMed Central

    Garcia-Gutierrez, Pablo; Juarez-Vicente, Francisco; Wolgemuth, Debra J.; Garcia-Dominguez, Mario

    2014-01-01

    ABSTRACT Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing induced neuronal differentiation. Moreover, Ptn knockdown reduced neuronal differentiation. We analyzed Ptn-mediated antagonism of Brd2 in a cell differentiation model and in two embryonic processes associated with the neural tube: spinal cord neurogenesis and neural crest migration. Finally, we investigated the mechanisms of Ptn-mediated antagonism and determined that Ptn destabilizes the association of Brd2 with chromatin. Thus, Ptn-mediated Brd2 antagonism emerges as a modulation system accounting for the balance between cell proliferation and differentiation in the vertebrate nervous system. PMID:24695857

  15. Effects of YM471, a nonpeptide AVP V1A and V2 receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells

    PubMed Central

    Tsukada, Junko; Tahara, Atsuo; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Taniguchi, Nobuaki; Tanaka, Akihiro

    2001-01-01

    YM471, (Z)-4′-{4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl}-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V1A, V1B and V2) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [3H]-AVP binding to V1A and V2 receptors with Ki values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V1B and oxytocin receptors with Ki values of 16.4 μM and 31.6 nM, respectively. In CHO cells expressing V1A receptors, YM471 potently inhibited AVP-induced intracellular Ca2+ concentration ([Ca2+]i) increase, exhibiting an IC50 value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca2+]i increase (IC50=193 nM), and did not affect AVP-induced [Ca2+]i increase in CHO cells expressing V1B receptors. Furthermore, in CHO cells expressing V2 receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC50 value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V1A and V2 receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP. PMID:11429400

  16. Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells.

    PubMed

    Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A

    2001-07-01

    YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.

  17. Zolpidem generalization and antagonism in male and female cynomolgus monkeys trained to discriminate 1.0 or 2.0 g/kg ethanol.

    PubMed

    Helms, Christa M; Rogers, Laura S M; Waters, Courtney A; Grant, Kathleen A

    2008-07-01

    The subtypes of gamma-aminobutyric acid (GABA)(A) receptors mediating the discriminative stimulus effects of ethanol in nonhuman primates are not completely identified. The GABA(A) receptor positive modulator zolpidem has high, intermediate, and low activity at receptors containing alpha(1), alpha(2/3), and alpha(5) subunits, respectively, and partially generalizes from ethanol in several species. The partial inverse agonist Ro15-4513 has the greatest affinity for alpha(4/6)-containing receptors, higher affinity for alpha(5)- and lower, but equal, affinity for alpha(1)- and alpha(2/3)-, containing GABA(A) receptors, and antagonizes the discriminative stimulus effects of ethanol. This study assessed Ro15-4513 antagonism of the generalization of zolpidem from ethanol in male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) trained to discriminate 1.0 g/kg (n = 10) or 2.0 g/kg (n = 7) ethanol (i.g.) from water with a 30-minute pretreatment interval. Zolpidem (0.017 to 5.6 mg/kg, i.m.) completely generalized from ethanol (>or=80% of total session responses on the ethanol-appropriate lever) for 6/7 monkeys trained to discriminate 2.0 g/kg and 4/10 monkeys trained to discriminate 1.0 g/kg ethanol. Zolpidem partially generalized from 1.0 or 2.0 g/kg ethanol in 6/7 remaining monkeys. Ro15-4513 (0.003 to 0.30 mg/kg, i.m., 5-minute pretreatment) shifted the zolpidem dose-response curve to the right in all monkeys showing generalization. Analysis of apparent pK(B) from antagonism tests suggested that the discriminative stimulus effects of ethanol common with zolpidem are mediated by low-affinity Ro15-4513 binding sites. Main effects of sex and training dose indicated greater potency of Ro15-4513 in males and in monkeys trained to discriminate 1.0 g/kg ethanol. Ethanol and zolpidem share similar discriminative stimulus effects most likely through GABA(A) receptors that contain alpha(1) subunits, however, antagonism by Ro15-4513 of zolpidem generalization

  18. Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors.

    PubMed

    Lymperopoulos, Anastasios

    2012-01-01

    Heptahelical, G protein-coupled or seven transmembrane-spanning receptors, such as the β-adrenergic and the angiotensin II type 1 receptors, are the most diverse and therapeutically important family of receptors in the human genome, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by phosphorylation of the agonist-bound receptor by the G-protein coupled receptor kinases (GRKs), followed by βarrestin binding, which uncouples the phosphorylated receptor from the G protein and subsequently targets the receptor for internalization. As the receptor-βarrestin complex enters the cell, βarrestin-1 and -2, the two mammalian βarrestin isoforms, serve as ligand-regulated scaffolds that recruit a host of intracellular proteins and signal transducers, thus promoting their own wave of signal transduction independently of G-proteins. A constantly increasing number of studies over the past several years have begun to uncover specific roles played by these ubiquitously expressed receptor adapter proteins in signal transduction of several important heptahelical receptors regulating the physiology of various organs/ systems, including the cardiovascular (CV) system. Thus, βarrestin-dependent signaling has increasingly been implicated in CV physiology and pathology, presenting several exciting opportunities for therapeutic intervention in the treatment of CV disorders. Additionally, the discovery of this novel mode of heptahelical receptor signaling via βarrestins has prompted a revision of classical pharmacological concepts such as receptor agonism/antagonism, as well as introduction of new terms such as "biased signaling", which refers to ligand-specific activation of selective signal transduction pathways by the very same receptor. The

  19. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  20. In search of selective P2 receptor ligands: interaction of dihydropyridine derivatives at recombinant rat P2X(2) receptors.

    PubMed

    Jacobson, K A; Kim, Y C; King, B F

    2000-07-03

    1,4-Dihydropyridines are regarded as privileged structures for drug design, i.e. they tend to bind to a wide variety of receptor sites. We have shown that upon appropriate manipulation of the substituent groups on a 1,4-dihydropyridine template, high affinity and selectivity for the A(3) subtype of adenosine receptors ('P1 receptors') may be attained. In the present study we have begun to extend this approach to P2 receptors which are activated by ATP and other nucleotides. Nicardipine, a representative dihydropyridine, used otherwise as an L-type calcium channel blocker, was shown to be an antagonist at recombinant rat P2X(2) (IC(50)=25 microM) and P2X(4) (IC(50) approximately 220 microM) receptors expressed in Xenopus oocytes. Thus, this class of compounds represents a suitable lead for enhancement of affinity through chemical synthesis. In an attempt to modify the 1,4-dihydropyridine structure with a predicted P2 receptor recognition moiety, we have replaced one of the ester groups with a negatively charged phosphonate group. Several 4-phenyl-5-phosphonato-1,4-dihydropyridine derivatives, MRS 2154 (2, 6-dimethyl), MRS 2155 (6-methyl-2-phenyl), and MRS 2156 (2-methyl-6-phenyl), were synthesized through three component condensation reactions. These derivatives were not pure antagonists of the effects of ATP at P2X(2) receptors, rather were either inactive (MRS 2156) or potentiated the effects of ATP in a concentration-dependent manner (MRS 2154 in the 0.3-10 microM range and MRS 2155 at >1 microM). Antagonism of the effects of ATP at P2X(2) receptor superimposed on the potentiation was also observed at >10 microM (MRS 2154) or 0.3-1 microM (MRS 2155). Thus, while a conventional dihydropyridine, nicardipine, was found to antagonize rat P2X(2) receptors ninefold more potently than P2X(4) receptors, the effects of novel, anionic 5-phosphonate analogues at the receptor were more complex.

  1. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  2. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  3. Periaqueductal gray knockdown of V2, not V1a and V1b receptor influences nociception in the rat. yj6676@yahoo.com.

    PubMed

    Yang, Jun; Yang, Yu; Chen, Jian-Min; Wang, Gen; Xu, Hong-Tao; Liu, Wen-Yan; Lin, Bao-Cheng

    2007-01-01

    Our pervious study has proved that arginine vasopressin (AVP) in periaqueductal gray (PAG) plays a role in antinociception. After establishing a model of local special gene knockdown, the nociceptive effect of vasopressin receptor subunit in PAG was investigated in the rat. Microinjection of short-interfering RNA (siRNA) into PAG, which targeted vasopressin receptor subtypes (V(1a), V(1b) and V(2)), locally weakened the associated mRNA expression and depressed the related receptor synthesis in a dose-dependent manner, in which the significant inhibitive effect occurred on from 7th day to 14th day following 1microg or 2microg siRNA administration. PAG knockdown of V(2) receptor gene markedly decreased pain threshold in from 6th day to 13th day after siRNA administration, whereas local knockdown of either V(1a) or V(1b) receptor gene could not influence pain threshold. The data suggest that V(2) rather than V(1a) and V(1b) receptor in PAG involves in nociception.

  4. Lack of association between dopaminergic antagonism and negative symptoms in schizophrenia: a positron emission tomography dopamine D2/3 receptor occupancy study

    PubMed Central

    Fervaha, Gagan; Caravaggio, Fernando; Mamo, David C.; Mulsant, Benoit H.; Pollock, Bruce G.; Nakajima, Shinichiro; Gerretsen, Philip; Rajji, Tarek K.; Mar, Wanna; Iwata, Yusuke; Plitman, Eric; Chung, Jun Ku; Remington, Gary; Graff-Guerrero, Ariel

    2016-01-01

    Rationale Several pre-clinical studies suggest that antipsychotic medications cause secondary negative symptoms. However, direct evidence for a relationship among antipsychotic medications, their direct effects on neurotransmitter systems, and negative symptoms in schizophrenia remains controversial. Objective The objective of this study was to examine the relationship between antipsychotic-related dopamine D2/3 receptor occupancy and negative symptoms in patients with schizophrenia. Methods Forty-one clinically stable outpatients with schizophrenia participated in this prospective dose reduction positron emission tomography (PET) study. Clinical assessments and [11C]-raclopride PET scans were performed before and after participants underwent gradual dose reduction of their antipsychotic medication by up to 40% from the baseline dose. Results No significant relationship was found between antipsychotic-related dopamine D2/3 receptor occupancy and negative symptom severity at baseline or follow-up. Similar null findings were found for subdomains of negative symptoms (amotivation and diminished expression). Occupancy was significantly lower following dose reduction; however, negative symptom severity did not change significantly, though a trend toward reduction was noted. Examination of change scores between these two variables revealed no systematic relationship. Conclusions Our cross-sectional and longitudinal results failed to find a significant dose-dependent relationship between severity of negative symptoms and antipsychotic-related dopaminergic antagonism in schizophrenia. These findings argue against the notion that antipsychotics necessarily cause secondary negative symptoms. Our results are also in contrast with the behavioural effects of dopaminergic antagonism routinely reported in pre-clinical investigations, suggesting that the role of this variable in the context of chronic treatment and schizophrenia needs to be re-examined. PMID:27557949

  5. Antagonism of dopamine D2 receptors alters phosphorylation of Fyn in the rat medial prefrontal cortex

    PubMed Central

    Mao, Li-Min; Wang, John Q.

    2017-01-01

    Several Src family kinase (SFK) members are expressed in the mammalian brain and serve as key kinases in the regulation of a variety of cellular and synaptic events. These SFKs may be subject to the modulation by dopamine, although this topic has been investigated incompletely. In this study, we explored whether dopamine D2 receptors (D2R) regulate SFKs in adult rat brains in vivo. We investigated the role of D2Rs in two forebrain areas, the medial prefrontal cortex (mPFC) and hippocampus, since dopamine plays a pivotal role in regulating activity of mPFC and hippocampal neurons and D2Rs are expressed in these regions. We found that a systemic injection of a D2R selective antagonist eticlopride elevated phosphorylation of SFKs at a conserved autophosphorylation site, an event correlated with activation of SFKs, in the mPFC. Similarly, antagonism of D2Rs by haloperidol increased SFK phosphorylation. In contrast, eticlopride and haloperidol did not alter SFK phosphorylation in the hippocampus. The effect of eticlopride was time-dependent and relatively delayed. Among two common SFK members enriched at synaptic sites, eticlopride selectively altered phosphorylation of Fyn but not Src. Our data suggest that D2Rs exert an inhibitory effect on the activity-related phosphorylation of Fyn in the mPFC under normal conditions. PMID:28176147

  6. ST 1535: a preferential A2A adenosine receptor antagonist.

    PubMed

    Stasi, Maria Antonietta; Borsini, Franco; Varani, Katia; Vincenzi, Fabrizio; Di Cesare, Maria Assunta; Minetti, Patrizia; Ghirardi, Orlando; Carminati, Paolo

    2006-10-01

    Antagonism of the A2A adenosine function has proved beneficial in the treatment of Parkinson's disease, in that it increases L-dopa therapeutical effects without concomitant worsening of its side-effects. In this paper we describe a preferential A2A adenosine antagonist, ST 1535, with long-lasting pharmacodynamic effects. It competitively antagonizes the effects of the A2A adenosine agonist NECA on cAMP in cells cloned with the human A2A adenosine receptor (IC50=353+/-30 nM), and the effects of the A1 adenosine agonist CHA on cAMP in cells cloned with the human A1 adenosine receptor (IC50=510+/-38 nM). ST 1535, at oral doses of 5 and 10 mg/kg, antagonizes catalepsy induced by intracerebroventricular administration of the A2A adenosine agonist CGS 21680 (10 microg/5 microl) in mice. At oral doses ranging between 5 and 20 mg/kg, ST 1535 induces hypermotility and antagonizes haloperidol-induced catalepsy in mice up to 7 h. Oral ST 1535, at 1.25 and 2.5 mg/kg, potentiates L-dopa effects in reducing haloperidol-induced catalepsy. ST 1535 represents a potential new compound, with long-lasting activity, for the treatment of Parkinson's disease.

  7. MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist.

    PubMed

    Cialdai, Cecilia; Tramontana, Manuela; Patacchini, Riccardo; Lecci, Alessandro; Catalani, Claudio; Catalioto, Rose-Marie; Meini, Stefania; Valenti, Claudio; Altamura, Maria; Giuliani, Sandro; Maggi, Carlo Alberto

    2006-11-07

    The pharmacological profile of MEN15596 or (6-methyl-benzo[b]thiophene-2-carboxylic acid [1-(2-phenyl-1R-{[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl}-ethylcarbamoyl)-cyclopentyl]-amide), a novel potent and selective tachykinin NK2 receptor antagonist endowed with oral activity, is described. At the human recombinant tachykinin NK2 receptor, MEN15596 showed subnanomolar affinity (pKi 10.1) and potently antagonized (pKB 9.1) the neurokinin A-induced intracellular calcium release. MEN15596 selectivity for the tachykinin NK2 receptor was assessed by binding studies at the recombinant tachykinin NK1 (pKi 6.1) and NK3 (pKi 6.4) receptors, and at a number of 34 molecular targets including receptors, transporters and ion channels. In isolated smooth muscle preparations MEN15596 showed a marked species selectivity at the tachykinin NK2 receptor with the highest antagonist potency in guinea-pig colon, human and pig bladder (pKB 9.3, 9.2 and 8.8, respectively) whereas it was three orders of magnitude less potent in the rat and mouse urinary bladder (pKB 6.3 and 5.8, respectively). In agreement with binding experiments, MEN15596 showed low potency in blocking selective NK1 or NK3 receptor agonist-induced contractions of guinea-pig ileum preparations (pA22 receptor agonist, [betaAla8]neurokinin A(4-10) (3 nmol/kg i.v.), either after intravenous (ED50 0.18 micromol/kg), intraduodenal (ED50 3.16 micromol/kg) or oral administration (10-30 micromol/kg) without affecting, at 3 micromol/kg, i.v., the colonic contractions produced by the NK1 receptor selective agonist [Sar9]substance P sulfone (3 nmol/kg i.v.). In addition MEN15596 was effective in inhibiting bronchoconstriction produced by i.v. administration of [betaAla8]neurokinin A(4-10). Overall the results indicate that MEN15596 is a potent and selective

  8. Mumps Virus V Protein Antagonizes Interferon without the Complete Degradation of STAT1

    PubMed Central

    Kubota, Toru; Yokosawa, Noriko; Yokota, Shin-ichi; Fujii, Nobuhiro; Tashiro, Masato; Kato, Atsushi

    2005-01-01

    Mumps virus (MuV) has been shown to antagonize the antiviral effects of interferon (IFN) through proteasome-mediated complete degradation of STAT1 by using the viral V protein (T. Kubota et al., Biochem. Biophys. Res. Commun. 283:255-259, 2001). However, we found that MuV could inhibit IFN signaling and the generation of a subsequent antiviral state long before the complete degradation of cellular STAT1 in infected cells. In MuV-infected cells, nuclear translocation and phosphorylation of STAT1 and STAT2 tyrosine residue (Y) at 701 and 689, respectively, by IFN-β were significantly inhibited but the phosphorylation of Jak1 and Tyk2 was not inhibited. The transiently expressed MuV V protein also inhibited IFN-β-induced Y701-STAT1 and Y689-STAT2 phosphorylation, suggesting that the V protein could block IFN-β-induced signal transduction without the aid of other viral components. Finally, a substitution of an alanine residue in place of a cysteine residue in the C-terminal V-unique region known to be required for STAT1 degradation and inhibition of anti-IFN signaling resulted in the loss of V protein function to inhibit the Y701-STAT1 and Y689-STAT2 phosphorylation. PMID:15767445

  9. Substance P Receptor Antagonism: A Potential Novel Treatment Option for Viral-Myocarditis

    PubMed Central

    Robinson, Prema; Taffet, George E.; Engineer, Nikita; Khumbatta, Mitra; Firozgary, Bahrom; Reynolds, Corey; Pham, Thuy; Bulsara, Tushar; Firozgary, Gohar

    2015-01-01

    Viral-myocarditis is an important cause of heart failure for which no specific treatment is available. We previously showed the neuropeptide substance P (SP) is associated with the pathogenesis of murine myocarditis caused by encephalomyocarditis virus (EMCV). The current studies determined if pharmacological inhibition of SP-signaling via its high affinity receptor, NK1R and downstream G-protein, Ras homolog gene family, member-A (RhoA), will be beneficial in viral-myocarditis. Aprepitant (1.2 mg/kg), a SP-receptor antagonist, or fasudil (10 mg/kg), a RhoA inhibitor, or saline control was administered daily to mice orally for 3 days, prior to, or 5 days following, intraperitoneal infection with and without 50 PFU of EMCV, following which disease assessment studies, including echocardiogram and cardiac Doppler were performed in day 14 after infection. Pretreatment and posttreatment with aprepitant significantly reduced mortality, heart and cardiomyocyte size, and cardiac viral RNA levels (P < 0.05 all, ANOVA). Only aprepitant pretreatment improved heart functions; it significantly decreased end systolic diameter, improved fractional shortening, and increased peak aortic flow velocity (P < 0.05 all, ANOVA). Pre- or posttreatment with fasudil did not significantly impact disease manifestations. These findings indicate that SP contributes to cardiac-remodeling and dysfunction following ECMV infection via its high affinity receptor, but not through the Rho-A pathway. These studies suggest that SP-receptor antagonism may be a novel therapeutic-option for patients with viral-myocarditis. PMID:25821814

  10. Acute effect of mineralocorticoid receptor antagonism on vascular function in healthy older adults.

    PubMed

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H; English, Mark; Talcott, Susanne; Jaffe, Iris Z; Christou, Demetra D

    2016-01-01

    Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 years; mean±SE, 53-79 years) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4 mg) following eplerenone (100 mg/dose, 2 doses, 24h between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6%, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOS(Ser1177) to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5%, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77±4/2 mmHg, P≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. NK1 receptor antagonism and emotional processing in healthy volunteers.

    PubMed

    Chandra, P; Hafizi, S; Massey-Chase, R M; Goodwin, G M; Cowen, P J; Harmer, C J

    2010-04-01

    The neurokinin-1 (NK(1)) receptor antagonist, aprepitant, showed activity in several animal models of depression; however, its efficacy in clinical trials was disappointing. There is little knowledge of the role of NK(1) receptors in human emotional behaviour to help explain this discrepancy. The aim of the current study was to assess the effects of a single oral dose of aprepitant (125 mg) on models of emotional processing sensitive to conventional antidepressant drug administration in 38 healthy volunteers, randomly allocated to receive aprepitant or placebo in a between groups double blind design. Performance on measures of facial expression recognition, emotional categorisation, memory and attentional visual-probe were assessed following the drug absorption. Relative to placebo, aprepitant improved recognition of happy facial expressions and increased vigilance to emotional information in the unmasked condition of the visual probe task. In contrast, aprepitant impaired emotional memory and slowed responses in the facial expression recognition task suggesting possible deleterious effects on cognition. These results suggest that while antagonism of NK(1) receptors does affect emotional processing in humans, its effects are more restricted and less consistent across tasks than those of conventional antidepressants. Human models of emotional processing may provide a useful means of assessing the likely therapeutic potential of new treatments for depression.

  12. Therapeutic role of vasopressin receptor antagonism in patients with liver cirrhosis.

    PubMed

    Ferguson, James Walter; Therapondos, George; Newby, David E; Hayes, Peter Clive

    2003-07-01

    Vasopressin, or antidiuretic hormone, is a peptide hormone that is released from the posterior pituitary gland in response to changes in blood pressure and plasma osmolality. The main pathophysiological states associated with high plasma vasopressin concentrations are cirrhosis, cardiac failure and syndrome of inappropriate antidiuretic hormone (SIADH) secretion. Pharmacological treatments for disorders of excess vasopressin secretion have been limited. However, oral bio-available selective and non-selective V(1) and V(2) receptor antagonists have recently become available for clinical use. Water retention in cirrhosis is a common problem, leading to ascites, peripheral oedema and hyponatraemia. Raised plasma vasopressin concentrations and decreased delivery of glomerular filtrate are believed to be the most important factors in the development of water retention. V(2) receptor antagonists are aquaretic agents that promote water excretion and improve hyponatraemia. Their potential role in cirrhosis has been examined in a number of recent studies that have shown increased free water clearance and serum sodium concentrations with few adverse effects. V(2) receptor antagonists represent a novel and promising new class of agent that may have major clinical utility in the treatment of patients with liver cirrhosis.

  13. Design of the Magnetic Resonance Imaging Evaluation of Mineralocorticoid Receptor Antagonism in Diabetic Atherosclerosis (MAGMA) Trial.

    PubMed

    Rajagopalan, Sanjay; Alaiti, M Amer; Broadwater, Kylene; Goud, Aditya; Gaztanaga, Juan; Connelly, Kim; Fares, Anas; Shirazian, Shayan; Kreatsoulas, Catherine; Farkouh, Michael; Dobre, Mirela; Fink, Jeffrey C; Weir, Matthew R

    2017-09-01

    Mineralocorticoid receptor (MR) activation plays an essential role in promoting inflammation, fibrosis, and target organ damage. Currently, no studies are investigating MR antagonism in patients with type 2 diabetes mellitus (T2DM) with chronic kidney disease, at high risk for cardiovascular complications, who are otherwise not candidates for MR antagonism by virtue of heart failure. Further, there is limited information on candidate therapies that may demonstrate differential benefit from this therapy. We hypothesized that MR antagonism may provide additional protection from atherosclerosis progression in higher-risk patients who otherwise may not be candidates for such a therapeutic approach. In this double-blind, randomized, placebo-controlled trial, subjects with T2DM with chronic kidney disease (≥ stage 3) will be randomized in a 1:1 manner to placebo or spironolactone (12.5 mg with eventual escalation to 25 mg daily over a 4-week period). The co-primary efficacy endpoint will be percentage change in total atheroma volume in thoracic aorta and left ventricular mass at 52 weeks in patients treated with spironolactone vs placebo. Secondary outcomes include 24-hour mean systolic blood pressure, central aortic blood pressure, and insulin resistance (HOMA-IR) at 6 weeks. A novel measure in the study will be changes in candidate miRNAs that regulate expression of NR3C2 (MR gene) as well as measuring monocyte/macrophage polarization in response to therapy with spironolactone. We envision that our strategy of simultaneously probing the effects of a drug combined with analysis of mechanisms of action and predictive response will likely provide key information with which to design event-based trials. © 2017 Wiley Periodicals, Inc.

  14. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    PubMed

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Antinociceptive effects of imidazoline I2 receptor agonists in the formalin test in rats

    PubMed Central

    Thorn, David A; Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-01-01

    The imidazoline I2 receptor is an emerging drug target for analgesics. This study extended previous studies by examining the antinociceptive effects of three I2 receptor agonists (2-BFI, BU224 and CR4056) in the formalin test. The receptor mechanisms and anatomical mediation of I2 receptor agonist-induced antinociception were also examined. Formalin-induced flinching responses (2%, 50µl) were quantified after treatment with I2 receptor agonists alone or in combination with the I2 receptor antagonist idazoxan. Anatomical mediation was studied by locally administering 2-BFI into the plantar surface or into the right lateral ventricle via cannulae (i.c.v). The locomotor activity was also examined after central (i.c.v.) administration of 2-BFI. 2-BFI (1–10 mg/kg, i.p.) and BU224 (1–10 mg/kg, i.p.) attenuated the spontaneous flinching response observed during 10 min (phase 1) and 20–60 min (phase 2) following formalin treatment, while CR4056 (1–32 mg/kg, i.p.) only decreased phase 2 flinching response. The I2 receptor antagonist idazoxan attenuated the antinociceptive effects of 2-BFI and BU224 during phase 1, but not phase 2. Peripheral administration of 2-BFI (1–10 mg/kg, i.pl) to the hindpaw of rats had no antinociceptive effects. In contrast, centrally delivered 2-BFI (10–100 µg, i.c.v.) dose-dependently attenuated phase 1 and phase 2 flinching at doses that did not reduce the locomotor activity. Together, these data revealed the differential antinociceptive effects of I2 receptor agonists and the differential antagonism profiles by idazoxan, suggesting the involvement of different I2 receptor subtypes in reducing different phases of formalin-induced pain-like behaviors. In addition, the results also suggest the central mediation of I2 receptor agonist-induced antinociceptive actions. PMID:26599907

  16. alpha-Adrenoceptor and opioid receptor modulation of clonidine-induced antinociception.

    PubMed Central

    Sierralta, F.; Naquira, D.; Pinardi, G.; Miranda, H. F.

    1996-01-01

    1. The antinociceptive action of clonidine (Clon) and the interactions with alpha 1, alpha 2 adrenoceptor and opioid receptor antagonists was evaluated in mice by use of chemical algesiometric test (acetic acid writhing test). 2. Clon produced a dose-dependent antinociceptive action and the ED50 for intracerebroventricular (i.c.v.) was lower than for intraperitoneal (i.p.) administration (1 ng kg-1 vs 300 ng kg-1). The parallelism of the dose-response curves indicates activation of a common receptor subtype. 3. Systemic administration of prazosin and terazosin displayed antinociceptive activity. Pretreatment with prazosin produced a dual action: i.c.v. Clon effect did not change, and i.p. Clon effect was enhanced. Yohimbine i.c.v. or i.p. did not induce antinonciception, but antagonized Clon-induced activity. These results suggest that alpha 1- and alpha 2-adrenoceptors, either located at the pre- and/or post-synaptic level, are involved in the control of spinal antinociception. 4. Naloxone (NX) and naltrexone (NTX) induced antinociceptive effects at low doses (microgram kg-1 range) and a lower antinociceptive effect at higher doses (mg kg-1 range). Low doses of NX or NTX antagonized Clon antinociception, possibly in relation to a preferential mu opioid receptor antagonism. In contrast, high doses of NX or NTX increased the antinociceptive activity of Clon, which could be due to an enhanced inhibition of the release of substance P. 5. The results obtained in the present work suggest the involvement of alpha 1-, alpha 2-adrenoceptor and opioid receptors in the modulation of the antinociceptive activity of clonidine, which seems to be exerted either at spinal and/or supraspinal level. PMID:8894177

  17. alpha-Adrenoceptor and opioid receptor modulation of clonidine-induced antinociception.

    PubMed

    Sierralta, F; Naquira, D; Pinardi, G; Miranda, H F

    1996-10-01

    1. The antinociceptive action of clonidine (Clon) and the interactions with alpha 1, alpha 2 adrenoceptor and opioid receptor antagonists was evaluated in mice by use of chemical algesiometric test (acetic acid writhing test). 2. Clon produced a dose-dependent antinociceptive action and the ED50 for intracerebroventricular (i.c.v.) was lower than for intraperitoneal (i.p.) administration (1 ng kg-1 vs 300 ng kg-1). The parallelism of the dose-response curves indicates activation of a common receptor subtype. 3. Systemic administration of prazosin and terazosin displayed antinociceptive activity. Pretreatment with prazosin produced a dual action: i.c.v. Clon effect did not change, and i.p. Clon effect was enhanced. Yohimbine i.c.v. or i.p. did not induce antinonciception, but antagonized Clon-induced activity. These results suggest that alpha 1- and alpha 2-adrenoceptors, either located at the pre- and/or post-synaptic level, are involved in the control of spinal antinociception. 4. Naloxone (NX) and naltrexone (NTX) induced antinociceptive effects at low doses (microgram kg-1 range) and a lower antinociceptive effect at higher doses (mg kg-1 range). Low doses of NX or NTX antagonized Clon antinociception, possibly in relation to a preferential mu opioid receptor antagonism. In contrast, high doses of NX or NTX increased the antinociceptive activity of Clon, which could be due to an enhanced inhibition of the release of substance P. 5. The results obtained in the present work suggest the involvement of alpha 1-, alpha 2-adrenoceptor and opioid receptors in the modulation of the antinociceptive activity of clonidine, which seems to be exerted either at spinal and/or supraspinal level.

  18. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists.

    PubMed

    Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R

    2005-03-01

    1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing

  19. Caffeine Suppresses the Activation of Hepatic Stellate Cells cAMP-Independently by Antagonizing Adenosine Receptors.

    PubMed

    Yamaguchi, Momoka; Saito, Shin-Ya; Nishiyama, Ryota; Nakamura, Misuzu; Todoroki, Kenichiro; Toyo'oka, Toshimasa; Ishikawa, Tomohisa

    2017-01-01

    During liver injury, hepatic stellate cells (HSCs) are activated by various cytokines and transdifferentiated into myofibroblast-like activated HSCs, which produce collagen, a major source of liver fibrosis. Therefore, the suppression of HSC activation is regarded as a therapeutic target for liver fibrosis. Several epidemiological reports have revealed that caffeine intake decreases the risk of liver disease. In this study, therefore, we investigated the effect of caffeine on the activation of primary HSCs isolated from mice. Caffeine suppressed the activation of HSC in a concentration-dependent manner. BAPTA-AM, an intracellular Ca 2+ chelator, had no effect on the caffeine-induced suppression of HSC activation. None of the isoform-selective inhibitors of phosphodiesterase1 to 5 affected changes in the morphology of HSC during activation, whereas CGS-15943, an adenosine receptor antagonist, inhibited them. Caffeine had no effect on intracellular cAMP level or on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2. In contrast, caffeine significantly decreased the phosphorylation of Akt1. These results suggest that caffeine inhibits HSC activation by antagonizing adenosine receptors, leading to Akt1 signaling activation.

  20. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist*

    PubMed Central

    Makita, Noriko; Sato, Tomohiko; Yajima-Shoji, Yuki; Sato, Junichiro; Manaka, Katsunori; Eda-Hashimoto, Makiko; Ootaki, Masanori; Matsumoto, Naoki; Nangaku, Masaomi; Iiri, Taroh

    2016-01-01

    Disease-causing mutations in G protein-coupled receptor (GPCR) genes, including the V2 vasopressin receptor (V2R) gene, often cause misfolded receptors, leading to a defect in plasma membrane trafficking. A novel V2R mutation, T273M, identified in a boy with partial nephrogenic diabetes insipidus (NDI), shows intracellular localization and partial defects similar to the two mutants we described previously (10). Although non-peptide V2R antagonists have been shown to rescue the membrane localization of V2R mutants, their level of functional rescue is weak. Interestingly, it has been reported that a non-peptide agonist, OPC51803, activates misfolded V2R mutants intracellularly without degradation, thus potentially serving as a therapeutic agent against NDI (14). In our current experiments, however, a peptide antagonist blocked arginine vasopressin (AVP)- or OPC51803-stimulated cAMP accumulation both in COS-7 and MDCK cells, suggesting that OPC51803 mainly stimulates cell surface V2R mutants. In addition, our analyses revealed that OPC51803 works not only as a non-peptide agonist that causes activation/β-arrestin-dependent desensitization of V2R mutants expressed at the plasma membrane but also as a pharmacochaperone that promotes the endoplasmic reticulum-retained mutant maturation and trafficking to the plasma membrane. The ratio of the pharmacochaperone effect to the desensitization effect likely correlates negatively with the residual function of the tested mutants, suggesting that OPC5 has a more favorable effect on the V2R mutants with a less residual function. We speculated that the canceling of the desensitization effect of OPC51803 by the pharmacochaperone effect after long-term treatment may produce sustainable signaling, and thus pharmacochaperone agonists such as OPC51803 may serve as promising therapeutics for NDI caused by misfolded V2R mutants. PMID:27601473

  1. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    PubMed

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  2. Polyuria due to vasopressin V2 receptor antagonism is not associated with increased ureter diameter in ADPKD patients

    PubMed Central

    Casteleijn, Niek F.; Messchendorp, A. Lianne; Bae, Kyong T.; Higashihara, Eiji; Kappert, Peter; Torres, Vicente; Meijer, Esther; Leliveld, Anna M.

    2017-01-01

    Background Tolvaptan, a vasopressin V2 receptor antagonist, has been shown to reduce the rates of growth in total kidney volume (TKV) and renal function loss in ADPKD patients, but also leads to polyuria because of its aquaretic effect. Prolonged polyuria can result in ureter dilatation with consequently renal function loss. Therefore, we aimed to investigate the effect of tolvaptan-induced polyuria on ureter diameter in ADPKD patients. Methods 70 ADPKD patients were included (51 were randomized to tolvaptan and 19 to placebo). At baseline and after 3 years of treatment renal function was measured (mGFR) and MRI was performed to measure TKV and ureter diameter at the levels of renal pelvis and fifth lumbar vertebral body (L5). Results In these patients [65.7 % male, age 41 ± 9 years, mGFR 74 ± 27 mL/min/1.73 m2 and TKV 1.92 (1.27–2.67) L], no differences were found between tolvaptan and placebo-treated patients in 24-h urine volume at baseline (2.5 vs. 2.5 L, p = 0.8), nor in ureter diameter at renal pelvis and L5 (4.0 vs. 4.2 mm, p = 0.4 and 3.0 vs. 3.1 mm, p = 0.3). After 3 years of treatment 24-h urine volume was higher in tolvaptan-treated patients when compared to placebo (4.7 vs. 2.3 L, p < 0.001), but no differences were found in ureter diameter between both groups (renal pelvis: 4.2 vs. 4.4 mm, p = 0.4 and L5: 3.1 vs. 3.3 mm, p = 0.4). Conclusions Tolvaptan-induced polyuria did not lead to an increase in ureter diameter, suggesting that tolvaptan is a safe therapy from a urological point of view. PMID:27339446

  3. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  4. H1- and H2-receptor characterization in the tracheal circulation of sheep.

    PubMed Central

    Webber, S. E.; Salonen, R. O.; Widdicombe, J. G.

    1988-01-01

    1. The effects of histamine, the specific H1-agonist SKF 71481-A2 and the H2-agonist dimaprit were examined on tracheal vascular resistance in sheep anaesthetized with pentobarbitone. Tracheal vascular resistance was determined by perfusing the cranial tracheal arteries at constant flows and measuring inflow pressures. Changes in tracheal smooth muscle tone were also measured. 2. Histamine and SKF 71481-A2 contracted the tracheal smooth muscle and this effect was blocked by the H1-antagonist mepyramine. Stimulation of H2-receptors with dimaprit had no effect on tracheal smooth muscle tone. 3. Histamine had a complex action on the tracheal vasculature producing either a triphasic change (early dilatation then constriction followed by late dilatation) or just a constriction. SKF 71481-A2 always produced a biphasic change in vascular resistance (dilatation followed by constriction). Dimaprit dilated the tracheal vasculature. 4. The late dilatation produced by histamine in some sheep was blocked by bilateral cervical vagotomy but the mechanism for this effect is not known. No other responses to histamine, SKF 71481-A2 or dimaprit were affected by vagotomy. 5. The vasoconstriction produced by histamine and SKF 71481-A2 was antagonized by mepyramine indicating a H1-receptor-mediated effect. Cimetidine had no effect on the vasoconstriction to histamine suggesting a lack of involvement of H2-receptors. 6. The vasodilatation produced by histamine and SKF 71481-A2 was also antagonized by mepyramine, again suggesting a H1-receptor-mediated action. Cimetidine had no effect on the vasodilator response to histamine indicating no involvement of H2-receptors in this response. 7. The dilator effect of dimaprit was antagonized by cimetidine suggesting this effect was mediated by H2-receptors. 8. We conclude that H1-receptors in the various parts of the sheep tracheal vasculature can cause increases and decreases in total tracheal vascular resistance; that H2-receptors decrease

  5. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    PubMed Central

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  6. Quinoxalin-2-carboxamides: synthesis and pharmacological evaluation as serotonin type-3 (5-HT3) receptor antagonists.

    PubMed

    Mahesh, Radhakrishnan; Devadoss, Thangaraj; Pandey, Dilip Kumar; Yadav, Shushil Kumar

    2011-10-01

    A series of quinoxalin-2-carboxamides were designed as per the pharmacophoric requirements of 5-HT(3) receptor antagonists and synthesized by condensing the carboxylic group of quinoxalin-2-carboxylic acid with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and 1-hydroxybenzotriazole. The structures of the synthesized compounds were confirmed by physical and spectroscopic data. The carboxamides were evaluated for their 5-HT(3) receptor antagonisms in longitudinal muscle-myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methy-5-HT. All the synthesized compounds showed 5-HT(3) receptor antagonism, (4-benzylpiperazin-1-yl)(quinoxalin-2-yl)methanone was the most potent compound among this series.

  7. Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior.

    PubMed

    Gass, Natalia; Becker, Robert; Sack, Markus; Schwarz, Adam J; Reinwald, Jonathan; Cosa-Linan, Alejandro; Zheng, Lei; von Hohenberg, Christian Clemm; Inta, Dragos; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang; Gass, Peter; Sartorius, Alexander

    2018-04-01

    Evidence indicates that ketamine's rapid antidepressant efficacy likely results from its antagonism of NR2B-subunit-containing NMDA receptors (NMDAR). Since ketamine equally blocks NR2A- and NR2B-containing NMDAR, and has affinity to other receptors, NR2B-selective drugs might have improved therapeutic efficiency and side effect profile. We aimed to compare the effects of (S)-ketamine and two different types of NR2B-selective antagonists on functional brain networks in rats, in order to find common circuits, where their effects intersect, and that might explain their antidepressant action. The experimental design comprised four parallel groups of rats (N = 37), each receiving (S)-Ketamine, CP-101,606, Ro 25-6981 or saline. After compound injection, we acquired resting-state functional magnetic resonance imaging time series. We used graph theoretical approach to calculate brain network properties. Ketamine and CP-101,606 diminished the global clustering coefficient and small-worldness index. At the nodal level, all compounds induced increased connectivity of the regions mediating reward and cognitive aspects of emotional processing, such as ventromedial prefrontal cortex, septal nuclei, and nucleus accumbens. The dorsal hippocampus and regions involved in sensory processing and aversion, such as superior and inferior colliculi, exhibited an opposite effect. The effects common to ketamine and NR2B-selective compounds were localized to the same brain regions as those reported in depression, but in the opposite direction. The upregulation of the reward circuitry might partially underlie the antidepressant and anti-anhedonic effects of the antagonists and could potentially serve as a translational imaging phenotype for testing putative antidepressants, especially those targeting the NR2B receptor subtype.

  8. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors.

    PubMed

    Juul, Kristian Vinter; Bichet, Daniel G; Nielsen, Søren; Nørgaard, Jens Peter

    2014-05-01

    The arginine vasopressin (AVP) type 2 receptor (V2R) is unique among AVP receptor subtypes in signaling through cAMP. Its key function is in the kidneys, facilitating the urine concentrating mechanism through the AVP/V2 type receptor/aquaporin 2 system in the medullary and cortical collecting ducts. Recent clinical and research observations strongly support the existence of an extrarenal V2R. The clinical importance of the extrarenal V2R spans widely from stimulation of coagulation factor in the endothelium to as yet untested potential therapeutic targets. These include V2R-regulated membranous fluid turnover in the inner ear, V2R-regulated mitogensis and apoptosis in certain tumor tissues, and numerous other cell types where the physiological role of V2Rs still requires further research. Here, we review current evidence on the physiological and pathophysiological functions of renal and extrarenal V2Rs. These functions of V2R are important, not only in rare diseases with loss or gain of function of V2R but also in relation to the recent use of nonpeptide V2R antagonists to treat hyponatremia and possibly retard the growth of cysts and development of renal failure in autosomal dominant polycystic kidney disease. The main functions of V2R in principal cells of the collecting duct are water, salt, and urea transport by modifying the trafficking of aquaporin 2, epithelial Na(+) channels, and urea transporters and vasodilation and stimulation of coagulation factor properties, mainly seen with pharmacological doses of 1-desamino-8-D-AVP. The AVPR2 gene is located on the X chromosome, in a region with high probability of escape from inactivation; this may lead to phenotypic sex differences, with females expressing higher levels of transcript than males.

  9. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist.

    PubMed

    Makita, Noriko; Sato, Tomohiko; Yajima-Shoji, Yuki; Sato, Junichiro; Manaka, Katsunori; Eda-Hashimoto, Makiko; Ootaki, Masanori; Matsumoto, Naoki; Nangaku, Masaomi; Iiri, Taroh

    2016-10-21

    Disease-causing mutations in G protein-coupled receptor (GPCR) genes, including the V2 vasopressin receptor (V2R) gene, often cause misfolded receptors, leading to a defect in plasma membrane trafficking. A novel V2R mutation, T273M, identified in a boy with partial nephrogenic diabetes insipidus (NDI), shows intracellular localization and partial defects similar to the two mutants we described previously (10). Although non-peptide V2R antagonists have been shown to rescue the membrane localization of V2R mutants, their level of functional rescue is weak. Interestingly, it has been reported that a non-peptide agonist, OPC51803, activates misfolded V2R mutants intracellularly without degradation, thus potentially serving as a therapeutic agent against NDI (14). In our current experiments, however, a peptide antagonist blocked arginine vasopressin (AVP)- or OPC51803-stimulated cAMP accumulation both in COS-7 and MDCK cells, suggesting that OPC51803 mainly stimulates cell surface V2R mutants. In addition, our analyses revealed that OPC51803 works not only as a non-peptide agonist that causes activation/β-arrestin-dependent desensitization of V2R mutants expressed at the plasma membrane but also as a pharmacochaperone that promotes the endoplasmic reticulum-retained mutant maturation and trafficking to the plasma membrane. The ratio of the pharmacochaperone effect to the desensitization effect likely correlates negatively with the residual function of the tested mutants, suggesting that OPC5 has a more favorable effect on the V2R mutants with a less residual function. We speculated that the canceling of the desensitization effect of OPC51803 by the pharmacochaperone effect after long-term treatment may produce sustainable signaling, and thus pharmacochaperone agonists such as OPC51803 may serve as promising therapeutics for NDI caused by misfolded V2R mutants. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    PubMed Central

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  11. Polyuria due to vasopressin V2 receptor antagonism is not associated with increased ureter diameter in ADPKD patients.

    PubMed

    Casteleijn, Niek F; Messchendorp, A Lianne; Bae, Kyong T; Higashihara, Eiji; Kappert, Peter; Torres, Vicente; Meijer, Esther; Leliveld, Anna M

    2017-06-01

    Tolvaptan, a vasopressin V2 receptor antagonist, has been shown to reduce the rates of growth in total kidney volume (TKV) and renal function loss in ADPKD patients, but also leads to polyuria because of its aquaretic effect. Prolonged polyuria can result in ureter dilatation with consequently renal function loss. Therefore, we aimed to investigate the effect of tolvaptan-induced polyuria on ureter diameter in ADPKD patients. 70 ADPKD patients were included (51 were randomized to tolvaptan and 19 to placebo). At baseline and after 3 years of treatment renal function was measured (mGFR) and MRI was performed to measure TKV and ureter diameter at the levels of renal pelvis and fifth lumbar vertebral body (L5). In these patients [65.7 % male, age 41 ± 9 years, mGFR 74 ± 27 mL/min/1.73 m 2 and TKV 1.92 (1.27-2.67) L], no differences were found between tolvaptan and placebo-treated patients in 24-h urine volume at baseline (2.5 vs. 2.5 L, p = 0.8), nor in ureter diameter at renal pelvis and L5 (4.0 vs. 4.2 mm, p = 0.4 and 3.0 vs. 3.1 mm, p = 0.3). After 3 years of treatment 24-h urine volume was higher in tolvaptan-treated patients when compared to placebo (4.7 vs. 2.3 L, p < 0.001), but no differences were found in ureter diameter between both groups (renal pelvis: 4.2 vs. 4.4 mm, p = 0.4 and L5: 3.1 vs. 3.3 mm, p = 0.4). Tolvaptan-induced polyuria did not lead to an increase in ureter diameter, suggesting that tolvaptan is a safe therapy from a urological point of view.

  12. Histamine H4 receptor antagonism prevents the progression of diabetic nephropathy in male DBA2/J mice.

    PubMed

    Pini, Alessandro; Grange, Cristina; Veglia, Eleonora; Argenziano, Monica; Cavalli, Roberta; Guasti, Daniele; Calosi, Laura; Ghè, Corrado; Solarino, Roberto; Thurmond, Robin L; Camussi, Giovanni; Chazot, Paul L; Rosa, Arianna Carolina

    2018-02-01

    Due to the incidence of diabetes and the related morbidity of diabetic nephropathy, identification of new therapeutic strategies represents a priority. In the last few decades new and growing evidence on the possible role of histamine in diabetes has been provided. In particular, the histamine receptor H 4 R is emerging as a new promising pharmacological target for diabetic nephropathy. The aim of this study was to evaluate the efficacy of selective H 4 R antagonism by JNJ39758979 on the prevention of diabetic nephropathy progression in a murine model of diabetes induced by streptozotocin injection. JNJ39758979 (25, 50, 100 mg/kg/day p.o.) was administered for 15 weeks starting from the onset of diabetes. Functional parameters were monitored throughout the experimental period. JNJ39758979 did not significantly affect glycaemic status or body weight. The urine analysis indicated a dose-dependent inhibitory effect of JNJ39758979 on Albumin-Creatinine-Ratio, the Creatinine Clearance, the 24 h urine volume, and pH urine acidification (P < 0.05). The beneficial effects of JNJ39758979 on renal function paralleled comparable effects on renal morphological integrity. These effects were sustained by a significant immune infiltration and fibrosis reduction. Notably, megalin and sodium-hydrogen-exchanger 3 expression levels were preserved. Our data suggest that the H 4 R participates in diabetic nephropathy progression through both a direct effect on tubular reabsorption and an indirect action on renal tissue architecture via inflammatory cell recruitment. Therefore, H 4 R antagonism emerges as a possible new multi-mechanism therapeutic approach to counteract development of diabetic nephropathy development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist.

    PubMed

    Emonds-Alt, X; Doutremepuich, J D; Heaulme, M; Neliat, G; Santucci, V; Steinberg, R; Vilain, P; Bichon, D; Ducoux, J P; Proietto, V

    1993-12-21

    (S)1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)pip eridin-3- yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR140333) is a new non-peptide antagonist of tachykinin NK1 receptors. SR140333 potently, selectively and competitively inhibited substance P binding to NK1 receptors from various animal species, including humans. In vitro, it was a potent antagonist in functional assays for NK1 receptors such as [Sar9,Met(O2)11]substance P-induced endothelium-dependent relaxation of rabbit pulmonary artery and contraction of guinea-pig ileum. Up to 1 microM, it had no effect in bioassays for NK2 ([beta Ala8]neurokinin A-induced contraction of endothelium-deprived rabbit pulmonary artery) and NK3 ([MePhe7]neurokinin B-induced contraction of rat portal vein) receptors. The antagonism exerted by SR140333 toward NK1 receptors was apparently non-competitive, with pD2' values (antagonism potency evaluated by the negative logarithm of the molar concentration of antagonist that produces a 50% reduction of the maximal response to the agonist) between 9.65 and 10.16 in the different assays. SR140333 also blocked in vitro [Sar9,Met(O2)11]substance P-induced release of acetylcholine from rat striatum. In vivo, SR140333 exerted highly potent antagonism toward [Sar9,Met(O2)11]substance P-induced hypotension in dogs (ED50 = 3 micrograms/kg i.v.), bronchoconstriction in guinea-pig (ED50 = 42 micrograms/kg i.v.) and plasma extravasation in rats (ED50 = 7 micrograms/kg i.v.). Finally, it also blocked the activation of rat thalamic neurons after nociceptive stimulation (ED50 = 0.2 micrograms/kg i.v.).

  14. Endothelin ETA Receptor Blockade, by Activating ETB Receptors, Increases Vascular Permeability and Induces Exaggerated Fluid Retention.

    PubMed

    Vercauteren, Magali; Trensz, Frederic; Pasquali, Anne; Cattaneo, Christophe; Strasser, Daniel S; Hess, Patrick; Iglarz, Marc; Clozel, Martine

    2017-05-01

    Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ET B receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ET A -selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ET A -selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ET A -selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ET B -selective receptor antagonism. ET A -selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ET A -selective antagonism increased vascular permeability via ET B receptor overstimulation. Acutely, ET A -selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ET A -selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ET B receptors, endothelin receptor antagonists (particularly ET A -selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease

  15. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex.

    PubMed

    Makeham, John M; Goodchild, Ann K; Pilowsky, Paul M

    2005-06-01

    The effects of activation and blockade of the neurokinin 1 (NK1) receptor in the rostral ventrolateral medulla (RVLM) on arterial blood pressure (ABP), splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, the somato-sympathetic reflex, baroreflex, and chemoreflex were studied in urethane-anesthetized and artificially ventilated Sprague-Dawley rats. Bilateral microinjection of either the stable substance P analog (pGlu5, MePhe8, Sar9)SP(5-11) (DiMe-SP) or the highly selective NK1 agonist [Sar9, Met (O(2))11]SP into the RVLM resulted in an increase in ABP, sSNA, and heart rate and an abolition of phrenic nerve activity. The effects of [Sar9, Met (O(2))11]SP were blocked by the selective nonpeptide NK1 receptor antagonist WIN 51708. NK1 receptor activation also dramatically attenuated the somato-sympathetic reflex elicited by tibial nerve stimulation, while leaving the baroreflex and chemoreflex unaffected. This effect was again blocked by WIN 51708. NK1 receptor antagonism in the RVLM, with WIN 51708 significantly attenuated the sympathoexcitatory response to hypoxia but had no effect on baseline respiratory function. Our findings suggest that substance P and the NK1 receptor play a significant role in the cardiorespiratory reflexes integrated within the RVLM.

  16. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Garcia, C; Lacour, C; Guiraudou, P; Christophe, B; Villanova, G; Nisato, D; Maffrand, J P; Le Fur, G

    1993-07-01

    SR 49059, a new potent and selective orally active, nonpeptide vasopressin (AVP) antagonist has been characterized in several in vitro and in vivo models. SR 49059 showed high affinity for V1a receptors from rat liver (Ki = 1.6 +/- 0.2) and human platelets, adrenals, and myometrium (Ki ranging from 1.1 to 6.3 nM). The previously described nonpeptide V1 antagonist, OPC-21268, was almost inactive in human tissues at concentrations up to 100 microM. SR 49059 exhibited much lower affinity (two orders of magnitude or more) for AVP V2 (bovine and human), V1b (human), and oxytocin (rat and human) receptors and had no measurable affinity for a great number of other receptors. In vitro, AVP-induced contraction of rat caudal artery was competitively antagonized by SR 49059 (pA2 = 9.42). Furthermore, SR 49059 inhibited AVP-induced human platelet aggregation with an IC50 value of 3.7 +/- 0.4 nM, while OPC-21268 was inactive up to 20 microM. In vivo, SR 49059 inhibited the pressor response to exogenous AVP in pithed rats (intravenous) and in conscious normotensive rats (intravenous and per os) with a long duration of action (> 8 h at 10 mg/kg p.o). In all the biological assays used, SR 49059 was devoid of any intrinsic agonistic activity. Thus, SR 49059 is the most potent and selective nonpeptide AVP V1a antagonist described so far, with marked affinity, selectivity, and efficacy toward both animal and human receptors. With this original profile, SR 49059 constitutes a powerful tool for exploring the therapeutical usefulness of a selective V1a antagonist.

  17. Engineered Interleukin-2 Antagonists for the Inhibition of Regulatory T cells

    PubMed Central

    Liu, David V.; Maier, Lisa M.; Hafler, David A.; Wittrup, K. Dane

    2014-01-01

    The immunosuppressive effects of CD4+ CD25high regulatory T cells interfere with anti-tumor immune responses in cancer patients. Here, we present a novel class of engineered human Interleukin (IL)-2 analogues that antagonize the IL-2 receptor, for inhibiting regulatory T cell suppression. These antagonists have been engineered for high affinity to the α subunit of the IL-2 receptor and very low affinity to either the β or γ subunit, resulting in a signaling-deficient IL-2 analogue that sequesters the IL-2 receptor α subunit from wild type IL-2. Two variants, “V91R” and “Q126T” with residue substitutions that disrupt the β and γ subunit binding interfaces, respectively, have been characterized in both a T cell line and in human primary regulatory T cells. These mutants retain their high affinity binding to IL-2 receptor α subunit, but do not activate STAT5 phosphorylation or stimulate T cell growth. The two mutants competitively antagonize wild-type IL-2 signaling through the IL-2 receptor with similar efficacy, with inhibition constants of 183 pM for V91R and 216 pM for Q126T. Here, we present a novel approach to CD25-mediated Treg inhibition, with the use of an engineered human IL-2 analogue that antagonizes the IL-2 receptor. PMID:19816193

  18. 5-HT2C receptor involvement in the control of persistence in the reinforced spatial alternation animal model of obsessive-compulsive disorder.

    PubMed

    Papakosta, Vassiliki-Maria; Kalogerakou, Stamatina; Kontis, Dimitris; Anyfandi, Eleni; Theochari, Eirini; Boulougouris, Vasileios; Papadopoulos, Sokrates; Panagis, George; Tsaltas, Eleftheria

    2013-04-15

    The serotonergic system is implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, the distinct role of serotonin (5-HT) receptor subtypes remains unclear. This study investigates the contribution of 5-HT2A and 5-HT2C receptors in the modulation of persistence in the reinforced spatial alternation model of OCD. Male Wistar rats were assessed for spontaneous and pharmacologically induced (by m-chlorophenylpiperazine: mCPP) directional persistence in the reinforced alternation OCD model. Systemic administration of mCPP (non-specific 5-HT agonist, 2.5mg/kg), M100907 (selective 5-HT2A receptor antagonist, 0.08 mg/kg), SB242084 (selective 5-HT2C receptor antagonist, 0.5 mg/kg) and vehicle was used. Experiment 1 investigated M100907 and SB242084 effects in animals spontaneously exhibiting high and low persistence during the early stages of alternation training. Experiment 2 investigated M100900 and SB242084 effects on mCPP-induced persistence. Under the regime used in Experiment 1, 5-HT2A or 5-HT2C receptor antagonism did not affect spontaneous directional persistence in either high or low persistence groups. In Experiment 2, 5-HT2C but not 5-HT2A receptor antagonism significantly reduced, but did not abolish, mCPP-induced directional persistence. These findings suggest that 5-HT2C but not 5-HT2A receptors contribute to the modulation of mCPP-induced persistent behaviour, raising the possibility that the use of 5-HT2C antagonists may have a therapeutic value in OCD. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  20. Molecular modeling of the human vasopressin V2 receptor/agonist complex

    NASA Astrophysics Data System (ADS)

    Czaplewski, Cezary; Kaźmierkiewicz, Rajmund; Ciarkowski, Jerzy

    1998-05-01

    The V2 vasopressin renal receptor (V2R), which controls antidiuresis in mammals, is a member of the large family of heptahelical transmembrane (7TM) G protein-coupled receptors (GPCRs). Using the automated GPCR modeling facility available via Internet (http://expasy.hcuge.ch/swissmod/SWISS-MODEL.html) for construction of the 7TM domain in accord with the bovine rhodopsin (RD) footprint, and the SYBYL software for addition of the intra- and extracellular domains, the human V2R was modeled. The structure was further refined and its conformational variability tested by the use of a version of the Constrained Simulated Annealing (CSA) protocol developed in this laboratory. An inspection of the resulting structure reveals that the V2R (likewise any GPCR modeled this way) is much thicker and accordingly forms a more spacious TM cavity than most of the hitherto modeled GPCR constructs do, typically based on the structure of bacteriorhodopsin (BRD). Moreover, in this model the 7TM helices are arranged differently than they are in any BRD-based model. Thus, the topology and geometry of the TM cavity, potentially capable of receiving ligands, is in this model quite different than it is in the earlier models. In the subsequent step, two ligands, the native [arginine8]vasopressin (AVP) and the selective agonist [d-arginine8]vasopressin (DAVP) were inserted, each in two topologically non-equivalent ways, into the TM cavity and the resulting structures were equilibrated and their conformational variabilities tested using CSA as above. The best docking was selected and justified upon consideration of ligand-receptor interactions and structure-activity data. Finally, the amino acid residues were indicated, mainly in TM helices 3-7, as potentially important in both AVP and DAVP docking. Among those Cys112, Val115-Lys116, Gln119, Met123 in helix 3; Glu174 in helix 4; Val206, Ala210, Val213-Phe214 in helix 5; Trp284, Phe287-Phe288, Gln291 in helix 6; and Phe307, Leu310, Ala314 and

  1. Partial agonist/antagonist mouse interleukin-2 proteins indicate that a third component of the receptor complex functions in signal transduction.

    PubMed Central

    Zurawski, S M; Imler, J L; Zurawski, G

    1990-01-01

    Some mouse interleukin-2 (mIL-2) proteins with substitutions at residue Gln141 are unable to trigger a maximal biological response. The Asp141 protein induces the lowest maximal response. The Asp141 protein can weakly antagonize the biological activity of mIL-2 and strongly antagonizes the biological activity of active mIL-2 mutant proteins that have defects in interactions with the high affinity receptor. Residue 141 mutant proteins bind with reduced affinity to T cells expressing the high affinity IL-2 receptor, yet bind normally to transfected fibroblasts expressing only the alpha and beta chains of the receptor. These results suggest that a third receptor component is important for both binding and signal transduction. PMID:2249656

  2. Angiotensin II type 1 and type 2 receptor-induced cell signaling.

    PubMed

    Akazawa, Hiroshi; Yano, Masamichi; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Komuro, Issei

    2013-01-01

    The octapeptide angiotensin II (Ang II) plays a homeostatic role in the regulation of blood pressure and water and electrolyte balance, and also contributes to the progression of cardiovascular remodeling. Ang II activates Ang II type 1 (AT1) receptor and type 2 (AT2) receptor, both of which belong to the seven-transmembrane, G protein-coupled receptor family. Most of the actions of Ang II such as promotion of cellular prolifaration, hypertrophy, and fibrosis are mediated by AT1 receptor. However, in some pathological situations, AT2 receptor shows an increase in tissue expression and functions to antagonize the actions induced by AT1 receptor. Recent studies have advanced our understanding of the molecular mechanisms underlying receptor activation and signal transduction of AT1 and AT2 receptor in the cardiovascular system.

  3. Antagonism of Sigma-1 Receptors Blocks Compulsive-Like Eating

    PubMed Central

    Cottone, Pietro; Wang, Xiaofan; Park, Jin Won; Valenza, Marta; Blasio, Angelo; Kwak, Jina; Iyer, Malliga R; Steardo, Luca; Rice, Kenner C; Hayashi, Teruo; Sabino, Valentina

    2012-01-01

    Binge eating disorder is an addiction-like disorder characterized by episodes of rapid and excessive food consumption within discrete periods of time which occur compulsively despite negative consequences. This study was aimed at determining whether antagonism of Sigma-1 receptors (Sig-1Rs) blocked compulsive-like binge eating. We trained male wistar rats to obtain a sugary, highly palatable diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day under fixed ratio 1 operant conditioning. Following intake stabilization, we evaluated the effects of the selective Sig-1R antagonist BD-1063 on food responding. Using a light/dark conflict test, we also tested whether BD-1063 could block the time spent and the food eaten in an aversive, open compartment, where the palatable diet was offered. Furthermore, we measured Sig-1R mRNA and protein expression in several brain areas of the two groups, 24 h after the last binge session. Palatable rats rapidly developed binge-like eating, escalating the 1 h intake by four times, and doubling the eating rate and the regularity of food responding, compared to Chow rats. BD-1063 dose-dependently reduced binge-like eating and the regularity of food responding, and blocked the increased eating rate in Palatable rats. In the light/dark conflict test, BD-1063 antagonized the increased time spent in the aversive compartment and the increased intake of the palatable diet, without affecting motor activity. Finally, Palatable rats showed reduced Sig-1R mRNA expression in prefrontal and anterior cingulate cortices, and a two-fold increase in Sig-1R protein expression in anterior cingulate cortex compared to control Chow rats. These findings suggest that the Sig-1R system may contribute to the neurobiological adaptations driving compulsive-like eating, opening new avenues of investigation towards pharmacologically treating binge eating disorder. PMID:22713906

  4. Naloxone Antagonizes Soman-induced Central Respiratory Depression in Rats.

    PubMed

    Škrbić, Ranko; Stojiljković, Miloš P; Ćetković, Slavko S; Dobrić, Silva; Jeremić, Dejan; Vulović, Maja

    2017-06-01

    The influence of naloxone on respiration impaired by the highly toxic organophosphate nerve agent soman in anaesthetized rats was investigated. Soman, administered in a dose that was ineffective in blocking the electrically induced contractions of the phrenic nerve-diaphragm preparation in situ, induced a complete block of the spontaneous respiratory movements of the diaphragm, indicating the domination of central over the peripheral effects. Naloxone dose-dependently antagonized the soman-induced respiratory blockade. Atropine, at a dose that was per se ineffective in counteracting soman-induced respiratory depression, potentiated the protective effects of naloxone and completely restored respiration. Naloxone remained completely ineffective in antagonizing respiratory depression induced by the muscarinic receptor agonist the oxotremorine. It is assumed that naloxone antagonizes soman-induced respiratory inhibition by blocking endogenous opioidergic respiratory control pathways that are independent of the stimulation of muscarinic receptors. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  5. Altered agonist sensitivity of a mutant v2 receptor suggests a novel therapeutic strategy for nephrogenic diabetes insipidus.

    PubMed

    Erdélyi, László Sándor; Balla, András; Patócs, Attila; Tóth, Miklós; Várnai, Péter; Hunyady, László

    2014-05-01

    Loss-of-function mutations of the type 2 vasopressin receptor (V2R) in kidney can lead to nephrogenic diabetes insipidus (NDI). We studied a previously described, but uncharacterized, mutation of the V2R (N321K missense mutation) of a patient with NDI. The properties of the mutant receptor were evaluated. We constructed a highly sensitive Epac-based bioluminescence resonance energy transfer biosensor to perform real-time cAMP measurements after agonist stimulation of transiently transfected HEK293 cells with V2Rs. β-Arrestin binding of the activated receptors was examined with luciferase-tagged β-arrestin and mVenus-tagged V2Rs using the bioluminescence resonance energy transfer technique. Cell surface expression levels of hemagglutinin-tagged receptors were determined with flow cytometry using anti-hemagglutinin-Alexa 488 antibodies. Cellular localization examinations were implemented with fluorescent tagged receptors visualized with confocal laser scanning microscopy. The effect of various vasopressin analogs on the type 1 vasopressin receptor (V1R) was tested on mouse arteries by wire myography. The N321K mutant V2R showed normal cell surface expression, but the potency of arginine vasopressin for cAMP generation was low, whereas the clinically used desmopressin was not efficient. The β-arrestin binding and internalization properties of the mutant receptor were also different than those for the wild type. The function of the mutant receptor can be rescued with administration of the V2R agonist Val(4)-desmopressin, which had no detectable side effects on V1R in the effective cAMP generating concentrations. Based on these findings we propose a therapeutic strategy for patients with NDI carrying the N321K mutation, as our in vivo experiments suggest that Val(4)-desmopressin could rescue the function of the N321K-V2R without significant side effects on the V1R.

  6. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    PubMed

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A type III effector antagonizes death receptor signalling during bacterial gut infection.

    PubMed

    Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Lung, Tania Wong Fok; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare V L; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O'Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L

    2013-09-12

    Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.

  8. Translating 5-HT receptor pharmacology.

    PubMed

    Sanger, G J

    2009-12-01

    Since metoclopramide was first described (in 1964) there have been several attempts to develop compounds which retained gastrointestinal prokinetic activity (via 5-HT(4) receptor activation) but without the limiting side effects associated with dopamine D(2) receptor antagonism. Early compounds (mosapride, cisapride, renzapride, tegaserod) were identified before several of the 5-HT receptors were even described (including 5-HT(4) and 5-HT(2B)), whereas prucalopride came later. Several compounds were hampered by non-selectivity, introducing cardiac liability (cisapride: activity at human Ether-a-go-go Related Gene) or potentially, a reduced intestinal prokinetic activity caused by activity at a second 5-HT receptor (renzapride: antagonism at the 5-HT(3) receptor; tegaserod: antagonism at the 5-HT(2B) receptor). Poor intrinsic activity at gastrointestinal 5-HT(4) receptors has also been an issue (mosapride, tegaserod). Perhaps prucalopride has now achieved the profile of good selectivity of action and high intrinsic activity at intestinal 5-HT(4) receptors, without clinically-meaningful actions on 5-HT(4) receptors in the heart. The progress of this compound for treatment of chronic constipation, as well as competitor molecules such as ATI-7505 and TD-5108, will now be followed with interest as each attempts to differentiate themselves from each other. Perhaps at last, 5-HT(4) receptor agonists are being given the chance to show what they can do.

  9. Effects of fenoterol on beta-adrenoceptor and muscarinic M2 receptor function in bovine tracheal smooth muscle.

    PubMed

    De Vries, B; Roffel, A F; Kooistra, J M; Meurs, H; Zaagsma, J

    2001-05-11

    Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta2-adrenoceptor agonist fenoterol (10 microM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (Emax) (P < 0.05), while the sensitivity to the agonist (pEC50) was unchanged. The Emax value of isoprenaline-induced smooth muscle relaxation of submaximal methacholine-induced contractile tones was similarly reduced by about 25% (P < 0.001), while the pEC50 value was diminished by 1.0 log unit (P < 0.001). As determined by 30 microM gallamine-induced muscarinic M2 receptor antagonism and pertussis toxin-induced inactivation of G(i alpha), muscarinic M2 receptor-mediated functional antagonism did not play a role in isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by methacholine, both in control and in 18-h fenoterol-treated tissue. In line with these observations, we found no enhanced muscarinic M2 receptor-mediated inhibition of 1 microM forskolin-stimulated adenylyl cyclase activity after 18-h fenoterol treatment. These data indicate that 18-h fenoterol treatment of bovine tracheal smooth muscle induces beta2-adrenoceptor desensitization and reduced functional antagonism of methacholine-induced contraction by beta-adrenoceptor agonists, without a change of muscarinic M2 receptor function.

  10. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  11. Altered Agonist Sensitivity of a Mutant V2 Receptor Suggests a Novel Therapeutic Strategy for Nephrogenic Diabetes Insipidus

    PubMed Central

    Erdélyi, László Sándor; Balla, András; Patócs, Attila; Tóth, Miklós; Várnai, Péter

    2014-01-01

    Loss-of-function mutations of the type 2 vasopressin receptor (V2R) in kidney can lead to nephrogenic diabetes insipidus (NDI). We studied a previously described, but uncharacterized, mutation of the V2R (N321K missense mutation) of a patient with NDI. The properties of the mutant receptor were evaluated. We constructed a highly sensitive Epac-based bioluminescence resonance energy transfer biosensor to perform real-time cAMP measurements after agonist stimulation of transiently transfected HEK293 cells with V2Rs. β-Arrestin binding of the activated receptors was examined with luciferase-tagged β-arrestin and mVenus-tagged V2Rs using the bioluminescence resonance energy transfer technique. Cell surface expression levels of hemagglutinin-tagged receptors were determined with flow cytometry using anti-hemagglutinin-Alexa 488 antibodies. Cellular localization examinations were implemented with fluorescent tagged receptors visualized with confocal laser scanning microscopy. The effect of various vasopressin analogs on the type 1 vasopressin receptor (V1R) was tested on mouse arteries by wire myography. The N321K mutant V2R showed normal cell surface expression, but the potency of arginine vasopressin for cAMP generation was low, whereas the clinically used desmopressin was not efficient. The β-arrestin binding and internalization properties of the mutant receptor were also different than those for the wild type. The function of the mutant receptor can be rescued with administration of the V2R agonist Val4-desmopressin, which had no detectable side effects on V1R in the effective cAMP generating concentrations. Based on these findings we propose a therapeutic strategy for patients with NDI carrying the N321K mutation, as our in vivo experiments suggest that Val4-desmopressin could rescue the function of the N321K-V2R without significant side effects on the V1R. PMID:24628417

  12. P2X7 receptor antagonism: Implications in diabetic retinopathy.

    PubMed

    Platania, Chiara Bianca Maria; Giurdanella, Giovanni; Di Paola, Luisa; Leggio, Gian Marco; Drago, Filippo; Salomone, Salvatore; Bucolo, Claudio

    2017-08-15

    Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25mM, 48h) that caused a significant (p<0.05) release of IL-1β and LDH. The block of P2X7R by JNJ47965567 significantly (p<0.05) reverted the damage elicited by high glucose, detected as IL-1β and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling.

    PubMed

    Smith, Jessica L; Stein, David A; Shum, David; Fischer, Matthew A; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A; Früh, Klaus; Hirsch, Alec J

    2014-05-01

    Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds-dihydrodibenzothiepines (DHBTs), identified through high-throughput screening-with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same

  14. The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies.

    PubMed

    Brinkmann, Constantin; Nehlmeier, Inga; Walendy-Gnirß, Kerstin; Nehls, Julia; González Hernández, Mariana; Hoffmann, Markus; Qiu, Xiangguo; Takada, Ayato; Schindler, Michael; Pöhlmann, Stefan

    2016-12-15

    The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The

  15. Overlapping but distinct topology for zebrafish V2R-like olfactory receptors reminiscent of odorant receptor spatial expression zones.

    PubMed

    Ahuja, Gaurav; Reichel, Vera; Kowatschew, Daniel; Syed, Adnan S; Kotagiri, Aswani Kumar; Oka, Yuichiro; Weth, Franco; Korsching, Sigrun I

    2018-05-23

    The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and

  16. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation

    PubMed Central

    Pisanelli, Giuseppe; Laurent-Rolle, Maudry; Manicassamy, Balaji; Belicha-Villanueva, Alan; Morrison, Juliet; Lozano-Dubernard, Bernardo; Castro-Peralta, Felipa; Iovane, Giuseppe; García-Sastre, Adolfo

    2017-01-01

    La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of “blue eye disease”, causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β PMID:26546155

  17. Characterization of Three Vasopressin Receptor 2 Variants: An Apparent Polymorphism (V266A) and Two Loss-of-Function Mutations (R181C and M311V)

    PubMed Central

    Armstrong, Stephen P.; Seeber, Ruth M.; Ayoub, Mohammed Akli; Feldman, Brian J.; Pfleger, Kevin D. G.

    2013-01-01

    Arginine vasopressin (AVP) is released from the posterior pituitary and controls water homeostasis. AVP binding to vasopressin V2 receptors (V2Rs) located on kidney collecting duct epithelial cells triggers activation of Gs proteins, leading to increased cAMP levels, trafficking of aquaporin-2 water channels, and consequent increased water permeability and antidiuresis. Typically, loss-of-function V2R mutations cause nephrogenic diabetes insipidus (NDI), whereas gain-of-function mutations cause nephrogenic syndrome of inappropriate antidiuresis (NSIAD). Here we provide further characterization of two mutant V2Rs, R181C and M311V, reported to cause complete and partial NDI respectively, together with a V266A variant, in a patient diagnosed with NSIAD. Our data in HEK293FT cells revealed that for cAMP accumulation, AVP was about 500- or 30-fold less potent at the R181C and M311V mutants than at the wild-type receptor respectively (and about 4000- and 60-fold in COS7 cells respectively). However, in contrast to wild type V2R, the R181C mutant failed to increase inositol phosphate production, while with the M311V mutant, AVP exhibited only partial agonism in addition to a 37-fold potency decrease. Similar responses were detected in a BRET assay for β-arrestin recruitment, with the R181C receptor unresponsive to AVP, and partial agonism with a 23-fold decrease in potency observed with M311V in both HEK293FT and COS7 cells. Notably, the V266A V2R appeared functionally identical to the wild-type receptor in all assays tested, including cAMP and inositol phosphate accumulation, β-arrestin interaction, and in a BRET assay of receptor ubiquitination. Each receptor was expressed at comparable levels. Hence, the M311V V2R retains greater activity than the R181C mutant, consistent with the milder phenotype of NDI associated with this mutant. Notably, the R181C mutant appears to be a Gs protein-biased receptor incapable of signaling to inositol phosphate or recruiting

  18. Characterization of three vasopressin receptor 2 variants: an apparent polymorphism (V266A) and two loss-of-function mutations (R181C and M311V).

    PubMed

    Armstrong, Stephen P; Seeber, Ruth M; Ayoub, Mohammed Akli; Feldman, Brian J; Pfleger, Kevin D G

    2013-01-01

    Arginine vasopressin (AVP) is released from the posterior pituitary and controls water homeostasis. AVP binding to vasopressin V2 receptors (V2Rs) located on kidney collecting duct epithelial cells triggers activation of Gs proteins, leading to increased cAMP levels, trafficking of aquaporin-2 water channels, and consequent increased water permeability and antidiuresis. Typically, loss-of-function V2R mutations cause nephrogenic diabetes insipidus (NDI), whereas gain-of-function mutations cause nephrogenic syndrome of inappropriate antidiuresis (NSIAD). Here we provide further characterization of two mutant V2Rs, R181C and M311V, reported to cause complete and partial NDI respectively, together with a V266A variant, in a patient diagnosed with NSIAD. Our data in HEK293FT cells revealed that for cAMP accumulation, AVP was about 500- or 30-fold less potent at the R181C and M311V mutants than at the wild-type receptor respectively (and about 4000- and 60-fold in COS7 cells respectively). However, in contrast to wild type V2R, the R181C mutant failed to increase inositol phosphate production, while with the M311V mutant, AVP exhibited only partial agonism in addition to a 37-fold potency decrease. Similar responses were detected in a BRET assay for β-arrestin recruitment, with the R181C receptor unresponsive to AVP, and partial agonism with a 23-fold decrease in potency observed with M311V in both HEK293FT and COS7 cells. Notably, the V266A V2R appeared functionally identical to the wild-type receptor in all assays tested, including cAMP and inositol phosphate accumulation, β-arrestin interaction, and in a BRET assay of receptor ubiquitination. Each receptor was expressed at comparable levels. Hence, the M311V V2R retains greater activity than the R181C mutant, consistent with the milder phenotype of NDI associated with this mutant. Notably, the R181C mutant appears to be a Gs protein-biased receptor incapable of signaling to inositol phosphate or recruiting

  19. Heterogeneity of NK-2 tachykinin receptors in hamster and rabbit smooth muscles.

    PubMed

    Maggi, C A; Eglezos, A; Quartara, L; Patacchini, R; Giachetti, A

    1992-01-23

    The possible existence of NK-2 receptor subtypes in peripheral smooth muscle preparations from rabbit and hamster was investigated by studying the effect of neurokinin A, the selective NK-2 receptor agonist [beta Ala8] neurokinin A (4-10), the selective NK-2 tachykinin receptor antagonists, MEN 10,376, L 659,877 and R 396, and the pseudopeptide derivative of neurokinin A (4-10), MDL 28,564. All experiments were performed in the presence of peptidase inhibitors (captopril, bestatin and thiorphan, 1 microM each). Both neurokinin A and [beta Ala8] neurokinin A (4-10) produced concentration-dependent contractions of the rabbit isolated bronchus and hamster isolated stomach and colon, as well as enhancement of the nerve-mediated twitches of rabbit isolated vas deferens (pars prostatica). MEN 10,376, L 659,877 and R 396 antagonized the effect of the NK-2 receptor selective agonist in all four tissues under study, although marked differences in antagonist potency were evident for the three antagonists. Thus MEN 10,376 was distinctly more potent (about 100 times) in rabbit than in hamster preparations while L 659,877 and R 396 were more potent in hamster than rabbit preparations. MDL 28,564 showed a distinct agonist character in rabbit preparations while it was virtually inactive in hamster preparations, where it antagonized the effect of the NK-2 receptor selective agonist.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation.

    PubMed

    Pisanelli, Giuseppe; Laurent-Rolle, Maudry; Manicassamy, Balaji; Belicha-Villanueva, Alan; Morrison, Juliet; Lozano-Dubernard, Bernardo; Castro-Peralta, Felipa; Iovane, Giuseppe; García-Sastre, Adolfo

    2016-02-02

    La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of "blue eye disease", causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice

    PubMed Central

    Roundtree, Harrison M.; Simeone, Timothy A.; Johnson, Chaz; Matthews, Stephanie A.; Samson, Kaeli K.; Simeone, Kristina A.

    2016-01-01

    other epilepsy models. Citation: Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin receptor antagonism improves sleep and reduces seizures in Kcna1-null mice. SLEEP 2016;39(2):357–368. PMID:26446112

  2. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    DOE PAGES

    Menachery, Vineet D.; Schafer, Alexandra; Burnum-Johnson, Kristin E.; ...

    2018-01-16

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigenmore » presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Altogether, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.« less

  3. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menachery, Vineet D.; Schäfer, Alexandra; Burnum-Johnson, Kristin E.

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigenmore » presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.« less

  4. Benzodiazepine antagonism by harmane and other beta-carbolines in vitro and in vivo.

    PubMed

    Rommelspacher, H; Nanz, C; Borbe, H O; Fehske, K J; Müller, W E; Wollert, U

    1981-03-26

    Harmane and other related beta-carbolines are putative endogenous ligands of the benzodiazepine receptor. Since the compounds are potent convulsants they may have agonist activities at the benzodiazepine receptor while the benzodiazepines may be antagonists. This hypothesis was proved by comparing the in vivo and in vitro antagonism of benzodiazepines by harmane and other beta-carbolines. Harmane is clearly a competitive inhibitor of benzodiazepine receptor binding in vitro. Moreover, harmane-induced convulsions can be inhibited reversibly by diazepam in a manner which is consistent with the assumption of competitive antagonism in vivo. For some beta-carboline derivatives a correlation was found between the affinity for the benzodiazepine receptor in vitro and the convulsive potency in vivo. Thus, the data reported suggest that harmane or other related beta-carbolines are putative endogenous agonists of the benzodiazepine receptor. This suggestion is further supported by the observation that diazepam is equally potent in inhibiting harmane- or picrotoxin-induced convulsions, indicating a convulsive mechanism within the GABA receptor-benzodiazepine receptor system.

  5. The role of aldosterone antagonism agents in diabetic kidney disease.

    PubMed

    Wombwell, Eric; Naglich, Andrew

    2015-03-01

    Diabetic kidney disease is a common consequence of the development of diabetes. In the United Kingdom 18-30% of chronic kidney disease cases and 44% of end-stage renal disease cases in the United States have been attributed to complications of diabetic kidney disease. Angiotensin blockade using angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the standard for slowing the progression of diabetic kidney disease. Evidence suggests that aldosterone antagonism added to standard therapy may be beneficial. This paper aims to explore the pathophysiological contribution of aldosterone in diabetic kidney disease and review available literature for aldosterone antagonism through mineralocorticoid receptor blockade. A comprehensive literature search was conducted. Results were analysed and summarised. Nine trials evaluating a total of 535 patients with diabetic kidney disease were identified that evaluated the use of aldosterone antagonists for reducing the signs of diabetic kidney disease. All trials demonstrated a marked decrease in urinary protein excretion when compared to, or added to angiotensin converting enzyme inhibition or angiotensin receptor blockade. The most commonly reported side effect in all of the trials was hyperkalaemia, which occurred in 6.1% of all patients evaluated. Aldosterone antagonists were generally well tolerated in the evaluated patient populations. Aldosterone antagonism may represent a safe and effective complimentary therapy to the use of angiotensin converting enzyme inhibition, or angiotensin receptor blockade, for slowing the progression of diabetic kidney disease. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  6. Dopamine D1 and μ-opioid receptor antagonism blocks anticipatory 50 kHz ultrasonic vocalizations induced by palatable food cues in Wistar rats.

    PubMed

    Buck, Cara L; Vendruscolo, Leandro F; Koob, George F; George, Olivier

    2014-03-01

    Fifty kilohertz ultrasonic vocalizations (USVs) have been sometimes shown to reflect positive affective-like states in rats. Rewarding events, such as access to palatable food or drugs of abuse, increase the number of anticipatory 50-kHz USVs. However, little is known about the predictability of USVs, subtypes of USVs involved, and underlying neurobiological mechanisms. We examined whether cue-induced anticipatory 50-kHz USVs predict palatable food intake and tested the effects of dopamine D1 and μ-opioid receptor antagonism on anticipatory USVs. Food-restricted rats received repeated sessions of a 2-min cue light immediately followed by a 5-min access to palatable food. Ultrasonic vocalizations were recorded during cue presentation. After 24 pairing sessions, the rats were pretreated with the D1 receptor antagonist SCH 23390 (5, 10, and 20 μg/kg) and μ-opioid receptor antagonist naltrexone (0.03, 0.06, 0.13, 0.25, 0.5, and 1 mg/kg) in a Latin-square design, and USVs were recorded during cue presentation. Rats emitted 50-kHz USVs during cue presentation, and the number of USVs increased across sessions with robust and stable interindividual differences. Escalation in USVs was subtype-dependent, with nontrill calls significantly increasing over time. Palatable food intake was positively correlated with anticipatory 50-kHz USVs. Moreover, anticipatory USVs were dose-dependently prevented by antagonism of D1 and μ-opioid receptors. These findings demonstrate that anticipatory 50-kHz USVs represent a stable phenotype of increased motivation for food, and dopamine and opioid systems appear to mediate anticipatory 50-kHz USVs.

  7. Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus.

    PubMed

    Jean-Alphonse, Frédéric; Perkovska, Sanja; Frantz, Marie-Céline; Durroux, Thierry; Méjean, Catherine; Morin, Denis; Loison, Stéphanie; Bonnet, Dominique; Hibert, Marcel; Mouillac, Bernard; Mendre, Christiane

    2009-10-01

    X-linked congenital nephrogenic diabetes insipidus (cNDI) results from inactivating mutations of the human arginine vasopressin (AVP) V2 receptor (hV(2)R). Most of these mutations lead to intracellular retention of the hV(2)R, preventing its interaction with AVP and thereby limiting water reabsorption and concentration of urine. Because the majority of cNDI-hV(2)Rs exhibit protein misfolding, molecular chaperones hold promise as therapeutic agents; therefore, we sought to identify pharmacochaperones for hV(2)R that also acted as agonists. Here, we describe high-affinity nonpeptide compounds that promoted maturation and membrane rescue of L44P, A294P, and R337X cNDI mutants and restored a functional AVP-dependent cAMP signal. Contrary to pharmacochaperone antagonists, these compounds directly activated a cAMP signal upon binding to several cNDI mutants. In addition, these molecules displayed original functionally selective properties (biased agonism) toward the hV(2)R, being unable to recruit arrestin, trigger receptor internalization, or stimulate mitogen-activated protein kinases. These characteristics make these hV(2)R agonist pharmacochaperones promising therapeutic candidates for cNDI.

  8. Biased Agonist Pharmacochaperones of the AVP V2 Receptor May Treat Congenital Nephrogenic Diabetes Insipidus

    PubMed Central

    Jean-Alphonse, Frédéric; Perkovska, Sanja; Frantz, Marie-Céline; Durroux, Thierry; Méjean, Catherine; Morin, Denis; Loison, Stéphanie; Bonnet, Dominique; Hibert, Marcel

    2009-01-01

    X-linked congenital nephrogenic diabetes insipidus (cNDI) results from inactivating mutations of the human arginine vasopressin (AVP) V2 receptor (hV2R). Most of these mutations lead to intracellular retention of the hV2R, preventing its interaction with AVP and thereby limiting water reabsorption and concentration of urine. Because the majority of cNDI-hV2Rs exhibit protein misfolding, molecular chaperones hold promise as therapeutic agents; therefore, we sought to identify pharmacochaperones for hV2R that also acted as agonists. Here, we describe high-affinity nonpeptide compounds that promoted maturation and membrane rescue of L44P, A294P, and R337X cNDI mutants and restored a functional AVP-dependent cAMP signal. Contrary to pharmacochaperone antagonists, these compounds directly activated a cAMP signal upon binding to several cNDI mutants. In addition, these molecules displayed original functionally selective properties (biased agonism) toward the hV2R, being unable to recruit arrestin, trigger receptor internalization, or stimulate mitogen-activated protein kinases. These characteristics make these hV2R agonist pharmacochaperones promising therapeutic candidates for cNDI. PMID:19729439

  9. Antidiuretic effects of a nonpeptide vasopressin V(2)-receptor agonist, OPC-51803, administered orally to rats.

    PubMed

    Nakamura, S; Hirano, T; Tsujimae, K; Aoyama, M; Kondo, K; Yamamura, Y; Mori, T; Tominaga, M

    2000-12-01

    OPC-51803 is the first nonpeptide vasopressin (AVP) V(2)-receptor-selective agonist. Its pharmacological profile, including antidiuretic action and receptor binding, was characterized using conscious Brattleboro rats with hereditary diabetes insipidus and Sprague-Dawley rats. In membrane preparations from the liver and kidney, OPC-51803 displaced the [(3)H]AVP binding to V(2)-receptors (K(i) = 49.8 +/- 8.1 nM) more greatly than that to V(1a)-receptors (K(i) = 1061 +/- 60 nM), showing a 21 times higher affinity for V(2)-receptors. At single oral doses of 0.003 to 0.3 mg/kg in female Brattleboro rats, OPC-51803 decreased urine volume (from 10.8 +/- 1.1 to 0.5 +/- 0.2 ml during 0-2 h postdosing) and increased urinary osmolality (from 114 +/- 9 to 432 +/- 114 mOsm/kg) in a dose-dependent manner. During the period of 4-week treatment with OPC-51803, significant and constant antidiuresis was observed. In male Sprague-Dawley rats with normal plasma AVP levels, OPC-51803 at 0.03 to 0.3 mg/kg also produced a dose-dependent antidiuretic action (urine volume: from 2.6 +/- 0.6 to 1.1 +/- 0.2 ml at 0-4 h postdosing). Few changes in urinary parameters, serum parameters, or plasma hormone levels were observed. OPC-51803 did not change blood pressure or heart rate, or inhibit AVP-induced pressor response even at 30 mg/kg p.o. These results demonstrate that OPC-51803 is a V(2)-selective agonist that produces a significant antidiuretic action after single and multiple oral dosing in AVP-deficient and normal AVP states. The data suggest that OPC-51803 is a useful therapeutic drug in the treatment of hypothalamic diabetes insipidus, nocturnal enuresis, and some kinds of urinary incontinence.

  10. Nogo-receptor 1 antagonization in combination with neurotrophin-4/5 is not superior to single factor treatment in promoting survival and morphological complexity of cultured dopaminergic neurons.

    PubMed

    Seiler, Stefanie; Di Santo, Stefano; Sahli, Sebastian; Andereggen, Lukas; Widmer, Hans Rudolf

    2017-08-01

    Cell transplantation using ventral mesencephalic tissue is an experimental approach to treat Parkinson's disease. This approach is limited by poor survival of the transplants and the high number of dopaminergic neurons needed for grafting. Increasing the yield of dopaminergic neurons in donor tissue is of great importance. We have previously shown that antagonization of the Nogo-receptor 1 by NEP1-40 promoted survival of cultured dopaminergic neurons and exposure to neurotrophin-4/5 increased dopaminergic cell densities in organotypic midbrain cultures. We investigated whether a combination of both treatments offers a novel tool to further improve dopaminergic neuron survival. Rat embryonic ventral mesencephalic neurons grown as organotypic free-floating roller tube or primary dissociated cultures were exposed to neurotrophin-4/5 and NEP1-40. The combined and single factor treatment resulted in significantly higher numbers of tyrosine hydroxylase positive neurons compared to controls. Significantly stronger tyrosine hydroxylase signal intensity was detected by Western blotting in the combination-treated cultures compared to controls but not compared to single factor treatments. Neurotrophin-4/5 and the combined treatment showed significantly higher signals for the neuronal marker microtubule-associated protein 2 in Western blots compared to control while no effects were observed for the astroglial marker glial fibrillary acidic protein between groups, suggesting that neurotrophin-4/5 targets mainly neuronal cells. Finally, NEP1-40 and the combined treatment significantly augmented tyrosine hydroxylase positive neurite length. Summarizing, our findings substantiate that antagonization of the Nogo-receptor 1 promotes dopaminergic neurons but does not further increase the yield of dopaminergic neurons and their morphological complexity when combined with neurotrophin-4/5 hinting to the idea that these treatments might exert their effects by activating common

  11. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    PubMed

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  12. APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism.

    PubMed

    Shu, Kai; Zhou, Wenguan; Yang, Wenyu

    2018-02-01

    The phytohormones abscisic acid (ABA) and gibberellin (GA) antagonistically mediate diverse plant developmental processes including seed dormancy and germination, root development, and flowering time control, and thus the optimal balance between ABA and GA is essential for plant growth and development. Although more than a half and one century have passed since the initial discoveries of ABA and GA, respectively, the precise mechanisms underlying ABA-GA antagonism still need further investigation. Emerging evidence indicates that two APETALA 2 (AP2)-domain-containing transcription factors (ATFs), ABI4 in Arabidopsis and OsAP2-39 in rice, play key roles in ABA and GA antagonism. These two transcription factors precisely regulate the transcription pattern of ABA and GA biosynthesis or inactivation genes, mediating ABA and GA levels. In this Viewpoint article, we try to shed light on the effects of ATFs on ABA-GA antagonism, and summarize the overlapping but distinct biological functions of these ATFs in the antagonism between ABA and GA. Finally, we strongly propose that further research is needed into the detailed roles of additional numerous ATFs in ABA and GA crosstalk, which will improve our understanding of the antagonism between these two phytohormones. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Tachykinin-induced contraction of the guinea-pig isolated oesophageal mucosa is mediated by NK2 receptors

    PubMed Central

    Kerr, Karen P; Thai, Binh; Coupar, Ian M

    2000-01-01

    The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. The NK1 receptor-selective agonist, [Sar9(O2)Met11]SP and the NK3 receptor-selective agonists, [MePhe7]-NKB and senktide, produced no response at submicromolar concentrations. The NK2 receptor-selective agonists, [Nle10]-NKA(4–10), and GR 64,349 produced concentration-dependent contractile effects with pD2 values of 8.20±0.16 and 8.30±0.15, respectively. The concentration-response curve to the non-selective agonist, NKA (pD2=8.13±0.04) was shifted significantly rightwards only by the NK2 receptor-selective antagonist, GR 159,897 and was unaffected by the NK1 receptor-selective antagonist, SR 140,333 and the NK3 receptor-selective antagonist, SB 222,200. The NK2 receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK2 receptor-selective agonist, GR 64,349 (apparent pKB value=9.29±0.16) and against the non-selective agonist, NKA (apparent pKB value=8.71±0.19). The NK2 receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK2 receptor-selective agonist, [Nle10]-NKA(4–10). The pKB value was 10.84±0.19. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK2 receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK2 receptors. PMID:11090121

  14. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  15. Antidiuretic effects of a novel nonpeptide vasopressin V(2)-receptor agonist, OPC-51803, administered orally to dogs.

    PubMed

    Nakamura, Shigeki; Hirano, Takahiro; Onogawa, Toshiyuki; Itoh, Shuji; Hashimoto, Ayako; Yamamura, Yoshitaka; Kondo, Kazumi; Mori, Toyoki; Kambe, Toshimi

    2004-04-01

    We elucidated the pharmacological properties of a novel nonpeptide vasopressin V(2)-receptor agonist, OPC-51803 ((5R)-2-[1-(2-chloro-4-(1-pyrrolidinyl)benzoyl-2,3,4,5-tetrahydro-1H-1-benzazepine-5-yl]-N-isopropylacetamide), via both in vitro binding experiments incorporating canine kidney and platelet membrane fractions and in vivo experiments that would determine the compound's antidiuretic effects after oral administration to water-loaded dogs. OPC-51803 displaced [(3)H]arginine vasopressin (AVP) binding to canine V(2) and V(1a) receptors, as determined by resulting K(i) values of 15.2 +/- 0.6 nM (n = 4) and 653 +/- 146 nM (n = 4), respectively. These data indicate that OPC-51803 was about 43 times more selective for V(2) receptors than for V(1a) receptors. Antidiuretic studies showed that orally administered doses of OPC-51803 (0.03 to 0.3 mg x kg(-1)) decreased urine volume and increased urinary osmolality in a dose-dependent manner in water-loaded dogs. Intravenous OPC-51803 infusions (0.3 and 3 microg x kg(-1) x min(-1)) did not affect renal or systemic hemodynamics in anesthetized dogs. Since these results confirm that OPC-51803 shows antidiuretic action in dogs, the compound may be useful for treating AVP-deficient pathophysiological states.

  16. Pharmacological analysis of ecto-ATPase inhibition: evidence for combined enzyme inhibition and receptor antagonism in P2X-purinoceptor ligands.

    PubMed

    Crack, B E; Beukers, M W; McKechnie, K C; Ijzerman, A P; Leff, P

    1994-12-01

    .0, some 400-fold higher.7 Two conclusions are drawn from this study. Firstly, caution must be exercised in the use of suramin and FPL 66301 as tools for receptor classification. Absence of overt antagonism by these compounds when metabolically unstable agonists are used could lead to erroneous claims for receptor subtypes.Secondly, the agonist potency order currently used to designate P2X- purinoceptors may require modification.

  17. NK2 tachykinin receptors and contraction of circular muscle of the human colon: characterization of the NK2 receptor subtype.

    PubMed

    Giuliani, S; Barbanti, G; Turini, D; Quartara, L; Rovero, P; Giachetti, A; Maggi, C A

    1991-10-22

    The contractile effect of substance P, neurokinin A, receptor selective agonists for tachykinin receptors and NK2 tachykinin receptor antagonists was investigated in mucosa-free circular strips of the human isolated colon. Neurokinin A and substance P produced concentration-dependent contractions which approached 80-90% of the maximal response to carbachol. Neurokinin A was about 370 times more potent than substance P. The action of neurokinin A and substance P was not modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The NK2 receptor selective agonist, [beta-Ala8]neurokinin A-(4-10) closely mimicked the response to neurokinin A while NK1 and NK3 receptor selective agonists were active only at microM concentrations. The pseudopeptide, MDL 28,564, which is one of the most selective NK2 ligands available, behaved as a full agonist. Responses to [beta-Ala8]neurokinin A were antagonized by NK2 receptor selective antagonists, with the rank order of potency MEN 10,376 greater than L 659,877 much greater than R 396. These data indicate that NK2 tachykinin receptors play a dominant role in determining the contraction of the circular muscle of the human colon to peptides of this family. The NK2 receptor subtype responsible for this effect belongs to the same subtype (NK2A) previously identified in the rabbit pulmonary artery and guinea-pig bronchi.

  18. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    PubMed

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Dopamine D3/D2 Receptor Antagonist PF-4363467 Attenuates Opioid Drug-Seeking Behavior without Concomitant D2 Side Effects.

    PubMed

    Wager, Travis T; Chappie, Thomas; Horton, David; Chandrasekaran, Ramalakshmi Y; Samas, Brian; Dunn-Sims, Elizabeth R; Hsu, Cathleen; Nawreen, Nawshaba; Vanase-Frawley, Michelle A; O'Connor, Rebecca E; Schmidt, Christopher J; Dlugolenski, Keith; Stratman, Nancy C; Majchrzak, Mark J; Kormos, Bethany L; Nguyen, David P; Sawant-Basak, Aarti; Mead, Andy N

    2017-01-18

    Dopamine receptor antagonism is a compelling molecular target for the treatment of a range of psychiatric disorders, including substance use disorders. From our corporate compound file, we identified a structurally unique D3 receptor (D3R) antagonist scaffold, 1. Through a hybrid approach, we merged key pharmacophore elements from 1 and D3 agonist 2 to yield the novel D3R/D2R antagonist PF-4363467 (3). Compound 3 was designed to possess CNS drug-like properties as defined by its CNS MPO desirability score (≥4/6). In addition to good physicochemical properties, 3 exhibited low nanomolar affinity for the D3R (D3 K i = 3.1 nM), good subtype selectivity over D2R (D2 K i = 692 nM), and high selectivity for D3R versus other biogenic amine receptors. In vivo, 3 dose-dependently attenuated opioid self-administration and opioid drug-seeking behavior in a rat operant reinstatement model using animals trained to self-administer fentanyl. Further, traditional extrapyramidal symptoms (EPS), adverse side effects arising from D2R antagonism, were not observed despite high D2 receptor occupancy (RO) in rodents, suggesting that compound 3 has a unique in vivo profile. Collectively, our data support further investigation of dual D3R and D2R antagonists for the treatment of drug addiction.

  20. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia

    PubMed Central

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-01-01

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities. PMID:27273195

  1. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia.

    PubMed

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-06-08

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities.

  2. Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody.

    PubMed

    Willett, Brian J; Kraase, Martin; Logan, Nicola; McMonagle, Elizabeth L; Samman, Ayman; Hosie, Margaret J

    2010-04-26

    In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo. Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134. The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.

  3. Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer

    PubMed Central

    Norris, John D.; Ellison, Stephanie J.; Baker, Jennifer G.; Stagg, David B.; Wardell, Suzanne E.; Park, Sunghee; Alley, Holly M.; Baldi, Robert M.; Yllanes, Alexander; Andreano, Kaitlyn J.; Stice, James P.; Lawrence, Scott A.; Eisner, Joel R.; Price, Douglas K.; Moore, William R.; Figg, William D.; McDonnell, Donald P.

    2017-01-01

    The clinical utility of inhibiting cytochrome P450 17A1 (CYP17), a cytochrome p450 enzyme that is required for the production of androgens, has been exemplified by the approval of abiraterone for the treatment of castration-resistant prostate cancer (CRPC). Recently, however, it has been reported that CYP17 inhibitors can interact directly with the androgen receptor (AR). A phase I study recently reported that seviteronel, a CYP17 lyase–selective inhibitor, ædemonstrated a sustained reduction in prostate-specific antigen in a patient with CRPC, and another study showed seviteronel’s direct effects on AR function. This suggested that seviteronel may have therapeutically relevant activities in addition to its ability to inhibit androgen production. Here, we have demonstrated that CYP17 inhibitors, with the exception of orteronel, can function as competitive AR antagonists. Conformational profiling revealed that the CYP17 inhibitor–bound AR adopted a conformation that resembled the unliganded AR (apo-AR), precluding nuclear localization and DNA binding. Further, we observed that seviteronel and abiraterone inhibited the growth of tumor xenografts expressing the clinically relevant mutation AR-F876L and that this activity could be attributed entirely to competitive AR antagonism. The results of this study suggest that the ability of CYP17 inhibitors to directly antagonize the AR may contribute to their clinical efficacy in CRPC. PMID:28463227

  4. SSR126768A (4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)-benzamide, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor.

    PubMed

    Serradeil-Le Gal, Claudine; Valette, Gérard; Foulon, Loïc; Germain, Guy; Advenier, Charles; Naline, Emmanuel; Bardou, Marc; Martinolle, Jean-Pierre; Pouzet, Brigitte; Raufaste, Danielle; Garcia, Corinne; Double-Cazanave, Eléonore; Pauly, Maxime; Pascal, Marc; Barbier, Alain; Scatton, Bernard; Maffrand, Jean-Pierre; Le Fur, Gérard

    2004-04-01

    4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)benzamide, hydrochloride (SSR126768A), a new potent and selective, orally active oxytocin (OT) receptor antagonist was characterized in several biochemical and pharmacological models. In binding studies, SSR126768A showed nanomolar affinity for rat and human recombinant and native OT receptors (K(i) = 0.44 nM) and exhibited much lower affinity for V(1a), V(1b), and V(2) receptors. In addition, it did not interact with a large number of other receptors, enzymes, and ion channels (1 microM). In autoradiographic experiments performed on at-term human pregnant uterus sections, SSR126768A dose dependently displaced [I(125)]d(CH(2))(5)[Tyr(Me)(2), Thr(4), Orn(8) (125)I-Tyr-NH(2)(9)]VT in situ labeling to OT receptors highly expressed in these tissues. In functional studies, SSR126768A behaved as a full antagonist and potently antagonized OT-induced intracellular Ca(2+) increase (K(i) = 0.50 nM) and prostaglandin release (K(i) = 0.45 nM) in human uterine smooth muscle cells. In rat isolated myometrium, OT-induced uterine contractions were competitively antagonized by SSR126768A (pA(2) = 8.47). Similarly, in human pregnant myometrial strips, SSR126768A inhibited the contractile uterine response to OT. In conscious telemetrated rats, oral administration of SSR126768A (1-10 mg/kg) produced a competitive inhibition of the dose response to OT on uterine contractions up to 24 h at 3 mg/kg p.o.; no tachyphylaxis was observed after 4-day repeated treatment. Finally, SSR126768A (30 mg/kg p.o.) significantly delayed parturition in pregnant rats in labor similar to ritodrine (10 mg/kg p.o.). Thus, SSR126768A is a potent, highly selective, orally active OT receptor antagonist with a long duration of action. This molecule could find therapeutic application as a tocolytic agent for acute and chronic oral management of preterm labor.

  5. Selective progesterone receptor modulators 2: use in reproductive medicine.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    Synthetic compounds can bind to progesterone receptors and these progesterone receptor ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. These substances have been classified as antiprogestins or as selective progesterone receptor modulators. There are several hundred selective progesterone receptor modulators available, although only a dozen or so have been evaluated to any significant extent. The best-known selective progesterone receptor modulators are mifepristone (RU 486), asoprisnil (J 867), onapristone (ZK 98299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. A careful evaluation of existing major review papers and of recently published articles was carried out for the indications under review, focusing not only on mifepristone, but also on those other selective progesterone receptor modulators for which data are available. Outside pregnancy, selective progesterone receptor modulators are used or have been tested clinically for a number of indications in reproductive medicine: as oral contraceptives, alone or in combination with a progestin, to improve cycle control in users of progestin-only contraceptives, as emergency contraceptives, for the medical treatment of uterine fibroids, in cases of endometriosis and premenstrual syndrome and to improve ovarian stimulation prior to in vitro fertilisation. In the authors' opinion, as of today, few applications outside pregnancy seem worthy of large-scale use: emergency contraception and long-term medical management of uterine fibroids and possibly of endometriosis.

  6. Actions of 3-[2′-phosphonomethyl[1,1′-biphenyl]-3-yl]alanine (PMBA) on cloned glycine receptors

    PubMed Central

    Hosie, Alastair M; Akagi, Hiroyuki; Ishida, Michiko; Shinozaki, Haruhiko

    1999-01-01

    PMBA is a novel antagonist of strychnine-sensitive glycine receptors in the rat spinal cord, however, its mode of action is unknown. The actions of PMBA on rat glycine receptor α1 and α2 homomers in Xenopus oocytes were studied under two-electrode voltage-clamp. Co-application of PMBA and glycine to both α1 and α2 homomers yielded inward currents which decayed to a steady-state. Responses rose slowly to the same steady-state amplitude following a 2 min pre-incubation in PMBA. Strychnine, but not picrotoxinin, showed similar antagonism to PMBA. The potency of PMBA was independent of membrane potential between −100 and 0 mV. When tested against EC50 concentrations of glycine, PMBA was almost equally potent on α1 (IC50, 406±41 nM: Hill coefficient, 1.5±0.2) and α2 (IC50, 539±56 nM; Hill coefficient, 1.4±0.2) homomers. PMBA (1–10 μM) and strychnine (200 nM) reduced the potency of glycine and the amplitude of the maximal agonist response of α1 and α2 homomers. In 10 μM PMBA, two distinct classes of glycine response were observed on α2, only a single class of responses were observed on α1. There are similarities in PMBA and strychnine antagonism, although these compounds are structurally distinct. The possibility that PMBA interacts at two binding sites which differ in α1 and α2 subunits is discussed. PMBA may provide a lead structure for novel antagonists with which to investigate structural differences in glycine receptor at α1 and α2 subunits. PMID:10205013

  7. Role of D1- and D2-like dopaminergic receptors in the nucleus accumbens in modulation of formalin-induced orofacial pain: Involvement of lateral hypothalamus.

    PubMed

    Shafiei, Iman; Vatankhah, Mahsaneh; Zarepour, Leila; Ezzatpanah, Somayeh; Haghparast, Abbas

    2018-05-01

    The role of dopaminergic system in modulation of formalin-induced orofacial nociception has been established. The present study aims to investigate the role of dopaminergic receptors in the nucleus accumbens (NAc) in modulation of nociceptive responses induced by formalin injection in the orofacial region. One hundred and six male Wistar rats were unilaterally implanted with two cannulae into the lateral hypothalamus (LH) and NAc. Intra-LH microinjection of carbachol, a cholinergic receptor agonist, was done 5min after intra-accumbal administration of different doses of SCH23390 (D1-like receptor antagonist) or sulpiride (D2-like receptor antagonist). After 5min, 50μl of 1% formalin was subcutaneously injected into the upper lip for inducing the orofacial pain. Carbachol alone dose-dependently reduced both phases of the formalin-induced orofacial pain. Intra-accumbal administration of SCH23390 (0.25, 1 and 4μg/0.5μl saline) or sulpiride (0.25, 1 and 4μg/0.5μl DMSO) before LH stimulation by carbachol (250nM/0.5μl saline) antagonized the antinociceptive responses during both phases of orofacial formalin test. The effects of D1- and D2-like receptor antagonism on the LH stimulation-induced antinociception were almost similar during the early phase. However, compared to D1-like receptor antagonism, D2-like receptor antagonism was a little more effective but not significant, at blocking the LH stimulation-induced antinociception during the late phase of formalin test. The findings revealed that there is a direct or indirect neural pathway from the LH to the NAc which is at least partially contributed to the modulation of formalin-induced orofacial nociception through recruitment of both dopaminergic receptors in this region. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat α1β2γ2L GABAA receptor

    PubMed Central

    Li, P; Akk, G

    2008-01-01

    Background and purpose: Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABAA receptors in the brain. In this study, we have examined the modulation of the common brain GABAA receptor subtype by fipronil and its major metabolite, fipronil sulphone. Experimental approach: Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat α1β2γ2L GABAA receptors. Key results: The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The α1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the α1β2γ2L receptor. Conclusions and implications: We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain. PMID:18660823

  9. Limited PCB antagonism of TCDD-induced malformations in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrissey, R.E.; Harris, M.W.; Diliberto, J.J.

    1992-01-01

    Mice used to model induction of cleft palate and kidney malformations in offspring following maternal treatment with TCDD, were dosed on gestation day with hexachlorobiphenyl (HCB) and/or with tetrachlorodibenzo-p-dioxin (TCDD) to investigate the potential protective effects of HCB against TCDD-induced teratogenicity. At the doses used in the study, there was no effect of either compound on number of live or dead offspring. Fetal body weight was slightly decreased in all groups dosed with = or > 250 mg HCB/kg. HCB did not induce cleft palate at a dose of 1000 mg/kg, but did induce increases in hydronephrosis and hydroureter atmore » 500 and 1000 mg/kg. Combinations of HCB and TCDD decreased the incidence of cleft palate induced by TCDD alone, but only at doses of 15 microgram TCDD/kg combined with 125-500 mg HCB/kg. The window for antagonism of hydronephrosis (incidence and severity) appeared narrower (15 microgram TCDD/kg + 500 mg HCB/kg). HCB induced increases (3 fold) in EROD activity at doses of 500 and 1000 mg/kg, suggesting that the limited antagonism of TCDD teratogenicity by HCB would be consistent with control by Ah receptor. (Copyright (c) 1992 Elsevier Science Publishers B.V.)« less

  10. Role for NK(1) and NK(2) receptors in the motor activity in mouse colon.

    PubMed

    Mulè, Flavia; Amato, Antonella; Serio, Rosa

    2007-09-10

    The present study examined the effects induced by endogenous and exogenous activation of NK(1) and NK(2) receptors on the mechanical activity of mouse proximal colon. Experiments were performed in vitro recording the changes in intraluminal pressure from isolated colonic segments. Electrical field stimulation in the presence of atropine and guanethidine produced a small relaxation, followed by nonadrenergic noncholinergic (NANC) contraction. SR140333, NK(1) receptor antagonist, or SR48968, NK(2) receptor antagonist, significantly reduced the contraction, although SR48968 appeared more efficacious. The co-administration of SR140333 and SR48968 virtually abolished the NANC contraction. [Sar(9), Met(O(2))(11)]-substance P, selective NK(1) receptor agonist, induced a concentration-dependent biphasic effect, contraction followed by reduction of the mechanical spontaneous activity. Both effects were antagonized by SR140333, but not by SR48968. [beta-Ala(8)]-neurokinin A (4-10), selective NK(2) receptor agonist, evoked concentration-dependent contraction, which was antagonized by SR48968, but not by SR140333. The contraction induced by [Sar(9), Met(O(2))(11)]-substance P, but not by [beta-Ala(8)]-neurokinin A (4-10), was reduced by tetrodotoxin or atropine, and increased by N(omega)-nitro-L-arginine methyl ester (L-NAME), inhibitor of nitric oxide synthase. The inhibitory effects induced by [Sar(9), Met(O(2))(11)]-substance P were abolished by tetrodotoxin or L-NAME. The results of the present study suggest that in mouse colon both NK(1) and NK(2) receptors are junctionally activated by endogenous tachykinins to cause an additive response. NK(1) receptors appear to be located on cholinergic and on nitrergic neurons as well as on smooth muscle cells, whereas NK(2) receptors seem to be present exclusively on smooth muscle cells.

  11. New benzylureas as a novel series of potent, nonpeptidic vasopressin V2 receptor agonists.

    PubMed

    Yea, Christopher M; Allan, Christine E; Ashworth, Doreen M; Barnett, James; Baxter, Andy J; Broadbridge, Janice D; Franklin, Richard J; Hampton, Sally L; Hudson, Peter; Horton, John A; Jenkins, Paul D; Penson, Andy M; Pitt, Gary R W; Rivière, Pierre; Robson, Peter A; Rooker, David P; Semple, Graeme; Sheppard, Andy; Haigh, Robert M; Roe, Michael B

    2008-12-25

    Vasopressin (AVP) is a hormone that stimulates an increase in water permeability through activation of V2 receptors in the kidney. The analogue of AVP, desmopressin, has proven an effective drug for diseases where a reduction of urine output is desired. However, its peptidic nature limits its bioavailability. We report herein the discovery of potent, nonpeptidic, benzylurea derived agonists of the vasopressin V2 receptor. We describe substitutions on the benzyl group to give improvements in potency and subsequent modifications to the urea end group to provide improvements in solubility and increased oral efficacy in a rat model of diuresis. The lead compound 20e (VA106483) is reported for the first time and has been selected for clinical development.

  12. Competitive antagonism of recombinant P2X(2/3) receptors by 2', 3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP).

    PubMed

    Burgard, E C; Niforatos, W; van Biesen, T; Lynch, K J; Kage, K L; Touma, E; Kowaluk, E A; Jarvis, M F

    2000-12-01

    TNP-ATP has become widely recognized as a potent and selective P2X receptor antagonist, and is currently being used to discriminate between subtypes of P2X receptors in a variety of tissues. We have investigated the ability of TNP-ATP to inhibit alpha,beta-methylene ATP (alpha,beta-meATP)-evoked responses in 1321N1 human astrocytoma cells expressing recombinant rat or human P2X(2/3) receptors. Pharmacological responses were measured using electrophysiological and calcium imaging techniques. TNP-ATP was a potent inhibitor of P2X(2/3) receptors, blocking both rat and human receptors with IC(50) values of 3 to 6 nM. In competition studies, 10 to 1000 microM alpha,beta-meATP was able to overcome TNP-ATP inhibition. Schild analysis revealed that TNP-ATP was a competitive antagonist with pA(2) values of -8.7 and -8.2. Inhibition of P2X(2/3) receptors by TNP-ATP was rapid in onset, reversible, and did not display use dependence. Although the onset kinetics of inhibition were concentration-dependent, the TNP-ATP off-kinetics were concentration-independent and relatively slow. Full recovery from TNP-ATP inhibition did not occur until >/=5 s after removal of the antagonist. Because of the slow off-kinetics of TNP-ATP, full competition with alpha,beta-meATP for receptor occupancy could be seen only after both ligands had reached a steady-state condition. It is proposed that the slowly desensitizing P2X(2/3) receptor allowed this competitive interaction to be observed over time, whereas the rapid desensitization of other P2X receptors (P2X(3)) may mask the detection of competitive inhibition by TNP-ATP.

  13. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5.

    PubMed

    Farb, Thomas B; Adeva, Marta; Beauchamp, Thomas J; Cabrera, Over; Coates, David A; Meredith, Tamika DeShea; Droz, Brian A; Efanov, Alexander; Ficorilli, James V; Gackenheimer, Susan L; Martinez-Grau, Maria A; Molero, Victoriano; Ruano, Gema; Statnick, Michael A; Suter, Todd M; Syed, Samreen K; Toledo, Miguel A; Willard, Francis S; Zhou, Xin; Bokvist, Krister B; Barrett, David G

    2017-11-01

    Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes. Copyright © 2017 Endocrine Society.

  14. An N-methyl-D-aspartate receptor-independent excitatory action of partial reduction of extracellular [Mg2+] in CA1-region of rat hippocampal slices.

    PubMed

    Hamon, B; Stanton, P K; Heinemann, U

    1987-03-31

    Partial reduction of [Mg2+]o from 2 to 1 mM markedly enhanced neuronal responses evoked by Schaffer collateral-commissural fiber stimulation in the CA1-region of rat hippocampal slices. The amplitude of extracellular population potentials recorded in the CA1-pyramidal cell layer and maximum dV/dt of extracellular population EPSP's recorded in the CA1-pyramidal apical dendritic layer were both increased. However, unlike findings from slices where Mg2+ was completely removed from the bathing medium, there was no spontaneous or evoked epileptiform activity, and the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (2-APV) did not antagonize the enhancement of evoked responses. These results indicate that, in addition to the participation of NMDA receptors in the epileptiform activity observed when Mg2+ is completely removed from the bathing medium, there is also an NMDA receptor-independent excitatory action of partial reduction of [Mg2+]o in hippocampal slices.

  15. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  16. Hepatic glucocorticoid receptor antagonism is sufficient to reduce elevated hepatic glucose output and improve glucose control in animal models of type 2 diabetes.

    PubMed

    Jacobson, Peer B; von Geldern, Thomas W; Ohman, Lars; Osterland, Marie; Wang, Jiahong; Zinker, Bradley; Wilcox, Denise; Nguyen, Phong T; Mika, Amanda; Fung, Steven; Fey, Thomas; Goos-Nilsson, Annika; Grynfarb, Marlena; Barkhem, Tomas; Marsh, Kennan; Beno, David W A; Nga-Nguyen, Bach; Kym, Philip R; Link, James T; Tu, Noah; Edgerton, Dale S; Cherrington, Alan; Efendic, Suad; Lane, Benjamin C; Opgenorth, Terry J

    2005-07-01

    Glucocorticoids amplify endogenous glucose production in type 2 diabetes by increasing hepatic glucose output. Systemic glucocorticoid blockade lowers glucose levels in type 2 diabetes, but with several adverse consequences. It has been proposed, but never demonstrated, that a liver-selective glucocorticoid receptor antagonist (LSGRA) would be sufficient to reduce hepatic glucose output (HGO) and restore glucose control to type 2 diabetic patients with minimal systemic side effects. A-348441 [(3b,5b,7a,12a)-7,12-dihydroxy-3-{2-[{4-[(11b,17b)-17-hydroxy-3-oxo-17-prop-1-ynylestra-4,9-dien-11-yl] phenyl}(methyl)amino]ethoxy}cholan-24-oic acid] represents the first LSGRA with significant antidiabetic activity. A-348441 antagonizes glucocorticoid-up-regulated hepatic genes, normalizes postprandial glucose in diabetic mice, and demonstrates synergistic effects on blood glucose in these animals when coadministered with an insulin sensitizer. In insulin-resistant Zucker fa/fa rats and fasted conscious normal dogs, A-348441 reduces HGO with no acute effect on peripheral glucose uptake. A-348441 has no effect on the hypothalamic pituitary adrenal axis or on other measured glucocorticoid-induced extrahepatic responses. Overall, A-348441 demonstrates that an LSGRA is sufficient to reduce elevated HGO and normalize blood glucose and may provide a new therapeutic approach for the treatment of type 2 diabetes.

  17. Comparison of tachykinin NK1 and NK2 receptors in the circular muscle of the guinea-pig ileum and proximal colon.

    PubMed

    Maggi, C A; Patacchini, R; Meini, S; Quartara, L; Sisto, A; Potier, E; Giuliani, S; Giachetti, A

    1994-05-01

    1. The aim of this study was the pharmacological characterization of tachykinin NK1 and NK2 receptors mediating contraction in the circular muscle of the guinea-pig ileum and proximal colon. The action of substance P (SP), neurokinin A (NKA) and of the synthetic agonists [Sar9]SP sulphone, [Glp6,Pro9]SP(6-11) (septide) and [beta Ala8]NKA(4-10) was investigated. The affinities of various peptide and nonpeptide antagonists for the NK1 and NK2 receptor was estimated by use of receptor selective agonists. 2. The natural agonists, SP and NKA, produced concentration-dependent contraction in both preparations. EC50 values were 100 pM and 5 nM for SP, 1.2 nM and 19 nM for NKA in the ileum and colon, respectively. The action of SP and NKA was not significantly modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). 3. Synthetic NK1 and NK2 receptor agonists produced concentration-dependent contraction of the circular muscle of the ileum and proximal colon. EC50 values were 83 pM, 36 pM and 10 nM in the ileum, 8 nM, 0.7 nM and 12 nM in the colon for [Sar9]SP sulphone, septide and [beta Ala8]NKA-(4-10), respectively. The pseudopeptide derivative of NKA(4-10), MDL 28,564 behaved as a full or near-to-full agonist in both preparations, its EC50s being 474 nM and 55 nM in the ileum and colon, respectively. 4. Nifedipine (1 microM) abolished the response to septide and [Sar9]SP sulphone in the ileum and produced a rightward shift and large depression of the response in the colon. The response to [beta Ala8]NKA(4-10) was abolished in the ileum and largely unaffected in the colon. 5. The NK1 receptor antagonists, (+/-)-CP 96,34, FK 888 and GR 82,334 competitively antagonized the response to septide and [Sar9]SP sulphone in both preparations without affecting that to [beta Ala8]NKA(4-10). In general, the NK1 receptor antagonists were significantly more potent toward septide than [Sar9]SP sulphone in both preparations. 6. The NK2 receptor antagonists, GR

  18. The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat alpha1beta2gamma2L GABA(A) receptor.

    PubMed

    Li, P; Akk, G

    2008-11-01

    Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABA(A) receptors in the brain. In this study, we have examined the modulation of the common brain GABA(A) receptor subtype by fipronil and its major metabolite, fipronil sulphone. Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat alpha1beta2gamma2L GABA(A) receptors. The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The alpha1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the alpha1beta2gamma2L receptor. We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain.

  19. AOP description: ER antagonism leading to reproductive dysfunction (in fish)

    EPA Science Inventory

    This adverse outcome pathway details the linkage between antagonism of estrogen receptor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoint considered in the OECD 229 Fish Short Term ...

  20. The V1a and V1b, but not V2, vasopressin receptor genes are expressed in the supraoptic nucleus of the rat hypothalamus, and the transcripts are essentially colocalized in the vasopressinergic magnocellular neurons.

    PubMed

    Hurbin, A; Boissin-Agasse, L; Orcel, H; Rabié, A; Joux, N; Desarménien, M G; Richard, P; Moos, F C

    1998-11-01

    We have identified and visualized the vasopressin (VP) receptors expressed by hypothalamic magnocellular neurons in supraoptic and paraventricular nuclei. To do this, we used RT-PCR on total RNA extracts from supraoptic nuclei or on single freshly dissociated supraoptic neurons, and in situ hybridization on frontal sections of hypothalamus of Wistar rats. The RT-PCR on supraoptic RNA extracts revealed that mainly V1a, but also V1b, subtypes of VP receptors are expressed from birth to adulthood. No V2 receptor messenger RNA (mRNA) was detected. Furthermore, the single-cell RT-nested PCR indicated that the V1a receptor mRNA is present in vasopressinergic magnocellular neurons. In light of these results, in situ hybridization was performed to visualize the V1a and V1b receptor mRNAs in supraoptic and paraventricular nuclei. Simultaneously, we coupled this approach to: 1) in situ hybridization detection of oxytocin or VP mRNAs; or 2) immunocytochemistry to detect the neuropeptides. This provided a way of identifying the neurons expressing perceptible amounts of V1a or V1b receptor mRNAs as vasopressinergic neurons. Here, we suggest that the autocontrol exerted specifically by VP on vasopressinergic neurons is mediated through, at least, V1a and V1b subtype receptors.

  1. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    PubMed

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  2. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2.

    PubMed

    Váradi, András; Marrone, Gina F; Palmer, Travis C; Narayan, Ankita; Szabó, Márton R; Le Rouzic, Valerie; Grinnell, Steven G; Subrath, Joan J; Warner, Evelyn; Kalra, Sanjay; Hunkele, Amanda; Pagirsky, Jeremy; Eans, Shainnel O; Medina, Jessica M; Xu, Jin; Pan, Ying-Xian; Borics, Attila; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2016-09-22

    Natural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism. In vitro, 3 and its analogs were potent agonists in [(35)S]GTPγS assays at the mu opioid receptor but failed to recruit β-arrestin-2, which is associated with opioid side effects. Additionally, 3 developed analgesic tolerance more slowly than morphine, showed limited physical dependence, respiratory depression, constipation, and displayed no reward or aversion in CPP/CPA assays, suggesting that analogs might represent a promising new generation of novel pain relievers.

  3. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio

    2005-01-01

    This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.

  4. Blockade of human P2X7 receptor function with a monoclonal antibody.

    PubMed

    Buell, G; Chessell, I P; Michel, A D; Collo, G; Salazzo, M; Herren, S; Gretener, D; Grahames, C; Kaur, R; Kosco-Vilbois, M H; Humphrey, P P

    1998-11-15

    A monoclonal antibody (MoAb) specific for the human P2X7 receptor was generated in mice. As assessed by flow cytometry, the MoAb labeled human blood-derived macrophage cells natively expressing P2X7 receptors and cells transfected with human P2X7 but not other P2X receptor types. The MoAb was used to immunoprecipitate the human P2X7 receptor protein, and in immunohistochemical studies on human lymphoid tissue, P2X7 receptor labeling was observed within discrete areas of the marginal zone of human tonsil sections. The antibody also acted as a selective antagonist of human P2X7 receptors in several functional studies. Thus, whole cell currents, elicited by the brief application of 2',3'-(4-benzoyl)-benzoyl-ATP in cells expressing human P2X7, were reduced in amplitude by the presence of the MoAb. Furthermore, preincubation of human monocytic THP-1 cells with the MoAb antagonized the ability of P2X7 agonists to induce the release of interleukin-1beta.

  5. Appropriate polarization following pharmacological rescue of V2 vasopressin receptors encoded by X-linked nephrogenic diabetes insipidus alleles involves a conformation of the receptor that also attains mature glycosylation.

    PubMed

    Tan, Christopher M; Nickols, Hilary Highfield; Limbird, Lee E

    2003-09-12

    To understand the mechanisms of G protein-coupled receptor delivery and steady state localization, we examined the trafficking itineraries of wild type (WT) and mutant V2 vasopressin receptors (V2Rs) in polarized Madin-Darby canine kidney II (MDCK II) cells and in COS M6 cells; the mutant V2Rs represent selected alleles responsible for X-linked nephrogenic diabetes insipidus. The WT V2R is localized on the plasma membrane and mediates arginine vasopressin (AVP)-stimulated cAMP accumulation, whereas the clinically relevant V2R mutants, L292P V2R, Delta V278 V2R, and R337X V2R, are retained intracellularly, are insensitive to extracellularly added AVP, and are not processed beyond initial immature glycosylation, manifest by their endoglycosidase H sensitivity. Reduced temperature and pharmacological, but not chemical, strategies rescue mutant V2Rs to the cell surface of COS M6 cells; surface rescue of L292P V2R and R337X V2R, but not of Delta V278 V2R, parallels acquisition of AVP-stimulated cAMP production. Pharmacological rescue of the L292P or R337X V2R by incubation with the membrane-permeant V2R antagonist, SR121463B, leads to a mature glycosylated form of the receptor that achieves localization on the basolateral surface of polarized MDCK II cells indistinguishable from that of the WT V2R. Surprisingly, however, the immature form of the mutant L292P V2R escapes to the apical, but not basolateral, surface of polarized MDCK II cells, even in the absence of SR121463B. These findings are consistent with the interpretation that the receptor conformation that allows appropriate processing through the N-linked glycosylation pathway is also essential for V2R targeting to the appropriate surface of polarized epithelial cells.

  6. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor.

    PubMed

    Rinaldi-Carmona, M; Barth, F; Millan, J; Derocq, J M; Casellas, P; Congy, C; Oustric, D; Sarran, M; Bouaboula, M; Calandra, B; Portier, M; Shire, D; Brelière, J C; Le Fur, G L

    1998-02-01

    Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors. Furthermore it shows no affinity for any of the more than 70 receptors, ion channels or enzymes investigated (IC50 > 10 microM). In vitro, SR 144528 antagonizes the inhibitory effects of the cannabinoid receptor agonist CP 55,940 on forskolin-stimulated adenylyl cyclase activity in cell lines permanently expressing the h CB2 receptor (EC50 = 10 nM) but not in cells expressing the h CB1 (no effect at 10 microM). Furthermore, SR 144528 is able to selectively block the mitogen-activated protein kinase activity induced by CP 55,940 in cell lines expressing h CB2 (IC50 = 39 nM) whereas in cells expressing h CB1 an IC50 value of more than 1 microM is found. In addition, SR 144528 is shown to antagonize the stimulating effects of CP 55,940 on human tonsillar B-cell activation evoked by cross-linking of surface Igs (IC50 = 20 nM). In vivo, after oral administration SR 144528 totally displaced the ex vivo [3H]-CP 55,940 binding to mouse spleen membranes (ED50 = 0.35 mg/kg) with a long duration of action. In contrast, after the oral route it does not interact with the cannabinoid receptor expressed in the mouse brain (CB1). It is expected that SR 144528 will provide a powerful tool to investigate the in vivo functions of the cannabinoid system in the immune response.

  7. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    PubMed

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  8. Synthesis and SAR studies of novel 2-(6-aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide vasopressin V1b receptor antagonists.

    PubMed

    Napier, Susan E; Letourneau, Jeffrey J; Ansari, Nasrin; Auld, Douglas S; Baker, James; Best, Stuart; Campbell-Wan, Leigh; Chan, Ray; Craighead, Mark; Desai, Hema; Ho, Koc-Kan; MacSweeney, Cliona; Milne, Rachel; Richard Morphy, J; Neagu, Irina; Ohlmeyer, Michael H J; Pick, Jack; Presland, Jeremy; Riviello, Chris; Zanetakos, Heather A; Zhao, Jiuqiao; Webb, Maria L

    2011-06-15

    Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Contribution of NK(2) tachykinin receptors to propulsion in the rabbit distal colon.

    PubMed

    Onori, L; Aggio, A; Taddei, G; Tonini, M

    2000-01-01

    The role of the tachykinin neurokinin (NK)(2) receptors on rabbit distal colon propulsion was investigated by using two selective NK(2)-receptor antagonists, MEN-10627 and SR-48968. Experiments on colonic circular muscle strips showed that contractile responses to [beta-Ala(8)]NKA-(4-10) (1 nM-1 microM), a selective NK(2)-receptor agonist, were competitively antagonized by MEN-10627 (1-100 nM), whereas SR-48968 (0.1-10 nM) caused an insurmountable antagonism, thus confirming the difference in the mode of action of the two compounds. Colonic propulsion was elicited by distending a mobile rubber balloon with 0.3 ml (submaximal stimulus) or 1.0 ml (maximal stimulus) of water. The velocity of anal displacement of the balloon (mm/s) was considered the main propulsion parameter. At low concentrations (1.0-100 nM and 0.1-10 nM, respectively), MEN-10627 and SR-48968 facilitated the velocity of propulsion, whereas at high concentrations (100 nM and 1 microM, respectively) they decelerated propulsion. The excitatory and inhibitory effects of both antagonists were observed only with submaximal stimulus. We focused on the hypothesis that the facilitatory effect on propulsion may result from blockade of neuronal NK(2) receptors and the inhibitory effect from suppression of the excitatory transmission mediated by NK(2) receptors on smooth muscle cells. In the presence of N(G)-nitro-L-arginine (300 microM), a nitric oxide synthase inhibitor, MEN-10627, at a concentration (10 nM) that was found to accelerate propulsion in control experiments inhibited the velocity of propulsion. In the presence of threshold (1-10 nM) or full (1 microM) concentration of atropine, which inhibited to a great extent the velocity of propulsion, the inhibitory effect of MEN-10627 (1 microM) was markedly increased. In conclusion, in the rabbit distal colon NK(2) receptors may decelerate propulsion by activating a nitric oxide-dependent neuronal mechanism and may accelerate it by a postjunctional

  10. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.

    PubMed

    Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E; Jackson, Meyer B

    2011-02-01

    σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.

  11. Neurokinin B receptor antagonism decreases luteinising hormone pulse frequency and amplitude and delays puberty onset in the female rat.

    PubMed

    Li, S Y; Li, X F; Hu, M H; Shao, B; Poston, L; Lightman, S L; O'Byrne, K T

    2014-08-01

    The neural mechanisms controlling puberty onset remain enigmatic. Humans with loss of function mutations in TAC3 or TACR3, the genes encoding neurokinin B (NKB) or its receptor, neurokinin-3 receptor (NK3R), respectively, present with severe congenital gonadotrophin deficiency and pubertal failure. Animal studies have shown ambiguous actions of NKB-NK3R signalling with respect to controlling puberty onset. The present study aimed to determine the role of endogenous NKB-NK3R signalling in the control of pulsatile luteinising hormone (LH) secretion and the timing of puberty onset, and also whether precocious pubertal onset as a result of an obesogenic diet is similarly regulated by this neuropeptide system. Prepubertal female rats, chronically implanted with i.c.v. cannulae, were administered SB222200, a NK3R antagonist, or artificial cerebrospinal fluid via an osmotic mini-pump for 14 days. SB222200 significantly delayed the onset of vaginal opening and first oestrus (as markers of puberty) compared to controls in both normal and high-fat diet fed animals. Additionally, serial blood sampling, via chronic indwelling cardiac catheters, revealed that the increase in LH pulse frequency was delayed and that the LH pulse amplitude was reduced in response to NK3R antagonism, regardless of dietary status. These data suggest that endogenous NKB-NK3R signalling plays a role in controlling the timing of puberty and the associated acceleration of gonadotrophin-releasing hormone pulse generator frequency in the female rat. © 2014 British Society for Neuroendocrinology.

  12. Taking The Time To Study Competitive Antagonism

    PubMed Central

    Wyllie, D J A; Chen, P E

    2007-01-01

    Selective receptor antagonists are one of the most powerful resources in a pharmacologist's toolkit and are essential for the identification and classification of receptor subtypes and dissecting their roles in normal and abnormal body function. However, when the actions of antagonists are measured inappropriately and misleading results are reported, confusion and wrong interpretations ensue. This article gives a general overview of Schild analysis and the method of determining antagonist equilibrium constants. We demonstrate why this technique is preferable in the study of competitive receptor antagonism than the calculation of antagonist concentration that inhibit agonist-evoked responses by 50%. In addition we show how the use of Schild analysis can provide information on the outcome of single amino acid mutations in structure-function studies of receptors. Finally, we illustrate the need for caution when studying the effects of potent antagonists on synaptic transmission where the timescale of events under investigation is such that ligands and receptors never reach steady-state occupancy. PMID:17245371

  13. Opiate alkaloids antagonize postsynaptic glycine and GABA responses: correlation with convulsant action.

    PubMed

    Werz, M A; Macdonald, R L

    1982-03-18

    Opiate alkaloid and opioid peptide actions on spontaneous neuronal activity and postsynaptic amino acid responsiveness were assessed using intracellular recording techniques applied to murine spinal cord neurons in primary dissociated cell culture. Application of opiates was by superfusion and amino acids by iontophoresis. Glycine and GABA but not glutamate responses were antagonized by the opiate alkaloids. Since opiate effects on glycine and GABA responses were not naloxone-reversible, only weakly stereospecific, and not produced by the opioid peptide [D-Ala2]-Met-enkephalinamide, it is unlikely that these effects were mediated by opiate receptors. Opiate depression of glycine inhibition was correlated with the induction of paroxysmal depolarizations in cultured spinal cord neurons, suggesting that antagonism of inhibitory amino acid transmission may underlie the convulsant actions of high concentrations of the opiate alkaloids.

  14. Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP

    PubMed Central

    Zhang, Yuxia; Andrews, Glen K.; Wang, Li

    2012-01-01

    Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatment induces Dnmt1 transcription by increasing the occupancy of MTF-1 on the Dnmt1 promoter while decreasing SHP expression. SHP in turn represses MTF-1 expression and abolishes zinc-mediated changes in the chromatin configuration of the Dnmt1 promoter. Dnmt1 expression is increased in SHP-knockout (sko) mice but decreased in SHP-transgenic (stg) mice. In human hepatocellular carcinoma (HCC), increased DNMT1 expression is negatively correlated with SHP levels. Our study provides a molecular explanation for increased Dnmt1 expression in HCC and highlights SHP as a potential therapeutic target. PMID:22362755

  15. Comparison of tachykinin NK1 and NK2 receptors in the circular muscle of the guinea-pig ileum and proximal colon.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Meini, S.; Quartara, L.; Sisto, A.; Potier, E.; Giuliani, S.; Giachetti, A.

    1994-01-01

    1. The aim of this study was the pharmacological characterization of tachykinin NK1 and NK2 receptors mediating contraction in the circular muscle of the guinea-pig ileum and proximal colon. The action of substance P (SP), neurokinin A (NKA) and of the synthetic agonists [Sar9]SP sulphone, [Glp6,Pro9]SP(6-11) (septide) and [beta Ala8]NKA(4-10) was investigated. The affinities of various peptide and nonpeptide antagonists for the NK1 and NK2 receptor was estimated by use of receptor selective agonists. 2. The natural agonists, SP and NKA, produced concentration-dependent contraction in both preparations. EC50 values were 100 pM and 5 nM for SP, 1.2 nM and 19 nM for NKA in the ileum and colon, respectively. The action of SP and NKA was not significantly modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). 3. Synthetic NK1 and NK2 receptor agonists produced concentration-dependent contraction of the circular muscle of the ileum and proximal colon. EC50 values were 83 pM, 36 pM and 10 nM in the ileum, 8 nM, 0.7 nM and 12 nM in the colon for [Sar9]SP sulphone, septide and [beta Ala8]NKA-(4-10), respectively. The pseudopeptide derivative of NKA(4-10), MDL 28,564 behaved as a full or near-to-full agonist in both preparations, its EC50s being 474 nM and 55 nM in the ileum and colon, respectively. 4. Nifedipine (1 microM) abolished the response to septide and [Sar9]SP sulphone in the ileum and produced a rightward shift and large depression of the response in the colon. The response to [beta Ala8]NKA(4-10) was abolished in the ileum and largely unaffected in the colon. 5. The NK1 receptor antagonists, (+/-)-CP 96,34, FK 888 and GR 82,334 competitively antagonized the response to septide and [Sar9]SP sulphone in both preparations without affecting that to [beta Ala8]NKA(4-10). In general, the NK1 receptor antagonists were significantly more potent toward septide than [Sar9]SP sulphone in both preparations. 6. The NK2 receptor antagonists, GR

  16. Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory.

    PubMed

    Naef, M; Müller, U; Linssen, A; Clark, L; Robbins, T W; Eisenegger, C

    2017-04-25

    Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.

  17. Antagonizing effects of membrane-acting androgens on the eicosanoid receptor OXER1 in prostate cancer

    PubMed Central

    Kalyvianaki, Konstantina; Gebhart, Veronika; Peroulis, Nikolaos; Panagiotopoulou, Christina; Kiagiadaki, Fotini; Pediaditakis, Iosif; Aivaliotis, Michalis; Moustou, Eleni; Tzardi, Maria; Notas, George; Castanas, Elias; Kampa, Marilena

    2017-01-01

    Accumulating evidence during the last decades revealed that androgen can exert membrane initiated actions that involve signaling via specific kinases and the modulation of significant cellular processes, important for prostate cancer cell growth and metastasis. Results of the present work clearly show that androgens can specifically act at the membrane level via the GPCR oxoeicosanoid receptor 1 (OXER1) in prostate cancer cells. In fact, OXER1 expression parallels that of membrane androgen binding in prostate cancer cell lines and tumor specimens, while in silico docking simulation of OXER1 showed that testosterone could bind to OXER1 within the same grove as 5-OxoETE, the natural ligand of OXER1. Interestingly, testosterone antagonizes the effects of 5-oxoETE on specific signaling pathways and rapid effects such as actin cytoskeleton reorganization that ultimately can modulate cell migration and metastasis. These findings verify that membrane-acting androgens exert specific effects through an antagonistic interaction with OXER1. Additionally, this interaction between androgen and OXER1, which is an arachidonic acid metabolite receptor expressed in prostate cancer, provides a novel link between steroid and lipid actions and renders OXER1 as new player in the disease. These findings should be taken into account in the design of novel therapeutic approaches in prostate cancer. PMID:28290516

  18. Evaluation of the antagonism of nicotine by mecamylamine and pempidine in the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, T.J.

    1989-01-01

    Antagonists have been crucial in the characterization of nicotine's pharmacology. Initial evidence for the existence of central nicotinic receptors was based on the fact that nicotine produced a number of behavioral effects that were antagonized by ganglionic blockers that crossed the blood-brain barrier, such as mecamylamine and pempidine. These compounds are thought to be noncompetitive antagonists due to the fact that they do not compete for agonist binding to brain homogenate in vitro. However, pharmacological evidence in support of noncompetitive antagonism is lacking. Dose-response curves for nicotine were determined in the presence of various doses of pempidine for depression ofmore » spontaneous activity and antinociception in mice. Pempidine was found to shift the dose response curves for these effects of nicotine in a manner consistent with noncompetitive antagonism. A number of mecamylamine analogs were investigated for antagonism of these central effects of nicotine as well. These studies revealed that the N-, 2-, and 3-methyls were crucial for optimal efficacy and potency and suggests that these compounds possess a specific mechanism of action, possibly involving a receptor. Furthermore, the structure-activity relationships for the mecamylamine analogs were found to be different than that previously reported for the agonists, suggesting that they do not act at the same site. The binding of ({sup 3} H)-L-nicotine and ({sup 3}H)-pempidine was studied in vitro to mouse brain homogentate and in situ to rat brain slices. The in situ binding of ({sup 3}H)-L-nicotine to rat brain slices was quantitated autoradiographically to discrete brain areas in the presence and absence of 1, 10 and 100 {mu}M nicotine and pempidine. Pempidine did not effectively displace ({sup 3}H)-L-nicotine binding.« less

  19. Mineralocorticoid receptor antagonism treats obesity-associated cardiac diastolic dysfunction.

    PubMed

    Bender, Shawn B; DeMarco, Vincent G; Padilla, Jaume; Jenkins, Nathan T; Habibi, Javad; Garro, Mona; Pulakat, Lakshmi; Aroor, Annayya R; Jaffe, Iris Z; Sowers, James R

    2015-05-01

    Patients with obesity and diabetes mellitus exhibit a high prevalence of cardiac diastolic dysfunction (DD), an independent predictor of cardiovascular events for which no evidence-based treatment exists. In light of renin-angiotensin-aldosterone system activation in obesity and the cardioprotective action of mineralocorticoid receptor (MR) antagonists in systolic heart failure, we examined the hypothesis that MR blockade with a blood pressure-independent low-dose spironolactone (LSp) would treat obesity-associated DD in the Zucker obese (ZO) rat. Treatment of ZO rats exhibiting established DD with LSp normalized cardiac diastolic function, assessed by echocardiography. This was associated with reduced cardiac fibrosis, but not reduced hypertrophy, and restoration of endothelium-dependent vasodilation of isolated coronary arterioles via a nitric oxide-independent mechanism. Further mechanistic studies revealed that LSp reduced cardiac oxidative stress and improved endothelial insulin signaling, with no change in arteriolar stiffness. Infusion of Sprague-Dawley rats with the MR agonist aldosterone reproduced the DD noted in ZO rats. In addition, improved cardiac function in ZO-LSp rats was associated with attenuated systemic and adipose inflammation and an anti-inflammatory shift in cardiac immune cell mRNAs. Specifically, LSp increased cardiac markers of alternatively activated macrophages and regulatory T cells. ZO-LSp rats had unchanged blood pressure, serum potassium, systemic insulin sensitivity, or obesity-associated kidney injury, assessed by proteinuria. Taken together, these data demonstrate that MR antagonism effectively treats established obesity-related DD via blood pressure-independent mechanisms. These findings help identify a particular population with DD that might benefit from MR antagonist therapy, specifically patients with obesity and insulin resistance. © 2015 American Heart Association, Inc.

  20. Roles of purinergic P2X7 receptor in glioma and microglia in brain tumors.

    PubMed

    McLarnon, James G

    2017-08-28

    This review considers evidence suggesting that activation of the ionotropic purinergic receptor P2X 7 (P2X 7 R) is a contributing factor in the growth of brain tumors. Importantly, expression of P2X 7 R may be upregulated in both glioma cells and in immune responding microglial cells with possible differential effects on tumor progression. The recruitment of immune cells into tumor regions may not only be involved in supporting an immunosuppressive environment aiding tumor growth but activated microglia could secrete inflammatory factors promoting neoangiogenesis in expanding tumors. The subtype P2X 7 R exhibits a number of unique properties including activation of the receptor in pathological conditions associated with developing brain tumors. In particular, the tumor microenvironment includes elevated levels of ATP required for activation of P2X 7 R and the sustained tumor and immune cell P2X 7 R-mediated responses which in total contribute to overall tumor growth and viability. Studies on cultured rat and human glioma show marked increases in expression of P2X 7 R and enhanced cell mobility relative to control. Glioma cell animal models demonstrate enhanced expression of P2X 7 R in both glioma and microglia with antagonism of receptor showing differential effects on tumor growth. Overall, P2X 7 R activation is associated with a complexity of modulatory actions on tumor growth in part due to ubiquitous expression of the receptor in glioma and immune responsive cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases.

    PubMed

    Reyes-Resina, Irene; Navarro, Gemma; Aguinaga, David; Canela, Enric I; Schoeder, Clara T; Zaluski, Michal; Kiec-Kononowicz, Katarzyna; Saura, Carlos A; Müller, Christa E; Franco, Rafael

    2018-06-02

    GPR18, still considered an orphan receptor, may respond to endocannabinoids, whose canonical receptors are CB 1 and CB 2 . GPR18 and CB 2 receptors share a role in peripheral immune response regulation and are co-expressed in microglia, which are immunocompetent cells in the central nervous system (CNS). We aimed at identifying heteroreceptor complexes formed by GPR18 and CB 1 R or CB 2 R in resting and activated microglia. Receptor-receptor interaction was assessed using energy-transfer approaches, and receptor function by determining cAMP levels and ERK1/2 phosphorylation in heterologous cells and primary cultures of microglia. Heteroreceptor identification in primary cultures of microglia was achieved by in situ proximity ligation assays. Energy transfer results showed interaction of GPR18 with CB 2 R but not with CB 1 R. CB 2 -GPR18 heteroreceptor complexes displayed particular functional properties (heteromer prints) often consisting of negative cross-talk (activation of one receptor reduces signaling arising from the partner receptor) and cross-antagonism (the response of one of the receptors is blocked by a selective antagonist of the partner receptor). Activated microglia showed the heteromer print (negative cross-talk and bidirectional cross-antagonism) and increased expression of CB 2 R and GPR18. Due to the important role of CB 2 R in neuroprotection, we further investigated heteroreceptor occurrence in primary cultures of microglia from transgenic mice overexpressing human APP Sw,Ind , an Alzheimer's disease model. Microglial cells from transgenic mice showed the heteromer print and functional interactions that were similar to those found in cells from wild-type animals that were activated by treatment with lipopolysaccharide and interferon-ɤ. Our results show that GPR18 and its heteromers may play important roles in neurodegenerative processes. Copyright © 2018. Published by Elsevier Inc.

  2. Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059.

    PubMed

    Bernier, Virginie; Lagacé, Monique; Lonergan, Michèle; Arthus, Marie-Françoise; Bichet, Daniel G; Bouvier, Michel

    2004-08-01

    In most cases, nephrogenic diabetes insipidus results from mutations in the V2 vasopressin receptor (V2R) gene that cause intracellular retention of improperly folded receptors. We previously reported that cell permeable V2R antagonists act as pharmacological chaperones that rescue folding, trafficking, and function of several V2R mutants. More recently, the vasopressin antagonist, SR49059, was found to be therapeutically active in nephrogenic diabetes insipidus patients. Three of the patients with positive responses harbored the mutation R137H, previously reported to lead to constitutive endocytosis. This raises the possibility that, instead of acting as a pharmacological chaperone by favoring proper maturation of the receptors, SR49059 could mediate its action on R137H V2R by preventing its endocytosis. Here we report that the beta-arrestin-mediated constitutive endocytosis of R137H V2R is not affected by SR49059, indicating that the functional rescue observed does not result from a stabilization of the receptor at the cell surface. Moreover, metabolic labeling revealed that R137H V2R is also poorly processed to the mature form. SR49059 treatment significantly improved its maturation and cell surface targeting, indicating that the functional rescue of R137H V2Rs results from the pharmacological chaperone action of the antagonist.

  3. Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway.

    PubMed

    Islam, Rafique; Wei, Shu-Yi; Chiu, Wei-Hsin; Hortsch, Michael; Hsu, Jui-Chou

    2003-05-01

    echinoid (ed) encodes an cell-adhesion molecule (CAM) that contains immunoglobulin domains and regulates the EGFR signaling pathway during Drosophila eye development. Based on our previous genetic mosaic and epistatic analysis, we proposed that Ed, via homotypic interactions, activates a novel, as yet unknown pathway that antagonizes EGFR signaling. In this report, we demonstrate that Ed functions as a homophilic adhesion molecule and also engages in a heterophilic trans-interaction with Drosophila Neuroglian (Nrg), an L1-type CAM. Co-expression of ed and nrg in the eye exhibits a strong genetic synergy in inhibiting EGFR signaling. This synergistic effect requires the intracellular domain of Ed, but not that of Nrg. In addition, Ed and Nrg colocalize in the Drosophila eye and are efficiently co-immunoprecipitated. Together, our results suggest a model in which Nrg acts as a heterophilic ligand and activator of Ed, which in turn antagonizes EGFR signaling.

  4. Angiotensin II Receptor Antagonism Reduces Transforming Growth Factor Beta and Smad Signaling in Thoracic Aortic Aneurysm

    PubMed Central

    Nataatmadja, Maria; West, Jennifer; Prabowo, Sulistiana; West, Malcolm

    2013-01-01

    ABSTRACT Background The expression of transforming growth factor beta (TGF-β) and Smad3 regulates extracellular matrix homeostasis and inflammation in aortic aneurysms. The expression of Smad3 depends on signaling by angiotensin II (AngII) receptor pathways through TGF-β receptor–dependent and –independent pathways. Methods To determine the expression of AngII type 1 (AT1R) and type 2 receptors (AT2R), TGF-β, and Smad3 in thoracic aortic aneurysms, we performed immunohistochemistry testing on tissue and cultured cells derived from subjects with Marfan syndrome (MFS) and bicuspid aortic valve (BAV) malformation and from normal aortas of subjects who were organ donors. Results MFS and BAV aneurysm tissue showed enhanced accumulation of TGF-β and Smad3 in vascular smooth muscle cells (VSMCs) and in inflammatory cells in the subintimal layer and tunica media. The normal aortic wall exhibited minimal TGF-β and Smad3 staining. Cultured VSMCs from MFS and BAV samples showed nuclear Smad3 and strong cytoplasmic TGF-β expression in the cytoplasmic vesicles. In control cells, Smad3 was located mainly in the cytoplasm, and weak cytoplasmic TGF-β was distributed with a pattern similar to that of the aneurysm-derived cells. Compared to normal aorta cells, AT1R and AT2R expression was increased in both aneurysm types. Treatment of cultured VSMCs with the AT1R antagonist losartan caused both reduced TGF-β vesicle localization and nuclear expression of Smad3. Conclusions Increased TGF-β and Smad3 expression in aneurysm tissue and cultured VSMCs is consistent with aberrant TGF-β expression and the activation of Smad3 signaling. Losartan-mediated reduction in TGF-β expression and the cytoplasmic localization of Smad3 support a role for AT1R antagonism in the inhibition of aneurysm progression. PMID:23532685

  5. Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta

    PubMed Central

    Guns, Pieter-Jan D F; Korda, András; Crauwels, Herta M; Van Assche, Tim; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2005-01-01

    Nucleotides regulate various effects including vascular tone. This study was aimed to characterize P2Y receptors on endothelial cells of the aorta of C57BL6 mice. Five adjacent segments (width 2 mm) of the thoracic aorta were mounted in organ baths to measure isometric force development. Nucleotides evoked complete (adenosine 5′ triphosphate (ATP), uridine 5′ triphosphate (UTP), uridine 5′ diphosphate (UDP); >90%) or partial (adenosine 5′ diphosphate (ADP)) relaxation of phenylephrine precontracted thoracic aortic rings of C57BL6 mice. Relaxation was abolished by removal of the endothelium and was strongly suppressed (>90%) by inhibitors of nitric oxide synthesis. The rank order of potency was: UDP∼UTP∼ADP>adenosine 5′-[γ-thio] triphosphate (ATPγS)>ATP, with respective pD2 values of 6.31, 6.24, 6.22, 5.82 and 5.40. These results are compatible with the presence of P2Y1 (ADP>ATP), P2Y2 or P2Y4 (ATP and UTP) and P2Y6 (UDP) receptors. P2Y4 receptors were not involved, since P2Y4-deficient mice displayed unaltered responses to ATP and UTP. The purinergic receptor antagonist suramin exerted surmountable antagonism for all agonists. Its apparent pKb for ATP (4.53±0.07) was compatible with literature, but the pKb for UTP (5.19±0.03) was significantly higher. This discrepancy suggests that UTP activates supplementary non-P2Y2 receptor subtype(s). Further, pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS) showed surmountable (UTP, UDP), nonsurmountable (ADP) or no antagonism (ATP). Finally, 2′-deoxy-N6-methyladenosine3′,5′-bisphosphate (MRS2179) inhibited ADP-evoked relaxation only. Taken together, these results point to the presence of functional P2Y1 (ADP), P2Y2 (ATP, UTP) and P2Y6 (UDP) receptors on murine aorta endothelial cells. The identity of the receptor(s) mediating the action of UTP is not fully clear and other P2Y subtypes might be involved in UTP-evoked vasodilatation. PMID:15997227

  6. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm

    PubMed Central

    Sangkhae, Veena; Etheridge, S. Leah; Kaushansky, Kenneth

    2014-01-01

    The most frequent contributing factor in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) is the acquisition of a V617F mutation in Janus kinase 2 (JAK2) in hematopoietic stem cells (HSCs). Recent evidence has demonstrated that to drive MPN transformation, JAK2V617F needs to directly associate with a functional homodimeric type I cytokine receptor, suggesting that, although acquiring JAK2V617F may promote disease, there are additional cellular components necessary for MPN development. Here we show that loss of the thrombopoietin (TPO) receptor (MPL) significantly ameliorates MPN development in JAK2V617F+ transgenic mice, whereas loss of TPO only mildly affects the disease phenotype. Specifically, compared with JAK2V617F+ mice, JAK2V617F+Mpl−/− mice exhibited reduced thrombocythemia, neutrophilia, splenomegaly, and neoplastic stem cell pool. The importance of MPL is highlighted as JAK2V617FMpl+/− mice displayed a significantly reduced MPN phenotype, indicating that Mpl level may have a substantial effect on MPN development and severity. Splenomegaly and the increased neoplastic stem cell pool were retained in JAK2V617F+Tpo−/− mice, although thrombocytosis was reduced compared with JAK2V617F+ mice. These results demonstrate that Mpl expression, but not Tpo, is fundamental in the development of JAK2V617F+ MPNs, highlighting an entirely novel target for therapeutic intervention. PMID:25339357

  7. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm.

    PubMed

    Sangkhae, Veena; Etheridge, S Leah; Kaushansky, Kenneth; Hitchcock, Ian S

    2014-12-18

    The most frequent contributing factor in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) is the acquisition of a V617F mutation in Janus kinase 2 (JAK2) in hematopoietic stem cells (HSCs). Recent evidence has demonstrated that to drive MPN transformation, JAK2V617F needs to directly associate with a functional homodimeric type I cytokine receptor, suggesting that, although acquiring JAK2V617F may promote disease, there are additional cellular components necessary for MPN development. Here we show that loss of the thrombopoietin (TPO) receptor (MPL) significantly ameliorates MPN development in JAK2V617F(+) transgenic mice, whereas loss of TPO only mildly affects the disease phenotype. Specifically, compared with JAK2V617F(+) mice, JAK2V617F(+)Mpl(-/-) mice exhibited reduced thrombocythemia, neutrophilia, splenomegaly, and neoplastic stem cell pool. The importance of MPL is highlighted as JAK2V617FMpl(+/-) mice displayed a significantly reduced MPN phenotype, indicating that Mpl level may have a substantial effect on MPN development and severity. Splenomegaly and the increased neoplastic stem cell pool were retained in JAK2V617F(+)Tpo(-/-) mice, although thrombocytosis was reduced compared with JAK2V617F(+) mice. These results demonstrate that Mpl expression, but not Tpo, is fundamental in the development of JAK2V617F(+) MPNs, highlighting an entirely novel target for therapeutic intervention. © 2014 by The American Society of Hematology.

  8. Bradykinin B1 and B2 receptors, tumour necrosis factor α and inflammatory hyperalgesia

    PubMed Central

    Poole, S; Lorenzetti, B B; Cunha, J M; Cunha, F Q; Ferreira, S H

    1999-01-01

    The effects of BK agonists and antagonists, and other hyperalgesic/antihyperalgesic drugs were measured (3 h after injection of hyperalgesic drugs) in a model of mechanical hyperalgesia (the end-point of which was indicated by a brief apnoea, the retraction of the head and forepaws, and muscular tremor). DALBK inhibited responses to carrageenin, bradykinin, DABK, and kallidin. Responses to kallidin and DABK were inhibited by indomethacin or atenolol and abolished by the combination of indomethacin+atenolol. DALBK or HOE 140, given 30 min before, but not 2 h after, carrageenin, BK, DABK and kallidin reduced hyperalgesic responses to these agents. A small dose of DABK+a small dose of BK evoked a response similar to the response to a much larger dose of DABK or BK, given alone. Responses to BK were antagonized by HOE 140 whereas DALBK antagonized only responses to larger doses of BK. The combination of a small dose of DALBK with a small dose of HOE 140 abolished the response to BK. The hyperalgesic response to LPS (1 μg) was inhibited by DALBK or HOE 140 and abolished by DALBK+HOE 140. The hyperalgesic response to LPS (5 μg) was not antagonized by DALBK+HOE 140. These data suggest: (a) a predominant role for B2 receptors in mediating hyperalgesic responses to BK and to drugs that stimulate BK release, and (b) activation of the hyperalgesic cytokine cascade independently of both B1 and B2 receptors if the hyperalgesic stimulus is of sufficient magnitude. PMID:10188975

  9. Neurokinin-1 receptor antagonism attenuates neuronal activity triggered by stress-induced reinstatement of alcohol seeking.

    PubMed

    Schank, J R; Nelson, B S; Damadzic, R; Tapocik, J D; Yao, M; King, C E; Rowe, K E; Cheng, K; Rice, K C; Heilig, M

    2015-12-01

    Substance P (SP) and its cognate neurokinin-1 receptor (NK1R) are involved in alcohol-related behaviors. We have previously reported that NK1R antagonism attenuates stress-induced reinstatement of alcohol seeking and suppresses escalated alcohol self-administration, but does not affect primary reinforcement or cue-induced reinstatement. Here, we administered an NK1R antagonist or vehicle prior to footshock-induced reinstatement of alcohol seeking, and mapped the resulting neuronal activation using Fos immunohistochemistry. As expected, vehicle treated animals exposed to footshock showed induction of Fos immunoreactivity in several regions of the brain stress circuitry, including the amygdala (AMG), nucleus accumbens (NAC), dorsal raphe nucleus (DR), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST). NK1R antagonism selectively suppressed the stress-induced increase in Fos in the DR and NAC shell. In the DR, Fos-induction by stress largely overlapped with tryptophan hydroxylase (TrpH), indicating activation of serotonergic neurons. Of NAC shell neurons activated during stress-induced reinstatement of alcohol seeking, about 30% co-expressed dynorphin (DYN), while 70% co-expressed enkephalin (ENK). Few (<1%) activated NAC shell neurons coexpressed choline acetyltransferase (ChAT), which labels the cholinergic interneurons of this region. Infusion of the NK1R antagonist L822429 into the NAC shell blocked stress-induced reinstatement of alcohol seeking. In contrast, L822429 infusion into the DR had no effect, suggesting that the influence of NK1R signaling on neuronal activity in the DR is indirect. Taken together, our results outline a potential pathway through which endogenous NK1R activation mediates stress-induced alcohol seeking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Role of cholinergic receptors in memory retrieval depends on gender and age of memory.

    PubMed

    Rashid, Habiba; Mahboob, Aamra; Ahmed, Touqeer

    2017-07-28

    The phenomenon of utilizing information acquired in the past to make decision and performance in present depends on memory retrieval, which is affected in retrograde amnesia. Role of cholinergic receptors in memory retrieval is not much explored. In this study we evaluated the gender specific role of cholinergic receptors, i.e. muscarinic and nicotinic receptors, in memory retrieval in young Balb/c mice. Acute (only one injection, 30min before test) and sub-chronic (five days) muscarinic blockade (using scopolamine=1mg/kg) before test impaired retrieval of contextual fear memory in male (31.45±5.39% and 33.36±3.78% respectively) and female mice (22.88±5.73%; P<0.05), except sub-chronically treated female group (33.31±4.90%; P>0.05). Only sub-chronic nicotinic receptor antagonism (using methyllycaconitine MLA=87.5μg/kg and dihydro β erythroidine DHβE=1mg/kg) in female showed significantly higher freezing response than control during contextual fear memory retrieval (60.85±7.71% and 40.91±7.53% respectively; P<0.001). Acute and sub-chronic muscarinic antagonism (but not nicotinic antagonism) impaired spatial memory retrieval in male (P<0.05) but not in female mice (P>0.05). There was no effect of acute and sub-chronic cholinergic receptor antagonism on discriminating novel object from the familiar one in male and female mice, however, nicotinic receptor blockade affected the working memory of all male and female mice on test day compared to the training sessions. Our results suggested that cholinergic receptors involvement in retrieving spatial and fear memories depends on the age of the memory and gender. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. α(2) noradrenergic receptor suppressed CaMKII signaling in spinal dorsal horn of mice with inflammatory pain.

    PubMed

    Wang, Xin-Tai; Lian, Xia; Xu, Ying-Ming; Suo, Zhan-Wei; Yang, Xian; Hu, Xiao-Dong

    2014-02-05

    Intrathecal application of α2 noradrenergic receptor agonists effectively alleviates the pathological pain induced by peripheral tissue injury. However, the spinal antinociceptive mechanisms of α2 noradrenergic receptors remain to be characterized. The present study performed immunohistochemistry and western blot to elucidate the signaling pathway initiated by α2 noradrenergic receptors in spinal dorsal horn of mice, and identified calcium/calmodulin-dependent protein kinase II (CaMKII) as an important target for noradrenergic suppression of inflammatory pain. Our data showed that intraplantar injection of Complete Freund's Adjuvant (CFA) substantially enhanced CaMKII autophosphorylation at Threonine 286, which could be abolished by intrathecal administration of α2 noradrenergic receptor agonist clonidine. Gi protein-coupled α2 noradrenergic receptor might inhibit cAMP-dependent protein kinase (PKA) to disturb CaMKII signaling. We found that pharmacological activation of PKA in intact mice also enhanced spinal CaMKII autophosphorylation level, which was completely antagonized by clonidine. Moreover, direct PKA inhibition in CFA-injected mice mimicked the suppressive effect of α2 noradrenergic receptors on CaMKII. PKA inhibition has been shown to downregulate CaMKII by enhancing protein phosphatase activity. Consistent with this notion, spinal treatment with protein phosphatase inhibitor okadaic acid ruled out clonidine-mediated CaMKII dephosphorylation in CFA-injected mice. Through PKA/protein phosphatase/CaMKII pathway, clonidine noticeably decreased CFA-evoked phosphorylation of N-methyl-d-aspartate subtype glutamate receptor GluN1 and GluN2B subunit as well as α-amino-3-hydroxy-5-methylisoxazole-4-propionic Acid subtype glutamate receptor GluA1 subunit. These data suggested that interference with CaMKII signaling might represent an important mechanism underlying noradrenergic suppression of inflammatory pain. Copyright © 2013 Elsevier B.V. All rights

  12. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy.

    PubMed

    Dharmawardana, Pathirage G; Peruzzi, Benedetta; Giubellino, Alessio; Burke, Terrence R; Bottaro, Donald P

    2006-01-01

    Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.

  13. Mineralocorticoid Receptor Antagonism Prevents Obesity-Induced Cerebral Artery Remodeling and Reduces White Matter Injury in rats.

    PubMed

    Pires, Paulo Wagner; McClain, Jonathon Lee; Hayoz, Sebastian F; Dorrance, Anne McLaren

    2018-05-14

    Midlife obesity is a risk factor for dementia development. Obesity has also been linked to hyperaldosteronism, and this can be modeled in rats by high fat (HF) feeding from weaning. Aldosterone, or activation of the mineralocorticoid receptor (MR) causes cerebrovascular injury in lean hypertensive rats. We hypothesized that rats fed a HF diet would show inward middle cerebral artery (MCA) remodeling that could be prevented by MR antagonism. We further proposed that the cerebral artery remodeling would be associated with white mater injury. Three-week-old male Sprague-Dawley rats were fed a HF diet ± the MR antagonist canrenoic acid (Canr) for 17 weeks. Control rats received normal chow (Control NC). MCA structure was assessed by pressure myography. The MCAs from HF fed rats had smaller lumens and thicker walls when compared to arteries from Control NC rats; Canr prevented the MCA remodeling associated with HF feeding. HF feeding increased the mRNA expression of markers of cell proliferation and vascular inflammation in cerebral arteries and Canr treatment prevented this. White mater injury was increased in the rats fed the HF diet and this was reduced by Canr treatment. The expression of doublecortin, a marker of new and immature neurons was reduced in HF fed rats, and MR antagonism normalized this. These data suggest that HF feeding leads to MR dependent remodeling of the MCA and this is associated with markers of dementia development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  15. Attenuation of Cocaine-Induced Conditioned Place Preference and Motor Activity via Cannabinoid CB2 Receptor Agonism and CB1 Receptor Antagonism in Rats

    PubMed Central

    Delis, Foteini; Polissidis, Alexia; Poulia, Nafsika; Justinova, Zuzana; Nomikos, George G.; Goldberg, Steven R.

    2017-01-01

    Abstract Background: Studies have shown the involvement of cannabinoid (CB) receptors in the behavioral and neurobiological effects of psychostimulants. Most of these studies have focused on the role of CB1 receptors in the psychostimulant effects of cocaine, while very few have investigated the respective role of CB2 receptors. Further studies are warranted to elucidate the extent of CB receptor involvement in the expression of cocaine-induced effects. Methods: The role of CB1 and CB2 receptors in the rewarding and motor properties of cocaine was assessed in conditioned place preference, conditioned motor activity, and open field activity in rats. Results: The CB1 receptor antagonist rimonabant (3 mg/kg) decreased the acquisition and the expression of conditioned place preference induced by cocaine (20 mg/kg). Rimonabant inhibited cocaine-elicited conditioned motor activity when administered during the expression of cocaine-induced conditioned place preference. Rimonabant decreased ambulatory and vertical activity induced by cocaine. The CB2 receptor agonist JWH-133 (10 mg/kg) decreased the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 inhibited cocaine-elicited conditioned motor activity when administered during the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 decreased ambulatory activity and abolished vertical activity induced by cocaine. The effects of JWH-133 on cocaine conditioned and stimulated responses were abolished when the CB2 receptor antagonist/inverse agonist AM630 (5 mg/kg) was preadministered. Conclusions: Cannabinoid CB1 and CB2 receptors modulate cocaine-induced rewarding behavior and appear to have opposite roles in the regulation of cocaine’s reinforcing and psychomotor effects. PMID:27994006

  16. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  17. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  18. Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor.

    PubMed

    Robles, Cindee F; Johnson, Alexander W

    2017-03-01

    Dopamine is known to influence motivational processes, however the precise role of this neurotransmitter remains a contentious issue. In the current study we sought to further characterize dopamine signaling in reward-based decision-making and consummatory behavior in mice, via lateral ventricle infusion of the dopamine D2 receptor antagonist eticlopride. In Experiment 1, we examined effort-based decision-making, in which mice had a choice between one lever, where a single response led to the delivery of a low value reward (2% sucrose); and a second lever, which led to a higher value reward (20% sucrose) that gradually required more effort to obtain. As the response schedule for the high value reward became more strict, low dose (4μg in 0.5μl) central infusions of eticlopride biased preference away from the high value reward, and toward the lever that led to the low value reward. Similarly, a higher dose of eticlopride (8μg in 0.5μl) also disrupted choice responding for the high value reward, however it did so by increasing omissions. In Experiment 2, we assessed the effects of eticlopride on consumption of 20% sucrose. The antagonist led to a dose-dependent reduction in intake, and through an analysis of licking microstructure, it was revealed that this in part reflected a reduction in the motivation to engage in consummatory behavior, rather than alterations in the evaluation of the reward. These results suggest that disruptions in D2 receptor signaling reduce the willingness to engage in effortful operant responding and consumption of a desirable outcome. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Acute treatment with cannabinoid receptor agonist WIN55212.2 improves prepulse inhibition in psychosocially stressed mice.

    PubMed

    Brzózka, Magdalena M; Fischer, André; Falkai, Peter; Havemann-Reinecke, Ursula

    2011-04-15

    Cannabis, similar to psychosocial stress, is well known to exacerbate psychotic experiences and can precipitate psychotic episodes in vulnerable individuals. Cannabinoid receptors 1 (CB1) are widely expressed in the brain and are particularly important to mediate the effects of cannabis. Chronic cannabis use in patients and chronic cannabinoids treatment in animals is known to cause reduced prepulse inhibition (PPI). Similarly, chronic psychosocial stress in mice impairs PPI. In the present study, we investigated the synergistic effects of substances modulating the CB1-receptors and chronic psychosocial stress on PPI. For this purpose, adult C57Bl/6J mice were exposed to chronic psychosocial stress using the resident-intruder paradigm. The cannabinoid receptor agonist WIN55212.2 served as a surrogate marker for the effects of cannabis in the brain. After exposure to stress mice were acutely injected with WIN55212.2 (3 mg/kg) with or without pre-treatment with Rimonabant (3 mg/kg), a specific CB1-receptor antagonist, and subjected to behavioral testing. Stressed mice displayed a higher vulnerability to WIN55212.2 in the PPI test than control animals. The effects of WIN55212.2 on PPI were antagonized by Rimonabant suggesting an involvement of CB1-receptors in sensorimotor gating. Interestingly, WIN55212.2 increased PPI in psychosocially stressed mice although previous studies in rats showed the opposite effects. It may thus be possible, that depending on the doses of cannabinoids/CB1-receptor agonists applied and environmental conditions (psychosocial stress), opposite effects can be evoked in different experimental animals. Taken together, our data imply that CB1-receptors might play a crucial role in the synergistic effects of psychosocial stress and cannabinoids in brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    PubMed

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  1. Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer's disease.

    PubMed

    Zhang, Cheng; Kuo, Ching-Chang; Moghadam, Setareh H; Monte, Louise; Campbell, Shannon N; Rice, Kenner C; Sawchenko, Paul E; Masliah, Eliezer; Rissman, Robert A

    2016-05-01

    Stress and corticotropin-releasing factor (CRF) have been implicated as mechanistically involved in Alzheimer's disease (AD), but agents that impact CRF signaling have not been carefully tested for therapeutic efficacy or long-term safety in animal models. To test whether antagonism of the type-1 corticotropin-releasing factor receptor (CRFR1) could be used as a disease-modifying treatment for AD, we used a preclinical prevention paradigm and treated 30-day-old AD transgenic mice with the small-molecule, CRFR1-selective antagonist, R121919, for 5 months, and examined AD pathologic and behavioral end points. R121919 significantly prevented the onset of cognitive impairment in female mice and reduced cellular and synaptic deficits and beta amyloid and C-terminal fragment-β levels in both genders. We observed no tolerability or toxicity issues in mice treated with R121919. CRFR1 antagonism presents a viable disease-modifying therapy for AD, recommending its advancement to early-phase human safety trials. Copyright © 2015 Alzheimer's Association. All rights reserved.

  2. Dopamine D3 Receptors Mediate the Discriminative Stimulus Effects of Quinpirole in Free-Feeding Rats

    PubMed Central

    Baladi, Michelle G.; Newman, Amy H.

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  3. Dopamine D3 receptors mediate the discriminative stimulus effects of quinpirole in free-feeding rats.

    PubMed

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  4. Potentiation of Brain Stimulation Reward by Morphine: Effects of Neurokinin-1 Receptor Antagonism

    PubMed Central

    Robinson, J.E.; Fish, E.W.; Krouse, M.C.; Thorsell, A.; Heilig, M.; Malanga, C.J.

    2012-01-01

    Rationale The abuse potential of opioids may be due to their reinforcing and rewarding effects, which may be attenuated by neurokinin-1 receptor (NK1R) antagonists. Objective To measure the effects of opioid and neurokinin-1 (NK1R) receptor blockade on the potentiation of brain stimulation reward (BSR) by morphine using the intracranial self-stimulation (ICSS) method. Methods Adult male C57BL/6J mice (n = 15) were implanted with unipolar stimulating electrodes in the lateral hypothalamus and trained to respond for varying frequencies of rewarding electrical stimulation. The BSR threshold (θ0) and maximum response rate (MAX) were determined before and after intraperitoneal administration of saline, morphine (1.0 - 17.0 mg/kg), or the NK1R antagonists L-733,060 (1.0 - 17.0 mg/kg) and L-703,606 (1.0 - 17.0 mg/kg). In morphine antagonism experiments, naltrexone (0.1 – 1.0 mg/kg) or 10.0 mg/kg L-733,060 or L-703,606 was administered 15 minutes before morphine (1.0 - 10.0 mg/kg) or saline. Results Morphine dose-dependently decreased θ0 (maximum effect = 62% of baseline) and altered MAX when compared to saline. L-703,606 and L-733,060 altered θ0 without affecting MAX. 10.0 mg/kg L-733,060 and L-703,606, which did not affect θ0 or MAX, attenuated the effects of 3.0 and 10.0 mg/kg morphine. 1.0 and 0.3 mg/kg naltrexone blocked the effects of 10.0 mg/kg morphine. Naltrexone given before saline did not affect θ0 or MAX. Conclusions The decrease in θ0 by morphine reflects its rewarding effects, which were attenuated by NK1R and opioid receptor blockade. These results demonstrate the importance of substance P signaling during limbic reward system activation by opioids. PMID:21909635

  5. A Suppressive Antagonism Evidences Progesterone and Estrogen Receptor Pathway Interaction with Concomitant Regulation of Hand2, Bmp2 and ERK during Early Decidualization

    PubMed Central

    Mestre-Citrinovitz, Ana C.; Kleff, Veronika; Vallejo, Griselda

    2015-01-01

    Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets. PMID:25897495

  6. CCR2 and CCR5 receptor-binding properties of herpesvirus-8 vMIP-II based on sequence analysis and its solution structure.

    PubMed

    Shao, W; Fernandez, E; Sachpatzidis, A; Wilken, J; Thompson, D A; Schweitzer, B I; Lolis, E

    2001-05-01

    Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.

  7. Regulation of CaV2 calcium channels by G protein coupled receptors

    PubMed Central

    Zamponi, Gerald W.; Currie, Kevin P.M.

    2012-01-01

    Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of CaV2 (N- and P/Q-type) Ca2+-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of CaV2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. PMID:23063655

  8. The Corepressor NCoR1 Antagonizes PGC-1α and Estrogen-Related Receptor α in the Regulation of Skeletal Muscle Function and Oxidative Metabolism

    PubMed Central

    Pérez-Schindler, Joaquín; Summermatter, Serge; Salatino, Silvia; Zorzato, Francesco; Beer, Markus; Balwierz, Piotr J.; van Nimwegen, Erik; Feige, Jérôme N.; Auwerx, Johan

    2012-01-01

    Skeletal muscle exhibits a high plasticity and accordingly can quickly adapt to different physiological and pathological stimuli by changing its phenotype largely through diverse epigenetic mechanisms. The nuclear receptor corepressor 1 (NCoR1) has the ability to mediate gene repression; however, its role in regulating biological programs in skeletal muscle is still poorly understood. We therefore studied the mechanistic and functional aspects of NCoR1 function in this tissue. NCoR1 muscle-specific knockout mice exhibited a 7.2% higher peak oxygen consumption (VO2peak), a 11% reduction in maximal isometric force, and increased ex vivo fatigue resistance during maximal stimulation. Interestingly, global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) overexpression on oxidative metabolism in muscle. Importantly, PPARβ/δ and estrogen-related receptor α (ERRα) were identified as common targets of NCoR1 and PGC-1α with opposing effects on the transcriptional activity of these nuclear receptors. In fact, the repressive effect of NCoR1 on oxidative phosphorylation gene expression specifically antagonizes PGC-1α-mediated coactivation of ERRα. We therefore delineated the molecular mechanism by which a transcriptional network controlled by corepressor and coactivator proteins determines the metabolic properties of skeletal muscle, thus representing a potential therapeutic target for metabolic diseases. PMID:23028049

  9. Mineralocorticoid receptor antagonism protects the aorta from vascular smooth muscle cell proliferation and collagen deposition in a rat model of adrenal aldosterone-producing adenoma.

    PubMed

    Yan, Yongji; Wang, Chao; Lu, Yiqin; Gong, Huijie; Wu, Zhun; Ma, Xin; Li, Hongzhao; Wang, Baojun; Zhang, Xu

    2018-02-01

    The number of patients with adrenal aldosterone-producing adenomas (APAs) has gradually increased. However, even after adenoma resection, some patients still suffer from high systolic blood pressure (SBP), which is possibly due to great arterial remodeling. Moreover, mineralocorticoid receptors (MRs) were found to be expressed in vascular smooth muscle cells (VSMCs). This study aims to determine whether MR antagonism protects the aorta from aldosterone-induced aortic remolding. Male rats were subcutaneously implanted with an osmotic minipumps and randomly divided into four groups: control; aldosterone (1 μg/h); aldosterone plus a specific MR antagonist, eplerenone (100 mg/kg/day); and aldosterone plus a vasodilator, hydralazine (25 mg/kg/day). After 8 weeks of infusion, aortic smooth muscle cell proliferation and collagen deposition, as well as the MDM2 and TGF-β1 expression levels in the aorta, were examined. Model rats with APAs were successfully constructed. Compared with the control rats, the model rats exhibited (1) marked SBP elevation, (2) no significant alteration in aortic morphology, (3) increased VSMC proliferation and MDM2 expression in the aorta, and (4) enhanced total collagen and collagen III depositions in the aorta, accompanied with up-regulated expression of TGF-β1. These effects were significantly inhibited by co-administration with eplerenone but not with hydralazine. These findings suggested that specific MR antagonism protects the aorta from aldosterone-induced VSMC proliferation and collagen deposition.

  10. Cholecystokinin receptor antagonism by peptidergic and non-peptidergic agents in rat pancreas.

    PubMed Central

    Dembinski, A; Jaworek, J; Konturek, P K; Konturek, S J; Warzecha, Z

    1989-01-01

    1. Graded doses of bombesin infused I.V. into conscious rats with chronic pancreatic fistulae induced a dose-dependent stimulation of protein secretion, similar to that obtained with caerulein. This stimulation does not appear to be mediated by cholecystokinin (CCK) receptors because peptidergic (CR-1409) and non-peptidergic (L-364718) CCK antagonists failed to affect protein secretion at a dose range which caused almost complete suppression of caerulein-induced pancreatic secretion. 2. Studies in vitro on isolated rat pancreatic acini revealed that caerulein, pentagastrin and bombesin all showed the same efficacy in their ability to stimulate amylase release. In contrast, CCK antagonists competitively inhibited amylase release induced by caerulein and pentagastrin but not by bombesin or urecholine, indicating that the latter two agents act directly on acinar cells via receptors which are separate from those involved in stimulation induced by caerulein and pentagastrin. 3. DNA synthesis, measured by the incorporation of [3H]thymidine into DNA, was significantly stimulated by caerulein, soybean trypsin inhibitor (FOY 305), pentagastrin and by bombesin in a dose-dependent manner. CCK receptor antagonists prevented stimulation of DNA synthesis induced by caerulein, FOY 305 and pentagastrin but not by bombesin. 4. This study indicates that bombesin strongly stimulates pancreatic enzyme secretion, with an efficacy similar to that of caerulein, and also exerts a potent growth-promoting action on the pancreas, both effects appearing to be mediated by mechanisms independent of the CCK receptors. PMID:2614728

  11. Regulation of the vasopressin V2 receptor by vasopressin in polarized renal collecting duct cells.

    PubMed

    Robben, J H; Knoers, N V A M; Deen, P M T

    2004-12-01

    Binding of arginine-vasopressin (AVP) to its V2 receptor (V2R) in the basolateral membrane of principal cells induces Aquaporin-2-mediated water reabsorption in the kidney. To study the regulation of the V2R by dDAVP in a proper model, a polarized renal cell line stably-expressing V2R-GFP was generated. Labeled AVP-binding studies revealed an equal basolateral vs. apical membrane distribution for V2R-GFP and endogenous V2R. In these cells, GFP-V2R was expressed in its mature form and localized for 75% in the basolateral membrane and for 25% to late endosomes/lysosomes. dDAVP caused a dose- and time-dependent internalization of V2R-GFP, which was completed within 1 h with 100 nM dDAVP, was prevented by coincubation with a V2R antagonist, and which reduced its half-life from 11.5 to 2.8 h. Semiquantification of the V2R-GFP colocalization with E-cadherin (basolateral membrane), early endosomal antigen-1 (EEA-1) and lysosome-associated membrane protein-2 (LAMP-2) in time revealed that most dDAVP-bound V2R was internalized via early endosomes to late endosomes/lysosomes, where it was degraded. The dDAVP-internalized V2R did not recycle to the basolateral membrane. In conclusion, we established the itinerary of the V2R in a polarized cell model that likely resembles the in vivo V2R localization and regulation by AVP to a great extent.

  12. The effect of aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations on the expression and activity of vasopressin V2 receptor gene.

    PubMed

    Najafzadeh, Hossein; Safaeian, Leila; Mirmohammad Sadeghi, Hamid; Rabbani, Mohammad; Jafarian, Abbas

    2010-01-01

    Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the present study attempted to shed some more light on the role of DRH motif in G protein coupling and V2R function with the use of site-directed mutagenesis. Nested PCR using specific primers was used to produce DNA fragments containing aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations with replacements of the arginine to lysine and histidine to tyrosine, respectively. After digestion, these inserts were ligated into the pcDNA3 vector and transformation into E. coli HB101 was performed using heat shock method. The obtained colonies were analyzed for the presence and orientation of the inserts using proper restriction enzymes. After transient transfection of COS-7 cells using diethylaminoethyl-dextran method, the adenylyl cyclase activity assay was performed for functional study. The cell surface expression was analyzed by indirect ELISA method. The functional assay indicated that none of these mutations significantly altered cAMP production and cell surface expression of V2R in these cells. Since some substitutions in arginine residue have shown to lead to the inactive V2 receptor, further studies are required to define the role of this residue more precisely. However, it seems that the role of the histidine residue is not critical in the V2 receptor function.

  13. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    PubMed

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    representing a compensatory up-regulation to counteract the cocaine-induced increases in dopamine D(2) and D(3) signaling. Therefore, A(2A) agonists, through antagonizing D(2) and D(3) signaling within A(2A)/D(2) and A(2A)/D(3) RM heteromers in the nucleus accumbens, may be found useful as a treatment for cocaine dependence. Furthermore, antagonistic cannabinoid CB(1)/D(2) interactions requiring A(2A) receptors have also been discovered and possibly operate in CB(1)/D(2)/A(2A) RM located principally on striatal glutamate terminals but also on some ventral striato-pallidal GABA neurons, thereby opening up a new mechanism for the integration of endocannabinoid, DA and adenosine mediated signals. Thus, A(2A), mGluR5 and/or CB(1) receptors can form integrative units with D(2) receptors within RM displaying different compositions, topography and localization. Also galaninR/5-HT(1A) RM probably participates in the transmission of the ascending 5-hydroxytryptamine neurons, where galanin receptors antagonize 5-HT(1A) recognition and signaling. Subtype specific galanin receptor antagonists may therefore represent novel antidepressant drugs. These results suggest the importance of a complete understanding of the function of these RM with regard to disease. Ultimately receptor-receptor interactions within RM that modify dopaminergic and serotonergic signaling may give new strategies for treatment of a wide range of diseases associated with altered dopaminergic and serotonergic signaling.

  14. SAR216471, an alternative to the use of currently available P2Y₁₂ receptor inhibitors?

    PubMed

    Delesque-Touchard, N; Pflieger, A M; Bonnet-Lignon, S; Millet, L; Salel, V; Boldron, C; Lassalle, G; Herbert, J M; Savi, P; Bono, F

    2014-09-01

    P2Y12 antagonism is a key therapeutic strategy in the management and prevention of arterial thrombosis. The objective of this study was to characterize the pharmacodynamic (PD) and pharmacokinetic (PK) properties of SAR216471, a novel P2Y12 receptor antagonist. SAR216471 blocks the binding of 2MeSADP to P2Y12 receptors in vitro (IC50=17 nM). This inhibition was shown to be reversible. It potently antagonized ADP-induced platelet aggregation in human and rat platelet-rich plasma (IC50=108 and 62 nM, respectively). It also inhibited platelet aggregation when blood was exposed to collagen or thromboxane A2. Its high selectivity was demonstrated against a large panel of receptors, enzymes, and ion channels. Despite its moderate bioavailability in rats, oral administration of SAR216471 resulted in a fast, potent, and sustained inhibition of platelet aggregation where the extent and duration of platelet inhibition were directly proportional to its circulating plasma levels. Pre-clinical study of SAR216471 in a rat shunt thrombosis model demonstrated a dose-dependent antithrombotic activity after oral administration (ED50=6.7 mg/kg). By comparison, ED50 values for clopidogrel, prasugrel and ticagrelor were 6.3, 0.35 and 2.6 mg/kg, respectively. Finally, the anti-hemostatic effect of SAR216471 and its competitors was investigated in a rat tail bleeding model, revealing a favorable safety profile of SAR216471. Together, these findings have established a reliable antiplatelet profile of SAR216471, and support its potential use in clinical practice as an alternative to currently available P2Y12 receptor antagonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Hypothyroidism affects D2 receptor-mediated breathing without altering D2 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2014-03-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age-matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Antagonism of methoxyflurane-induced anesthesia in rats by benzodiazepine inverse agonists.

    PubMed

    Miller, D W; Yourick, D L; Tessel, R E

    1989-11-28

    Injection of the partial benzodiazepine inverse agonist Ro15-4513 (1-32 mg/kg i.p.) or nonconvulsant i.v. doses of the full benzodiazepine inverse agonist beta-CCE immediately following cessation of exposure of rats to an anesthetic concentration of methoxyflurane significantly antagonized the duration of methoxyflurane anesthesia as measured by recovery of the righting reflex and/or pain sensitivity. This antagonism was inhibited by the benzodiazepine antagonist Ro15-1788 at doses which alone did not alter the duration of methoxyflurane anesthesia. In addition, high-dose Ro15-4513 pretreatment (32 mg/kg) antagonized the induction and duration of methoxyflurane anesthesia but was unable to prevent methoxyflurane anesthesia or affect the induction or duration of anesthesia induced by the dissociative anesthetic ketamine (100 mg/kg). These findings indicate that methoxyflurane anesthesia can be selectively antagonized by the inverse agonistic action of Ro15-4513 and beta-CCE.

  17. Oxytocin under opioid antagonism leads to supralinear enhancement of social attention.

    PubMed

    Dal Monte, Olga; Piva, Matthew; Anderson, Kevin M; Tringides, Marios; Holmes, Avram J; Chang, Steve W C

    2017-05-16

    To provide new preclinical evidence toward improving the efficacy of oxytocin (OT) in treating social dysfunction, we tested the benefit of administering OT under simultaneously induced opioid antagonism during dyadic gaze interactions in monkeys. OT coadministered with a μ-opioid receptor antagonist, naloxone, invoked a supralinear enhancement of prolonged and selective social attention, producing a stronger effect than the summed effects of each administered separately. These effects were consistently observed when averaging over entire sessions, as well as specifically following events of particular social importance, including mutual eye contact and mutual reward receipt. Furthermore, attention to various facial regions was differentially modulated depending on social context. Using the Allen Institute's transcriptional atlas, we further established the colocalization of μ-opioid and κ-opioid receptor genes and OT genes at the OT-releasing sites in the human brain. These data across monkeys and humans support a regulatory relationship between the OT and opioid systems and suggest that administering OT under opioid antagonism may boost the therapeutic efficacy of OT for enhancing social cognition.

  18. Oxytocin under opioid antagonism leads to supralinear enhancement of social attention

    PubMed Central

    Dal Monte, Olga; Anderson, Kevin M.; Tringides, Marios; Holmes, Avram J.

    2017-01-01

    To provide new preclinical evidence toward improving the efficacy of oxytocin (OT) in treating social dysfunction, we tested the benefit of administering OT under simultaneously induced opioid antagonism during dyadic gaze interactions in monkeys. OT coadministered with a μ-opioid receptor antagonist, naloxone, invoked a supralinear enhancement of prolonged and selective social attention, producing a stronger effect than the summed effects of each administered separately. These effects were consistently observed when averaging over entire sessions, as well as specifically following events of particular social importance, including mutual eye contact and mutual reward receipt. Furthermore, attention to various facial regions was differentially modulated depending on social context. Using the Allen Institute’s transcriptional atlas, we further established the colocalization of μ-opioid and κ-opioid receptor genes and OT genes at the OT-releasing sites in the human brain. These data across monkeys and humans support a regulatory relationship between the OT and opioid systems and suggest that administering OT under opioid antagonism may boost the therapeutic efficacy of OT for enhancing social cognition. PMID:28461466

  19. Long-term aquaretic efficacy of a selective nonpeptide V(2)-vasopressin receptor antagonist, SR121463, in cirrhotic rats.

    PubMed

    Jiménez, W; Gal, C S; Ros, J; Cano, C; Cejudo, P; Morales-Ruiz, M; Arroyo, V; Pascal, M; Rivera, F; Maffrand, J P; Rodés, J

    2000-10-01

    Water retention in experimental cirrhosis can be reversed by blocking V(2)-vasopressin (AVP) receptors with the nonpeptide antagonist OPC-31260 or by using the kappa-opioid receptor agonist niravoline, a compound inhibiting central AVP release. However, reluctance to use these drugs in human beings has emerged because the former loses aquaretic efficacy in rats after 2 days of treatment and the latter may have adverse effects in humans. Recently, a new potent and selective nonpeptide V(2)-AVP receptor antagonist, SR121463, has been developed that could be useful for the treatment of dilutional hyponatremia in human cirrhosis. The current study assessed the aquaretic efficacy of 10-day chronic oral administration of SR121463 (0.5 mg/kg/day) in cirrhotic rats with ascites and impaired water excretion after a water load (minimum urinary osmolality >160 mOsm/kg and percentage of water load excreted <60%). Urine volume (UV), osmolality (U(Osm)V), and sodium excretion (U(Na)V) were measured daily. At the end of the 10-day treatment, mean arterial pressure also was measured. In basal conditions cirrhotic rats showed ascites, sodium retention, and impaired water excretion. UV, U(Osm)V, and U(Na)V did not change throughout the study in cirrhotic rats receiving the vehicle. In contrast, SR121463 increased UV and reduced U(Osm)V during the 10-day treatment. This resulted in a greater renal ability to excrete a water load and normalization in serum sodium and osmolality. During the first 6 days of treatment, SR121463 also increased U(Na)V without affecting mean arterial pressure. These data suggest that SR121463 could be of therapeutical value for chronic management of human cirrhosis.

  20. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau-Merck, M.F.; Derre, J.; Berger, R.

    1995-11-20

    Vasopressin exerts its physiological effects on liver metabolism, fluid osmolarity, and corticotrophic response to stress through a set of at least three receptors, V1a, V2, and V3 (also called V1b), respectively. These receptors constitute a distinct group of the superfamily of G-protein-coupled cell surface receptors. When bound to vasopressin, they couple to G proteins activating phospholipase C for the V1a and V3 types and adenylate cyclase for the V2. The vasopressin receptor subfamily also includes the receptor for oxytocin, a structurally related hormone that signals through the activation of phospholipase C. The chromosomal position of the V2 receptor gene hasmore » been assigned to Xq28-qter by PCR-based screening of somatic cell hybrids, whereas the oxytocin receptor gene has been mapped to chromosome 3q26.2 by fluorescence in situ hybridization (FISH). The chromosomal location of the V1a gene is currently unknown. We recently cloned the cDNA and the gene coding for the human pituitary-specific V3 receptor (HGMW-approved symbol AVPR3). We report here the chromosomal localization of this gene by two distinct in situ hybridization techniques using radioactive and fluorescent probes. 11 refs., 1 fig.« less

  1. 6-Methoxyflavanones as Bitter Taste Receptor Blockers for hTAS2R39

    PubMed Central

    Roland, Wibke S. U.; Gouka, Robin J.; Gruppen, Harry; Driesse, Marianne; van Buren, Leo; Smit, Gerrit; Vincken, Jean-Paul

    2014-01-01

    Many (dietary) bitter compounds, e.g. flavonoids, activate bitter receptor hTAS2R39 in cell-based assays. Several flavonoids, amongst which some flavanones, are known not to activate this receptor. As certain flavanones are known to mask bitter taste sensorially, flavanones might act as bitter receptor antagonists. Fourteen flavanones were investigated for their potential to reduce activation of hTAS2R39 by epicatechin gallate (ECG), one of the main bitter compounds occurring in green tea. Three flavanones showed inhibitory behavior towards the activation of hTAS2R39 by ECG: 4′-fluoro-6-methoxyflavanone, 6,3′-dimethoxyflavanone, and 6-methoxyflavanone (in order of decreasing potency). The 6-methoxyflavanones also inhibited activation of hTAS2R14 (another bitter receptor activated by ECG), though to a lesser extent. Dose-response curves of ECG at various concentrations of the full antagonist 4′-fluoro-6-methoxyflavanone and wash-out experiments indicated reversible insurmountable antagonism. The same effect was observed for the structurally different agonist denatonium benzoate. PMID:24722342

  2. The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist.

    PubMed Central

    Beattie, D. T.; Beresford, I. J.; Connor, H. E.; Marshall, F. H.; Hawcock, A. B.; Hagan, R. M.; Bowers, J.; Birch, P. J.; Ward, P.

    1995-01-01

    maximum agonist response (apparent pKB values of 11.9, 11.2 and 11.1 respectively). 5. In anaesthetized rabbits, GR203040 antagonized reductions in carotid arterial vascular resistance evoked by SPOMe, injected via the lingual artery (DR10 (i.e. the dose producing a dose-ratio of 10) = 1.1 micrograms kg-1, i.v.). At a dose 20 fold greater than its DR10 value (i.e. 22 micrograms kg-1, i.v.), significant antagonism was evident more than 2 h after GR203040 administration. 6. In anaesthetized rats, GR203040 (3 and 10 mg kg-1, i.v.) produced a dose-dependent inhibition of plasma protein extravasation in dura mater, conjunctiva, eyelid and lip in response to electrical stimulation of the trigeminal ganglion. 7. It is concluded that GR203040 is one of the most potent and selective NK1 receptor antagonists yet described, and as such, has considerable potential as a pharmacological tool to characterize the physiological and pathological roles of substance P and NK1 receptors. GR203040 may also have potential as a novel therapeutic agent for the treatment of conditions such as migraine, emesis and pain. PMID:8719789

  3. Estrogen Receptors Alpha and Beta in Bone

    PubMed Central

    Khalid, Aysha B.; Krum, Susan A.

    2016-01-01

    Estrogens are important for bone metabolism via a variety of mechanisms in osteoblasts, osteocytes, osteoclasts, immune cells and other cells to maintain bone mineral density. Estrogens bind to estrogen receptor alpha (ERα) and ERβ, and the roles of each of these receptors are beginning to be elucidated through whole body and tissue-specific knockouts of the receptors. In vitro and in vivo experiments have shown that ERα and ERβ antagonize each other in bone and in other tissues. This review will highlight the role of these receptors in bone, with particular emphasis on their antagonism. PMID:27072516

  4. Molecular cloning and characterization of V2-type receptor in two ray-finned fish, gray bichir, Polypterus senegalus and medaka, Oryzias latipes.

    PubMed

    Konno, Norifumi; Kurosawa, Mayumi; Kaiya, Hiroyuki; Miyazato, Mikiya; Matsuda, Kouhei; Uchiyama, Minoru

    2010-07-01

    In tetrapods, vasopressin (VP) and vasotocin (VT) are involved in various aspects of physiology and behavior including osmoregulation, cardiovascular function, reproduction, stress response and social behavior. Pharmacological and molecular studies have identified three types of VP/VT receptors, V1a-type (V1aR), V1b-type (V1bR) and V2-type (V2R). On the other hand, only V1aR has so far been identified in teleosts. In the present study, we successfully cloned V2Rs from two ray-finned fish, gray bichir and medaka. Phylogenetic analysis showed that the cloned receptors belong to the V2R group of lobe-finned fish and tetrapods. The amino acid sequences of bichir V2R and medaka V2R were high identity (60-65.5% and 53.2-80.9%, respectively) with other known V2R members, respectively. Reverse transcriptase PCR revealed that ray-finned fish V2R transcripts have been detected in various tissues including brain, gill, heart, liver, kidney and reproductive organs, suggesting that ray-finned fish V2R might mediate multiple functions of VT. In functional analysis, the cells transfected with the cloned receptors responded with the accumulation of intracellular cAMP in a concentration-dependent manner following VT stimulation, but not respond with [Ca(2+)]i. Furthermore, pretreatment with mammalian V2R antagonist (OPC-31260) to the cells transfected with medaka V2R significantly inhibited an increase of the VT-induced intracellular cAMP. These results suggest that ray-finned fish possess a functional V2R linked to adenylate cyclase and the cAMP signaling pathway as well as V2Rs of lobe-finned fish and tetrapods. Thus, the present study suggests that functional V2R evolved prior to the divergence of the ray- and lobe-finned fish lineages. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Effects on amine oxidase of substances which antagonize 5-hydroxytryptamine more than tryptamine on the rat fundus strip

    PubMed Central

    Barlow, R. B.

    1961-01-01

    Certain substances, 2-bromolysergic acid diethylamide, dimethyltryptamine (3-(2-dimethylaminoethyl)indole), 2-methyldimethyltryptamine (3-(2-dimethylaminoethyl)-2-methylindole), and 5-benzyloxydimethyltryptamine (5-benzyloxy-3-(2-dimethylaminoethyl)indole), antagonize the effects of 5-hydroxytryptamine on the rat fundus strip more than those of tryptamine. These substances have been tested for their ability to inhibit the oxidation of tryptamine and 5-hydroxytryptamine by suspensions of guinea-pig liver and rat fundus. 2-Bromolysergic acid diethylamide has virtually no inhibitory activity and it is doubtful if the others produce any significant inhibition of amine oxidase in the concentrations which antagonize the effects of 5-hydroxytryptamine more than those of tryptamine. It seems that the differential character of the blocking action of these compounds should be ascribed either to interference with the transport of tryptamine (but not 5-hydroxytryptamine) through the cell wall, coupled with the block of a receptor common to both tryptamine and 5-hydroxytryptamine, or to the existence of separate tryptamine and 5-hydroxytryptamine receptors. The amine oxidases of the guinea-pig liver and rat fundus appear to be a mixture of at least two types of enzyme, one of which has a higher affinity for 5-hydroxytryptamine than the other and is more susceptible to inhibition by 2-methyldimethyltryptamine. PMID:13687054

  6. D-1 and D-2 receptor blockade have additive cataleptic effects in mice, but receptor effects may interact in opposite ways.

    PubMed

    Klemm, W R; Block, H

    1988-02-01

    The dopaminergic role of D-1 and D-2 receptors in catalepsy was evaluated using drugs with preferential receptor affinities. The D-1 antagonist, SCH 23390, caused distinct catalepsy in mice at 1, 2, and 10 mg/kg, IP, but not at two lower doses. The selective D-1 blocker, molindone, also caused catalepsy at 5 and 10 mg/kg; and blockade of both receptor types produced additive cataleptogenic effects. Apomorphine (4 mg/kg), which is an agonist for both receptors, potentiated SCH 23390-induced catalepsy much more than it did the catalepsy induced by molindone; the potentiation was produced by higher, not lower, doses of apomorphine. To determine if the apomorphine potentiation was mediated by D-1 or D-2 receptors, we tested selective agonists in mice that were concurrently injected with selective blockers. SCH 23390-induced catalepsy was potentiated by a large dose of the D-2 agonist, bromocriptine. The catalepsy of D-2 blockade with molindone was not potentiated by the D-1 agonist, SKF 38393, which slightly disrupted the catalepsy of D-2 blockade. We conclude that catalepsy is not a simple D-2 blockade phenomenon and that preferential antagonism of either receptor type can cause catalepsy. Catalepsy is most profound when both receptor types are blocked. Dopamine agonists, in large concentrations, are known to promote movements, and thus it is not surprising that they tend to disrupt catalepsy.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Structural interpretation of P2X receptor mutagenesis studies on drug action

    PubMed Central

    Evans, Richard J

    2010-01-01

    P2X receptors for ATP are ligand gated cation channels that form from the trimeric assembly of subunits with two transmembrane segments, a large extracellular ligand binding loop, and intracellular amino and carboxy termini. The receptors are expressed throughout the body, involved in functions ranging from blood clotting to inflammation, and may provide important targets for novel therapeutics. Mutagenesis based studies have been used to develop an understanding of the molecular basis of their pharmacology with the aim of developing models of the ligand binding site. A crystal structure for the zebra fish P2X4 receptor in the closed agonist unbound state has been published recently, which provides a major advance in our understanding of the receptors. This review gives an overview of mutagenesis studies that have led to the development of a model of the ATP binding site, as well as identifying residues contributing to allosteric regulation and antagonism. These studies are discussed with reference to the crystal to provide a structural interpretation of the molecular basis of drug action. PMID:20977449

  8. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Daisy W.; Prins, Kathleen C.; Borek, Dominika M.

    2010-03-12

    Ebola viral protein 35 (VP35), encoded by the highly pathogenic Ebola virus, facilitates host immune evasion by antagonizing antiviral signaling pathways, including those initiated by RIG-I-like receptors. Here we report the crystal structure of the Ebola VP35 interferon inhibitory domain (IID) bound to short double-stranded RNA (dsRNA), which together with in vivo results reveals how VP35-dsRNA interactions contribute to immune evasion. Conserved basic residues in VP35 IID recognize the dsRNA backbone, whereas the dsRNA blunt ends are 'end-capped' by a pocket of hydrophobic residues that mimic RIG-I-like receptor recognition of blunt-end dsRNA. Residues critical for RNA binding are also importantmore » for interferon inhibition in vivo but not for viral polymerase cofactor function of VP35. These results suggest that simultaneous recognition of dsRNA backbone and blunt ends provides a mechanism by which Ebola VP35 antagonizes host dsRNA sensors and immune responses.« less

  9. CCR1 antagonism attenuates T cell trafficking to omentum and liver in obesity-associated cancer.

    PubMed

    Conroy, Melissa J; Galvin, Karen C; Kavanagh, Maria E; Mongan, Ann Marie; Doyle, Suzanne L; Gilmartin, Niamh; O'Farrelly, Cliona; Reynolds, John V; Lysaght, Joanne

    2016-07-01

    Obesity is a global health problem presenting serious risk of disease fuelled by chronic inflammation, including type 2 diabetes mellitus, cardiovascular disease, liver disease and cancer. Visceral fat, in particular the omentum and liver of obese individuals are sites of excessive inflammation. We propose that chemokine-mediated trafficking of pro-inflammatory cells to the omentum and liver contributes to local and subsequent systemic inflammation. Oesophagogastric adenocarcinoma (OAC) is an exemplar model of obesity and inflammation driven cancer. We have demonstrated that T cells actively migrate to the secreted factors from the omentum and liver of OAC patients and that both CD4(+) and CD8(+) T cells bearing the chemokine receptor CCR5 are significantly more prevalent in these tissues compared to matched blood. The CCR5 ligand and inflammatory chemokine MIP-1α is also secreted at significantly higher concentrations in the omentum and liver of our OAC patient cohort compared to matched serum. Furthermore, we report that MIP-1α receptor antagonism can significantly reduce T cell migration to the secreted factors from OAC omentum and liver. These novel data suggest that chemokine receptor antagonism may have therapeutic potential to reduce inflammatory T cell infiltration to the omentum and liver and in doing so, may ameliorate pathological inflammation in obesity and obesity-associated cancer.

  10. Pharmacological characterization of human recombinant melatonin mt1 and MT2 receptors

    PubMed Central

    Browning, Christopher; Beresford, Isabel; Fraser, Neil; Giles, Heather

    2000-01-01

    We have pharmacologically characterized recombinant human mt1 and MT2 receptors, stably expressed in Chinese hamster ovary cells (CHO-mt1 and CHO-MT2), by measurement of [3H]-melatonin binding and forskolin-stimulated cyclic AMP (cAMP) production. [3H]-melatonin bound to mt1 and MT2 receptors with pKD values of 9.89 and 9.56 and Bmax values of 1.20 and 0.82 pmol mg−1 protein, respectively. Whilst most melatonin receptor agonists had similar affinities for mt1 and MT2 receptors, a number of putative antagonists had substantially higher affinities for MT2 receptors, including luzindole (11 fold), GR128107 (23 fold) and 4-P-PDOT (61 fold). In both CHO-mt1 and CHO-MT2 cells, melatonin inhibited forskolin-stimulated accumulation of cyclic AMP in a concentration-dependent manner (pIC50 9.53 and 9.74, respectively) causing 83 and 64% inhibition of cyclic AMP production at 100 nM, respectively. The potencies of a range of melatonin receptor agonists were determined. At MT2 receptors, melatonin, 2-iodomelatonin and 6-chloromelatonin were essentially equipotent, whilst at the mt1 receptor these agonists gave the rank order of potency of 2-iodomelatonin>melatonin>6-chloromelatonin. In both CHO-mt1 and CHO-MT2 cells, melatonin-induced inhibition of forskolin-stimulated cyclic AMP production was antagonized in a concentration-dependent manner by the melatonin receptor antagonist luzindole, with pA2 values of 5.75 and 7.64, respectively. Melatonin-mediated responses were abolished by pre-treatment of cells with pertussis toxin, consistent with activation of Gi/Go G-proteins. This is the first report of the use of [3H]-melatonin for the characterization of recombinant mt1 and MT2 receptors. Our results demonstrate that these receptor subtypes have distinct pharmacological profiles. PMID:10696085

  11. Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors.

    PubMed

    Auteri, Michelangelo; Zizzo, Maria Grazia; Amato, Antonella; Serio, Rosa

    2016-08-01

    Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2'-deoxy-N 6 -methyl adenosine 3',5'-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is

  12. X-ray structures define human P2X3 receptor gating cycle and antagonist action

    PubMed Central

    Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-01-01

    Summary P2X receptors are trimeric, non-selective cation channels activated by ATP that play important roles in cardiovascular, neuronal and immune systems. Despite their central function in human physiology and as potential targets of therapeutic agents, there are no structures of human P2X receptors. Mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structure of the pore-forming transmembrane domains remain unclear. We report x-ray crystal structures of human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/desensitized and antagonist-bound closed states. The open state structure harbors an intracellular motif we term the “cytoplasmic cap”, that stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. Competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements underpinning P2X receptor gating and provide a foundation for development of new pharmacologic agents. PMID:27626375

  13. Discovery of a Novel Series of CRTH2 (DP2) Receptor Antagonists Devoid of Carboxylic Acids

    PubMed Central

    2011-01-01

    Antagonism of the CRTH2 receptor represents a very attractive target for a variety of allergic diseases. Most CRTH2 antagonists known to date possess a carboxylic acid moiety, which is essential for binding. However, potential acid metabolites O-acyl glucuronides might be linked to idiosynchratic toxicity in humans. In this communication, we describe a new series of compounds that lack the carboxylic acid moiety. Compounds with high affinity (Ki < 10 nM) for the receptor have been identified. Subsequent optimization succeeded in reducing the high metabolic clearance of the first compounds in human and rat liver microsomes. At the same time, inhibition of the CYP isoforms was optimized, giving rise to stable compounds with an acceptable CYP inhibition profile (IC50 CYP2C9 and 2C19 > 1 μM). Taken together, these data show that compounds devoid of carboxylic acid groups could represent an interesting alternative to current CRTH2 antagonists in development. PMID:24900284

  14. PI3K-dependent antagonism in mammalian olfactory receptor neurons

    PubMed Central

    Ukhanov, Kirill; Brunert, Daniela; Corey, Elizabeth; Ache, Barry W.

    2011-01-01

    Phosphoinositide (PI) signaling, in particular PI3Kinase (PI3K) signaling, has been implicated in mediating inhibitory odorant input to mammalian olfactory receptor neurons (ORNs). To better understand this phenomenon we investigated PI3K-dependent inhibition between single odorant pairs. The concentration-dependent inhibition of the response of native rat ORNs to octanol by citral is PI3K-dependent; blocking PI3K activity with the β and γ isoform-specific inhibitors AS252424 and TGX221 eliminated or strongly reduced the inhibition. Interestingly, blocking PI3K also changed the apparent agonist strength of the otherwise non-competitive antagonist citral. The excitation evoked by citral after blocking PI3K, could be suppressed by the adenylate cyclase III (ACIII) blockers MDL12330A and SQ22536, indicating that citral could also activate ACIII, presumably through the canonical OR. The G protein Gβγ subunit blockers suramin, gallein and M119 suppressed citral’s inhibition of the response to octanol, indicating that the activation of PI3K by citral was G protein dependent, consistent with the idea that inhibition acts through the canonical OR. Lilial similarly antagonized the response to isoamyl acetate in other ORNs, indicating the effect generalizes to at least one other odorant pair. The ability of methyl-isoeugenol, limonene, α-pinene, isovaleric acid and isosafrole to inhibit the response of other ORNs to IBMX/forskolin in a PI3K-dependent manner argues the effect generalizes to yet other structurally dissimilar odorants. Our findings collectively raise the interesting possibility that the OR serves as a molecular logic gate when mammalian ORNs are activated by natural, complex mixtures containing both excitatory and inhibitory odorants. PMID:21209212

  15. SCH 206272: a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist.

    PubMed

    Anthes, John C; Chapman, Richard W; Richard, Christian; Eckel, Stephen; Corboz, Michel; Hey, John A; Fernandez, Xiomara; Greenfeder, Scott; McLeod, Robbie; Sehring, Susan; Rizzo, Charles; Crawley, Yvette; Shih, Neng-Yang; Piwinski, John; Reichard, Greg; Ting, Pauline; Carruthers, Nick; Cuss, Francis M; Billah, Motasim; Kreutner, William; Egan, Robert W

    2002-08-23

    Experiments were performed to characterize the pharmacology of SCH 206272 [(R,R)-1'[5-[(3,5-dichlorobenzoyl)methylamino]-3-(3,4-dichlorophenyl)-4(Z)-(methoxyimino)pentyl]-N-methyl-2-oxo-[1,4'bipiperidine]-3-acetamide] as a potent and selective antagonist of tachykinin (NK) NK(1), NK(2), and NK(3) receptors. SCH 206272 inhibited binding at human tachykinin NK(1), NK(2), and NK(3) receptors (K(i) = 1.3, 0.4, and 0.3 nM, respectively) and antagonized [Ca(2+)](i) mobilization in Chinese hamster ovary (CHO) cells expressing the cloned human tachykinin NK(1), NK(2), or NK(3) receptors. SCH 206272 inhibited relaxation of the human pulmonary artery (pK(b) = 7.7 +/- 0.3) induced by the tachykinin NK(1) receptor agonist, [Met-O-Me] substance P and contraction of the human bronchus (pK(b = 8.2 +/- 0.3) induced by the tachykinin NK(2) receptor agonist, neurokinin A. In isolated guinea pig tissues, SCH 206272 inhibited substance P-induced enhancement of electrical field stimulated contractions of the vas deferens, (pK(b = 7.6 +/- 0.2), NKA-induced contraction of the bronchus (pK(b) = 7.7 +/- 0.2), and senktide-induced contraction of the ileum. In vivo, oral SCH 206272 (0.1-10 mg/kg, p.o.) inhibited substance P-induced airway microvascular leakage and neurokinin A-induced bronchospasm in the guinea pig. In a canine in vivo model, SCH 206272 (0.1-3 mg/kg, p.o.) inhibited NK(1) and NK(2) activities induced by exogenous substance P and neurokinin A. Furthermore, in guinea pig models involving endogenously released tachykinins, SCH 206272 inhibited hyperventilation-induced bronchospasm, capsaicin-induced cough, and airway microvascular leakage induced by nebulized hypertonic saline. These data demonstrate that SCH 206272 is a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist. This compound may have beneficial effects in diseases thought to be mediated by tachykinins, such as cough, asthma, and chronic obstructive pulmonary disease. Copyright 2002 Elsevier

  16. Effect of biodegradability on CXCR4 antagonism, transfection efficacy and antimetastatic activity of polymeric Plerixafor

    PubMed Central

    Li, Jing; Oupický, David

    2014-01-01

    Chemokine receptor CXCR4 and its sole ligand SDF-1 are key players in regulating cancer cell invasion and metastasis. Plerixafor (AMD3100) is a small-molecule CXCR4 antagonist that prevents binding of SDF-1 to CXCR4 and has potential in prevention of cancer metastasis. This study investigates the influence of biodegradability of a recently reported polymeric Plerixafor (PAMD) on CXCR4 antagonism, antimetastatic activity, and transfection efficacy of PAMD polyplexes with plasmid DNA. We show that PAMD exhibits CXCR4 antagonism and inhibition of cancer cell invasion in vitro regardless of its biodegradability. Biodegradable PAMD showed considerably enhanced transfection efficiency and decreased cytotoxicity when compared with the non-degradable PAMD. Despite similar CXCR4 antagonism in vitro, only biodegradable PAMD displayed antimetastatic activity in experimental lung metastasis model in vivo. PMID:24726746

  17. Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: possible implications for the pharmacotherapy of autism spectrum disorders.

    PubMed

    Burket, Jessica A; Herndon, Amy L; Winebarger, Erin E; Jacome, Luis F; Deutsch, Stephen I

    2011-10-10

    Balb/c mice display deficits of sociability; for example, they show reduced locomotor activity in the presence of an enclosed or freely-moving social stimulus mouse. Transgenic mice with defective or diminished expression of NMDA receptors manifest impaired sociability, while a partial and full agonist of the obligatory glycine co-agonist binding site on the NMDA receptor improved sociability in the Balb/c mouse strain. Because 2-methyl-6-(phenylethynyl)-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor (mGluR), reduced self-grooming behavior in BTBR T+tfJ (BTBR) mice, another inbred genetic mouse model of autism spectrum disorders (ASDs), and mGluR5 antagonism is emerging as an experimental treatment for the 'fragile X syndrome," which has a high prevalence of co-morbid ASDs, we examined the effects of MPEP on sociability and stereotypic behaviors in Balb/c and Swiss Webster mice in a standard paradigm. MPEP had complex effects on sociability, impairing some measures of sociability in both strains, while it reduced the intensity of some spontaneous measures of stereotypic behaviors emerging during free social interaction in Swiss Webster mice. Conceivably, mGluR5 antagonism exacerbates diminished endogenous tone of NMDA receptor-mediated neurotransmission in neural circuits relevant to at least some measures of sociability in Balb/c mice; the mGluR5 receptor contributes to regulation of the phosphorylation status of the NMDA receptor. In any event, although stereotypies are an important therapeutic target in ASDs, medication strategies to attenuate their severity via antagonism of mGluR5 receptors must be pursued cautiously because of their potential to worsen at least some measures of sociability. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Antagonism of corticotropin-releasing factor CRF1 receptors blocks the enhanced response to cocaine after social stress.

    PubMed

    Ferrer-Pérez, Carmen; Reguilón, Marina D; Manzanedo, Carmen; Aguilar, M Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2018-03-15

    Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF 1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF 2 receptor antagonist Astressin 2 -B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF 1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF 2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF 1 receptor antagonist, while peripheral CRF 2 receptor antagonist did not show effect. Acute administration of Astressin 2 -B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Preferential binding to dopamine D3 over D2 receptors by cariprazine in patients with schizophrenia using PET with the D3/D2 receptor ligand [(11)C]-(+)-PHNO.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; D'Souza, Deepak; Lee, Yih; Periclou, Antonia; Ghahramani, Parviz; Laszlovszky, István; Durgam, Suresh; Adham, Nika; Nabulsi, Nabeel; Huang, Yiyun; Carson, Richard E; Kiss, Béla; Kapás, Margit; Abi-Dargham, Anissa; Rakhit, Ashok

    2016-10-01

    Second-generation antipsychotics occupy dopamine D2 receptors and act as antagonists or partial agonists at these receptors. While these drugs alleviate positive symptoms in patients with schizophrenia, they are less effective for treating cognitive deficits and negative symptoms. Dopamine D3 receptors are highly expressed in areas of the brain thought to play a role in the regulation of motivation and reward-related behavior. Consequently, the dopamine D3 receptor has become a target for treating negative symptoms in combination with D2 antagonism to treat positive symptoms in patients with schizophrenia. The purpose of this study was to determine the cariprazine receptor occupancies in brain for D2 and D3 receptors in patients with schizophrenia. Using [(11)C]-(+)-PHNO as a radioligand, positron emission tomography (PET) scans were performed in eight patients at baseline and postdose on days 1, 4, and 15. Plasma and cerebrospinal fluid (CSF) samples were analyzed for cariprazine concentrations. A monotonic dose-occupancy relationship was observed for both receptor types. After 2 weeks of treatment, near complete (∼100 %) occupancies were observed for both receptors at a dose of 12 mg/day. At the lowest cariprazine dose (1 mg/day), mean D3 and D2 receptor occupancies were 76 and 45 %, respectively, suggesting selectivity for D3 over D2 receptors at low doses. An exposure-response analysis found a ∼3-fold difference in EC50 (D3 = 3.84 nM and D2 = 13.03 nM) in plasma after 2 weeks of dosing. This PET imaging study in patients with schizophrenia demonstrated that cariprazine is a D3-preferring dual D3/D2 receptor partial agonist.

  20. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor.

    PubMed

    Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  1. X-ray structures define human P2X(3) receptor gating cycle and antagonist action.

    PubMed

    Mansoor, Steven E; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-10-06

    P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X 3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the 'cytoplasmic cap', which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.

  2. Cloning and pharmacological characterization of the rabbit bradykinin B2 receptor.

    PubMed

    Bachvarov, D R; Saint-Jacques, E; Larrivée, J F; Levesque, L; Rioux, F; Drapeau, G; Marceau, F

    1995-12-01

    Degenerate primers, corresponding to consensus sequences of third and sixth transmembrane domains of G protein-coupled receptor superfamily, were used for the polymerase chain reaction amplification and consecutive characterization of G protein-coupled receptors present in cultured rabbit aortic smooth muscle cells. One of the isolated resulting fragments was highly homologous to the corresponding region of the bradykinin (BK) B2 receptor cloned in other species. The polymerase chain reaction fragment was used to screen a rabbit genomic library, which allowed the identification of an intronless 1101-nucleotide open reading frame which codes for a 367-amino acid receptor protein. The rabbit B2 receptor sequence is more than 80% identical to the ones determined in three other species and retain putative glycosylation, palmitoylation and phosphorylation sites. In the rabbit genomic sequence, an acceptor splice sequence was found 8 base pairs upstream of the start codon. Northern blot analysis showed a high expression of a major transcript (4.2 kilobases) in the rabbit kidney and duodenum, and a less abundant expression in other tissues. Southern blot experiments suggest that a single copy of this gene exists in the rabbit genome. The cloned rabbit B2 receptor expressed in COS-1 cells binds [3H]BK in a saturable manner (KD 2.1 nM) and this ligand competes with a series of kinin agonists and antagonist with a rank order consistent with the B2 receptor identity. The insurmountable character of the antagonism exerted by Hoe 140 against BK on the rabbit B2 receptor, previously shown in pharmacological experiments, was confirmed in binding experiments with the cloned receptor expressed in a controlled manner. By contrast, Hoe 140 competed with [3H]BK in a surmountable manner for the human B2 receptor expressed in COS-1 cells. The cloning of the rabbit B2 receptor will be useful notably for the study of the structural basis of antagonist binding and for studies on receptor

  3. Classics in Neuroimaging: The Serotonergic 2A Receptor System-from Discovery to Modern Molecular Imaging.

    PubMed

    T L'Estrade, Elina; Hansen, Hanne D; Erlandsson, Maria; Ohlsson, Tomas G; Knudsen, Gitte M; Herth, Matthias M

    2018-06-20

    Already in 1953, Woolley and Shaw speculated that serotonin could be involved in a range of central nervous system (CNS) disorders. Lysergic acid diethylamide (LSD) displayed an important role in this respect. It was used not only to antagonize biological effects of serotonin and to study the system itself, but also to identify serotonergic subtype receptors. The 5-HT 2A receptor was discovered in the 1970s and identified as the responsible receptor mediating psychedelic effects of LSD. The development of positron emission tomography (PET) allowed to study this receptor system in vivo. Parameters such as abundance of 5-HT 2A neuroreceptors or receptor occupancy can be determined using PET. As such, the development of 5-HT 2A receptor tracers started immediately after the introduction of PET in the mid-1970s. In this Viewpoint, we provide a historical overview from the discovery of serotonin to the identification of the 5-HT 2A receptor subtype and the subsequent development of 5-HT 2A receptor subtype specific PET tracers over the last four decades. We emphasize the interplay between pharmacology, medicinal chemistry, radiochemistry, and nuclear medicine that is important while developing a PET tracer. Moreover, we highlight selected examples applying 5-HT 2A receptor PET tracers within neurological diseases and drug occupancy studies.

  4. Hearing improvement in a patient with variant Muckle‐Wells syndrome in response to interleukin 1 receptor antagonism

    PubMed Central

    Rynne, M; Maclean, C; Bybee, A; McDermott, M F; Emery, P

    2006-01-01

    Background Muckle‐Wells syndrome (MWS), familial cold autoinflammatory syndrome, and neonatal onset multisystem inflammatory disease, also called chronic, infantile, neurological, cutaneous, and articular syndrome, are three hereditary autoinflammatory syndromes caused by mutations affecting the CIAS1/NALP3 gene on chromosome 1q44. The proinflammatory cytokine, interleukin 1β, is believed to have a fundamental role in their pathogenesis. Case report The case is described of a 59 year old white woman who presented with increasingly severe MWS‐type features over a 15 year period. The response to interleukin 1β inhibition with anakinra was dramatic, including a reduction in intracranial pressure with associated auditory improvement, as demonstrated by serial audiometry. Conclusions The confirmed improvement in hearing after initiation of interleukin 1 receptor antagonism corroborates previous reports that specific blockade of this single cytokine reverses most of the symptoms of this group of CIAS1/NALP3 related autoinflammatory conditions, including the sensorineural deafness, which has not been previously reported. PMID:16531551

  5. NMDA receptor GluN2A subunit deletion protects against dependence-like ethanol drinking.

    PubMed

    Jury, Nicholas J; Radke, Anna K; Pati, Dipanwita; Kocharian, Adrina; Mishina, Masayoshi; Kash, Thomas L; Holmes, Andrew

    2018-06-25

    The N-methyl- D -aspartate receptor (NMDAR) is mechanistically involved in the behavioral and neurophysiological effects of alcohol, but the specific role of the GluN2A subunit remains unclear. Here, we exposed mice with constitutive GluN2A gene knockout (KO) to chronic intermittent ethanol vapor (CIE) and tested for EtOH consumption/preference using a two-bottle choice paradigm, as well as NMDAR-mediated transmission at basolateral amygdala synapses via ex vivo slice electrophysiology. Results showed that GluN2A KO mice attained comparable blood EtOH levels in response to CIE exposure, but did not exhibit the significant increase in EtOH drinking that was observed in CIE-exposed wildtypes. GluN2A KO mice also showed no alterations in BLA NMDAR-mediated synaptic transmission after CIE, relative to air-exposed, whereas C57BL/6 J mice showed an attenuated synaptic response to GluN2B antagonism. Taken together, these data add to mounting evidence supporting GluN2A-containing NMDARs as a mechanism underlying relative risk for developing EtOH dependence after repeated EtOH exposure. Copyright © 2018. Published by Elsevier B.V.

  6. Antagonism of bromocriptine-induced cage climbing behaviour in mice by the selective D-2 dopamine receptor antagonists, metoclopramide and molindone.

    PubMed

    Balsara, J J; Nandal, N V; Gada, V P; Bapat, T R; Chandorkar, A G

    1986-01-01

    Bromocriptine (5-30 mg/kg, ip), 2 hr after administration, induced cage climbing behaviour in mice. Pretreatment with haloperidol, an antagonist of both D-1 and D-2 dopamine receptors, metoclopramide and molindone, the selective D-2 dopamine receptor antagonists, effectively antagonised bromocriptine-induced climbing behaviour. The results indicate that bromocriptine most probably induces climbing behaviour in mice by stimulating the postsynaptic striatal D-2 dopamine receptors.

  7. Water Sparing in Chronic Ethanol Exposure is Associated With Elevated Renal Estrogen Receptor Beta and Vasopressin V2 Receptor mRNA in the Female Rate

    DTIC Science & Technology

    2007-12-01

    blockade of vasopressin V2 receptors reveals significant V2-mediated water reabsorption in Brattleboro rats with diabetes insipidus . Nephrol Dial...that from 1980 to 2005 the number of persons diagnosed with diabetes rose from 5.6 million to 15.8 million (12). Additionally, the prevalence of alcohol...Pressure Facts and Statistics. 12. CDC (2007) Diabetes Data & Trends. Centers for Disease Control and Prevention 13. Keyes, K. M., Grant, B. F., and

  8. Androgen Receptor Antagonism By Divalent Ethisterone Conjugates In Castrate-Resistant Prostate Cancer Cells

    PubMed Central

    Levine, Paul M.; Lee, Eugine; Greenfield, Alex; Bonneau, Richard; Logan, Susan K.; Garabedian, Michael J.; Kirshenbaum, Kent

    2013-01-01

    Sustained treatment of prostate cancer with Androgen Receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology. PMID:22871957

  9. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons.

    PubMed

    Paternain, A V; Morales, M; Lerma, J

    1995-01-01

    Although both protein and mRNAs for kainate receptor subunits are abundant in several brain regions, the responsiveness of AMPA receptors to kainate has made it difficult to demonstrate the presence of functional kainate-type receptors in native cells. Recently, however, we have shown that many hippocampal neurons in culture express glutamate receptors of the kainate type. The large nondesensitizing response that kainate induces at AMPA receptors precludes detection and analysis of smaller, rapidly desensitizing currents induced by kainate at kainate receptors. Consequently, the functional significance of these strongly desensitizing glutamate receptors remains enigmatic. We report here that the family of new noncompetitive antagonists of AMPA receptors (GYKI 52466 and 53655) minimally affects kainate-induced responses at kainate receptors while completely blocking AMPA receptor-mediated currents, making it possible to separate the responses mediated by each receptor. These compounds will allow determination of the role played by kainate receptors in synaptic transmission and plasticity in the mammalian brain, as well as evaluation of their involvement in neurotoxicity.

  10. Evolutionary inevitability of sexual antagonism.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2014-02-07

    Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.

  11. Tachykinin receptors in the guinea-pig renal pelvis: activation by exogenous and endogenous tachykinins.

    PubMed

    Maggi, C A; Patacchini, R; Eglezos, A; Quartara, L; Giuliani, S; Giachetti, A

    1992-09-01

    neurokinin A, although with lower potency as compared to the selective NK2 receptor agonist.7. MEN 10,376, L 659,877 and R 396 reduced in a concentration-dependent manner the contractile response produced by electrical field stimulation (1 Hz, 100 V, 0.25 ms pulse width, trains of 10 s). The rank order of potency of NK2 receptor antagonists in blocking the response to electrical stimulation (MEN 10,376> L 659,877> R 396) closely mimicked their potency in antagonizing exogenous tachykinins.8. The inhibitory effect of MEN 10,376 toward responses produced by electrical field stimulation was significantly reduced when tested in the presence of peptidase inhibitors, which increased significantly the response to nerve stimulation.9. GR 82,334 (3 pM) did not significantly affect the response to nerve stimulation in untreated preparations and slightly reduced it in the presence of peptidase inhibitors.10. We conclude that both NK, and NK2 receptors mediate the contractile effect of tachykinins in the circular muscle of the guinea-pig renal pelvis and that the response ascribable to NK2 receptor stimulation is larger than that ascribed to NK, receptor stimulation. The NK2 receptor in the guinea-pig renal pelvis belongs to the same subtype previously identified in the rabbit pulmonary artery. NK2 receptors play a dominant role in the physiological response determined by the release of endogenous tachykinins and a contribution of NKI receptors becomes evident after inhibition of peptide degradation.

  12. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    PubMed

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  13. Characterization of muscarinic receptors mediating relaxation and contraction in the rat iris dilator muscle.

    PubMed Central

    Masuda, Y; Yamahara, N S; Tanaka, M; Ryang, S; Kawai, T; Imaizumi, Y; Watanabe, M

    1995-01-01

    1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only. PMID:7539696

  14. Dopamine D1 receptors are not critical for opiate reward but can mediate opiate memory retrieval in a state-dependent manner.

    PubMed

    Ting-A-Kee, Ryan; Mercuriano, Laura E; Vargas-Perez, Hector; George, Susan R; van der Kooy, Derek

    2013-06-15

    Although D1 receptor knockout mice demonstrate normal morphine place preferences, antagonism of basolateral amygdala (BLA) D1 receptors only during drug-naive rat conditioning has been reported to inhibit the expression of a morphine place preference. One possible explanation for this result is state-dependent learning. That is, the omission of the intra-BLA infusion cue during testing - which acts as a potent discriminative stimulus - may have prevented the recall of a morphine-environment association and therefore, the consequent expression of a morphine place preference. To examine this possibility, we tested whether intra-BLA infusion of the D1-receptor antagonist SCH23390 during both training and testing might reveal a morphine place preference. Our results suggest that in previously drug-naive animals, D1 receptor antagonism during testing restores the opiate conditioned place preference that is normally absent when D1 receptors are blocked only during training, suggesting that BLA D1 receptors can mediate state-dependent memory retrieval. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Mitochondrial uncoupling agents antagonize rotenone actions in rat substantia nigra dopamine neurons.

    PubMed

    Wu, Yan-Na; Munhall, Adam C; Johnson, Steven W

    2011-06-13

    Mild uncoupling of oxidative phosphorylation has been reported to reduce generation of reactive oxygen species (ROS) and therefore may be neuroprotective. We reported previously that the mitochondrial poison rotenone enhanced currents evoked by N-methyl-D-aspartate (NMDA) by a ROS-dependent mechanism in rat midbrain dopamine neurons. Thus, rotenone, which produces a model of Parkinson's disease in rodents, may increase the risk of dopamine neuron excitotoxicity. The purpose of this study was to test the hypothesis that oxidative phosphorylation uncoupling agents would antagonize the effect of rotenone on NMDA current. We used patch pipettes to record whole-cell currents under voltage-clamp (-60 mV) in substantia nigra dopamine neurons in slices of rat brain. Rotenone, NMDA and uncoupling agents were added to the brain slice superfusate. Inward currents evoked by NMDA (30 μM) more than doubled in amplitude after slices were superfused for 30 min with 100 nM rotenone. Continuous superfusion with the uncoupling agent carbonyl cyanide-p-trifluoromethoxy-phenylhydrazone (1-3 nM) or 2,4-dinitrophenol (100 nM) significantly antagonized and delayed the ability of rotenone to potentiate NMDA currents. Coenzyme Q₁₀ (1-10 nM), which has been reported to facilitate uncoupling protein activity, also antagonized this action of rotenone. These results suggest that mild uncoupling of oxidative phosphorylation may protect dopamine neurons against injury from mitochondrial poisons such as rotenone. Published by Elsevier B.V.

  16. The 2.6 Angstrom Crystal Structure of a Human A[subscript 2A] Adenosine Receptor Bound to an Antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaakola, Veli-Pekka; Griffith, Mark T.; Hanson, Michael A.

    2009-01-15

    The adenosine class of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A{sub 2A} adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extendedmore » conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.« less

  17. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.

    PubMed

    Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [(11)C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.

  18. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain

    PubMed Central

    Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D

    2015-01-01

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors. PMID:25871974

  19. Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain

    DOE PAGES

    Volkow, N. D.; Wang, G. -J.; Logan, J.; ...

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less

  20. Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N. D.; Wang, G. -J.; Logan, J.

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less

  1. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    PubMed Central

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  2. Porcine deltacoronavirus accessory protein NS6 antagonizes IFN-β production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA.

    PubMed

    Fang, Puxian; Fang, Liurong; Ren, Jie; Hong, Yingying; Liu, Xiaorong; Zhao, Yunyang; Wang, Dang; Peng, Guiqing; Xiao, Shaobo

    2018-05-16

    Porcine deltacoronavirus (PDCoV) has recently emerged as an enteric pathogen that can cause serious vomiting and diarrhea in suckling piglets. The first outbreak of PDCoV occurred in the United States in 2014 and was followed by reports of PDCoV in South Korea, China, Thailand, Lao people's Democratic Republic, and Vietnam, leading to economic losses for pig farms and posing considerable threat to the swine industry worldwide. Our previous studies have shown that PDCoV encodes three accessory proteins, NS6, NS7, and NS7a, but the functions of these proteins in viral replication, pathogenesis, and immune regulation remain unclear. Here, we found that ectopic expression of accessory protein NS6 significantly inhibits Sendai virus-induced interferon-β (IFN-β) production, as well as the activation of transcription factors IRF3 and NF-κB. Interestingly, NS6 does not impede the IFN-β promoter activation mediated via key molecules in the RIG-I-like receptor (RLR) signaling pathway, specifically RIG-I, MDA5, and their downstream molecules MAVS, TBK1, IKKϵ, and IRF3. Further analyses revealed that NS6 is not a RNA-binding protein; however, it interacts with RIG-I/MDA5. This interaction attenuates the binding of double-stranded RNA by RIG-I/MDA5, resulting in the reduction of RLR-mediated IFN-β production. Taken together, our results demonstrate that ectopic expression of NS6 antagonizes IFN-β production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA, revealing a new strategy employed by PDCoV accessory proteins to counteract the host innate antiviral immune response. IMPORTANCE Coronavirus accessory proteins are species-specific, and they perform multiple functions in viral pathogenicity and immunity, such as acting as interferon (IFN) antagonists and cell death inducers. Our previous studies have shown that porcine deltacoronavirus (PDCoV) encodes three accessory proteins. Here, we demonstrated for the first time that PDCoV accessory protein NS

  3. Triclosan Antagonizes Fluconazole Activity against Candida albicans

    PubMed Central

    Higgins, J.; Pinjon, E.; Oltean, H.N.; White, T.C.; Kelly, S.L.; Martel, C.M.; Sullivan, D.J.; Coleman, D.C.; Moran, G.P.

    2012-01-01

    Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg/L. However, at subinhibitory concentrations (0.5-2 mg/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes. PMID:21972257

  4. Structural interpretation of P2X receptor mutagenesis studies on drug action.

    PubMed

    Evans, Richard J

    2010-11-01

    P2X receptors for ATP are ligand gated cation channels that form from the trimeric assembly of subunits with two transmembrane segments, a large extracellular ligand binding loop, and intracellular amino and carboxy termini. The receptors are expressed throughout the body, involved in functions ranging from blood clotting to inflammation, and may provide important targets for novel therapeutics. Mutagenesis based studies have been used to develop an understanding of the molecular basis of their pharmacology with the aim of developing models of the ligand binding site. A crystal structure for the zebra fish P2X4 receptor in the closed agonist unbound state has been published recently, which provides a major advance in our understanding of the receptors. This review gives an overview of mutagenesis studies that have led to the development of a model of the ATP binding site, as well as identifying residues contributing to allosteric regulation and antagonism. These studies are discussed with reference to the crystal to provide a structural interpretation of the molecular basis of drug action. © 2010 The Author. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  5. Purified monomeric ligand.MD-2 complexes reveal molecular and structural requirements for activation and antagonism of TLR4 by Gram-negative bacterial endotoxins.

    PubMed

    Gioannini, Theresa L; Teghanemt, Athmane; Zhang, DeSheng; Esparza, Gregory; Yu, Liping; Weiss, Jerrold

    2014-08-01

    A major focus of work in our laboratory concerns the molecular mechanisms and structural bases of Gram-negative bacterial endotoxin recognition by host (e.g., human) endotoxin-recognition proteins that mediate and/or regulate activation of Toll-like receptor (TLR) 4. Here, we review studies of wild-type and variant monomeric endotoxin.MD-2 complexes first produced and characterized in our laboratories. These purified complexes have provided unique experimental reagents, revealing both quantitative and qualitative determinants of TLR4 activation and antagonism. This review is dedicated to the memory of Dr. Theresa L. Gioannini (1949-2014) who played a central role in many of the studies and discoveries that are reviewed.

  6. Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat.

    PubMed Central

    Villalón, C. M.; Contreras, J.; Ramírez-San Juan, E.; Castillo, C.; Perusquía, M.; Terrón, J. A.

    1995-01-01

    1. It has recently been shown that continuous infusions of 5-hydroxytryptamine (5-HT) are able to inhibit, in a dose-dependent manner, the pressor responses induced by preganglionic (T7-T9) sympathetic stimulation in pithed rats pretreated with desipramine (50 micrograms kg-1, i.v.). This inhibitory effect, besides being significantly more pronounced at lower frequencies of stimulation (0.03-I Hz) and devoid of tachyphylaxis, is reversible after interrupting the infusions of 5-HT (up to 5.6 micrograms kg-1 min-1). In the present study we have characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-HT. 2. The inhibition induced by 5.6 micrograms kg-1 min-1 of 5-HT on sympathetically-induced pressor responses was not blocked after i.v. treatment with physiological saline (1 ml kg-1), ritanserin (0.1 mg kg-1), MDL 72222 (0.15 mg kg-1) or tropisetron (3 mg kg-1), which did not modify the sympathetically-induced pressor responses per se, but was significantly antagonized by the 5-HT1-like and 5-HT2 receptor antagonist, methysergide (0.3 mg kg-1), which also produced a slight attenuation of the pressor responses to 0.03 and 0.1 Hz per se. 3. Unexpectedly and contrasting with methysergide, the 5-HT1-like and 5-HT2 receptor antagonists, methiothepin (0.01, 0.03 and 0.1 mg kg-1) and metergoline (1 and 3 mg kg-1), apparently failed to block the above 5-HT-induced inhibition. Nevertheless, it is noteworthy that these antagonists also blocked the electrically-induced pressor responses per se, presumably by blockade of vascular alpha 1-adrenoceptors and, indeed, this property might have masked their potential antagonism at the inhibitory 5-HT1-like receptors. 4. Consistent with the above findings, 5-carboxamidotryptamine (5-CT, a potent 5-HT1-like receptor agonist), metergoline and methysergide mimicked the inhibitory action of 5-HT with the following rank order of agonist potency: 5CT > > 5-HT > metergoline > or = methysergide. 5

  7. Design, synthesis and structure-activity relationship of novel quinoxalin-2-carboxamides as 5-HT3 receptor antagonists for the management of depression.

    PubMed

    Mahesh, Radhakrishnan; Devadoss, Thangaraj; Pandey, Dilip Kumar; Bhatt, Shvetank; Yadav, Shushil Kumar

    2010-11-15

    A novel series of quinoxalin-2-carboxamides were designed based on the ligand-based approach, employing a three-point pharmacophore model; it consists of an aromatic residue and a linking carbonyl group and a basic nitrogen. The target new chemical entities were synthesized from the key intermediate, quinoxalin-2-carboxylic acid, by coupling it with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The obtained compounds' structures were confirmed by spectral data. The target new chemical entities were evaluated for their 5-HT(3) receptor antagonisms in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methyl-5-HT, which was expressed in the form of pA(2) value. All the synthesized compounds showed antagonism towards 5-HT(3) receptor; based on this result, a structure-activity relationship was derived, which reveals that the aromatic residue in 5-HT(3) receptor antagonists may have hydrophobic interaction with 5-HT(3) receptor. Regardless of their antagonistic potentials, all the synthesized molecules were screened for their anti-depressant potentials by using forced swim test in mice model; interestingly none of the tested compounds affect the locomotion of mice in the tested dose levels. Compounds with significant pA(2) values exhibited good anti-depressant-like activity as compared to the vehicle-treated group. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Selective and non-selective OT receptor agonists induce different locomotor behaviors in male rats via central OT receptors and peripheral V1a receptors.

    PubMed

    Wolfe, Monica; Wisniewska, Halina; Tariga, Hiroe; Ibanez, Gerardo; Collins, James C; Wisniewski, Kazimierz; Qi, Steve; Srinivasan, Karthik; Hargrove, Diane; Lindstrom, Beatriz Fioravanti

    2018-05-21

    Oxytocin (OT) continues to inspire much research due to its diverse physiological effects. While the best-understood actions of OT are uterine contraction and milk ejection, OT is also implicated in maternal and bonding behaviors, and potentially in CNS disorders such as autism, schizophrenia, and pain. The dissection of the mechanism of action of OT is complicated by the fact that this peptide activates not only its cognate receptor but also vasopressin type 1a (V1a) receptors. In this study, we evaluated OT and a selective OT receptor (OTR) agonist, FE 204409, in an automated assay that measures rat locomotor activity. The results showed: 1) Subcutaneous (sc) administration of OT decreased locomotor behavior (distance traveled, stereotypy, and rearing). This effect was reversed by a V1a receptor (V1aR) antagonist ([Pmp1,Tyr(ME)2]AVP, sc), suggesting that OT acts through peripheral V1aR to inhibit locomotor activity. 2) A selective OTR agonist (FE 204409, sc) increased stereotypy. This effect was reversed by an OTR antagonist dosed icv, suggesting a central OTR site of action. Our findings identify distinct behavioral effects for OT and the selective agonist FE 204409, adding to the growing body of evidence that the V1aR mediates many effects attributed to OT and that peptides administered systemically at supra-physiological doses may activate receptors in the brain. Our studies further emphasize the importance of utilizing selective agonists and antagonists to assess therapeutic indications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Activin C Antagonizes Activin A in Vitro and Overexpression Leads to Pathologies in Vivo

    PubMed Central

    Gold, Elspeth; Jetly, Niti; O'Bryan, Moira K.; Meachem, Sarah; Srinivasan, Deepa; Behuria, Supreeti; Sanchez-Partida, L. Gabriel; Woodruff, Teresa; Hedwards, Shelley; Wang, Hong; McDougall, Helen; Casey, Victoria; Niranjan, Birunthi; Patella, Shane; Risbridger, Gail

    2009-01-01

    Activin A is a potent growth and differentiation factor whose synthesis and bioactivity are tightly regulated. Both follistatin binding and inhibin subunit heterodimerization block access to the activin receptor and/or receptor activation. We postulated that the activin-βC subunit provides another mechanism regulating activin bioactivity. To test our hypothesis, we examined the biological effects of activin C and produced mice that overexpress activin-βC. Activin C reduced activin A bioactivity in vitro; in LNCaP cells, activin C abrogated both activin A-induced Smad signaling and growth inhibition, and in LβT2 cells, activin C antagonized activin A-mediated activity of an follicle-stimulating hormone-β promoter. Transgenic mice that overexpress activin-βC exhibited disease in testis, liver, and prostate. Male infertility was caused by both reduced sperm production and impaired sperm motility. The livers of the transgenic mice were enlarged because of an imbalance between hepatocyte proliferation and apoptosis. Transgenic prostates showed evidence of hypertrophy and epithelial cell hyperplasia. Additionally, there was decreased evidence of nuclear Smad-2 localization in the testis, liver, and prostate, indicating that overexpression of activin-βC antagonized Smad signaling in vivo. Underlying the significance of these findings, human testis, liver, and prostate cancers expressed increased activin-βC immunoreactivity. This study provides evidence that activin-βC is an antagonist of activin A and supplies an impetus to examine its role in development and disease. PMID:19095948

  10. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans.

    PubMed

    Ellis, Julia R; Ellis, Kathryn A; Bartholomeusz, Cali F; Harrison, Ben J; Wesnes, Keith A; Erskine, Fiona F; Vitetta, Luis; Nathan, Pradeep J

    2006-04-01

    Functional abnormalities in muscarinic and nicotinic receptors are associated with a number of disorders including Alzheimer's disease and schizophrenia. While the contribution of muscarinic receptors in modulating cognition is well established in humans, the effects of nicotinic receptors and the interactions and possible synergistic effects between muscarinic and nicotinic receptors have not been well characterized in humans. The current study examined the effects of selective and simultaneous muscarinic and nicotinic receptor antagonism on a range of cognitive processes. The study was a double-blind, placebo-controlled, repeated measures design in which 12 healthy, young volunteers completed cognitive testing under four acute treatment conditions: placebo (P); mecamylamine (15 mg) (M); scopolamine (0.4 mg i.m.) (S); mecamylamine (15 mg)/scopolamine (0.4 mg i.m.) (MS). Muscarinic receptor antagonism with scopolamine resulted in deficits in working memory, declarative memory, sustained visual attention and psychomotor speed. Nicotinic antagonism with mecamylamine had no effect on any of the cognitive processes examined. Simultaneous antagonism of both muscarinic and nicotinic receptors with mecamylamine and scopolamine impaired all cognitive processes impaired by scopolamine and produced greater deficits than either muscarinic or nicotinic blockade alone, particularly on working memory, visual attention and psychomotor speed. These findings suggest that muscarinic and nicotinic receptors may interact functionally to have synergistic effects particularly on working memory and attention and suggests that therapeutic strategies targeting both receptor systems may be useful in improving selective cognitive processes in a number of disorders.

  11. The imidazobenzodiazepine Ro 15-4513 antagonizes methoxyflurane anesthesia.

    PubMed

    Moody, E J; Skolnick, P

    1988-01-01

    Parenteral administration of the imidazobenzodiazepine Ro 15-4513 (a high affinity ligand of the benzodiazepine receptor with partial inverse agonist qualities) produced a dose dependent reduction in sleep time of mice exposed to the inhalation anesthetic, methoxyflurane. The reductions in methoxyflurane sleep time ranged from approximately 20% at 4 mg/kg to approximately 38% at 32 mg/kg of Ro 15-4513. Co-administration of the benzodiazepine receptor antagonist Ro 15-1788 (16 mg/kg) or the inverse agonists DMCM (5-20 mg/kg) and FG 7142 (22.5 mg/kg) blocks this effect which suggests that the reductions in methoxyflurane sleep time produced by Ro 15-4513 are mediated via occupation of benzodiazepine receptors. Moreover, neither DMCM (5-20 mg/kg) nor FG 7142 (22.5 mg/kg) reduced methoxyflurane sleep time which suggests this effect of Ro 15-4513 cannot be attributed solely to its partial inverse agonist properties. These observations support recent findings that inhalation anesthetics may produce their depressant effects via perturbation of the benzodiazepine/GABA receptor chloride channel complex, and suggest that Ro 15-4513 may serve as a prototype of agents capable of antagonizing the depressant effects of inhalation anesthetics such as methoxyflurane.

  12. JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells.

    PubMed

    Maślikowski, Bart M; Wang, Lizhen; Wu, Ying; Fielding, Ben; Bédard, Pierre-André

    2017-01-01

    The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism

  13. Blonanserin extensively occupies rat dopamine D3 receptors at antipsychotic dose range.

    PubMed

    Baba, Satoko; Enomoto, Takeshi; Horisawa, Tomoko; Hashimoto, Takashi; Ono, Michiko

    2015-03-01

    Antagonism of the dopamine D3 receptor has been hypothesized to be beneficial for schizophrenia cognitive deficits, negative symptoms and extrapyramidal symptoms. However, recent animal and human studies have shown that most antipsychotics do not occupy D3 receptors in vivo, despite their considerable binding affinity for this receptor in vitro. In the present study, we investigated the D3 receptor binding of blonanserin, a dopamine D2/D3 and serotonin 5-HT2A receptors antagonist, in vitro and in vivo. Blonanserin showed the most potent binding affinity for human D3 receptors among the tested atypical antipsychotics (risperidone, olanzapine and aripiprazole). Our GTPγS-binding assay demonstrated that blonanserin acts as a potent full antagonist for human D3 receptors. All test-drugs exhibited antipsychotic-like efficacy in methamphetamine-induced hyperactivity in rats. Treatment with blonanserin at its effective dose blocked the binding of [(3)H]-(+)-PHNO, a D2/D3 receptor radiotracer, both in the D2 receptor-rich region (striatum) and the D3 receptor-rich region (cerebellum lobes 9 and 10). On the other hand, the occupancies of other test-drugs for D3 receptors were relatively low. In conclusion, we have shown that blonanserin, but not other tested antipsychotics, extensively occupies D3 receptors in vivo in rats. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  14. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF

    PubMed Central

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C.P.; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J.; Bonvin, Alexandre M.J.J.; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N.

    2016-01-01

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses. PMID:27819269

  15. Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription

    PubMed Central

    Vidal, Marcos; Ramana, Chilakamarti V.; Dusso, Adriana S.

    2002-01-01

    The cytokine gamma interferon (IFN-γ) and the calcitropic steroid hormone 1,25-dihydroxyvitamin D (1,25D) are activators of macrophage immune function. In sarcoidosis, tuberculosis, and several granulomatoses, IFN-γ induces 1,25D synthesis by macrophages and inhibits 1,25D induction of 24-hydroxylase, a key enzyme in 1,25D inactivation, causing high levels of 1,25D in serum and hypercalcemia. This study delineates IFN-γ-1,25D cross talk in human monocytes-macrophages. Nuclear accumulation of Stat1 and vitamin D receptor (VDR) by IFN-γ and 1,25D promotes protein-protein interactions between Stat1 and the DNA binding domain of the VDR. This prevents VDR-retinoid X receptor (RXR) binding to the vitamin D-responsive element, thus diverting the VDR from its normal genomic target on the 24-hydroxylase promoter and antagonizing 1,25D-VDR transactivation of this gene. In contrast, 1,25D enhances IFN-γ action. Stat1-VDR interactions, by preventing Stat1 deactivation by tyrosine dephosphorylation, cooperate with IFN-γ/Stat1-induced transcription. This novel 1,25D-IFN-γ cross talk explains the pathogenesis of abnormal 1,25D homeostasis in granulomatous processes and provides new insights into 1,25D immunomodulatory properties. PMID:11909970

  16. Antagonism of specific corticotropin-releasing factor receptor subtypes selectively modifies weight loss in restrained rats.

    PubMed

    Chotiwat, Christina; Harris, Ruth B S

    2008-12-01

    Rats exposed to 3 h of restraint stress on each of 3 days (RRS) lose weight on the days of RRS and gain weight at the same rate as controls after stress ends, but do not return to the weight of controls. RRS rats also show an exaggerated endocrine response to subsequent novel stressors. Studies described here tested the effects of corticotropin-releasing factor receptor (CRFR) antagonism on RRS-induced weight loss, hypophagia, and corticosterone release during mild stress in the postrestraint period. Weight loss was not prevented by either peripheral or third-ventricle administration of a CRFR1 antagonist, antalarmin, before each restraint. Antalarmin did, however, allow recovery of body weight in the poststress period. Third-ventricle administration of a CRFR2 antagonist, antisauvagine 30, had no effect in RRS rats but caused sustained weight loss in control animals. Surprisingly, third-ventricle administration of the nonselective CRFR antagonist, astressin, caused hypophagia and reversible weight loss in control rats. It had no effect in RRS rats. None of the antagonists modified the corticosterone response to RRS or to mild stress in the post-RRS period, but antalarmin suppressed corticosterone during the period of restraint in Control rats. These results suggest that CRFR1 activation is required for the initiation of events that lead to a prolonged down-regulation of body weight in RRS rats. The sustained reduction in body weight is independent of the severity of hypophagia on the days of restraint and of RRS-induced corticosterone release.

  17. Subthreshold pharmacological and genetic approaches to analyzing CaV2.1-mediated NMDA receptor signaling in short-term memory.

    PubMed

    Takahashi, Eiki; Niimi, Kimie; Itakura, Chitoshi

    2010-10-25

    Ca(V)2.1 is highly expressed in the nervous system and plays an essential role in the presynaptic modulation of neurotransmitter release machinery. Recently, the antiepileptic drug levetiracetam was reported to inhibit presynaptic Ca(V)2.1 functions, reducing glutamate release in the hippocampus, although the precise physiological role of Ca(V)2.1-regulated synaptic functions in cognitive performance at the system level remains unknown. This study examined whether Ca(V)2.1 mediates hippocampus-dependent spatial short-term memory using the object location and Y-maze tests, and perirhinal cortex-dependent nonspatial short-term memory using the object recognition test, via a combined pharmacological and genetic approach. Heterozygous rolling Nagoya (rol/+) mice carrying the Ca(V)2.1alpha(1) mutation had normal spatial and nonspatial short-term memory. A 100mg/kg dose of levetiracetam, which is ineffective in wild-type controls, blocked spatial short-term memory in rol/+ mice. At 5mg/kg, the N-methyl-D-aspartate (NMDA) receptor blocker (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), which is ineffective in wild-type controls, also blocked the spatial short-term memory in rol/+ mice. Furthermore, a combination of subthreshold doses of levetiracetam (25 mg/kg) and CPP (2.5mg/kg) triggered a spatial short-term memory deficit in rol/+ mice, but not in wild-type controls. Similar patterns of nonspatial short-term memory were observed in wild-type and rol/+ mice when injected with levetiracetam (0-300 mg/kg). These results indicate that Ca(V)2.1-mediated NMDA receptor signaling is critical in hippocampus-dependent spatial short-term memory and differs in various regions. The combination subthreshold pharmacological and genetic approach presented here is easily performed and can be used to study functional signaling pathways in neuronal circuits. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus

    PubMed Central

    Naylor, David E.; Liu, Hantao; Niquet, Jerome; Wasterlain, Claude G.

    2017-01-01

    After 1 h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE. PMID:23313318

  19. Dual interaction of agmatine with the rat α2D-adrenoceptor: competitive antagonism and allosteric activation

    PubMed Central

    Molderings, G J; Menzel, S; Kathmann, M; Schlicker, E; Göthert, M

    2000-01-01

    In segments of rat vena cava preincubated with [3H]-noradrenaline and superfused with physiological salt solution, the influence of agmatine on the electrically evoked [3H]-noradrenaline release, the EP3 prostaglandin receptor-mediated and the α2D-adrenoceptor-mediated inhibition of evoked [3H]-noradrenaline release was investigated. Agmatine (0.1–10 μM) by itself was without effect on evoked [3H]-noradrenaline release. In the presence of 10 μM agmatine, the prostaglandin E2(PGE2)-induced EP3-receptor-mediated inhibition of [3H]-noradrenaline release was not modified, whereas the α2D-adrenoceptor-mediated inhibition of [3H]-noradrenaline release induced by noradrenaline, moxonidine or clonidine was more pronounced than in the absence of agmatine. However, 1 mM agmatine antagonized the moxonidine-induced inhibition of [3H]-noradrenaline release. Agmatine concentration-dependently inhibited the binding of [3H]-clonidine and [3H]-rauwolscine to rat brain cortex membranes (Ki values 6 μM and 12 μM, respectively). In addition, 30 and 100 μM agmatine increased the rate of association and decreased the rate of dissociation of [3H]-clonidine resulting in an increased affinity of the radioligand for the α2D-adrenoceptors. [14C]-agmatine labelled specific binding sites on rat brain cortex membranes. In competition experiments. [14C]-agmatine was inhibited from binding to its specific recognition sites by unlabelled agmatine, but not by rauwolscine and moxonidine. In conclusion, the present data indicate that agmatine both acts as an antagonist at the ligand recognition site of the α2D-adrenoceptor and enhances the effects of α2-adrenoceptor agonists probably by binding to an allosteric binding site of the α2D-adrenoceptor which seems to be labelled by [14C]-agmatine. PMID:10928978

  20. The Mechanism of Functional Up-Regulation of P2X3 Receptors of Trigeminal Sensory Neurons in a Genetic Mouse Model of Familial Hemiplegic Migraine Type 1 (FHM-1)

    PubMed Central

    Hullugundi, Swathi K.; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Nistri, Andrea

    2013-01-01

    A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT) neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining) migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP. PMID:23577145

  1. High-voltage electroencephalogram spindles in rats, aging and 5-HT2 antagonism.

    PubMed

    Moyanova, S; Kortenska, L; Kirov, R

    1998-03-09

    We examined the effects of serotonin-2 (5-hydroxytryptamine-2, 5-HT2) receptor antagonists on the so-called high-voltage spindles (HVS, electroencephalographic patterns, characterized by large amplitude rhythmic waves mainly in the alpha band), recorded from the frontal cortex of young, middle-aged and old freely-moving rats during waking immobility. The study was based on the assumption that the effects of 5-HT2 receptor antagonists on the HVS activity depend on the age of rats, because there is evidence for an age-related decrease in the 5-HT2 binding sites density. Four parameters of the electroencephalogram (EEG) were used to characterize the HVS activity: the square root-transformed EEG peak power in the alpha band, the frequency corresponding to this peak (both measured from the EEG power spectra using the fast Fourier transform), the HVS mean duration, and the HVS incidence (both measured from the EEG records). The EEG parameters were analyzed after i.p. administration of three 5-HT2 receptor antagonists: ketanserin, ritanserin and cyproheptadine. In young rats, the three drugs increased the alpha power, but did not change the alpha peak-corresponding frequency. Ketanserin and ritanserin did not change the HVS mean duration and HVS incidence, while cyproheptadine increased both these parameters in young rats. In middle-aged and old untreated rats, the HVS activity was significantly increased. The three 5-HT2 antagonists did not change the HVS activity in aged rats, which could be due to age-related suppression of the 5-HT2 receptor functions. Copyright 1998 Elsevier Science B.V.

  2. Synthesis and in vivo evaluation of phenethylpiperazine amides: selective 5-hydroxytryptamine(2A) receptor antagonists for the treatment of insomnia.

    PubMed

    Xiong, Yifeng; Ullman, Brett; Choi, Jin-Sun Karoline; Cherrier, Martin; Strah-Pleynet, Sonja; Decaire, Marc; Dosa, Peter I; Feichtinger, Konrad; Teegarden, Bradley R; Frazer, John M; Yoon, Woo H; Shan, Yun; Whelan, Kevin; Hauser, Erin K; Grottick, Andrew J; Semple, Graeme; Al-Shamma, Hussien

    2010-08-12

    Recent developments in sleep research suggest that antagonism of the serotonin 5-HT(2A) receptor may improve sleep maintenance insomnia. We herein report the discovery of a series of potent and selective serotonin 5-HT(2A) receptor antagonists based on a phenethylpiperazine amide core structure. When tested in a rat sleep pharmacology model, these compounds increased both sleep consolidation and deep sleep. Within this series of compounds, an improvement in the metabolic stability of early leads was achieved by introducing a carbonyl group into the phenethylpiperazine linker. Of note, compounds 14 and 27 exhibited potent 5-HT(2A) receptor binding affinity, high selectivity over the 5-HT(2C) receptor, favorable CNS partitioning, and good pharmacokinetic and early safety profiles. In vivo, these two compounds showed dose-dependent, statistically significant improvements on deep sleep (delta power) and sleep consolidation at doses as low as 0.1 mg/kg.

  3. AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling.

    PubMed

    Chen, Jian; Yang, Yi-Feng; Yang, Yu; Zou, Peng; Chen, Jun; He, Yongquan; Shui, Sai-Lan; Cui, Yan-Ru; Bai, Ru; Liang, Ya-Jun; Hu, Yunwen; Jiang, Biao; Lu, Lu; Zhang, Xiaoyan; Liu, Jia; Xu, Jianqing

    2018-03-01

    Zika virus (ZIKV) is associated with neonatal microcephaly and Guillain-Barré syndrome 1,2 . While progress has been made in understanding the causal link between ZIKV infection and microcephaly 3-9 , the life cycle and pathogenesis of ZIKV are less well understood. In particular, there are conflicting reports on the role of AXL, a TAM family kinase receptor that was initially described as the entry receptor for ZIKV 10-22 . Here, we show that while genetic ablation of AXL protected primary human astrocytes and astrocytoma cell lines from ZIKV infection, AXL knockout did not block the entry of ZIKV. We found, instead, that the presence of AXL attenuated the ZIKV-induced activation of type I interferon (IFN) signalling genes, including several type I IFNs and IFN-stimulating genes. Knocking out type I IFN receptor α chain (IFNAR1) restored the vulnerability of AXL knockout astrocytes to ZIKV infection. Further experiments suggested that AXL regulates the expression of SOCS1, a known type I IFN signalling suppressor, in a STAT1/STAT2-dependent manner. Collectively, our results demonstrate that AXL is unlikely to function as an entry receptor for ZIKV and may instead promote ZIKV infection in human astrocytes by antagonizing type I IFN signalling.

  4. Progranulin shows cytoprotective effects on trophoblast cells in vitro but does not antagonize TNF-α-induced apoptosis.

    PubMed

    Stubert, Johannes; Waldmann, Kathrin; Dieterich, Max; Richter, Dagmar-Ulrike; Briese, Volker

    2014-11-01

    The glycoprotein progranulin directly binds to TNF-receptors and thereby can antagonize the inflammatory effects of TNF-α. Here we analyzed the impact of both cytokines on cytotoxicity and viability of trophoblast cells. Isolated villous first trimester human trophoblast cells and the human choriocarcinoma cell line BeWo were treated with recombinant human progranulin and TNF-α. Analyses were performed by LDH- and MTT-assay and measurement of caspase-8-activity. Progranulin treatment showed some cytoprotective effects on isolated trophoblast cells. However, TNF-α-induced apoptosis was not antagonized by addition of progranulin. Effects were similar, but more pronounced in BeWo cells. The cytoprotective activity of progranulin on trophoblast cells in vitro was only weak and of doubtful biologic relevance. It was not able to antagonize TNF-α. Future studies should focus on possible paracrine activities of progranulin.

  5. Selective inhibition by dactinomycin of NANC sensory bronchoconstriction and [125I]NKA binding due to NK-2 receptor antagonism.

    PubMed

    Lou, Y P; Delay-Goyet, P; Lundberg, J M

    1992-03-01

    In the present study, dactinomycin (10(-5) M) inhibited the non-adrenergic, non-cholinergic bronchoconstriction upon antidromic vagal nerve stimulation (1 Hz for 1 min) in the isolated perfused guinea-pig lung by 84%. The release of calcitonin gene-related peptide was unchanged, however, suggesting a postjunctional action. Dactinomycin (10(-5), 5 x 10(-5) M) also reduced non-adrenergic non-cholinergic bronchial contractions (maximally by 75%) induced by electrical field stimulation or capsaicin, while the cholinergic component and non-adrenergic non-cholinergic relaxation remained intact. The neurokinin-2 receptor antagonist L-659,877 (10(-6) M) had a similar effect as dactinomycin, inhibiting the non-adrenergic non-cholinergic bronchial contractions by 69%, while the neurokinin-1 receptor antagonist CP-96,345 (10(-6) M) had no effect. The bronchoconstriction evoked by neurokinin A, the selective neurokinin-2 receptor agonist Nle10neurokinin A (4-10) and capsaicin was markedly inhibited by dactinomycin while the contraction induced by substance P (SP), the selective neurokinin-1 receptor agonist Sar9Met(O2)11SP, endothelin-1 and acetylcholine was not affected. In autoradiographic experiments on guinea-pig lung, [125I]neurokinin A-labelled sections showed dense binding in the bronchial smooth muscle layer. Dactinomycin inhibited the specific binding of [125I]neurokinin A in a concentration-dependent manner (IC50 = 6.3 x 10(-6) M) and 66% of [125I]neurokinin A total binding was inhibited by 10(-4) M dactinomycin. In the rat colon, [125I]neurokinin A binding to neurokinin-2 sites on circular smooth muscle was inhibited by dactinomycin with an IC50 value of 7.9 x 10(-6) M. Dactinomycin failed to reduce increased nerve-evoked contractions or those caused by Nle10neurokinin A (4-10) per se in the rat vas deferens, which are considered to be mediated by neurokinin-2 receptor activation. In the rat portal vein, dactinomycin did not influence the contractions caused by the

  6. Perceived sex discrimination amplifies the effect of antagonism on cigarette smoking.

    PubMed

    Sutin, Angelina R; English, Devin; Evans, Michele K; Zonderman, Alan B

    2014-06-01

    Compared to men, the decline in smoking during the past few decades has been slower for women, and smoking-related morbidity and mortality has increased substantially. Identifying sex-specific risk factors will inform more targeted intervention/prevention efforts. The purpose of this research is to examine the interactive effect of psychological (trait antagonism) and social (perceived sex discrimination) factors on current cigarette smoking and whether these effects differ by sex. Participants in the Healthy Aging in Neighborhoods of Diversity across the Life Span study (HANDLS; N = 454) and participants in the Health and Retirement Study (HRS; N = 8,155) completed measures of antagonism, perceived sex discrimination, and reported whether they smoked currently. Logistic regressions were used to predict smoking from antagonism, discrimination, and their interaction. Antagonism was associated with an increased risk of smoking. For women, there was an interaction between antagonism and discrimination: among women who perceived sex discrimination, every standard deviation increase in antagonism was associated with a 2.5 increased risk of current smoking in HANDLS (odds ratio [OR] = 2.54, 95% confidence interval [CI] = 1.46-4.39) and an almost 1.5 increased risk in HRS (OR = 1.43, 95% CI = 1.18-1.73). This interaction was not significant for men in either sample. In 2 independent samples, perceived sex discrimination amplified the effect of antagonism on cigarette smoking for women but not men. A hostile disposition and a perceived hostile social environment have a synergistic effect on current cigarette smoking for women.

  7. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  8. Vasopressin V1 receptor in rat hippocampus is regulated by adrenocortical functions.

    PubMed

    Saito, R; Ishiharada, N; Ban, Y; Honda, K; Takano, Y; Kamiya, H

    1994-05-16

    Two subtypes of arginine vasopressin (AVP) receptors (V1 and V2) have been distinguished. In this study, we examined the characteristics of AVP binding in rat hippocampus and the effects of bilateral adrenalectomy and adrenal steroids on its [3H]AVP binding. [3H]AVP binding to rat liver and the hippocampal membranes was strongly inhibited by the V1 antagonist, OPC-21268. ADX resulted in a significant decrease in the Bmax of AVP binding in the hippocampus. Chronic treatment with aldosterone and corticosterone restored the ADX-induced reduction, but treatment with dexamethasone did not. These results suggest that the AVP V1 receptor in the hippocampus is regulated by adrenocortical neuroregulatory functions.

  9. Stimulation of acid secretion and phosphoinositol production by rat parietal cell muscarinic M sub 2 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeiffer, A.; Rochlitz, H.; Herz, A.

    The muscarinic receptor system involved in hydrogen production by enriched rat gastric parietal cells was investigated. Muscarinic receptor density determined by (N-methyl-{sup 3}H)scopolamine binding was 8,100/cell. The receptor appeared to be of the M{sub 2} muscarinic receptor subtype, since it had a low affinity (K{sub d} 189 nM) for the M{sub 1} receptor antagonist pirenzepine compared with atropine. Receptor activation by carbachol rapidly augmented levels of polyphosphoinositides, indicating an activation of phospholipase C. The dose-response relations for the increase in inositol phosphates closely paralleled the binding of carbachol to muscarinic receptors. The inositol phosphate response was antagonized by pirenzepine withmore » a K{sub i} of 177 nM. the stimulation of inositol phosphate levels by carbachol correlated well with the stimulation of ({sup 14}C)aminopyrine uptake, determine as an index of acid secretion. The muscarinic agonists oxotremorine, pilocarpine, and bethanechol elicited partial increases in inositol phosphates at maximal drug concentrations, and these partial increases correlated with their ability to stimulate ({sup 14}C)aminopyrine uptake. These data indicate that inositolpolyphosphates may be a second messenger of M{sub 2} receptors stimulating acid secretion.« less

  10. The Extracellular Loop 2 (ECL2) of the Human Histamine H4 Receptor Substantially Contributes to Ligand Binding and Constitutive Activity

    PubMed Central

    Wifling, David; Bernhardt, Günther; Dove, Stefan; Buschauer, Armin

    2015-01-01

    In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R) shows extraordinarily high constitutive activity. In the extracellular loop (ECL), replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R. PMID:25629160

  11. Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking.

    PubMed

    Bäckström, Pia; Hyytiä, Petri

    2006-04-01

    Neuroanatomical and pharmacological evidence implicates glutamate transmission in drug-environment conditioning that partly controls drug seeking and relapse. Glutamate receptors could be targets for pharmacological attenuation of the motivational properties of drug-paired cues and for relapse prevention. The purpose of the present study was therefore to investigate the involvement of ionotropic and metabotropic glutamate receptor subtypes in cue-induced reinstatement of cocaine-seeking behavior. Rats were trained to self-administer cocaine using a second-order schedule of reinforcement (FR4(FR5:S)) under which a compound stimulus (light and tone) associated with cocaine infusions was presented contingently. Following extinction, the effects of the competitive NMDA receptor antagonist CGP 39551 (0, 2.5, 5, 10 mg/kg intraperitoneally (i.p.)), two competitive AMPA/kainate antagonists, CNQX (0, 0.75, 1.5, 3 mg/kg i.p.) and NBQX (0, 1.25, 2.5, 5 mg/kg i.p.), the NMDA/glycine site antagonist L-701,324 (0, 0.63, 1.25, 2.5 mg/kg i.p.), and the mGluR5 antagonist MPEP (0, 1.25, 2.5, 5 mg/kg i.p.) on cue-induced reinstatement of cocaine seeking were examined. The AMPA/kainate receptor antagonists CNQX and NBQX, the NMDA/glycine site antagonist L-701,324, and the mGluR5 antagonist MPEP attenuated significantly cue-induced reinstatement. The NMDA antagonist CGP 39551 failed to affect reinstatement. Additional control experiments indicated that attenuation of cue-induced reinstatement by CNQX, NBQX, L-701,324, and MPEP was not accompanied by significant suppression of spontaneous locomotor activity. These results suggest that conditioned influences on cocaine seeking depend on glutamate transmission. Accordingly, drugs with antagonist properties at various glutamate receptor subtypes could be useful in prevention of relapse induced by conditioned stimuli.

  12. Boronic acid-containing CXCR1/2 antagonists: optimization of metabolic stability, in vivo evaluation, and a proposed receptor binding model

    PubMed Central

    Maeda, Dean Y.; Peck, Angela M.; Schuler, Aaron D.; Quinn, Mark T.; Kirpotina, Liliya N.; Wicomb, Winston N.; Auten, Richard L.; Gundla, Rambabu; Zebala, John A.

    2015-01-01

    Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation. PMID:25933594

  13. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia.

    PubMed

    Rutter, A Richard; Ma, Qing-Ping; Leveridge, Mathew; Bonnert, Timothy P

    2005-11-07

    Coassociation of the vanilloid transient receptor potential (Trp) ion channels, TrpV1 and TrpV2, was investigated by immunoprecipitation and immunofluorescence in transfected mammalian cell lines, rat dorsal root ganglia and spinal cord. TrpV1/TrpV2 heteromeric complexes were coimmunoprecipitated from human embryonic kidney cells and F-11 dorsal root ganglion hybridoma cells following their transient coexpression. Immunofluorescent labelling of transfected F-11 cells revealed colocalization of TrpV1 and TrpV2 at the cell surface. Immunoprecipitation from rat dorsal root ganglion lysates identified a minor population of receptor complexes composed of TrpV1/TrpV2 heteromers, consistent with a small proportion of cells double-labelled with TrpV1 and TrpV2 antibodies in rat dorsal root ganglion sections. TrpV1/TrpV2 receptor complexes may represent a functionally distinct ion channel complex that may increase the diversity observed within the Trp ion channel family.

  14. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  15. Involvement of transient receptor potential vanilloid 2 in intra-oral incisional pain.

    PubMed

    Urata, K; Shinoda, M; Ikutame, D; Iinuma, T; Iwata, K

    2018-03-05

    To examine whether transient receptor potential vanilloid 2 (TRPV2) contributes to the changes in intra-oral thermal and mechanical sensitivity following the incision of buccal mucosa. Buccal mucosal pain threshold was measured after the incision. Changes in the number of TRPV2-immunoreactive (IR) trigeminal ganglion (TG) neurons which innervate the whisker pad skin and buccal mucosa, changes in the number of isolectin B4-negative/isolectin B4-positive TRPV2-IR TG neurons which innervate the whisker pad skin and the buccal mucosa, and the effect of peripheral TRPV2 antagonism on the pain threshold of incisional whisker pad skin and buccal mucosa were examined after these injuries. Buccal mucosal pain hypersensitivities were induced on day 3 following the incision. The total number of TRPV2-IR TG neurons and the number of isolectin B4-negative TRPV2-IR TG neurons which innervate the whisker pad skin and buccal mucosa were increased. Buccal mucosal TRPV2 antagonism completely suppressed the heat and mechanical hypersensitivities, but not cold hypersensitivity. TRPV2 antagonist administration to the incisional whisker pad skin only partially suppressed pain hypersensitivities. The increased expression of TRPV2 in peptidergic TG neurons innervating the incisional buccal mucosa is predominantly involved in buccal mucosal heat hyperalgesia and mechanical allodynia following buccal mucosal incision. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  16. P2X7 receptor antagonism ameliorates renal dysfunction in a rat model of sepsis.

    PubMed

    Arulkumaran, Nishkantha; Sixma, Marije L; Pollen, Sean; Ceravola, Elias; Jentho, Elisa; Prendecki, Maria; Bass, Paul S; Tam, Frederick W K; Unwin, Robert J; Singer, Mervyn

    2018-03-01

    Sepsis is a major clinical problem associated with significant organ dysfunction and high mortality. The ATP-sensitive P2X 7 receptor activates the NLRP3 inflammasome and is a key component of the innate immune system. We used a fluid-resuscitated rat model of fecal peritonitis and acute kidney injury (AKI) to investigate the contribution of this purinergic receptor to renal dysfunction in sepsis. Six and 24 h time-points were chosen to represent early and established sepsis, respectively. A selective P2X 7 receptor antagonist (A-438079) dissolved in dimethyl sulfoxide (DMSO) was infused 2 h following induction of sepsis. Compared with sham-operated animals, septic animals had significant increases in heart rate (-1(-4 to 8)% vs. 21(12-26)%; P = 0.003), fever (37.4(37.2-37.6)°C vs. 38.6(38.2-39.0)°C; P = 0.0009), and falls in serum albumin (29(27-30)g/L vs. 26(24-28); P = 0.0242). Serum IL-1β (0(0-10)(pg/mL) vs. 1671(1445-33778)(pg/mL); P < 0.001) and renal IL-1β (86(50-102)pg/mg protein vs. 200 (147-248)pg/mg protein; P = 0.0031) were significantly elevated in septic compared with sham-operated animals at 6 h. Serum creatinine was elevated in septic animals compared with sham-operated animals at 24 h (23(22-25) μmol/L vs. 28 (25-30)μmol/L; P = 0.0321). Renal IL-1β levels were significantly lower in A-438079-treated animals compared with untreated animals at 6 h (70(55-128)pg/mg protein vs. 200(147-248)pg/mg protein; P = 0.021). At 24 h, compared with untreated animals, A-438079-treated animals had more rapid resolution of tachycardia (22(13-36)% vs. -1(-6 to 7)%; P = 0.019) and fever (39.0(38.6-39.1)°C vs. 38.2(37.6-38.7)°C; P < 0.024), higher serum albumin (23(21-25)g/L vs. (27(25-28)g/L); P = 0.006), lower arterial lactate (3.2(2.5-4.3)mmol/L vs. 1.4(0.9-1.8)mmol/L; P = 0.037), and lower serum creatinine concentrations (28(25-30)μmol/L vs. 22(17-27)μmol/L; P = 0.019). P2X 7 A treatment ameliorates the systemic

  17. Histamine response and local cooling in the human skin: involvement of H1- and H2-receptors.

    PubMed

    Grossmann, M; Jamieson, M J; Kirch, W

    1999-08-01

    Histamine may contribute locally to cutaneous blood flow control under normal and pathologic conditions. The objective of this study was to observe the influence of skin temperature on histamine vasodilation, and the roles of H1-and H2-receptors using novel noninvasive methods. Eleven healthy subjects received, double-blind, single doses of the H1-receptor antagonist cetirizine (10 mg), cetirizine (10 mg) plus the H2-receptor antagonist cimetidine (400 mg), or placebo on separate occasions. Histamine was dosed cumulatively by iontophoresis to the forearm skin at 34 degrees C and 14 degrees C. Laser-Doppler flux (LDF) was measured at the same sites using customised probeholder/iontophoretic chambers with Peltier cooling elements. Finger mean arterial pressure (MAP) was measured and cutaneous vascular conductance calculated as LDF/MAP. Histamine vasodilation was reduced in cold skin. Cetirizine shifted the histamine dose-response at both temperatures: statistically significantly at 14 degrees C only. Combined H1- and H2-receptor antagonism shifted the response significantly at both temperatures. H1- and H2-receptors mediate histamine-induced skin vasodilation. The sensitivity of these receptors, particularly the H1- receptor, is attenuated at low skin temperature. Whether the reduced effect in cold skin represents specific receptor or postreceptor desensitization, or nonspecific attenuation of cutaneous vasodilation remains to be elucidated.

  18. Lipoxin A4 stable analogs reduce allergic airway responses via mechanisms distinct from CysLT1 receptor antagonism.

    PubMed

    Levy, Bruce D; Lukacs, Nicholas W; Berlin, Aaron A; Schmidt, Birgitta; Guilford, William J; Serhan, Charles N; Parkinson, John F

    2007-12-01

    Cellular recruitment during inflammatory/immune responses is tightly regulated. The ability to dampen inflammation is imperative for prevention of chronic immune responses, as in asthma. Here we investigated the ability of lipoxin A4 (LXA4) stable analogs to regulate airway responses in two allergen-driven models of inflammation. A 15-epi-LXA4 analog (ATLa) and a 3-oxa-15-epi-LXA4 analog (ZK-994) prevented excessive eosinophil and T lymphocyte accumulation and activation after mice were sensitized and aerosol-challenged with ovalbumin. At <0.5 mg/kg, these LXA4 analogs reduced leukocyte trafficking into the lung by >50% and to a greater extent than equivalent doses of the CysLT1 receptor antagonist montelukast. Distinct from montelukast, ATLa treatment led to marked reductions in cysteinyl leukotrienes, interleukin-4 (IL-4), and IL-10, and both ATLa and ZK-994 inhibited levels of IL-13. In cockroach allergen-induced airway responses, both intraperitoneal and oral administration of ZK-994 significantly reduced parameters of airway inflammation and hyper-responsiveness in a dose-dependent manner. ZK-994 also significantly changed the balance of Th1/Th2-specific cytokine levels. Thus, the ATLa/LXA4 analog actions are distinct from CysLT1 antagonism and potently block both allergic airway inflammation and hyper-reactivity. Moreover, these results demonstrate these analogs' therapeutic potential as new agonists for the resolution of inflammation.

  19. Panicolytic-like action of bradykinin in the dorsal periaqueductal gray through μ-opioid and B2-kinin receptors.

    PubMed

    Sestile, Caio César; Maraschin, Jhonatan Christian; Gama, Vanessa Scalco; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2017-09-01

    A wealth of evidence has shown that opioid and kinin systems may control proximal defense in the dorsal periaqueductal gray matter (dPAG), a critical panic-associated area. Studies with drugs that interfere with serotonin-mediated neurotransmission suggest that the μ-opioid receptor (MOR) synergistically interacts with the 5-HT 1A receptor in the dPAG to inhibit escape, a panic-related behavior. A similar inhibitory effect has also been reported after local administration of bradykinin (BK), which is blocked by the non-selective opioid receptor antagonist naloxone. The latter evidence, points to an interaction between BK and opioids in the dPAG. We further explored the existence of this interaction through the dPAG electrical stimulation model of panic. We also investigated whether intra-dPAG injection of captopril, an inhibitor of the angiotensin-converting enzyme (ACE) that also degrades BK, causes a panicolytic-like effect. Our results showed that intra-dPAG injection of BK inhibited escape performance in a dose-dependent way, and this panicolytic-like effect was blocked by the BK type 2 receptor (B2R) antagonist HOE-140, and by the selective MOR antagonist CTOP. Conversely, the panicolytic-like effect caused by local administration of the selective MOR agonist DAMGO was antagonized by pre-treatment with either CTOP or HOE-140, indicating cross-antagonism between MOR and B2R. Finally, intra-dPAG injection of captopril also impaired escape in a dose-dependent way, and this panicolytic-like effect was blocked by pretreatment with HOE-140, suggesting mediation by endogenous BK. The panicolytic-like effect of captopril indicates that the use of ACE inhibitors in the clinical management of panic disorder may be worth exploring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ethanol preconditioning of rat cerebellar cultures targets NMDA receptors to the synapse and enhances peroxiredoxin 2 expression.

    PubMed

    Mitchell, Robert M; Tajuddin, Nuzhath; Campbell, Edward M; Neafsey, Edward J; Collins, Michael A

    2016-07-01

    Epidemiological studies indicate that light-moderate alcohol (ethanol) consumers tend to have reduced risks of cognitive impairment and progression to dementia during aging. Exploring possible mechanisms, we previously found that moderate ethanol preconditioning (MEP, 20-30mM) of rat brain cultures for several days instigated neuroprotection against β-amyloid peptides. Our biochemical evidence implicated the NMDA receptor (NMDAR) as a potential neuroprotective "sensor", specifically via synaptic NMDAR signaling. It remains unclear how ethanol modulates the receptor and its downstream targets to engender neuroprotection. Here we confirm with deconvolution microscopy that MEP of rat mixed cerebellar cultures robustly increases synaptic NMDAR localization. Phospho-activation of the non-receptor tyrosine kinases Src and Pyk2, known to be linked to synaptic NMDAR, is also demonstrated. Additionally, the preconditioning enhances levels of an antioxidant protein, peroxiredoxin 2 (Prx2), reported to be downstream of synaptic NMDAR signaling, and NMDAR antagonism with memantine (earlier found to abrogate MEP neuroprotection) blocks the Prx2 elevations. To further link Prx2 with antioxidant-based neuroprotection, we circumvented the ethanol preconditioning-NMDAR pathway by pharmacologically increasing Prx2 with the naturally-occurring cruciferous compound, 3H-1,2-dithiole-3-thione (D3T). Thus, D3T pretreatment elevated Prx2 expression to a similar extent as MEP, while concomitantly preventing β-amyloid neurotoxicity; D3T also protected the cultures from hydrogen peroxide toxicity. The findings support a mechanism that couples synaptic NMDAR signaling, Prx2 expression and augmented antioxidant defenses in ethanol preconditioning-induced neuroprotection. That this mechanism can be emulated by a cruciferous vegetable constituent suggests that such naturally-occurring "neutraceuticals" may be useful in therapy for oxidative stress-related dementias. Copyright © 2016 Elsevier

  1. Neuraxial Opioid-Induced Itch and Its Pharmacological Antagonism

    PubMed Central

    2015-01-01

    Given its profound analgesic nature, neuraxial opioids are frequently used for pain management. Unfortunately, the high incident rate of itch/pruritus after spinal administration of opioid analgesics reported in postoperative and obstetric patients greatly diminishes patient satisfaction and thus the value of the analgesics. Many endeavors to solve the mystery behind neuraxial opioid-induced itch had not been successful, as the pharmacological antagonism other than the blockade of mu opioid receptors remains elusive. Nevertheless, as the characteristics of all opioid receptor subtypes have become more understood, more studies have shed light on the potential effective treatments. This review discusses the mechanisms underlying neuraxial opioid-induced itch and compares pharmacological evidence in nonhuman primates with clinical findings across diverse drugs. Both nonhuman primate and human studies corroborate that mixed mu/kappa opioid partial agonists seem to be the most effective drugs in ameliorating neuraxial opioid-induced itch while retaining neuraxial opioid-induced analgesia. PMID:25861787

  2. Eosinophils Contribute to Intestinal Inflammation via Chemoattractant Receptor-homologous Molecule Expressed on Th2 Cells, CRTH2, in Experimental Crohn's Disease.

    PubMed

    Radnai, Balázs; Sturm, Eva M; Stančić, Angela; Jandl, Katharina; Labocha, Sandra; Ferreirós, Nerea; Grill, Magdalena; Hasenoehrl, Carina; Gorkiewicz, Gregor; Marsche, Gunther; Heinemann, Ákos; Högenauer, Christoph; Schicho, Rudolf

    2016-09-01

    Prostaglandin [PG] D2 activates two receptors, DP and CRTH2. Antagonism of CRTH2 has been shown to promote anti-allergic and anti-inflammatory effects. We investigated whether CRTH2 may play a role in Crohn's disease [CD], focusing on eosinophils which are widely present in the inflamed mucosa of CD patients and express both receptors. Using the 2,4,6-trinitrobenzenesulfonic acid [TNBS]-induced colitis model, involvement of CRTH2 in colitis was investigated by pharmacological antagonism, immunohistochemistry, Western blotting, immunoassay, and leukocyte recruitment. Chemotactic assays were performed with isolated human eosinophils. Biopsies and serum samples of CD patients were examined for presence of CRTH2 and ligands, respectively. High amounts of CRTH2-positive cells, including eosinophils, are present in the colonic mucosa of mice with TNBS colitis and in human CD. The CRTH2 antagonist OC-459, but not the DP antagonist MK0524, reduced inflammation scores and decreased TNF-α, IL-1β, and IL-6 as compared with control mice. OC-459 inhibited recruitment of eosinophils into the colon and also inhibited CRTH2-induced chemotaxis of human eosinophils in vitro. Eosinophil-depleted ΔdblGATA knockout mice were less sensitive to TNBS-induced colitis, whereas IL-5 transgenic mice with lifelong eosinophilia were more severely affected than wild types. In addition, we show that serum levels of PGD2 and Δ(12)-PGJ2 were increased in CD patients as compared with control individuals. CRTH2 plays a pro-inflammatory role in TNBS-induced colitis. Eosinophils contribute to the severity of the inflammation, which is improved by a selective CRTH2 antagonist. CRTH2 may, therefore, represent an important target in the pharmacotherapy of CD. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Flumazenil antagonizes the central effects of zolpidem, an imidazopyridine hypnotic.

    PubMed

    Patat, A; Naef, M M; van Gessel, E; Forster, A; Dubruc, C; Rosenzweig, P

    1994-10-01

    Zolpidem is a new imidazopyridine-hypnotic that selectively binds to the central omega 1-receptor subtype. A double-blind, randomized, three-way, crossover placebo-controlled study was carried out in nine healthy male volunteers to assess the possible antagonism of central nervous system--depressant effects of zolpidem by flumazenil. Subjects received zolpidem (0.21 mg/kg) or placebo, intravenously, followed 17 minutes later by flumazenil (0.04 mg/kg) or placebo. Vigilance and performance were assessed by a trained anesthetist with use of ciliary reflex, response to a verbal instruction, subjective sedation, a tracking task, and a free recall task. Zolpidem produced a clinically relevant hypnotic effect in five subjects and significantly impaired performance in all nine subjects up to 90 minutes after dosing. Flumazenil rapidly antagonized clinical sedation in the five subjects who were asleep and significantly reversed the performance decrement within 3 minutes, without any escape phenomenon. Flumazenil did not change zolpidem plasma concentrations, confirming the pharmacodynamic nature of the interaction. Flumazenil may thus be a safe and effective antidote in patients with zolpidem overdosage.

  4. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus.

    PubMed

    Naylor, David E; Liu, Hantao; Niquet, Jerome; Wasterlain, Claude G

    2013-06-01

    After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Gomez, Ana I; Machado, Francisco; Di Virgilio, Francesco; Pelegrín, Pablo

    2012-07-01

    Prostaglandins (PGs) are important lipid mediators involved in the development of inflammatory associated pain and fever. PGE2 is a well-established endogenous pyrogen activated by proinflammatory cytokine interleukin (IL)-1β. P2X7 receptors (P2X7Rs) expressed by inflammatory cells are stimulated by the danger signal extracellular ATP to activate the inflammasome and release IL-1β. Here we show that P2X7R activation is required for the release of PGE2 and other autacoids independent of inflammasome activation, with an ATP EC(50) for PGE2 and IL-1β release of 1.58 and 1.23 mM, respectively. Furthermore, lack of P2X7R or specific antagonism of P2X7R decreased the febrile response in mice triggered after intraperitoneal LPS or IL-1β inoculation. Accordingly, LPS inoculation caused intraperitoneal ATP accumulation. Therefore, P2X7R antagonists emerge as novel therapeutics for the treatment for acute inflammation, pain and fever, with wider anti-inflammatory activity than currently used cyclooxygenase inhibitors.-Barberà-Cremades, M., Baroja-Mazo, A., Gomez, A. I., Machado, F., Di Virgilio, F., Pelegrín, P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.

  6. SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor

    PubMed Central

    Bradley, ME; Bond, ME; Manini, J; Brown, Z; Charlton, SJ

    2009-01-01

    Background and purpose: In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric. Experimental approach: To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils. Key results: In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation. Conclusions and implications: Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling. PMID:19422399

  7. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells*

    PubMed Central

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs. PMID:22194602

  8. SRY-box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells.

    PubMed

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M; Evans, Ronald M; Gage, Fred H

    2012-02-17

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs.

  9. Pharmacologic antagonism of thromboxane A2 receptors by trimetoquinol analogs in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Y.; Romstedt, K.J.; Doyle, K.

    1991-01-01

    Although (-)-(S)-trimetoquinol (1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ) is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of (3H)SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, Pmore » less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.« less

  10. Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide

    NASA Astrophysics Data System (ADS)

    di Giglio, Maria Giulia; Muttenthaler, Markus; Harpsøe, Kasper; Liutkeviciute, Zita; Keov, Peter; Eder, Thomas; Rattei, Thomas; Arrowsmith, Sarah; Wray, Susan; Marek, Ales; Elbert, Tomas; Alewood, Paul F.; Gloriam, David E.; Gruber, Christian W.

    2017-02-01

    Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  11. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells.

    PubMed

    Procino, Giuseppe; Carmosino, Monica; Tamma, Grazia; Gouraud, Sabine; Laera, Antonia; Riccardi, Daniela; Svelto, Maria; Valenti, Giovanna

    2004-12-01

    Urinary concentrating defects and polyuria are the most important renal manifestations of hypercalcemia and the resulting hypercalciuria. In this study, we tested the hypothesis that hypercalciuria-associated polyuria in kidney collecting duct occurs through an impairment of the vasopressin-dependent aquaporin 2 (AQP2) water channel targeting to the apical membrane possibly involving calcium-sensing receptor (CaR) signaling. AQP2-transfected collecting duct CD8 cells were used as experimental model. Quantitation of cell surface AQP2 immunoreactivity was performed using an antibody recognizing the extracellular AQP2 C loop. Intracellular cyclic adenosine monophosphate (cAMP) accumulation was measured in CD8 cells using a cAMP enzyme immunoassay kit. To study the translocation of protein kinase C (PKC), membranes or cytosol fractions from CD8 cells were subjected to Western blotting using anti-PKC isozymes antibodies. The amount of F-actin was determined by spectrofluorometric techniques. Intracellular calcium measurements were performed by spectrofluorometric analysis with Fura-2/AM. We demonstrated that extracellular calcium (Ca2+ o) (5 mmol/L) strongly inhibited forskolin-stimulated increase in AQP2 expression in the apical plasma membrane. At least three intracellular pathways activated by extracellular calcium were found to contribute to this effect. Firstly, the increase in cAMP levels in response to forskolin stimulation was drastically reduced in cells pretreated with Ca2+ o compared to untreated cells. Second, Ca2+ o activated PKC, known to counteract vasopressin response. Third, quantification of F-actin demonstrated that Ca2+ o caused a nearly twofold increase in F-actin content compared with basal conditions. All these effects were mimicked by a nonmembrane permeable agonist of the extracellular CaR, Gd3+. Together, these data demonstrate that extracellular calcium, possibly acting through the endogenous CaR, antagonizes forskolin-induced AQP2

  12. EphA2 Receptor Signaling Mediates Inflammatory Responses in Lipopolysaccharide-Induced Lung Injury.

    PubMed

    Hong, Ji Young; Shin, Mi Hwa; Chung, Kyung Soo; Kim, Eun Young; Jung, Ji Ye; Kang, Young Ae; Kim, Young Sam; Kim, Se Kyu; Chang, Joon; Park, Moo Suk

    2015-07-01

    Eph receptors and ephrin ligands have several functions including angiogenesis, cell migration, axon guidance, fluid homeostasis, oncogenesis, inflammation and injury repair. The EphA2 receptor potentially mediates the regulation of vascular permeability and inflammation in response to lung injury. Mice were divided into 3 experimental groups to study the role of EphA2 signaling in the lipopolysaccharide (LPS)-induced lung injury model i.e., IgG+phosphate-buffered saline (PBS) group (IgG instillation before PBS exposure), IgG+LPS group (IgG instillation before LPS exposure) and EphA2 monoclonal antibody (mAb)+LPS group (EphA2 mAb pretreatment before LPS exposure). EphA2 and ephrinA1 were upregulated in LPS-induced lung injury. The lung injury score of the EphA2 mAb+LPS group was lower than that of the IgG+LPS group (4.30±2.93 vs. 11.45±1.20, respectively; p=0.004). Cell counts (EphA2 mAb+LPS: 11.33×10(4)±8.84×10(4) vs. IgG+LPS: 208.0×10(4)±122.6×10(4); p=0.018) and total protein concentrations (EphA2 mAb+LPS: 0.52±0.41 mg/mL vs. IgG+LPS: 1.38±1.08 mg/mL; p=0.192) were decreased in EphA2 mAb+LPS group, as compared to the IgG+LPS group. In addition, EphA2 antagonism reduced the expression of phospho-p85, phosphoinositide 3-kinase 110γ, phospho-Akt, nuclear factor κB, and proinflammatory cytokines. This results of the study indicated a role for EphA2-ephrinA1 signaling in the pathogenesis of LPS-induced lung injury. Furthermore, EphA2 antagonism inhibits the phosphoinositide 3-kinase-Akt pathway and attenuates inflammation.

  13. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open and desensitized states

    PubMed Central

    Dürr, Katharina L.; Chen, Lei; Stein, Richard A.; De Zorzi, Rita; MihaelaFolea, I.; Walz, Thomas; Mchaourab, Hassane S.; Gouaux, Eric

    2014-01-01

    Summary Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory signaling in the nervous system. Despite the profound importance of iGluRs in the nervous system, little is known about the structures and dynamics of intact receptors in distinct functional states. Here we elucidate the structures of the intact GluA2 AMPA receptor in an apo resting/closed state, in an activated/pre-open state bound with the partial agonists and a positive allosteric modulator and in a desensitized/closed state in complex with FW alone. To probe the conformational properties of these states, we carried out double electron-electron resonance experiments on cysteine mutants and cryo-electron microscopy studies. We show how agonist binding modulates the conformation of the ligand binding domain 'layer' of the intact receptors and how, upon desensitization, the receptor undergoes large conformational rearrangements of amino-terminal and ligand-binding domains. We define mechanistic principles by which to understand antagonism, activation and desensitization in AMPA iGluRs. PMID:25109876

  14. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons

    PubMed Central

    López Soto, Eduardo Javier; Agosti, Francina; Cabral, Agustina; Mustafa, Emilio Roman; Damonte, Valentina Martínez; Gandini, Maria Alejandra; Rodríguez, Silvia; Castrogiovanni, Daniel; Felix, Ricardo; Perelló, Mario

    2015-01-01

    The growth hormone secretagogue receptor type 1a (GHSR1a) has the highest known constitutive activity of any G protein–coupled receptor (GPCR). GHSR1a mediates the action of the hormone ghrelin, and its activation increases transcriptional and electrical activity in hypothalamic neurons. Although GHSR1a is present at GABAergic presynaptic terminals, its effect on neurotransmitter release remains unclear. The activities of the voltage-gated calcium channels, CaV2.1 and CaV2.2, which mediate neurotransmitter release at presynaptic terminals, are modulated by many GPCRs. Here, we show that both constitutive and agonist-dependent GHSR1a activity elicit a strong impairment of CaV2.1 and CaV2.2 currents in rat and mouse hypothalamic neurons and in a heterologous expression system. Constitutive GHSR1a activity reduces CaV2 currents by a Gi/o-dependent mechanism that involves persistent reduction in channel density at the plasma membrane, whereas ghrelin-dependent GHSR1a inhibition is reversible and involves altered CaV2 gating via a Gq-dependent pathway. Thus, GHSR1a differentially inhibits CaV2 channels by Gi/o or Gq protein pathways depending on its mode of activation. Moreover, we present evidence suggesting that GHSR1a-mediated inhibition of CaV2 attenuates GABA release in hypothalamic neurons, a mechanism that could contribute to neuronal activation through the disinhibition of postsynaptic neurons. PMID:26283199

  15. Selective endothelinA receptor antagonism with sitaxsentan for pulmonary arterial hypertension associated with connective tissue disease

    PubMed Central

    Girgis, Reda E; Frost, Adaani E; Hill, Nicholas S; Horn, Evelyn M; Langleben, David; McLaughlin, Vallerie V; Oudiz, Ronald J; Robbins, Ivan M; Seibold, James R; Shapiro, Shelley; Tapson, Victor F; Barst, Robyn J

    2007-01-01

    Introduction Endothelin receptor antagonism has become an important component in the treatment of pulmonary arterial hypertension (PAH) associated with connective tissue disease (CTD). The purpose of this study was to analyse the safety and effectiveness of sitaxsentan, a selective antagonist of the ETA receptor, in a cohort of patients with PAH and CTD. Short‐term clinical and haemodynamic effects and longer‐term follow‐up data are presented. Methods A post hoc subgroup analysis was performed on 42 patients who had PAH associated with CTD, out of a group of 178 patients enrolled in a 12‐week, double‐blind, randomised clinical trial of sitaxsentan versus placebo. Data from 33 patients assigned to sitaxsentan 100 mg or 300 mg daily were pooled and compared with nine placebo‐treated patients. There were 41 patients entered into the blinded extension study, in which all patients received either 100 mg or 300 mg sitaxsentan once daily. Results Patients treated with sitaxsentan had a mean (SD) increase in 6 minute walk distance of 20 (5) m from baseline to week 12 (p = 0.037), whereas the placebo group had a decrease of 38 (84) m, resulting in a placebo‐subtracted treatment effect of 58 m (p = 0.027). Parallel improvements in quality of life and haemodynamics were also observed. No patient discontinued their drug during the 12‐week trial. In the blinded extension study (median treatment duration 26 weeks), more patients were in functional class I–II than in III–IV (p<0.001) at the end of the study compared with the start of active therapy. Elevation of hepatic transaminase levels occurred in two patients. Conclusions Sitaxsentan appears to be efficacious in patients with PAH associated with CTD. PMID:17472992

  16. Boronic acid-containing CXCR1/2 antagonists: Optimization of metabolic stability, in vivo evaluation, and a proposed receptor binding model.

    PubMed

    Maeda, Dean Y; Peck, Angela M; Schuler, Aaron D; Quinn, Mark T; Kirpotina, Liliya N; Wicomb, Winston N; Auten, Richard L; Gundla, Rambabu; Zebala, John A

    2015-06-01

    Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Adenosine A2A Receptors in the Nucleus Accumbens Bi-Directionally Alter Cocaine Seeking in Rats

    PubMed Central

    O'Neill, Casey E; LeTendre, Mckenzie L; Bachtell, Ryan K

    2012-01-01

    Repeated cocaine administration enhances dopamine D2 receptor sensitivity in the mesolimbic dopamine system, which contributes to drug relapse. Adenosine A2A receptors are colocalized with D2 receptors on nucleus accumbens (NAc) medium spiny neurons where they antagonize D2 receptor activity. Thus, A2A receptors represent a target for reducing enhanced D2 receptor sensitivity that contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A2A receptor modulation in the NAc on cocaine seeking in rats that were trained to lever press for cocaine. Following at least 15 daily self-administration sessions and 1 week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc core microinjections of the A2A receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b--ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride), and the A2A receptor antagonist, MSX-3 (3,7-dihydro-8-[(1E)-2-(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt hydrate), in modulating cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine- and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic A2A receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A2A receptor stimulation reduces, while A2A blockade amplifies, D2 receptor

  18. Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats.

    PubMed

    O'Neill, Casey E; LeTendre, McKenzie L; Bachtell, Ryan K

    2012-04-01

    Repeated cocaine administration enhances dopamine D(2) receptor sensitivity in the mesolimbic dopamine system, which contributes to drug relapse. Adenosine A(2A) receptors are colocalized with D(2) receptors on nucleus accumbens (NAc) medium spiny neurons where they antagonize D(2) receptor activity. Thus, A(2A) receptors represent a target for reducing enhanced D(2) receptor sensitivity that contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A(2A) receptor modulation in the NAc on cocaine seeking in rats that were trained to lever press for cocaine. Following at least 15 daily self-administration sessions and 1 week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc core microinjections of the A(2A) receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride), and the A(2A) receptor antagonist, MSX-3 (3,7-dihydro-8-[(1E)-2-(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt hydrate), in modulating cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine- and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic A(2A) receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A(2A) receptor stimulation reduces, while A(2A) blockade

  19. Roles of NMDA and dopamine D1 and D2 receptors in the acquisition and expression of flavor preferences conditioned by oral glucose in rats.

    PubMed

    Dela Cruz, J A D; Coke, T; Icaza-Cukali, D; Khalifa, N; Bodnar, R J

    2014-10-01

    Animals learn to prefer flavors associated with the intake of sugar (sucrose, fructose, glucose) and fat (corn oil: CO) solutions. Conditioned flavor preferences (CFP) have been elicited for sugars based on orosensory (flavor-flavor: e.g., fructose-CFP) and post-ingestive (flavor-nutrient: e.g., intragastric (IG) glucose-CFP) processes. Dopamine (DA) D1, DA D2 and NMDA receptor antagonism differentially eliminate the acquisition and expression of fructose-CFP and IG glucose-CFP. However, pharmacological analysis of fat (CO)-CFP, mediated by both flavor-flavor and flavor-nutrient processes, indicated that acquisition and expression of fat-CFP were minimally affected by systemic DA D1 and D2 antagonists, and were reduced by NMDA antagonism. Therefore, the present study examined whether systemic DA D1 (SCH23390), DA D2 (raclopride) or NMDA (MK-801) receptor antagonists altered acquisition and/or expression of CFP induced by oral glucose that should be mediated by both flavor-flavor and flavor-nutrient processes. Oral glucose-CFP was elicited following by training rats to drink one novel flavor (CS+, e.g., cherry) mixed in 8% glucose and another flavor (CS-, e.g., grape) mixed in 2% glucose. In expression studies, food-restricted rats drank these solutions in one-bottle sessions (2 h) over 10 days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 2% glucose occurred 0.5 h after systemic administration of vehicle (VEH), SCH23390 (50-800 nmol/kg), raclopride (50-800 nmol/kg) or MK-801 (50-200 μg/kg). Rats displayed a robust CS+ preference following VEH treatment (94-95%) which was significantly though marginally attenuated by SCH23390 (67-70%), raclopride (77%) or MK-801 (70%) at doses that also markedly reduced overall CS intake. In separate acquisition studies, rats received VEH, SCH23390 (50-400 nmol/kg), raclopride (50-400 nmol/kg) or MK-801 (100 μg/kg) 0.5 h prior to ten 1-bottle training trials with CS+/8%G and CS-/2%G training solutions that was

  20. [Vasopressin V2 receptor-related pathologies: congenital nephrogenic diabetes insipidus and nephrogenic syndrome of inappropiate antidiuresis].

    PubMed

    Morin, Denis

    2014-12-01

    Congenital nephrogenic diabetes insipidus is a rare hereditary disease with mainly an X-linked inheritance (90% of the cases) but there are also autosomal recessive and dominant forms. Congenital nephrogenic diabetes insipidus is characterized by a resistance of the renal collecting duct to the action of the arginine vasopressin hormone responsible for the inability of the kidney to concentrate urine. The X-linked form is due to inactivating mutations of the vasopressin 2 receptor gene leading to a loss of function of the mutated receptors. Affected males are often symptomatic in the neonatal period with a lack of weight gain, dehydration and hypernatremia but mild phenotypes may also occur. Females carrying the mutation may be asymptomatic but, sometimes, severe polyuria is found due to the random X chromosome inactivation. The autosomal recessive and dominant forms, occurring in both genders, are linked to mutations in the aquaporin-2 gene. The treatment remains difficult, especially in infants, and is based on a low osmotic diet with increased water intake and the use of thiazides and indomethacin. The main goal is to avoid hypernatremic episodes and maintain a good hydration state. Potentially, specific treatment, in some cases of X-linked congenital nephrogenic diabetes insipidus, with pharmacological chaperones such as non-peptide vasopressin-2 receptor antagonists will be available in the future. Conversely, the nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is linked to a constitutive activation of the V(2)-receptor due to activating mutations with clinical and biological features of inappropriate antidiuresis but with low or undetectable plasma arginine vasopressin hormone levels. Copyright © 2014 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  1. Platelet Activating Factor (PAF) Receptor Deletion or Antagonism Attenuates Severe HSV-1 Meningoencephalitis.

    PubMed

    Vilela, Márcia Carvalho; Lima, Graciela Kunrath; Rodrigues, David Henrique; Lacerda-Queiroz, Norinne; Pedroso, Vinicius Sousa Pietra; de Miranda, Aline Silva; Rachid, Milene Alvarenga; Kroon, Erna Geessien; Campos, Marco Antônio; Teixeira, Mauro Martins; Teixeira, Antonio Lucio

    2016-12-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen that may cause severe encephalitis. The exacerbated immune response against the virus contributes to the disease severity and death. Platelet activating factor (PAF) is a mediator capable of inducing increase in vascular permeability, production of cytokines on endothelial cells and leukocytes. We aimed to investigate the activation of PAF receptor (PAFR) and its contribution to the severity of the inflammatory response in the brain following HSV-1 infection. C57BL/6 wild-type (WT) and PAFR deficient (PAFR -/- ) mice were inoculated intracranially with 10 4 plaque-forming units (PFU) of HSV-1. Visualization of leukocyte recruitment was performed using intravital microscopy. Cells infiltration in the brain tissue were analyzed by flow cytometry. Brain was removed for chemokine assessment by ELISA and for histopathological analysis. The pharmacological inhibition by the PAFR antagonist UK-74,505 was also analyzed. In PAFR -/- mice, there was delayed lethality but no difference in viral load. Histopathological analysis of infected PAFR -/- mice showed that brain lesions were less severe when compared to their WT counterparts. Moreover, PAFR -/- mice showed less TCD4 + , TCD8 + and macrophages in brain tissue. This reduction of the presence of leukocytes in parenchyma may be mechanistically explained by a decrease in leukocytes rolling and adhesion. PAFR -/- mice also presented a reduction of the chemokine CXCL9 in the brain. In addition, by antagonizing PAFR, survival of C57BL/6 infected mice increased. Altogether, our data suggest that PAFR plays a role in the pathogenesis of experimental HSV-1 meningoencephalitis, and its blockade prevents severe disease manifestation.

  2. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed

    Maggi, C A; Patacchini, R; Giuliani, S; Rovero, P; Dion, S; Regoli, D; Giachetti, A; Meli, A

    1990-07-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA. Similar pA2 values were obtained after 15 or 90min of incubation with the antagonists. Peptides I, II and III had no inhibitory effect on contractions produced by noradrenaline in the RPA or by carbachol in the HT. 5. Peptides I, II and III showed weak or no antagonistic activity toward the vasodilatator effect of substance P in the dog carotid artery (NK, receptor

  3. CCR2-V64I genetic polymorphism: a possible involvement in HER2+ breast cancer.

    PubMed

    Banin-Hirata, Bruna Karina; Losi-Guembarovski, Roberta; Oda, Julie Massayo Maeda; de Oliveira, Carlos Eduardo Coral; Campos, Clodoaldo Zago; Mazzuco, Tânia Longo; Borelli, Sueli Donizete; Ceribelli, Jesus Roberto; Watanabe, Maria Angelica Ehara

    2016-05-01

    Many tumor cells express chemokines and chemokine receptors, and these molecules can affect both tumor progression and anti-tumor immune response. Genetic polymorphisms of some chemokine receptors were found to be closely related to malignant tumors, especially in metastasis process, including breast cancer (BC). Considering this, it was investigated a possible role for CCR2-V64I (C-C chemokine receptor 2) and CCR5-Δ32 (C-C chemokine receptor 5) genetic variants in BC context. Patients were divided into subgroups according to immunohistochemical profile of estrogen (ER) and progesterone (PR) receptors and the human epidermal growth factor receptor 2 (HER2) overexpression. No significant associations were found in relation to susceptibility (CCR2-V64I: OR 1.32; 95 % CI 0.57-3.06; CCR5-∆32: OR 1.04; 95 % CI 0.60-1.81), clinical outcome (tumor size, lymph nodes commitment and/or distant metastasis, TNM staging and nuclear grade) or therapeutic response (recurrence and survival). However, it was found a significant correlation between CCR2-V64I allelic variant and HER2 immunohistochemical positive samples (p = 0.026). All in all, we demonstrate, for the first time, a positive correlation between CCR2 receptor gene polymorphism and a subgroup of BC related to poor prognosis, which deserves further investigation in larger samples for validation.

  4. Impulsive behaviour in rats induced by intracortical DOI infusions is antagonized by co-administration of an mGlu2/3 receptor agonist.

    PubMed

    Wischhof, Lena; Hollensteiner, Karl J; Koch, Michael

    2011-12-01

    The orbitofrontal cortex (OFC) and the medial prefrontal cortex (mPFC) modulate impulsive behaviours. Serotonin [5-hydroxytryptamine (5-HT)] 2A receptors have also been implicated in impulsivity and govern antagonistic interactions with metabotropic glutamate (mGlu)2/3 receptors. This study examined the interactions between 5-HT2A and mGlu2/3 receptors in the OFC and mPFC with relevance to impulsive choice and impulsive action. Impulsive choice was assessed in Lister Hooded rats, trained in a delay-discounting T-maze task, after bilateral intra-OFC infusions of the 5-HT2A/C receptor agonist DOI [(+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropan hydrochloride; 5 μg/0.5 μl] and the mGlu2/3 receptor agonist LY379268 (1 μg/0.5 μl). Impulsive action was assessed in a second group of rats trained in a five-choice serial reaction time task (5-CSRTT) and receiving bilateral intra-mPFC infusions of DOI (5 μg/0.5 μl) and LY379268 (1 μg/0.5 μl). Intra-OFC DOI increased impulsive choice, which was not seen when DOI was co-administered with LY379268. LY379268 itself had no effect on choice behaviour. Intra-mPFC DOI caused impulsive over-responding in the 5-CSRTT that was attenuated when DOI and LY379268 were co-injected. Local mPFC-infusions of LY379268 had no effect on 5-CSRTT performance. This study suggests a differential involvement of OFC and mPFC 5-HT2A receptors in impulsive choice and impulsive action. Moreover, compounds acting at mGlu2/3 receptors might have the potential to improve impulsivity-related impairments.

  5. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity.

    PubMed

    Planagumà, Jesús; Haselmann, Holger; Mannara, Francesco; Petit-Pedrol, Mar; Grünewald, Benedikt; Aguilar, Esther; Röpke, Luise; Martín-García, Elena; Titulaer, Maarten J; Jercog, Pablo; Graus, Francesc; Maldonado, Rafael; Geis, Christian; Dalmau, Josep

    2016-09-01

    To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity. One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus. Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity. Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400. © 2016 American Neurological Association.

  6. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome.

    PubMed Central

    de Keyzer, Y; Lenne, F; Auzan, C; Jégou, S; René, P; Vaudry, H; Kuhn, J M; Luton, J P; Clauser, E; Bertagna, X

    1996-01-01

    Ectopic ACTH secretion occurs in highly differentiated and rather indolent tumors like bronchial carcinoids or, in contrast, in various types of aggressive and poorly differentiated neuroendocrine tumors. We explored this phenomenon using the recently cloned human pituitary V3 vasopressin receptor as an alternate molecular marker of the corticotroph phenotype. Expression of V3 receptor, corticotrophin releasing hormone (CRH) receptor, and proopiomelanocortin (POMC) genes was examined in tumors of pituitary and nonpituitary origin. A comparative RT-PCR approach revealed signals for both V3 receptor and CHR receptor mRNAs in 17 of 18 ACTH-secreting pituitary adenomas, and 6 of 6 normal pituitaries; in six growth hormone- or prolactin-secreting adenomas, a very faint V3 receptor signal was observed in three cases, and CRH receptor signal was undetected in all. Six of eight bronchial carcinoids responsible for the ectopic ACTH syndrome had both POMC and V3 receptor signals as high as those in ACTH-secreting pituitary adenomas; in contrast, no POMC signal and only a very faint V3 receptor signal were detected in six of eight nonsecreting bronchial carcinoids. Northern blot analysis showed V3 receptor mRNA of identical size in ACTH-secreting bronchial carcinoids and pituitary tumors. Other types of nonpituitary tumors responsible for ectopic ACTH syndrome presented much lower levels of both POMC and V3 receptor gene expression than those found in ACTH-secreting bronchial carcinoids. In contrast with the V3 receptor, CRH receptor mRNA was detected in the majority of neuroendocrine tumors irrespective of their POMC status. These results show that expression of the V3 receptor gene participates in the corticotroph phenotype. Its striking association with ACTH-secreting bronchial carcinoids defines a subset of nonpituitary tumors in which ectopic POMC gene expression is but one aspect of a wider process of corticotroph cell differentiation, and opens new possibilities of

  7. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome.

    PubMed

    de Keyzer, Y; Lenne, F; Auzan, C; Jégou, S; René, P; Vaudry, H; Kuhn, J M; Luton, J P; Clauser, E; Bertagna, X

    1996-03-01

    Ectopic ACTH secretion occurs in highly differentiated and rather indolent tumors like bronchial carcinoids or, in contrast, in various types of aggressive and poorly differentiated neuroendocrine tumors. We explored this phenomenon using the recently cloned human pituitary V3 vasopressin receptor as an alternate molecular marker of the corticotroph phenotype. Expression of V3 receptor, corticotrophin releasing hormone (CRH) receptor, and proopiomelanocortin (POMC) genes was examined in tumors of pituitary and nonpituitary origin. A comparative RT-PCR approach revealed signals for both V3 receptor and CHR receptor mRNAs in 17 of 18 ACTH-secreting pituitary adenomas, and 6 of 6 normal pituitaries; in six growth hormone- or prolactin-secreting adenomas, a very faint V3 receptor signal was observed in three cases, and CRH receptor signal was undetected in all. Six of eight bronchial carcinoids responsible for the ectopic ACTH syndrome had both POMC and V3 receptor signals as high as those in ACTH-secreting pituitary adenomas; in contrast, no POMC signal and only a very faint V3 receptor signal were detected in six of eight nonsecreting bronchial carcinoids. Northern blot analysis showed V3 receptor mRNA of identical size in ACTH-secreting bronchial carcinoids and pituitary tumors. Other types of nonpituitary tumors responsible for ectopic ACTH syndrome presented much lower levels of both POMC and V3 receptor gene expression than those found in ACTH-secreting bronchial carcinoids. In contrast with the V3 receptor, CRH receptor mRNA was detected in the majority of neuroendocrine tumors irrespective of their POMC status. These results show that expression of the V3 receptor gene participates in the corticotroph phenotype. Its striking association with ACTH-secreting bronchial carcinoids defines a subset of nonpituitary tumors in which ectopic POMC gene expression is but one aspect of a wider process of corticotroph cell differentiation, and opens new possibilities of

  8. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    PubMed

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  9. Effect of genetic deletion and pharmacological antagonism of P2X7 receptors in a mouse animal model of migraine

    PubMed Central

    2014-01-01

    Background Purine receptors participate in peripheral and central sensitization and are associated with migraine headache. We investigated the role of P2X7 receptor (P2X7) in a nitroglycerin (NTG)-induced mouse model of migraine. Methods Intraperitoneal NTG injection (15 mg/kg) triggered thermal hyperalgesia in the hindpaws of wild-type C57BL/6J mice, followed by the induction of c-fos in upper cervical spinal cord and trigeminal nucleus caudalis. The effect of genetic deletion of P2X7 and the selective P2X7 antagonist Brilliant Blue G (BBG) were examined on hyperalgesia and c-fos induction. Results NTG decreased the paw withdrawal threshold in both wild-type and P2X7 knockout mice. Nevertheless, subacute BBG treatment (50 mg/kg/day i.p.) completely prevented the effect of NTG in wild-type, but not in knockout mice. Whereas P2X7 deficiency differentially affected the expression of c-fos, the average number of fos-immuno-reactive neurons in trigeminal nucleus caudalis, but not in upper cervical spinal cord was lower in BBG-treated wild-type mice after NTG treatment. Conclusions Our results show that P2X7 receptors might participate in the pathogenesis of migraine, although upregulation of other P2X receptors probably compensate for the loss of its action in knockout mice. The data also suggest the therapeutic potential of P2X7 antagonists for the treatment of migraine. PMID:24885962

  10. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: INSIGHTS INTO PEPTIDE-BINDING MODES AND ALLOSTERIC MODULATION OF THE CALCITONIN RECEPTOR BY RECEPTOR ACTIVITY-MODIFYING PROTEINS.

    PubMed

    Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A

    2016-04-15

    Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Antagonism of substance P and perception of breathlessness in patients with chronic obstructive pulmonary disease.

    PubMed

    Mahler, Donald A; Gifford, Alex H; Gilani, Aamir; Waterman, Laurie A; Hilton, Jennifer; Chang, Andrew S; Kupchak, Brian R; Kraemer, William J

    2014-06-01

    The objective of this study was to investigate whether substance P, an excitatory neuropeptide, modulates the perception of breathlessness by administering aprepitant, a selective antagonist that blocks neurokinin (NK)-1 receptor signaling. Individual targeted resistive load breathing (RLB) was used to provoke breathlessness. In Study 1, sixteen patients (age, 70±6 years) with chronic obstructive pulmonary disease (COPD) reported similar ratings of breathlessness during RLB between oral aprepitant (125mg) and placebo. After aprepitant, but not with placebo, there were significant increases in blood levels of substance P (+54±39%) and beta-endorphin (+27±17%). A similar design was used in Study 2 except that naloxone (10mg) was administered intravenously prior to RLB to block any effect of endogenous opioids. Nine patients with COPD reported comparable breathlessness ratings during RLB between aprepitant and placebo. Our results do not support a role for the substance P-NK-1 pathway in the perception of breathlessness in patients with COPD. With selective antagonism of NK-1 signaling, there was co-transmission of substance P and beta-endorphin neuropeptides. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice.

    PubMed

    Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze

    2016-11-24

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA 1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA 1/3 antagonism using the small molecule Ki16425. We show that LPA 1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA 1/3 blockade enhanced the percentage of non-inflammatory, Ly6C low monocytes and CD4 + CD25 + FoxP3 + T-regulatory cells. Finally, we demonstrate that LPA 1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA 1/3 receptors may prove a promising approach to diminish atherosclerosis development.

  13. High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.

    PubMed

    Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K

    2010-12-01

    Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

  14. Distortion of KB estimates of endothelin-1 ETA and ETB receptor antagonists in pulmonary arteries: Possible role of an endothelin-1 clearance mechanism.

    PubMed

    Angus, James A; Hughes, Richard J A; Wright, Christine E

    2017-12-01

    Dual endothelin ET A and ET B receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ET B receptor-mediated clearance of endothelin-1 at specific vascular sites may compromise this targeted therapy. Concentration-response curves (CRC) to endothelin-1 or the ET B agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin-1 CRC competitively indicative of ET A receptor antagonism. In rat small pulmonary arteries, bosentan 10 μmol L -1 left-shifted the endothelin-1 CRC, demonstrating potentiation consistent with antagonism of an ET B receptor-mediated endothelin-1 clearance mechanism. Removal of endothelium or L-NAME did not alter the EC 50 or Emax of endothelin-1 nor increase the antagonism by BQ788. In the presence of BQ788 and L-NAME, bosentan displayed ET A receptor antagonism. In rat trachea (ET B ), bosentan was a competitive ET B antagonist against endothelin-1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ET A to ET B antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin-1 constriction by ET dual antagonists, such as bosentan or the ET B antagonist BQ788, is possibly due to the competition of potentiation of endothelin-1 by blockade of ET B -mediated endothelin-1 clearance located on smooth muscle and antagonism of ET A - and ET B -mediated contraction. This conclusion may have direct application for the efficacy of endothelin-1 antagonists for treating PAH. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  15. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics.

    PubMed

    Tonini, M; Cipollina, L; Poluzzi, E; Crema, F; Corazza, G R; De Ponti, F

    2004-02-15

    Antidopaminergic gastrointestinal prokinetics (bromopride, clebopride, domperidone, levosulpiride and metoclopramide) have been exploited clinically for the management of motor disorders of the upper gastrointestinal tract, including functional dyspepsia, gastric stasis of various origins and emesis. The prokinetic effect of these drugs is mediated through the blockade of enteric (neuronal and muscular) inhibitory D2 receptors. The pharmacological profiles of the marketed compounds differ in terms of their molecular structure, affinity at D2 receptors, ability to interact with other receptor systems [5-hydroxytryptamine-3 (5-HT3) and 5-HT4 receptors for metoclopramide; 5-HT4 receptors for levosulpiride) and ability to permeate the blood-brain barrier (compared with the other compounds, domperidone does not easily cross the barrier). It has been suggested that the serotonergic (5-HT4) component of some antidopaminergic prokinetics may enhance their therapeutic efficacy in gastrointestinal disorders, such as functional dyspepsia and diabetic gastroparesis. The antagonism of central D2 receptors may lead to both therapeutic (e.g. anti-emetic effect due to D2 receptor blockade in the area postrema) and adverse (including hyperprolactinaemia and extrapyramidal dystonic reactions) effects. As the pituitary (as well as the area postrema) is outside the blood-brain barrier, hyperprolactinaemia is a side-effect occurring with all antidopaminergic prokinetics, although to different extents. Extrapyramidal reactions are most commonly observed with compounds crossing the blood-brain barrier, although with some differences amongst the various agents. Prokinetics with a high dissociation constant compared with that of dopamine at the D2 receptor (i.e. compounds that bind loosely to D2 receptors in the nigrostriatal pathway) elicit fewer extrapyramidal signs and symptoms. A knowledge of central and peripheral D2 receptor pharmacology can help the clinician to choose between the

  16. The analgesic effect of clonixine is not mediated by 5-HT3 subtype receptors.

    PubMed

    Paeile, C; Bustamante, S E; Sierralta, F; Bustamante, D; Miranda, H F

    1995-10-01

    1. The analgesic effect of clonixinate of L-lysine (Clx) in the nociceptive C-fiber reflex in rat and in the writhing test in mice is reported. 2. Clx was administered by three routes, i.v., i.t. and i.c.v., inducing a dose-dependent antinociception. 3. The antinociceptive effect of Clx was 40-45% with respect to the control integration values in the nociceptive C-fiber reflex method. 4. The writhing test yielded ED50 values (mg/kg) of 12.0 +/- 1.3 (i.p.), 1.8 +/- 0.2 (i.t.) and 0.9 +/- 0.1 (i.c.v.) for Clx administration. 5. Ondansetron was not able to antagonize the antinociception response of Clx in the algesiometric tests used. 6. Chlorophenilbiguanide did not produce any significative change in the analgesic effect of Clx in the nociceptive C-fiber reflex method. 7. It is suggested that the mechanism of action of the central analgesia of Clx is not mediated by 5-HT3 subtype receptors.

  17. V3 vasopressin receptor and corticotropic phenotype in pituitary and nonpituitary tumors.

    PubMed

    de Keyzer, Y; René, P; Lenne, F; Auzan, C; Clauser, E; Bertagna, X

    1997-01-01

    Pituitary corticotropic cells express a specific vasopressin receptor, called V1b or V3, through which vasopressin stimulates corticotropin secretion. We recently cloned a cDNA coding for this receptor and showed that it belongs to the G protein-coupled receptor family. V3 mRNA is readily detected by RT-PCR in normal human pituitaries and corticotropic pituitary adenomas but not in PRL or GH-secreting adenomas, thus demonstrating that, like POMC itself and the CRH receptor, V3 is a marker of the corticotropic phenotype. Nuclease protection experiments suggest that V3 is overexpressed in some corticotropic adenomas, and thus may play a role in tumor development by activating the phospholipase C-signalling pathway. In addition analysis of its expression in nonpituitary neuroendocrine tumors showed a striking association with carcinoids of the lung responsible for the ectopic ACTH syndrome.

  18. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT(2A) and 5-HT(2C) receptors.

    PubMed

    Acuña-Castillo, Claudio; Villalobos, Claudio; Moya, Pablo R; Sáez, Patricio; Cassels, Bruce K; Huidobro-Toro, J Pablo

    2002-06-01

    The pharmacological profile of a series of (+/-)-2,5-dimethoxy-4-(X)-phenylisopropylamines (X=I, Br, NO(2), CH(3), or H) and corresponding phenylethylamines, was determined in Xenopus laevis oocytes injected with cRNA coding for rat 5-HT(2A) or 5-HT(2C) receptors. The efficacy and relative potency of these drugs were determined and compared to classical 5-HT(2) receptor agonists and antagonists. The rank order of agonist potency at the 5-HT(2A) receptor was: alpha-methyl-5-HT=5-HT>m-CPP>MK-212; at the 5-HT(2C) receptor the order was: 5-HT>alpha-methyl-5-HT>MK-212>m-CPP. All these compounds were full agonists at the 5-HT(2C) receptor, but alpha-methyl-5-HT and m-CPP showed lower efficacy at the 5-HT(2A) receptor. 4-(4-Fluorobenzoyl)-1-(4-phenylbutyl)piperidine (4F 4PP) was 200 times more potent as a 5-HT(2A) antagonist than at 5-HT(2C) receptors. Conversely, RS 102221 was 100 times more potent as a 5-HT(2C) antagonist, confirming their relative receptor selectivities. The phenylisopropylamines were partial agonists at the 5-HT(2A) receptor, with I(max) relative to 5-HT in the 22+/-7 to 58+/-15% range; the corresponding phenylethylamines had lower or undetectable efficacies. All these drugs had higher efficacies at 5-HT(2C) receptors; DOI was a full 5-HT(2C) agonist. 2C-I and the other phenylethylamines examined showed relative efficacies at the 5-HT(2C) receptor ranging from 44+/-10% to 76+/-16%. 2C-N was a 5-HT(2) receptor antagonist; the mechanism was competitive at the 5-HT(2A), but non-competitive at the 5-HT(2C) receptor. The antagonism was time-dependent at the 5-HT(2C) receptor but independent of pre-incubation time at the 5-HT(2A) receptor subtype. The alpha-methyl group determines the efficacy of these phenylalkylamines at the 5-HT(2A) and 5-HT(2C) receptors.

  19. Selective and interactive effects of D2 receptor antagonism and positive allosteric mGluR4 modulation on waiting impulsivity.

    PubMed

    Isherwood, Sarah N; Robbins, Trevor W; Nicholson, Janet R; Dalley, Jeffrey W; Pekcec, Anton

    2017-09-01

    Metabotropic glutamate receptor 4 (mGluR4) and dopamine D 2 receptors are specifically expressed within the indirect pathway neurons of the striato-pallidal-subthalamic pathway. This unique expression profile suggests that mGluR4 and D 2 receptors may play a cooperative role in the regulation and inhibitory control of behaviour. We investigated this possibility by testing the effects of a functionally-characterised positive allosteric mGluR4 modulator, 4-((E)-styryl)-pyrimidin-2-ylamine (Cpd11), both alone and in combination with the D 2 receptor antagonist eticlopride, on two distinct forms of impulsivity. Rats were trained on the five-choice serial reaction time task (5-CSRTT) of sustained visual attention and segregated according to low, mid, and high levels of motor impulsivity (LI, MI and HI, respectively), with unscreened rats used as an additional control group. A separate group of rats was trained on a delay discounting task (DDT) to assess choice impulsivity. Systemic administration of Cpd11 dose-dependently increased motor impulsivity and impaired attentional accuracy on the 5-CSRTT in all groups tested. Eticlopride selectively attenuated the increase in impulsivity induced by Cpd11, but not the accompanying attentional impairment, at doses that had no significant effect on behavioural performance when administered alone. Cpd11 also decreased choice impulsivity on the DDT (i.e. increased preference for the large, delayed reward) and decreased locomotor activity. These findings demonstrate that mGluR4s, in conjunction with D 2 receptors, affect motor- and choice-based measures of impulsivity, and therefore may be novel targets to modulate impulsive behaviour associated with a number of neuropsychiatric syndromes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Tachykinin-mediated respiratory effects in conscious guinea pigs: modulation by NK1 and NK2 receptor antagonists.

    PubMed

    Kudlacz, E M; Logan, D E; Shatzer, S A; Farrell, A M; Baugh, L E

    1993-09-07

    Tachykinins, in particular neurokinin A and substance P, produce a number of airway effects which may contribute to respiratory diseases such as asthma. We examined the ability of aerosolized substance P, neurokinin A or capsaicin to produce respiratory alterations in conscious guinea pigs using modified whole body plethysmography. Substance P-mediated dyspnea and significant respiratory events were inhibited by the NK1 receptor antagonist, CP-96,345. Neurokinin A-mediated respiratory effects were ablated by the NK2 receptor antagonists: MEN 10207, MDL 29,913 and SR 48,968, the latter being the most potent. The peptide-based antagonist, MEN 10207, produced respiratory effects itself suggesting partial agonist activity. The cyclic hexapeptide, MDL 29,913, relaxed airway smooth muscle via mechanisms other than tachykinin antagonism. NK2 but not NK1 receptor antagonists were able to delay the onset of capsaicin-induced dyspnea, although alone they did not usually (in approximately 10% of the animals) eliminate the response. However, when NK2 receptor antagonists were combined with CP-96,345, the incidence of dyspnea induced by capsaicin decreased significantly (40%) suggesting that both tachykinins contribute to dyspnea in this system.

  1. Stellate and pyramidal neurons in goldfish telencephalon respond differently to anoxia and GABA receptor inhibition.

    PubMed

    Hossein-Javaheri, Nariman; Wilkie, Michael P; Lado, Wudu E; Buck, Leslie T

    2017-02-15

    With oxygen deprivation, the mammalian brain undergoes hyper-activity and neuronal death while this does not occur in the anoxia-tolerant goldfish ( Carassius auratus ). Anoxic survival of the goldfish may rely on neuromodulatory mechanisms to suppress neuronal hyper-excitability. As γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, we decided to investigate its potential role in suppressing the electrical activity of goldfish telencephalic neurons. Utilizing whole-cell patch-clamp recording, we recorded the electrical activities of both excitatory (pyramidal) and inhibitory (stellate) neurons. With anoxia, membrane potential ( V m ) depolarized in both cell types from -72.2 mV to -57.7 mV and from -64.5 mV to -46.8 mV in pyramidal and stellate neurons, respectively. While pyramidal cells remained mostly quiescent, action potential frequency (AP f ) of the stellate neurons increased 68-fold. Furthermore, the GABA A receptor reversal potential ( E - GABA ) was determined using the gramicidin perforated-patch-clamp method and found to be depolarizing in pyramidal (-53.8 mV) and stellate neurons (-42.1 mV). Although GABA was depolarizing, pyramidal neurons remained quiescent as E GABA was below the action potential threshold (-36 mV pyramidal and -38 mV stellate neurons). Inhibition of GABA A receptors with gabazine reversed the anoxia-mediated response. While GABA B receptor inhibition alone did not affect the anoxic response, co-antagonism of GABA A and GABA B receptors (gabazine and CGP-55848) led to the generation of seizure-like activities in both neuron types. We conclude that with anoxia, V m depolarizes towards E GABA which increases AP f in stellate neurons and decreases AP f in pyramidal neurons, and that GABA plays an important role in the anoxia tolerance of goldfish brain. © 2017. Published by The Company of Biologists Ltd.

  2. GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl--sensitive WNK1 kinase.

    PubMed

    Heubl, Martin; Zhang, Jinwei; Pressey, Jessica C; Al Awabdh, Sana; Renner, Marianne; Gomez-Castro, Ferran; Moutkine, Imane; Eugène, Emmanuel; Russeau, Marion; Kahle, Kristopher T; Poncer, Jean Christophe; Lévi, Sabine

    2017-11-24

    The K + -Cl - co-transporter KCC2 (SLC12A5) tunes the efficacy of GABA A receptor-mediated transmission by regulating the intraneuronal chloride concentration [Cl - ] i . KCC2 undergoes activity-dependent regulation in both physiological and pathological conditions. The regulation of KCC2 by synaptic excitation is well documented; however, whether the transporter is regulated by synaptic inhibition is unknown. Here we report a mechanism of KCC2 regulation by GABA A receptor (GABA A R)-mediated transmission in mature hippocampal neurons. Enhancing GABA A R-mediated inhibition confines KCC2 to the plasma membrane, while antagonizing inhibition reduces KCC2 surface expression by increasing the lateral diffusion and endocytosis of the transporter. This mechanism utilizes Cl - as an intracellular secondary messenger and is dependent on phosphorylation of KCC2 at threonines 906 and 1007 by the Cl - -sensing kinase WNK1. We propose this mechanism contributes to the homeostasis of synaptic inhibition by rapidly adjusting neuronal [Cl - ] i to GABA A R activity.

  3. Lysergic acid diethylamide (LSD) is a partial agonist of D2 dopaminergic receptors and it potentiates dopamine-mediated prolactin secretion in lactotrophs in vitro.

    PubMed

    Giacomelli, S; Palmery, M; Romanelli, L; Cheng, C Y; Silvestrini, B

    1998-01-01

    The hallucinogenic effects of lysergic acid diethylamide (LSD) have mainly been attributed to the interaction of this drug with the serotoninergic system, but it seems more likely that they are the result of the complex interactions of the drug with both the serotoninergic and dopaminergic systems. The aim of the present study was to investigate the functional actions of LSD at dopaminergic receptors using prolactin secretion by primary cultures of rat pituitary cells as a model. LSD produced a dose-dependent inhibition of prolactin secretion in vitro with an IC50 at 1.7x10(-9) M. This action was antagonized by spiperone but not by SKF83566 or cyproheptadine, which indicates that LSD has a specific effect on D2 dopaminergic receptors. The maximum inhibition of prolactin secretion achieved by LSD was lower than that by dopamine (60% versus 80%). Moreover, the fact that LSD at 10(-8)-10(-6) M antagonized the inhibitory effect of dopamine (10(-7) M) and bromocriptine (10(-11) M) suggests that LSD acts as a partial agonist at D2 receptors on lactotrophs in vitro. Interestingly, LSD at 10(-13)-10(-10) M, the concentrations which are 10-1000-fold lower than those required to induce direct inhibition on pituitary prolactin secretion, potentiated the dopamine (10(-10)-2.5x10(-9) M)-mediated prolactin secretion by pituitary cells in vitro. These results suggest that LSD not only interacts with dopaminergic receptors but also has a unique capacity for modulating dopaminergic transmission. These findings may offer new insights into the hallucinogenic effect of LSD.

  4. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    PubMed

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  5. Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior.

    PubMed

    Ferris, Craig F; Lu, Shi-Fang; Messenger, Tara; Guillon, Christophe D; Heindel, Ned; Miller, Marvin; Koppel, Gary; Robert Bruns, F; Simon, Neal G

    2006-02-01

    Arginine vasopressin functions as a neurochemical signal in the brain to affect social behavior. There is an expanding literature from animal and human studies showing that vasopressin, through the vasopressin 1A receptor (V1A), can stimulate aggressive behavior. Using a novel monocylic beta lactam platform, a series of orally active vasopressin V1a antagonists was developed with high affinity for the human receptor. SRX251 was chosen from this series of V1a antagonists to screen for effects on serenic activity in a resident-intruder model of offensive aggression. Resident, male Syrian golden hamsters were given oral doses of SRX251 or intraperitoneal Manning compound, a selective V1a receptor antagonist with reduced brain penetrance, at doses of 0.2 microg, 20 microg, 2 mg/kg or vehicle. When tested 90-120 min later, SRX251, but not Manning compound, caused a significant dose-dependent reduction in offensive aggression toward intruders as measured by latency to bite and number of bites. The reduction in aggression persisted for over 6 h and was no longer present 12 h post treatment. SRX251 did not alter the amount of time the resident investigated the intruder, olfactory communication, general motor activity, or sexual motivation. These data corroborate previous studies showing a role for vasopressin neurotransmission in aggression and suggest that V1a receptor antagonists may be used to treat interpersonal violence co-occurring with such illness as ADHD, autism, bipolar disorder, and substance abuse.

  6. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Giuliani, S.; Rovero, P.; Dion, S.; Regoli, D.; Giachetti, A.; Meli, A.

    1990-01-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167737

  7. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition

    PubMed Central

    Hubers, Scott A.; Brown, Nancy J.

    2016-01-01

    Heart failure affects approximately 5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the FDA approved the first of a new class of drugs for the treatment of heart failure; valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses two of the pathophysiologic mechanisms of heart failure - activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared to enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacologic properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916

  8. Effect of blockage of the endocannabinoid system by CB(1) antagonism on cardiovascular risk.

    PubMed

    Mach, François; Montecucco, Fabrizio; Steffens, Sabine

    2009-01-01

    The endocannabinoid system is a crucial player in the inflammatory processes underlying atherosclerosis. Recently, basic research studies and animal models have strongly supported the role of the endocannabinoid system not only in the regulation of classical cardiovascular risk factors (including lipid profile and glucose homeostasis), but also in the activation of immune cells and inflammatory mediators. Clinical trials investigating treatment with rimonabant (a selective antagonist of the cannabinoid type 1 receptor) have suggested a beneficial effect of this drug in the management of obesity. Further studies are needed to explore a possible use for rimonabant in treating type 2 diabetes and acute and chronic cardiovascular disease. Despite the slight increase in adverse events (mainly psychiatric), which has led to the recent withdrawal of rimonabant from the market, CB(1) receptor antagonism might represent a very promising therapeutic strategy to reduce the cardiovascular risk. In the present review, we focused on the most important experimental investigations into the role of the endocannabinoid system in atherosclerosis and cardiovascular risk.

  9. Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons.

    PubMed

    Hirayama, Michiko; Ogata, Masanori; Kawamata, Tomoyuki; Ishibashi, Hitoshi

    2015-08-01

    Modulation of the membrane excitability of rat parasympathetic intracardiac ganglion neurons by muscarinic receptors was studied using an amphotericin B-perforated patch-clamp recording configuration. Activation of muscarinic receptors by oxotremorine-M (OxoM) depolarized the membrane, accompanied by repetitive action potentials. OxoM evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca(2+) markedly increased the OxoM-induced current (IOxoM). The inward IOxoM in the absence of extracellular Ca(2+) was fully inhibited by removal of extracellular Na(+), indicating the involvement of non-selective cation channels. The IOxoM was inhibited by organic cation channel antagonists including SKF-96365 and ML-204. The IOxoM was antagonized by muscarinic receptor antagonists with the following potency: 4-DAMP > pirenzepine = darifenacin > methoctramine. Muscarinic toxin 7 (MT-7), a highly selective inhibitor for M1 receptor, produced partial inhibition of the IOxoM. In the presence of MT-7, concentration-inhibition curve of the M3-preferring antagonist darifenacin was shifted to the left. These results suggest the contribution of M1 and M3 receptors to the OxoM response. The IOxoM was inhibited by U-73122, a phospholipase C inhibitor. The membrane-permeable IP3 receptor blocker xestospongin C also inhibited the IOxoM. Furthermore, pretreatment with thapsigargin and BAPTA-AM inhibited the IOxoM, while KN-62, a blocker of Ca(2+)/calmodulin-dependent protein kinase II, had no effect. These results suggest that the activation mechanism involves a PLC pathway, release of Ca(2+) from intracellular Ca(2+) stores and calmodulin. The cation channels activated by muscarinic receptors may play an important role in neuronal membrane depolarization in rat intracardiac ganglion neurons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Different contributions of dopamine D1 and D2 receptor activity to alcohol potentiation of brain stimulation reward in C57BL/6J and DBA/2J mice.

    PubMed

    Fish, Eric W; DiBerto, Jeffrey F; Krouse, Michael C; Robinson, J Elliott; Malanga, C J

    2014-08-01

    C57BL/6J (C57) and DBA/2J (DBA) mice respond differently to drugs that affect dopamine systems, including alcohol. The current study compared effects of D1 and D2 receptor agonists and antagonists, and the interaction between D1/D2 antagonists and alcohol, on intracranial self-stimulation in male C57 and DBA mice to determine the role of dopamine receptors in the effects of alcohol on brain stimulation reward (BSR). In the initial strain comparison, dose effects on BSR thresholds and maximum operant response rates were determined for the D1 receptor agonist SKF-82958 (±-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 0.1-0.56 mg/kg) and antagonist SCH 23390 (+-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepinehydrochloride; 0.003-0.056 mg/kg), and the D2 receptor agonist quinpirole (0.1-3.0 mg/kg) and antagonist raclopride (0.01-0.56 mg/kg). For the alcohol interaction, SCH 23390 (0.003 mg/kg) or raclopride (0.03 mg/kg) was given before alcohol (0.6-2.4 g/kg p.o.). D1 antagonism dose-dependently elevated and SKF-82958 dose-dependently lowered BSR threshold in both strains; DBA mice were more sensitive to SKF-82958 effects. D2 antagonism dose-dependently elevated BSR threshold only in C57 mice. Low doses of quinpirole elevated BSR threshold equally in both strains, whereas higher doses of quinpirole lowered BSR threshold only in C57 mice. SCH 23390, but not raclopride, prevented lowering of BSR threshold by alcohol in DBA mice. Conversely, raclopride, but not SCH 23390, prevented alcohol potentiation of BSR in C57 mice. These results extend C57 and DBA strain differences to D1/D2 sensitivity of BSR, and suggest differential involvement of D1 and D2 receptors in the acute rewarding effects of alcohol in these two mouse strains. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Comparative, general pharmacology of SDZ NKT 343, a novel, selective NK1 receptor antagonist

    PubMed Central

    Walpole, C S J; Brown, M C S; James, I F; Campbell, E A; McIntyre, P; Docherty, R; Ko, S; Hedley, L; Ewan, S; Buchheit, K-H; Urban, L A

    1998-01-01

    receptor antagonists CP 99,994, SR 140,333, RPR 100,893 and FK 888 were 2.90±07 nM, 0.14±0.02 nM, 11.4±2.9 nM and 2.4±0.83 nM, respectively.In anaesthetized guinea-pigs i.v. administered SDZ NKT 343 antagonized [Sar9]SP sulphone-evoked bronchoconstriction (70% reduction at 0.4 mg kg−1, i.v.). Basal airway resistance, mean arterial blood pressure and heart rate were not affected.In conclusion, SDZ NKT 343 is a highly selective NK1 receptor antagonist with high potency at the human and guinea-pig receptors. SDZ NKT 343 may be used as a potential novel therapeutic agent in human diseases where NK1 receptor hyperfunction is involved. PMID:9630347

  12. Through the central V2, not V1 receptors influencing the endogenous opiate peptide system, arginine vasopressin, not oxytocin in the hypothalamic paraventricular nucleus involves in the antinociception in the rat.

    PubMed

    Yang, Jun; Chen, Jian-min; Song, Cao-You; Liu, Wen-Yan; Wang, Gen; Wang, Cheng-hai; Lin, Bao-Chen

    2006-01-19

    Our previous study has proven that hypothalamic paraventricular nucleus (PVN) played a role in the antinociception. The central bioactive substances involving in the PVN regulating antinociception were investigated in the rat. The results showed that electrical stimulation of the PVN increased the pain threshold, and L-glutamate sodium injection into the PVN elevated the pain threshold, but the PVN cauterization decreased the pain threshold; pain stimulation raised the arginine vasopressin (AVP), not oxytocin (OXT), leucine-enkephalin (L-Ek), beta-endorphin (beta-Ep) and DynorphinA1-13 (DynA1-13) concentrations in the PVN tissue using micropunch method, heightened AVP, L-Ek, beta-Ep and DynA1-13, not OXT concentrations in the PVN perfuse liquid, and reduced the number of AVP-, not OXT, L-Ek, beta-Ep and DynA1-13-immunoreactive neurons in the PVN especially in the posterior magnocellular part of the PVN using immunocytochemistry. There was a negative relationship between the PVN AVP concentration and the pain threshold; pain stimulation enhanced the AVP, not OXT mRNA expression in the PVN using in situ hybridization and RT-PCR; intraventricular injection of anti-AVP serum completely reversed L-glutamate sodium injection into the PVN-induced antinociception, and administration of naloxone - the opiate peptide antagonist, partly blocked this L-glutamate sodium effect, but anti-OXT serum pretreatment did not influence this L-glutamate sodium effect; L-glutamate sodium injection into the PVN-induced analgesia was inhibited by V2 receptor antagonist - d(CH2)5[D-Ile2, Ile4, Ala-NH2(9)]AVP, not V1 receptor antagonist - d(CH2)5Tyr(Me)AVP. The data suggested that the PVN was limited to the central AVP, not OXT, which was through V2, not V1 receptors influencing the endogenous opiate peptide system, to regulate antinociception.

  13. Impact of pioglitazone and bradykinin type 1 receptor antagonist on type 2 diabetes in high-fat diet-fed C57BL/6J mice.

    PubMed

    El Akoum, S; Haddad, Y; Couture, R

    2017-09-01

    Type 2 diabetes (T2D) is a major complication of obesity and a leading cause of morbidity and mortality. Antagonizing bradykinin type 1 receptor (B1R) improved body and tissue fat mass and reversed vascular and adipose tissue inflammation in a rat model of insulin resistance. This study aimed at evaluating further the role of B1R in a mouse model of T2D by comparing the antidiabetic and anti-inflammatory effects of the B1R antagonist SSR240612 (SSR) in adipose tissue with those of pioglitazone (TZD), an activator of peroxisome proliferator-activated receptor gamma. C57BL/6J mice were fed with high-fat diet (HFD) or standard diet (control) for 20 weeks. Yet, during the last 4 weeks, HFD-fed mice were administered SSR and TZD (10 mg kg -1  d -1 each) as monotherapy or combined therapy subcutaneously. The impact of treatments was measured on metabolic hormones levels (ELISA), adipose tissue inflammatory status and the expression of candidate genes involved in T2D (quantitative real-time polymerase chain reaction and western blot). SSR240612 and TZD treatments improved hyperglycaemia, hyperinsulinaemia, insulin resistance, adipose tissue inflammation (expression of B1R, chemokine ligand 2, F4/80 and tumour necrosis factor) and modulated adipogenesis (peroxisome proliferator-activated receptor gamma, adipocytes' protein 2 and CD40 expressions) in HFD-fed mice. Yet, SSR was more effective than TZD to reduce visceral fat mass and resistin. TZD/SSR combined treatment had an additive effect to improve insulin sensitivity and glucose intolerance. Bradykinin type 1 receptor antagonism could represent a promising therapeutic tool in combination with TZD for the treatment of T2D, obesity and insulin resistance.

  14. Jak2 FERM Domain Interaction with the Erythropoietin Receptor Regulates Jak2 Kinase Activity▿

    PubMed Central

    Funakoshi-Tago, Megumi; Pelletier, Stéphane; Moritake, Hiroshi; Parganas, Evan; Ihle, James N.

    2008-01-01

    Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in EpoR signaling, we identified a mutant (Jak2-Y613E) which has the property of being constitutively activated, as well as an inactivating mutation (Y766E). Although no evidence was obtained to indicate that either site is phosphorylated in signaling, the consequences of the Y613E mutation are similar to those observed with recently described activating mutations in Jak2 (Jak2-V617F and Jak2-L611S). However, unlike the V617F or L611S mutant, the Y613E mutant requires the presence of the receptor but not Epo stimulation for activation and downstream signaling. The properties of the Jak2-Y613E mutant suggest that under normal conditions, Jak2 that is not associated with a receptor is locked into an inactive state and receptor binding through the FERM domain relieves steric constraints, allowing the potential to be activated with receptor engagement. PMID:18160720

  15. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex

    PubMed Central

    Tinsley, Chris J.; Fontaine-Palmer, Nadine S.; Vincent, Maria; Endean, Emma P.E.; Aggleton, John P.; Brown, Malcolm W.; Warburton, E. Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive. PMID:21693636

  16. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex.

    PubMed

    Tinsley, Chris J; Fontaine-Palmer, Nadine S; Vincent, Maria; Endean, Emma P E; Aggleton, John P; Brown, Malcolm W; Warburton, E Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive.

  17. Endomorphin analogues containing D-Pro2 discriminate different μ-opioid receptor mediated antinociception in mice

    PubMed Central

    Sakurada, Shinobu; Watanabe, Hiroyuki; Hayashi, Takafumi; Yuhki, Masayuki; Fujimura, Tsutomu; Murayama, Kimie; Sakurada, Chikai; Sakurada, Tsukasa

    2002-01-01

    The antagonistic actions of D-Pro2-endomorphins on inhibition of the paw withdrawal response by endomorphins were studied in mice. D-Pro2-endomorphin-1 and D-Pro2-endomorphin-2, injected intrathecally (i.t.), had no significant effect on the nociceptive thermal threshold alone. When D-Pro2-endomorphin-1 (0.05–0.1 pmol) was injected simultaneously with i.t. endomorphin-1 (5.0 nmol) or endomorphin-2 (5.0 nmol), antinociception induced by endomoprhin-1 was reduced significantly, whereas endomorphin-2-induced antinociception was not affected by D-Pro2-endomorphin-1. Antinociception induced by i.t. endomorphin-2 (5.0 nmol) was reduced significantly by its analogue, D-Pro2-endomorphin-2 (100 pmol), but not by D-Pro2-endomorphin-1. D-Pro2-endomorphin-1. D-Pro2-endomorphin-1 also antagonized the antinociceptive effect of i.t. DAMGO, a μ-opioid receptor agonist, whereas D-Pro2-endomorphin-2 failed to reduce the effect of DAMGO. These results suggest that endomorphin analogues containing D-Pro2 are able to discriminate the antinociceptive actions of μ1- and μ2-opioid receptor agonists at the spinal cord level. PMID:12466222

  18. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  19. CRF antagonism within the ventral tegmental area but not the extended amygdala attenuates the anxiogenic effects of cocaine in rats.

    PubMed

    Ettenberg, Aaron; Cotten, Samuel W; Brito, Michael A; Klein, Adam K; Ohana, Tatum A; Margolin, Benjamin; Wei, Alex; Wenzel, Jennifer M

    2015-11-01

    In addition to its initial rewarding effects, cocaine has been shown to produce profound negative/anxiogenic actions. Recent work on the anxiogenic effects of cocaine has examined the role of corticotropin releasing factor (CRF), with particular attention paid to the CRF cell bodies resident to the extended amygdala (i.e., the central nucleus of the amygdala [CeA] and the bed nucleus of the stria terminalis [BNST]) and the interconnections within and projections outside the region (e.g., to the ventral tegmental area [VTA]). In the current study, localized CRF receptor antagonism was produced by intra-BNST, intra-CeA or intra-VTA application of the CRF antagonists, D-Phe CRF(12-41) or astressin-B. The effect of these treatments were examined in a runway model of i.v. cocaine self-administration that has been shown to be sensitive to both the initial rewarding and delayed anxiogenic effects of the drug in the same animal on the same trial. These dual actions of cocaine are reflected in the development of an approach-avoidance conflict ("retreat behaviors") about goal box entry that stems from the mixed associations that subjects form about the goal. CRF antagonism within the VTA, but not the CeA or BNST, significantly reduced the frequency of approach-avoidance retreat behaviors while leaving start latencies (an index of the positive incentive properties of cocaine) unaffected. These results suggest that the critical CRF receptors contributing to the anxiogenic state associated with acute cocaine administration may lie outside the extended amygdala, and likely involve CRF projections to the VTA. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels

    PubMed Central

    Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E.

    2011-01-01

    σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ1- and σ2-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na+ channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na+ channel Nav1.5. Patch-clamp recording in this cell line tested Na+ current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ1-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ2-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ1-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions. PMID:21084640

  1. Antagonism of 5-hydroxytryptamine by LSD 25 in the central nervous system

    PubMed Central

    Boakes, R. J.; Bradley, P. B.; Briggs, I.; Dray, A.

    1970-01-01

    1. 5-Hydroxytryptamine (5-HT), acetylcholine (ACh), noradrenaline (NA), glutamate, D,L-homocysteic acid (DLH), glycine and γ-aminobutyric acid (GABA) were applied to single neurones in the brain stem of decerebrate cats by microiontophoresis. The abilities of D-lysergic acid diethylamide tartrate (LSD 25), methysergide maleate (UML 491) and 2-bromo-lysergic acid diethylamide (BOL 148) to antagonize the actions of these compounds were studied. 2. LSD 25 antagonized 5-HT excitation of single neurones when applied iontophoretically or administered intravenously. LSD 25 also antagonized glutamate excitation of neurones which could be excited by 5-HT. Inhibitory effects of 5-HT, the action of glutamate on neurones which could be inhibited by 5-HT and the actions of all the other compounds tested were unaffected by LSD 25. 3. Iontophoretically applied UML 491 was also a specific antagonist to 5-HT and glutamate excitation but was less potent than LSD 25, and BOL 148 rarely exhibited antagonism. 4. It is suggested that antagonism to 5-HT and glutamate excitation of brain stem neurones may be the basis of the psychotomimetic action of LSD 25. It is also suggested that there may be similarities in the mechanisms by which 5-HT and glutamate produce excitation where they act on the same neurone. PMID:5492893

  2. Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens

    PubMed Central

    Haudecoeur, E.; Planamente, S.; Cirou, A.; Tannières, M.; Shelp, B. J.; Moréra, S.; Faure, D.

    2009-01-01

    Plants accumulate free L-proline (Pro) in response to abiotic stresses (drought and salinity) and presence of bacterial pathogens, including the tumor-inducing bacterium Agrobacterium tumefaciens. However, the function of Pro accumulation in host-pathogen interaction is still unclear. Here, we demonstrated that Pro antagonizes plant GABA-defense in the A. tumefaciens C58-induced tumor by interfering with the import of GABA and consequently the GABA-induced degradation of the bacterial quorum-sensing signal, 3-oxo-octanoylhomoserine lactone. We identified a bacterial receptor Atu2422, which is implicated in the uptake of GABA and Pro, suggesting that Pro acts as a natural antagonist of GABA-signaling. The Atu2422 amino acid sequence contains a Venus flytrap domain that is required for trapping GABA in human GABAB receptors. A constructed atu2422 mutant was more virulent than the wild type bacterium; moreover, transgenic plants with a low level of Pro exhibited less severe tumor symptoms than did their wild-type parents, revealing a crucial role for Venus flytrap GABA-receptor and relative abundance of GABA and Pro in host-pathogen interaction. PMID:19706545

  3. Glucocorticoid receptor modulators.

    PubMed

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Exploring new scaffolds for angiotensin II receptor antagonism.

    PubMed

    Kritsi, Eftichia; Matsoukas, Minos-Timotheos; Potamitis, Constantinos; Karageorgos, Vlasios; Detsi, Anastasia; Magafa, Vasilliki; Liapakis, George; Mavromoustakos, Thomas; Zoumpoulakis, Panagiotis

    2016-09-15

    Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The macrocyclic tetrapeptide [D-Trp]CJ-15,208 produces short-acting κ opioid receptor antagonism in the CNS after oral administration

    PubMed Central

    Eans, Shainnel O; Ganno, Michelle L; Reilley, Kate J; Patkar, Kshitij A; Senadheera, Sanjeewa N; Aldrich, Jane V; McLaughlin, Jay P

    2013-01-01

    Background and Purpose Cyclic peptides are resistant to proteolytic cleavage, therefore potentially exhibiting activity after systemic administration. We hypothesized that the macrocyclic κ opioid receptor (KOR)-selective antagonist [D-Trp]CJ-15,208 would demonstrate antagonist activity after systemic, that is, s.c. and oral (per os, p. o.), administration. Experimental Approach C57BL/6J mice were pretreated with [D-Trp]CJ-15,208 s.c. or p.o. before administration of the KOR-selective agonist U50,488 and the determination of antinociception in the warm-water tail-withdrawal assay. The locomotor activity of mice treated with [D-Trp]CJ-15,208 was determined by rotorod testing. Additional mice demonstrating cocaine conditioned place preference and subsequent extinction were pretreated daily with vehicle or [D-Trp]CJ-15,208 and then exposed to repeated forced swim stress or a single additional session of cocaine place conditioning before redetermining place preference. Key Results Pretreatment with [D-Trp]CJ-15,208 administered s.c. or p.o. dose-dependently antagonized the antinociception induced by i.p. administration of U50,488 in mice tested in the warm-water tail-withdrawal assay for less than 12 and 6 h respectively. [D-Trp]CJ-15,208 also produced limited (<25%), short-duration antinociception mediated through KOR agonism. Orally administered [D-Trp]CJ-15,208 dose-dependently antagonized centrally administered U50,488-induced antinociception, and prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine-seeking behaviour, consistent with its KOR antagonist activity, without affecting locomotor activity. Conclusions and Implications The macrocyclic tetrapeptide [D-Trp]CJ-15,208 is a short-duration KOR antagonist with weak KOR agonist activity that is active after oral administration and demonstrates blood–brain barrier permeability. These data validate the use of systemically active peptides such as [D-Trp]CJ-15,208 as potentially useful

  6. Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats.

    PubMed

    Vorel, Stanislav R; Ashby, Charles R; Paul, Mousumi; Liu, Xinhe; Hayes, Robert; Hagan, Jim J; Middlemiss, Derek N; Stemp, Geoffrey; Gardner, Eliot L

    2002-11-01

    dopamine D3 receptor is preferentially localized to the mesocorticolimbic dopaminergic system and has been hypothesized to play a role in cocaine addiction. To study the involvement of the D3 receptor in brain mechanisms and behaviors commonly assumed to be involved in the addicting properties of cocaine, the potent and selective D3 receptor antagonist trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl] cyclohexyl]-4-quinolininecarboxamide (SB-277011-A) was administered to laboratory rats, and the following measures were assessed: (1) cocaine-enhanced electrical brain-stimulation reward, (2) cocaine-induced conditioned place preference, and (3) cocaine-triggered reinstatement of cocaine seeking behavior. Systemic injections of SB-277011-A were found to (1) block enhancement of electrical brain stimulation reward by cocaine, (2) dose-dependently attenuate cocaine-induced conditioned place preference, and (3) dose-dependently attenuate cocaine-triggered reinstatement of cocaine seeking behavior. Thus, D3 receptor blockade attenuates both the rewarding effects of cocaine and cocaine-induced drug-seeking behavior. These data suggest an important role for D3 receptors in mediating the addictive properties of cocaine and suggest that blockade of dopamine D3 receptors may constitute a new and useful target for prospective pharmacotherapies for cocaine addiction.

  7. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism.

    PubMed

    Huang, Mei; Panos, John J; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Meltzer, Herbert Y

    2014-03-01

    Atypical antipsychotic drugs (AAPDs) have been suggested to be more effective in improving cognitive impairment in schizophrenia than typical APDs, a conclusion supported by differences in receptor affinities and neurotransmitter efflux in the cortex and the hippocampus. More potent serotonin (5-HT)2A than dopamine (DA) D2 receptors antagonism, and direct or indirect 5-HT1A agonism, characterize almost all AAPDs. Blonanserin, an AAPD, has slightly greater affinity for D2 than 5-HT2A receptors. Using microdialysis and ultra performance liquid chromatography-mass spectrometry/mass spectrometry, we compared the abilities of the typical APD, haloperidol, three AAPDs, blonanserin, lurasidone, and olanzapine, and a selective 5-HT1A partial agonist, tandospirone, and all, except haloperidol, were found to ameliorate the cognitive deficits produced by the N-methyl-d-aspartate antagonist, phencyclidine, altering the efflux of neurotransmitters and metabolites in the rat cortex and nucleus accumbens. Blonanserin, lurasidone, olanzapine, and tandospirone, but not haloperidol, increased the efflux of cortical DA and its metabolites, homovanillic acid and 3,4-dihydroxyphenylacetic acid. Olanzapine and lurasidone increased the efflux of acetylcholine; lurasidone increased glutamate as well. None of the compounds significantly altered the efflux of 5-HT or its metabolite, 5-hydroxyindole acetic acid, or GABA, serine, and glycine. The ability to increase cortical DA efflux was the only shared effect of the compounds which ameliorates the deficit in cognition in rodents following phencyclidine. © 2013 International Society for Neurochemistry.

  8. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding.

    PubMed

    Gui, Miao; Song, Wenfei; Zhou, Haixia; Xu, Jingwei; Chen, Silian; Xiang, Ye; Wang, Xinquan

    2017-01-01

    The global outbreak of SARS in 2002-2003 was caused by the infection of a new human coronavirus SARS-CoV. The infection of SARS-CoV is mediated mainly through the viral surface glycoproteins, which consist of S1 and S2 subunits and form trimer spikes on the envelope of the virions. Here we report the ectodomain structures of the SARS-CoV surface spike trimer in different conformational states determined by single-particle cryo-electron microscopy. The conformation 1 determined at 4.3 Å resolution is three-fold symmetric and has all the three receptor-binding C-terminal domain 1 (CTD1s) of the S1 subunits in "down" positions. The binding of the "down" CTD1s to the SARS-CoV receptor ACE2 is not possible due to steric clashes, suggesting that the conformation 1 represents a receptor-binding inactive state. Conformations 2-4 determined at 7.3, 5.7 and 6.8 Å resolutions are all asymmetric, in which one RBD rotates away from the "down" position by different angles to an "up" position. The "up" CTD1 exposes the receptor-binding site for ACE2 engagement, suggesting that the conformations 2-4 represent a receptor-binding active state. This conformational change is also required for the binding of SARS-CoV neutralizing antibodies targeting the CTD1. This phenomenon could be extended to other betacoronaviruses utilizing CTD1 of the S1 subunit for receptor binding, which provides new insights into the intermediate states of coronavirus pre-fusion spike trimer during infection.

  9. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl) pyridine decreases striatal VGlut2 expression in association with an attenuation of L-DOPA-induced dyskinesias.

    PubMed

    Marin, C; Bonastre, M; Aguilar, E; Jiménez, A

    2011-10-01

    The striatal glutamatergic hyperactivity is considered critical in the development of levodopa-induced dyskinesias (LID) in Parkinson's disease (PD). Pharmacological antagonism of the metabotropic glutamate receptors (mGluRs), in particular, the subtype mGluR5, can inhibit the expression of dyskinesia in both rodent and nonhuman primate models of PD. However, the exact mechanisms underlying the mGluR5 antagonism effects are not completely known. The vesicular glutamate transporters (VGluts) are localized in the synaptic vesicles of the striatal glutamatergic axonal terminals. The effects of mGluR5 antagonism modulating VGlut1 and VGlut2, as selective markers for the corticostriatal and thalamostriatal pathways, respectively, are still unknown. We investigated the effects of the mGluR5 antagonist, 2-methyl-6-(phenylethynyl) pyridine (MPEP) on the striatal expression of VGlut1 and VGlut2 in levodopa-treated hemiparkinsonian rats. Male Sprague-Dawley rats received a unilateral 6-hydroxydopamine (6-OHDA) administration in the nigrostriatal pathway. Rats were treated with: (a) levodopa (12 mg/kg/day with benserazide 15 mg/kg, ip) + vehicle; (b) MPEP (1.5 mg/kg/day, ip) + vehicle; (c) levodopa + MPEP, or (d) saline for 10 days. Levodopa treatment induced dyskinesias and did not modify the striatal expression of either VGlut1 or VGlut2. The administration of MPEP significantly attenuated LID and decreased the levels of VGlut2, but not the VGlut1, in the striatum ipsilateral to the lesion (P < 0.05). Our results suggest that the effects of MPEP on LID might be mediated by a modulating effect on VGlut 2 expression. Copyright © 2011 Wiley-Liss, Inc.

  10. Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus

    PubMed Central

    Lee, Benhur; Pernet, Olivier; Ahmed, Asim A.; Zeltina, Antra; Beaty, Shannon M.; Bowden, Thomas A.

    2015-01-01

    The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus−receptor interaction crystallographically. Compared with extant HNV-G–ephrinB2 structures, there was significant structural variation in the six-bladed β-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus–host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure–function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations. PMID:25825759

  11. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat.

    PubMed

    Haley, Jane E; Dickenson, Anthony H

    2016-08-15

    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. V1-receptor mediated GSH efflux by vasopressin from rat hepatocytes.

    PubMed

    Sato, C; Liu, J H; Uchihara, M; Izumi, N; Yauchi, T; Sakaj, Y; Asahina, Y; Fukuma, T; Takano, T; Marumo, F

    1992-01-01

    Vasopression increases sinusoidal efflux of GSH in the perfused rat liver. The mechanism of this effect was studied in the perfused rat liver and in isolated rat hepatocytes. Vasopressin stimulated GSH efflux in both systems and a V1-receptor antagonist (OPC-21268) significantly inhibited the effect of vasopressin suggesting that vasopressin stimulates GSH efflux from rat hepatocytes via V1-receptor.

  13. Pharmacological Properties and Discriminative Stimulus Effects of a Novel and Selective 5-HT2 Receptor Agonist AL-38022A [(S)-2-(8,9-dihydro-7H-pyrano[2,3-g]indazol-1-yl)-1-methylethylamine

    PubMed Central

    May, Jesse A.; Sharif, Najam A.; Chen, Hwang-Hsing; Liao, John C.; Kelly, Curtis R.; Glennon, Richard A.; Young, Richard; Li, Jun-Xu; Rice, Kenner C.; France, Charles P.

    2013-01-01

    AL-38022A is a novel synthetic serotonergic (5-HT) ligand that exhibited high affinity for each of the 5-HT2 receptor subtypes (Ki ≤ 2.2 nM), but a significantly lower (>100-fold less) affinity for other 5-HT receptors. In addition, AL-38022A displayed a very low affinity for a broad array of other receptors, neurotransmitter transport sites, ion channels, and second messenger elements, making it a relatively selective agent. AL-38022A potently stimulated functional responses via native and cloned rat (EC50 range: 1.9 – 22.5 nM) and human (EC50 range: 0.5 – 2.2 nM) 5-HT2 receptor subtypes including [Ca2+]i mobilization and tissue contractions with apparently similar potencies and intrinsic activities and was a full agonist at all 5-HT2 receptor subtypes. The CNS activity of AL-38022A was assessed by evaluating its discriminative stimulus effects in both a rat and a monkey drug discrimination paradigm using DOM as the training drug. AL-38022A fully generalized to the DOM stimulus in each of these studies; in monkeys MDL 100907 antagonized both DOM and AL-38022A. The pharmacological profile of AL-38022A suggests that it could be a useful tool in defining 5-HT2 receptor signaling and receptor characterization where 5-HT may function as a neurotransmitter. PMID:18718483

  14. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) protects against renal inflammation and renal cancer cell proliferation and migration through antagonizing NF-κB and STAT3 signaling pathways.

    PubMed

    Su, Jia; Zhang, Qiqi; Qi, Hui; Wu, Linlin; Li, Yuanqiang; Yu, Donna; Huang, Wendong; Chen, Wei-Dong; Wang, Yan-Dong

    2017-08-15

    Gpbar1 (TGR5), a G-protein-coupled bile acid membrane receptor, is well known for its roles in regulation of glucose metabolism and energy homeostasis. In the current work, we found that TGR5 activation by its ligand suppressed lipopolysaccharide (LPS)-induced proinflammatory gene expression in wild-type (WT) but not TGR5 -/- mouse kidney. Furthermore, we found that TGR5 is a suppressor of kidney cancer cell proliferation and migration. We show that TGR5 activation antagonized NF-κB and STAT3 signaling pathways through suppressing the phosphorylation of IκBα, the translocation of p65 and the phosphorylation of STAT3. TGR5 overexpression with ligand treatment inhibited gene expression mediated by NF-κB and STAT3. These results suggest that TGR5 antagonizes kidney inflammation and kidney cancer cell proliferation and migration at least in part by inhibiting NF-κB and STAT3 signaling. These findings identify TGR5 may serve as an attractive therapeutic tool for human renal inflammation related diseases and cancer.

  15. Overexpression of vasopressin (V3) and corticotrophin-releasing hormone receptor genes in corticotroph tumours.

    PubMed

    de Keyzer, Y; René, P; Beldjord, C; Lenne, F; Bertagna, X

    1998-10-01

    The molecular mechanisms underlying ACTH-secreting tumour formation remain unknown. Transmembrane signalling pathways play an important role in several endocrine disorders including pituitary tumours. To investigate the role of the pituitary vasopressin (V3) receptor (R) in ACTH-secreting tumours we have qualitatively and quantitatively analysed its mRNA. RT-PCR, denaturing gradient gel electrophoresis and S1 nuclease protection experiments were used to analyse V3 mRNA structure in ACTH-secreting tumours. We also developed a competitive RT-PCR system to compare the levels of expression of POMC, V3 and CRH-R genes. This system used as competitor a single mutant template (termed multi-mutant) containing primers for the three genes flanking an unrelated core sequence allowing multiple quantifications from the same cDNA preparations. We analysed 12 normal pituitaries, 15 corticotroph pituitary adenomas and 6 ACTH-secreting bronchial carcinoids. The V3 mRNA structure and sequence were found to be identical in normal and tumoural pituitary indicating that the tumoural Vs mRNA codes for a normal receptor. POMC RT-PCR signals in the pituitary tumour group were approximately 7-fold higher than in the normal pituitary group. Similarly, V3 and CRH-R signal were increased in pituitary tumors (mean +/- SEM: 5.87 x 10(-6) +/- 1.73 x 10(-6), and 2.33 x 10(-4) +/- 1.4 x 10(-4), respectively), when compared to normal pituitaries (1.19 x 10(-7) +/- 2.39 x 10(-8), and 1.7 x 10(-6) +/- 4.65 x 10(-7), respectively) suggesting that these two genes are expressed at very high levels in corticotroph tumours. When expressed relative to the corresponding POMC signals, increases in V3 and CRH-R signals reached 49-fold and 137-fold, respectively, in pituitary tumours. In ACTH-secreting bronchial carcinoids V3 gene expression level was also higher than in normal pituitary, whereas CRH-R signals were detected in only 4 of the 6 tumours with wide variations. Our results show that both vasopressin

  16. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat.

    PubMed

    Killi, Uday K; Wsol, Vladimir; Soukup, Ondrej; Kuca, Kamil; Winder, Michael; Tobin, Gunnar

    2014-02-01

    Obidoxime, a weak acetylcholine-esterase (AChE) inhibitor, exerts muscarinic receptor antagonism with a significant muscarinic M2 receptor selective profile. The current examinations aimed to determine the functional significance of muscarinic M2 receptors in the state of AChE inhibition, elucidating muscarinic M2 and M3 receptor interaction. In the in vitro examinations, methacholine evoked concentration-dependent bladder contractile and atrial frequency inhibitory responses. Although atropine abolished both, methoctramine (1 μmol/L) only affected the cholinergic response in the atrial preparations. However, in the presence of methoctramine, physostigmine, an AChE inhibitor, increased the basal tension of the bladder strip preparations (+68%), as well as the contractile responses to low concentrations of methacholine (< 5 μmol/L; +90-290%). In contrast to physostigmine, obidoxime alone raised the basal tension (+58%) and the responses to low concentrations of methacholine (< 5 μmol/L; +80-450%). Physostigmine concentration-dependently increased methacholine-evoked responses, similarly to obidoxime at low concentrations. However, at large concentrations (> 5 μmol/L), obidoxime, because of its unselective muscarinic receptor antagonism, inhibited the methacholine bladder responses. In conclusion, the current results show that muscarinic M2 receptors inhibit muscarinic M3 receptor-evoked contractile responses to low concentrations of acetylcholine in the synaptic cleft. The muscarinic M2 and M3 receptor crosstalk could be a counteracting mechanism in the treatment of AChE inhibition when using reactivators, such as obidoxime. © 2013 Wiley Publishing Asia Pty Ltd.

  17. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms

    PubMed Central

    Lee, Sang-Min; Hay, Debbie L.; Pioszak, Augen A.

    2016-01-01

    Receptor activity-modifying proteins (RAMP1–3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8–37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962

  18. The Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors

    PubMed Central

    Pasqualetto, Gaia; Brancale, Andrea; Young, Mark T.

    2018-01-01

    P2X receptors are trimeric eukaryotic ATP-gated cation channels. Extracellular ATP—their physiological ligand—is released as a neurotransmitter and in conditions of cell damage such as inflammation, and substantial evidence implicates P2X receptors in diseases including neuropathic pain, cancer, and arthritis. In 2009, the first P2X crystal structure, Danio rerio P2X4 in the apo- state, was published, and this was followed in 2012 by the ATP-bound structure. These structures transformed our understanding of the conformational changes induced by ATP binding and the mechanism of ligand specificity, and enabled homology modeling of mammalian P2X receptors for ligand docking and rational design of receptor modulators. P2X receptors are attractive drug targets, and a wide array of potent, subtype-selective modulators (mostly antagonists) have been developed. In 2016, crystal structures of human P2X3 in complex with the competitive antagonists TNP-ATP and A-317491, and Ailuropoda melanoleuca P2X7 in complex with a series of allosteric antagonists were published, giving fascinating insights into the mechanism of channel antagonism. In this article we not only summarize current understanding of small-molecule modulator binding at P2X receptors, but also use this information in combination with previously published structure-function data and molecular docking experiments, to hypothesize a role for the dorsal fin loop region in differential ATP potency, and describe novel, testable binding conformations for both the semi-selective synthetic P2X7 agonist 2′-(3′)-O-(4-benzoyl)benzoyl ATP (BzATP), and the P2X4-selective positive allosteric modulator ivermectin. We find that the distal benzoyl group of BzATP lies in close proximity to Lys-127, a residue previously implicated in BzATP binding to P2X7, potentially explaining the increased potency of BzATP at rat P2X7 receptors. We also present molecular docking of ivermectin to rat P2X4 receptors, illustrating a plausible

  19. Impact and benefit of A(2B)-adenosine receptor agonists for the respiratory tract: mucociliary clearance, ciliary beat frequency, trachea muscle tonus and cytokine release.

    PubMed

    Walaschewski, Robin; Begrow, Frank; Verspohl, Eugen J

    2013-01-01

    Adenosine is known to induce a bronchospasm in asthma- and COPD patients. The role of A(2B) receptors was investigated with respect to several parameters of the respiratory tract: tonus of smooth muscle, ciliary beat frequency as measured by high-speed video camera connected to a microscope (both in rats) and mucociliary clearance (MCC; transport of a fluorescent dye using a microdialysis procedure) in mice.  NECA (5'-N-ethylcarboxamidoadenosine) (a non-selective adenosine receptor agonist) was able to acutely induce a contraction, which was reversed to a relaxation after repeated dosing. This relaxation was completely abolished by PSB-1115, an A(2B) receptor antagonist. IL-13 (cytokine) was not involved mediating acute contractility effects. MCC was increased by BAY 60-6583 (A(2B) receptor agonist) and NECA (counteracted by the A(2B) receptor antagonist PSB-1115). Activation of A(2B) adenosine receptors by BAY 60-6583 induced an increase of the ciliary beat frequency, which could be reduced by administration of PSB-1115. Several cytokines were increased by NECA although only some are relevant because they are not blocked by A(2B) receptor antagonism. The A(2B) receptors are involved in airway relaxation, MCC improvement and ciliary beat frequency. A(2B) receptor agonists may be of therapeutic value and should be developed. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  20. The evolution of reduced antagonism--A role for host-parasite coevolution.

    PubMed

    Gibson, A K; Stoy, K S; Gelarden, I A; Penley, M J; Lively, C M; Morran, L T

    2015-11-01

    Why do some host-parasite interactions become less antagonistic over evolutionary time? Vertical transmission can select for reduced antagonism. Vertical transmission also promotes coevolution between hosts and parasites. Therefore, we hypothesized that coevolution itself may underlie transitions to reduced antagonism. To test the coevolution hypothesis, we selected for reduced antagonism between the host Caenorhabditis elegans and its parasite Serratia marcescens. This parasite is horizontally transmitted, which allowed us to study coevolution independently of vertical transmission. After 20 generations, we observed a response to selection when coevolution was possible: reduced antagonism evolved in the copassaged treatment. Reduced antagonism, however, did not evolve when hosts or parasites were independently selected without coevolution. In addition, we found strong local adaptation for reduced antagonism between replicate host/parasite lines in the copassaged treatment. Taken together, these results strongly suggest that coevolution was critical to the rapid evolution of reduced antagonism. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  1. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization.

    PubMed

    Gougat, Jean; Ferrari, Bernard; Sarran, Lionel; Planchenault, Claudine; Poncelet, Martine; Maruani, Jeanne; Alonso, Richard; Cudennec, Annie; Croci, Tiziano; Guagnini, Fabio; Urban-Szabo, Katalin; Martinolle, Jean-Pierre; Soubrié, Philippe; Finance, Olivier; Le Fur, Gérard

    2004-05-01

    The biochemical and pharmacological properties of a novel non-peptide antagonist of the bradykinin (BK) B(1) receptor, SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride] were evaluated. SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. The compound selectivity for B(1) versus B(2) receptors was in the range of 500- to 1000-fold. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM. It also antagonized des-Arg(9)-BK-induced contractions of isolated rabbit aorta and mesenteric plexus of rat ileum with a pA(2) of 8.9 and 9.4, respectively. Antagonistic properties of SSR240612 were also demonstrated in vivo. SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). Finally, SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat. In conclusion, SSR240612 is a new, potent, and orally active specific non-peptide bradykinin B(1) receptor antagonist.

  2. Body water balance and body temperature in vasopressin V1b receptor knockout mice.

    PubMed

    Daikoku, R; Kunitake, T; Kato, K; Tanoue, A; Tsujimoto, G; Kannan, H

    2007-10-30

    In an attempt to determine whether there is a specific vasopressin receptor (V(1b)) subtype involved in the regulation of body water balance and temperature, vasopressin V(1b) receptor knockout mice were used. Daily drinking behavior and renal excretory function were examined in V(1b)-deficient (V(1b)(-/-)) and control (V(1b)(+/+)) mice under the basal and stress-induced condition. In addition, body temperature and locomotor activity were measured with a biotelemetry system. The baseline daily water intake and urine volume were larger in V(1b)(-/-) mice than in V(1b)(+/+) mice. V(1b)(-/-) mice (V(1b)(-/-)) had significantly higher locomotor activity than wild-type, whereas the body temperature and oxygen consumption were lower in V(1b)(-/-) than in the V(1b)(+/+) mice. Next, the V(1b)(-/-) and V(1b)(+/+) mice were subjected to water deprivation for 48 hr. Under this condition, their body temperature decreased with the time course, which was significantly larger for V(1b)(-/-) than for V(1b)(+/+) mice. Central vasopressin has been reported to elicit drinking behavior and antipyretic action, and the V(1b) receptor has been reported to be located in the kidney. Thus, the findings suggest that the V(1b) receptor may be, at least in part, involved in body water balance and body temperature regulation.

  3. Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors

    PubMed Central

    Krishek, Belinda J; Moss, Stephen J; Smart, Trevor G

    1998-01-01

    The interaction of Zn2+ and H+ ions with GABAA receptors was examined using Xenopus laevis oocytes expressing recombinant GABAA receptors composed of subunits selected from α1, β1, γ2S and δ types, and by using cultured rat cerebellar granule neurones. The potency of Zn2+ as a non-competitive antagonist of GABA-activated responses on α1β1 receptors was reduced by lowering the external pH from 7.4 to 5.4, increasing the Zn2+ IC50 value from 1.2 to 58.3 μm. Zinc-induced inhibition was largely unaffected by alkaline pH up to pH 9.4. For α1β1δ subunits, concentration-response curves for GABA were displaced laterally by Zn2+ in accordance with a novel mixed/competitive-type inhibition. The Zn2+ IC50 at pH 7.4 was 16.3 μm. Acidification of Ringer solution resulted in a reduced antagonism by Zn2+ (IC50, 49.0 μm) without affecting the type of inhibition. At pH 9.4, Zn2+ inhibition remained unaffected. The addition of the γ2S subunit to the α1β1δ construct caused a marked reduction in the potency of Zn2+ (IC50, 615 μm), comparable to that observed with α1β1γ2S receptors (IC50 639 μm). GABA concentration-response curves were depressed in a mixed/non-competitive fashion. In cultured cerebellar granule neurones, Zn2+ inhibited responses to GABA in a concentration-dependent manner. Lowering external pH from 7.4 to 6.4 increased the IC50 from 139 to 253 μm. The type of inhibition exhibited by Zn2+ on cerebellar granule neurones, previously grown in high K+-containing culture media, was complex, with the GABA concentration-response curves shifting laterally with reduced slopes and similar maxima. The Zn2+-induced shift in the GABA EC50 values was reduced by lowering the external pH from 7.4 to 6.4. The interaction of H+ and Zn2+ ions on GABAA receptors suggests that they share either a common regulatory pathway or coincident binding sites on the receptor protein. The apparent competitive mode of block induced by Zn2+ on α1β1δ receptors is shared by GABAA

  4. Dissociable Hippocampal and Amygdalar D1-like receptor contribution to Discriminated Pavlovian conditioned approach learning

    PubMed Central

    Andrzejewski, Matthew E; Ryals, Curtis

    2016-01-01

    Pavlovian conditioning is an elementary form of reward-related behavioral adaptation. The mesolimbic dopamine system is widely considered to mediate critical aspects of reward-related learning. For example, initial acquisition of positively-reinforced operant behavior requires dopamine (DA) D1 receptor (D1R) activation in the basolateral amygdala (BLA), central nucleus of the amygdala (CeA), and the ventral subiculum (vSUB). However, the role of D1R activation in these areas on appetitive, non-drug-related, Pavlovian learning is not currently known. In separate experiments, microinfusions of the D1-like receptor antagonist SCH-23390 (3.0 nmol/0.5 μL per side) into the amygdala and subiculum preceded discriminated Pavlovian conditioned approach (dPCA) training sessions. D1-like antagonism in all three structures impaired the acquisition of discriminated approach, but had no effect on performance after conditioning was asymptotic. Moreover, dissociable effects of D1-like antagonism in the three structures on components of discriminated responding were obtained. Lastly, the lack of latent inhibition in drug-treated groups may elucidate the role of D1-like in reward-related Pavlovian conditioning. The present data suggest a role for the D1 receptors in the amygdala and hippocampus in learning the significance of conditional stimuli, but not in the expression of conditional responses. PMID:26632336

  5. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    PubMed Central

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  6. D1- and D2-like dopamine receptors in the CA1 region of the hippocampus are involved in the acquisition and reinstatement of morphine-induced conditioned place preference.

    PubMed

    Assar, Nasim; Mahmoudi, Dorna; Farhoudian, Ali; Farhadi, Mohammad Hasan; Fatahi, Zahra; Haghparast, Abbas

    2016-10-01

    The hippocampus plays a vital role in processing contextual memories and reward related learning tasks, such as conditioned place preference (CPP). Among the neurotransmitters in the hippocampus, dopamine is deeply involved in reward-related processes. This study assessed the role of D1- and D2-like dopamine receptors within the CA1 region of the hippocampus in the acquisition and reinstatement of morphine-CPP. To investigate the role of D1 and D2 receptors in morphine acquisition, the animals received different doses of D1- and/or D2-like dopamine receptor antagonists (SCH23390 and sulpiride, respectively) into the CA1, 5min before the administration of morphine (5mg/kg, subcutaneously) during a 3-days conditioning phase. To evaluate the involvement of these receptors in morphine reinstatement, the animals received different doses of SCH23390 or sulpiride (after extinction period) 5min before the administration of a low dose of morphine (1mg/kg) in order to reinstate the extinguished morphine-CPP. Conditioning scores were recorded by Ethovision software. The results of this study showed that the administration of SCH23390 or sulpiride, significantly decreased the acquisition of morphine-CPP. Besides, the injection of these antagonists before the administration of a priming dose of morphine, following the extinction period, decreased the reinstatement of morphine-CPP in sacrificed rats. However, the effect of sulpiride on the acquisition and reinstatement of morphine-CPP was more significant than that of SCH23390. These findings suggested that D1- and D2-like dopamine receptors in the CA1 are involved in the acquisition and reinstatement of morphine-CPP, and antagonism of these receptors can reduce the rewarding properties of morphine. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The relaxant 5-HT receptor in the dog coronary artery smooth muscle: pharmacological resemblance to the cloned 5-ht7 receptor subtype.

    PubMed Central

    Terrón, J. A.

    1996-01-01

    1. The relaxant effect of 5-hydroxytryptamine (5-HT) in the dog isolated coronary artery deprived of endothelium is mediated by a receptor unrelated to the 5-HT1, 5-HT2, 5-HT3 or 5-HT4 types. Based upon the pharmacological characteristics of this relaxant 5-HT receptor and those reported for the new members of the 5-HT receptor family, the present study explored the possibility that the relaxant 5-HT receptor referred to above, corresponds to the cloned 5-ht7 subtype. Thus, the relaxing and/or blocking effects of several 5-HT receptor drugs as well as some typical and atypical antipsychotic drugs with high affinity for the cloned 5-ht7 receptor in precontracted ring segments were analyzed. 2. 5-HT, 5-carboxamidotryptamine (5-CT) and 5-methoxytryptamine, but not 8-OH-DPAT or sumatriptan, produced concentration-dependent relaxations in endothelium-denuded canine coronary artery rings precontracted with prostaglandin F2a (2 microM). Clozapine (1 microM) produced in some cases a small relaxing effect and antagonized 5-HT- and 5-CT-induced relaxation suggesting a partial agonist effect. In the presence of the 5-HT1D receptor antagonist, GR127935 (100 nM), the rank order of agonist potency was 5-CT > 5-HT > clozapine > or = 5-methoxytryptamine. 8-OH-DPAT and sumatriptan remained inactive as agonists. 3. In GR127935-treated preparations, methiothepin (3 nM) and mianserin (1 microM), as well as the antipsychotics, clozapine (1 microM), pimozide (300 nM), risperidone (3 nM) and spiperone (1 microM), failed to induce a significant relaxation in prostaglandin F2x-precontracted vessels, but produced significant rightward displacements of the concentration-response curves to 5-HT and 5-CT without significantly reducing the Emax. In a final set of experiments with 5-CT, metergoline (100 nM) and mesulergine (300 nM) behaved as competitive antagonists. In contrast, lisuride (3 nM) noncompetitively antagonized 5-CT-induced relaxation. The estimated affinity (apparent pKa values) of

  8. Involvement of metabotropic glutamate receptors in taurine release in the adult and developing mouse hippocampus.

    PubMed

    Saransaari, P; Oja, S S

    1999-01-01

    The inhibitory amino acid taurine has been held to function as an osmoregulator and modulator of neural activity, being particularly important in the immature brain. Ionotropic glutamate receptor agonists are known markedly to potentiate taurine release. The effects of different metabotropic glutamate receptor (mGluR) agonists and antagonists on the basal and K(+)-stimulated release of [3H]taurine from hippocampal slices from 3-month-old (adult) and 7-day-old mice were now investigated using a superfusion system. Of group I metabotropic glutamate receptor agonists, quisqualate potentiated basal taurine release in both age groups, more markedly in the immature hippocampus. This action was not antagonized by the specific antagonists of group I but by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX), which would suggest an involvement of ionotropic glutamate receptors. (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated the basal release by a receptor-mediated mechanism in the immature hippocampus. The group II agonist (2S, 2'R, 3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) markedly potentiated basal taurine release at both ages. These effects were antagonized by dizocilpine, indicating again the participation of ionotropic receptors. Group III agonists slightly potentiated basal taurine release, as did several antagonists of the three metabotropic receptor groups. Potassium-stimulated (50 mM K+) taurine release was generally significantly reduced by mGluR agents, mainly by group I and II compounds. This may be harmful to neurons in hyperexcitatory states. On the other hand, the potentiation by mGluRs of basal taurine release, particularly in the immature hippocampus, together with the earlier demonstrated pronounced enhancement by activation of ionotropic glutamate receptors, may protect neurons against excitotoxicity.

  9. A comparative study of functional 5-HT4 receptors in human colon, rat oesophagus and rat ileum.

    PubMed

    McLean, P G; Coupar, I M; Molenaar, P

    1995-05-01

    1. The pharmacological properties of 5-hydroxytryptamine (5-HT), the 5-HT4 receptor agonists, DAU 6236 and SC 53116 and the 5-HT4 receptor antagonist, GR 1130808, were studied in the rat oesophagus, rat ileum and human colon. 2. 5-HT relaxed the longitudinal muscle of the rat oesophagus and rat ileum and the circular muscle of the human colon. Absolute values of relaxation were measured and showed the order of the maximum responses, rat oesophagus > human colon > rat ileum with EC50 values of 189 +/- 15 nM, 157 +/- 4 nM, 306 +/- 72 nM, respectively. 5-HT also inhibited the spontaneous contractions of the human colon with an EC50 value of 119 +/- 1 nM. The effect of 5-HT on the human colon was not affected by methysergide (10 microM) or ondansetron (1 microM). 3. The use of the uptake and metabolism inhibitors, cocaine (30 microM) and pargyline (100 microM), did not increase the potency of 5-HT in the rat oesophagus or human colon. In the rat oesophagus, cocaine (30 microM) produced a reduction in carbachol-induced tone of 22.2 +/- 0.6% and reduced the 5-HT maximum effect by 52.0 +/- 0.4%. 4. The compounds, DAU 6236 and SC 53116, showed a different pattern of potencies and efficacies in the rat oesophagus, rat ileum and human colon compared to 5-HT. DAU 6236 relaxed the human colonic circular muscle with an EC50 value of 129 +/- 16 nM but its efficacy was less than that of 5-HT. DAU 6236 (1 microM) also antagonized the 5-HT-induced relaxation of the human colon with a dose-ratio of 9.9. In the rat oesophagus and rat ileum, DAU 6236 was inactive in the majority of tissues. In the minority of oesophagus tissues that did respond the EC50 value was 1.2 +/- 0.7 microM. DAU 6236 also antagonized the effect of 5-HT in the rat oesophagus in a non-surmountable fashion. SC 53116 relaxed the rat oesophagus with an EC50 value of 91 +/- 4 nM, with an efficacy less than that observed to 5-HT; however, at 200 nM it did not antagonize the 5-HT-induced relaxation of the rat

  10. Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen-induced pulmonary inflammation in mice.

    PubMed

    Frei, R B; Luschnig, P; Parzmair, G P; Peinhaupt, M; Schranz, S; Fauland, A; Wheelock, C E; Heinemann, A; Sturm, E M

    2016-07-01

    Accumulation of activated eosinophils in tissue is a hallmark of allergic inflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) has been proposed to elicit eosinophil migration in a CB2 receptor/Gi/o -dependent manner. However, it has been claimed recently that this process may also involve other mechanisms such as cytokine priming and the metabolism of 2-AG into eicosanoids. Here, we explored the direct contribution of specific CB2 receptor activation to human and mouse eosinophil effector function in vitro and in vivo. In vitro studies including CB2 expression, adhesion and migratory responsiveness, respiratory burst, degranulation, and calcium mobilization were conducted in human peripheral blood eosinophils and mouse bone marrow-derived eosinophils. Allergic airway inflammation was assessed in mouse models of acute OVA-induced asthma and directed eosinophil migration. CB2 expression was significantly higher in eosinophils from symptomatic allergic donors. The selective CB2 receptor agonist JWH-133 induced a moderate migratory response in eosinophils. However, short-term exposure to JWH-133 potently enhanced chemoattractant-induced eosinophil shape change, chemotaxis, CD11b surface expression, and adhesion as well as production of reactive oxygen species. Receptor specificity of the observed effects was confirmed in eosinophils from CB2 knockout mice and by using the selective CB2 antagonist SR144528. Of note, systemic application of JWH-133 clearly primed eosinophil-directed migration in vivo and aggravated both AHR and eosinophil influx into the airways in a CB2 -specific manner. This effect was completely absent in eosinophil-deficient ∆dblGATA mice. Our data indicate that CB2 may directly contribute to the pathogenesis of eosinophil-driven diseases. Moreover, we provide new insights into the molecular mechanisms underlying the CB2 -mediated priming of eosinophils. Hence, antagonism of CB2 receptors may represent a novel pharmacological approach

  11. Effects of D2 or combined D1/D2 receptor antagonism on the methamphetamine-induced one-trial and multi-trial behavioral sensitization of preweanling rats

    PubMed Central

    Mohd-Yusof, Alena; Veliz, Ana; Rudberg, Krista N.; Stone, Michelle J.; Gonzalez, Ashley E.; McDougall, Sanders A.

    2015-01-01

    Rationale There is suggestive evidence that the neural mechanisms mediating one-trial and multi-trial behavioral sensitization differ, especially when the effects of various classes of dopamine (DA) agonists are examined. Objective The purpose of the present study was to determine the role of the D2 receptor for the induction of one-trial and multi-trial methamphetamine sensitization in preweanling rats. Methods In a series of experiments, rats were injected with saline or raclopride (a selective D2 receptor antagonist), either alone or in combination with SCH23390 (a selective D1 receptor antagonist), 15 min prior to treatment with the indirect DA agonist methamphetamine. Acute control groups were given two injections of saline. This pretreatment regimen occurred on either postnatal days (PD) 13–16 (multi-trial) or PD 16 (one-trial). On PD 17, rats were challenged with methamphetamine and locomotor sensitization was determined. Results Blockade of D2 or D1/D2 receptors reduced or prevented, respectively, the induction of multi-trial methamphetamine sensitization in young rats, while the same manipulations had minimal effects on one-trial behavioral sensitization. Conclusions DA antagonist treatment differentially affected the methamphetamine-induced sensitized responding of preweanling rats depending on whether a one-trial or multi-trial procedure was used. The basis for this effect is uncertain, but there was some evidence that repeated DA antagonist treatment caused nonspecific changes that produced a weakened sensitized response. Importantly, DA antagonist treatment did not prevent the one-trial behavioral sensitization of preweanling rats. The latter result brings into question whether DA receptor stimulation is necessary for the induction of psychostimulant-induced behavioral sensitization during early ontogeny. PMID:26650612

  12. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    PubMed

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  13. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization.

    PubMed

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-04-01

    The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.

  14. Muscarinic Acetylcholine Receptors in Macaque V1 Are Most Frequently Expressed by Parvalbumin-Immunoreactive Neurons

    PubMed Central

    Disney, Anita A.; Aoki, Chiye

    2010-01-01

    Acetylcholine (ACh) is believed to underlie mechanisms of arousal and attention in mammals. ACh also has a demonstrated functional effect in visual cortex that is both diverse and profound. We have reported previously that cholinergic modulation in V1 of the macaque monkey is strongly targeted toward GABAergic interneurons. Here we examine the localization of m1 and m2 muscarinic receptor subtypes across subpopulations of GABAergic interneurons—identified by their expression of the calcium-binding proteins parvalbumin, calbindin, and calretinin—using dual-immunofluorescence confocal microscopy in V1 of the macaque monkey. In doing so, we find that the vast majority (87%) of parvalbumin-immunoreactive neurons express m1-type muscarinic ACh receptors. m1 receptors are also expressed by 60% of calbindin-immunoreactive neurons and 40% of calretinin-immunoreactive neurons. m2 AChRs, on the other hand, are expressed by only 31% of parvalbumin neurons, 23% of calbindin neurons, and 25% of calretinin neurons. Parvalbumin-immunoreactive cells comprise ≈75% of the inhibitory neuronal population in V1 and included in this large subpopulation are neurons known to veto and regulate the synchrony of principal cell spiking. Through the expression of m1 ACh receptors on nearly all of these PV cells, the cholinergic system avails itself of powerful control of information flow through and processing within the network of principal cells in the cortical circuit. PMID:18265004

  15. The roles of 5-HT1A and 5-HT2 receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats.

    PubMed

    Krebs-Thomson, Kirsten; Ruiz, Erbert M; Masten, Virginia; Buell, Mahalah; Geyer, Mark A

    2006-12-01

    The hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is structurally similar to other indoleamine hallucinogens such as LSD. The present study examined the effects of 5-MeO-DMT in rats using the Behavioral Pattern Monitor (BPM), which enables analyses of patterns of locomotor activity and exploration, and the prepulse inhibition of startle (PPI) paradigm. A series of interaction studies using the serotonin (5-HT)(1A) antagonist WAY-100635 (1.0 mg/kg), the 5-HT(2A) antagonist M100907 (1.0 mg/kg), and the 5-HT(2C) antagonist SER-082 (0.5 mg/kg) were performed to assess the respective contributions of these receptors to the behavioral effects of 5-MeO-DMT (0.01, 0.1, and 1.0 mg/kg) in the BPM and PPI paradigms. 5-MeO-DMT decreased locomotor activity, investigatory behavior, the time spent in the center of the BPM chamber, and disrupted PPI. All of these effects were antagonized by WAY-100635 pretreatment. M100907 pretreatment failed to attenuate any of these effects, while SER-082 pretreatment only antagonized the PPI disruption produced by 5-MeO-DMT. While the prevailing view was that the activation of 5-HT(2) receptors is solely responsible for hallucinogenic drug effects, these results support a role for 5-HT(1A) receptors in the effects of the indoleamine hallucinogen 5-MeO-DMT on locomotor activity and PPI in rats.

  16. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains.

    PubMed

    Yuan, Yuan; Cao, Duanfang; Zhang, Yanfang; Ma, Jun; Qi, Jianxun; Wang, Qihui; Lu, Guangwen; Wu, Ying; Yan, Jinghua; Shi, Yi; Zhang, Xinzheng; Gao, George F

    2017-04-10

    The envelope spike (S) proteins of MERS-CoV and SARS-CoV determine the virus host tropism and entry into host cells, and constitute a promising target for the development of prophylactics and therapeutics. Here, we present high-resolution structures of the trimeric MERS-CoV and SARS-CoV S proteins in its pre-fusion conformation by single particle cryo-electron microscopy. The overall structures resemble that from other coronaviruses including HKU1, MHV and NL63 reported recently, with the exception of the receptor binding domain (RBD). We captured two states of the RBD with receptor binding region either buried (lying state) or exposed (standing state), demonstrating an inherently flexible RBD readily recognized by the receptor. Further sequence conservation analysis of six human-infecting coronaviruses revealed that the fusion peptide, HR1 region and the central helix are potential targets for eliciting broadly neutralizing antibodies.

  17. Antibronchospastic activity of MEN10,627, a novel tachykinin NK2 receptor antagonist, in guinea-pig airways.

    PubMed

    Perretti, F; Ballati, L; Manzini, S; Maggi, C A; Evangelista, S

    1995-01-24

    The antibronchospastic activity against acetylcholine, antigen, histamine plus platelet-activating factor (PAF) or the selective tachykinin neurokinin (NK)1 and NK2 receptor agonists of the novel tachykinin NK2 receptor antagonist, MEN10,627 (cyclo(Met-Asp-Trp-Phe-Dap-Leu)cyclo(2 beta-5 beta)), was studied in anesthetized guinea-pigs. MEN10,627 (30-100 nmol/kg i.v.) reduced in a dose-dependent manner the bronchospasm induced by the tachykinin NK2 receptor agonist [beta Ala8]neurokinin A-(4-10) and the effect of the highest dose lasted up to 5 h from its administration. Conversely, airway constriction induced by the NK1 receptor agonist [Sar9]substance P sulfone or acetylcholine was unaffected by MEN10,627 up to a dose of 3 mumol/kg i.v. In animals sensitized with ovalbumin and pretreated with the endopeptidase inhibitor phosphoramidon, the aerosolized antigen produced a bronchospasm which was inhibited by MEN10,627 (30-100 nmol/kg i.v.) but not by the tachykinin NK1 receptor antagonist, (+/-)-CP96,345 ([2R,3R-cis- and [2S,3S)-cis-2-(diphenylmethyl)-N-[(2-methoxyphenyl)-methyl]-1- azabicyclo[2.2.2]octan-3-amine]) (3 mumol/kg i.v.). Both MEN10,627 (30-100 nmol/kg i.v.) and (+/-)-CP96,345 (30-300 nmol/kg i.v.) reduced the PAF-induced hyperresponsiveness to histamine, without affecting the hypotension induced by PAF or the bronchospasm induced by histamine in guinea-pigs not exposed to PAF, showing the involvement of both tachykinin NK1 and NK2 receptors in this model. In summary, MEN10,627 behaves as a potent, selective and long-lasting tachykinin NK2 receptor antagonist in vivo. Further, tachykinin NK2 receptors could be activated during allergic responses and in the development of airway hyperresponsiveness.

  18. RAB-7 Antagonizes LET-23 EGFR Signaling during Vulva Development in Caenorhabditis elegans

    PubMed Central

    Skorobogata, Olga; Rocheleau, Christian E.

    2012-01-01

    The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(−) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans. PMID:22558469

  19. RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans.

    PubMed

    Skorobogata, Olga; Rocheleau, Christian E

    2012-01-01

    The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.

  20. The macrocyclic tetrapeptide [D-Trp]CJ-15,208 produces short-acting κ opioid receptor antagonism in the CNS after oral administration.

    PubMed

    Eans, Shainnel O; Ganno, Michelle L; Reilley, Kate J; Patkar, Kshitij A; Senadheera, Sanjeewa N; Aldrich, Jane V; McLaughlin, Jay P

    2013-05-01

    Cyclic peptides are resistant to proteolytic cleavage, therefore potentially exhibiting activity after systemic administration. We hypothesized that the macrocyclic κ opioid receptor (KOR)-selective antagonist [D-Trp]CJ-15,208 would demonstrate antagonist activity after systemic, that is, s.c. and oral (per os, p. o.), administration. C57BL/6J mice were pretreated with [D-Trp]CJ-15,208 s.c. or p.o. before administration of the KOR-selective agonist U50,488 and the determination of antinociception in the warm-water tail-withdrawal assay. The locomotor activity of mice treated with [D-Trp]CJ-15,208 was determined by rotorod testing. Additional mice demonstrating cocaine conditioned place preference and subsequent extinction were pretreated daily with vehicle or [D-Trp]CJ-15,208 and then exposed to repeated forced swim stress or a single additional session of cocaine place conditioning before redetermining place preference. Pretreatment with [D-Trp]CJ-15,208 administered s.c. or p.o. dose-dependently antagonized the antinociception induced by i.p. administration of U50,488 in mice tested in the warm-water tail-withdrawal assay for less than 12 and 6 h respectively. [D-Trp]CJ-15,208 also produced limited (<25%), short-duration antinociception mediated through KOR agonism. Orally administered [D-Trp]CJ-15,208 dose-dependently antagonized centrally administered U50,488-induced antinociception, and prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine-seeking behaviour, consistent with its KOR antagonist activity, without affecting locomotor activity. The macrocyclic tetrapeptide [D-Trp]CJ-15,208 is a short-duration KOR antagonist with weak KOR agonist activity that is active after oral administration and demonstrates blood-brain barrier permeability. These data validate the use of systemically active peptides such as [D-Trp]CJ-15,208 as potentially useful therapeutics. © 2013 The Authors. British Journal of Pharmacology © 2013 The

  1. Progesterone-mediated angiogenic activity of endothelial progenitor cell and angiogenesis in traumatic brain injury rats were antagonized by progesterone receptor antagonist.

    PubMed

    Yu, Peng; Li, Shengjie; Zhang, Zhifei; Wen, Xiaolong; Quan, Wei; Tian, Qilong; Gao, Chuang; Su, Wanqiang; Zhang, Jianning; Jiang, Rongcai

    2017-10-01

    Progesterone (P4) has the potential therapeutic effects for traumatic brain injury (TBI) whose recovery depended on the enhanced angiogenesis. Endothelial progenitor cell (EPC) plays an essential role in vascular biology. We previously demonstrated that P4 administration improved circulating EPC level and neurological recovery of rat with TBI. Here, we hypothesized that P4 augmented angiogenic potential of EPC and the angiogenesis-related neurorestoration after TBI through classical progesterone receptor (PR). EPC derived from rats were stimulated with graded concentrations (0, 10 -10 , 10 -9 , 5 × 10 -9 , 10 -8 , 10 -7  mol/L) of P4 or 10 -6  mol/L ulipristal acetate (UPA, a PR antagonist). Male rats were subjected to cortical impact injury and treated with (i) DMSO (dimethyl sulfoxide), (ii) P4 and (iii) P4 and UPA. It showed that P4 improved the angiogenic potential of EPC, including tube formation, adhesion, migration and vascular endothelial growth factor secretion, in a dose-dependent fashion with the maximal effect achieved at 10 -9  mol/L P4. High concentration (10 -7  mol/L) of P4 impaired the angiogenic potential of EPC. Notably, 10 -6  mol/L UPA antagonized the stimulatory effects of 10 -9  mol/L P4. After administrating P4, a significant improvement of neurological function and the restoration of the leaked blood-brain barrier were observed as well as a reduction of the brain water content. Both vessel density and expression of occludin of vessels were increased. When UPA was administered with P4, the neural restoration and angiogenesis were all reversed. Western blot showed that 10 -9  mol/L P4 increased the content of PRA and PRB of EPC, while 10 -7  mol/L P4 reduced the content of both PR isoforms, but there was no change found in the TBI rats. It may suggest that P4-mediated angiogenic activity of EPC and angiogenesis in TBI rats were antagonized by PR antagonist. © 2017 John Wiley & Sons Ltd.

  2. Identification of ectodomain regions contributing to gating, deactivation, and resensitization of purinergic P2X receptors.

    PubMed

    Zemkova, Hana; He, Mu-Lan; Koshimizu, Taka-aki; Stojilkovic, Stanko S

    2004-08-04

    The P2X receptors (P2XRs) are a family of ligand-gated channels activated by extracellular ATP through a sequence of conformational transitions between closed, open, and desensitized states. In this study, we examined the dependence of the activity of P2XRs on ectodomain structure and agonist potency. Experiments were done in human embryonic kidney 293 cells expressing rat P2X2aR, P2X2bR, and P2X3R, and chimeras having the V60-R180 or V60-F301 ectodomain sequences of P2X3R instead of the I66-H192 or I66-Y310 sequences of P2X2aR and P2X2bR. Chimeric P2X2a/V60-F301X3R and P2X2b/V60-F301X3R inherited the P2X3R ligand-selective profile, whereas the potency of agonists for P2X2a/V60-R180X3R was in between those observed at parental receptors. Furthermore, P2X2a/V60-F301X3R and P2X2a/V60-R180X3R desensitized in a P2X2aR-specific manner, and P2X2b/V60-F301X3R desensitized with rates comparable with those of P2X2bR. In striking contrast to parental receptors, the rates of decay in P2X2a/V60-F301X3R and P2X2b/V60-F301X3R currents after agonist withdrawal were 15- to 200-fold slower. For these chimeras, the decays in currents were not dependent on duration of stimuli and reflected both continuous desensitization and deactivation of receptors. Also, participation of deactivation in closure of channels inversely correlated with potency of agonists to activate receptors. The delay in deactivation was practically abolished in P2X2a/V60-R180X3R-expressing cells. However, the recovery from desensitization of P2X2a/V60-F301X3R and P2X2a/V60-R180X3R was similar and substantially delayed compared with that of parental receptors. These results indicate that both ectodomain halves participate in gating, but that the C and N halves influence the stability of open and desensitized conformation states, respectively, which in turn reflects on rates of receptor deactivation and resensitization.

  3. Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects.

    PubMed

    Liu, Wei; Xu, Zhaofa; Yang, Tianyao; Xu, Bin; Deng, Yu; Feng, Shu

    2017-09-01

    Methylmercury (MeHg) is an extremely dangerous environmental pollutant that induces severe toxic effects in the central nervous system. Neuronal damage plays critical roles mediating MeHg-induced loss of brain function and neurotoxicity. The molecular mechanisms of MeHg neurotoxicity are incompletely understood. The objective of the study is to explore mechanisms that contribute to MeHg-induced neurocyte injuries focusing on neuronal Ca 2+ dyshomeostasis and alteration of N-methyl-D-aspartate receptors (NMDARs) expression, as well as oxidative stress in primary cultured cortical neurons. In addition, the neuroprotective effects of memantine against MeHg cytotoxicity were also investigated. The cortical neurons were exposed to 0, 0.01, 0.1, 1, or 2 μM methylmercury chloride (MeHgCl) for 0.5-12 h, or pre-treated with 2.5, 5, 10, or 20 μM memantine for 0.5-6 h, respectively; cell viability and LDH release were then quantified. For further experiments, 2.5, 5, and 10 μM of memantine pre-treatment for 3 h followed by 1 μM MeHgCl for 6 h were performed for evaluation of neuronal injuries, specifically addressing apoptosis; intracellular free Ca 2+ concentrations; ATPase activities; calpain activities; expressions of NMDAR subunits (NR1, NR2A, NR2B); NPSH levels; and ROS formation. Exposure of MeHgCl resulted in toxicity of cortical neurons, which were shown as a loss of cell viability, high levels of LDH release, morphological changes, and cell apoptosis. Moreover, intracellular Ca 2+ dyshomeostasis, ATPase activities inhibition, calpain activities, and NMDARs expression alteration were observed with 1 μM MeHgCl administration. Last but not least, NPSH depletion and reactive oxygen species (ROS) overproduction showed an obvious oxidative stress in neurons. However, memantine pre-treatment dose-dependently antagonized MeHg-induced neuronal toxic effects, apoptosis, Ca 2+ dyshomeostasis, NMDARs expression alteration, and oxidative stress. In conclusion, the

  4. Colonic inflammation increases the contribution of muscarinic M2 receptors to carbachol-induced contraction of the rat colon.

    PubMed

    Jragh, Dina M; Khan, Islam; Oriowo, Mabayoje A

    2011-01-01

    Carbachol-induced contraction of the rat colon is impaired in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. The main objective of this study was to examine the effect of colitis on the expression and function of muscarinic (M) receptor subtypes in the rat colon. Rats (n = 80) were treated with TNBS and used 5 days later for measurement of contractility, myeloperoxidase activity, histology and expression of muscarinic receptor isoforms using Western blot analysis. Carbachol produced concentration-dependent contractions of colonic segments from control (n = 40) and TNBS-treated (n = 40) rats with no significant difference in potency. However, the maximum response to carbachol was significantly reduced in colon segments of TNBS-treated rats. The selective muscarinic receptor antagonists 4-diphenylacetoxy-N-methyl piperidine (4-DAMP, M(3)), pirenzepine (M(1)) and methoctramine (M(2)) antagonized carbachol-induced contraction in control (9.1 ± 0.1, 6.7 ± 0.3 and 6.0 ± 0.1, respectively) and TNBS-treated rats (9.2 ± 0.2, 6.9 ± 0.2, 6.7 ± 0.2). The -logK(B) values in control rats are consistent with an action of carbachol on muscarinic M(3) receptors. There was no significant difference in -logK(B) values for 4-DAMP and pirenzepine in control and TNBS-treated rats, but methoctramine was fivefold more potent in TNBS-treated rats, possibly indicating an increased contribution of muscarinic M(2) receptors to carbachol-induced contraction in the inflamed colon. The expression of M(2) receptors was also significantly increased in colon segments from TNBS-treated rats, confirming the increased role of muscarinic M(2) receptors in the inflamed colon. The data show that while only M(3) receptors appeared to mediate carbachol-induced contraction in control segments, expression of both M(2) and M(3) receptors was increased in the inflamed rat colon. Copyright © 2011 S. Karger AG, Basel.

  5. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists.

    PubMed

    Worden, Lila T; Shahriari, Mona; Farrar, Andrew M; Sink, Kelly S; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D

    2009-04-01

    Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A(2A) receptors. Adenosine A(2A) receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. The adenosine A(2A) receptor antagonist MSX-3 (0.5-2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A(2A) receptors on the same population of striatal neurons.

  6. [Antagonism of Trichoderma spp. to fungi caused root rot of Sophora tonkinensis].

    PubMed

    Qin, Liu-yan; Jiang, Ni; Tang, Mei-qiong; Miao, Jian-hua; Li, Lin-xuan

    2011-04-01

    To study the antagonism of Trichoderma spp. to fungi S9(Fusarium solani)which caused root rot of Sophora tonkinensis and discuss the further develop prospects of microbial biological control in soil-borne diseases on Chinese herbal medicines. Antagonism of H2 (Trichoderma harsianum), M6 (Trichoderma viride) and K1 (Trichoderma koningii) to Fusarium solani were researched by growth rate and confront culture. And their mechanisms were discussed. H2 and M6 had obvious competitive advantage, the growth rate of which were 1.43-2.72 times and 1.43-1.95 times as S9 respectively. The space competitive advantage of K1 was relatively weak; the growth rate was slower than S9. The antagonism of three species of Trichoderma spp. to S9 was in varying degrees. The antagonism to S9 of M6 and H2 was better,the inhibition rate were 100% and 82.35% respectively, even cultivated S9 for three days in advance. And their inhibition indexes were both reached class I. The inhibition index and inhibition rate of K1 was respectively 46.36% and class IV. The Trichoderma spp. could cause S9 mycelium to appear some phenomenon just like fracture, constriction reduced, digestion, etc. which were observed under the microscope. Trichoderma harsianum and Trichoderma viride showed the further develop prospects in the fight against soil-borne disease on Chinese herbal medicines.

  7. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor.

    PubMed

    Błasiak, Ewa; Łukasiewicz, Sylwia; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2017-04-01

    The human dopamine D2 receptor gene has three polymorphic variants that alter its amino acid sequence: alanine substitution by valine in position 96 (V96A), proline substitution by serine in position 310 (P310S) and serine substitution by cysteine in position 311 (S311C). Their functional role has never been the object of extensive studies, even though there is some evidence that their occurrence correlates with schizophrenia. The HEK293 cell line was transfected with dopamine D1 and D2 receptors (or genetic variants of the D2 receptor), coupled to fluorescent proteins which allowed us to measure the extent of dimerization of these receptors, using a highly advanced biophysical approach (FLIM-FRET). Additionally, Fluoro-4 AM was used to examine changes in the level of calcium release after ligand stimulation of cells expressing different combinations of dopamine receptors. Using FLIM-FRET experiments we have shown that in HEK 293 expressing dopamine receptors, polymorphic mutations in the D2 receptor play a role in dimmer formation with the dopamine D1 receptor. The association level of dopamine receptors is affected by ligand administration, with variable effects depending on polymorphic variant of the D2 dopamine receptor. We have found that the level of heteromer formation is reflected by calcium ion release after ligand stimulation and have observed variations of this effect dependent on the polymorphic variant and the ligand. The data presented in this paper support the hypothesis on the role of calcium signaling regulated by the D1-D2 heteromer which may be of relevance for schizophrenia etiology. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Interaction between the mu-agonist dermorphin and the delta-agonist [D-Ala2, Glu4]deltorphin in supraspinal antinociception and delta-opioid receptor binding.

    PubMed Central

    Negri, L.; Improta, G.; Lattanzi, R.; Potenza, R. L.; Luchetti, F.; Melchiorri, P.

    1995-01-01

    1. In rats, the interaction between the mu-opioid agonist dermorphin and the delta-opioid agonist [D-Ala2, Glu4]deltorphin was studied in binding experiments to delta-opioid receptors and in the antinociceptive test to radiant heat. 2. When injected i.c.v., doses of [D-Ala2, Glu4]deltorphin higher than 20 nmol produced antinociception in the rat tail-flick test to radiant heat. Lower doses were inactive. None of the doses tested elicited the maximum achievable response. This partial antinociception was accomplished with an in vivo occupancy of more than 97% of brain delta-opioid receptors and of 17% of mu-opioid receptors. Naloxone (0.1 mg kg-1, s.c.), and naloxonazine (10 mg kg-1, i.v., 24 h before), but not the selective delta-opioid antagonist naltrindole, antagonized the antinociception. 3. In vitro competitive inhibition studies in rat brain membranes showed that [D-Ala2, Glu4]deltorphin displaced [3H]-naltrindole from two delta-binding sites of high and low affinity. The addition of 100 microM Gpp[NH]p produced a three fold increase in the [D-Ala2, Glu4]deltorphin Ki value for both binding sites. The addition of 10 nM dermorphin increased the Ki value of the delta-agonist for the high affinity site five times. When Gpp[NH]p was added to the incubation medium together with 10 nM dermorphin, the high affinity Ki of the delta-agonist increased 15 times. 4. Co-administration into the rat brain ventricles of subanalgesic doses of dermorphin and [D-Ala2, Glu4]deltorphin resulted in synergistic antinociceptive responses. 5. Pretreatment with naloxone or with the non-equilibrium mu-antagonists naloxonazine and beta-funaltrexamine completely abolished the antinociceptive response of the mu-delta agonist combinations. 6. Pretreatment with the delta-opioid antagonists naltrindole and DALCE reduced the antinociceptive response of the dermorphin-[D-Ala2, Glu4]deltorphin combinations to a value near that observed after the mu-agonist alone. At the dosage used, naltrindole

  9. Action of Bacopa monnieri to antagonize cisplatin-induced emesis in Suncus murinus (house musk shrew).

    PubMed

    Ullah, Ihsan; Subhan, Fazal; Lu, Zengbing; Chan, Sze Wa; Rudd, John A

    2017-04-01

    Bacopa monnieri (BM, family Scrophulariaceae) is used in several traditional systems of medicine for the management of epilepsy, depression, neuropathic pain, sleep disorders and memory deficits. The present study investigated the potential of BM methanol (BM-MetFr) and BM n-butanol fractions (BM-ButFr) to reduce chemotherapy-induced emesis in Suncus murinus (house musk shrew). Cisplatin (30 mg/kg, i.p.) reliably induced retching and/or vomiting over a 2 day period. BM-MetFr (10-40 mg/kg, s.c.) and BM-ButFr (5-20 mg/kg, s.c.) antagonized the retching and/or vomiting response by ∼59.4% (p < 0.05) and 78.9% (p < 0.05), respectively, while the 5-HT 3 receptor antagonist, palonosetron (0.5 mg/kg, s.c.), reduced the response by ∼71% (p < 0.05). The free radical scavenger/antioxidant, N-(2-mercaptopropionyl)-glycine (30-300 mg/kg, s.c.) reduced the retching and/or vomiting response occurring on day one non-significantly by 44% (p > 0.05). In conclusion, the n-butanol fractions of BM have anti-emetic activity comparable with palonosetron and MPG. BM may be useful alone or in combination with other anti-emetic drugs for the treatment of chemotherapy-induced emesis in man. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism.

    PubMed

    Hasbi, Ahmed; Perreault, Melissa L; Shen, Maurice Y F; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F; George, Susan R

    2014-11-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues (404)Glu and (405)Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment. © FASEB.

  11. Temporal-difference prediction errors and Pavlovian fear conditioning: role of NMDA and opioid receptors.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-10-01

    Three experiments studied temporal-difference (TD) prediction errors during Pavlovian fear conditioning. In Stage I, rats received conditioned stimulus A (CSA) paired with shock. In Stage II, they received pairings of CSA and CSB with shock that blocked learning to CSB. In Stage III, a serial overlapping compound, CSB --> CSA, was followed by shock. The change in intratrial durations supported fear learning to CSB but reduced fear of CSA, revealing the operation of TD prediction errors. N-methyl- D-aspartate (NMDA) receptor antagonism prior to Stage III prevented learning, whereas opioid receptor antagonism selectively affected predictive learning. These findings support a role for TD prediction errors in fear conditioning. They suggest that NMDA receptors contribute to fear learning by acting on the product of predictive error, whereas opioid receptors contribute to predictive error. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  12. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors.

    PubMed

    Nunes, Eric J; Randall, Patrick A; Podurgiel, Samantha; Correa, Mercè; Salamone, John D

    2013-11-01

    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Although nucleus accumbens (NAc) DA depletions or antagonism leave aspects of appetite and primary food motivation intact, rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and that stimulation of adenosine A2A receptors produces behavioral effects that are similar to those induced by DA antagonism. The present review summarizes the literature on the role of NAc DA and adenosine in effort-related processes, and also presents original data on the effects of local stimulation of muscarinic acetylcholine receptors in NAc core. Local injections of the muscarinic agonist pilocarpine directly into NAc core produces shifts in effort-related choice behavior similar to those induced by DA antagonism or A2A receptor stimulation, decreasing lever pressing but increasing chow intake in rats responding on a concurrent fixed ratio/chow feeding choice task. In contrast, injections into a neostriatal control site dorsal to the NAc were ineffective. The actions of pilocarpine on this task were attenuated by co-administration of the muscarinic antagonist scopolamine. Thus, drugs that act on DA, adenosine A2A, and muscarinic receptors regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, fatigue or anergia that can be observed in depression and other disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin

    PubMed Central

    Pertwee, R G

    2007-01-01

    Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (−)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), (−)-cannabidiol (CBD) and (−)-trans-Δ9-tetrahydrocannabivarin (Δ9-THCV), interact with cannabinoid CB1 and CB2 receptors. Δ9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Δ9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Δ9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by Δ9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which Δ9-THC, CBD and Δ9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids. PMID:17828291

  14. Differential Effects of CSF-1R D802V and KIT D816V Homologous Mutations on Receptor Tertiary Structure and Allosteric Communication

    PubMed Central

    Da Silva Figueiredo Celestino Gomes, Priscila; Panel, Nicolas; Laine, Elodie; Pascutti, Pedro Geraldo; Solary, Eric; Tchertanov, Luba

    2014-01-01

    The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind. PMID:24828813

  15. Selective progesterone receptor modulators 1: use during pregnancy.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    A large number of synthetic compounds known as selective progesterone receptor modulators can bind to progesterone receptors: the ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. Only a dozen or so selective progesterone receptor modulators have been tested to any significant extent: among them are mifepristone (RU 486), asoprisnil (J867), onapristone (ZK 98 299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. Their clinical applications during pregnancy are discussed. A careful evaluation of existing major review papers and recently published articles was carried out focusing on mifepristone, the most widely studied selective progesterone receptor modulator, which was first used for the voluntary interruption of an early gestation. Other selective progesterone receptor modulators, especially those with partial agonist action, have shown little activity during pregnancy in animal models. Besides early and late voluntary interruption of gestation, selective progesterone receptor modulators have been tested in a variety of obstetrical situations: to obtain a ripening of the cervix, for the medical management of early embryonic loss and foetal death, for the induction of labour at term and for the medical treatment of extra-uterine pregnancies. The only applications that seem worthy of large-scale utilisation during pregnancy are voluntary interruption of early and late gestation, medical management of early delayed miscarriage and late foetal demise.

  16. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  17. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  18. Conformationally restricted analogs of BD1008 and an antisense oligodeoxynucleotide targeting sigma1 receptors produce anti-cocaine effects in mice.

    PubMed

    Matsumoto, R R; McCracken, K A; Friedman, M J; Pouw, B; De Costa, B R; Bowen, W D

    2001-05-11

    Cocaine's ability to interact with sigma receptors suggests that these proteins mediate some of its behavioral effects. Therefore, three novel sigma receptor ligands with antagonist activity were evaluated in Swiss Webster mice: BD1018 (3S-1-[2-(3,4-dichlorophenyl)ethyl]-1,4-diazabicyclo[4.3.0]nonane), BD1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), and LR132 (1R,2S-(+)-cis-N-[2-(3,4-dichlorophenyl)ethyl]-2-(1-pyrrolidinyl)cyclohexylamine). Competition binding assays demonstrated that all three compounds have high affinities for sigma1 receptors. The three compounds vary in their affinities for sigma2 receptors and exhibit negligible affinities for dopamine, opioid, GABA(A) and NMDA receptors. In behavioral studies, pre-treatment of mice with BD1018, BD1063, or LR132 significantly attenuated cocaine-induced convulsions and lethality. Moreover, post-treatment with LR132 prevented cocaine-induced lethality in a significant proportion of animals. In contrast to the protection provided by the putative antagonists, the well-characterized sigma receptor agonist di-o-tolylguanidine (DTG) and the novel sigma receptor agonist BD1031 (3R-1-[2-(3,4-dichlorophenyl)ethyl]-1,4-diazabicyclo[4.3.0]nonane) each worsened the behavioral toxicity of cocaine. At doses where alone, they produced no significant effects on locomotion, BD1018, BD1063 and LR132 significantly attenuated the locomotor stimulatory effects of cocaine. To further validate the hypothesis that the anti-cocaine effects of the novel ligands involved antagonism of sigma receptors, an antisense oligodeoxynucleotide against sigma1 receptors was also shown to significantly attenuate the convulsive and locomotor stimulatory effects of cocaine. Together, the data suggests that functional antagonism of sigma receptors is capable of attenuating a number of cocaine-induced behaviors.

  19. The orthosteric GABAA receptor ligand Thio-4-PIOL displays distinctly different functional properties at synaptic and extrasynaptic receptors

    PubMed Central

    Hoestgaard-Jensen, K; O'Connor, R M; Dalby, N O; Simonsen, C; Finger, B C; Golubeva, A; Hammer, H; Bergmann, M L; Kristiansen, U; Krogsgaard-Larsen, P; Bräuner-Osborne, H; Ebert, B; Frølund, B; Cryan, J F; Jensen, A A

    2013-01-01

    BACKGROUND AND PURPOSE Explorations into the heterogeneous population of native GABA type A receptors (GABAARs) and the physiological functions governed by the multiple GABAAR subtypes have for decades been hampered by the lack of subtype-selective ligands. EXPERIMENTAL APPROACH The functional properties of the orthosteric GABAA receptor ligand 5-(4-piperidyl)-3-isothiazolol (Thio-4-PIOL) have been investigated in vitro, ex vivo and in vivo. KEY RESULTS Thio-4-PIOL displayed substantial partial agonist activity at the human extrasynaptic GABAAR subtypes expressed in Xenopus oocytes, eliciting maximal responses of up to ∼30% of that of GABA at α5β3γ2S, α4β3δ and α6β3δ and somewhat lower efficacies at the corresponding α5β2γ2S, α4β2δ and α6β2δ subtypes (maximal responses of 4–12%). In contrast, it was an extremely low efficacious agonist at the α1β3γ2S, α1β2γ2S, α2β2γ2S, α2β3γ2S, α3β2γ2S and α3β3γ2S GABAARs (maximal responses of 0–4%). In concordance with its agonism at extrasynaptic GABAARs and its de facto antagonism at the synaptic receptors, Thio-4-PIOL elicited robust tonic currents in electrophysiological recordings on slices from rat CA1 hippocampus and ventrobasal thalamus and antagonized phasic currents in hippocampal neurons. Finally, the observed effects of Thio-4-PIOL in rat tests of anxiety, locomotion, nociception and spatial memory were overall in good agreement with its in vitro and ex vivo properties. CONCLUSION AND IMPLICATIONS The diverse signalling characteristics of Thio-4-PIOL at GABAARs represent one of the few examples of a functionally subtype-selective orthosteric GABAAR ligand reported to date. We propose that Thio-4-PIOL could be a useful pharmacological tool in future studies exploring the physiological roles of native synaptic and extrasynaptic GABAARs. PMID:23957253

  20. The replication of a mouse adapted SARS-CoV in a mouse cell line stably expressing the murine SARS-CoV receptor mACE2 efficiently induces the expression of proinflammatory cytokines

    PubMed Central

    Regla-Nava, Jose A.; Jimenez-Guardeño, Jose M.; Nieto-Torres, Jose L.; Gallagher, Thomas M.; Enjuanes, Luis; DeDiego, Marta L.

    2013-01-01

    Infection of conventional mice with a mouse adapted (MA15) severe acute respiratory syndrome (SARS) coronavirus (CoV) reproduces many aspects of human SARS such as pathological changes in lung, viremia, neutrophilia, and lethality. However, established mouse cell lines highly susceptible to mouse-adapted SARS-CoV infection are not available. In this work, efficiently transfectable mouse cell lines stably expressing the murine SARS-CoV receptor angiotensin converting enzyme 2 (ACE2) have been generated. These cells yielded high SARS-CoV-MA15 titers and also served as excellent tools for plaque assays. In addition, in these cell lines, SARS-CoV-MA15 induced the expression of proinflammatory cytokines and IFN-β, mimicking what has been observed in experimental animal models infected with SARS-CoV and SARS patients. These cell lines are valuable tools to perform in vitro studies in a mouse cell system that reflects the species used for in vivo studies of SARS-CoV-MA15 pathogenesis. PMID:23911968

  1. Evidence that (-)-7-hydroxy-4'-dimethylheptyl-cannabidiol activates a non-CB(1), non-CB(2), non-TRPV1 target in the mouse vas deferens.

    PubMed

    Pertwee, Roger G; Thomas, Adèle; Stevenson, Lesley A; Maor, Yehoshua; Mechoulam, Raphael

    2005-06-01

    Previous experiments showed that R-(+)-WIN55212-induced inhibition of electrically-evoked contractions of mouse vasa deferentia could be antagonized by cannabidiol in a manner that appeared to be competitive but not to involve direct competition for established cannabinoid receptors. We have now discovered that (-)-7-hydroxy-4'-dimethylheptyl-cannabidiol (7-OH-DMH-CBD) inhibits electrically-evoked contractions of the vas deferens (EC(50)=13.3 nM). This it appeared to do by acting on prejunctional neurones as 100 nM 7-OH-DMH-CBD did not attenuate contractile responses to phenylephrine or beta,gamma-methylene-ATP. Although 7-OH-DMH-CBD was antagonized by SR141716A, it was less susceptible to antagonism by this CB(1) receptor antagonist than R-(+)-WIN55212. 7-OH-DMH-CBD was also antagonized by cannabidiol (1 microM; apparent K(B)=222.2 nM) but not by the CB(2) receptor antagonist, SR144528 (32 nM), or by naloxone (300 nM), ruthenium red (1 microM) or capsazepine (10 microM). Yohimbine (100 nM) enhanced the ability of 7-OH-DMH-CBD to inhibit electrically-evoked contractions. R-(+)-WIN55212 was also potentiated by 100 nM yohimbine, possibly reflecting ongoing sequestration of G(i/o) proteins from CB(1) receptors by alpha(2)-adrenoceptors. Our results suggest that 7-OH-DMH-CBD may activate a neuronal target in the vas deferens that is not a CB(1), CB(2), TRPV1, opioid or alpha(2)-adrenergic receptor but do not exclude the possibility that it also activates CB(1) receptors.

  2. Identification of oligomer proanthocyanidins (F2) isolated from grape seeds as a formyl peptide receptor 1 partial agonist.

    PubMed

    Yang, Jingyu; Wang, Qing; Zhao, Ruijun; Sun, Baoshan; Wang, Lihui; Hou, Yue; Li, Xiaoqin; Wu, Chunfu

    2013-04-01

    Formyl peptide receptor 1 (FPR1) plays an important role in the rapid progression of glioblastoma and has been considered as a molecular target for the treatment. Previously, we have shown that oligomer proanthocyanidins (F2, degree of polymerization 2-15), isolated from grape seeds, inhibited FPR1-mediated chemotaxis of U-87 glioblastoma cells. In the present study, we investigated the capacity of F2 to interact with FPR1. The cross attenuation of chemotaxis revealed that F2 shared FPR1 with formyl-methionyl-leucyl-phenylalanine (fMLF), which is a prototype agonist of FPR1. F2 was chemotactic for U-87 cells, and the chemotactic response was abolished when FPR1 gene was silenced or FPR1 was competitively occupied. We further show that F2 specifically blocked the binding of fluorescent agonist to FPR1. Interestingly, F2 exhibited the characteristic of a partial agonist for FPR1, as shown by its capacity to activate FPR1-mediated PI3K-PKC-MAPK pathways. Meanwhile, F2 also attenuated fMLF-triggered MAPK activation, suggesting that F2 could antagonize the effect of an agonist. Furthermore, F2 abolished the invasion of U-87 cells induced by fMLF. Thus, we have identified F2 as a novel, partial agonist for FPR1, which may be useful for glioblastoma therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    PubMed

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  4. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding

    NASA Astrophysics Data System (ADS)

    Lupala, Cecylia S.; Gomez-Gutierrez, Patricia; Perez, Juan J.

    2016-01-01

    Bradykinin (BK) is a member of the kinin family, released in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases, provoking vasodilatation and increased vascular permeability among other effects. Their actions are mediated through at least two G-protein coupled receptors, B1 a receptor up-regulated during inflammation episodes or tissue trauma and B2 that is constitutively expressed in a variety of cell types. The goal of the present work is to carry out a structure-activity study of BK B2 antagonism, taking into account the stereochemical features of diverse non-peptide antagonists and the way these features translate into ligand anchoring points to complementary regions of the receptor, through the analysis of the respective ligand-receptor complex. For this purpose an atomistic model of the BK B2 receptor was built by homology modeling and subsequently refined embedded in a lipid bilayer by means of a 600 ns molecular dynamics trajectory. The average structure from the last hundred nanoseconds of the molecular dynamics trajectory was energy minimized and used as model of the receptor for docking studies. For this purpose, a set of compounds with antagonistic profile, covering maximal diversity were selected from the literature. Specifically, the set of compounds include Fasitibant, FR173657, Anatibant, WIN64338, Bradyzide, CHEMBL442294, and JSM10292. Molecules were docked into the BK B2 receptor model and the corresponding complexes analyzed to understand ligand-receptor interactions. The outcome of this study is summarized in a 3D pharmacophore that explains the observed structure-activity results and provides insight into the design of novel molecules with antagonistic profile. To prove the validity of the pharmacophore hypothesized a virtual screening process was also carried out. The pharmacophore was used as query to identify new hits using diverse databases of molecules. The results of this study revealed a set of new

  5. Diabetic hyperglycemia reduces Ca2+ permeability of extrasynaptic AMPA receptors in AII amacrine cells

    PubMed Central

    Castilho, Áurea; Madsen, Eirik; Ambrósio, António F.; Veruki, Margaret L.

    2015-01-01

    There is increasing evidence that diabetic retinopathy is a primary neuropathological disorder that precedes the microvascular pathology associated with later stages of the disease. Recently, we found evidence for altered functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in A17, but not AII, amacrine cells in the mammalian retina, and the observed changes were consistent with an upregulation of the GluA2 subunit, a key determinant of functional properties of AMPA receptors, including Ca2+ permeability and current-voltage (I-V) rectification properties. Here, we have investigated functional changes of extrasynaptic AMPA receptors in AII amacrine cells evoked by diabetes. With patch-clamp recording of nucleated patches from retinal slices, we measured Ca2+ permeability and I–V rectification in rats with ∼3 wk of streptozotocin-induced diabetes and age-matched, noninjected controls. Under bi-ionic conditions (extracellular Ca2+ concentration = 30 mM, intracellular Cs+ concentration = 171 mM), the reversal potential (Erev) of AMPA-evoked currents indicated a significant reduction of Ca2+ permeability in diabetic animals [Erev = −17.7 mV, relative permeability of Ca2+ compared with Cs+ (PCa/PCs) = 1.39] compared with normal animals (Erev = −7.7 mV, PCa/PCs = 2.35). Insulin treatment prevented the reduction of Ca2+ permeability. I–V rectification was examined by calculating a rectification index (RI) as the ratio of the AMPA-evoked conductance at +40 and −60 mV. The degree of inward rectification in patches from diabetic animals (RI = 0.48) was significantly reduced compared with that in normal animals (RI = 0.30). These results suggest that diabetes evokes a change in the functional properties of extrasynaptic AMPA receptors of AII amacrine cells. These changes could be representative for extrasynaptic AMPA receptors elsewhere in AII amacrine cells and suggest that synaptic and extrasynaptic AMPA

  6. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    PubMed

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  7. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization

    PubMed Central

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-01-01

    Abstract The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges. PMID:21300746

  8. Loss of GluN2D subunit results in social recognition deficit, social stress, 5-HT2C receptor dysfunction, and anhedonia in mice.

    PubMed

    Yamamoto, Hideko; Kamegaya, Etsuko; Hagino, Yoko; Takamatsu, Yukio; Sawada, Wakako; Matsuzawa, Maaya; Ide, Soichiro; Yamamoto, Toshifumi; Mishina, Masayoshi; Ikeda, Kazutaka

    2017-01-01

    The N-methyl-d-aspartate (NMDA) receptor channel is involved in various physiological functions, including learning and memory. The GluN2D subunit of the NMDA receptor has low expression in the mature brain, and its role is not fully understood. In the present study, the effects of GluN2D subunit deficiency on emotional and cognitive function were investigated in GluN2D knockout (KO) mice. We found a reduction of motility (i.e., a depressive-like state) in the tail suspension test and a reduction of sucrose preference (i.e., an anhedonic state) in GluN2D KO mice that were group-housed with littermates. Despite apparently normal olfactory function and social interaction, GluN2D KO mice exhibited a decrease in preference for social novelty, suggesting a deficit in social recognition or memory. Golgi-Cox staining revealed a reduction of the complexity of dendritic trees in the accessory olfactory bulb in GluN2D KO mice, suggesting a deficit in pheromone processing pathway activation, which modulates social recognition. The deficit in social recognition may result in social stress in GluN2D KO mice. Isolation housing is a procedure that has been shown to reduce stress in mice. Interestingly, 3-week isolation and treatment with agomelatine or the 5-hydroxytryptamine-2C (5-HT 2C ) receptor antagonist SB242084 reversed the anhedonic-like state in GluN2D KO mice. In contrast, treatment with the 5-HT 2C receptor agonist CP809101 induced depressive- and anhedonic-like states in isolated GluN2D KO mice. These results suggest that social stress that is caused by a deficit in social recognition desensitizes 5-HT 2c receptors, followed by an anhedonic- and depressive-like state, in GluN2D KO mice. The GluN2D subunit of the NMDA receptor appears to be important for the recognition of individuals and development of normal emotionality in mice. 5-HT 2C receptor antagonism may be a therapeutic target for treating social stress-induced anhedonia. This article is part of the Special

  9. The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription.

    PubMed

    Chan, Baca; Gonçalves Magalhães, Vladimir; Lemmermann, Niels A W; Juranić Lisnić, Vanda; Stempel, Markus; Bussey, Kendra A; Reimer, Elisa; Podlech, Jürgen; Lienenklaus, Stefan; Reddehase, Matthias J; Jonjić, Stipan; Brinkmann, Melanie M

    2017-05-01

    The type I interferon (IFN) response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV) that shuts down signaling following pattern recognition receptor (PRR) sensing. Screening of an MCMV open reading frame (ORF) library identified M35 as a novel and strong negative modulator of IFNβ promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR). Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM) led to reduced IFNβ transcription and secretion upon activation of stimulator of IFN genes (STING)-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG) 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR). M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host.

  10. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro

    2016-11-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity.

    PubMed

    Gross, N B; Duncker, P C; Marshall, J F

    2011-12-29

    Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce nonexocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAMPH-exposed brains. Systemic pretreatment with either competitive or noncompetitive N-methyl-D-aspartic acid (NMDA) antagonists protects against mAMPH-induced striatal DA terminal damage, but the locus of these antagonists' effects has not been determined. Here, we applied either the NMDA receptor antagonist, (dl)-amino-5-phosphonovaleric acid (AP5), or the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, dinitroquinoxaline-2,3-dione (DNQX), directly to the dura mater over frontoparietal cortex to assess their effects on mAMPH-induced cortical and striatal immediate-early gene (c-fos) expression. In a separate experiment we applied AP5 or DNQX epidurally in the same cortical location of rats during a binge regimen of mAMPH and assessed mAMPH-induced striatal dopamine transporter (DAT) depletions 1 week later. Our results indicate that both ionotropic glutamate receptor antagonists reduced the mAMPH-induced Fos expression in cerebral cortex regions near the site of epidural application and reduced Fos immunoreactivity in striatal regions innervated by the affected cortical regions. Also, epidural application of the same concentration of either antagonist during a binge mAMPH regimen blunted the mAMPH-induced striatal DAT depletions with a topography similar to its effects on Fos expression. These findings demonstrate that mAMPH-induced dopaminergic injury depends upon cortical NMDA and AMPA receptor activation and suggest the involvement of the

  12. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    PubMed

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB 1 receptor (CB 1 R)-induced memory deficits through an adenosine A 1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A 2A receptors (A 2A Rs) affects long-term episodic memory deficits induced by a single injection of a selective CB 1 R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB 1 /CB 2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A 2A R blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A 2A Rs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB 1 Rs was assessed by using the CB 1 R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB 1 R-mediated memory disruption is prevented by antagonism of adenosine A 2A Rs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB 1 R drugs is desired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. NMDA receptor antagonism with novel indolyl, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, reduces seizures duration in a rat model of epilepsy

    PubMed Central

    Rothan, Hussin A.; Amini, Elham; Faraj, Fadihl L.; Golpich, Mojtaba; Teoh, Teow Chong; Gholami, Khadijeh; Yusof, Rohana

    2017-01-01

    N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants. PMID:28358047

  14. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells.

    PubMed

    Liu, Ting; Zeng, Lilan; Jiang, Wenting; Fu, Yuanting; Zheng, Wenjie; Chen, Tianfeng

    2015-05-01

    Multidrug resistance is one of the greatest challenges in cancer therapy. Herein we described the synthesis of folate (FA)-conjugated selenium nanoparticles (SeNPs) as cancer-targeted nano-drug delivery system for ruthenium polypyridyl (RuPOP) exhibits strong fluorescence, which allows the direct imaging of the cellular trafficking of the nanosystem. This nanosystem could effectively antagonize against multidrug resistance in liver cancer. FA surface conjugation significantly enhanced the cellular uptake of SeNPs by FA receptor-mediated endocytosis through nystain-dependent lipid raft-mediated and clathrin-mediated pathways. The nanomaterials overcame the multidrug resistance in R-HepG2 cells through inhibition of ABC family proteins expression. Internalized nanoparticles triggered ROS overproduction and induced apoptosis by activating p53 and MAPKs pathways. Moreover, FA-SeNPs exhibited low in vivo acute toxicity, which verified the safety and application potential of FA-SeNPs as nanodrugs. This study provides an effective strategy for the design of cancer-targeted nanodrugs against multidrug resistant cancers. In the combat against hepatocellular carcinoma, multidrug resistance remains one of the obstacles to be overcome. The authors designed and synthesized folate (FA)-conjugated selenium nanoparticles (SeNPs) with enhanced cancer-targeting capability. This system carried ruthenium polypyridyl (RuPOP), an efficient metal-based anti-cancer drug with strong fluorescence. It was shown that this combination was effective in antagonizing against multidrug resistance in vitro. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists

    PubMed Central

    Worden, Lila T.; Shahriari, Mona; Farrar, Andrew M.; Sink, Kelly S.; Hockemeyer, Jörg; Müller, Christa E.

    2010-01-01

    Rationale Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A2A receptors. Objective Adenosine A2A receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. Materials and methods The adenosine A2A receptor antagonist MSX-3 (0.5–2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. Results MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. Conclusions The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A2A receptors on the same population of striatal neurons. PMID:19048234

  16. Cerebral ischemia induced inflammatory response and altered glutaminergic function mediated through brain AT1 and not AT2 receptor.

    PubMed

    Justin, A; Divakar, S; Ramanathan, M

    2018-06-01

    In the present study, we investigated the effects of angiotensin (Ang II) receptor blockers in cerebral ischemia by administration of telmisartan (AT 1 blocker) and/or PD123319 (AT 2 blocker) in global ischemic mice model. The neuroprotective effect of AT antagonists was evaluated through monitoring muscle co-ordination and cerebral blood perfusion in ischemic mice. Gene expression studies (NF-κB, GSK-3β, EAAT-2, AT 1 & AT 2 receptors) and staining of brain regions with cresyl violet, GFAP, synaptophysin and NSE methods were carried out in to understand the molecular mechanisms. Further, the brain glutamate, cytokines, and Ang II peptide levels were evaluated and their correlation with EAAT-2 mRNA expression was performed. Our results indicate that the induction of ischemia elevates brain Ang II, cytokines, and glutamate levels and reduced muscle co-ordination and cerebral blood perfusion. The expressions of NF-κB, GSK-3β and AT 1 were significantly increased, whereas, EAAT-2 expression was decreased. Blocking of AT 1 receptors by telmisartan (TM) reversed the detrimental responses of cerebral ischemia and restored the cerebral blood flow denoting blockade of Ang II/AT 1 pathway is beneficial in ischemia, whereas, blockade of AT 2 receptors by PD123319 (PD) increased the ischemic injury in mice. This vulnerable effect of PD may be attributed through augmenting the Ang II/AT 1 dependent cytokines mediated glutamate transporter (EAAT-2) dysfunction. Interestingly, the beneficial effects of AT 1 blocker was remarkably antagonized by AT 2 blocker in most of the parameters studied in ischemic conditions. Also, the expression of AT 2 receptors was significantly increased compared to that of AT 1 receptors upon ischemic induction. It denotes that the endogenous Ang II predominantly acts on AT 2 receptor, thereby promoting its own mRNA transcription. Hence, the increased expression of AT 2 receptors in ischemic condition could be used as target protein for therapeutic

  17. SRC-like adaptor protein 2 (SLAP2) is a negative regulator of KIT-D816V-mediated oncogenic transformation.

    PubMed

    Rupar, Kaja; Moharram, Sausan A; Kazi, Julhash U; Rönnstrand, Lars

    2018-04-23

    KIT is a receptor tyrosine kinase (RTK) involved in several cellular processes such as regulation of proliferation, survival and differentiation of early hematopoietic cells, germ cells and melanocytes. Activation of KIT results in phosphorylation of tyrosine residues in the receptor, and recruitment of proteins that mediate downstream signaling and also modulate receptor signaling. Here we show that the SRC-like adaptor protein 2 (SLAP2) binds to wild-type KIT in a ligand-dependent manner and is furthermore found constitutively associated with the oncogenic mutant KIT-D816V. Peptide fishing analysis mapped pY568 and pY570 as potential SLAP2 association sites in KIT, which overlaps with the SRC binding sites in KIT. Expression of SLAP2 in cells expressing the transforming mutant KIT-D816V led to reduced cell viability and reduced colony formation. SLAP2 also partially blocked phosphorylation of several signal transduction molecules downstream of KIT such as AKT, ERK, p38 and STAT3. Finally, SLAP2 expression enhanced ubiquitination of KIT and its subsequent degradation. Taken together, our data demonstrate that SLAP2 negatively modulates KIT-D816V-mediated transformation by enhancing degradation of the receptor.

  18. NMDA Receptor Autoantibodies in Autoimmune Encephalitis Cause a Subunit-Specific Nanoscale Redistribution of NMDA Receptors.

    PubMed

    Ladépêche, Laurent; Planagumà, Jesús; Thakur, Shreyasi; Suárez, Irina; Hara, Makoto; Borbely, Joseph Steven; Sandoval, Angel; Laparra-Cuervo, Lara; Dalmau, Josep; Lakadamyali, Melike

    2018-06-26

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder mediated by autoantibodies against the GluN1 subunit of the NMDAR. Patients' antibodies cause cross-linking and internalization of NMDAR, but the synaptic events leading to depletion of NMDAR are poorly understood. Using super-resolution microscopy, we studied the effects of the autoantibodies on the nanoscale distribution of NMDAR in cultured neurons. Our findings show that, under control conditions, NMDARs form nanosized objects and patients' antibodies increase the clustering of synaptic and extrasynaptic receptors inside the nano-objects. This clustering is subunit specific and predominantly affects GluN2B-NMDARs. Following internalization, the remaining surface NMDARs return to control clustering levels but are preferentially retained at the synapse. Monte Carlo simulations using a model in which antibodies induce NMDAR cross-linking and disruption of interactions with other proteins recapitulated these results. Finally, activation of EphB2 receptor partially antagonized the antibody-mediated disorganization of the nanoscale surface distribution of NMDARs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Endogenous opioid mechanisms partially mediate P2X3/P2X2/3-related antinociception in rat models of inflammatory and chemogenic pain but not neuropathic pain.

    PubMed

    McGaraughty, Steve; Honore, Prisca; Wismer, Carol T; Mikusa, Joseph; Zhu, Chang Z; McDonald, Heath A; Bianchi, Bruce; Faltynek, Connie R; Jarvis, Michael F

    2005-09-01

    P2X3/P2X2/3 receptors have emerged as important components of nociception. However, there is limited information regarding the neurochemical systems that are affected by antagonism of the P2X3/P2X2/3 receptor and that ultimately contribute to the ensuing antinociception. In order to determine if the endogenous opioid system is involved in this antinociception, naloxone was administered just prior to the injection of a selective P2X3/P2X2/3 receptor antagonist, A-317491, in rat models of neuropathic, chemogenic, and inflammatory pain. Naloxone (1-10 mg kg(-1), i.p.), dose-dependently reduced the antinociceptive effects of A-317491 (1-300 micromol kg(-1), s.c.) in the CFA model of thermal hyperalgesia and the formalin model of chemogenic pain (2nd phase), but not in the L5-L6 spinal nerve ligation model of neuropathic allodynia. In comparison experiments, the same doses of naloxone blocked or attenuated the actions of morphine (2 or 8 mg kg(-1), s.c.) in each of these behavioral models. Injection of a peripheral opioid antagonist, naloxone methiodide (10 mg kg(-1), i.p.), did not affect A-317491-induced antinociception in the CFA and formalin assays, suggesting that the opioid component of this antinociception occurred within the CNS. Furthermore, this utilization of the central opioid system could be initiated by antagonism of spinal P2X3/P2X2/3 receptors since the antinociceptive actions of intrathecally delivered A-317491 (30 nmol) in the formalin model were reduced by both intrathecally (10-50 nmol) and systemically (10 mg kg(-1), i.p.) administered naloxone. This utilization of the opioid system was not specific to A-317491 since suramin-, a nonselective P2X receptor antagonist, induced antinociception was also attenuated by naloxone. In in vitro studies, A-317491 (3-100 microM) did not produce any agonist response at delta opioid receptors expressed in NG108-15 cells. A-317491 had been previously shown to be inactive at the kappa and mu opioid receptors

  20. Serotonin 5-HT2C receptor-mediated inhibition of the M-current in hypothalamic POMC neurons.

    PubMed

    Roepke, T A; Smith, A W; Rønnekleiv, O K; Kelly, M J

    2012-06-01

    Hypothalamic proopiomelanocortin (POMC) neurons are controlled by many central signals, including serotonin. Serotonin increases POMC activity and reduces feeding behavior via serotonion [5-hydroxytryptamine (5-HT)] receptors by modulating K(+) currents. A potential K(+) current is the M-current, a noninactivating, subthreshold outward K(+) current. Previously, we found that M-current activity was highly reduced in fasted vs. fed states in neuropeptide Y neurons. Because POMC neurons also respond to energy states, we hypothesized that fasting may alter the M-current and/or its modulation by serotonergic input to POMC neurons. Using visualized-patch recording in neurons from fed male enhanced green fluorescent protein-POMC transgenic mice, we established that POMC neurons expressed a robust M-current (102.1 ± 6.7 pA) that was antagonized by the selective KCNQ channel blocker XE-991 (40 μM). However, the XE-991-sensitive current in POMC neurons did not differ between fed and fasted states. To determine if serotonin suppresses the M-current via the 5-HT(2C) receptor, we examined the effects of the 5-HT(2A)/5-HT(2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) on the M-current. Indeed, DOI attenuated the M-current by 34.5 ± 6.9% and 42.0 ± 5.3% in POMC neurons from fed and fasted male mice, respectively. In addition, the 5-HT(1B)/5-HT(2C) receptor agonist m-chlorophenylpiperazine attenuated the M-current by 42.4 ± 5.4% in POMC neurons from fed male mice. Moreover, the selective 5-HT(2C) receptor antagonist RS-102221 abrogated the actions of DOI in suppressing the M-current. Collectively, these data suggest that although M-current expression does not differ between fed and fasted states in POMC neurons, serotonin inhibits the M-current via activation of 5-HT(2C) receptors to increase POMC neuronal excitability and, subsequently, reduce food intake.

  1. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin.

    PubMed

    Feinstein, Timothy N; Yui, Naofumi; Webber, Matthew J; Wehbi, Vanessa L; Stevenson, Hilary P; King, J Darwin; Hallows, Kenneth R; Brown, Dennis; Bouley, Richard; Vilardaga, Jean-Pierre

    2013-09-27

    The vasopressin type 2 receptor (V2R) is a critical G protein-coupled receptor (GPCR) for vertebrate physiology, including the balance of water and sodium ions. It is unclear how its two native hormones, vasopressin (VP) and oxytocin (OT), both stimulate the same cAMP/PKA pathway yet produce divergent antinatriuretic and antidiuretic effects that are either strong (VP) or weak (OT). Here, we present a new mechanism that differentiates the action of VP and OT on V2R signaling. We found that vasopressin, as opposed to OT, continued to generate cAMP and promote PKA activation for prolonged periods after ligand washout and receptor internalization in endosomes. Contrary to the classical model of arrestin-mediated GPCR desensitization, arrestins bind the VP-V2R complex yet extend rather than shorten the generation of cAMP. Signaling is instead turned off by the endosomal retromer complex. We propose that this mechanism explains how VP sustains water and Na(+) transport in renal collecting duct cells. Together with recent work on the parathyroid hormone receptor, these data support the existence of a novel "noncanonical" regulatory pathway for GPCR activation and response termination, via the sequential action of β-arrestin and the retromer complex.

  2. Noncanonical Control of Vasopressin Receptor Type 2 Signaling by Retromer and Arrestin*

    PubMed Central

    Feinstein, Timothy N.; Yui, Naofumi; Webber, Matthew J.; Wehbi, Vanessa L.; Stevenson, Hilary P.; King, J. Darwin; Hallows, Kenneth R.; Brown, Dennis; Bouley, Richard; Vilardaga, Jean-Pierre

    2013-01-01

    The vasopressin type 2 receptor (V2R) is a critical G protein-coupled receptor (GPCR) for vertebrate physiology, including the balance of water and sodium ions. It is unclear how its two native hormones, vasopressin (VP) and oxytocin (OT), both stimulate the same cAMP/PKA pathway yet produce divergent antinatriuretic and antidiuretic effects that are either strong (VP) or weak (OT). Here, we present a new mechanism that differentiates the action of VP and OT on V2R signaling. We found that vasopressin, as opposed to OT, continued to generate cAMP and promote PKA activation for prolonged periods after ligand washout and receptor internalization in endosomes. Contrary to the classical model of arrestin-mediated GPCR desensitization, arrestins bind the VP-V2R complex yet extend rather than shorten the generation of cAMP. Signaling is instead turned off by the endosomal retromer complex. We propose that this mechanism explains how VP sustains water and Na+ transport in renal collecting duct cells. Together with recent work on the parathyroid hormone receptor, these data support the existence of a novel “noncanonical” regulatory pathway for GPCR activation and response termination, via the sequential action of β-arrestin and the retromer complex. PMID:23935101

  3. The replication of a mouse adapted SARS-CoV in a mouse cell line stably expressing the murine SARS-CoV receptor mACE2 efficiently induces the expression of proinflammatory cytokines.

    PubMed

    Regla-Nava, Jose A; Jimenez-Guardeño, Jose M; Nieto-Torres, Jose L; Gallagher, Thomas M; Enjuanes, Luis; DeDiego, Marta L

    2013-11-01

    Infection of conventional mice with a mouse adapted (MA15) severe acute respiratory syndrome (SARS) coronavirus (CoV) reproduces many aspects of human SARS such as pathological changes in lung, viremia, neutrophilia, and lethality. However, established mouse cell lines highly susceptible to mouse-adapted SARS-CoV infection are not available. In this work, efficiently transfectable mouse cell lines stably expressing the murine SARS-CoV receptor angiotensin converting enzyme 2 (ACE2) have been generated. These cells yielded high SARS-CoV-MA15 titers and also served as excellent tools for plaque assays. In addition, in these cell lines, SARS-CoV-MA15 induced the expression of proinflammatory cytokines and IFN-β, mimicking what has been observed in experimental animal models infected with SARS-CoV and SARS patients. These cell lines are valuable tools to perform in vitro studies in a mouse cell system that reflects the species used for in vivo studies of SARS-CoV-MA15 pathogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The effects of estradiol and selective estrogen receptor modulators on gene expression and messenger RNA stability in immortalized sheep endometrial stromal cells and human endometrial adenocarcinoma cells.

    PubMed

    Farnell, Yuhua Z; Ing, Nancy H

    2003-03-01

    The purpose of this study was to identify an endometrial cell line that maintained the E2 up-regulation of estrogen receptor (ER) mRNA by enhanced message stability and to assess its dependence on ER protein. Estradiol (E2) effects on gene expression were measured in three cell lines: one immortalized from sheep endometrial stroma (ST) and two from human endometrial adenocarcinomas (Ishikawa and ECC-1). E2 up-regulated ER mRNA levels in ST and Ishikawa cells, but down-regulated ER mRNA levels in ECC-1 cells. E2 up-regulated progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and transforming growth factor-alpha (TGF-alpha) in both Ishikawa and ECC-1 cells. The selective estrogen receptor modulator ICI 182,780 antagonized the E2-induced up-regulation of ER and/or PR mRNA levels in all three cells, while another, GW 5638, antagonized the up-regulation of PR mRNA in Ishikawa and ECC-1 cells. In mechanistic studies, E2 had no effect on ER mRNA stability in ST cells and it destabilized ER mRNA in ECC-1 cells. Thus, Ishikawa cells appear to be the most physiologically relevant cell line in which to study the up-regulation of ER mRNA levels by enhanced mRNA stability. Its antagonism by ICI 182,780 reveals that ER protein is involved in this E2 response.

  5. Variability and repertoire size of T-cell receptor V alpha gene segments.

    PubMed

    Becker, D M; Pattern, P; Chien, Y; Yokota, T; Eshhar, Z; Giedlin, M; Gascoigne, N R; Goodnow, C; Wolf, R; Arai, K

    The immune system of higher organisms is composed largely of two distinct cell types, B lymphocytes and T lymphocytes, each of which is independently capable of recognizing an enormous number of distinct entities through their antigen receptors; surface immunoglobulin in the case of the former, and the T-cell receptor (TCR) in the case of the latter. In both cell types, the genes encoding the antigen receptors consist of multiple gene segments which recombine during maturation to produce many possible peptides. One striking difference between B- and T-cell recognition that has not yet been resolved by the structural data is the fact that T cells generally require a major histocompatibility determinant together with an antigen whereas, in most cases, antibodies recognize antigen alone. Recently, we and others have found that a series of TCR V beta gene sequences show conservation of many of the same residues that are conserved between heavy- and light-chain immunoglobulin V regions, and these V beta sequences are predicted to have an immunoglobulin-like secondary structure. To extend these studies, we have isolated and sequenced eight additional alpha-chain complementary cDNA clones and compared them with published sequences. Analyses of these sequences, reported here, indicate that V alpha regions have many of the characteristics of V beta gene segments but differ in that they almost always occur as cross-hybridizing gene families. We conclude that there may be very different selective pressures operating on V alpha and V beta sequences and that the V alpha repertoire may be considerably larger than that of V beta.

  6. Myelin Proteolipid Protein Complexes with αv Integrin and AMPA Receptors In Vivo and Regulates AMPA-Dependent Oligodendrocyte Progenitor Cell Migration through the Modulation of Cell-Surface GluR2 Expression

    PubMed Central

    Harlow, Danielle E.; Saul, Katherine E.; Komuro, Hitoshi

    2015-01-01

    In previous studies, stimulation of ionotropic AMPA/kainate glutamate receptors on cultured oligodendrocyte cells induced the formation of a signaling complex that includes the AMPA receptor, integrins, calcium-binding proteins, and, surprisingly, the myelin proteolipid protein (PLP). AMPA stimulation of cultured oligodendrocyte progenitor cells (OPCs) also caused an increase in OPC migration. The current studies focused primarily on the formation of the PLP–αv integrin–AMPA receptor complex in vivo and whether complex formation impacts OPC migration in the brain. We found that in wild-type cerebellum, PLP associates with αv integrin and the calcium-impermeable GluR2 subunit of the AMPA receptor, but in mice lacking PLP, αv integrin did not associate with GluR2. Live imaging studies of OPC migration in ex vivo cerebellar slices demonstrated altered OPC migratory responses to neurotransmitter stimulation in the absence of PLP and GluR2 or when αv integrin levels were reduced. Chemotaxis assays of purified OPCs revealed that AMPA stimulation was neither attractive nor repulsive but clearly increased the migration rate of wild-type but not PLP null OPCs. AMPA receptor stimulation of wild-type OPCs caused decreased cell-surface expression of the GluR2 AMPA receptor subunit and increased intracellular Ca2+ signaling, whereas PLP null OPCs did not reduce GluR2 at the cell surface or increase Ca2+ signaling in response to AMPA treatment. Together, these studies demonstrate that PLP is critical for OPC responses to glutamate signaling and has important implications for OPC responses when levels of glutamate are high in the extracellular space, such as following demyelination. SIGNIFICANCE STATEMENT After demyelination, such as occurs in multiple sclerosis, remyelination of axons is often incomplete, leading to loss of neuronal function and clinical disability. Remyelination may fail because oligodendrocyte precursor cells (OPCs) do not completely migrate into

  7. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat.

    PubMed

    Wong, Yin Cheong; Ilkova, Trayana; van Wijk, Rob C; Hartman, Robin; de Lange, Elizabeth C M

    2018-01-01

    Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological

  8. Paramyxovirus V Protein Interaction with the Antiviral Sensor LGP2 Disrupts MDA5 Signaling Enhancement but Is Not Relevant to LGP2-Mediated RLR Signaling Inhibition

    PubMed Central

    Rodriguez, Kenny R.

    2014-01-01

    ABSTRACT The interferon antiviral system is a primary barrier to virus replication triggered upon recognition of nonself RNAs by the cytoplasmic sensors encoded by retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology gene 2 (LGP2). Paramyxovirus V proteins are interferon antagonists that can selectively interact with MDA5 and LGP2 through contact with a discrete helicase domain region. Interaction with MDA5, an activator of antiviral signaling, disrupts interferon gene expression and antiviral responses. LGP2 has more diverse reported roles as both a coactivator of MDA5 and a negative regulator of both RIG-I and MDA5. This functional dichotomy, along with the concurrent interference with both cellular targets, has made it difficult to assess the unique consequences of V protein interaction with LGP2. To directly evaluate the impact of LGP2 interference, MDA5 and LGP2 variants unable to be recognized by measles virus and parainfluenza virus 5 (PIV5) V proteins were tested in signaling assays. Results indicate that interaction with LGP2 specifically prevents coactivation of MDA5 signaling and that LGP2's negative regulatory capacity was not affected. V proteins only partially antagonize RIG-I at high concentrations, and their expression had no additive effects on LGP2-mediated negative regulation. However, conversion of RIG-I to a direct V protein target was accomplished by only two amino acid substitutions that allowed both V protein interaction and efficient interference. These results clarify the unique consequences of MDA5 and LGP2 interference by paramyxovirus V proteins and help resolve the distinct roles of LGP2 in both activation and inhibition of antiviral signal transduction. IMPORTANCE Paramyxovirus V proteins interact with two innate immune receptors, MDA5 and LGP2, but not RIG-I. V proteins prevent MDA5 from signaling to the beta interferon promoter, but the consequences of

  9. Aniracetam, 1-BCP and cyclothiazide differentially modulate the function of NMDA and AMPA receptors mediating enhancement of noradrenaline release in rat hippocampal slices.

    PubMed

    Pittaluga, A; Bonfanti, A; Arvigo, D; Raiteri, M

    1999-04-01

    Aniracetam, 1-(1,3-benzodioxol-5-yl-carbonyl)piperidine (1-BCP) and cyclothiazide, three compounds considered to enhance cognition through modulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors, were evaluated in the 'kynurenate test', a biochemical assay in which some nootropics have been shown to prevent the antagonism by kynurenic acid of the N-methyl-D-aspartate (NMDA)-evoked [3H]noradrenaline ([3H]NA) release from rat hippocampal slices. Aniracetam attenuated the kynurenate (100 microM) antagonism of the [3H]NA release elicited by 100 microM NMDA with high potency (EC50< or =0.1 microM). Cyclothiazide and 1-BCP were about 10 and 100 times less potent than aniracetam, respectively. The effect of aniracetam persisted in the presence of the AMPA receptor antagonist 6-nitro-7-sulphamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) added at 5 microM, a concentration that did not affect NMDA receptors; in contrast, NBQX reduced the effect of 1-BCP and abolished that of cyclothiazide. The AMPA-evoked release of [3H]NA from hippocampal slices or synaptosomes was enhanced by cyclothiazide, less potently by 1-BCP and weakly by aniracetam. High concentrations of kynurenate (1 mM) antagonized the AMPA-evoked [3H]NA release in slices; this antagonism was attenuated by 1 microM cyclothiazide and reversed to an enhancement of AMPA-evoked [3H]NA release by 10 microM of the drug, but was insensitive to 1-BCP or aniracetam. It is concluded that aniracetam exerts a dual effect on glutamatergic transmission: modulation of NMDA receptor function at nanomolar concentrations, and modulation of AMPA receptors at high micromolar concentrations. As to cyclothiazide and 1-BCP, our data concur with the idea that both compounds largely act through AMPA receptors, although an NMDA component may be involved in the effect of 1-BCP.

  10. [Difference in action sites between mecamylamine and hexamethonium on nicotinic receptors of sympathetic neurons].

    PubMed

    Liu, Wei; Zheng, Jian-Quan; Liu, Zhen-Wei; Li, Li-Jun; Wan, Qin; Liu, Chuan-Gui

    2002-12-25

    To compare the difference in action sites between mecamylamine (MEC) and hexamethonium (HEX) on nicotinic receptors of sympathetic neurons, we investigated the effects of MEC and HEX on the nicotine-induced currents in cultured superior cervical ganglion neurons by whole-cell patch clamp technique. The IC(50) of MEC and HEX for antagonizing the effect of 0.08 mmol/L nicotine was 0.0012 and 0.0095 mmol/L, respectively. Both MEC and HEX accelerated the desensitization of nicotinic receptors. Furthermore, by comparing their effects at holding potentials 30, 70 and 110 mV, it was indicated that their suppressing effect on the nicotine-induced currents was voltage-dependent. However, different from that of HEX, the inhibitory effect of MEC increased with administering the mixture of MEC and nicotine at intervals of 3 min, indicating a use-dependent effect of MEC. It is concluded that the action site of MEC on nicotinic receptors of sympathetic neurons is different from that of HEX.

  11. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT 3A R), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC 50 values of 70 nM and K d values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  12. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanos, P.K.; Wang, G.; Thanos, P.K.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brainmore » regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.« less

  13. Characterization of adenosine receptors in guinea-pig isolated left atria.

    PubMed Central

    Jahnel, U.; Nawrath, H.

    1989-01-01

    1. The effects of purinergic stimulation on action potential, force of contraction, 86Rb efflux and 45Ca uptake were investigated in guinea-pig left atria. 2. Adenosine exerted a negative inotropic effect which was antagonized by adenosine deaminase but enhanced by dipyridamole. 3. The negative inotropic effect of adenosine was mimicked by 5'-(N-ethyl)-carboxamido-adenosine (NECA) and the isomers of N6-(phenyl-isopropyl)-adenosine, R-PIA and S-PIA. NECA and R-PIA were about 100 times more potent than adenosine, whereas R-PIA was about 100 times more potent than S-PIA. 4. The inotropic effects of adenosine (in the presence of dipyridamole), NECA, R-PIA and S-PIA were competitively antagonized either by theophylline (pA2 about 4.5) or 8-phenyltheophylline (pA2 about 6.3). 5. NECA and R-PIA shortened the action potential duration and increased the rate constant of the efflux of 86Rb in a concentration-dependent manner with no differences in potency; the effects were competitively antagonized by 8-phenyltheophylline. 6. Barium ions reduced the efflux of 86Rb under control conditions and antagonized the increase induced by NECA and R-PIA. 7. NECA and R-PIA significantly reduced 45Ca uptake in beating preparations. 8. It is concluded that adenosine, NECA and R-PIA activate a common receptor population (P1 or A3) on the outside of the cell membrane of atrial heart muscle to increase the potassium conductance and to reduce the action potential and, thereby, calcium influx and force of contraction. PMID:2790380

  14. Salicylate, an aspirin metabolite, specifically inhibits the current mediated by glycine receptors containing α1-subunits

    PubMed Central

    Lu, Y-G; Tang, Z-Q; Ye, Z-Y; Wang, H-T; Huang, Y-N; Zhou, K-Q; Zhang, M; Xu, T-L; Chen, L

    2009-01-01

    Background and purpose: Aspirin or its metabolite sodium salicylate is widely prescribed and has many side effects. Previous studies suggest that targeting neuronal receptors/ion channels is one of the pathways by which salicylate causes side effects in the nervous system. The present study aimed to investigate the functional action of salicylate on glycine receptors at a molecular level. Experimental approach: Whole-cell patch-clamp and site-directed mutagenesis were deployed to examine the effects of salicylate on the currents mediated by native glycine receptors in cultured neurones of rat inferior colliculus and by glycine receptors expressed in HEK293T cells. Key results: Salicylate effectively inhibited the maximal current mediated by native glycine receptors without altering the EC50 and the Hill coefficient, demonstrating a non-competitive action of salicylate. Only when applied simultaneously with glycine and extracellularly, could salicylate produce this antagonism. In HEK293T cells transfected with either α1-, α2-, α3-, α1β-, α2β- or α3β-glycine receptors, salicylate only inhibited the current mediated by those receptors that contained the α1-subunit. A single site mutation of I240V in the α1-subunit abolished inhibition by salicylate. Conclusions and implications: Salicylate is a non-competitive antagonist specifically on glycine receptors containing α1-subunits. This action critically involves the isoleucine-240 in the first transmembrane segment of the α1-subunit. Our findings may increase our understanding of the receptors involved in the side effects of salicylate on the central nervous system, such as seizures and tinnitus. PMID:19594751

  15. Hsp90 is an essential regulator of EphA2 receptor stability and signaling: Implications for cancer cell migration and metastasis

    PubMed Central

    Annamalai, Balasubramaniam; Liu, Xueguang; Gopal, Udhayakumar; Isaacs, Jennifer

    2011-01-01

    A subset of Eph receptors and their corresponding ligands are commonly expressed in tumor cells, where they mediate biological processes such as cell migration and adhesion, while their expression in endothelial cells promotes angiogenesis. In particular, the tumor-specific upregulation of EphA2 confers properties of increased cellular motility, invasiveness, tumor angiogenesis, and tumor progression, and its overexpression correlates with poor prognosis in several cancer types. The cellular chaperone Hsp90 also plays a significant role in regulating cell migration and angiogenesis, although the full repertoire of motility driving proteins dependent upon Hsp90 function remain poorly defined. We explored the hypothesis that Hsp90 may regulate the activity of EphA2 and examined the potential relationship between EphA2 receptor signaling and chaperone function. We demonstrate that geldanamycin (GA), an Hsp90 antagonist, dramatically destabilizes newly synthesized EphA2 protein and diminishes receptor levels in a proteasome-dependent pathway. In addition, GA treatment impairs EphA2 signaling, as evidenced by a decrease in ligand-dependent receptor phosphorylation and subsequent cell rounding. Therefore, Hsp90 exerts a dual role in regulating the stability of nascent EphA2 protein, and maintaining the signaling capacity of the mature receptor. Our findings also suggest that the GA-dependent mitigation of EphA2 signaling in receptor-overexpressing cancer cells may be sufficient to recapitulate the anti-motility effects of this drug. Finally, the identification of a pharmacologic approach to suppress EphA2 expression and signaling highlights the attractive possibility that Hsp90 inhibitors may have clinical utility in antagonizing EphA2-dependent tumorigenic progression. PMID:19567782

  16. Cannabidiol inhibits human glioma cell migration through a cannabinoid receptor-independent mechanism

    PubMed Central

    Vaccani, Angelo; Massi, Paola; Colombo, Arianna; Rubino, Tiziana; Parolaro, Daniela

    2005-01-01

    We evaluated the ability of cannabidiol (CBD) to impair the migration of tumor cells stimulated by conditioned medium. CBD caused concentration-dependent inhibition of the migration of U87 glioma cells, quantified in a Boyden chamber. Since these cells express both cannabinoid CB1 and CB2 receptors in the membrane, we also evaluated their engagement in the antimigratory effect of CBD. The inhibition of cell was not antagonized either by the selective cannabinoid receptor antagonists SR141716 (CB1) and SR144528 (CB2) or by pretreatment with pertussis toxin, indicating no involvement of classical cannabinoid receptors and/or receptors coupled to Gi/o proteins. These results reinforce the evidence of antitumoral properties of CBD, demonstrating its ability to limit tumor invasion, although the mechanism of its pharmacological effects remains to be clarified. PMID:15700028

  17. Effects of AT1 receptor antagonism on kainate-induced seizures and concomitant changes in hippocampal extracellular noradrenaline, serotonin, and dopamine levels in Wistar-Kyoto and spontaneously hypertensive rats.

    PubMed

    Tchekalarova, Jana; Loyens, Ellen; Smolders, Ilse

    2015-05-01

    In the management of epilepsy, AT1 receptor antagonists have been suggested as an additional treatment strategy. A hyperactive brain angiotensin (Ang) II system and upregulated AT1 receptors are implicated in the cerebrovascular alterations in a genetic form of hypertension. Uncontrolled hypertension could also, in turn, be a risk factor for a seizure threshold decrease and development of epileptogenesis. The present study aimed to assess the effects of the selective AT1 receptor antagonist ZD7155 on kainic acid (KA)-induced status epilepticus (SE) development and accompanying changes in the hippocampal extracellular (EC) neurotransmitter levels of noradrenaline (NAD), serotonin (5-HT), and dopamine (DA) in spontaneously hypertensive rats (SHRs) and their parent strain Wistar-Kyoto (WKY) rats, since monoamines are well-known neurotransmitters involved in mechanisms of both epilepsy and hypertension. Status epilepticus was evoked in freely moving rats by a repetitive intraperitoneal (i.p.) administration of KA in subconvulsant doses. In the treatment group, ZD7155 (5mg/kg i.p.) was coadministered with the first KA injection. Spontaneously hypertensive rats exhibited higher susceptibility to SE than WKY rats, but the AT1 receptor antagonist did not alter the development of SE in SHRs or in WKY rats. In vivo microdialysis demonstrated significant KA-induced increases of the hippocampal NAD and DA levels in SHRs and of NAD, 5-HT, and DA in WKY rats. Although SHRs developed more severe seizures while receiving a lower dose of KA compared to WKY rats, AT1 receptor antagonism completely prevented all KA-induced increases of hippocampal monoamine levels in both rat strains without affecting seizure development per se. These results suggest a lack of direct relationship between KA-induced seizure susceptibility and adaptive changes of hippocampal NAD, 5-HT, and DA levels in the effects of ZD7155 in WKY rats and SHRs. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor.

    PubMed

    Callaghan, Brid; Kosari, Samin; Pustovit, Ruslan V; Sartor, Daniela M; Ferens, Dorota; Ban, Kung; Baell, Jonathan; Nguyen, Trung V; Rivera, Leni R; Brock, James A; Furness, John B

    2014-03-01

    Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin. © 2013 The British Pharmacological Society.

  19. Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor

    PubMed Central

    Callaghan, Brid; Kosari, Samin; Pustovit, Ruslan V; Sartor, Daniela M; Ferens, Dorota; Ban, Kung; Baell, Jonathan; Nguyen, Trung V; Rivera, Leni R; Brock, James A; Furness, John B

    2014-01-01

    BACKGROUND AND PURPOSE Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. EXPERIMENTAL APPROACH The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). KEY RESULTS Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. CONCLUSIONS AND IMPLICATIONS Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin. PMID:24670149

  20. Vasopressin and a nonpeptide antidiuretic hormone receptor antagonist (OPC-31260).

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J M; Risvanis, J; Johnston, C I

    1994-03-01

    The development of nonpeptide orally active AVP analogues has provided a new tool with which to assess the physiological and pathophysiological role of vasopressin (AVP). We have previously characterised the nonpeptide vasopressin V1 receptor antagonist OPC-21268, and now report the in vitro characterisation of the nonpeptide V2 receptor antagonist OPC-31260 in the rat. OPC-31260 caused a concentration-dependent displacement of the selective AVP V2 receptor antagonist radioligand, [3H]desGly-NH2(9)[d(CH2)5, D-Ile2,Ile4]AVP from V2 receptors in rat kidney medulla membranes. The concentration of OPC-31260 that displaced 50% of specific AVP binding (IC50) was 20 +/- 2 nmol/l for renal V2 receptors. OPC-31260 also caused a concentration-dependent displacement of the selective AVP V1 receptor antagonist radioligand, [125I]-[d(CH2)5,sarcosine7]AVP from V1 receptors in both rat liver and kidney medulla membranes. The IC50 was 500 +/- 30 nmol/l for both renal and liver V1 receptors. After oral administration to rats, OPC-31260 was an effective inhibitor of AVP at renal V2 and liver V1 receptors in a time-dependent manner. In vitro binding kinetic studies showed that OPC-31260 was a competitive antagonist at both the renal V2 receptor and the hepatic V1 receptor. OPC-31260 is a nonpeptide, orally effective competitive inhibitor of AVP with a V2:V1 receptor selectivity ratio of 25:1 indicating relative V2 receptor selectivity.

  1. Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson's disease.

    PubMed

    Elgueta, Daniela; Aymerich, María S; Contreras, Francisco; Montoya, Andro; Celorrio, Marta; Rojo-Bustamante, Estefanía; Riquelme, Eduardo; González, Hugo; Vásquez, Mónica; Franco, Rafael; Pacheco, Rodrigo

    2017-02-01

    Neuroinflammation involves the activation of glial cells, which is associated to the progression of neurodegeneration in Parkinson's disease. Recently, we and other researchers demonstrated that dopamine receptor D3 (D3R)-deficient mice are completely refractory to neuroinflammation and consequent neurodegeneration associated to the acute intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study we examined the therapeutic potential and underlying mechanism of a D3R-selective antagonist, PG01037, in mice intoxicated with a chronic regime of administration of MPTP and probenecid (MPTPp). Biodistribution analysis indicated that intraperitoneally administered PG01037 crosses the blood-brain barrier and reaches the highest concentration in the brain 40 min after the injection. Furthermore, the drug was preferentially distributed to the brain in comparison to the plasma. Treatment of MPTPp-intoxicated mice with PG01037 (30 mg/kg, administrated twice a week for five weeks) attenuated the loss of dopaminergic neurons in the substantia nigra pars compacta, as evaluated by stereological analysis, and the loss of striatal dopaminergic terminals, as determined by densitometric analyses of tyrosine hydroxylase and dopamine transporter immunoreactivities. Accordingly, the treatment resulted in significant improvement of motor performance of injured animals. Interestingly, the therapeutic dose of PG01037 exacerbated astrogliosis and resulted in increased ramification density of microglial cells in the striatum of MPTPp-intoxicated mice. Further analyses suggested that D3R expressed in astrocytes favours a beneficial astrogliosis with anti-inflammatory consequences on microglia. Our findings indicate that D3R-antagonism exerts a therapeutic effect in parkinsonian animals by reducing the loss of dopaminergic neurons in the nigrostriatal pathway, alleviating motor impairments and modifying the pro-inflammatory phenotype of glial cells. Copyright

  2. Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7.

    PubMed

    Ji, Li; Zhu, Huayuan; Chen, Hong; Fan, Wenyong; Chen, Junjie; Chen, Jing; Zhu, Guoqing; Wang, Juejin

    2015-12-01

    Neuropeptide W (NPW), an endogenous ligand for the G protein-coupled receptor 7 (GPR7), was first found to make important roles in central nerve system. In periphery, NPW was also present and regulated intracellular calcium homeostasis by L-type calcium channels. This study was designed to discover the effects of NPW-GPR7 on the function of CaV1.2 calcium channels in the vascular smooth muscle cells (VSMCs) and vasotone of arterial vessels. By whole-cell patch clamp, we studied the effects of NPW-23, the active form of NPW, on the CaV1.2 channels in the heterologously transfected human embryonic kidney 293 cells and VSMCs isolated from rat. Living system was used to explore the physiological function of NPW-23 in arterial myogenic tone. To investigate the pathological relevance, NPW mRNA level of mesenteric arteries was measured in the hypertensive and normotensive rats. NPW's receptor GPR7 was coexpressed with CaV1.2 channels in arterial smooth muscle. NPW-23 increased the ICa,L in transfected human embryonic kidney 293 cells and VSMCs via GPR7, which could be abrogated by phospholipase C (PLC)/protein kinase C (PKC) inhibitors, not protein kinase A or protein kinase G inhibitor. After NPW-23 application, the expression of pan phospho-PKC was increased; moreover, intracellular diacylglycerol level, the second messenger catalyzed by PLC, was increased 1.5-2-fold. Application with NPW-23 increased pressure-induced vasotone of the rat mesenteric arteries. Importantly, the expression of NPW was decreased in the hypertensive rats. NPW-23 regulates ICa,L via GPR7, which is mediated by PLC/PKC signaling, and such a mechanism plays a role in modulating vascular myogenic tone, which may involve in the development of vascular hypertension.

  3. Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons

    PubMed Central

    Ohta, Toshio; Ikemi, Yuki; Murakami, Matsuka; Imagawa, Toshiaki; Otsuguro, Ken-ichi; Ito, Shigeo

    2006-01-01

    5-Hydroxytryptamine (5-HT) is one of the major chemical mediators released in injured and inflamed tissue and is capable of inducing hyperalgesia in vivo. However, the cellular mechanisms of 5-HT-induced hyperalgesia remain unclear. Transient receptor potential V1 (TRPV1) plays a pivotal role in nociceptive receptors. In the present study, we determined whether 5-HT changes TRPV1 functions in cultured dorsal root ganglion (DRG) neurons isolated from neonatal rats, using Ca2+ imaging and whole-cell patch-clamp techniques. In more than 70% of DRG neurons, 5-HT potentiated the increases of [Ca2+]i induced by capsaicin, protons and noxious heat. Capsaicin-induced current and depolarizing responses, and proton-induced currents were also augmented by 5-HT. RT-PCR analysis revealed the expression of 5-HT2A and 5-HT7 receptors in rat DRG neurons. Agonists for 5-HT2A and 5-HT7 receptors mimicked the potentiating effect of 5-HT, and their antagonists decreased it. In DRG ipsilateral to the complete Freund's adjuvant-injected inflammation side, expression levels of 5-HT2A and 5-HT7 mRNAs increased, and the potentiating effect of 5-HT was more prominent than in the contralateral control side. These results suggest that the PKC- and PKA-mediated signalling pathways are involved in the potentiating effect of 5-HT on TRPV1 functions through the activation of 5-HT2A and 5-HT7 receptors, respectively. Under inflammatory conditions, the increases of the biosynthesis of these 5-HT receptors may lead to further potentiation of TRPV1 functions, resulting in the generation of inflammatory hyperalgesia in vivo. PMID:16901936

  4. The effects of a selective 5-HT2 receptor antagonist (ICI 170,809) on platelet aggregation and pupillary responses in healthy volunteers.

    PubMed Central

    Millson, D S; Jessup, C L; Swaisland, A; Haworth, S; Rushton, A; Harry, J D

    1992-01-01

    1. ICI 170,809 (2-(2-dimethylamino-2-methylpropylthio)-3-phenylquinoline hydrochloride) is a potent 5-hydroxytryptamine (5-HT) type 2 postsynaptic receptor antagonist. 2. Effects of ICI 170,809 as single oral doses (3, 7, 15 and 30 mg) or placebo were studied on the duration of antagonism for the ex vivo platelet aggregatory response to 5-HT and to the pupillary light constrictor response in eight healthy male volunteers. 3. Pupillary dark adapted responses to a 0.5 s light stimulus were measured using a portable infrared pupillometer, for up to 24 h after dosing. 4. The in vitro platelet 5-HT aggregation response was reduced by ICI 170,809, with depression of the dose-response curve to 5-HT at all concentrations of 5-HT and with no evidence for a parallel shift. 5. The ex vivo platelet 5-HT response demonstrated a dose related significant (P less than 0.02) decrease in aggregation reaching a maximum at 2 h after dosing with the effect persisting for at least 8 h after dosing with the 7 and 15 mg doses. 6. Resting pupil diameter (RPD), and light induced pupillary responses in the dark adapted pupil, showed a significant (P less than 0.01) dose related reduction with significant (P less than 0.05) effects still present with the 15 and 30 mg doses at 8 h after dosing. 7. We conclude that, changes in both ex vivo platelet aggregation to 5-HT and dark adapted pupil size, are significantly correlated (P less than 0.0001) with log plasma concentrations (ng ml-1) of ICI 170,809, enabling the assessment of 5-HT2-receptor antagonism in man. PMID:1576048

  5. Novel Yeast-based Strategy Unveils Antagonist Binding Regions on the Nuclear Xenobiotic Receptor PXR*

    PubMed Central

    Li, Hao; Redinbo, Matthew R.; Venkatesh, Madhukumar; Ekins, Sean; Chaudhry, Anik; Bloch, Nicolin; Negassa, Abdissa; Mukherjee, Paromita; Kalpana, Ganjam; Mani, Sridhar

    2013-01-01

    The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications. PMID:23525103

  6. Disruption of dopamine D1/D2 receptor complex is involved in the function of haloperidol in cardiac H9c2 cells.

    PubMed

    Lencesova, L; Szadvari, I; Babula, P; Kubickova, J; Chovancova, B; Lopusna, K; Rezuchova, I; Novakova, Z; Krizanova, O; Novakova, M

    2017-12-15

    Haloperidol is an antipsychotic agent and acts as dopamine D2 receptor (D2R) antagonist, as a prototypical ligand of sigma1 receptors (Sig1R) and it increases expression of type 1 IP 3 receptors (IP 3 R1). However, precise mechanism of haloperidol action on cardiomyocytes through dopaminergic signaling was not described yet. This study investigated a role of dopamine receptors in haloperidol-induced increase in IP 3 R1 and Sig1R, and compared physiological effect of melperone and haloperidol on basic heart parameters in rats. We used differentiated NG-108 cells and H9c2 cells. Gene expression, Western blot and immunofluorescence were used to evaluate haloperidol-induced differences; proximity ligation assay (PLA) and immunoprecipitation to determine interactions of D1/D2 receptors. To evaluate cardiac parameters, Wistar albino male rats were used. We have shown that antagonism of D2R with either haloperidol or melperone results in upregulation of both, IP 3 R1 and Sig1R, which is associated with increased D2R, but reduced D1R expression. Immunofluorescence, immunoprecipitation and PLA support formation of heteromeric D1/D2 complexes in H9c2 cells. Treatment with haloperidol (but not melperone) caused decrease in systolic and diastolic blood pressure and significant increase in heart rate. Because D1R/D2R complexes can engage Gq-like signaling in other experimental systems, these results are consistent with the possibility that disruption of D1R/D2R complex in H9c2 cells might cause a decrease in IP 3 R1 activity, which in turn may account for the increase expression of IP 3 R and Sig1R. D2R is probably not responsible for changes in cardiac parameters, since melperone did not have any effect. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium.

    PubMed

    Lewis, Rebecca M; Keller, Jesse J; Wan, Liangcai; Stone, Jennifer S

    2018-07-01

    Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Characterization of V1R receptor (ora) genes in Lake Victoria cichlids.

    PubMed

    Ota, Tomoki; Nikaido, Masato; Suzuki, Hikoyu; Hagino-Yamagishi, Kimiko; Okada, Norihiro

    2012-05-15

    Although olfaction could play a crucial role in underwater habitats by allowing fish to sense a variety of nonvolatile chemical signals, the importance of olfaction in species-rich cichlids is still controversial. In particular, examining whether cichlids rely on olfaction for reproduction is of primary interest to understand the mechanisms of speciation. In the present study, we explored the V1R (also known as ora) genes, which are believed to encode reproductive pheromone receptors in fish, in the genomes of Lake Victoria cichlids. By screening a bacterial artificial chromosome library, we identified all six intact V1R genes (V1R1 to V1R6) that have been reported in other teleost fish. Furthermore, RT-PCR and in situ hybridization analyses showed that all of the V1R genes were expressed in the olfactory epithelium, indicating that these receptors are functional in cichlids. These observations indicate that cichlids use V1R-mediated olfaction in some ways for their social behaviors. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. GABAA Receptor Regulation of Voluntary Ethanol Drinking Requires PKCε

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Mole, Beth; Hodge, Clyde W.

    2010-01-01

    Protein kinase C (PKC) regulates a variety of neural functions, including ion channel activity, neurotransmitter release, receptor desensitization and differentiation. We have shown previously that mice lacking the ε-isoform of PKC (PKCε) self-administer 75% less ethanol and exhibit supersensitivity to acute ethanol and allosteric positive modulators of GABAA receptors when compared with wild-type controls. The purpose of the present study was to examine involvement of PKCε in GABAA receptor regulation of voluntary ethanol drinking. To address this question, PKCε null-mutant and wild-type control mice were allowed to drink ethanol (10% v/v) vs. water on a two-bottle continuous access protocol. The effects of diazepam (nonselective GABAA BZ positive modulator), zolpidem (GABAA α1 agonist), L-655,708 (BZ-sensitive GABAA α5 inverse agonist), and flumazenil (BZ antagonist) were then tested on ethanol drinking. Ethanol intake (grams/kg/day) by wild-type mice decreased significantly after diazepam or zolpidem but increased after L-655,708 administration. Flumazenil antagonized diazepam-induced reductions in ethanol drinking in wild-type mice. However, ethanol intake by PKCε null mice was not altered by any of the GABAergic compounds even though effects were seen on water drinking in these mice. Increased acute sensitivity to ethanol and diazepam, which was previously reported, was confirmed in PKCε null mice. Thus, results of the present study show that PKCε null mice do not respond to doses of GABAA BZ receptor ligands that regulate ethanol drinking by wild-type control mice. This suggests that PKCε may be required for GABAA receptor regulation of chronic ethanol drinking. PMID:16881070

  10. Draft Genome Sequence of Streptomyces sp. Strain Wb2n-11, a Desert Isolate with Broad-Spectrum Antagonism against Soilborne Phytopathogens

    DOE PAGES

    Köberl, Martina; White, Richard A.; Erschen, Sabine; ...

    2015-08-06

    Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.

  11. The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain.

    PubMed

    Sánchez-Blázquez, Pilar; Rodríguez-Muñoz, Maria; Berrocoso, Esther; Garzón, Javier

    2013-09-15

    Multiple groups have reported the functional cross-regulation between mu-opioid (MOP) receptor and glutamate ionotropic receptor N (GluN), and the post-synaptic association of these receptors has been implicated in the transmission and modulation of nociceptive signals. Opioids, such as morphine, disrupt the MOP receptor-GluN receptor complex to stimulate the activity of GluN receptors via protein kinase C (PKC)/Src. This increased GluN receptor activity opposes MOP receptor signalling, and via neural nitric oxide synthase (nNOS) and calcium and calmodulin regulated kinase II (CaMKII) induces the phosphorylation and uncoupling of the opioid receptor, which results in the development of morphine analgesic tolerance. Both experimental in vivo activation of GluN receptors and neuropathic pain separate the MOP receptor-GluN receptor complex via protein kinase A (PKA) and reduce the analgesic capacity of morphine. The histidine triad nucleotide-binding protein 1 (HINT1) associates with the MOP receptor C-terminus and connects the activities of MOP receptor and GluN receptor. In HINT1⁻/⁻ mice, morphine promotes enhanced analgesia and produces tolerance that is not related to GluN receptor activity. In these mice, the GluN receptor agonist N-methyl-D-aspartate acid (NMDA) does not antagonise the analgesic effects of morphine. Treatments that rescue morphine from analgesic tolerance, such as GluN receptor antagonism or PKC, nNOS and CaMKII inhibitors, all induce MOP receptor-GluN receptor re-association and reduce GluN receptor/CaMKII activity. In mice treated with NMDA or suffering from neuropathic pain (induced by chronic constriction injury, CCI), GluN receptor antagonists, PKA inhibitors or certain antidepressants also diminish CaMKII activity and restore the MOP receptor-GluN receptor association. Thus, the HINT1 protein stabilises the association between MOP receptor and GluN receptor, necessary for the analgesic efficacy of morphine, and this coupling is reduced

  12. Endothelin ETA receptor/lipid peroxides/COX-2/TGF-β1 signalling underlies aggravated nephrotoxicity caused by cyclosporine plus indomethacin in rats.

    PubMed

    Helmy, Maged W; El-Gowelli, Hanan M; Ali, Rabab M; El-Mas, Mahmoud M

    2015-09-01

    Cyclosporine (CSA) and non-steroidal anti-inflammatory drugs (NSAIDs) are co-prescribed for some arthritic conditions. We tested the hypothesis that this combined regimen elicits exaggerated nephrotoxicity in rats via the up-regulation of endothelin (ET) receptor signalling. The effects of a 10 day treatment with CSA (20 mg · kg(-1) · day(-1)), indomethacin (5 mg · kg(-1) · day(-1)) or their combination on renal biochemical, inflammatory, oxidative and structural profiles were assessed. The roles of ETA receptor and COX-2 pathways in the interaction were evaluated. Oral treatment with CSA or indomethacin elevated serum urea and creatinine, caused renal tubular atrophy and interstitial fibrosis, increased renal TGF-β1, and reduced immunohistochemical expressions of ETA receptors and COX-2. CSA, but not indomethacin, increased renal ET-1, the lipid peroxidation product malondialdehyde (MDA) and GSH activity. Compared with individual treatments, simultaneous CSA/indomethacin exposure caused: (i) greater elevations in serum creatinine and renal MDA; (ii) loss of the compensatory increase in GSH; (iii) renal infiltration of inflammatory cells and worsening of fibrotic and necrotic profiles; and (iv) increased renal ET-1 and decreased ETA receptor and COX-2 expressions. Blockade of ETA receptors by atrasentan ameliorated the biochemical, structural, inflammatory and oxidative abnormalities caused by the CSA/indomethacin regimen. Furthermore, atrasentan partly reversed the CSA/indomethacin-evoked reductions in the expression of ETA receptor and COX-2 protein. The exaggerated oxidative insult and associated dysregulation of the ETA receptor/COX-2/TGF-β1 signalling might account for the aggravated nephrotoxicity caused by the CSA/indomethacin regimen. The potential renoprotective effect of ETA receptor antagonism might be exploited therapeutically. © 2015 The British Pharmacological Society.

  13. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms

    PubMed Central

    Abongwa, Melanie; Buxton, Samuel K.; Robertson, Alan P.; Martin, Richard J.

    2016-01-01

    Nematode parasites may be controlled with drugs, but their regular application has given rise to concerns about the development of resistance. Drug combinations may be more effective than single drugs and delay the onset of resistance. A combination of the nicotinic antagonist, derquantel, and the macrocyclic lactone, abamectin, has been found to have synergistic anthelmintic effects against gastro-intestinal nematode parasites. We have observed in previous contraction and electrophysiological experiments that derquantel is a potent selective antagonist of nematode parasite muscle nicotinic receptors; and that abamectin is an inhibitor of the same nicotinic receptors. To explore these inhibitory effects further, we expressed muscle nicotinic receptors of the nodular worm, Oesophagostomum dentatum (Ode-UNC-29:Ode-UNC-63:Ode-UNC-38), in Xenopus oocytes under voltage-clamp and tested effects of abamectin on pyrantel and acetylcholine responses. The receptors were antagonized by 0.03 μM abamectin in a non-competitive manner (reduced Rmax, no change in EC50). This antagonism increased when abamectin was increased to 0.1 μM. However, when we increased the concentration of abamectin further to 0.3 μM, 1 μM or 10 μM, we found that the antagonism decreased and was less than with 0.1 μM abamectin. The bi-phasic effects of abamectin suggest that abamectin acts at two allosteric sites: one high affinity negative allosteric (NAM) site causing antagonism, and another lower affinity positive allosteric (PAM) site causing a reduction in antagonism. We also tested the effects of 0.1 μM derquantel alone and in combination with 0.3 μM abamectin. We found that derquantel on these receptors, like abamectin, acted as a non-competitive antagonist, and that the combination of derquantel and abamectin produced greater inhibition. These observations confirm the antagonistic effects of abamectin on nematode nicotinic receptors in addition to GluCl effects, and illustrate more complex

  14. The role of the vasopressin system and dopamine D1 receptors in the effects of social housing condition on morphine reward.

    PubMed

    Bates, M L Shawn; Hofford, Rebeca S; Emery, Michael A; Wellman, Paul J; Eitan, Shoshana

    2018-07-01

    The association with opioid-abusing individuals or even the perception of opioid abuse by peers are risk factors for the initiation and escalation of abuse. Similarly, we demonstrated that morphine-treated animals housed with only morphine-treated animals (referred to as morphine only) acquire morphine conditioned place-preference (CPP) more readily than morphine-treated animals housed with drug-naïve animals (referred to as morphine cage-mates). However, the molecular mechanisms underlying these effects are still elusive. Mice received repeated morphine or saline while housed as saline only, morphine only, or cage-mates. Then, they were examined for the expression levels of D1 dopamine receptor (D1DR), D2 dopamine receptor (D2DR), dopamine transporter (DAT), oxytocin, and Arginine-vasopressin (AVP) in the striatum using qPCR. Additionally, we examined the effects of the AVP-V1b receptor antagonist, SSR149415, on the acquisition of morphine conditioned place-preference (CPP). Increased striatal expression of D1DR and AVP was observed in morphine only animals, but not morphine cage-mates. No significant effects were observed on the striatal expression of D2DR, DAT, or oxytocin. Antagonizing the AVP-V1b receptors decreased the acquisition of morphine CPP in the morphine only mice, but did not alter the acquisition of morphine CPP in the morphine cage-mate mice. Housing with drug-naïve animals protects against the increase in striatal expression of D1DR and AVP elicited by morphine exposure. Moreover, our studies suggest that the protective effect of housing with drug-naïve animals on the acquisition of morphine reward might be, at least partially, mediated by AVP. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Oncogenic JAK2V617F requires an intact SH2-like domain for constitutive activation and induction of a myeloproliferative disease in mice.

    PubMed

    Gorantla, Sivahari P; Dechow, Tobias N; Grundler, Rebekka; Illert, Anna Lena; Zum Büschenfelde, Christian Meyer; Kremer, Marcus; Peschel, Christian; Duyster, Justus

    2010-11-25

    The oncogenic JAK2V617F mutation is found in myeloproliferative neoplasms (MPNs) and is believed to be critical for leukemogenesis. Here we show that JAK2V617F requires an intact SH2 domain for constitutive activation of downstream signaling pathways. In addition, there is a strict requirement of cytokine receptor expression for the activation of this oncogene. Further analysis showed that the SH2 domain mutation did not interfere with JAK2 membrane distribution. However, coimmunoprecipitated experiments revealed a role for the SH2 domain in the aggregation and cross-phosphorylation of JAK2V617F at the cell membrane. Forced overexpression of cytokine receptors could rescue the JAK2V617F SH2 mutant supporting a critical role of JAK2V617F abundance for constitutive activation. However, under physiologic cytokine receptor expression the SH2 domain is absolutely necessary for oncogenic JAK2V617F activation. This is demonstrated in a bone marrow transplantation model, in which an intact SH2 domain in JAK2V617F is required for the induction of an MPN-like disease. Thus, our results points to an indispensable role of the SH2 domain in JAK2V617F-induced MPNs.

  16. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    PubMed

    Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G

    1996-03-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.

  17. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    PubMed Central

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  18. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    PubMed

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  19. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5-HT3A receptors due to the action of flavonoids

    PubMed Central

    Herbrechter, Robin; Ziemba, Paul M.; Hoffmann, Katrin M.; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-01-01

    The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g., setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3Areceptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonism of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (-)-liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (-)-liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito. PMID:26191003

  20. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, Jennifer L.; Diamond, Michael S., E-mail: diamond@borcim.wustl.edu; Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on theirmore » RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.« less

  1. Antagonism of Human Formyl Peptide Receptor 1 (FPR1) by Chromones and Related Isoflavones

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Cheng, Ni; Ye, Richard D.; Quinn, Mark T.

    2014-01-01

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. Because FPRs play an important role in the regulation of inflammatory reactions implicated in disease pathogenesis, FPR antagonists may represent novel therapeutics for modulating innate immunity. Previously, 4H-chromones were reported to be potent and competitive FPR1 antagonists. In the present studies, 96 additional chromone analogs, including related synthetic and natural isoflavones were evaluated for FPR1 antagonist activity. We identified a number of novel competitive FPR1 antagonists that inhibited fMLF-induced intracellular Ca2+ mobilization in FPR1-HL60 cells and effectively competed with WKYMVm-FITC for binding to FPR1 in FPR1-HL60 and FPR1-RBL cells. Compound 10 (6-hexyl-2-methyl-3-(1-methyl-1H-benzimidazol-2-yl)-4-oxo-4H-chromen-7-yl acetate) was found to be the most potent FPR1-specific antagonist, with binding affinity Ki~100 nM. These chromones inhibited Ca2+ flux and chemotaxis in human neutrophils with nanomolar-micromolar IC50 values. In addition, the most potent novel FPR1 antagonists inhibited fMLF-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in FPR1-RBL cells. These antagonists were specific for FPR1 and did not inhibit WKYMVM/WKYMVm-induced intracellular Ca2+ mobilization in FPR2-HL60 cells, FPR3-HL60 cells, RBL cells transfected with murine Fpr1, or interleukin 8-induced Ca2+ flux in human neutrophils and RBL cells transfected with CXC chemokine receptor 1 (CXCR1). Moreover, pharmacophore modeling showed that the active chromones had a significantly higher degree of similarity with the pharmacophore template as compared to inactive analogs. Thus, the chromone/isoflavone scaffold represents a relevant backbone for development of novel FPR1 antagonists. PMID:25450672

  2. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y1 and Y2 receptors

    PubMed Central

    Tough, IR; Forbes, S; Tolhurst, R; Ellis, M; Herzog, H; Bornstein, JC; Cox, HM

    2011-01-01

    BACKGROUND AND PURPOSE Peptide YY (PYY) and neuropeptide Y (NPY) activate Y receptors, targets under consideration as treatments for diarrhoea and other intestinal disorders. We investigated the gastrointestinal consequences of selective PYY or NPY ablation on mucosal ion transport, smooth muscle activity and transit using wild-type, single and double peptide knockout mice, comparing mucosal responses with those from human colon. EXPERIMENTAL APPROACH Mucosae were pretreated with a Y1 (BIBO3304) or Y2 (BIIE0246) receptor antagonist and changes in short-circuit current recorded. Colonic transit and colonic migrating motor complexes (CMMCs) were assessed in vitro and upper gastrointestinal and colonic transit measured in vivo. KEY RESULTS Y receptor antagonists revealed tonic Y1 and Y2 receptor-mediated antisecretory effects in human and wild-type mouse colon mucosae. In both, Y1 tone was epithelial while Y2 tone was neuronal. Y1 tone was reduced 90% in PYY−/− mucosa but unchanged in NPY−/− tissue. Y2 tone was partially reduced in NPY−/− or PYY−/− mucosae and abolished in tetrodotoxin-pretreated PYY−/− tissue. Y1 and Y2 tone were absent in NPYPYY−/− tissue. Colonic transit was inhibited by Y1 blockade and increased by Y2 antagonism indicating tonic Y1 excitation and Y2 inhibition respectively. Upper GI transit was increased in PYY−/− mice only. Y2 blockade reduced CMMC frequency in isolated mouse colon. CONCLUSIONS AND IMPLICATIONS Endogenous PYY and NPY induced significant mucosal antisecretory tone mediated by Y1 and Y2 receptors, via similar mechanisms in human and mouse colon mucosa. Both peptides contributed to tonic Y2-receptor-mediated inhibition of colonic transit in vitro but only PYY attenuated upper GI transit. PMID:21457230

  3. Ligand-Dependent Activation and Deactivation of the Human Adenosine A2A Receptor

    PubMed Central

    Li, Jianing; Jonsson, Amanda L.; Beuming, Thijs; Shelley, John C.; Voth, Gregory A.

    2013-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins with critical functions in cellular signal transduction, representing a primary class of drug targets. Acting by direct binding, many drugs modulate GPCR activity and influence the signaling pathways associated with numerous diseases. However, complete details of ligand-dependent GPCR activation/deactivation are difficult to obtain from experiments. Therefore, it remains unclear how ligands modulate a GPCR’s activity. To elucidate the ligand-dependent activation/deactivation mechanism of the human adenosine A2A receptor (AA2AR), a member of the class A GPCRs, we performed large-scale unbiased molecular dynamics and metadynamics simulations of the receptor embedded in a membrane. At the atomic level, we have observed distinct structural states that resemble the active and inactive states. In particular we noted key structural elements changing in a highly concerted fashion during the conformational transitions, including six conformational states of a tryptophan (Trp2466.48). Our findings agree with a previously proposed view, that during activation, this tryptophan residue undergoes a rotameric transition that may be coupled to a series of coherent conformational changes, resulting in the opening of the G protein-binding site. Further, metadynamics simulations provide quantitative evidence for this mechanism, suggesting how ligand binding shifts the equilibrium between the active and inactive states. Our analysis also proposes that a few specific residues are associated with agonism/antagonism, affinity and selectivity, and suggests that the ligand-binding pocket can be thought of as having three distinct regions, providing dynamic features for structure-based design. Additional simulations with AA2AR bound to a novel ligand are consistent with our proposed mechanism. Generally, our study provides insights into the ligand-dependent AA2AR activation/deactivation in addition to what has been found in crystal

  4. Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor.

    PubMed

    Li, Jianing; Jonsson, Amanda L; Beuming, Thijs; Shelley, John C; Voth, Gregory A

    2013-06-12

    G-protein-coupled receptors (GPCRs) are membrane proteins with critical functions in cellular signal transduction, representing a primary class of drug targets. Acting by direct binding, many drugs modulate GPCR activity and influence the signaling pathways associated with numerous diseases. However, complete details of ligand-dependent GPCR activation/deactivation are difficult to obtain from experiments. Therefore, it remains unclear how ligands modulate a GPCR's activity. To elucidate the ligand-dependent activation/deactivation mechanism of the human adenosine A2A receptor (AA2AR), a member of the class A GPCRs, we performed large-scale unbiased molecular dynamics and metadynamics simulations of the receptor embedded in a membrane. At the atomic level, we have observed distinct structural states that resemble the active and inactive states. In particular, we noted key structural elements changing in a highly concerted fashion during the conformational transitions, including six conformational states of a tryptophan (Trp246(6.48)). Our findings agree with a previously proposed view that, during activation, this tryptophan residue undergoes a rotameric transition that may be coupled to a series of coherent conformational changes, resulting in the opening of the G-protein binding site. Further, metadynamics simulations provide quantitative evidence for this mechanism, suggesting how ligand binding shifts the equilibrium between the active and inactive states. Our analysis also proposes that a few specific residues are associated with agonism/antagonism, affinity, and selectivity, and suggests that the ligand-binding pocket can be thought of as having three distinct regions, providing dynamic features for structure-based design. Additional simulations with AA2AR bound to a novel ligand are consistent with our proposed mechanism. Generally, our study provides insights into the ligand-dependent AA2AR activation/deactivation in addition to what has been found in

  5. Heterodimeric BMP-2/7 Antagonizes the Inhibition of All-Trans Retinoic Acid and Promotes the Osteoblastogenesis

    PubMed Central

    Bi, Wenjuan; Gu, Zhiyuan; Zheng, Yuanna; Zhang, Xiao; Guo, Jing; Wu, Gang

    2013-01-01

    Objectives Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration. Materials and Methods We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line) that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation), alkaline phosphatase activity (a marker for early differentiation), osteocalcin (a marker for late differentiation), calcium deposition (a marker for final mineralization) and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin) at different time points. Results All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7). Conclusions Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism. PMID:24205156

  6. The 5-HT2A receptor antagonist M100907 is more effective in counteracting NMDA antagonist- than dopamine agonist-induced hyperactivity in mice.

    PubMed

    Carlsson, M L; Martin, P; Nilsson, M; Sorensen, S M; Carlsson, A; Waters, S; Waters, N

    1999-01-01

    The purpose of the present study was to compare the effectiveness of the selective 5-HT2A antagonist M100907 in different psychosis models. The classical neuroleptic haloperidol was used as reference compound. Two hyperdopaminergia and two hypoglutamatergia mouse models were used. Hyperdopaminergia was produced by the DA releaser d-amphetamine or the DA uptake inhibitor GBR 12909. Hypoglutamatergia was produced by the un-competitive NMDA receptor antagonist MK-801 or the competitive NMDA receptor antagonist D-CPPene. M100907 was found to counteract the locomotor stimulant effects of the NMDA receptor antagonists MK-801 and D-CPPene, but spontaneous locomotion, d-amphetamine- and GBR-12909-induced hyperactivity were not significantly affected. Haloperidol, on the other hand, antagonized both NMDA antagonist- and DA agonist-induced hyperactivity, as well as spontaneous locomotion in the highest dose used. Based on the present and previous results we draw the conclusion that 5-HT2A receptor antagonists are particularly effective against behavioural anomalies resulting from hypoglutamatergia of various origins. The clinical implications of our results and conclusions would be that a 5-HT2A receptor antagonist, due to i a the low side effect liability, could be the preferable treatment strategy in various disorders associated with hypoglutamatergia; such conditions might include schizophrenia, childhood autism and dementia disorders.

  7. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    PubMed

    Röser, Claudia; Jordan, Nadine; Balfanz, Sabine; Baumann, Arnd; Walz, Bernd; Baumann, Otto; Blenau, Wolfgang

    2012-01-01

    Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT(2) and 5-HT(7) receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+)] in a dose-dependent manner (EC(50) = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC(50) = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α) or Cv5-HT(7) in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT(2α) receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT(7) receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT(7) in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+)- and cAMP-signalling cascades.

  8. Antagonism of 5-hydroxytryptamine2A Receptor Results in Decreased Contractile Response of Bovine Lateral Saphenous Vein to Tall Fescue Alkaloids

    USDA-ARS?s Scientific Manuscript database

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  9. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors.

    PubMed

    Winter, J C; Filipink, R A; Timineri, D; Helsley, S E; Rabin, R A

    2000-01-01

    Stimulus control was established in rats trained to discriminate either 5-methoxy-N,N-dimethyltryptamine (3 mg/kg) or (-)-2,5-dimethoxy-4-methylamphetamine (0.56 mg/kg) from saline. Tests of antagonism of stimulus control were conducted using the 5-HT1A antagonists (+/-)-pindolol and WAY-100635, and the 5-HT2 receptor antagonist pirenperone. In rats trained with 5-MeO-DMT, pindolol and WAY-100635 both produced a significant degree of antagonism of stimulus control, but pirenperone was much less effective. Likewise, the full generalization of 5-MeO-DMT to the selective 5-HT1A agonist [+/-]-8-hydroxy-dipropylaminotetralin was blocked by WAY-100635, but unaffected by pirenperone. In contrast, the partial generalization of 5-MeO-DMT to the 5-HT2 agonist DOM was completely antagonized by pirenperone, but was unaffected by WAY-100635. Similarly, in rats trained with (-)-DOM, pirenperone completely blocked stimulus control, but WAY-100635 was inactive. The results obtained in rats trained with (-)-DOM and tested with 5-MeO-DMT were more complex. Although the intraperitoneal route had been used for both training drugs, a significant degree of generalization of (-)-DOM to 5-MeO-DMT was seen only when the latter drug was administered subcutaneously. Furthermore, when the previously effective dose of pirenperone was given in combination with 5-MeO-DMT (s.c.), complete suppression of responding resulted. However, the combination of pirenperone and WAY-100635 given prior to 5-MeO-DMT restored responding in (-)-DOM-trained rats, and provided evidence of antagonism of the partial substitution of 5-MeO-DMT for (-)-DOM. The present data indicate that 5-MeO-DMT-induced stimulus control is mediated primarily by interactions with 5-HT1A receptors. In addition, however, the present findings suggest that 5-MeO-DMT induces a compound stimulus that includes an element mediated by interactions with a 5-HT2 receptors. The latter component is not essential for 5-MeO-DMT-induced stimulus

  10. Replacement of the respiratory syncytial virus nonstructural proteins NS1 and NS2 by the V protein of parainfluenza virus 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Kim C.; He, Biao; Teng, Michael N.

    2007-11-10

    Paramyxoviruses have been shown to produce proteins that inhibit interferon production and signaling. For human respiratory syncytial virus (RSV), the nonstructural NS1 and NS2 proteins have been shown to have interferon antagonist activity through an unknown mechanism. To understand further the functions of NS1 and NS2, we generated recombinant RSV in which both NS1 and NS2 were replaced by the PIV5 V protein, which has well-characterized IFN antagonist activities ({delta}NS1/2-V). Expression of V was able to partially inhibit IFN responses in {delta}NS1/2-V-infected cells. In addition, the replication kinetics of {delta}NS1/2-V were intermediate between {delta}NS1/2 and wild-type (rA2) in A549 cells.more » However, expression of V did not affect the ability of {delta}NS1/2-V to activate IRF3 nuclear translocation and IFN{beta} transcription. These data indicate that V was able to replace some of the IFN inhibitory functions of the RSV NS1 and NS2 proteins, but also that NS1 and NS2 have functions in viral replication beyond IFN antagonism.« less

  11. The selective V1a receptor agonist selepressin (FE 202158) blocks vascular leak in ovine severe sepsis

    PubMed Central

    Wiśniewska, Halina; Traber, Lillian D.; Lin, ChiiDean; Fan, Juanjuan; Hawkins, Hal K.; Cox, Robert A.; Wiśniewski, Kazimierz; Schteingart, Claudio D.; Landry, Donald W.; Rivière, Pierre J.-M.; Traber, Daniel L.

    2014-01-01

    Objective To determine if the selective vasopressin type 1a receptor (V1aR) agonist selepressin (FE 202158) is as effective as the mixed V1a/V2 receptor (V1aR/V2R) agonist vasopressor hormone arginine vasopressin (AVP) when used as a titrated first-line vasopressor therapy in an ovine model of Pseudomonas aeruginosa pneumonia-induced severe sepsis. Design Prospective, randomized, controlled laboratory experiment. Setting University animal research facility. Subjects Forty-five chronically instrumented sheep. Interventions Sheep were anesthetized, insufflated with cooled cotton smoke via tracheostomy, and P. aeruginosa were instilled into their airways. They were then placed on assisted ventilation, awakened, and resuscitated with lactated Ringer's solution titrated to maintain hematocrit ± 3% from baseline levels. If, despite fluid management, mean arterial pressure (MAP) fell by > 10 mm Hg from baseline levels, a continuous i.v. infusion of AVP or selepressin was titrated to raise and maintain MAP within 10 mm Hg of baseline. Effects of combination treatment of selepressin with the selective V2R agonist desmopressin were similarly investigated. Measurements and Main Results In septic sheep, MAP fell by ~30 mm Hg, systemic vascular resistance index (SVRI) decreased by ~50%, and ~7 L of fluid were retained over 24 h; this fluid accumulation was partially reduced by AVP and almost completely blocked by selepressin; combined infusion of selepressin and desmopressin increased fluid accumulation to levels similar to AVP treatment. Conclusions Resuscitation with the selective V1aR agonist selepressin blocked vascular leak more effectively than the mixed V1aR/V2R agonist AVP because of its lack of agonist activity at the V2R. PMID:24674922

  12. Discovery of new anti-depressants from structurally novel 5-HT3 receptor antagonists: design, synthesis and pharmacological evaluation of 3-ethoxyquinoxalin-2-carboxamides.

    PubMed

    Mahesh, Radhakrishnan; Devadoss, Thangaraj; Pandey, Dilip Kumar; Bhatt, Shvetank

    2011-02-15

    A novel series of 3-ethoxyquinoxalin-2-carboxamides were designed as per the pharmacophoric requirements of 5-HT(3) receptor antagonist using ligand-based approach. The desired carboxamides were synthesized from the key intermediate, 3-ethoxyquinoxalin-2-carboxylic acid by coupling with appropriate amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The 5-HT(3) receptor antagonism was evaluated in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methy-5-HT, which was expressed in the form of pA(2) values. Compound 6h (3-ethoxyquinoxalin-2-yl)(4-methylpiperazin-1-yl)methanone was found to be the most active compound, which expressed a pA(2) value of 7.7. In forced swim test, the compounds with higher pA(2) value exhibited good anti-depressant-like activity and compounds with lower pA(2) value failed to show activity as compared to the vehicle-treated group. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization.

    PubMed

    Cucchi, Paola; Meini, Stefania; Bressan, Alessandro; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Lecci, Alessandro; Faiella, Angela; Rotondaro, Luigi; Giuliani, Sandro; Giolitti, Alessandro; Quartara, Laura; Maggi, Carlo Alberto

    2005-12-28

    The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but

  14. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition.

    PubMed

    Su, Zhenghui; Zhang, Yanqi; Liao, Baojian; Zhong, Xiaofen; Chen, Xin; Wang, Haitao; Guo, Yiping; Shan, Yongli; Wang, Lihui; Pan, Guangjin

    2018-03-23

    During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region.

    PubMed

    Minato, Yuichi; Suzuki, Shiho; Hara, Tomoaki; Kofuku, Yutaka; Kasuya, Go; Fujiwara, Yuichiro; Igarashi, Shunsuke; Suzuki, Ei-Ichiro; Nureki, Osamu; Hattori, Motoyuki; Ueda, Takumi; Shimada, Ichio

    2016-04-26

    Ligand-gated ion channels are partially activated by their ligands, resulting in currents lower than the currents evoked by the physiological full agonists. In the case of P2X purinergic receptors, a cation-selective pore in the transmembrane region expands upon ATP binding to the extracellular ATP-binding site, and the currents evoked by α,β-methylene ATP are lower than the currents evoked by ATP. However, the mechanism underlying the partial activation of the P2X receptors is unknown although the crystal structures of zebrafish P2X4 receptor in the apo and ATP-bound states are available. Here, we observed the NMR signals from M339 and M351, which were introduced in the transmembrane region, and the endogenous alanine and methionine residues of the zebrafish P2X4 purinergic receptor in the apo, ATP-bound, and α,β-methylene ATP-bound states. Our NMR analyses revealed that, in the α,β-methylene ATP-bound state, M339, M351, and the residues that connect the ATP-binding site and the transmembrane region, M325 and A330, exist in conformational equilibrium between closed and open conformations, with slower exchange rates than the chemical shift difference (<100 s(-1)), suggesting that the small population of the open conformation causes the partial activation in this state. Our NMR analyses also revealed that the transmembrane region adopts the open conformation in the state bound to the inhibitor trinitrophenyl-ATP, and thus the antagonism is due to the closure of ion pathways, except for the pore in the transmembrane region: i.e., the lateral cation access in the extracellular region.

  16. Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region

    PubMed Central

    Minato, Yuichi; Suzuki, Shiho; Hara, Tomoaki; Kofuku, Yutaka; Kasuya, Go; Fujiwara, Yuichiro; Igarashi, Shunsuke; Suzuki, Ei-ichiro; Nureki, Osamu; Hattori, Motoyuki; Ueda, Takumi; Shimada, Ichio

    2016-01-01

    Ligand-gated ion channels are partially activated by their ligands, resulting in currents lower than the currents evoked by the physiological full agonists. In the case of P2X purinergic receptors, a cation-selective pore in the transmembrane region expands upon ATP binding to the extracellular ATP-binding site, and the currents evoked by α,β-methylene ATP are lower than the currents evoked by ATP. However, the mechanism underlying the partial activation of the P2X receptors is unknown although the crystal structures of zebrafish P2X4 receptor in the apo and ATP-bound states are available. Here, we observed the NMR signals from M339 and M351, which were introduced in the transmembrane region, and the endogenous alanine and methionine residues of the zebrafish P2X4 purinergic receptor in the apo, ATP-bound, and α,β-methylene ATP-bound states. Our NMR analyses revealed that, in the α,β-methylene ATP-bound state, M339, M351, and the residues that connect the ATP-binding site and the transmembrane region, M325 and A330, exist in conformational equilibrium between closed and open conformations, with slower exchange rates than the chemical shift difference (<100 s−1), suggesting that the small population of the open conformation causes the partial activation in this state. Our NMR analyses also revealed that the transmembrane region adopts the open conformation in the state bound to the inhibitor trinitrophenyl-ATP, and thus the antagonism is due to the closure of ion pathways, except for the pore in the transmembrane region: i.e., the lateral cation access in the extracellular region. PMID:27071117

  17. The dopamine D2 receptor antagonist sulpiride modulates striatal BOLD signal during the manipulation of information in working memory.

    PubMed

    Dodds, Chris M; Clark, Luke; Dove, Anja; Regenthal, Ralf; Baumann, Frank; Bullmore, Ed; Robbins, Trevor W; Müller, Ulrich

    2009-11-01

    Dopamine (DA) plays an important role in working memory. However, the precise functions supported by different DA receptor subtypes in different neural regions remain unclear. The present study used pharmacological, event-related fMRI to test the hypothesis that striatal dopamine is important for the manipulation of information in working memory. Twenty healthy human subjects were scanned twice, once after placebo and once after sulpiride 400 mg, a selective DA D2 receptor antagonist, while performing a verbal working memory task requiring different levels of manipulation. Whilst there was no overall effect of sulpiride on task-dependent activation, individual variation in sulpiride plasma levels predicted the effect of working memory manipulation on activation in the putamen, suggesting a dose-dependent effect of DA antagonism on a striatally based manipulation process. These effects occurred in the context of a drug-induced improvement in performance on trials requiring the manipulation of information in working memory but not on simple retrieval trials. No significant drug effects were observed in the prefrontal cortex. These results support models of dopamine function that posit a 'gating' function for dopamine D2 receptors in the striatum, which enables the flexible updating and manipulation of information in working memory.

  18. Paramyxovirus V protein interaction with the antiviral sensor LGP2 disrupts MDA5 signaling enhancement but is not relevant to LGP2-mediated RLR signaling inhibition.

    PubMed

    Rodriguez, Kenny R; Horvath, Curt M

    2014-07-01

    The interferon antiviral system is a primary barrier to virus replication triggered upon recognition of nonself RNAs by the cytoplasmic sensors encoded by retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology gene 2 (LGP2). Paramyxovirus V proteins are interferon antagonists that can selectively interact with MDA5 and LGP2 through contact with a discrete helicase domain region. Interaction with MDA5, an activator of antiviral signaling, disrupts interferon gene expression and antiviral responses. LGP2 has more diverse reported roles as both a coactivator of MDA5 and a negative regulator of both RIG-I and MDA5. This functional dichotomy, along with the concurrent interference with both cellular targets, has made it difficult to assess the unique consequences of V protein interaction with LGP2. To directly evaluate the impact of LGP2 interference, MDA5 and LGP2 variants unable to be recognized by measles virus and parainfluenza virus 5 (PIV5) V proteins were tested in signaling assays. Results indicate that interaction with LGP2 specifically prevents coactivation of MDA5 signaling and that LGP2's negative regulatory capacity was not affected. V proteins only partially antagonize RIG-I at high concentrations, and their expression had no additive effects on LGP2-mediated negative regulation. However, conversion of RIG-I to a direct V protein target was accomplished by only two amino acid substitutions that allowed both V protein interaction and efficient interference. These results clarify the unique consequences of MDA5 and LGP2 interference by paramyxovirus V proteins and help resolve the distinct roles of LGP2 in both activation and inhibition of antiviral signal transduction. Importance: Paramyxovirus V proteins interact with two innate immune receptors, MDA5 and LGP2, but not RIG-I. V proteins prevent MDA5 from signaling to the beta interferon promoter, but the consequences of LGP2

  19. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans.

    PubMed

    Weber, S C; Beck-Schimmer, B; Kajdi, M-E; Müller, D; Tobler, P N; Quednow, B B

    2016-07-05

    Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity.

  20. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    PubMed

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in