Sample records for v2o5-wo3-tio2 scr catalyst

  1. New Insight into SO2 Poisoning and Regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 Catalysts for Low-Temperature NH3-SCR.

    PubMed

    Xu, Liwen; Wang, Chizhong; Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Junhua

    2018-06-19

    In this study, the poisoning effects of SO 2 on the V 2 O 5 -WO 3 /TiO 2 (1%VWTi) and CeO 2 -WO 3 /TiO 2 (5%CeWTi) selective catalytic reduction (SCR) catalysts were investigated in the presence of steam, and also the regeneration of deactivated catalysts was studied. After pretreating the catalysts in a flow of NH 3 + SO 2 + H 2 O + O 2 at 200 °C for 24 h, it was observed that the low-temperature SCR (LT-SCR) activity decreased significantly over the 1%VWTi and 5%CeWTi catalysts. For 1%VWTi, NH 4 HSO 4 (ABS) was the main product detected after the poisoning process. Both of NH 4 HSO 4 and cerium sulfate species were formed on the poisoned 5%CeWTi catalyst, indicating that SO 2 reacted with Ce 3+ /Ce 4+ , even in the presence of high concentration of NH 3 . The decrease of BET specific surface area, NO x adsorption capacity, the ratio of chemisorbed oxygen, and reducibility were responsible for the irreversible deactivation of the poisoned 5%CeWTi catalyst. Meanwhile, the LT-SCR activity could be recovered over the poisoned 1%VWTi after regeneration at 400 °C, but not for the 5%CeWTi catalyst. For industrial application, it is suggested that the regeneration process can be utilized for 1%VWTi catalysts after a period of time after NH 4 HSO 4 accumulated on the catalysts.

  2. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH 3 with V 2O 5-WO 3/TiO 2 catalysts

    DOE PAGES

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH 3/O 2 SCR of V 2O 5-WO 3/TiO 2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH) 2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO 2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO 2(anatase) particles and that VO x and WO x do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Lowmore » Energy Ion Scattering (HS-LEIS) confirms that the VO x and WO x are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO 3 and O = WO 4 sites on the TiO 2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO 4 and WO 4 sites that appear to be anchored at surface defects of the TiO 2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH 3 * on Lewis acid sites and surface NH 4 +* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO 4 species and that the surface kinetics was independent of TiO 2 synthesis method or presence of surface WO 5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO 4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co

  3. A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH 3 by Supported V 2O 5WO 3/TiO 2 Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jun-Kun; Wachs, Israel E.

    We report the selective catalytic reduction (SCR) of NO x with NH 3 to harmless N 2 and H 2O plays a crucial role in reducing highly undesirable NO x acid gas emissions from large utility boilers, industrial boilers, municipal waste plants, and incinerators. The supported V 2O 5WO 3/TiO 2 catalysts have become the most widely used industrial catalysts for these SCR applications since introduction of this technology in the early 1970s. Lastly, this Perspective examines the current fundamental understanding and recent advances of the supported V 2O 5WO 3/TiO 2 catalyst system: (i) catalyst synthesis, (ii)more » molecular structures of titaniasupported vanadium and tungsten oxide species, (iii) surface acidity, (iv) catalytic active sites, (v) surface reaction intermediates, (vi) reaction mechanism, (vii) ratedetermining- step, and (viii) reaction kinetics.« less

  4. A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH 3 by Supported V 2O 5WO 3/TiO 2 Catalysts

    DOE PAGES

    Lai, Jun-Kun; Wachs, Israel E.

    2018-06-04

    We report the selective catalytic reduction (SCR) of NO x with NH 3 to harmless N 2 and H 2O plays a crucial role in reducing highly undesirable NO x acid gas emissions from large utility boilers, industrial boilers, municipal waste plants, and incinerators. The supported V 2O 5WO 3/TiO 2 catalysts have become the most widely used industrial catalysts for these SCR applications since introduction of this technology in the early 1970s. Lastly, this Perspective examines the current fundamental understanding and recent advances of the supported V 2O 5WO 3/TiO 2 catalyst system: (i) catalyst synthesis, (ii)more » molecular structures of titaniasupported vanadium and tungsten oxide species, (iii) surface acidity, (iv) catalytic active sites, (v) surface reaction intermediates, (vi) reaction mechanism, (vii) ratedetermining- step, and (viii) reaction kinetics.« less

  5. The enhancement of CuO modified V2O5-WO3/TiO2 based SCR catalyst for Hg° oxidation in simulated flue gas

    NASA Astrophysics Data System (ADS)

    Chen, Chuanmin; Jia, Wenbo; Liu, Songtao; Cao, Yue

    2018-04-01

    CuO modified V2O5-WO3/TiO2 based SCR catalysts prepared by improved impregnation method were investigated to evaluate the catalytic activity for elemental mercury (Hg°) oxidation in simulated flue gas at 150-400 °C. Nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It was found that V0.8WTi-Cu3 catalyst exhibited the superior Hg° oxidation activity and wide operating temperature window at the gas hourly space velocity (GHSV) of 3 × 105 h-1. The BET and XRD results showed that CuO was well loaded and highly dispersed on the catalysts surface. The XPS results suggested that the addition of CuO generated abundant chemisorbed oxygen, which was due to the synergistic effect between CuO and V2O5. The existence of the redox cycle of V4+ + Cu2+ ↔ V5+ + Cu+ in V0.8WTi-Cu3 catalyst enhanced Hg° oxidation activity. The effects of flue gas components (O2, NO, SO2 and H2O) on Hg° oxidation over V0.8WTi-Cu3 catalyst were also explored. Moreover, the co-presence of NO and NH3 remarkably inhibited Hg° oxidation, which was due to the competitive adsorption and reduction effect of NH3 at SCR condition. Fortunately, this inhibiting effect was gradually scavenged with the decrease of GHSV. The mechanism of Hg° oxidation was also investigated.

  6. Selective Catalytic Reduction of NO by NH 3 with WO 3-TiO 2 Catalysts: Influence of Catalyst Synthesis Method

    DOE PAGES

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...

    2016-02-02

    A series of supported WO 3/TiO 2 catalysts was prepared by a new synthesis procedure involving co-precipitation of an aqueous TiO(OH) 2 and (NH 4) 10W 12O 41*5H 2O slurry under controlled pH conditions. The morphological properties, molecular structures, surface acidity and surface chemistry of the supported WO 3/TiO 2 catalysts were determined with BET, in situ Raman, in situ IR and temperature-programmed surface reaction (TPSR) spectroscopy, respectively. Isotopic 18O- 16O exchange demonstrated that tungsten oxide was exclusively present as surface WO x species on the TiO 2 support with mono-oxo W=O coordination. In contrast to previous studies employing impregnationmore » synthesis that found only surface one mono-oxo O=WO 4 site on TiO 2, the co-precipitation procedure resulted in the formation of two distinct surface WO x species: mono-oxo O=WO 4 (~1010-1017 cm -1) on low defect density patches of TiO 2 and a second mono-oxo O=WO 4 (~983-986 cm -1) on high defect density patches of TiO 2. The concentration of the second WO x surface species increases as a function of solution pH. Both surface WOx sites, however, exhibited the same NO/NH 3 SCR reactivity. The co-precipitated WO 3-TiO 2 catalysts synthesized in alkaline solutions exhibited enhanced performance for the NO/NH 3 SCR reaction that is ascribed to the greater number of surface defects on the resulting TiO2 support. For the co-precipitated catalyst prepared at pH10, surface NH 4 + species on Br nsted acid sites were found to be more reactive than surface NH 3* species on Lewis acid sites for SCR of NO with NH 3.« less

  7. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms.

    PubMed

    Wang, Shuhua; Xie, Yaling; Yan, Weifu; Wu, Xuee; Wang, Chin-Tsan; Zhao, Feng

    2018-05-22

    Solid wastes are currently produced in large amounts. Although bioleaching of metals from solid wastes is an economical and sustainable technology, it has seldom been used to recycle metals from abandoned catalyst. In this study, the bioleaching of vanadium from V 2 O 5 -WO 3 /TiO 2 catalyst were comprehensively investigated through five methods: Oligotrophic way, Eutrophic way, S-mediated way, Fe-mediated way and Mixed way of S-mediated and Fe-mediated. The observed vanadium bioleaching effectiveness of the assayed methods was follows: S-mediated > Mixed > Oligotrophic > Eutrophic > Fe-mediated, which yielded the maximum bioleaching efficiencies of approximately 90%, 35%, 33%, 20% and 7%, respectively. The microbial community analysis suggested that the predominant genera Acidithiobacillus and Sulfobacillus from the S-mediated bioleaching way effectively catalyzed the vanadium leaching, which could have occurred through the indirect mechanism from the microbial oxidation of S 0 . In addition, the direct mechanism, involving direct electron transfer between the catalyst and the microorganisms that attached to the catalyst surface, should also help the vanadium to be leached more effectively. Therefore, this work provides guidance for future research and practical application on the treatment of waste V 2 O 5 -WO 3 /TiO 2 catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Mechanism of Hg(0) oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst.

    PubMed

    Liu, Ruihui; Xu, Wenqing; Tong, Li; Zhu, Tingyu

    2015-10-01

    Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg(0) oxidation efficiencies decreased slowly as the temperature increased from 200 to 400°C. Upon pretreatment with HCl and O2 at 350°C, the catalyst demonstrated higher catalytic activity for Hg(0) oxidation. Notably, the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg(0) were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg(0) over the commercial catalyst followed the Langmuir-Hinshelwood mechanism. Several characterization techniques, including Hg(0) temperature-programmed desorption (Hg-TPD) and X-ray photoelectron spectroscopy (XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury. Copyright © 2015. Published by Elsevier B.V.

  9. Study on the decomposition of trace benzene over V2O5-WO3/TiO2-based catalysts in simulated flue gas

    EPA Science Inventory

    Commercial and laboratory-prepared V2O5WO3/TiO2-based catalysts with different compositions were tested for catalytic decomposition of chlorobenzene (ClBz) in simulated flue gas. Resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) was employe...

  10. Study on the decomposition of trace benzene over V2O5WO3/TiO2-based catalysts in simulated flue gas

    EPA Science Inventory

    Trace levels (1 and 10 ppm) of gaseous benzene were catalytically decomposed in a fixed-bed catalytic reactor with monolithic oxides of vanadium and tungsten supported on titanium oxide (V2O5WO3/TiO2) catalysts under conditions simulating the cooling of waste incineration flue g...

  11. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation

    NASA Astrophysics Data System (ADS)

    Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu

    2018-03-01

    This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.

  12. Study on the decomposition of trace benzene over V2O5-WO3 ...

    EPA Pesticide Factsheets

    Commercial and laboratory-prepared V2O5WO3/TiO2-based catalysts with different compositions were tested for catalytic decomposition of chlorobenzene (ClBz) in simulated flue gas. Resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) was employed to measure real-time, trace concentrations of ClBz contained in the flue gas before and after the catalyst. The effects of various parameters, including vanadium content of the catalyst, the catalyst support, as well as the reaction temperature on decomposition of ClBz were investigated. The results showed that the ClBz decomposition efficiency was significantly enhanced when nano-TiO2 instead of conventional TiO2 was used as the catalyst support. No promotion effects were found in the ClBz decomposition process when the catalysts were wet-impregnated with CuO and CeO2. Tests with different concentrations (1,000, 500, and 100 ppb) of ClBz showed that ClBz-decomposition efficiency decreased with increasing concentration, unless active sites were plentiful. A comparison between ClBz and benzene decomposition on the V2O5WO3/TiO2-based catalyst and the relative kinetics analysis showed that two different active sites were likely involved in the decomposition mechanism and the V=O and V-O-Ti groups may only work for the degradation of the phenyl group and the benzene ring rather than the C-Cl bond. V2O5-WO3/TiO2 based catalysts, that have been used for destruction of a wide variet

  13. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst

    PubMed Central

    Wang, Pengwei; Zhao, Guofeng; Wang, Yu; Lu, Yong

    2017-01-01

    Oxidative coupling of methane (OCM) is a promising method for the direct conversion of methane to ethene and ethane (C2 products). Among the catalysts reported previously, Mn2O3-Na2WO4/SiO2 showed the highest conversion and selectivity, but only at 800° to 900°C, which represents a substantial challenge for commercialization. We report a TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst by using Ti-MWW zeolite as TiO2 dopant as well as SiO2 support, enabling OCM with 26% conversion and 76% C2-C3 selectivity at 720°C because of MnTiO3 formation. MnTiO3 triggers the low-temperature Mn2+↔Mn3+ cycle for O2 activation while working synergistically with Na2WO4 to selectively convert methane to C2-C3. We also prepared a practical Mn2O3-TiO2-Na2WO4/SiO2 catalyst in a ball mill. This catalyst can be transformed in situ into MnTiO3-Na2WO4/SiO2, yielding 22% conversion and 62% selectivity at 650°C. Our results will stimulate attempts to understand more fully the chemistry of MnTiO3-governed low-temperature activity, which might lead to commercial exploitation of a low-temperature OCM process. PMID:28630917

  14. Application of V2O5/WO3/TiO2 for Resistive-Type SO2 Sensors

    PubMed Central

    Izu, Noriya; Hagen, Gunter; Schönauer, Daniela; Röder-Roith, Ulla; Moos, Ralf

    2011-01-01

    A study on the application of V2O5/WO3/TiO2 (VWT) as the sensitive material for resistive-type SO2 sensor was conducted, based on the fact that VWT is a well-known catalyst material for good selective catalytic nitrogen oxide reduction with a proven excellent durability in exhaust gases. The sensors fabricated in this study are planar ones with interdigitated electrodes of Au or Pt. The vanadium content of the utilized VWT is 1.5 or 3.0 wt%. The resistance of VWT decreases with an increasing SO2 concentration in the range from 20 ppm to 5,000 ppm. The best sensor response to SO2 occurs at 400 °C using Au electrodes. The sensor response value is independent on the amount of added vanadium but dependent on the electrode materials at 400 °C. These results are discussed and a sensing mechanism is discussed. PMID:22163780

  15. Pilot-scale evaluation of a novel TiO2-supported V2O5 catalyst for DeNOx at low temperatures at a waste incinerator.

    PubMed

    Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo

    2017-03-01

    The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO 2 -supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO 2 -supported V 2 O 5 catalyst coated (with a loading of 7wt% of impregnated V 2 O 5 ) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m 3 h -1 ) using real exhaust gas from the waste incinerator. The experimental results showed that the V 2 O 5 /TiO 2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Role of Lewis and Brønsted Acid Sites in NO Reduction with NH3 on Sulfur Modified TiO2-Supported V2O5 Catalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Shengping; Zhong, Qin; Wu, Licheng; Wang, Qian; Wang, Aijian

    2017-12-01

    V2O5/S-doped TiO2 was prepared by the sol-gel and impregnation methods. The adsorption of NO, NH3, and O2 over the catalyst was studied by in situ DRIFTS spectroscopy to elucidate the reaction mechanism of the low-temperature selective catalytic reduction of NO with NH3. Exposing the catalyst to O2 and NO, three types of nitrates species appeared on the surface. The introduction of S to TiO2 could generate large amounts of acid sites for ammonia adsorption on the catalyst, which was believed to be an important role in the SCR reaction and hereby improved the catalytic activity. The results indicated two possible SCR reaction pathways for catalyst. One was that NO was absorbed to form nitrite species, which could react with NH3 on Lewis acid sites, producing N2 and H2O. Another way was that NH3 was adsorbed, then reacted with gas phase NO (E-R) and nitrite intermediates on the surface (L-H).

  17. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.

    PubMed

    Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin

    2015-06-16

    CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.

  18. Acid treatment and formation of MnWO4 belts for NH3-SCR performance of MnWOx/TiO2 catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Zekai; Lu, Weizhe; Zhang, Xinying; Liu, Huayan; Lu, Hanfeng

    2018-06-01

    NH3-SCR is an important technology to remove NOx, and non-V based catalysts development is still a hot topic in the field. To improve N2 selectivity, acid treatment was carried out to modify the properties of a MnWOx/TiO2 catalyst. Influences of acid concentration, time and temperature on the catalyst were investigated. The TEM results showed that the acid treatment removed more MnO2 species than Mn2O3 and MnWO4 and disclosed more crystal faces of the active species. The active species even formed hollow structures by Ostwald ripening mechanism, which was then corroded by acid to form the nanobelts on the surface. The working temperature window of the MnWOx/TiO2 catalyst was thereby moved to the high temperature attitude and the N2 selectivity is clearly improved.

  19. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    NASA Astrophysics Data System (ADS)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  20. Promotional effect of Al2O3 on WO3/CeO2-ZrO2 monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment

    NASA Astrophysics Data System (ADS)

    Xu, Haidi; Liu, Shuang; Wang, Yun; Lin, Qingjin; Lin, Chenlu; Lan, Li; Wang, Qin; Chen, Yaoqiang

    2018-01-01

    Hydrothermal stability of catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) has always been recognized as a challenge in development of candidate catalysts for applications in diesel engine emissions. In this study, Al2O3 was introduced into CeO2-ZrO2 to improve the NH3-SCR activity of WO3/CeO2-ZrO2 after hydrothermal aging (HA) treatment at 800 °C for 12 h. The activity results indicated that the NH3-SCR activity of WO3/CeO2-ZrO2-HA was obviously improved in the whole reaction temperature range after doping Al2O3 into CeO2-ZrO2, for example, the average and maximum NOx conversion were separately increased by ca. 20% and 25% after HA treatment. XRD, Raman, TEM and EDX results revealed that the introduction of Al2O3 inhibited the sintering and agglomeration of CeO2-ZrO2 and WO3 and the formation of Ce2(WO4)3 after HA treatment. Accordingly, WO3/CeO2-ZrO2-Al2O3-HA showed remarkably improved structural stability and reducibility, increased surface acidity, and facilitated the reactivity between adsorbed NH3 and nitrate species, which together contributed to its better catalytic performance after hydrothermal aging treatment.

  1. Low temperature destruction of PCDD/Fs over V2O5-CeO2/TiO2 catalyst with ozone.

    PubMed

    Yu, Ming-Feng; Lin, Xiao-Qing; Yan, Mi; Li, Xiao-Dong; Chen, Tong; Yan, Jian-Hua

    2016-09-01

    Catalytic destruction of PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans) over V2O5-CeO2/TiO2 catalyst was investigated at a low temperature range of 140-180 °C, in the absence and presence of ozone (200 ppm). Nano-TiO2 support was used to prepare the catalyst by step impregnation method. A stable PCDD/Fs-generating system was established to support the catalytic destruction tests. In the presence of ozone alone, destruction efficiencies of PCDD/Fs are between 32.2 and 43.1 % with temperature increasing from 140 to 180 °C. The activity of V2O5-CeO2/TiO2 catalyst alone on PCDD/Fs destruction is also studied. The increase of temperature from 140 to 180 °C enhances the activity of catalyst with destruction efficiencies increasing from 54.7 to 73.4 %. However, ozone addition greatly enhances the catalytic activity of V2O5-CeO2/TiO2 catalyst on PCDD/Fs decomposition. At 180 °C, the destruction efficiency of PCDD/Fs achieved with V2O5-CeO2/TiO2 catalyst and ozone is above 86.0 %. It indicates that the combined use of ozone and catalyst reduces the reaction temperature of PCDD/Fs oxidation and offers a new method to destroy PCDD/Fs with high destruction efficiency at a low temperature. Furthermore, the destruction efficiencies of 17 toxic PCDD/F congeners, achieved with ozone alone, catalyst alone, and catalyst/ozone are analyzed.

  2. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.

  3. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts.

    PubMed

    Yang, Chia Cheng; Chang, Shu Hao; Hong, Bao Zhen; Chi, Kai Hsien; Chang, Moo Been

    2008-10-01

    Development of effective PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran) control technologies is essential for environmental engineers and researchers. In this study, a PCDD/F-containing gas stream generating system was developed to investigate the efficiency and effectiveness of innovative PCDD/F control technologies. The system designed and constructed can stably generate the gas stream with the PCDD/F concentration ranging from 1.0 to 100ng TEQ Nm(-3) while reproducibility test indicates that the PCDD/F recovery efficiencies are between 93% and 112%. This new PCDD/F-containing gas stream generating device is first applied in the investigation of the catalytic PCDD/F control technology. The catalytic decomposition of PCDD/Fs was evaluated with two types of commercial V(2)O(5)-WO(3)/TiO(2)-based catalysts (catalyst A and catalyst B) at controlled temperature, water vapor content, and space velocity. 84% and 91% PCDD/F destruction efficiencies are achieved with catalysts A and B, respectively, at 280 degrees C with the space velocity of 5000h(-1). The results also indicate that the presence of water vapor inhibits PCDD/F decomposition due to its competition with PCDD/F molecules for adsorption on the active vanadia sites for both catalysts. In addition, this study combined integral reaction and Mars-Van Krevelen model to calculate the activation energies of OCDD and OCDF decomposition. The activation energies of OCDD and OCDF decomposition via catalysis are calculated as 24.8kJmol(-1) and 25.2kJmol(-1), respectively.

  4. Photocatalytic behaviour of WO3/TiO2-N for diclofenac degradation using simulated solar radiation as an activation source.

    PubMed

    Cordero-García, A; Turnes Palomino, G; Hinojosa-Reyes, L; Guzmán-Mar, J L; Maya-Teviño, L; Hernández-Ramírez, A

    2017-02-01

    In this study, the photocatalytic removal of an emerging contaminant, diclofenac (DCF) sodium, was performed using the nitrogen-doped WO 3 /TiO 2 -coupled oxide catalyst (WO 3 /TiO 2 -N). The catalyst synthesis was accomplished by a sol-gel method using tetrabutyl orthotitanate (C 16 H 36 O 4 Ti), ammonium p-tungstate [(NH 4 ) 10 H 2 W 12 O 42 ·4H 2 O] and ammonium nitrate (NH 4 NO 3 ) as the nitrogen source. For comparison, TiO 2 and WO 3 /TiO 2 were also prepared under similar conditions. Analysis by X-ray diffraction (XRD), N 2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize the synthesized materials. The photocatalytic efficiency of the semiconductors was determined in a batch reactor irradiated with simulated solar light. Residual and mineralized DCF were quantified by high-performance liquid chromatography, total organic carbon analysis and ion exchange chromatography. The results indicated that the tungsten atoms were dispersed on the surface of TiO 2 as WO 3 . The partial substitution of oxygen by nitrogen atoms into the lattice of TiO 2 was an important factor to improve the photocatalytic efficiency of WO 3 /TiO 2 . Therefore, the best photocatalytic activity was obtained with the WO 3 /TiO 2 -N 0.18 catalyst, reaching 100% DCF transformation at 250 kJ m -2 and complete mineralization at 400 kJ m -2 of solar-accumulated energy.

  5. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.

    PubMed

    Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan

    2015-05-01

    Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. Copyright © 2015. Published by Elsevier B.V.

  6. TiO2/WO3 photoactive bilayers in the UV-Vis light region

    NASA Astrophysics Data System (ADS)

    Vasilaki, E.; Vernardou, D.; Kenanakis, G.; Vamvakaki, M.; Katsarakis, N.

    2017-04-01

    In this work, photoactive bilayered films consisting of anatase TiO2 and monoclinic WO3 were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO3 precursor solution, when deposited as an overlying layer on TiO2 by two annealing steps ( 76% methylene blue decolorization in 300 min of irradiation versus 59% in the case of a bare TiO2 film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO2 films with WO3 acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination.

  7. Composite WO 3/TiO 2 nanostructures for high electrochromic activity

    DOE PAGES

    Reyes-Gil, Karla R.; Stephens, Zachary D.; Stavila, Vitalie; ...

    2015-01-06

    A composite material consisting of TiO 2 nanotubes (NT) with WO 3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO 2 made from commercially available TiO 2 nanoparticles creates an interface for the TiO 2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WOmore » 3 concentration on the EC performance were studied. As a result, the composite WO 3/TiO 2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO 3 and TiO 2 materials« less

  8. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The ECmore » redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.« less

  9. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator.

    PubMed

    Oliveira, Haroldo G; Ferreira, Leticia H; Bertazzoli, Rodnei; Longo, Claudia

    2015-04-01

    TiO2 and TiO2/WO3 electrodes, irradiated by a solar simulator in configurations for heterogeneous photocatalysis (HP) and electrochemically-assisted HP (EHP), were used to remediate aqueous solutions containing 10 mg L(-1) (34 μmol L(-1)) of 17-α-ethinylestradiol (EE2), active component of most oral contraceptives. The photocatalysts consisted of 4.5 μm thick porous films of TiO2 and TiO2/WO3 (molar ratio W/Ti of 12%) deposited on transparent electrodes from aqueous suspensions of TiO2 particles and WO3 precursors, followed by thermal treatment at 450 (°)C. First, an energy diagram was organized with photoelectrochemical and UV-Vis absorption spectroscopy data and revealed that EE2 could be directly oxidized by the photogenerated holes at the semiconductor surfaces, considering the relative HOMO level for EE2 and the semiconductor valence band edges. Also, for the irradiated hybrid photocatalyst, electrons in TiO2 should be transferred to WO3 conduction band, while holes move toward TiO2 valence band, improving charge separation. The remediated EE2 solutions were analyzed by fluorescence, HPLC and total organic carbon measurements. As expected from the energy diagram, both photocatalysts promoted the EE2 oxidation in HP configuration; after 4 h, the EE2 concentration decayed to 6.2 mg L(-1) (35% of EE2 removal) with irradiated TiO2 while TiO2/WO3 electrode resulted in 45% EE2 removal. A higher performance was achieved in EHP systems, when a Pt wire was introduced as a counter-electrode and the photoelectrodes were biased at +0.7 V; then, the EE2 removal corresponded to 48 and 54% for the TiO2 and TiO2/WO3, respectively. The hybrid TiO2/WO3, when compared to TiO2 electrode, exhibited enhanced sunlight harvesting and improved separation of photogenerated charge carriers, resulting in higher performance for removing this contaminant of emerging concern from aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Magnetically recoverable TiO2-WO3 photocatalyst to oxidize bisphenol A from model wastewater under simulated solar light.

    PubMed

    Dominguez, S; Huebra, M; Han, C; Campo, P; Nadagouda, M N; Rivero, M J; Ortiz, I; Dionysiou, D D

    2017-05-01

    A novel magnetically recoverable, visible light active TiO 2 -WO 3 composite (Fe 3 O 4 @SiO 2 @TiO 2 -WO 3 ) was prepared to enable the photocatalyst recovery after the degradation of bisphenol A (BPA) under simulated solar light. For comparison, the photocatalytic activity of other materials such as non-magnetic TiO 2 -WO 3 , Fe 3 O 4 @SiO 2 @TiO 2 , TiO 2 , and the commercial TiO 2 P25 was also evaluated under the studied experimental conditions. The structure and morphology of the synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and electron dispersion spectroscopy (EDS). Moreover, Brunauer-Emmett-Teller (BET) surface area and magnetic properties of the samples were determined. The Fe 3 O 4 @SiO 2 @TiO 2 -WO 3 and TiO 2 -WO 3 led to a BPA degradation of 17.50 and 27.92 %, respectively, after 2 h of the simulated solar light irradiation. Even though their activity was lower than that of P25, which degraded completely BPA after 1 h, our catalysts were magnetically separable for their further reuse in the treatment. Furthermore, the influence of the water matrix in the photocatalytic activity of the samples was studied in municipal wastewater. Finally, the identification of reaction intermediates was performed and a possible BPA degradation pathway was proposed to provide a better understanding of the degradation process. Graphical abstract ᅟ.

  11. Hydrothermal synthesis of TiO2/WO3 compositions and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Pyachin, Sergey A.; Karpovich, Natalia F.; Zaitsev, Alexey V.; Makarevich, Konstantin S.; Burkov, Alexander A.; Ustinov, Alexander Yu.

    2016-11-01

    Photocatalytic activity, optical properties, thermal stability, phase patterns and morphology of nano-size TiO2/WO3 compositions obtained from organic precursors through hydrothermal synthesis have been studied. It has been shown that doping of anatase nanoparticles with tungsten W+6 results in particle diameter reduction from 35 to 10 nm; decrease in width of the band gap from 3.15 eV to 2.91 eV and increase in temperature of phase transition of anatase to rutile up to 980oC. Catalytic activity of TiO2/WO3 (4 mol.%) composition under photochemical methylene blue (MB) oxidation by simulated solar light exceeds that of undoped anatase (obtained in the same way) 6-fold.

  12. Characterization of the thin layer photocatalysts TiO2 and V2O5- and Fe2O3- doped TiO2 prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si; Nguyen, Tri

    2013-09-01

    The catalysts TiO2 and TiO2 doped with Fe and V were prepared using the sol-gel method. TiO2-modified samples were obtained in the form of a thick film on pyrex glass sticks and tubes and were used as catalysts in the gas phase photo-oxidation of p-xylene. The physico-chemical characteristics of the catalysts were determined using the methods of Brunauer-Emmett-Teller adsorption, x-ray diffraction, and infrared, ultraviolet and visible and Raman spectroscopies. The experimental results show that the introduction of V did not expand the region of light absorption, but slightly reduced the size of the TiO2 particles, and reduced the number of OH-groups, which should decrease the photocatalytic activity and efficiency of the obtained catalysts compared to those of pure TiO2. The Fe-doped TiO2 samples, in contrast, are characterized by an extension of the spectrum of photon absorption to the visible region with wavenumbers λ up to 464 nm and the values of their band gap energy decreased to lower quantities (up to 2.67 eV), therefore they should have higher catalytic activity and conversion efficiency of p-xylene in the visible region than the original sample. For these catalysts, a combined utilization of radiation by ultraviolet (λ = 365 nm) and visible (λ = 470 nm) light increased the activity and the yield in p-xylene conversion by a factor of around 2-3, as well as making these quantities more stable in comparison with those of TiO2-P25 Degussa.

  13. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  14. Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3.

    PubMed

    Wan, Lianghui; Sheng, Jiayi; Chen, Haihang; Xu, Yiming

    2013-11-15

    Photocatalytic degradation of organic pollutants on TiO2 and WO3 have been widely studied, but the effects of Cu(2+) and Fe(3+) ions still remain unclear. In this work, we have found that the recycle behavior of Cu(2+) and Fe(3+) are greatly dependent on the photocatalytic activity of metal oxide used. With TiO2 (P25, anatase, and rutile), all the time profiles of phenol degradation in water under UV light well fitted to the apparent first-order rate equation. On the addition of Cu(2+), phenol degradation on anatase, rutile and WO3 also followed the first-order kinetics. On the addition of Fe(3+), the initial rate of phenol degradation on each oxide was increased, but only the reactions on three TiO2 became to follow the first order kinetics after half an hour. The relevant rate constants for phenol degradation in the presence of Cu(2+) or Fe(3+) were larger than those in the absence of metal ions. Under visible light, phenol degradation on WO3 was also accelerated on the addition of Fe(3+) or Cu(2+). Moreover, several influencing factors were examined, including the metal ion photolysis in solution. It becomes clear that as electron scavengers of TiO2 and WO3, Fe(3+) is better than Cu(2+), while they are better than O2. We propose that Fe(3+) recycle occurs through H2O2, photogenerated from TiO2, not from WO3, while Cu(2+) regeneration on a moderate photocatalyst is through the dissolved O2 in water. Copyright © 2013. Published by Elsevier B.V.

  15. Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination.

    PubMed

    Ismail, Adel A; Abdelfattah, Ibrahim; Helal, Ahmed; Al-Sayari, S A; Robben, L; Bahnemann, D W

    2016-04-15

    Herein, we report the ease synthesis of mesoporous WO3-TiO2 nanocomposites at different WO3 contents (0-5wt%) together with their photocatalytic performance for the degradation of the imazapyr herbicide under visible light and UV illumination. XRD and Raman spectra indicated that the highly crystalline anatase TiO2 phase and monoclinic and triclinic of WO3 were formed. The mesoporous TiO2 exhibits large pore volumes of 0.267cm(3)g-1 and high surface areas of 180m(2)g(-1) but they become reduced to 0.221cm(3)g(-1) and 113m(2)g(-1), respectively upon WO3 incorporation, with tunable mesopore diameter in the range of 5-6.5nm. TEM images show WO3-TiO2 nanocomposites are quite uniform with 10-15nm of TiO2 and 5-10nm of WO3 sizes. Under UV illumination, the overall photocatalytic efficiency of the 3% WO3-TiO2 nanocomposite is 3.5 and 6.6 times higher than that of mesoporous TiO2 and commercial UV-100 photocatalyst, respectively. The 3% WO3-TiO2 nanocomposite is considered to be the optimum photocatalyst which is able to degrade completely (100% conversion) of imazapyr herbicide along 120min with high photonic efficiency ∼8%. While under visible light illumination, the 0.5% WO3-TiO2 nanocomposite is the optimum photocatalyst which achieves 46% photocatalytic efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Molecular mechanism of composite nanoparticles TiO2/WO3/GO-induced activity changes of catalase and superoxide dismutase.

    PubMed

    Hao, Xiaoyan; Zhang, Li; Zheng, Xin; Zong, Wansong; Liu, Chunguang

    2018-06-21

    More and more composite nano-photocatalysts were developed by doping, modifying and coupling, which expanded its application but resulted in pollution due to the unrecyclability. Composite photocatalyst TiO 2 /WO 3 /GO, as a model, was evaluated by exploring the molecular mechanism of TiO 2 /WO 3 /GO-induced activity changes of catalase (CAT) and superoxide dismutase (SOD). Results showed that TiO 2 /WO 3 /GO could lead to conformational and functional changes of CAT and SOD. The activity of both CAT and SOD increased depending on the exposure dose of TiO 2 /WO 3 /GO. The change skeleton structure and increase of α-helix content of CAT and SOD were certificated with UV-vis absorption and CD measurements. Intrinsic fluorescence of CAT and SOD were quenched by dynamic quenching. Micro-environment of amino acid residues of CAT and SOD became more hydrophilic, and the microenvironment of Trp residues was more vulnerable than Tyr residues with TiO 2 /WO 3 /GO exposure. In addition, inhibitory comparison between GO, TiO 2 , WO 3 and TiO 2 /WO 3 /GO was made, results showed that composite nano-photocatalyst exhibited different inhibitory compared to their parent nano-particles. Copyright © 2018. Published by Elsevier B.V.

  17. Highly efficient visible-light driven photocatalytic hydrogen production from a novel Z-scheme Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite

    NASA Astrophysics Data System (ADS)

    Wang, Guowei; Ma, Xue; Wei, Shengnan; Li, Siyi; Qiao, Jing; Wang, Jun; Song, Youtao

    2018-01-01

    In this work, the preparation of a novel Z-scheme photocatalyst, Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite, for visible-light photocatalytic hydrogen production is reported for the first time. In this photocatalyst, Au nanoparticles as conduction band co-catalyst provide more active sites to enrich electrons. Ta2O5-V5+||Fe3+-TiO2 as composite redox cycle system thoroughly separates the photo-generated electrons and holes. In addition, Er3+:YAlO3 as up-conversion luminescence agent (from visible-light to ultraviolet-light) provides enough ultraviolet-light for satisfying the energy demand of wide band-gap semiconductors (TiO2 and Ta2O5). The photocatalytic hydrogen production can be achieved from methanol as sacrificial agent (electron donor) under visible-light irradiation. The main influence factors such as initial solution pH and molar ratio of TiO2 and Ta2O5 on visible-light photocatalytic hydrogen production activity of Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite are discussed in detail. The results show that the Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite with 1.0:0.5 M ratio of TiO2 and Ta2O5 in methanol aqueous solution at pH = 6.50 displays the highest photocatalytic hydrogen production activity. Furthermore, a high level of photocatalytic activity can be still maintained within three cycles under the same conditions. It implies that the prepared Z-scheme Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite may be a promising photocatalyst utilizing solar energy for hydrogen production.

  18. Effect of fly ash on catalytic removal of gaseous dioxins over V{sub 2}O{sub 5}-WO{sub 3} catalyst of a sinter plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Hao Chang; Kai Hsien Chi; Chi Wei Young

    2009-10-01

    A PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran)-containing gas stream generating system was developed to investigate the efficiency and effectiveness of V{sub 2}O{sub 5}-WO{sub 3} catalyst for PCDD/F destruction. Catalytic decomposition of PCDD/Fs (simulated gas streams) was evaluated with lab-scale pelletized and plate-type catalyst based on V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} at controlled temperature, space velocity, and inlet PCDD/F concentration. Due to the lower porosity of the pelletized catalyst, PCDD/F destruction efficiencies reach 72.9-83.2% for different levels of inlet PCDD/F concentrations (1.08-3.04 ng-TEQ/Nm{sup 3}) of the gas stream (space velocity: 5000 h-1). As the surface area is increased from 287 m{sup 2}/m{supmore » 3} (plate-type A) to 550 m{sup 2}/m{sup 3} (plate-type B), the PCDD/F destruction achieved with plate-type catalyst increases from 76.0% to 85.3% at 320{sup o}C (space velocity: 5000 h{sup -1}). In addition, the results of pilot-scale experiment (real flue gases of a sinter plant) indicate that relatively lower PCDD/F destruction efficiencies (62.1-65.7%) were achieved with the plate-type B catalyst as the solid-phase PCDD/F and fly ash passed through the reactor (space velocity: 5000 h{sup -1}). Overall, the lab-scale and pilot-scale experiments indicate that PCDD/F destructions achieved with pelletized and plate-type catalysts strongly depend on the operating temperature of the catalyst. The results also indicate that the presence of fly ash lowers PCDD/F destruction due to significant PCDD/F formation via de novo synthesis at 320{sup o}C. 20 refs., 5 figs., 3 tabs.« less

  19. Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts.

    PubMed

    Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Wu, Zhenwei

    2015-05-01

    A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction (SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, NOx/NH3 TPD, XRD, BET, H2-TPR and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results indicate that the MnOx-NbOx-CeO2 catalyst shows excellent low temperature NH3-SCR activity in the temperature range of 150-300°C. Water vapor inhibits the low temperature activity of the catalyst in standard SCR due to the inhibition of NOx adsorption. As the NO2 content increases in the feed, water vapor does not affect the activity in NO2 SCR. Meanwhile, water vapor significantly enhances the N2 selectivity of the fresh and the aged catalysts due to its inhibition of the decomposition of NH4NO3 into N2O. Copyright © 2015. Published by Elsevier B.V.

  20. Preparation and UV-Vis photodegradation of gaseous benzene by TiO2 nanotube arrays supporting V2O5 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxia; Song, Yanbao; Yang, Yunxia; Chen, Wen; Li, Xiaoyu; Wang, Zongsheng

    2015-07-01

    TiO2-based catalysts effective in visible radiation for eliminating organic pollutants have attracted intense research activity as a future generation photocatalytic material. However, recombination of electron-hole pairs through trapping/de-trapping as well as the disadvantages of recycling and separation/filtration of powders lead to the limitation of powder TiO2 materials. TiO2 nanotube array films supporting vanadium pentoxide nanoparticles (VTNTs) were synthesized by electrophoresis deposition method with the prepared TiO2 nanotube arrays as the cathode and V2O5 sol as the electrolyte. The results indicate that the formation of Ti-O-V bonds and intimate interaction between host-guest interfaces help to enhance the hybrids’ photodegradation activity of gaseous benzene. Importantly, hybrid film catalysts prepared with 0.05 mol/L V2O5 sol for 10 min electrophoresis deposition perform a 98% conversion rate of benzene and 1028.8 mg/m3CO2 production in 80 min under UV-Vis irradiation.

  1. Fabrication and assembly of two-dimensional TiO2/WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Wang, Yun; Zhou, Xiaofang; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Ren, Yumei; Yan, Bo

    2017-05-01

    The recombination of photo-induced charges is one of the main issues to limit the large-scale applications in photocatalysis and photoelectrocatalysis. To improve the charge separation, we fabricate a novel type II 2D ultrathin TiO2/WO3·H2O heterostructures with the assistance of supercritical CO2 (SC CO2) in this work. The as-fabricated heterostructures possess high photocatalytic activity for the degradation of methyl orange(MO) and high photocurrent response under simulated solar light (AM 1.5). For the TiO2/WO3·H2O heterostructures, the MO solution could be degraded by 95.5% in 150 min, and the photocurrent density reaches to 6.5 μA cm-2, exhibiting a significant enhancement compared with pure TiO2 and WO3·H2O nanosheets.

  2. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian

    2018-03-01

    A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.

  3. Preparation and characterization of WO3 nanoparticles, WO3/TiO2 core/shell nanocomposites and PEDOT:PSS/WO3 composite thin films for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.

    2016-03-01

    In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.

  4. Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code

    NASA Astrophysics Data System (ADS)

    Dong, M. G.; El-Mallawany, R.; Sayyed, M. I.; Tekin, H. O.

    2017-12-01

    Gamma ray shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses, where AnOm is Nb2O5 = 0.01, 5, Nd2O3 = 3, 5 and Er2O3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy.

  5. Catalytic oxidation of 1,2-DCBz over V2O5/TiO2-CNTs: effect of CNT diameter and surface functional groups.

    PubMed

    Du, Cuicui; Wang, Qiulin; Peng, Yaqi; Lu, Shengyong; Ji, Longjie; Ni, Mingjiang

    2017-02-01

    A series of V 2 O 5 /TiO 2 -carbon nanotube (CNT) catalysts were prepared and tested to decompose gaseous 1,2-dichlorobenzene (1,2-DCBz). Several physicochemical methods, including nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H 2 temperature-programmed reduction (TPR) were employed to characterise their physicochemical properties. To better understand the effect of CNT properties on the reactivity of V 2 O 5 /TiO 2 -CNT catalysts, the 1,2-DCBz residue remaining in the off-gas and on the catalyst surface were both collected and analysed. The results indicate that the outer diameter and the surface functional groups (hydroxide radical and carboxyl) of CNTs significantly influence upon the catalytic activity of CNT-containing V 2 O 5 /TiO 2 catalysts: the CNT outer diameter mainly affects the aggregation of CNTs and the π-π interaction between the benzene ring and CNTs, while the introduction of -OH and -COOH groups by acid treatment can further enlarge specific surface area (SSA) and contribute to a higher average oxidation state of vanadium (V aos ) and supplemental surface chemisorbed oxygen (O ads ). In addition, the enhanced mobility of lattice oxygen (O latt) also improves the oxidation ability of the catalysts.

  6. Effect of Ge-GeO2 co-doping on non-ohmic behaviour of TiO2-V2O5-Y2O3 varistor ceramics

    NASA Astrophysics Data System (ADS)

    Kunyong, Kang; Guoyou, Gan; Jikang, Yan; Jianhong, Yi; Jiamin, Zhang; Jinghong, Du; Wenchao, Zhao; Xuequan, Rong

    2015-07-01

    An investigation was made into the effect of doping with the elemental crystal Ge or/and GeO2 on the TiO2-V2O5-Y2O3 varistor ceramics. The result shows that as the doping contents of V2O5 and Y2O3 are 0.5 mol%, respectively, co-doping with 0.3 mol% Ge and 0.9 mol% GeO2 makes the highest α value (α = 12.8), the lowest breakdown voltage V1mA (V1mA = 15.8 V/mm) and the highest grain boundary barrier ΦB (ΦB = 1.48 eV), which is remarkably superior to the TiO2-V2O5-Y2O3 varistor ceramics undoped with Ge and GeO2 and mono-doped with Ge or GeO2. The TiO2-V2O5-Y2O3-Ge-GeO2 ceramic has the prospect of becoming a novel varistor ceramic with excellent electrical properties. Project supported by the National Natural Science Foundation of China (Nos. 51262017, 51362017).

  7. XANES study of elemental mercury oxidation over RuO 2/TiO 2 and selective catalytic reduction catalysts for mercury emissions control

    DOE PAGES

    Liu, Zhouyang; Li, Can; Sriram, Vishnu; ...

    2016-07-25

    Linear combination fitting of the X-ray Absorption Near Edge Spectroscopy (XANES) was used to quantify oxidized mercury species over RuO 2/TiO 2 and Selective Catalytic Reduction (SCR) catalysts under different simulated flue gas conditions. Halogen gases play a major role in mercury oxidation. In the absence of halogen gas, elemental mercury can react with sulfur that is contained in both the RuO2/TiO2 and SCR catalysts to form HgS and HgSO 4. In the presence of HCl or HBr gas, HgCl 2 or HgBr 2 is the main oxidized mercury species. When both HCl and HBr gases are present, HgBr2 ismore » the preferred oxidation product and no HgCl 2 can be found. The formation of HgO and HgS cannot be neglected with or without halogen gas. Other simulated flue gas components such as NO, NH 3, SO 2 and CO 2 do not have significant effect on oxidized mercury speciation when halogen gas is present.« less

  8. TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.

    PubMed

    Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu

    2012-01-01

    TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.

  9. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3.

    PubMed

    Liu, Caixia; Chen, Liang; Li, Junhua; Ma, Lei; Arandiyan, Hamidreza; Du, Yu; Xu, Jiayu; Hao, Jiming

    2012-06-05

    A series of novel metal-oxide-supported CeO(2) catalysts were prepared via the wet impregnation method, and their NH(3)-SCR activities were investigated. The Ce/TiO(2)-SiO(2) catalyst with a Ti/Si mass ratio of 3/1 exhibited superior NH(3)-SCR activity and high N(2) selectivity in the temperature range of 250-450 °C. The characterization results revealed that the activity enhancement was correlated with the properties of the support material. Cerium was highly dispersed on the TiO(2)-SiO(2) binary metal oxide support, and the interaction of Ti and Si resulted in greater conversion of Ce(4+) to Ce(3+) on the surface of the catalyst compared to that on the single metal oxide supports. As a result of in the increased number of acid sites on Ce/TiO(2)-SiO(2) that resulted from the addition of SiO(2), the NH(3) adsorption capacity was significantly improved. All of these factors played significant roles in the high SCR activity. More importantly, Ce/TiO(2)-SiO(2) exhibited strong resistance to SO(2) and H(2)O poisoning. After the addition of SiO(2), the number of Lewis-acid sites was not decreased, but the number of Brønsted-acid sites on the TiO(2)-SiO(2) carrier was increased. The introduction of SiO(2) further weakened the alkalinity over the surface of the Ce/TiO(2)-SiO(2) catalyst, which resulted in sulfate not easily accumulating on the surface of the Ce/TiO(2)-SiO(2) catalyst in comparison with Ce/TiO(2).

  10. Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojiang; Kong, Tingting; Chen, Li; Ding, Shimin; Yang, Fumo; Dong, Lin

    2017-10-01

    A series of MnOx/CeO2 catalysts were prepared by modulating the solvents (deionized water (DW), anhydrous ethanol (AE), acetic acid (AA), and oxalic acid (OA) solution) with the purpose of improving the low-temperature NH3-SCR performance, broadening the operating temperature window, and enhancing the H2O + SO2 resistance. The synthesized catalysts were characterized by means of N2-physisorption, XRD, EDS mapping, Raman, XPS, H2-TPR, NH3-TPD, and in situ DRIFTS technologies. Furthermore, the catalytic performance and H2O + SO2 resistance were evaluated by NH3-SCR model reaction. The obtained results indicate that MnOx/CeO2 catalyst prepared with oxalic acid solution as a solvent exhibits the best catalytic performance among these catalysts, which shows above 80% NO conversion during a wide operating temperature range of 100-250 °C and good H2O + SO2 resistance for low-temperature NH3-SCR reaction. This is related to that oxalic acid solution can promote the dispersion of MnOx and enhance the electron interaction between MnOx and CeO2, which are beneficial to improving the physicochemical property of MnOx/CeO2 catalyst, and further lead to the enhancement of catalytic performance and good H2O + SO2 resistance.

  11. Photodegradation performance and mechanism of 4-nonylphenol by WO3/TiO2 and TiO2 nanotube array photoelectrodes.

    PubMed

    Xin, Yanjun; Wang, Gang; Zhu, Xiangwei; Gao, Mengchun; Liu, Yongping; Chen, Qinghua

    2017-12-01

    TiO 2 Nanotube arrays (TNA) and WO 3 -coated TNA photoelectrodes were fabricated using an in situ anodization and pulse electrochemical deposition technology. The performance of the TNA photoelectrodes in the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of 4-nonylphenol (4-NP) was investigated. The effects of the initial pH and the anions on the degradation rates and reaction mechanism of 4-NP were studied by the photoluminescence (PL) spectra and electrochemical impedance spectra (EIS). The degradation of 4-NP was fitted to a first-order reaction, and the apparent kinetic constants were 1.9 × 10 -2  min -1 for TNA photoelectrodes and 2.4 × 10 -2  min -1 for WO 3 /TNA photoelectrodes. When a bias potential of 1.0 V was applied, the values for TNA and WO 3 /TNA photoelectrodes increased to 2.5 × 10 -2 and 3.0 × 10 -2  min -1 , respectively. The degradation of 4-NP was controlled by a charge-transfer process one. WO 3 -decorated TNA photoelectrodes could increase the adsorption of 4-NP and promote its degradation. For the TNA and WO 3 /TNAs photoelectrodes, acid and alkaline solutions could facilitate the formation of hydroxyl radicals, whereas the removal of 4-NP was inhibited. The presence of [Formula: see text] , Cl - , [Formula: see text] and [Formula: see text] has a negative effect on the formation of •OH, so did the removal of 4-NP. For the TNA photoelectrodes, the inhibition effect of [Formula: see text] on the formation of hydroxyl radicals and the removal of 4-NP was the most serious compared with that of [Formula: see text], Cl - and [Formula: see text] , while for the WO 3 /TNA photoelectrodes the inhibition effect of [Formula: see text] on the removal of 4-NP was maximum.

  12. One-Step Formation of WO3-Loaded TiO2 Nanotubes Composite Film for High Photocatalytic Performance

    PubMed Central

    Lee, Wai Hong; Lai, Chin Wei; Abd Hamid, Sharifah Bee

    2015-01-01

    High aspect ratio of WO3-loaded TiO2 nanotube arrays have been successfully synthesized using the electrochemical anodization method in an ethylene glycol electrolyte containing 0.5 wt% ammonium fluoride in a range of applied voltage of 10–40 V for 30 min. The novelty of this research works in the one-step formation of WO3-loaded TiO2 nanotube arrays composite film by using tungsten as the cathode material instead of the conventionally used platinum electrode. As compared with platinum, tungsten metal has lower stability, forming dissolved ions (W6+) in the electrolyte. The W6+ ions then move towards the titanium foil and form a coherent deposit on titanium foil. By controlling the oxidation rate and chemical dissolution rate of TiO2 during the electrochemical anodization, the nanotubular structure of TiO2 film could be achieved. In the present study, nanotube arrays were characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the results obtained, nanotube arrays with average pore diameter of up to 74 nm and length of 1.6 µm were produced. EDAX confirmed the presence of tungsten element within the nanotube arrays which varied in content from 1.06 at% to 3.29 at%. The photocatalytic activity of the nanotube arrays was then investigated using methyl orange degradation under TUV 96W UV-B Germicidal light irradiation. The nanotube with the highest aspect ratio, geometric surface area factor and at% of tungsten exhibited the highest photocatalytic activity due to more photo-induced electron-hole pairs generated by the larger surface area and because WO3 improves charge separation, reduces charge carrier recombination and increases charge carrier lifetime via accumulation of electrons and holes in the two different metal oxide semiconductor components.

  13. Constructing TiO2 decorated Bi2WO6 architectures with enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyuan; Chen, Lu; Yang, Yun; Wang, Junjie; Huang, Yongkui; Liu, Xiaoxia; Yang, Shuijin

    2017-06-01

    TiO2 nanoparticles modified Bi2WO6 photocatalysts were prepared via a facile hydrothermal process. The photocatalytic activity of as-prepared TiO2/Bi2WO6 composites was investigated sufficiently by the photodegradation of rhodamine B (RhB), tetracycline hydrochloride (TC) and ciprofloxacin (CIP). The TiO2/Bi2WO6 composites, in which the molar ratio of TiO2 to Bi2WO6 is 1:1, exhibited optimum photocatalytic activity, which is found to increase by about 2.4 times more than that of pristine Bi2WO6 for the photodegradation of TC. The enhanced photocatalytic activity may be attributed to the higher surface area and the highly efficient charge separation between Bi2WO6 nanosheets and TiO2 nanoparticles. The mechanism of the photocatalysts is investigated by the determination of reactive species in the photocatalytic reactions, the photoluminescence measurement and photoelectrochemical analyses.

  14. Photocatalytic degradation of diclofenac using TiO2-SnO2 mixed oxide catalysts.

    PubMed

    Mugunthan, E; Saidutta, M B; Jagadeeshbabu, P E

    2017-12-26

    The complex nature of diclofenac limits its biological degradation, posing a serious threat to aquatic organisms. Our present work aims to eliminate diclofenac from wastewater through photocatalytic degradation using TiO 2 -SnO 2 mixed-oxide catalysts under various operating conditions such as catalyst loading, initial diclofenac concentration and initial pH. Different molar ratios of Ti-Sn (1:1, 5:1, 10:1, 20:1 and 30:1) were prepared by the hydrothermal method and were characterized. The results indicated that addition of Sn in small quantity enhances the catalytic activity of TiO 2 . Energy Band gap of the TiO 2 -SnO 2 catalysts was found to increase with an increase in Tin content. TiO 2 -SnO 2 catalyst with a molar ratio of 20:1 was found to be the most effective when compared to other catalysts. The results suggested that initial drug concentration of 20 mg/L, catalyst loading of 0.8 g/L and pH 5 were the optimum operating conditions for complete degradation of diclofenac. Also, the TiO 2 -SnO 2 catalyst was effective in complete mineralization of diclofenac with a maximum total organic carbon removal of 90% achieved under ultraviolet irradiation. The repeatability and stability results showed that the TiO 2 -SnO 2 catalyst exhibited an excellent repeatability and better stability over the repeated reaction cycles. The photocatalytic degradation of diclofenac resulted in several photoproducts, which were identified through LC-MS.

  15. Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1

    NASA Astrophysics Data System (ADS)

    Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed

    2016-01-01

    In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.

  16. Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3-SCR

    NASA Astrophysics Data System (ADS)

    Xu, Quan; Yang, Wenjing; Cui, Shitong; Street, Jason; Luo, Yan

    2018-03-01

    Ce-Mn/TiO2 catalyst prepared using a simple impregnation method demonstrated a better low-temperature selective catalytic reduction of NO with NH3 (NH3-SCR) activity in comparison with the sol-gel method. The Ce-Mn/TiO2 catalyst loading with 20% Ce had the best low-temperature activity and achieved a NO conversion rate higher than 90% at 140-260°C with a 99.7% NO conversion rate at 180°C. The Ce-Mn/TiO2 catalyst only had a 6% NO conversion rate decrease after 100 ppm of SO2 was added to the stream. When SO2 was removed from the stream, the catalyst was able to recover completely. The crystal structure, morphology, textural properties and valence state of the metals involving the novel catalysts were investigated using X-ray diffraction, N2 adsorption and desorption analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive spectroscopy, respectively. The decrease of NH3-SCR performance in the presence of 100 ppm SO2 was due to the decrease of the surface area, change of the pore structure, the decrease of Ce4+ and Mn4+ concentration and the formation of the sulfur phase chemicals which blocked the active sites and changed the valence status of the elements.

  17. Constructing 2D layered MoS2 nanosheets-modified Z-scheme TiO2/WO3 nanofibers ternary nanojunction with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhao, Jiangtao; Zhang, Peng; Fan, Jiajie; Hu, Junhua; Shao, Guosheng

    2018-02-01

    Advanced materials for photoelectrochemical H2 production are important to the field of renewable energy. Despite great efforts have been made, the present challenge in materials science is to explore highly active photocatalysts for splitting of water at low cost. In this work, we report a new composite material consisting of 2D layered MoS2 nanosheets grown on the presence of TiO2/WO3 nanofibers (TW) as a high-performance photocatalyst for H2 evolution. This composite material was prepared by a two-step simple process of electrospinning and hydrothermal. We found that the as-prepared TiO2/WO3@MoS2 (TWM) hybrid exhibited superior photocatalytic activity in the hydrogen evolution reaction (HER) even without the noble metal-cocatalyst. Importantly, the TiO2/WO3@MoS2 heterostructure with 60 wt% of MoS2 exhibits the highest hydrogen production rate. This great improvement is attributed to the positive synergetic effect between the WO3 and MoS2 components in this hybrid cocatalyst, which serve as hole collector and electron collector, respectively. Moreover, the effective charge separation was directly proved by ultraviolet photoelectron spectroscopy, electrochemical impedance spectroscopy, and photocurrent analysis.

  18. Self-Protection Mechanism of Hexagonal WO3-Based DeNOx Catalysts against Alkali Poisoning.

    PubMed

    Zheng, Li; Zhou, Meijuan; Huang, Zhiwei; Chen, Yaxin; Gao, Jiayi; Ma, Zhen; Chen, Jianmin; Tang, Xingfu

    2016-11-01

    A good catalyst for efficiently controlling NO x emissions often demands strong resistance against alkali poisoning. Although the traditional ion-exchange model, based on acid-base reactions of alkalis with Brønsted acid sites, has been established over the past two decades, it is difficult to be used as a guideline to develop such an alkali-resistant catalyst. Here we establish a self-protection mechanism of deNO x catalysts against alkali poisoning by systematically studying the intrinsic nature of alkali resistance of V 2 O 5 /HWO (HWO = hexagonal WO 3 ) that shows excellent resistance to alkali poisoning in selective catalytic reduction of NO x with NH 3 (SCR). Synchrotron X-ray diffraction and absorption spectroscopies demonstrate that V 2 O 5 /HWO has spatially separated catalytically active sites (CASs) and alkali-trapping sites (ATSs). During the SCR process, ATSs spontaneously trap alkali ions such as K + , even if alkali ions initially block CASs, thus releasing CASs to realize the self-protection against alkali poisoning. X-ray photoelectron spectra coupled with theoretical calculations indicate that the electronic interaction between the alkali ions and ATSs with an energy saving is the driving force of the self-protection. This work provides a strategy to design alkali-resistant deNO x catalysts.

  19. Photoinduced deposition of gold nanoparticles on TiO2-WO3 nanotube films as efficient photoanodes for solar water splitting

    NASA Astrophysics Data System (ADS)

    Momeni, Mohamad Mohsen; Ghayeb, Yousef

    2016-06-01

    Gold-modified TiO2-WO3 nanotubes with different amounts of gold were obtained by two methods; photoassisted deposition and one-step electrochemical anodizing method. The morphology, crystallinity and elemental composition were studied by FE-SEM, XRD and EDX. The photoelectrochemical performance was examined under Xe light illumination in 1 M NaOH electrolyte. Characterization of the as-prepared TiO2-WO3 samples indicated that sodium tungstate concentration in anodizing solution significantly influenced the morphology and photoelectrochemical activity of fabricated films. Also, photoelectrochemical characterizations show that the photocatalytic activity of Au/TiO2-WO3 nanotubes was improved as compared with that of bare TiO2-WO3 nanotubes. The experimental results showed that the photocatalytic activities of Au/TiO2-WO3 were significantly affected by the amount of Au nanoparticles. The amount of gold nanoparticles was effectively controlled by time of photoreduction of the chloroauric acid solution. These new photoanodes showed enhanced high photocurrent density with good stability and are a highly promising photoanodes for photocatalytic hydrogen production.

  20. Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Zheng, Ya-Lun; Feng, Yu-Jie; Sun, Ke-Ning

    2018-02-01

    Here we report, for the first time, delicate ternary nanostructures consisting of TiO2 nanoplatelets co-doped with Ag and V2O5 nanoparticles. The relationship between the composition and the morphology is systematically studied. We find a remarkable synergistic effect among the three components, and the resulting delicate Ag/V2O5/TiO2 ternary nanostructures exhibit a superior photocatalytic performance over neat TiO2 nanoplatelets as well as Ag/TiO2 and V2O5/TiO2 binary nanostructures for the degradation of methyl orange. We believe our delicate Ag/V2O5/TiO2 ternary nanostructures may lay a basis for developing next-generating, high-performance composite photocatalysts.

  1. The double peaks and symmetric path phenomena in the catalytic activity of Pd/Al2O3-TiO2 catalysts with different TiO2 contents

    NASA Astrophysics Data System (ADS)

    Zhang, Shen; Guo, Yuyu; Li, Xingying; Wu, Xu; Li, Zhe

    2018-06-01

    Physicochemical properties of Pd/Al2O3-TiO2 catalysts with different amounts of TiO2 contents were investigated by XRD, nitrogen adsorption-desorption, FTIR, NH3-TPD, H2-TPR and XPS techniques. Catalysts of different compositions were tested in the ethanol oxidation reaction to study the effects of TiO2 contents. Double peaks and symmetric path phenomena were observed at certain temperatures with the increase in TiO2 contents. The symmetric peak phenomena and the diverse activity fluctuations have been ascribed to the controlling factors such as temperature and compositions. With the increase in TiO2 content, the surface area, adsorbed oxygen contents and surface acid quantity decreased gradually. The large surface area and adsorbed oxygen contents were conducive to the performance, while increased acid amounts were not beneficial for ethanol oxidation. At 150 and 175 °C, Pd/AT(X1

  2. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Guo, Qiyao; Huang, Yunfang; Xu, Hui; Luo, Dan; Huang, Feiyue; Gu, Lin; Wei, Yuelin; Zhao, Huang; Fan, Leqing; Wu, Jihuai

    2018-04-01

    Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron-hole separation, and lead to the increasing photocatalytic activity.

  3. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui

    2018-03-01

    In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.

  4. The black rock series supported SCR catalyst for NO x removal.

    PubMed

    Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan

    2017-09-01

    Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO 2 -TiO 2 sols and regulating its catalytic active constituents with V 2 O 5 and MoO 3 . Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N 2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR), and NH 3 -temperature programmed desorption (NH 3 -TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen O α , well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO 2 -based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO 2 and H 2 O exceeding 85% at temperatures from 300 to 450 °C.

  5. Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3SCR

    PubMed Central

    Yang, Wenjing; Cui, Shitong; Street, Jason; Luo, Yan

    2018-01-01

    Ce-Mn/TiO2 catalyst prepared using a simple impregnation method demonstrated a better low-temperature selective catalytic reduction of NO with NH3 (NH3SCR) activity in comparison with the sol-gel method. The Ce-Mn/TiO2 catalyst loading with 20% Ce had the best low-temperature activity and achieved a NO conversion rate higher than 90% at 140–260°C with a 99.7% NO conversion rate at 180°C. The Ce-Mn/TiO2 catalyst only had a 6% NO conversion rate decrease after 100 ppm of SO2 was added to the stream. When SO2 was removed from the stream, the catalyst was able to recover completely. The crystal structure, morphology, textural properties and valence state of the metals involving the novel catalysts were investigated using X-ray diffraction, N2 adsorption and desorption analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive spectroscopy, respectively. The decrease of NH3SCR performance in the presence of 100 ppm SO2 was due to the decrease of the surface area, change of the pore structure, the decrease of Ce4+ and Mn4+ concentration and the formation of the sulfur phase chemicals which blocked the active sites and changed the valence status of the elements. PMID:29657791

  6. Electrochemical properties of TiO2-V2O5 nanocomposites as a high performance supercapacitors electrode material

    NASA Astrophysics Data System (ADS)

    Ray, Apurba; Roy, Atanu; Sadhukhan, Priyabrata; Chowdhury, Sreya Roy; Maji, Prasenjit; Bhattachrya, Swapan Kumar; Das, Sachindranath

    2018-06-01

    The individual components being ample, inexpensive and non-toxic material, TiO2-V2O5 has drawn more attention compared to other metal oxides. The cost-effective, non-toxic TiO2-V2O5 nanocomposites with various molar ratios of Ti and V have been synthesized through wet chemical method. Microstructure studies have been performed using X-ray diffraction (XRD), FESEM, HRTTEM and other spectroscopic (XPS, FTIR) techniques. The synthesized TiO2-V2O5 nanocomposite with molar ratio 10:20 exhibits 3D, mesoporous interlinked tube-like structure with excellent electrochemical properties by delivering highest specific capacitance of 310 F g-1 at 2 mV s-1 scan rate compared to individual TiO2 and V2O5 material. Increase in vanadium ratio plays a leading role to the chemical properties. The synergistic effects between TiO2 and V2O5 have also been observed in this work. Due to the excellent electrochemical as well as other acceptable performance, the porous interconnected tube like nanocomposite can be used for energy storage application mainly for pseudocapacitor electrode material.

  7. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Song, Liang; Cao, Lixin

    2015-09-01

    TiO2 nanotubes (TNT) crystallized at different temperatures were loaded with WO3 hydrate through the reaction between (NH4)6W7O24·6H2O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO3/TiO2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K-773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation.

  8. Studies on RF sputtered (WO3)1-x (V2O5)x thin films for smart window applications

    NASA Astrophysics Data System (ADS)

    Meenakshi, M.; Sivakumar, R.; Perumal, P.; Sanjeeviraja, C.

    2016-05-01

    V2O5 doped WO3 targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO3)1-x (V2O5)x were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.

  9. The enhanced resistance to K deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by the modification with P

    NASA Astrophysics Data System (ADS)

    Li, Ming-yuan; Guo, Rui-tang; Hu, Chang-xing; Sun, Peng; Pan, Wei-guo; Liu, Shu-ming; Sun, Xiao; Liu, Shuai-wei; Liu, Jian

    2018-04-01

    The deactivation of SCR catalyst caused by K species contained in the fly ash would suppress its DeNOx performance. In this study, it was manifested that the modification of Ce/TiO2 catalyst with P could enhance its K tolerance. To understand the promotion mechanism, the fresh and poisoned catalyst samples were subjected to the characterization techniques including BET, XRD, XPS, H2-TPR, NH3-TPD and in situ DRIFT. The results elucidated that the introduction of P species could increase the reducibility of Ce species and generate more surface chemisorbed oxygen, along with the strengthened surface acidity for NH3 adsorption. It seemed that the NH3-SCR reaction mechanism over Ce/TiO2 catalyst was a combination of L-H mechanism (<200 °C) and E-R mechanism (≥200 °C). After the addition of P species, the NO oxidation over Ce/TiO2 catalyst was also accelerated, accompanied by the broadened temperature window for the NH3-SCR reaction under the control of L-H mechanism. The promoted NH3 species adsorption and the generated more NO2 over P-Ce/TiO2 catalyst were conducive to the NH3-SCR reaction through L-H pathway, which might be the primary reason for its good K resistance.

  10. Constructing superhydrophobic WO3@TiO2 nanoflake surface beyond amorphous alloy against electrochemical corrosion on iron steel

    NASA Astrophysics Data System (ADS)

    Yu, S. Q.; Ling, Y. H.; Wang, R. G.; Zhang, J.; Qin, F.; Zhang, Z. J.

    2018-04-01

    To eliminate harmful localized corrosion, a new approach by constructing superhydrophobic WO3@TiO2 hierarchical nanoflake surface beyond FeW amorphous alloy formed on stainless steel was proposed. Facile dealloying and liquid deposition was employed at low temperature to form a nanostructured layer composing inner WO3 nanoflakes coated with TiO2 nanoparticles (NPs) layer. After further deposition of PFDS on nanoflakes, the contact angle reached 162° while the corrosion potential showed a negative shift of 230 mV under illumination, resulting in high corrosion resistance in 3.5 wt% NaCl solution. The tradeoff between superhydrophobic surface and photo-electro response was investigated. It was found that this surface feature makes 316 SS be immune to localized corrosion and a pronounced photo-induced process of electron storage/release as well as the stability of the functional layer were detected with or without illumination, and the mechanism behind this may be related to the increase of surface potential due to water repellence and the delayed cathodic protection of semiconducting coating derived mainly from the valence state changes of WO3. This study demonstrates a simple and low-cost electrochemical approach for protection of steel and novel means to produce superhydrophobic surface and cathodic protection with controllable electron storage/release on engineering scale.

  11. VAPOR PHASE OXIDATION OF DIMETHYL SULFIDE WITH OZONE OVER V2O5/TIO2 CATALYST

    EPA Science Inventory

    Removal of volatile and odorous compounds emissions from the pulp and paper industry usually creates secondary pollution for scrubbing and adsorption processes or sulfur poising for catalytic incineration. Product studies performed in a flow reactor packed with 10 % V2O5/TiO2 cat...

  12. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Mao, Dongsen; Guo, Xiaoming; Yu, Jun

    2015-05-01

    The influence of TiO2, ZrO2, and TiO2-ZrO2 mixed oxide on the catalytic performance of CuO-ZnO catalyst in the methanol synthesis from CO2 hydrogenation was studied. The catalysts were prepared by oxalate co-precipitation method and characterized by TGA, N2 adsorption, XRD, reactive N2O adsorption, XPS, H2-TPR, H2-TPD, and CO2-TPD techniques. Characterization results reveal that all the additives improve the CuO dispersion in the catalyst body and increase the Cu surface area and adsorption capacities of CO2 and H2. The results of catalytic test reveal that the additives increase both the CO2 conversion and methanol selectivity, and TiO2-ZrO2 mixed oxide is more effective than single components of TiO2 or ZrO2. Moreover, the activity of methanol synthesis is correlated directly with CO2 adsorption capacity over the catalysts.

  13. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar

    2016-12-01

    Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.

  14. Dynamic investigation of the role of the surface sulfates in NO{sub x} reduction and SO{sub 2} oxidation over V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orsenigo, C.; Lietti, L.; Tronconi, E.

    1998-06-01

    Transient experiments performed over synthesized and commercial V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalysts during catalyst conditioning and during step changes of the operating variables (SO{sub 2} inlet concentration and temperature) show that conditioning of the catalyst is required to attain significant and reproducible steady-state data in both the reduction of NO{sub x} and the oxidation of SO{sub 2}. The response time of conditioning for NO{sub x} reduction is of a few hours and that for SO{sub 2} oxidation is of several hours. Fourier transform infrared spectroscopy temperature programmed decomposition, and thermogravimetric measurements showed that catalyst conditioning is associated with amore » slow process of buildup of sulfates: the different characteristic conditioning times observed in the reduction of NO{sub x} and in the oxidation of SO{sub 2} suggest that the buildup of sulfates occurs first at the vanadyl sites and later on at the exposed titania surface. Formation of sulfates at or near the vanadyl sites increases the reactivity in the de-NO{sub x} reaction, possibly due to the increase in the Broensted and Lewis acidity of the catalyst, whereas the titania surface acts as SO{sub 3} acceptor and affects the outlet SO{sub 3} concentration during catalyst conditioning for the SO{sub 2} oxidation reaction. The response time to step changes in SO{sub 2} concentration and temperature is of a few hours in the case of SO{sub 2} oxidation and much shorter in the case of NO{sub x} reduction. The different time responses associated with conditioning and with step changes in the settings of the operating variables have been rationalized in terms of the different extent of perturbation of the sulfate coverage experienced by the catalyst.« less

  15. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response.

    PubMed

    de Tacconi, N R; Chenthamarakshan, C R; Yogeeswaran, G; Watcharenwong, A; de Zoysa, R S; Basit, N A; Rajeshwar, K

    2006-12-21

    The photoelectrochemical response of nanoporous films, obtained by anodization of Ti and W substrates in a variety of corrosive media and at preselected voltages in the range from 10 to 60 V, was studied. The as-deposited films were subjected to thermal anneal and characterized by scanning electron microscopy and X-ray diffraction. Along with the anodization media developed by previous authors, the effect of poly(ethylene glycol) (PEG 400) or D-mannitol as a modifier to the NH4F electrolyte and glycerol addition to the oxalic acid electrolyte was studied for TiO2 and WO3, respectively. In general, intermediate anodization voltages and film growth times yielded excellent-quality photoelectrochemical response for both TiO2 and WO3 as assessed by linear-sweep photovoltammetry and photoaction spectra. The photooxidation of water and formate species was used as reaction probes to assess the photoresponse quality of the nanoporous oxide semiconductor films. In the presence of formate as an electron donor, the incident photon to electron conversion efficiency (IPCE) ranged from approximately 130% to approximately 200% for both TiO2 and WO3 depending on the film preparation protocol. The best photoactive films were obtained from poly(ethylene glycol) (PEG 400) containing NH4F for TiO2 and from aqueous NaF for WO3.

  16. THE ROLE OF CATALYST PROPERTIES ON METHANOL OXIDATION OVER V2O5-TIO2 USING OZONE

    EPA Science Inventory

    Oxidation of methanol over V2O5 catalysts supported on anatase TiO2 that were prepared using sol-gel formation and impregnation procedures were investigated. The effects of incorporating Mg in sol-gel to influence the properties of the catalyst w...

  17. Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts

    NASA Astrophysics Data System (ADS)

    Yan, C. Y.; Yi, W. T.; Xiong, J.; Ma, J.

    2018-03-01

    The Bi2O3 nanorods, flower-like Bi2WO6 and Bi2O3/Bi2WO6 heterojunction composites with the molar ratio of nBi:nW from 2:1, 2.5:1, to 3:1 have been synthesized via one-step hydrothermal method and two-step hydrothermal method, respectively. The products are characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), and scanning electron microscopy (SEM). Photocatalytic experiments indicate that such Bi2O3/Bi2WO6 composite possesses higher photocatalytic activity for RhB degradation under visible-light irradiation in comparison with pure Bi2O3 and Bi2WO6. The enhancement of the photocatalytic activity of the Bi2O3/Bi2WO6 heterojunction catalysts can be ascribed to the reduced recombination of the photoexcited electrons and holes during the photocatalytic reaction. The effect of the molar ratio of nBi:nW on the catalytic performance of the heterojunction catalysts was also investigated. And the optimal molar ratio of nBi:nW is 2.5:1 which was synthesized by one-step hydrothermal method.

  18. The Molybdenum(V) and Tungsten(VI) Oxoazides [MoO(N3 )3 ], [MoO(N3 )32 CH3 CN], [(bipy)MoO(N3 )3 ], [MoO(N3 )5 ](2-) , [WO(N3 )4 ], and [WO(N3 )4 ⋅CH3 CN].

    PubMed

    Haiges, Ralf; Skotnitzki, Juri; Fang, Zongtang; Dixon, David A; Christe, Karl O

    2015-12-14

    A series of novel molybdenum(V) and tungsten(VI) oxoazides was prepared starting from [MOF4 ] (M=Mo, W) and Me3 SiN3 . While [WO(N3 )4 ] was formed through fluoride-azide exchange in the reaction of Me3 SiN3 with WOF4 in SO2 solution, the reaction with MoOF4 resulted in a reduction of Mo(VI) to Mo(V) and formation of [MoO(N3 )3 ]. Carried out in acetonitrile solution, these reactions resulted in the isolation of the corresponding adducts [MoO(N3 )32 CH3 CN] and [WO(N3 )4 ⋅CH3 CN]. Subsequent reactions of [MoO(N3 )3 ] with 2,2'-bipyridine and [PPh4 ][N3 ] resulted in the formation and isolation of [(bipy)MoO(N3 )3 ] and [PPh4 ]2 [MoO(N3 )5 ], respectively. Most molybdenum(V) and tungsten(VI) oxoazides were fully characterized by their vibrational spectra, impact, friction and thermal sensitivity data and, in the case of [WO(N3 )4 ⋅CH3 CN], [(bipy)MoO(N3 )3 ], and [PPh4 ]2 [MoO(N3 )5 ], by their X-ray crystal structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultrasound assisted synthesis of iron doped TiO2 catalyst.

    PubMed

    Ambati, Rohini; Gogate, Parag R

    2018-01-01

    The present work deals with synthesis of Fe (III) doped TiO 2 catalyst using the ultrasound assisted approach and conventional sol-gel approach with an objective of establishing the process intensification benefits. Effect of operating parameters such as Fe doping, type of solvent, solvent to precursor ratio and initial temperature has been investigated to get the best catalyst with minimum particle size. Comparison of the catalysts obtained using the conventional and ultrasound assisted approach under the optimized conditions has been performed using the characterization techniques like DLS, XRD, BET, SEM, EDS, TEM, FTIR and UV-Vis band gap analysis. It was established that catalyst synthesized by ultrasound assisted approach under optimized conditions of 0.4mol% doping, irradiation time of 60min, propan-2-ol as the solvent with the solvent to precursor ratio as 10 and initial temperature of 30°C was the best one with minimum particle size as 99nm and surface area as 49.41m 2 /g. SEM analysis, XRD analysis as well as the TEM analysis also confirmed the superiority of the catalyst obtained using ultrasound assisted approach as compared to the conventional approach. EDS analysis also confirmed the presence of 4.05mol% of Fe element in the sample of 0.4mol% iron doped TiO 2 . UV-Vis band gap results showed the reduction in band gap from 3.2eV to 2.9eV. Photocatalytic experiments performed to check the activity also confirmed that ultrasonically synthesized Fe doped TiO 2 catalyst resulted in a higher degradation of Acid Blue 80 as 38% while the conventionally synthesized catalyst resulted in a degradation of 31.1%. Overall, the work has clearly established importance of ultrasound in giving better catalyst characteristics as well as activity for degradation of the Acid Blue 80 dye. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A down-shifting Eu3+-doped Y2WO6/TiO2 photoelectrode for improved light harvesting in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Llanos, J.; Brito, I.; Espinoza, D.; Sekar, Ramkumar; Manidurai, P.

    2018-02-01

    Y1.86Eu0.14WO6 phosphors were prepared using a solid-state reaction method. Their optical properties were analysed, and they was mixed with TiO2, sintered, and used as a photoelectrode (PE) in dye-sensitized solar cells (DSSCs). The as-prepared photoelectrode was characterized by photoluminescence spectroscopy, diffuse reflectance, electrochemical impedance spectroscopy (EIS) and X-ray diffraction. The photoelectric conversion efficiency of the DSSC with TiO2:Y1.86Eu0.14WO6 (100:2.5) was 25.8% higher than that of a DSCC using pure TiO2 as PE. This high efficiency is due to the ability of the luminescent material to convert ultraviolet radiation from the sun to visible radiation, thus improving the solar light harvesting of the DSSC.

  1. SO2-tolerant and H2O-promoting Pt/C catalysts for efficient NO removal via fixed-bed H2-SCR.

    PubMed

    Tu, Baosheng; Shi, Nian; Sun, Wei; Cao, Limei; Yang, Ji

    2017-01-01

    In this paper, Pt supports on carbon black powder (Vulcan XC-72) were synthesized via a hydrothermal method for selective catalytic reduction (SCR) of NO with H 2 in the presence of 2 vol% O 2 over a wide temperature of 20-300 °C. The results showed that the 3 and 5 wt% Pt/C catalysts resulted in high NO conversion (>90 %) over a temperature range of 120 to 300 °C, and the maximum NO conversion of 98.6 % was achieved over 5 wt% Pt/C at 120 °C. Meanwhile, the influence of SO 2 and H 2 O on the catalyst performance of 3 wt% Pt/C was investigated. The catalysts exhibited good SO 2 poisoning resistance when the SO 2 concentration was lower than 260 ppm. Moreover, a positive effect on NO conversion was detected with the addition of 3 and 5 vol% H 2 O in the feed gas stream. Graphical abstract TEM image and good NO conversion performance of the Pt/C catalysts.

  2. Oxidation of primary amines to oximes with molecular oxygen using 1,1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts.

    PubMed

    Suzuki, Ken; Watanabe, Tomonari; Murahashi, Shun-Ichi

    2013-03-15

    The oxidative transformation of primary amines to their corresponding oximes proceeds with high efficiency under molecular oxygen diluted with molecular nitrogen (O2/N2 = 7/93 v/v, 5 MPa) in the presence of the catalysts 1,1-diphenyl-2-picrylhydrazyl (DPPH) and tungusten oxide/alumina (WO3/Al2O3). The method is environmentally benign, because the reaction requires only molecular oxygen as the terminal oxidant and gives water as a side product. Various alicyclic amines and aliphatic amines can be converted to their corresponding oximes in excellent yields. It is noteworthy that the oxidative transformation of primary amines proceeds chemoselectively in the presence of other functional groups. The key step of the present oxidation is a fast electron transfer from the primary amine to DPPH followed by proton transfer to give the α-aminoalkyl radical intermediate, which undergoes reaction with molecular oxygen and hydrogen abstraction to give α-aminoalkyl hydroperoxide. Subsequent reaction of the peroxide with WO3/Al2O3 gives oximes. The aerobic oxidation of secondary amines gives the corresponding nitrones. Aerobic oxidative transformation of cyclohexylamines to cyclohexanone oximes is important as a method for industrial production of ε-caprolactam, a raw material for Nylon 6.

  3. ALD-Developed Plasmonic Two-Dimensional Au-WO3-TiO2 Heterojunction Architectonics for Design of Photovoltaic Devices.

    PubMed

    Karbalaei Akbari, Mohammad; Hai, Zhenyin; Wei, Zihan; Detavernier, Christophe; Solano, Eduardo; Verpoort, Francis; Zhuiykov, Serge

    2018-03-28

    Electrically responsive plasmonic devices, which benefit from the privilege of surface plasmon excited hot carries, have supported fascinating applications in the visible-light-assisted technologies. The properties of plasmonic devices can be tuned by controlling charge transfer. It can be attained by intentional architecturing of the metal-semiconductor (MS) interfaces. In this study, the wafer-scaled fabrication of two-dimensional (2D) TiO 2 semiconductors on the granular Au metal substrate is achieved using the atomic layer deposition (ALD) technique. The ALD-developed 2D MS heterojunctions exhibited substantial enhancement of the photoresponsivity and demonstrated the improvement of response time for 2D Au-TiO 2 -based plasmonic devices under visible light illumination. To circumvent the undesired dark current in the plasmonic devices, a 2D WO 3 nanofilm (∼0.7 nm) was employed as the intermediate layer on the MS interface to develop the metal-insulator-semiconductor (MIS) 2D heterostructure. As a result, 13.4% improvement of the external quantum efficiency was obtained for fabricated 2D Au-WO 3 -TiO 2 heterojunctions. The impedancometry measurements confirmed the modulation of charge transfer at the 2D MS interface using MIS architectonics. Broadband photoresponsivity from the UV to the visible light region was observed for Au-TiO 2 and Au-WO 3 -TiO 2 heterostructures, whereas near-infrared responsivity was not observed. Consequently, considering the versatile nature of the ALD technique, this approach can facilitate the architecturing and design of novel 2D MS and MIS heterojunctions for efficient plasmonic devices.

  4. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.

    PubMed

    Gar Alalm, Mohamed; Ookawara, Shinichi; Fukushi, Daisuke; Sato, Akira; Tawfik, Ahmed

    2016-01-25

    The photocatalytic degradation of carbofuran (pesticide) and ampicillin (pharmaceutical) using synthesized WO3/ZrO2 nanoparticles under simulated solar light was investigated. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectra analyses were used to characterize the prepared catalysts. The optimum ratio of WO3 to ZrO2 was determined to be 1:1 for the degradation of both contaminants. The degradation of carbofuran and ampicillin by WO3/ZrO2 after 240 min of irradiation was 100% and 96%, respectively. Ruthenium (Ru) was employed as an additive to WO3/ZrO2 to enhance the photocatalytic degradation rate. Ru/WO3/ZrO2 exhibited faster degradation rates than WO3/ZrO2. Furthermore, 100% and 97% degradation of carbofuran and ampicillin, respectively, was achieved using Ru/WO3/ZrO2 after 180 min of irradiation. The durability of the catalyst was investigated by reusing the same suspended catalyst, which achieved 92% of its initial efficiency. The photocatalytic degradation of ampicillin and carbofuran followed pseudo-first order kinetics according to the Langmuir-Hinshelwood model. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3.

    PubMed

    Lee, Sang Moon; Park, Kwang Hee; Kim, Sung Su; Kwon, Dong Wook; Hong, Sung Chang

    2012-09-01

    TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+ displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80-160 and 200-350 degrees C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures. Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnO(x)). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.

  6. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    PubMed

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications.

    PubMed

    Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W

    2017-10-03

    Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.

  8. Highly stable CuO incorporated TiO(2) catalyst for photo-catalytic hydrogen production from H(2)O.

    PubMed

    Bandara, J; Udawatta, C P K; Rajapakse, C S K

    2005-11-01

    A CuO incorporated TiO(2) catalyst was found to be an active photo-catalyst for the reduction of H(2)O under sacrificial conditions. The catalytic activity originates from the photogeneration of excited electrons in the conduction bands of both TiO(2) and CuO resulting in a build-up of excess electrons in the conduction band of CuO. Consequently, the accumulation of excess electrons in CuO causes a negative shift in the Fermi level of CuO. The efficient inter-particle charge transfer leads to a higher catalytic activity and the formation of highly reduced states of TiO(2)/CuO, which are stable even under oxygen saturated condition. Negative shift in the Fermi level of CuO of the catalyst TiO(2)/CuO gains the required over-voltage necessary for efficient water reduction reaction. The function of CuO is to help the charge separation and to act as a water reduction site. The amount of CuO and crystalline structure were found to be crucial for the catalytic activity and the optimum CuO loading was ca. approximately 5-10%(w/w).

  9. Electrochemical properties of thin films of V2O5 doped with TiO2

    NASA Astrophysics Data System (ADS)

    Moura, E. A.; Cholant, C. M.; Balboni, R. D. C.; Westphal, T. M.; Lemos, R. M. J.; Azevedo, C. F.; Gündel, A.; Flores, W. H.; Gomez, J. A.; Ely, F.; Pawlicka, A.; Avellaneda, C. O.

    2018-08-01

    The paper presents a systematic study of the electrochromic properties of thin films of V2O5:TiO2 for a possible utilization as counter-electrode in electrochromic devices. The V2O5:TiO2 thin films were prepared by the sol-gel process and deposited on a substrate of fluorine-tin oxide transparent electrode (FTO) using the dip coating technique and heat treatment at 350 °C for 30 min. The films were characterized by chronocoulometry, cyclic voltammetry (CV), UV-Vis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), profilometry, and X-ray diffraction (XRD). The best results were obtained for the film of V2O5 with 7.5 mol% of TiO2, which presented highest ion storage capacity of ∼106 mC cm-2 and redox reversibility of 1. The diffusion of the Li+ ions into the thin films was modeled by solving Fick equations with appropriate boundary conditions for a plane sheet geometry. Besides that, these films showed optical modulation of 35% at 633 nm after coloration and bleaching. The XRD patterns revealed that the films have an orthorhombic crystal structure; the AFM and the profilometry confirmed roughness and thickness of 16.76 and 617 nm, respectively.

  10. Preparation of TiO2/(TiO2-V2O5)/polypyrrole nanocomposites and a study on catalytic activities of the hybrid materials under UV/Visible light and in the dark

    NASA Astrophysics Data System (ADS)

    Piewnuan, C.; Wootthikanokkhan, J.; Ngaotrakanwiwat, P.; Meeyoo, V.; Chiarakorn, S.

    2014-11-01

    Hybrid metal oxides/polymer nanocomposites, namely TiO2/(TiO2-V2O5)/polypyrrole (PPy), were synthesized via in situ polymerization. Structures of the products were characterized by SEM-EDX, XRD, and FTIR techniques. The light absorbance and band gap energy values of the materials were evaluated by UV/Visible spectroscopy. The catalytic activity of the materials was determined from a degradation of methylene blue. It was found that, regardless of the polymerization time, the absorbance of TiO2/(TiO2-V2O5)/PPy was greater than those of TiO2/PPy and the neat TiO2, respectively. This was in accordance with the decrease in the band gap energy of the materials. The catalytic activity of TiO2/(TiO2-V2O5) was also observed in the dark. After polymerization, the catalytic activity of nanocomposite under UV/Visible light and in the dark was compromised. The above effects are discussed in the light of the energy storage ability of V2O5 and capability of the polymer in acting as a binder for the system.

  11. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants.

    PubMed

    Zarrin, Saviz; Heshmatpour, Felora

    2018-06-05

    In this study, highly active titanium dioxide modified by niobium oxide (Nb 2 O 5 ), polymer (PANI) and reduced graphene oxide (RGO) were successfully prepared. The morphology, structure, surface area and light absorption properties of the present nanocomposites for removal of methylene blue (MB) and methyl orange (MO) were investigated and compared with those of TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. The characterization techniques such as XRD, FT-IR, UV-vis, SEM, EDX, BET and TEM were employed in order to identify the nanocomposites. Also, photocatalytic properties of TiO 2 /Nb 2 O 5 /PANI and TiO 2 /Nb 2 O 5 /RGO nanocomposites under visible light irradiation were studied. In this way, the obtained results were compared to each other and also compared to TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. In this context, the chemical oxygen demand (COD) removal follows the photodegradation in observed performance. The results indicate that reduced TiO 2 /Nb 2 O 5 nanocomposite is effectively modified by graphene oxide to give TiO 2 /Nb 2 O 5 /RGO composite. The TiO 2 /Nb 2 O 5 /RGO exhibits significantly higher photocatalytic activity in degradation of organic dyes under visible light rather than that of TiO 2 /Nb 2 O 5 /PANI, TiO 2 /Nb 2 O 5 and pure TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst.

    PubMed

    Gu, Jing; Yan, Yong; Young, James L; Steirer, K Xerxes; Neale, Nathan R; Turner, John A

    2016-04-01

    Producing hydrogen through solar water splitting requires the coverage of large land areas. Abundant metal-based molecular catalysts offer scalability, but only if they match noble metal activities. We report on a highly active p-GaInP2 photocathode protected through a 35-nm TiO2 layer functionalized by a cobaloxime molecular catalyst (GaInP2-TiO2-cobaloxime). This photoelectrode mediates H2 production with a current density of ∼9 mA cm(-2) at a potential of 0 V versus RHE under 1-sun illumination at pH 13. The calculated turnover number for the catalyst during a 20-h period is 139,000, with an average turnover frequency of 1.9 s(-1). Bare GaInP2 shows a rapid current decay, whereas the GaInP2-TiO2-cobaloxime electrode shows ≤5% loss over 20 min, comparable to a GaInP2-TiO2-Pt catalyst particle-modified interface. The activity and corrosion resistance of the GaInP2-TiO2-cobaloxime photocathode in basic solution is made possible by an atomic layer-deposited TiO2 and an attached cobaloxime catalyst.

  13. Visible light driven photocatalyst of vanadium (V3+) doped TiO2 synthesized using sonochemical method

    NASA Astrophysics Data System (ADS)

    Aini, N.; Ningsih, R.; Maulina, D.; Lami’, F. F.; Chasanah, S. N.

    2018-03-01

    TiO2 has been widely investigated due to its superior photocatalytic activity under ultraviolet irradiation among the photocatalyst materials. In this research, vanadium (V3+) was doped into TiO2 to enhance its light response under visible irradiation for wider application. Vanadium was introduced into TiO2 lattice at various concentration respectively 0.3, 0.5, 0.7 and 0.9% using simple and fast sonochemical method. X-Ray Diffraction data show that vanadium doped TiO2 crystallized in anatase phase with I41amd space group. X-Ray Diffraction pattern shifted to lower value of 2θ due to vanadium dopant. It indicated that V3+ was incorporated into anatase lattice. UV-Vis Diffuse Reflectance Spectra was revealed that the doped TiO2 has lowered reflectance and enhanced absorption coefficient in visible region than undoped TiO2 and commercial anatase TiO2. Band gap energy for undoped and doped TiO2 were respectively 3.22, 3.05, 2.93, 3.03 and 2.40 eV. Therefore vanadium doped TiO2 had potential to be applied under visible light.

  14. Photoassist-phosphorylated TiO2 as a catalyst for direct formation of 5-(hydroxymethyl)furfural from glucose.

    PubMed

    Hattori, Masashi; Kamata, Keigo; Hara, Michikazu

    2017-02-01

    Photo-assisted phosphorylation of an anatase TiO 2 catalyst was examined to improve its catalytic performance for the direct production of 5-(hydroxymethyl)furfural (HMF), a versatile chemical platform, from glucose. In phosphorylation based on simple esterification between phosphoric acid and surface OH groups on anatase TiO 2 with water-tolerant Lewis acid sites, the density of phosphates immobilized on TiO 2 is limited to 2 phosphates nm -2 , which limits selective HMF production. Phosphorylation of the TiO 2 surface under fluorescent light irradiation increases the surface phosphate density to 50%, which is higher than the conventional limit, thus preventing the adsorption of hydrophilic glucose molecules on TiO 2 and resulting in a more selective HMF production over photoassist-phosphorylated TiO 2 .

  15. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    PubMed Central

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-01-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance. PMID:27615429

  16. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-09-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.

  17. A low-cost visible light activeBiFeWO6/TiO2nanocompositewith an efficient photocatalytic and photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Priya, A.; Arunachalam, Prabhakarn; Selvi, A.; Madhavan, J.; Al-Mayouf, Abdullah M.; Ghanem, Mohamed A.

    2018-07-01

    Herein, visible-light driven BiFeWO6/TiO2 nanocomposites photocatalysts were successfully synthesized by an incipient wet-impregnation method. The as-synthesized BiFeWO6/TiO2 nanocomposites were explored by using various techniques of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy (DRS), photoluminescence (PL), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoelectrochemical (PEC) studies to investigate the material formation, surface morphology, electrochemical and optical behaviors. Furthermore, the photocatalytic efficiency of fabricated BiFeWO6/TiO2 nanocomposites was also evaluated towards the degradation of acid orange 7 (AO7). From the degradation results, it revealed that 1% BiFeWO6/TiO2 nanocomposite demonstrated superior photocatalytic performance than its comparison with pure components. This optimized 1% BiFeWO6/TiO2 nanocomposite was found to achieve complete degradation of AO7 within 60 min and also it showing a rate constant value of0.054 min-1 which is much superior to the pure TiO2. This improvement might be credited to its strong light absorption ability in a visible-light region and the low recombination rate of hole-electron pairs. Also, the BiFeWO6/TiO2 nanocomposite has an exceptional photostability and reusability character along with an excellent photo-electrochemical activity. Therefore, it can be well useful material for removing organic pollutants in the aqueous environment. Finally, a probable mechanism is suggested for the photodegradation of AO7 over as-synthesized BiFeWO6/TiO2nanocomposite material.

  18. PREPARATION, CHARACTERIZATION AND ACTIVITY OF AL2O3-SUPPORTED V2O5 CATALYSTS

    EPA Science Inventory

    A series of activated alumina supported vanadium oxide catalysts with various V2O5 loadings ranging from 5 to 25 wt% has been prepared by wet impregnation technique. A combination of various physico-chemical techniques such as BET surface areas, oxygen chemisorption, X-ray diffra...

  19. pH-Dependence of Binding Constants and Desorption Rates of Phosphonate- and Hydroxamate-Anchored [Ru(bpy)3]2+ on TiO2 and WO3.

    PubMed

    Esarey, Samuel L; Bartlett, Bart M

    2018-04-17

    The binding constants and rate constants for desorption of the modified molecular dye [Ru(bpy) 3 ] 2+ anchored by either phosphonate or hydroxamate on the bipyridine ligand to anatase TiO 2 and WO 3 have been measured. In aqueous media at pH 1-10, repulsive electrostatic interactions between the negatively charged anchor and the negatively charged surface govern phosphonate desorption under neutral and basic conditions for TiO 2 anatase due to the high acidity of phosphonic acid (p K a,4 = 5.1). In contrast, the lower acidity of hydroxamate (p K a,1 = 6.5, p K a,2 = 9.1) leads to little change in adsorption/desorption properties as a function of pH from 1 to 7. The binding constant for hydroxamate is 10 3 in water, independent of pH in this range. These results are true for WO 3 as well, but are not reported at pH > 4 due to its Arrhenius acidity. Kinetics for desorption as a function of pH are reported, with a proposed mechanism for phosphonate desorption at high pH being the electrostatic repulsion of negative charges between the surface and the anionic anchor. Further, the hydroxamic acid anchor itself is likely the site of quasi-reversible redox activity in [Ru(bpy) 2 (2,2'-bpy-4,4'-(C(O)N(OH)) 2 )] 2+ , which does not lead to any measurable deterioration of the complex within 2 h of dark cyclic voltammogram scans in aqueous media. These results posit phosphonate as the preferred anchoring group under acidic conditions and hydroxamate for neutral/basic conditions.

  20. Studies on RF sputtered (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} thin films for smart window applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meenakshi, M.; Perumal, P.; Sivakumar, R.

    2016-05-23

    V{sub 2}O{sub 5} doped WO{sub 3} targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.

  1. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO)

    NASA Astrophysics Data System (ADS)

    Kumar, S. Girish; Rao, K. S. R. Koteswara

    2017-01-01

    Metal oxide semiconductors (TiO2, WO3 and ZnO) finds unparalleled opportunity in wastewater purification under UV/visible light, largely encouraged by their divergent admirable features like stability, non-toxicity, ease of preparation, suitable band edge positions and facile generation of active oxygen species in the aqueous medium. However, the perennial failings of these photocatalysts emanates from the stumbling blocks like rapid charge carrier recombination and meager visible light response. In this review, tailoring the surface-bulk electronic structure through the calibrated and veritable approaches such as impurity doping, deposition with noble metals, sensitizing with other compounds (dyes, polymers, inorganic complexes and simple chelating ligands), hydrogenation process (annealing under hydrogen atmosphere), electronic integration with other semiconductors, modifying with carbon nanostructures, designing with exposed facets and tailoring with hierarchical morphologies to overcome their critical drawbacks are summarized. Taking into account the materials intrinsic properties, the pros and cons together with similarities and striking differences for each strategy in specific to TiO2, WO3 & ZnO are highlighted. These subtlety enunciates the primacy for improving the structure-electronic properties of metal oxides and credence to its fore in the practical applications. Future research must focus on comparing the performances of ZnO, TiO2 and WO3 in parallel to get insight into their photocatalytic behaviors. Such comparisons not only reveal the changed surface-electronic structure upon various modifications, but also shed light on charge carrier dynamics, free radical generation, structural stability and compatibility for photocatalytic reactions. It is envisioned that these cardinal tactics have profound implications and can be replicated to other semiconductor photocatalysts like CeO2, In2O3, Bi2O3, Fe2O3, BiVO4, AgX, BiOX (X = Cl, Br & I), Bi2WO6, Bi2MoO6

  2. Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses

    NASA Astrophysics Data System (ADS)

    Sayyed, M. I.; Çelikbilek Ersundu, M.; Ersundu, A. E.; Lakshminarayana, G.; Kostka, P.

    2018-03-01

    In this work, glasses in the MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) system, which show a great potential for optoelectronic applications, were used to evaluate their resistance under high energy ionizing radiations. The basic shielding quantities for determining the penetration of radiation in glass, such as mass attenuation coefficient (μ/ρ), half value layer (HVL), mean free path (MFP) and exposure buildup factor (EBF) values were investigated within the energy range 0.015 MeV ‒ 15 MeV using XCOM program and variation of shielding parameters were compared with different glass systems and ordinary concrete. From the derived results, it was determined that MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses show great potentiality to be used under high energy radiations. Among the studied glass compositions, Bi2O3 and WO3 containing glasses were found to possess superior gamma-ray shielding effectiveness.

  3. V-doped TiO2 supported Pt as a promising oxygen reduction reaction catalyst: Synthesis, characterization and in-situ evaluation in proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Bharti, Abha; Cheruvally, Gouri

    2017-09-01

    This study deals with the synthesis and characterization of V-doped, TiO2 supported Pt catalyst (Pt/V-TiO2) for oxygen reduction reaction (ORR) and its in-situ performance investigation in proton exchange membrane (PEM) fuel cell. Pt/V-TiO2 nanocomposite catalyst is prepared via a facile sol-gel and microwave assisted, modified chemical reduction route and its performance is compared with the undoped TiO2 supported catalyst, Pt/TiO2 prepared in an identical way. The prepared Pt/V-TiO2 and Pt/TiO2 catalysts are employed as cathode catalyst in PEM fuel cell and compared with standard Pt/C catalyst. Their comparative studies are conducted with physical and electrochemical techniques. In-situ electrochemical characterization studies show improved ORR catalytic activity of Pt/V-TiO2 compared to Pt/TiO2. Furthermore, both Pt/TiO2 and Pt/V-TiO2 are more stable than Pt/C when subjected to 6000 voltammetric cycles in the range of 0.2-1.2 V vs. standard hydrogen electrode in operating fuel cell conditions, losing only <20% of its electrochemical surface area as compared to 50% loss exhibited by Pt/C. This study thus demonstrates Pt/V-TiO2 nanocomposite material as a potential cathode catalyst for PEM fuel cell with immense scope for further investigation.

  4. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.

    PubMed

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-03-21

    V-doped TiO2/diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol-gel method. The diatomite was responsible for the well dispersion of TiO2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO2/diatomite hybrids showed red shift in TiO2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO2 bandgap due to V(4+) ions substituted to Ti(4+) sites. The 0.5% V-TiO2/diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO2/diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V(4+) ions incorporated in TiO2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO2 to produce superoxide radicals ˙O2(-), while V(5+) species presented on the surface of TiO2 particles in the form of V2O5 contributed to e(-)-h(+) separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO 2/Au(111), and TiO 2/Au(111)

    DOE PAGES

    Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan; ...

    2017-09-26

    Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less

  6. Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO 2/Au(111), and TiO 2/Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan

    Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less

  7. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO.

    PubMed

    Chiu, Chun-Hsiang; Hsi, Hsing-Cheng; Lin, Hong-Ping; Chang, Tien-Chin

    2015-06-30

    This research investigated the effects of manganese oxide (MnOx) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg(0) and NO using a V2O5-WO3/TiO2-SiO2 selective catalytic reduction (SCR) catalyst. Raw and MnOx-treated SCR samples were bean-shaped nanoparticles with sizes within 10-30 nm. Impregnating MnOx of ≤ 5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnOx amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn(4+) was the main valence state of impregnated MnOx. Apparent crystallinity of MnOx was not observed based on X-ray diffraction. MnOx impregnation enhanced the Hg(0) oxidation and NO/SO2 removal of SCR catalyst. The 5 and 10% MnOx-impregnated samples had the greatest multi pollutant control potentials for Hg(0) oxidation and NO removal; however, the increasing SO2 removal that may be mainly due to SO2-SO3 conversion should be cautioned. HCl and O2 greatly promoted Hg(0) oxidation. SO2 enhanced Hg(0) oxidation at ≤ 200 ppm while NO and NH3 consistently inhibited Hg(0) oxidation. Elevating flue gas temperature enhanced Hg(0) oxidation. Overall, MnOx-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. TiO2-based (Fe3O4, SiO2, reduced graphene oxide) magnetically recoverable photocatalysts for imazalil degradation in a synthetic wastewater.

    PubMed

    Santiago, Dunia E; Pastrana-Martínez, Luisa M; Pulido-Melián, Elisenda; Araña, Javier; Faria, Joaquim L; Silva, Adrián M T; González-Díaz, Óscar; Doña-Rodríguez, José M

    2018-03-02

    Magnetite (Fe 3 O 4 ), a core-shell material (SiO 2 @Fe 3 O 4 ), and reduced graphene oxide-Fe 3 O 4 (referred as rGO-MN) were used as supports of a specific highly active TiO 2 photocatalyst. Thermal treatments at 200 or 450 °C, different atmospheres (air or N 2 ), and TiO 2 :support weight ratios (1.0, 1.5, or 2.0) were investigated. X-ray diffractograms revealed that magnetite is not oxidized to hematite when the core-shell SiO 2 @Fe 3 O 4 material-or a N 2 atmosphere (instead of air) in the thermal treatment-was employed to prepare the TiO 2 -based catalysts (the magnetic properties being preserved). The materials treated with N 2 were first tested for degradation of imazalil (a well-known fungicide) in deionized water. The best compromise between the photocatalytic activity, magnetic separation, and Fe leached (1.61 mg L -1 , i.e., below the threshold for water reuse in irrigation) was found for the magnetic catalyst prepared with SiO 2 @Fe 3 O 4 , an intermediate TiO 2 :support ratio (1.5), and treated at 200 °C under N 2 atmosphere (i.e., SiO 2 @Fe 3 O 4 -EST-1.5-200-N 2 ). This material was then tested for the treatment of imazalil in a synthetic wastewater, SW (with a chemical composition simulating an effluent resulting from fruit postharvest activity). This SW has a pH of 4.2 and the experiments were carried out at this natural pH 0 and at neutral conditions (keeping pH at 7 along the reaction). The magnetic catalyst was more active than bare TiO 2 for the treatment of imazalil in SW at natural pH. Since Fe leaching was observed (3.53 mg L -1 ), added H 2 O 2 enhanced both imazalil degradation and mineralization. Conveniently, these catalysts can be readily recovered by using a conventional magnetic field, as demonstrated over three consecutive recycling runs. Graphical abstract % Imazalil conversion using different magnetic catalysts and comparison with bare TiO 2 .

  9. Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass

    NASA Astrophysics Data System (ADS)

    Lin, Wensheng; Zheng, Jiaxian; Yan, Lianghong; Zhang, Xinxiang

    2018-03-01

    Self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective (AR) coating is prepared by sol-gel process. SiO2 sol is prepared by using tetraethyl orthosilicate (TEOS) as precursor and ammonia as catalyst, while TiO2 sol was prepared by using tetrabutyl orthotitanate (TBOT) as precursor and hydrochloric acid as catalyst. The effect of TiO2 content on refractive index, abrasion-resistance and photo-catalytic activity of SiO2-TiO2 hybrid thin films or powders is systematically investigated. It is found that the refractive index of SiO2-TiO2 hybrid thin films increases gradually from 1.18 to 1.53 as the weight ratio of TiO2 to SiO2 increased from 0 to 1.0. The SiO2-TiO2 hybrid thin film and powder possesses good abrasion-resistance and photo-catalytic activity, respectively, as the weight ratio of TiO2 to SiO2 is 0.4. The degradation degree of Rhodamine B by SiO2-TiO2 hybrid powder is 88.3%. Finally, SiO2-TiO2/SiO2-TiO2 double-layer AR coating with high transmittance, abrasion-resistance and self-cleaning property is realized.

  10. Enrichment of Sc2O3 and TiO2 from bauxite ore residues.

    PubMed

    Deng, Bona; Li, Guanghui; Luo, Jun; Ye, Qing; Liu, Mingxia; Peng, Zhiwei; Jiang, Tao

    2017-06-05

    As a major byproduct generated in the alumina industry, bauxite ore residue is an important reserve of scandium and titanium. In this study, the feasibility and mechanism of enriching Sc 2 O 3 and TiO 2 from a non-magnetic material, which was obtained from carbothermal reductive roasting and magnetic separation of bauxite ore residue, were investigated based on a two-step (acidic and alkali) leaching process. It was revealed that approximately 78% SiO 2 and 30-40% of CaO, FeO and Al 2 O 3 were removed from a non-magnetic material with 0.0134wt.% Sc 2 O 3 and 7.64wt.% TiO 2 by phosphoric acidic leaching, while about 95% Al 2 O 3 and P 2 O 5 were further leached by subsequent sodium hydroxide leaching of the upper-stream leach residue. A Sc 2 O 3 -, TiO 2 - rich material containing 0.044wt.% Sc 2 O 3 and 25.5wt.% TiO 2 was obtained, the recovery and the enrichment factor of Sc 2 O 3 and TiO 2 were about 85% and 5, respectively. The enrichment of Sc 2 O 3 was attributed to higher pH (>3.3) of phosphoric acid solution than its dissolution pH 0 , and the enrichment of TiO 2 was mainly associated with the insoluble perovskite (CaTiO 3 ) in the acidic solution at ambient temperature. As Sc 2 O 3 and TiO 2 cannot be dissolved in the alkali solution, they were further enriched in the leach residue. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Charge transfer between biogenic jarosite derived Fe3+and TiO2 enhances visible light photocatalytic activity of TiO2.

    PubMed

    Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor

    2017-04-01

    In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.

  12. Synthesis of Copper-Based Nanostructured Catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 Supports for NO Reduction.

    PubMed

    Namkhang, Pornpan; Kongkachuichay, Paisan

    2015-07-01

    The selective catalytic reduction of NO over a series of Cu-based catalysts supported on modified silica including SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 prepared via a sol-gel process and a flame spray pyrolysis (FSP) was studied. The prepared catalysts were characterized by means of TEM, XRD, XRF, TPR, and nitrogen physisorption measurement techniques, to determine particle diameter, morphology, crystallinity, phase composition, copper reducibility, surface area, and pore size of catalysts. The particles obtained from sol-gel method were almost spherical while the particles obtained from the FSP were clearly spherical and non-porous nanosized particles. The effects of Si:Al, Si:Ti, and Si:Zr molar ratio of precursor were identified as the domain for different crystalline phase of materials. It was clearly seen that a high SiO2 content inhibited the crystallization of materials. The BET surface area of catalysts obtained from sol-gel method was higher than that from the FSP and it shows that surface area increased with increasing SiO2 molar ratio due to high surface area from SiO2. The catalyst performances were tested for the selective catalytic reduction of NO with H2. It was found that the catalyst prepared over 7 wt% Cu on Si02-Al2O3 support was the most active compared with the others which converted NO as more than 70%. Moreover, the excess copper decreased the performance of NO reduction, due to the formation of CuO agglomeration covered on the porous silica as well as the alumina surface, preventing the direct contact of CO2 and AL2O3.

  13. Densification of PZT Ceramics with V2O5 Additive.

    DTIC Science & Technology

    1979-01-01

    Additions of V2O5 from 0.1 to 8.0 w/o to a coprecipitated Pb(Zr.53 Ti.47) O3 ceramic promoted rapid densification below 1025 C, eliminating the need...for PbO atmosphere control. Dielectric properties were found to be dependent on the amount of V2O5 added and on the microstructure developed, but were...comparable to reported values for this PZT composition for additions of V2O5 or = 1.5 W/O. The indicated densification mechanism is one of activated sintering catalyzed by generation of oxygen defects on decomposition of the V2O5 .

  14. Plasma-assisted adsorption of elemental mercury on CeO2/TiO2 at low temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zheng, Chenghang; Gao, Xiang

    2017-11-01

    Mercury is a kind of pollutants contained in flue gas which is hazardous for human beings. In this work, CeO2 was packed in the discharge zone of a plasma reactor to adsorb elemental mercury at low temperatures. Plasma-catalyst reactor can remove Hg0 efficiently with CeO2/TiO2 catalysts packed in the discharge zone. The Hg0 concentration continued to decrease gradually when the plasma was turned on, but not sank rapidly. This tendency was different with other catalysts. The treatment of plasma to CeO2/TiO2 catalysts has a promotion effect on the adsorption of Hg0. Plasma has the effect of changing the surface properties of the catalysts and the changes would restitute if the condition changed. The long-running test demonstrated that this method is an effective way to remove Hg0. The removal efficiency remained at above 99% throughout 12 hours when plasma had been turned on (15kV, 0.5 g packed CeO2/TiO2).

  15. A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Zhou, Yun; Meng, Chuanmin; Gao, Zhao; Cao, Xiuxia; Li, Xuhai; Xu, Liang; Zhu, Wenjun; Peng, Xusheng; Zhang, Botao; Lin, Yifeng; Liu, Lixin

    2016-10-01

    Hierarchical nanostructures with much increased surface-to-volume ratio have been of significant interest for prototypical gas sensors. Herein we report a novel resistive gas sensor based on TiO2/V2O5 branched nanoheterostructures fabricated by a facile one-step synthetic process, in which well-matched energy levels induced by the formation of effective heterojunctions between TiO2 and V2O5, a large Brunauer-Emmett-Teller surface area and complete electron depletion for the V2O5 nanobranches induced by the branched-nanofiber structures are all beneficial to the change of resistance upon ethanol exposure. As a result, the ethanol sensing performance of this device shows a lower operating temperature, faster response/recovery behavior, better selectivity and about seven times higher sensitivity compared with pure TiO2 nanofibers. This study not only confirms the gas sensing mechanism for performing enhancement of branched nanoheterostructures, but also proposes a rational approach to the design of nanostructure-based chemical sensors with desirable performance.

  16. Effect of the nanosized TiO2 particles in Pd/C catalysts as cathode materials in direct methanol fuel cells.

    PubMed

    Choi, Mahnsoo; Han, Choonsoo; Kim, In-Tae; Lee, Ji-Jung; Lee, Hong-Ki; Shim, Joongpyo

    2011-07-01

    Pd-TiO2/C catalysts were prepared by impregnating titanium dioxide (TiO2) on carbon-supported Pd (Pd/C) for use as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells (DMFCs). Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were carried to confirm the distribution, morphology and structure of Pd and TiO2 on the carbon support. In fuel cell test, we confirmed that the addition of TiO2 nanoparticles make the improved catalytic activity of oxygen reduction. The electrochemical characterization of the Pd-TiO2/C catalyst for the ORR was carried out by cyclic voltammetry (CV) in the voltage window of 0.04 V to 1.2 V with scan rate of 25 mV/s. With the increase in the crystallite size of TiO2, the peak potential for OH(ads) desorption on the surface of Pd particle shifted to higher potential. This implies that TiO2 might affect the adsorption and desorption of oxygen molecules on Pd catalyst. The performance of Pd-TiO2/C as a cathode material was found to be similar to or better performance than that of Pt/C.

  17. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    PubMed

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A new binder-free and conductive-additive-free TiO2/WO3-W integrative anode material produced by laser ablation

    NASA Astrophysics Data System (ADS)

    Su, Yibo; Zhang, Hongjun; Liang, Peng; Liu, Kai; Cai, Mingyong; Huang, Zeya; Wang, Chang-An; Zhong, Minlin

    2018-02-01

    Although transition metal oxides anodes have attracted lots of attention, there are still many problems to be resolved. Complicated fabrication process, high cost and poor electrochemical performances are the most important ones, together hindering transition metal oxides anodes for practical use. Herein, we provide a new approach to fabricate a binder-free and conductive-additive-free TiO2/WO3-W integrative anode material through the nanosecond laser ablation and dip-coating technology, which simplifies the entire anode preparation process with no need for a conventional tape-casting procedure. Using this method, great time cost, machine cost and labor cost related to mixing and tape-casting process can be saved on the basis of good electrochemical performances. The prepared TiO2/WO3-W integrative anode realizes a first Coulombic efficiency of 75.6% and attains to a stable capacity within the first five cycles. It can still maintain a capacity of 600 mAh g-1 in the range of 0.01-3 V vs. Li+/Li at a current rate of 0.2 C after 500 cycles. This work offers a new way to achieve a fast fabrication of the integrative anode for lithium ion battery, which is universal for other transition metals (such as Fe, Cu, Ni, Co, Mo, W etc.).

  19. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping

    NASA Astrophysics Data System (ADS)

    Fang, De; He, Feng; Liu, Xiaoqing; Qi, Kai; Xie, Junlin; Li, Fengxiang; Yu, Chongqinq

    2018-01-01

    MnOx/TiO2 catalysts doped with Mg have been prepared with the impregnation method. Surprisingly, 7% Mg-MnOx/TiO2 catalyst containing more Mn3+ ions showed superior low-temperature SCR activity and stability. Mg doping resulted in some adverse effects on the phases, BET surface areas, reducibility, NH3 adsorption, and morphology structures. However, according to the SCR performance, these effects were thought to be rather limited in comparison with the catalytic properties of MgMn2O4 which might stem from the enhancement of NH3-SCR activity and stability. Meanwhile, based on the in situ DRIFTS tests, the NH3-SCR reaction route of MnOx/TiO2 and Mg doped MnOx/TiO2 catalysts depended on the kind of gas (NH3 or NO) pre-adsorbed on the catalyst.

  20. Synthesis of TiO2-poly(3-hexylthiophene) hybrid particles through surface-initiated Kumada catalyst-transfer polycondensation.

    PubMed

    Boon, Florian; Moerman, David; Laurencin, Danielle; Richeter, Sébastien; Guari, Yannick; Mehdi, Ahmad; Dubois, Philippe; Lazzaroni, Roberto; Clément, Sébastien

    2014-09-30

    TiO2/conjugated polymers are promising materials in solar energy conversion where efficient photoinduced charge transfers are required. Here, a "grafting-from" approach for the synthesis of TiO2 nanoparticles supported with conjugated polymer brushes is presented. Poly(3-hexylthiophene) (P3HT), a benchmark material for organic electronics, was selectively grown from TiO2 nanoparticles by surface-initiated Kumada catalyst-transfer polycondensation. The grafting of the polymer onto the surface of the TiO2 nanoparticles by this method was demonstrated by (1)H and (13)C solid-state NMR, X-ray photoelectron spectrometry, thermogravimetric analysis, transmission electron microscopy, and UV-visible spectroscopy. Sedimentation tests in tetrahydrofuran revealed improved dispersion stability for the TiO2@P3HT hybrid material. Films were produced by solvent casting, and the quality of the dispersion of the modified TiO2 nanoparticles was evaluated by atomic force microscopy. The dispersion of the P3HT-coated TiO2 NPs in the P3HT matrix was found to be homogeneous, and the fibrillar structure of the P3HT matrix was maintained which is favorable for charge transport. Fluorescence quenching measurements on these hybrid materials in CHCl3 indicated improved photoinduced electron-transfer efficiency. All in all, better physicochemical properties for P3HT/TiO2 hybrid material were reached via the surface-initiated "grafted-from" approach compared to the "grafting-onto" approach.

  1. The promotional role of Ni in FeVO4/TiO2 monolith catalyst for selective catalytic reduction of NOx with NH3

    NASA Astrophysics Data System (ADS)

    Wu, Ganxue; Feng, Xi; Zhang, Hailong; Zhang, Yanhua; Wang, Jianli; Chen, Yaoqiang; Dan, Yi

    2018-01-01

    The promotional effect of nickel additive on the catalytic performance of the representative FeVO4/TiO2 for NH3-SCR reaction is systematically studied for the first time in the present work. The experimental results showed that NOx conversion at low temperature and N2 selectivity could be significantly improved by Ni doping and 0.4Ni-FeV-Ti exhibited the highest NOx removal efficiency. Analysis by XRD, SEM/HR-TEM, Raman, TPD, DRIFTS, TPR and XPS showed that nickel doping effectively promoted the interaction of FeVO4 nanoparticles with TiO2, consequently resulting in an enhanced acidity property, improved redox activity and giving rise to the formation of the surface oxygen vacancies and defect sites.

  2. Low-Temperature Catalytic Decomposition of 130 Tetra- to Octa-PCDD/Fs Congeners over CuOX and MnOX Modified V2O5/TiO2-CNTs with the Assistance of O3.

    PubMed

    Zhao, Rixiao; Jin, Dongdong; Yang, Hangsheng; Lu, Shengyong; Potter, Phillip M; Du, Cuicui; Peng, Yaqi; Li, Xiaodong; Yan, Jianhua

    2016-10-07

    In this study, a reliable and steady PCDD/F generation system was utilized to investigate the performance of catalysts, in which 130 congeners of tetra- to octapolychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) vapors were studied under simulated flue gas with/without O 3 . TiO 2 and carbon nanotubes (CNTs) supported vanadium oxides (VO X /TiO 2 -CNTs) modified with MnO X and CuO X , which were reported to be beneficial to the decomposition of model molecules, were found to have a negative effect on the removal of real PCDD/Fs in the simulated flue gas without O 3 . Moreover, the addition of MnO X presented different effects depending on whether CuO X existed in catalysts or not, which was also contrary to its effects on the degradation of model molecules. In an O 3 -containing atmosphere, low chlorination level PCDD/Fs congeners were removed well over VO X -MnO X /TiO 2 -CNTs, while high chlorination level PCDD/Fs congeners were removed well over VO X -CuO X /TiO 2 -CNTs. Fortunately, all PCDD/Fs congeners decomposed well over VO X -MnO X -CuO X /TiO 2 -CNTs. Finally, the effects of tetra- to octachlorination level for the adsorption and degradation behaviors of PCDD/Fs congeners were also investigated.

  3. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II) – Comparison between TiO2 and Al2O3 overcoatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbo; Canlas, Christian; Kropf, A. Jeremy

    2015-01-01

    TiO2 atomic layer deposition (ALD) overcoatings were applied to copper chromite catalysts to increase the stability for 2-furfuraldehyde (“furfural”) hydrogenation. After overcoating, about 75% activity was preserved compared to neat copper chromite: much higher activity than an alumina ALD overcoated catalyst with a similar number of ALD cycles. The effects of ALD TiO2 on the active Cu nanoparticles were studied extensively using both in-situ TPR/isothermal-oxidation and in-situ furfural hydrogenation via Cu XAFS. The redox properties of Cu were modified only slightly by the TiO2 ALD overcoat. However, a subtle electronic interaction was observed between the TiO2 ALD layers and themore » Cu nanoparticles. With calcination at 500 °C the interaction between the TiO2 overcoat and the underlying catalyst is strong enough to inhibit migration and site blocking by chromite, but is sufficiently weaker than the interaction between the Al2O3 overcoat and copper chromite that it does not strongly inhibit the catalytic activity of the copper nanoparticles.« less

  4. TiO2@PEI-Grafted-MWCNTs Hybrids Nanocomposites Catalysts for CO2 Photoreduction

    PubMed Central

    Falcicchio, Aurelia; Fracassi, Francesco; Margiotta, Valerio; Moliterni, Anna

    2018-01-01

    Anatase (TiO2) and multiwalled carbon nanotubes bearing polyethylenimine (PEI) anchored on their surface were hybridized in different proportions according to a sol-gel method. The resulting nanocomposites (TiO2@PEI-MWCNTs), characterized by BET, XRD, XPS, SEM, and UV techniques, were found efficient catalysts for CO2 photoreduction into formic and acetic acids in water suspension and under visible light irradiation. PEI-grafted nanotubes co-catalysts are believed to act as CO2 activators by forming a carbamate intermediate allowing to accomplish the first example in the literature of polyamines/nanotubes/TiO2 mediated CO2 photoreduction to carboxylic acids. PMID:29461484

  5. Synthesis of TiO2-CNT hybrid nanocatalyst and its application in direct oxidation of H2S to S

    NASA Astrophysics Data System (ADS)

    Daraee, Maryam; Baniadam, Majid; Rashidi, Alimorad; Maghrebi, Morteza

    2018-07-01

    In this study, a TiO2-CNT hybrid catalyst has been synthesized and its catalytic activity in the oxidation of H2S to S has been investigated and compared with those of TiO2 nanoparticles and pyrolyzed TiO2-CNT hybrid (P-TiO2-CNT). The optimum catalyst amount was determined using central composite design (CCD) method. Catalysts were characterized by various analytical techniques. The H2S conversion, sulfur selectivity and yield at the optimal temperature of 200 °C and O2/H2S ratio of 0.5 were 98.3, 99.5 and 97%, respectively. TiO2-CNT16% catalyst has a higher surface area than TiO2 nanoparticles and P-TiO2-CNT. In addition, the former catalyst gives a high conversion of H2S and sulfur selectivity at 200 °C and O2/H2S ratio of 0.5 compared with the latter two catalysts. The superior conversion (over 10%) of TiO2-CNT16% hybrid compared to TiO2 nanoparticles can be attributed to the synergistic effects of TiO2 and CNT, the reduced band gap of TiO2-CNT16% hybrid and high specific surface area of the catalyst.

  6. Catalytic oxidation of Hg(0) by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures.

    PubMed

    Wang, Pengying; Su, Sheng; Xiang, Jun; You, Huawei; Cao, Fan; Sun, Lushi; Hu, Song; Zhang, Yun

    2014-04-01

    MnOx-CeO2/γ-Al2O3 (MnCe) selective catalytic reduction (SCR) catalysts prepared by sol-gel method were employed for low-temperature Hg(0) oxidation on a fixed-bed experimental setup. BET, XRD and XPS were used to characterize the catalysts. MnCe catalysts exhibited high Hg(0) oxidation activity at low temperatures (100-250 °C) under the simulated flue gas (O2, CO2, NO, SO2, HCl, H2O and balanced with N2). Only a small decrease in mercury oxidation was observed in the presence of 1200 ppm SO2, which proved that the addition of Ce helped resist SO2 poisoning. An enhancing effect of NO was observed due to the formation of multi-activity NOx species. The presence of HCl alone had excellent Hg(0) oxidation ability, while 10 ppm HCl plus 5% O2 further increased Hg(0) oxidation efficiency to 100%. Hg(0) oxidation on the MnCe catalyst surface followed the Langmiur-Hinshelwood mechanism, where reactions took place between the adsorbed active species and adsorbed Hg(0) to form Hg(2+). NH3 competed with Hg(0) for active sites on the catalyst surface, hence inhibiting Hg(0) oxidation. This study shows the feasibility of a single-step process integrating low-temperature SCR and Hg(0) oxidation from the coal combustion flue gas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light

    PubMed Central

    2011-01-01

    WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3. PMID:21774800

  8. Effect of V2O5 concentration on structural and optical properties of WO3 thin films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Meenakshi, M.; Gowthami, V.; Perumal, P.; Sanjeeviraja, C.

    2014-10-01

    Thin films of WO3 and V2O5 doped WO3 were coated on glass substrates using sputtering targets of diameter 50mm and thickness 5mm with RF power of 100 W and source to substrate distance of 60mm at room temperature for various V2O5 compositions (1, 2, 4, 6 and 10 %). XRD studies revealed that as deposited films were amorphous for all compositions. Morphological studies like Laser Raman and SEM too confirmed this amorphous nature of films. Refractive index (n) and the extinction coefficient (k) were calculated from the optical spectra such as transmittance and absorbance measured over the wavelength range of 200 to 2500nm. The films exhibited transmittance in the range of 80 to 90% in the UV-Vis-NIR region. Optical band gaps were calculated for both direct and indirect transitions. The optical parameters such as optical dispersion energies Eo and Ed, the average dielectric constant (ɛ), average values of the oscillator strength (So), wavelength of single oscillator (λo), and plasma frequency (ωp) were also calculated.

  9. Removal of elemental mercury by TiO₂doped with WO₃ and V₂O₅ for their photo- and thermo-catalytic removal mechanisms.

    PubMed

    Shen, Huazhen; Ie, Iau-Ren; Yuan, Chung-Shin; Hung, Chung-Hsuang; Chen, Wei-Hsiang

    2016-03-01

    The catalytic removal of Hg(0) was investigated to ascertain whether the catalysts could simultaneously possess both thermo- and photo-catalytic reactivity. The immobilized V2O5/TiO2 and WO3/TiO2 catalysts were synthesized by sol-gel method and then coated on the surface of glass beads for catalytic removal of Hg(0). They were also characterized by SEM, BET, XRD, UV-visible, and XPS analysis, and their catalytic reactivity was tested under 100-160 °C under the near-UV irradiation. The results indicated that V2O5/TiO2 solely possessed the thermo-catalytic reactivity while WO3/TiO2 only had photo-catalytic reactivity. Although the synthesis catalytic reactivity has not been found for these catalysts up to date, but compared with TiO2, the removal efficiencies of Hg(0) at 140 and 160 °C were enhanced; particularly, the efficiency was improved from 20 % at 160 °C by TiO2 to nearly 90 % by WO3/TiO2 under the same operating conditions. The effects of doping amount of V2O5 and WO3 were also investigated, and the results showed that 10 % V2O5 and 5 % WO3/TiO2 were the best immobilized catalysts for thermo- and photo-catalytic reactivity, respectively. The effect of different influent concentrations of Hg(0) was demonstrated that the highest concentration of Hg(0) led to the best removal efficiencies for V2O5/TiO2 and WO3/TiO2 at 140 and 160 °C, because high Hg(0) concentration increased the mass transfer rate of Hg(0) toward the surface of catalysts and drove the reaction to proceed. At last, the effect of single gas component on the removal of Hg(0) was also investigated.

  10. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors

    PubMed Central

    2013-01-01

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric. PMID:23294730

  11. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors.

    PubMed

    Chen, Fa-Hsyang; Her, Jim-Long; Shao, Yu-Hsuan; Matsuda, Yasuhiro H; Pan, Tung-Ming

    2013-01-08

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric.

  12. [Adsorption and removal of gas-phase Hg(0) over a V2O5/AC catalyst in the presence of SO2].

    PubMed

    Wang, Jun-wei; Yang, Jian-li; Liu, Zhen-yu

    2009-12-01

    The adsorption and removal behaviors of gas-phase Hg(0) over V2O5/AC and AC were studied under a simulated flue gas (containing N2, SO2, O2) in a fixed-bed reactor. The influences of the V2O5, loading, SO2 concentration and adsorption temperature on Hg0 adsorption were investigated. The speciation of mercury adsorbed was determined by X-ray photoelectron spectroscopy (XPS). It was found that the V2O5/AC catalyst has a much higher capability than AC for Hg(0) adsorption and removal, mainly because of the catalytic oxidation activity of V2O5. The Hg(0) adsorption capability depends on the V2O5 content of the V2O5/AC catalyst. The amounts of mercury adsorbed increase from 75.9 microg x g(-1) to 89.6 microg x g(-1) (in the absence of O2) and from 115.9 microg x g(-1) to 185.5 microg x g(-1) (in the presence of O2) as the V2O5 loading increases from 0.5% to 1.0%, which are much higher than those over AC under the same conditions (9.6 microg x g(-1) and 23.3 microg x g(-1)). SO2 in the flue gas enhances Hg(0) adsorption over the V2O5/AC catalyst, which is due to the reaction of SO2 and Hg(0) on V2O3/AC. But as the SO2 concentration increases from 500 x 10(-6) to 2000 x 10(-6), the amount of mercury adsorbed has only a slight increase. The optimal temperature for Hg(0) adsorption over the V2O5/AC catalyst is around 150 degrees C, at which the amounts of mercury adsorbed are up to 98.5 microg x g(-1) (in the absence of O2) and 187.7 microg x g(-1) (in the presence of O2). The XPS results indicate the formation of Hg(0) and HgSO4 on the surface of the V2O5/AC catalyst, which confirms the role of V2O5 and SO2.

  13. Adsorption of Vanadium (V) from SCR Catalyst Leaching Solution and Application in Methyl Orange.

    PubMed

    Sha, Xuelong; Ma, Wei; Meng, Fanqing; Wang, Ren; Fuping, Tian; Wei, Linsen

    2016-12-01

      In this study, we explored an effective and low-cost catalyst and its adsorption capacity and catalytic capacity for Methyl Orange Fenton oxidation degradation were investigated. The catalyst was directly prepared by reuse of magnetic iron oxide (Fe3O4) after saturated adsorption of vanadium (V) from waste SCR (Selective Catalytic Reduction) catalyst. The obtained catalyst was characterized by FTIR, XPS and the results showed that vanadium (V) adsorption process of Fe3O4 nanoparticles was non-redox reaction. The effects of pH, adsorption kinetics and equilibrium isotherms of adsorption were assessed. Adsorption of vanadium (V) ions by Fe3O4 nanoparticles could be well described by the Sips isotherm model which controlled by the mixed surface reaction and diffusion (MSRDC) adsorption kinetic model. The results show that vanadium (V) was mainly adsorbed on external surface of the Fe3O4 nanoparticles. The separation-recovering tungsten (VI) and vanadium (V) from waste SCR catalyst alkaline solution through pH adjustment was also investigated in this study. The results obtained from the experiments indicated that tungsten (VI) was selectively adsorbed from vanadium (V)/tungsten (VI) mixed solution in certain acidic condition by Fe3O4 nanoparticle to realize their recovery. Tungsten (V) with some impurity can be obtained by releasing from adsorbent, which can be confirmed by ICP-AES. The Methyl Orange degradation catalytic performance illustrated that the catalyst could improve Fenton reaction effectively at pH = 3.0 compare to Fe3O4 nanoparticles alone. Therefore, Fe3O4 nanoparticle adsorbed vanadium (V) has a potential to be employed as a heterogeneous Fenton-like catalyst in the present contribution, and its catalytic activity was mainly evaluated in terms of the decoloration efficiency of Methyl Orange.

  14. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors

    NASA Astrophysics Data System (ADS)

    Choi, Seungbok; Bonyani, Maryam; Sun, Gun-Joo; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu

    2018-02-01

    Pristine WO3 nanorods and Cr2O3-functionalized WO3 nanorods were synthesized by the thermal evaporation of WO3 powder in an oxidizing atmosphere, followed by spin-coating of the nanowires with Cr2O3 nanoparticles and thermal annealing in an oxidizing atmosphere. Scanning electron microscopy was used to examine the morphological features and X-ray diffraction was used to study the crystallinity and phase formation of the synthesized nanorods. Gas sensing tests were performed at different temperatures in the presence of test gases (ethanol, acetone, CO, benzene and toluene). The Cr2O3-functionalized WO3 nanorods sensor showed a stronger response to these gases relative to the pristine WO3 nanorod sensor. In particular, the response of the Cr2O3-functionalized WO3 nanorods sensor to 200 ppm ethanol gas was 5.58, which is approximately 4.4 times higher that of the pristine WO3 nanorods sensor. Furthermore, the Cr2O3-functionalized WO3 nanorods sensor had a shorter response and recovery time. The pristine WO3 nanorods had no selectivity toward ethanol gas, whereas the Cr2O3-functionalized WO3 nanorods sensor showed good selectivity toward ethanol. The gas sensing mechanism of the Cr2O3-functionalized WO3 nanorods sensor toward ethanol is discussed in detail.

  15. Structure and temperature-dependent phase transitions of lead-free Bi 1/2Na 1/2TiO 3-Bi 1/2K 1/2TiO 3-K 0.5Na 0.5NbO 3 piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Eva-Maria; Schmitt, Ljubomira Ana; Hinterstein, Manuel

    2014-05-28

    Structure and phase transitions of (1-y)((1-x)Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3)-yK 0.5Na 0.5NbO 3 (x; y) piezoceramics (0.1 ≤ x ≤ 0.4; 0 ≤ y ≤ 0.05) were investigated by transmission electron microscopy, neutron diffraction, temperature-dependent x-ray diffraction, and Raman spectroscopy. The local crystallographic structure at room temperature (RT) does not change by adding K 0.5Na 0.5NbO 3 to Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3 for x = 0.2 and 0.4. The average crystal structure and microstructure on the other hand develop from mainly long-range polar order with ferroelectric domains to short-range order with polar nanoregions displaying amore » more pronounced relaxor character. The (0.1; 0) and (0.1; 0.02) compositions exhibit monoclinic Cc space group symmetry, which transform into Cc + P4bm at 185 and 130 °C, respectively. This high temperature phase is stable at RT for the morphotropic phase boundary compositions of (0.1; 0.05) and all compositions with x = 0.2. For the compositions of (0.1; 0) and (0.1; 0.02), local structural changes on heating are evidenced by Raman; for all other compositions, changes in the long-range average crystal structure were observed.« less

  16. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    NASA Astrophysics Data System (ADS)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  17. Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water.

    PubMed

    Pang, Yean Ling; Abdullah, Ahmad Zuhairi

    2012-10-15

    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Syntheses, Crystal Structures, and Properties of New Layered Tungsten(VI)-Containing Materials Based on the Hexagonal-WO 3 Structure: M2(WO 3) 3SeO 3 ( M = NH 4, Rb, Cs)

    NASA Astrophysics Data System (ADS)

    Harrison, William T. A.; Dussack, Laurie L.; Vogt, Thomas; Jacobson, Allan J.

    1995-11-01

    The hydrothermal syntheses and crystal structures of (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO6 octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH+4 or Cs+ cations provide charge balance. The full H-bonding scheme in (NH4)2(WO3)3SeO3 has been elucidated from Rietveld refinement against neutron powder diffraction data. The WO6 octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO6 unit in both these phases. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural with their molybdenum(VI)-containing analogues (NH4)2(MoO3)3SeO3 and Cs2 (MoO3)3SeO3. Crystal data: (NH4)2(WO3)3SeO3, Mr = 858.58, hexagonal, space group P63 (No. 173), a = 7.2291(2) Å, c = 12.1486(3) Å, V = 549.82(3) Å3, Z = 2, Rp = 1.81%, and Rwp = 2.29% (2938 neutron powder data). Cs2(WO3)3SeO3, Mr = 1088.31, hexagonal, space group P63 (no. 173), a = 7.2615(2) Å, c = 12.5426(3) Å, V = 572.75(3) Å3, Z = 2, Rp = 4.84%, and Rwp = 5.98% (2588 neutron powder data).

  19. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen

    NASA Astrophysics Data System (ADS)

    Luo, Si

    Abstract of the Dissertation. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen. by. Si Luo. Doctor of Philosophy. in. Chemistry. Stony Brook University. 2017. The environmental impacts of fossil fuel consumption and the resulting global warming have attracted increasing attention to technologies and fuels that are both sustainable and renewable in the 21st century. To date, hydrogen has been proposed as an encouraging candidate of the next generation of chemical fuels, which meets all demands for carbon free and efficient chemistries that could be produced from a variety of sources. However, despite tremendous efforts, there is a clear need to develop new catalysts for the production of hydrogen through catalytic processes that are sustainable, such as in the photocatalytic splitting of water (PCS: H2O → H2 + 0.5O2) and the water-gas shift process (WGS: CO + H2O → H2 + CO2). This thesis is primarily motivated by this challenge and has focused on the photochemical and thermal production of H2 by the employment of novel TiO2 based catalysts. TiO2 is one of the most widely studied photocatalysts in all history, due to its relatively high activity, robust stability, safety and low cost. In this thesis, several TiO2-based mixed metal oxide nano catalysts (CeOx-TiO2, Ru-TiO2, Ga-TiO2) have been synthesized with carefully controlled morphology/structure and with inclusion of co-catalysts (Pt). These novel materials were comprehensively characterized to better understand their morphology, crystal structure, and electronic properties in an attempt to unravel phenomena responsible for high catalytic performance for the production of H2 from H2O. We have discovered the importance of low-dimensional metal oxide and interfacial stabilized nano-scaled mixed metal oxides for H2 production, while learning how best to tune such structure to optimize both thermal and photochemical conversion. Optimized structure and/or composition have been

  20. Effect of WO3 on EPR, structure and electrical conductivity of vanadyl doped WO3·M2O·B2O3 (M=Li, Na) glasses

    NASA Astrophysics Data System (ADS)

    Sheoran, A.; Agarwal, A.; Sanghi, S.; Seth, V. P.; Gupta, S. K.; Arora, M.

    2011-12-01

    Glasses with composition xWO3·(30-x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm-1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.

  1. Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes.

    PubMed

    Georgieva, J; Valova, E; Armyanov, S; Philippidis, N; Poulios, I; Sotiropoulos, S

    2012-04-15

    The use of binary semiconductor oxide anodes for the photoelectrocatalytic oxidation of organic species (both in solution and gas phase) is reviewed. In the first part of the review, the principle of electrically assisted photocatalysis is presented, the preparation methods for the most common semiconductor oxide catalysts are briefly mentioned, while the advantages of appropriately chosen semiconductor combinations for efficient UV and visible (vis) light utilization are highlighted. The second part of the review focuses on the discussion of TiO(2)-WO(3) photoanodes (among the most studied bi-component semiconductor oxide systems) and in particular on coatings prepared by electrodeposition/electrosynthesis or powder mixtures (the focus of the authors' research during recent years). Studies concerning the microscopic, spectroscopic and photoelectrochemical characterization of the catalysts are presented and examples of photoanode activity towards typical dissolved organic contaminants as well as organic vapours are given. Particular emphasis is paid to: (a) The dependence of photoactivity on catalyst morphology and composition and (b) the possibility of carrying out photoelectrochemistry in all-solid cells, thus opening up the opportunity for photoelectrocatalytic air treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Photodegradation of organic matter in fresh garbage leachate using immobilized nano-sized TiO2 as catalysts.

    PubMed

    Chen, C; Xie, Q; Hu, B Q; Zhao, X L

    2014-01-01

    Two immobilized nano-sized TiO2 catalysts, TiO2/activated carbon (TiO2/AC) and TiO2/silica gel (SG) (TiO2/SG), were prepared by the sol-gel method, and their use in the photocatalytic degradation of organic matter in fresh garbage leachate under UV irradiation was investigated. The influences of the catalyst dosage, the initial solution pH, H2O2 addition and the reuse of the catalysts were evaluated. The degradation of organic matter was assessed based on the decrease of the chemical oxygen demand (COD) in the leachate. The results indicated that the degradation of the COD obeyed first-order kinetics in the presence of both photocatalysts. The degradation rate of COD was found to increase with increasing catalyst dosage up to 9 g/L for TiO2/AC and 6 g/L for TiO2/SG, above which the degradation began to attenuate. Furthermore, the degradation rate first increased and then decreased as the solution pH increased from 2 to 14, and the degradation rate increased as the amount of H2O2 increased to 2.93 mM, after which it remained constant. No obvious decrease in the rate of COD degradation was observed during the first four repeated uses of the photocatalysts, indicating that the catalysts could be recovered and reused. Compared with TiO2/AC, TiO2/SG exhibited higher efficiency in photocatalyzing the degradation of COD in garbage leachate.

  3. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jing; Yan, Yong; Young, James L.

    2015-12-21

    Producing hydrogen through solar water splitting requires the coverage of large land areas. Abundant metal-based molecular catalysts offer scalability, but only if they match noble metal activities. We report on a highly active p-GaInP2 photocathode protected through a 35-nm TiO2 layer functionalized by a cobaloxime molecular catalyst (GaInP2-TiO2-cobaloxime). This photoelectrode mediates H2 production with a current density of ~9"0mA"0cm-2 at a potential of 0"0V versus RHE under 1-sun illumination at pH"013. The calculated turnover number for the catalyst during a 20-h period is 139,000, with an average turnover frequency of 1.9"0s-1. Bare GaInP2 shows a rapid current decay, whereas themore » GaInP2-TiO2-cobaloxime electrode shows« less

  4. Highly branched RuO2 Nanorods on Electrospun TiO2 Nanofibers toward Electrochemical Catalysts

    NASA Astrophysics Data System (ADS)

    Cho, Yukyung; Kim, Su-Jin; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi

    2014-03-01

    We report a facile growth route to synthesize hierarchically grown single crystalline metallic RuO2 nanorods on electrospun TiO2 nanofibers via a combination of a simple vapour phase transport process with an electrospinning process. This synthetic strategy could be very useful to design a variety of highly branched network architectures of the functional hetero-nanostructures for electrochemical applications. Particularly, Ruthenium oxide (RuO2) 1-dimensional nanostructures can be used as the effective catalysts or electrochemical electrode materials. Thus, we first synthesize TiO2 nanofibers from mixture of titanium isopropoxide precursor and polymer and then ruthenium hydroxide precursor on TiO2 nanofibers are transformed into RuO2 nanorods by thermal treatment at 250oC in air. The crystalline structures of products are confirmed using scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrum, Raman spectroscopy, and high resolution electron microscopy (HRTEM). The fundamental electrochemical performances are examined using cyclic voltammetry (CV).

  5. Fischer-Tropsch Cobalt Catalyst Improvements with the Presence of TiO2, La2O3, and ZrO2 on an Alumina Support

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the

  6. Modelling Catalyst Surfaces Using DFT Cluster Calculations

    PubMed Central

    Czekaj, Izabela; Wambach, Jörg; Kröcher, Oliver

    2009-01-01

    We review our recent theoretical DFT cluster studies of a variety of industrially relevant catalysts such as TiO2, γ-Al2O3, V2O5-WO3-TiO2 and Ni/Al2O3. Aspects of the metal oxide surface structure and the stability and structure of metal clusters on the support are discussed as well as the reactivity of surfaces, including their behaviour upon poisoning. It is exemplarily demonstrated how such theoretical considerations can be combined with DRIFT and XPS results from experimental studies. PMID:20057947

  7. Selective Catalytic Reduction of NO with NH3 Over V-MCM-41 Catalyst.

    PubMed

    Kwon, Woo Hyun; Park, Sung Hoon; Kim, Ji Man; Park, Su Bin; Jung, Sang-Chul; Kim, Sang Chai; Jeon, Jong-Ki; Park, Young-Kwon

    2016-02-01

    V-MCM-41, a mesoporous catalyst doped with V2O5, was applied for the first time to the removal of atmospheric NO. The quantity of V2O5 added was 10 wt% and 30 wt%. The characteristics of the synthesized catalysts were examined using XRD, N2 soprtion, and NH3-TPD. With increasing quantity of V2O5 added, specific surface area decreased and pore size increased. When the quantity of V2O5 was 10 wt%, the MCM-41 structure was retained, whereas considerable collapse of mesoporous structure was observed when 30 wt% V2O5 was added. The examination of acid characteristics using NH3-TPD showed that 30 wt% V-MCM-41 had the higher NH3 adsorption ability, implying that it would exhibit high activity for NH3 SCR reaction. In the NO removal experiments, 30 wt% V-MCM-41 showed much higher NO removal efficiency than 10 wt% V-MCM-41, which was attributed to its high NH3 adsorption ability.

  8. Pt deposited TiO2 catalyst fabricated by thermal decomposition of titanium complex for solar hydrogen production

    NASA Astrophysics Data System (ADS)

    Truong, Quang Duc; Le, Thanh Son; Ling, Yong-Chien

    2014-12-01

    C, N codoped TiO2 catalyst has been synthesized by thermal decomposition of a novel water-soluble titanium complex. The structure, morphology, and optical properties of the synthesized TiO2 catalyst were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Pt deposited TiO2 catalysts synthesized at different temperatures was evaluated by means of hydrogen evolution reaction under both UV-vis and visible light irradiation. The investigation results reveal that the photocatalytic H2 evolution rate strongly depended on the crystalline grain size as well as specific surface area of the synthesized catalyst. Our studies successfully demonstrate a simple method for the synthesis of visible-light responsive Pt deposited TiO2 catalyst for solar hydrogen production.

  9. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: An in situ FTIR study.

    PubMed

    Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan

    2018-05-05

    Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH 3 -SCR or DeNOx) of NO using NH 3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO 3 solution and NH 4 F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH 3 -SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH 3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO 3 ) than in Fe-MCM-56 (HF/NH 4 F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N 2 O decomposition, with maximum N 2 O conversion not higher than 80% and activity window starting at 500°C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    NASA Astrophysics Data System (ADS)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  11. A new V-doped Bi2(O,S)3 oxysulfide catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes.

    PubMed

    Abay, Angaw Kelemework; Kuo, Dong-Hau; Chen, Xiaoyun; Saragih, Albert Daniel

    2017-12-01

    A new type of convenient, and environmentally friendly, Vanadium (V)-doped Bi 2 (O,S) 3 oxysulfide catalyst with different V contents was successfully synthesized via a simple and facile method. The obtained V-doped Bi 2 (O,S) 3 solid solution catalysts were fully characterized by conventional methods. The catalytic performance of the samples was tested by using the reduction of 2-nitroaniline (2-NA) in aqueous solution. The reduction/decolorization of methylene blue (MB) and rhodamine B (RhB) was also chosen to evaluate the universality of catalysts. It was observed that the introduction of V can improve the catalytic performance, and 20%V-Bi 2 (O,S) 3 was found to be the optimal V doping concentration for the reduction of 2-NA, MB, and RhB dyes. For comparative purposes, a related V-free Bi 2 (O, S) 3 oxysulfide material was synthesized and tested as the catalyst. The superior activity of V-doped Bi 2 (O,S) 3 over pure Bi 2 (O,S) 3 was ascribed mainly to an increase in active sites of the material and also due to the presence of synergistic effects. The presence of V 5+ as found from XPS analysis may interact with Bi atoms and enhancing the catalytic activity of the sample. In the catalytic reduction of 2-NA, MB and RhB, the obtained V-doped Bi 2 (O,S) 3 oxysulfide catalyst exhibited excellent catalytic activity as compared with other reported catalysts. Furthermore this highly efficient, low-cost and easily reusable V-doped Bi 2 (O,S) 3 catalyst is anticipated to be of great potential in catalysis in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells.

    PubMed

    Kim, Jae-Yup; Kang, Soon Hyung; Kim, Hyun Sik; Sung, Yung-Eun

    2010-02-16

    Highly ordered mesoporous Al(2)O(3)/TiO(2) was prepared by sol-gel reaction and evaporation-induced self-assembly (EISA) for use in dye-sensitized solar cells. The prepared materials had two-dimensional, hexagonal pore structures with anatase crystalline phases. The average pore size of mesoporous Al(2)O(3)/TiO(2) remained uniform and in the range of 6.33-6.58 nm while the Brunauer-Emmett-Teller (BET) surface area varied from 181 to 212 m(2)/g with increasing the content of Al(2)O(3). The incorporation of Al content retarded crystallite growth, thereby decreasing crystallite size while simultaneously improving the uniformity of pore size and volume. The thin Al(2)O(3) layer was located mostly on the mesopore surface, as confirmed by X-ray photoelectron spectroscopy (XPS). The Al(2)O(3) coating on the mesoporous TiO(2) film contributes to the essential energy barrier which blocks the charge recombination process in dye-sensitized solar cells. Mesoporous Al(2)O(3)/TiO(2) (1 mol % Al(2)O(3)) exhibited enhanced power conversion efficiency (V(oc) = 0.74 V, J(sc) = 15.31 mA/cm(2), fill factor = 57%, efficiency = 6.50%) compared to pure mesoporous TiO(2) (V(oc) = 0.72 V, J(sc) = 16.03 mA/cm(2), fill factor = 51%, efficiency = 5.88%). Therefore, the power conversion efficiency was improved by approximately 10.5%. In particular, the increase in V(oc) and fill factor resulted from the inhibition of charge recombination and the improvement of pore structure.

  13. Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO(2) and CuO/TiO(2)/Al(2)O(3).

    PubMed

    Arredondo Valdez, H C; García Jiménez, G; Gutiérrez Granados, S; Ponce de León, C

    2012-11-01

    The degradation of paracetamol in aqueous solutions in the presence of hydrogen peroxide was carried out by photochemistry, electrolysis and photoelectrolysis using modified 100 pores per inch reticulated vitreous carbon electrodes. The electrodes were coated with catalysts such as TiO(2) and CuO/TiO(2)/Al(2)O(3) by electrophoresis followed by heat treatment. The results of the electrolysis with bare reticulated vitreous carbon electrodes show that 90% paracetamol degradation occurs in 4 h at 1.3 V vs. SCE, forming intermediates such as benzoquinone and carboxylic acids followed by their complete mineralisation. When the electrolysis was carried out with the modified electrodes such as TiO(2)/RVC, 90% degradation was achieved in 2 h while with CuO/TiO(2)/Al(2)O(3)/RVC, 98% degradation took only 1 h. The degradation was also carried out in the presence of UV reaching 95% degradation with TiO(2)/RVC/UV and 99% with CuO/TiO(2)/Al(2)O(3)/RVC/UV in 1 h. The reactions were followed by spectroscopy UV-Vis, HPLC and total organic carbon analysis. These studies show that the degradation of paracetamol follows a pseudo-first order reaction kinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Magnetic diatomite(Kieselguhr)/Fe2O3/TiO2 composite as an efficient photo-Fenton system for dye degradation

    NASA Astrophysics Data System (ADS)

    Barbosa, Isaltino A.; Zanatta, Lucas D.; Espimpolo, Daniela M.; da Silva, Douglas L.; Nascimento, Leandro F.; Zanardi, Fabrício B.; de Sousa Filho, Paulo C.; Serra, Osvaldo A.; Iamamoto, Yassuko

    2017-10-01

    We explored the potential use of diatomite/Fe2O3/TiO2 composites as catalysts for heterogeneous photo-Fenton degradation of methylene blue under neutral pH. Such system consists in magnetic solids synthesized by co-precipitation with Fe2+/Fe3+ in the presence of diatomite, followed by impregnation of TiO2. The results showed that the optimal amount of the catalyst was 2.0 g L-1, since aggregation phenomena become significant above this concentration, which decreases the photodegradation activity. The catalyst is highly efficient in the degradation of methylene blue and shows an easy recovery by an external magnetic field. This allows for an effective catalyst reuse without significant loss of activity in catalytic cycles, which is a highly interesting prospect for recyclable dye degradation systems.

  15. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts.

    PubMed

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-02-29

    Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The optical and electrochemical properties of electrochromic films: WO3+xV2O5

    NASA Astrophysics Data System (ADS)

    Li, Zhuying; Liu, Hui; Liu, Ye; Yang, Shaohong; Liu, Yan; Wang, Chong

    2010-05-01

    Since Deb's experiment in 1973 on the electrochromic effect, transmissive electrochromic films exhibit outstanding potential as energy efficient window controls which allow dynamic control of the solar energy transmission. These films with non-volatile memory, once in the coloured state, remain in the same state even after removal of the field. The optical and electrochemical properties of electrochromic films using magnetron sputter deposition tungsten oxide thin films and vanadium oxide doped tungsten-vanadium oxide thin films on ITO coated glass were investigated. From the UV region of the transmittance spectra, the optical band gap energy from the fundamental absorption edge can be determined. And the Cyclic voltammograms of these thin films in 1 mol LiClO4 propylene carbonate electrolyte (LIPC) were measured and analysed. The anode electrochromic V2O5 doped cathode electrochromic WO3 could make films colour changing while the transmittance of films keeped invariance. These performance characteristics make tungstenvanadium oxide colour changeably thin films are suitable for electrochromic windows applications.

  17. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    NASA Astrophysics Data System (ADS)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  18. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction.

    PubMed

    Huang, Weicheng; Wang, Jinxin; Bian, Lang; Zhao, Chaoyue; Liu, Danqing; Guo, Chongshen; Yang, Bin; Cao, Wenwu

    2018-06-27

    A WO3-x/TiO2-x nanotube array (NTA) heterojunction photoanode was strategically designed to improve photoelectrocatalytic (PEC) performance by establishing a synergistic vacancy-induced self-doping effect and localized surface plasmon resonance (LSPR) effect of metalloid non-stoichiometric tungsten suboxide. The WO3-x/TiO2-x NTA heterojunction photoanode was synthesized through a successive process of anodic oxidation to form TiO2 nanotube arrays, magnetron sputtering to deposit metalloid WO3-x, and post-hydrogen reduction to engender oxygen vacancy in TiO2-x as well as crystallization. On the merits of such a synergistic effect, WO3-x/TiO2-x shows higher light-harvesting ability, stronger photocurrent response, and resultant improved photoelectrocatalytic performance than the contrast of WO3-x/TiO2, WO3/TiO2 and TiO2, confirming the importance of oxygen vacancies in improving PEC performance. Theoretical calculation based on density functional theory was applied to investigate the electronic structural features of samples and reveal how the oxygen vacancy determines the optical property. The carrier density tuning mechanism and charge transfer model were considered to be associated with the synergistic effect of self-doping and metalloid LSPR effect in the WO3-x/TiO2-x NTA.

  19. Synthesis of Cr3+-doped TiO2 nanoparticles: characterization and evaluation of their visible photocatalytic performance and stability.

    PubMed

    Mendiola-Alvarez, Sandra Yadira; Guzmán-Mar, Jorge Luis; Turnes-Palomino, Gemma; Maya-Alejandro, Fernando; Caballero-Quintero, Adolfo; Hernández-Ramírez, Aracely; Hinojosa-Reyes, Laura

    2017-09-28

    Cr 3+ -doped TiO 2 nanoparticles (Ti-Cr) were synthesized by microwave-assisted sol-gel method. The Ti-Cr catalyst was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, N 2 adsorption-desorption analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy (XPS) and zetametry. The anatase mesoporous Ti-Cr material exhibited a specific surface area of 54.5 m 2 /g. XPS analysis confirmed the proper substitution of Ti 4+ cations by Cr 3+ cations in the TiO 2 matrix. The particle size was of average size of 17 nm for the undoped TiO 2 but only 9.5 nm for Ti-Cr. The Cr atoms promoted the formation of hydroxyl radicals and modified the surface adsorptive properties of TiO 2 due to the increase in surface acidity of the material. The photocatalytic evaluation demonstrated that the Ti-Cr catalyst completely degraded (4-chloro-2-methylphenoxy) acetic acid under visible light irradiation, while undoped TiO 2 and P25 allowed 45.7% and 31.1%, respectively. The rate of degradation remained 52% after three cycles of catalyst reuse. The higher visible light photocatalytic activity of Ti-Cr was attributed to the beneficial effect of Cr 3+ ions on the TiO 2 surface creating defects within the TiO 2 crystal lattice, which can act as charge-trapping sites, reducing the electron-hole recombination process.

  20. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption.

    PubMed

    Cho, Sumin; Ahn, Changui; Park, Junyong; Jeon, Seokwoo

    2018-05-24

    Considering the environmental issues, it is essential to develop highly efficient and recyclable photocatalysts in purification systems. Conventional TiO2 nanoparticles have strong intrinsic oxidizing power and high surface area, but are difficult to collect after use and rarely absorb visible light, resulting in low photocatalytic efficiency under sunlight. Here we develop a new type of highly efficient and recyclable photocatalyst made of a three-dimensional (3D) nanostructured N-doped TiO2 monolith with enhanced visible light absorption. To prepare the sample, an ultrathin TiN layer (∼10 nm) was conformally coated using atomic layer deposition (ALD) on 3D nanostructured TiO2. Subsequent thermal annealing at low temperature (550 °C) converted TiN to anatase phase N-doped TiO2. The resulting 3D N-doped TiO2 showed ∼33% enhanced photocatalytic performance compared to pure 3D TiO2 of equivalent thickness under sunlight due to the reduced bandgap, from 3.2 eV to 2.75 eV through N-doping. The 3D N-doped TiO2 monolith could be easily collected and reused at least 5 times without any degradation in photocatalytic performance.

  1. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.

    PubMed

    Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling

    2017-05-15

    To improve the photocatalytic degradation properties of titanium dioxide (TiO 2 ) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO 2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO 2 to AE was higher than that of pure TiO 2 , and the optimal V dopant content of TiO 2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO 2 to NOx and HC were higher than those to CO 2 and CO in AE because of the reversible reaction between CO 2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were also increased under visible light irradiation. The V-doped TiO 2 also showed higher degradation efficiencies to NOx and HC than those to CO 2 and CO under visible light irradiation. The V doped TiO 2 presented higher photocatalytic activity to CO 2 than that to CO, but the reversible reaction between CO and CO 2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO 2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO 2 to AE for air purification, developing a sustainable environmental purification technology based on TiO 2 materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Synthesis and electronic properties of Fe2TiO5 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2018-05-01

    We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.

  3. Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of

  4. Preparation of Er3+:Y3Al5O12/WO3-KNbO3 composite and application in treatment of methamphetamine under ultrasonic irradiation.

    PubMed

    Zhang, Hongbo; Huang, Yingying; Li, Guanshu; Wang, Guowei; Fang, Dawei; Song, Youtao; Wang, Jun

    2017-03-01

    Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 composite powder as an effective sonocatalyst was prepared via collosol-gelling-hydrothermal and high-temperature calcination methods. The textures of materials were observed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). In order to estimate the sonocatalytic activity of Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 composite powder, the sonocatalytic degradation of methamphetamine (MAPA) was performed. Furthermore, the influences of mass ratio of WO 3 and KNbO 3 , ultrasonic irradiation time, catalyst addition amount, initial methamphetamine (MAPA) concentration and used times on the sonocatalytic degradation of methamphetamine (MAPA) caused by Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 composite powder were investigated by using gas chromatography. Under optimal conditions of 1.00g/L Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 addition amount and 10.00mg/L methamphetamine (MAPA) initial concentration, 68% of methamphetamine (MAPA) could be removed after 150min ultrasonic irradiation. The experimental results showed that the Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 as sonocatalyst displayed an excellent sonocatalytic activity in degradation of methamphetamine (MAPA) under ultrasonic irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-({TiO}_{{2}} /{WO}_{{3}} )

    NASA Astrophysics Data System (ADS)

    Araújo, E. S.; Libardi, J.; Faia, P. M.; de Oliveira, H. P.

    2018-02-01

    Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz-40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

  6. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR.

    PubMed

    Chang, Huazhen; Ma, Lei; Yang, Shijian; Li, Junhua; Chen, Liang; Wang, Wei; Hao, Jiming

    2013-11-15

    A series of CeO2 catalysts prepared with sulfate (S) and nitrate (N) precursors by hydrothermal (H) and precipitation (P) methods were investigated in selective catalytic reduction of NOx by NH3 (NH3-SCR). The catalytic activity of CeO2 was significantly affected by the preparation methods and the precursor type. CeO2-SH, which was prepared by hydrothermal method with cerium (IV) sulfate as a precursor, showed excellent SCR activity and high N2 selectivity in the temperature range of 230-450 °C. Based on the results obtained by temperature-programmed reduction (H2-TPR), transmission infrared spectra (IR) and thermal gravimetric analysis (TGA), the excellent performance of CeO2-SH was correlated with the surface sulfate species formed in the hydrothermal reaction. These results indicated that sulfate species bind with Ce(4+) on the CeO2-SH catalyst, and the specific sulfate species, such as Ce(SO4)2 or CeOSO4, were formed. The adsorption of NH3 was promoted by these sulfate species, and the probability of immediate oxidation of NH3 to N2O on Ce(4+) was reduced. Accordingly, the selective oxidation of NH3 was enhanced, which contributed to the high N2 selectivity in the SCR reaction. However, the location of sulfate on the CeO2-SP catalyst was different. Plenty of sulfate species were likely deposited on CeO2-SP surface, covering the active sites for NO oxidation, which resulted in poor SCR activity in the test temperature range. Moreover, the resistance to alkali metals, such as Na and K, was improved over the CeO2-SH catalyst. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Experimental Determination of the Phase Diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 System

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Sun, Lifeng; Zhang, Bo; Liu, Xuqiang; Qiu, Jiyu; Wang, Zhaoyun; Jiang, Maofa

    2016-02-01

    Ti-bearing CaO-SiO2-MgO-Al2O3-TiO2 slags are important for the smelting of vanadium-titanium bearing magnetite. In the current study, the pseudo-melting temperatures were determined by the single-hot thermocouple technique for the specified content of 5 to 25 pct TiO2 in the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 phase diagram system. The 1573 K to 1773 K (1300 °C to 1500 °C) liquidus lines were first calculated based on the pseudo-melting temperatures according to thermodynamic equations in the specific primary crystal field. The phase equilibria at 1573 K (1300 °C) were determined experimentally using the high-temperature equilibrium and quench method followed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscope analysis; the liquid phase, melilite solid solution phase (C2MS2,C2AS)ss, and perovskite phase of CaO·TiO2 were found. Therefore, the phase diagram was constructed for the specified region of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system.

  8. Self Assembly and Properties of C:WO3 Nano-Platelets and C:VO2/V2O5 Triangular Capsules Produced by Laser Solution Photolysis

    PubMed Central

    2010-01-01

    Laser photolysis of WCl6 in ethanol and a specific mixture of V2O5 and VCl3 in ethanol lead to carbon modified vanadium and tungsten oxides with interesting properties. The presence of graphene’s aromatic rings (from the vibrational frequency of 1,600 cm−1) together with C–C bonding of carbon (from the Raman shift of 1,124 cm−1) present unique optical, vibrational, electronic and structural properties of the intended tungsten trioxide and vanadium dioxide materials. The morphology of these samples shows nano-platelets in WOx samples and, in VOx samples, encapsulated spherical quantum dots in conjunction with fullerenes of VOx. Conductivity studies revealed that the VO2/V2O5 nanostructures are more sensitive to Cl than to the presence of ethanol, whereas the C:WO3 nano-platelets are more sensitive to ethanol than atomic C. PMID:20671779

  9. Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants.

    PubMed

    Zhang, Hongfeng; He, Xiu; Zhao, Weiwei; Peng, Yu; Sun, Donglan; Li, Hao; Wang, Xiaocong

    2017-04-01

    Fe 3 O 4 /TiO 2 magnetic mesoporous composites were synthesized through a sol-gel method with tetra-n-butyl titanate as precursor and surfactant P123 as template. The as-prepared Fe 3 O 4 /TiO 2 composites were characterized by X-ray diffraction, diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherm and pore size distribution. The as-synthesized products were applied as photocatalysis for the degradation of Acid Black ATT and tannery wastewater under UV lamp irradiation. Fe 3 O 4 /TiO 2 -8 composites containing Fe 3 O 4 of 8 wt% were selected as model catalysts. The optimal catalyst dosage was 3 g/L in this photocalytic system. The magnetic Fe 3 O 4 /TiO 2 composites possessed good photocatalytic stability and durability. This approach may provide a platform to prepare a magnetic composite to optimize the catalytic ability.

  10. Synthesis and electronic properties of Fe 2TiO 5 epitaxial thin films

    DOE PAGES

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; ...

    2018-05-02

    Here, we investigate the growth phase diagram of pseudobrookite Fe 2TiO 5 epitaxial thin films on LaAlO 3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20–80 Ω cm, which are significantly lower than α-Fe 2O 3, making Fe 2TiO 5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe 2TiO 5 in oxide heterostructures for photocatalytic and photoelectrochemicalmore » applications.« less

  11. Nanostructured bilayer anodic TiO2/Al2O3 metal-insulator-metal capacitor.

    PubMed

    Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S

    2013-10-01

    This paper presents the fabrication of high performance bilayer TiO2/Al2O3 Metal-Insulator-Metal capacitor using anodization technique. A high capacitance density of 7 fF/microm2, low quadratic voltage coefficient of capacitance of 150 ppm/V2 and a low leakage current density of 9.1 nA/cm2 at 3 V are achieved which are suitable for Analog and Mixed signal applications. The influence of anodization voltage on structural and electrical properties of dielectric stack is studied in detail. At higher anodization voltages, we have observed the transformation of amorphous to crystalline state of TiO2/Al2O3 and improvement of electrical properties.

  12. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    NASA Astrophysics Data System (ADS)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  13. Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Li, Chao

    -annealing at 400 °C for 40 min in air and varying ALD parameters can eliminate pores, and lead to consistent increases in density and refractive index determined by the XRR method, SE, and optical reflectance measurements. After annealing, the layer remains amorphous. On the other hand, the as-deposited TiO 2 layer is non-porous and amorphous. It is densified and crystallized after annealing at 400 °C for 10 min in air. The multilayer Al2O 3/TiO2/Al2O3 ARC deposited on Si has surface and interface roughnesses and/or grading on the order of one nanometer. Annealing at 400 °C for 10 min in air induces densification and crystallization of the amorphous TiO2 layer as well as possible chemical reactions between TiO2 and Si diffusing from the substrate. On the other hand, Al2O3 layers remain amorphous after annealing. The thickness of the top Al2O3 layer decreases - likely due to interdiffusion between the top two layers and loss of hydrogen from hydroxyl groups initially present in the ALD layers. The thickness of the bottom Al2O3 layer increases, probably due to the diffusion of Si atoms into the bottom layer. In addition, the multilayer Al 2O3/TiO2/Al2O3 ARC was deposited on AlInP (30nm) / GaInP (100nm) / GaAs that includes the topmost layers of III-V multi-junction solar cells. Reflectance below 5 % is achieved within nearly the whole wavelength range of the current-limiting sub-cell. Also, internal scattering occurs in the TiO2 layer possibly associated with the initiated crystallization in the TiO2 layer while absent in the amorphous Al2O3 layers.

  14. Color and COD degradation in photocatalytic process of procion red by using TiO2 catalyst under solar irradiation

    NASA Astrophysics Data System (ADS)

    Sari, Melati Ireng; Agustina, Tuty Emilia; Melwita, Elda; Aprianti, Tine

    2017-11-01

    Increasing textile industries in Indonesia resulted in increasing the utilization of dyes. The use of synthetic dyes are still dominating because they have many advantages. But, synthetic dyes are difficult to decompose in nature so they can cause potential pollution if discharged directly into the environment. In this study, Procion Red was used as a model of synthetic dye wastewater. The objective of this research is to study the effect of TiO2 catalyst concentration and irradiation time on the degradation of Procion Red under solar irradiation. Photo degradation takes place by using TiO2 catalyst powder in the various concentration of Procion Red of 150-300 ppm. The various concentrations of TiO2 catalyst of 0.5-8 g/l were used. The color and COD degradation of Procion Red for 12 hours of solar irradiation were investigated. Color degradation was measured by using a spectrophotometer. While COD degradation was measured by using Ferrous Ammonium Sulfate (FAS) analysis method. The result showed when using Procion Red of 150 ppm, the highest color degradation of 100% was achieved by using TiO2 catalyst of 6 g/l and the highest COD degradation of 62% was obtained by using TiO2 catalyst of 8 g/l, under 12 hours of solar irradiation

  15. Investigation on magnetoelectric behavior of (80Bi0.5Na0.5TiO3-20Bi0.5K0.5TiO3)-CoFe2O4 particulate composites

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Yan, Shuoqing; Yao, Lingling; He, Jun; He, Longhui; Hu, Zhaowen; Huang, Shengxiang; Deng, Lianwen

    2017-12-01

    Particulate magnetoelectric (ME) ceramics constituted by (1-x)(80Bi0.5Na0.5TiO3-20Bi0.5K0.5TiO3)-xCoFe2O4 [(1-x)BNKT-xCFO] (x = 0, 0.1, 0.2, 0.3, 0.4 and 1.0) were synthesized by an powder-in-sol precursor hybrid processing method and their structure, magnetic, ferroelectric, magnetodielectric (MD) and ME properties have been investigated. Results showed that the ceramics consisted of only two chemically separated phases and had homogeneous microstructure. The introduction of CFO into BNKT matrix led to the weakening of ferroelectric and dielectric properties whereas the strengthening magnetic and MD properties. The observation of the MD effect revealed the evidence of the strain-induced ME coupling and the MD value is well scaled with M2. A maximum value of ME output of 25.07 mV/cm·Oe was achieved for the 0.7BNKT-0.3CFO composite. The improved ME response together with the linear MD effect makes the ceramics promise for use in magnetic field controllable devices or magneto-electric transducers.

  16. Transesterification of diethyl oxalate with phenol over sol-gel MoO(3)/TiO(2) catalysts.

    PubMed

    Kotbagi, Trupti; Nguyen, Duy Luan; Lancelot, Christine; Lamonier, Carole; Thavornprasert, Kaew-Arpha; Wenli, Zhu; Capron, Mickaël; Jalowiecki-Duhamel, Louise; Umbarkar, Shubhangi; Dongare, Mohan; Dumeignil, Franck

    2012-08-01

    The transesterification of diethyl oxalate (DEO) with phenol to form diphenyl oxalate (DPO) has been carried out in the liquid phase over very efficient MoO(3)/TiO(2) solid-acid sol-gel catalysts. A selectivity of 100 % with a remarkable maximum yield of 88 % were obtained, which opens the route to downstream phosgene-free processes for the synthesis of polycarbonates. Interpretation of the results of various acidity measurements (NH(3) and pyridine desorption, methanol oxidation as a probe reaction) allowed us to identify the catalytic sites as Lewis acid sites. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evolution of the surface species of the V 2O 5-WO 3 catalysts

    NASA Astrophysics Data System (ADS)

    Najbar, M.; Brocławik, E.; Góra, A.; Camra, J.; Białas, A.; Wesełucha-Birczyńska, A.

    2000-07-01

    Vanadia-related species formed as a result of vanadium segregation at the surface of V-W oxide bronze crystallites were investigated. The structures of these species and their transformations induced by oxygen removal and oxygen adsorption were monitored using photoelectron spectroscopy and the FT Raman technique. Assignments of the MeO vibrational bands, based on the results of DFT calculations for model clusters, have been proposed. Two kinds of surface species are dominant depending on the tungsten content: V 4+-O-W 6+ at low tungsten content and V 5+-O-W 5+ at higher tungsten concentration.

  18. Negative surface streamers propagating on TiO2 and γ-Al2O3-supported Ag catalysts: ICCD imaging and modeling study

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Kang, Woo Seok; Hur, Min; Song, Young-Hoon

    2018-06-01

    Surface streamers propagating on the surface of titanium dioxide (TiO2) and alumina (γ-Al2O3) were studied in negative polarity using intensified charge coupled device (ICCD) imaging and numerical simulation. Detailed time-resolved ICCD images of cathode-directed streamers (CDSs) emanating from a ground electrode are first presented in this report. Instead of primary streamers in positive polarity, only a glow-like discharge appeared in the early stage at the cathode under negative polarity. After this discharge disappeared, a counter-propagating CDS initiated from the ground electrode (anode). Numerical simulation indicated that strong electric fields at the pellet-anode and the formation of positive ion rich local spots were the main reason for the CDS formation near the ground electrode. The maximum velocity was 750 km s‑1 for Ag-supported γ-Al2O3 and 550 km s‑1 for Ag-supported TiO2, respectively. In contrast to the CDS in the gas-phase with a positive polarity, the CDS in a catalyst packed-bed under negative polarity showed more branching and a larger number of streamers in the presence of oxygen than in pure N2.

  19. Probing properties of the interfacial perimeter sites in TiO x /Au/SiO 2 with 2-propanol decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yi Y.; Kung, Harold H.

    The decomposition of 2-propanol was studied over SiO2, SiO2 with an overlayer of TiO2 (Ti/SiO2), Au/SiO2, and Au/SiO2 with an overlayer of TiO2 (Ti/[Au/SiO2]) at 170–190 °C. There was no reaction on SiO2. Propene was the only product on Ti/SiO2, and its rate of formation increased proportionally with the Ti content. Acetone was the major product (selectivity 65–99%) on all Au-containing catalysts. Its rate of formation also increased with Ti loading. In addition, small amounts of propene were also formed on Ti/[Au/SiO2] the rate of which increased with Ti loading. Characterization of the catalysts with N2 adsorption, STEM, DR-UV-vis spectroscopy,more » XPS, XANES and EXAFS suggested that the Ti formed an amorphous TiO2 overlayer on the catalyst. At high Ti loadings (4–5 wt.%), there were patches of thick porous TiO2 layer, and some microdomains of crystalline TiO2 could be detected. Au was present as 1–3 nm nanoparticles on all catalysts, before and after used in reaction. Only Lewis acid sites were detected based on results from pyridine adsorption, and their quantities increased with Ti loading. Based on the comparison of reaction rates, the dependence of the kinetics on 2-propanol partial pressure, the apparent activation energies, and the effect of co-feeding O2 among different catalysts, it was concluded that propene was formed on the TiO2 overlayer, acetone was formed primarily at the Au-TiO2 interfacial perimeter sites, and α-C-H bond breaking preceding acetone formation was more facile on Au at the interfacial site than other surface Au atoms. Implication of these results to the selective acetone formation in the oxidation of propane in the presence of a O2/H2 mixture was discussed.« less

  20. Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.

    PubMed

    Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C

    2018-02-14

    Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

  1. Fabrication of Ce/N co-doped TiO2/diatomite granule catalyst and its improved visible-light-driven photoactivity.

    PubMed

    Chen, Yan; Liu, Kuiren

    2017-02-15

    Eliminating antibiotic remnants in aquatic environment has become one of the hottest topics among current research works. Thus, we prepared Ce, N co-doped TiO 2 /diatomite granule (CNTD-G) catalyst to provide a new method. As one typical antibiotics, oxytetracycline (OTC) was selected as the target pollutant to be degradated under visible light irradiation. The carrier diatomite helped the spread of TiO 2 nanoparticles onto its surface, and inhibited their agglomeration. The synergy of Ce and N dopants highly improved the visible-light-driven photoactivity of TiO 2 . The optimal doping amount and degradation conditions were determined. Besides, the effects of impurity ions were also investigated, including cations: Ca 2+ , Mg 2+ ; or anions: NO 3 - , SO 4 2- and PO 4 3- . The intermediates generated during degradation process were studied, and the mechanism of the photodegradation process was proposed. CNTD-G could be easily collected from the reactor, and showed excellent recyclability. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sodium citrate functionalized reusable Fe3O4@TiO2 photocatalyst for water purification

    NASA Astrophysics Data System (ADS)

    Li, Wenyu; Wu, Haoyi

    2017-10-01

    Easy-recycle photocatalysts are new materials for water treatment technologies. In order to improve the recyclable ability, we employed Fe3O4 particles, which were functionalized by sodium citrate, to serve as a substrate core to attract the deposition of a shell of TiO2 particles. When compared to the calcining process for preparing the composite, the TiO2 distributed homogeneously on the sodium citrate treated Fe3O4, forming a mesoporous shell layer. Due to the mesoporous structure, this Fe3O4@TiO2 exhibited high photocatalytic degradation activity to Rhodamine B, and it was easily recycled using a magnetic field to recover the catalyst from solution.

  3. A novel drug delivery of 5-fluorouracil device based on TiO2/ZnS nanotubes.

    PubMed

    Faria, Henrique Antonio Mendonça; de Queiroz, Alvaro Antonio Alencar

    2015-11-01

    The structural and electronic properties of titanium oxide nanotubes (TiO2) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO2 has typically been within ultraviolet spectrum. In this study, the surface modification of TiO2 nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO2 nanotubes used in this work were obtained by sol-gel template synthesis. The ZnS quantum dots were deposited onto TiO2 nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO2/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO2 nanotubes exhibited a high emission at 380nm (3.26eV), whereas TiO2/ZnS exhibited an emission at 410nm (3.02eV). The TiO2/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells-CHO) suggesting that TiO2/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO2/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO2/ZnS nanotubes are a promising candidate for anticancer drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dehydration, Dehydrogenation, and Condensation of Alcohols on Supported Oxide Catalysts Based on Cyclic (WO3)3 and (MoO3)3 Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Roger J.; Dixon, David A.; Kay, Bruce D.

    2014-01-01

    Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article we review preparation and activity of well-defined model WO3 and MoO3 catalysts prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketons, and ethers is employed to probe the structure-activity relationships on model WO3 and MoO3 catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlyingmore » reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. For the range of interrogated (WO3)3 they further shed light into the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity.« less

  5. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst

    NASA Astrophysics Data System (ADS)

    Jin, Zhao; Liu, Chang; Qi, Kun; Cui, Xiaoqiang

    2017-01-01

    Non-noble metal nanoparticles are becoming more and more important in catalysis recently. Cu/CuO nanoclusters on highly ordered TiO2 nanotube arrays are successfully developed by a surfactant-free photoreduction method. This non-noble metal Cu/CuO-TiO2 catalyst exhibits excellent catalytic activity and stability for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with the presence of sodium borohydride (NaBH4). The rate constant of this low-cost Cu/CuO based catalyst is even higher than that of the noble metal nanoparticles decorated on the same TiO2 substrate. The conversion efficiency remains almost unchanged after 7 cycles of recycling. The recycle process of this Cu/CuO-TiO2 catalyst supported by Ti foil is very simple and convenient compared with that of the common powder catalysts. This catalyst also exhibited great catalytic activity to other organic dyes, such as methylene blue (MB), rhodamine B (RhB) and methyl orange (MO). This highly efficient, low-cost and easily reusable Cu/CuO-TiO2 catalyst is expected to be of great potential in catalysis in the future.

  6. Using TiO2 as a conductive protective layer for photocathodic H2 evolution.

    PubMed

    Seger, Brian; Pedersen, Thomas; Laursen, Anders B; Vesborg, Peter C K; Hansen, Ole; Chorkendorff, Ib

    2013-01-23

    Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO(2) layer on top of a thin Ti metal layer may be used to protect an n(+)p Si photocathode during photocatalytic H(2) evolution. Although TiO(2) is a semiconductor, we show that it behaves like a metallic conductor would under photocathodic H(2) evolution conditions. This behavior is due to the fortunate alignment of the TiO(2) conduction band with respect to the hydrogen evolution potential, which allows it to conduct electrons from the Si while simultaneously protecting the Si from surface passivation. By using a Pt catalyst the electrode achieves an H(2) evolution onset of 520 mV vs NHE and a Tafel slope of 30 mV when illuminated by the red part (λ > 635 nm) of the AM 1.5 spectrum. The saturation photocurrent (H(2) evolution) was also significantly enhanced by the antireflective properties of the TiO(2) layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe(2+)/Fe(3+) redox couple was used to help elucidate details of the band diagram.

  7. [Selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalysts].

    PubMed

    Sun, Hong; Quan, Xie; Zhang, Yao-bin; Zhao, Ya-zhi

    2008-06-01

    Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst was prepared by sol-gel and impregnation. Furthermore, selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst with propylene under lean burn condition was studied. The effects of the concentration of tetra-n-butyl titanate and dipcoat cycles on TiO2 washcoat were studied by SEM, and the effects of Pd concentration, O2 concentration and gas velocity on catalytic activity were investigated. The experimental results showed that the TiO2 washcoat on wire-mesh support is even and crack-free when the support is impregnated in 20.0% tetra- n-butyl titanate sol for 2 cycles. The NOx conversion decreases with Pd concentration increase. When Pd concentration is 0.23%, NOx conversion is highest. NOx conversion increases with oxygen concentration increase in the range of 1.5%-6.0%. However, when oxygen concentration is higher than 6.0%, NOx conversion decreases with increasing oxygen concentration. The NOx conversion decreases with gas velocity increase and its effect is severer at high temperature than low temperature.

  8. Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian A.; Richards, Jeffrey T.

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure.

  9. Photocatalytic degradation of 5-nitro-1,2,4-triazol-3-one NTO in aqueous suspension of TiO2. Comparison with Fenton oxidation.

    PubMed

    Le Campion, L; Giannotti, C; Ouazzani, J

    1999-03-01

    5-nitro-1,2,4-triazol-3-one (NTO) is a powerful insensitive explosive, present in industrial waste waters. A remediation method based on photochemical decomposition and Fenton oxidation of NTO has been evaluated by monitoring the mineralization of 14C-labelled NTO. The TiO2-catalyzed photodegradation (lambda > 290 nm, TiO2 0.4 g/l, NTO 150 mg/l)) leads to the complete mineralization of NTO in 3 hours. This degradation involves a simultaneous denitrification and ring scission of NTO leading to nitrites, nitrates and carbon dioxide. No significant photo-degradation of NTO was detected in the absence of the catalyst. Long term irradiation over one week, leads to a complete degradation of concentrated NTO (5 g/l), suggesting that this method could be useful to clean-up NTO wastes. Fenton oxidation offers an efficient cost-effective method for NTO remediation. This reaction is faster that the TiO2 catalyzed photolysis and find application on the mineralization of high concentrations of NTO (15 g/l). Fenton oxidation provokes ring cleavage and subsequent elimination of the two carbon atoms of NTO as CO2. During this reaction, the nitro group is completely transformed into nitrates.

  10. Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3.

    PubMed

    Wu, Hongmin; Ma, Jinzhu; Zhang, Changbin; He, Hong

    2014-03-01

    Carbon-modified titanium dioxide (TiO2) was prepared by a sol-gel method using tetrabutyl titanate as precursor, with calcination at various temperatures, and tested for the photocatalytic oxidation (PCO) of gaseous NH3 under visible and UV light. The test results showed that no samples had visible light activity, while the TiO2 calcined at 400°C had the best UV light activity among the series of catalysts, and was even much better than the commercial catalyst P25. The catalysts were then characterized by X-ray diffractometry, Brunauer-Emmett-Teller adsorption analysis, Raman spectroscopy, thermogravimetry/differential scanning calorimetry coupled with mass spectrometry, ultraviolet-visible diffuse reflectance spectra, photoluminescence spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy. It was shown that the carbon species residuals on the catalyst surfaces induced the visible light adsorption of the samples calcined in the low temperature range (< 300°C). However, the surface acid sites played a determining role in the PCO of NH3 under visible and UV light over the series of catalysts. Although the samples calcined at low temperatures had very high SSA, good crystallinity, strong visible light absorption and also low PL emission intensity, they showed very low PCO activity due to their very low number of acid sites for NH3 adsorption and activation. The TiO2 sample calcined at 400°C contained the highest number of acid sites among the series of catalysts, therefore showing the highest performance for the PCO of NH3 under UV light. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Oxyvanite, V3O5, a new mineral species and the oxyvanite-berdesinskiite V2TiO5 series from metamorphic rocks of the Slyudyanka Complex, southern Baikal region

    NASA Astrophysics Data System (ADS)

    Reznitsky, L. Z.; Sklyarov, E. V.; Armbruster, T.; Ushchapovskaya, Z. F.; Galuskin, E. V.; Polekhovsky, Yu. S.; Barash, I. G.

    2010-12-01

    Oxyvanite has been identified as an accessory mineral in Cr-V-bearing quartz-diopside meta- morphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. The new mineral was named after constituents of its ideal formula (oxygen and vanadium). Quartz, Cr-V-bearing tremolite and micas, calcite, clinopyroxenes of the diopside-kosmochlor-natalyite series, Cr-bearing goldmanite, eskolaite-karelianite dravite-vanadiumdravite, V-bearing titanite, ilmenite, and rutile, berdesinskiite, schreyerite, plagioclase, scapolite, barite, zircon, and unnamed U-Ti-V-Cr phases are associated minerals. Oxyvanite occurs as anhedral grains up to 0.1-0.15 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black, with black streak and resinous luster. The microhardness (VHN) is 1064-1266 kg/mm2 (load 30 g), and the mean value is 1180 kg/mm2. The Mohs hardness is about 7.0-7.5. The calculated density is 4.66(2) g/cm3. The color of oxyvanite is pale cream in reflected light, without internal reflections. The measured reflectance in air is as follows (λ, nm- R, %): 440-17.8; 460-18; 480-18.2; 520-18.6; 520-18.6; 540-18.8; 560-18.9; 580-19; 600-19.1; 620-19.2; 640-19.3; 660-19.4; 680-19.5; 700-19.7. Oxyvanite is monoclinic, space group C2/ c; the unit-cell dimensions are a = 10.03(2), b = 5.050(1), c = 7.000(1) Å, β = 111.14(1)°, V = 330.76(53, Z = 4. The strongest reflections in the X-ray powder pattern [ d, Å, ( I in 5-number scale)( hkl)] are 3.28 (5) (20 bar 2 ); 2.88 (5) (11 bar 2 ); 2.65, (5) (310); 2.44 (5) (112); 1.717 (5) (42 bar 2 ); 1.633 (5) (31 bar 4 ); 1.446 (4) (33 bar 2 ); 1.379 (5) (422). The chemical composition (electron microprobe, average of six point analyses, wt %): 14.04 TiO2, 73.13 V2O3 (53.97 V2O3calc, 21.25 VO2calc), 10.76 Cr2O3, 0.04 Fe2O3, 0.01 Al2O3, 0.02 MgO, total is 100.03. The empirical formula is (V{1.70/3+} Cr0.30)2.0(V{0.59/4+} Ti0.41)1.0O

  12. Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photo-catalyst.

    PubMed

    Aljuboury, Dheeaa Al Deen Atallah; Palaniandy, Puganeshwary; Abdul Aziz, Hamidi Bin; Feroz, Shaik; Abu Amr, Salem S

    2016-09-01

    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO 2 /ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO 2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.

  13. CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation.

    PubMed

    Yin, Ruiyang; Liu, Mingyang; Tang, Rui; Yin, Longwei

    2017-09-02

    In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe 2 O 3 /TiO 2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe 2 O 3 /TiO 2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broadened optical-response to visible light region, greatly facilitates the separation of photogenerated carriers, giving rise to the enhancement of PEC water oxidation performance. Importantly, for the designed abnormal type-II heterostructure between Fe 2 O 3 /TiO 2 , the conduction band position of Fe 2 O 3 is higher than that of TiO 2 , the photogenerated electrons from Fe 2 O 3 will rapidly recombine with the photogenerated holes from TiO 2 , thus leads to an efficient separation of photogenerated electrons from Fe 2 O 3 /holes from TiO 2 at the Fe 2 O 3 /TiO 2 interface, greatly improving the separation efficiency of photogenerated holes within Fe 2 O 3 and enhances the photogenerated electron injection efficiency in TiO 2 . Working as the photoanodes of PEC water oxidation, CdS/α-Fe 2 O 3 /TiO 2 heterostucture electrode exhibits improved photocurrent density of 0.62 mA cm - 2 at 1.23 V vs. reversible hydrogen electrode (RHE) in alkaline electrolyte, with an obviously negatively shifted onset potential of 80 mV. This work provides promising methods to enhance the PEC water oxidation performance of the TiO 2 -based heterostructure photoanodes.

  14. High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Lee, Shu Chin; Lintang, Hendrik O; Yuliati, Leny

    2017-01-01

    Two series of Fe 2 O 3 /TiO 2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe 2 O 3 /TiO 2 for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV light irradiation was examined. The Fe 2 O 3 /TiO 2 nanocomposites prepared by impregnation showed lower activity than the unmodified TiO 2 , mainly due to lower specific surface area caused by heat treatment. On the other hand, the Fe 2 O 3 /TiO 2 nanocomposites prepared by photodeposition showed higher photocatalytic activity than the unmodified TiO 2 . Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe 2 O 3 (0.5)/TiO 2 . The improved activity of TiO 2 after photodeposition of Fe 2 O 3 was contributed to the formation of a heterojunction between the Fe 2 O 3 and TiO 2 nanoparticles that improved charge transfer and suppressed electron-hole recombination. A further investigation on the role of the active species on Fe 2 O 3 /TiO 2 confirmed that the crucial active species were both holes and superoxide radicals. The Fe 2 O 3 (0.5)/TiO 2 sample also showed good stability and reusability, suggesting its potential for water purification applications.

  15. [Preparation and Photocatalytic Properties of Supported TiO2 Photocatalytic Material].

    PubMed

    Guo, Yu; Jin, Yu-jia; Wu, Hong-mei; Li, Dong-xin

    2015-06-01

    Titanium dioxide (TiO2) supported on spherical alumina substrate was prepared by using sol-gel method combined with dip-coating process. The surface morphology and structure of the synthesized samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern. The results show that the morphology of the supported TiO2 composite material was obviously different from that of the original support. It reveals a layer formed by anatase TiO2 nanoparticles of 10-20 nm was deposited on the alumina substrate. Energy dispersive X-ray spectroscopy (EDX) analyses on the spherical alumina substrate and the resulting TiO2 composite catalyst were performed to determine the TiO2 loading content in the samples. It indicates that the TiO2 loading content on alumina substrate could be effectively increased by increasing the times of dip-coating alumina support in TiO2 sol. When dip-coating times increased to 5, the TiO2 loading content increased from 3.8 Wt. % to 15.7 Wt. %. In addition, the photocatalytic performances of the supported TiO2 materials prepared by different dip-coating times have been investigated by degrading methylene blue. It was found that the surface morphology of the supported TiO2 material was not only improved, but also the photocatalytic activity could be promoted significantly by increasing the dip-coating times. When the alumina substrate was dip-coated in TiO2 sol from 1 to 4 times, the degradation rate of methylene blue increased from 40% to 83.1%. However, after dip-coating the alumina support in TiO2 sol for 5 times, the degradation of methylene blue was only up to 85.6%. This indicates that the photocatalytic activity increased slowly when the TiO2 content in the supported catalyst was up to some extent. It is attributed to the continuous dip-coating resulted in less opportunities and weak intensity of illumination for the TiO2 nano-particles that under lower layer. The photocatalytic activity was relatively stable

  16. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: An in situ FTIR study

    NASA Astrophysics Data System (ADS)

    Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J.; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan

    2018-05-01

    Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH3-SCR or DeNOx) of NO using NH3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO3 solution and NH4F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1 wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH3-SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO3) than in Fe-MCM-56 (HF/NH4F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N2O decomposition, with maximum N2O conversion not higher than 80% and activity window starting at 500 °C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction.

  17. Performance of Bi2O3/TiO2 prepared by sol-gel on p-Cresol degradation under solar and visible light.

    PubMed

    Vigil-Castillo, Héctor H; Hernández-Ramírez, Aracely; Guzmán-Mar, Jorge L; Ramos-Delgado, Norma A; Villanueva-Rodríguez, Minerva

    2018-05-21

    Photocatalytic degradation of p-Cresol was evaluated using the mixed oxide Bi 2 O 3 /TiO 2 (containing 2 and 20% wt. Bi 2 O 3 referred as TB2 and TB20) and was compared with bare TiO 2 under simulated solar radiation. Materials were prepared by the classic sol-gel method. All solids exhibited the anatase phase by X-ray diffraction (XRD) and Raman spectroscopy. The synthesized materials presented lower crystallite size and Eg value, and also higher surface area as Bi 2 O 3 amount was increased. Bi content was quantified showing near to 70% of theoretical values in TB2 and TB20. Bi 2 O 3 incorporation also was demonstrated by X-ray photoelectron spectroscopy (XPS). Characterization of mixed oxides suggests a homogeneous distribution of Bi 2 O 3 on TiO 2 surface. Photocatalytic tests were carried out using a catalyst loading of 1 g L -1 under simulated solar light and visible light. The incorporation of Bi 2 O 3 in TiO 2 improved the photocatalytic properties of the synthesized materials obtaining better results with TB20 than the unmodified TiO 2 under both radiation sources.

  18. Heterogeneous activation of H2O2 by defect-engineered TiO(2-x) single crystals for refractory pollutants degradation: A Fenton-like mechanism.

    PubMed

    Zhang, Ai-Yong; Lin, Tan; He, Yuan-Yi; Mou, Yu-Xuan

    2016-07-05

    The heterogeneous catalyst plays a key role in Fenton-like reaction for advanced oxidation of refractory pollutants in water treatment. Titanium dioxide (TiO2) is a typical semiconductor with high industrial importance due to its earth abundance, low cost and no toxicity. In this work, it is found that TiO2 can heterogeneously activate hydrogen peroxide (H2O2, E°=1.78 eV), a common chemical oxidant, to efficiently generate highly-powerful hydroxyl radical, OH (E(0)=2.80 eV), for advanced water treatment, when its crystal shape, exposed facet and oxygen-stoichiometry are finely tuned. The defect-engineered TiO2 single crystals exposed by high-energy {001} facets exhibited an excellent Fenton-like activity and stability for degrading typical refractory organic pollutants such as methyl orange and p-nitrophenol. Its defect-centered Fenton-like superiority is mainly attributed to the crystal oxygen-vacancy, single-crystalline structure and exposed polar {001} facet. Our findings could provide new chance to utilize TiO2 for Fenton-like technology, and develop novel heterogeneous catalyst for advanced water treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe2O3-WO3 Composite Synthesized by Single-Step Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Rahman, Gul; Joo, Oh-Shim; Chae, Sang Youn; Shah, Anwar-ul-Haq Ali; Mian, Shabeer Ahmad

    2018-04-01

    This study reports the one-step in situ synthesis of a hematite-tungsten oxide (α-Fe2O3-WO3) composite on fluorine-doped tin oxide substrate via a simple hydrothermal method. Scanning electron microscopy images indicated that the addition of tungsten (W) precursor into the reaction mixture altered the surface morphology from nanorods to nanospindles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of W content in the composite. From the ultraviolet-visible spectrum of α-Fe2O3-WO3, it was observed that absorption began at ˜ 600 nm which corresponded to the bandgap energy of ˜ 2.01 eV. The α-Fe2O3-WO3 electrode demonstrated superior performance, with water oxidation photocurrent density of 0.80 mA/cm2 (at 1.6 V vs. reversible hydrogen electrode under standard illumination conditions; AM 1.5G, 100 mW/cm2) which is 2.4 times higher than α-Fe2O3 (0.34 mA/cm2). This enhanced water oxidation performance can be attributed to the better charge separation properties in addition to the large interfacial area of small-sized particles present in the α-Fe2O3-WO3 nanocomposite film.

  20. Bi12TiO20 crystallization in a Bi2O3-TiO2-SiO2-Nd2O3 system

    NASA Astrophysics Data System (ADS)

    Slavov, S.; Jiao, Z.

    2018-03-01

    Polycrystalline mono-phase bismuth titanate was produced by free cooling from melts heated to 1170 °C. The control over the initial amounts in the starting compositions in the system Bi2O3/TiO2/SiO2/Nd2O3 and over the thermal gradient of the heat process resulted in the formation of specific structures and microstructures of monophase sillenite ceramics. The main phase Bi12TiO20 belongs to the amorphous network groups based on oxides of silicon, bismuth and titanium. In this work, we demonstrated a way to control the crystalline and amorphous phase formation in bulk poly-crystalline materials in the selected system.

  1. Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO2 catalysts.

    PubMed

    Choi, Jongbok; Cui, Mingcan; Lee, Yonghyeon; Kim, Jeonggwan; Yoon, Yeomin; Jang, Min; Khim, Jeehyeong

    2018-05-01

    In order to enhance sonocatalytic oxidation of a recalcitrant organic pollutant, rhodamine B (RhB), it is necessary to study the fundamental aspects of sonocatalysis. In this study, TiO 2 -incorporated nano-structured carbon (i.e., carbon nanotubes (CNTs) or graphene (GR)) composites were synthesized by coating TiO 2 on CNTs or GR of different mass percentages (0.5, 1, 5, and 10 wt%) by a facile hydrothermal method. The sonocatalytic degradation rates of RhB were examined for the effect of ultrasound (US) frequency and calcination temperature by using the prepared TiO 2 -NSC composites. Since US frequency affected the sonoluminescence (SL) intensities, it was proposed that there exists a correlation between the surface area or band-gap of the sonocatalysts and the degradation kinetic constants of RhB. In addition, the reusability of TiO 2 -GR composites was also investigated. Overall, the performance of TiO 2 -GRs prepared by the hydrothermal method was better than that of calcined TiO 2 -CNTs. Among TiO 2 -GRs, 5% GR incorporated media (TiO 2 -GR-5) showed the best performance. Interestingly, the kinetic constants of sonocatalysts prepared under hydrothermal conditions had a negative linear relationship with the band-gap energy for the corresponding media. Furthermore, the strongest SL intensity and highest degradation rates of RhB for both carbonaceous composites were observed at 500 kHz. The kinetic constants of calcined media decreased linearly as the specific area of the media decreased, while the band-gap energy could not be correlated with the kinetic constants. The GR combined TiO 2 composite might be a good sonocatalyst in wastewater treatment using ultrasound-based oxidation because of its high stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts.

    PubMed

    Wang, Xinchen; Yu, Jimmy C; Chen, Yilin; Wu, Ling; Fu, Xianzhi

    2006-04-01

    Mesoporous nanocrystalline TiO2-xNx and TiO2-xNx/ZrO2 visible-light photocatalysts have been prepared by a sol-gel method. The photocatalysts were characterized by XRD, N2 adsorption-desorption, TEM, XPS, UV/Vis, and IR spectroscopy. The photocatalytic activity of the samples was evaluated by the decomposition of ethylene in air under visible light (lambda > 450 nm) illumination. Results revealed that nitrogen was doped into the lattice of TiO2 by the thermal treatment of NH3-adsorbed TiO2 hydrous gels, converting the TiO2 into a visible-light responsive catalyst. The introduction of ZrO2 into TiO2-xNx considerably inhibits the undesirable crystal growth during calcination. Consequently, the ZrO2-modified TiO2-xNx displays higher porosity, higher specific surface area, and an improved thermal stability over the corresponding unmodified TiO2-xNx samples.

  3. Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Wenwu; Zhang, Huanyu; Wang, Hui-gang; Zhang, Mei; Guo, Min

    2017-11-01

    Ti-mesh supported TiO2 nanowire arrays (NWAs)/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles (UC-EY-TiO2 NPs) composite structured photoanodes for fully flexible dye sensitized solar cells (DSSCs) were firstly constructed via a hydrothermal and spin coating process. UV-vis-NIR absorption spectra of the TiO2 NWAs/UC-EY-TiO2 NPs composites exhibited strong absorption around near infrared (NIR) 980 nm. The composites excited by 980 nm NIR laser could emit upconversion fluorescence at 489, 526, 549 and 658 nm, which expanded the spectral response range and sunlight capturing capability of formed flexible DSSCs. Moreover, the TiO2 NWAs/UC-EY-TiO2 NPs was coated with an Nb2O5 thin layer to further suppress electron recombination losses. The complete flexible DSSCs based on Nb2O5 coated TiO2 NWAs/2.0 mol% Er3+-1.0 mol% Yb3+ codoped TiO2 NPs photoanode and Pt/ITO-PEN counter electrode exhibited an enhanced photon to current conversion efficiency of 8.10%, a 68% improvement compared to TiO2 NWAs/undoped TiO2 NPs based DSSCs (4.82%).

  4. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  5. Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2.

    PubMed

    Sun, Bo; Vorontsov, Alexander V; Smirniotis, Panagiotis G

    2011-02-28

    The present study is focused on influences of parameters including pH, temperature, TiO(2) catalyst concentration, and reactant concentration on the rate of photocatalytic diethyl phosphoramidate (DEPA) decomposition with Hombikat UV 100 (HK) and Degussa P25 (P25) TiO(2). Total mineralization of DEPA is observed. Two regimes of pH, namely in acid and near-neutral environments were found where maximum total carbon (TC) decomposition was observed. The electrostatic effects on adsorption over the TiO(2) surface explain the above phenomena. The maximum rate is observed for P25 at DEPA concentration 1.3 mM whereas the rate grows continuously with DEPA concentration rise for HK. The temperature dependence of TC decomposition rate in the range of 15-63°C with both HK and P25 follows the Arrhenius equation. The activation energy for total carbon decomposition with HK and P25 are 29.5±1.0 and 24.3±3.1 kJ/mol, respectively. The decomposition rate of DEPA is larger over P25 than over HK. The rate over P25 increases faster than that with HK for each unit of the titania added when the TiO(2) concentration is less than 375 mg/l. The higher light absorption and particles aggregation of P25 are responsible for the decrease of reaction rate we observed at catalyst concentration above a certain level. In contrast, the rate over HK increases monotonically with the concentration of the photocatalyst used. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.

    PubMed

    Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang

    2015-10-14

    Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).

  7. Structural and electrochemical studies of TiO2 complexes with (4,4'-((1E,1'E)-(2,5-bis(octyloxy)-1,4-phenylene)bis(ethene-2,1-diyl))bis-(E)-N-(2,5-bis(octyloxy)benzylidene)) imine derivative bases towards organic devices.

    PubMed

    Rozycka, Anna; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Hreniak, Agnieszka; Marzec, Monika

    2018-06-12

    Three (4,4'-((1E,1'E)-(2,5-bis(octyloxy)-1,4-phenylene)bis(ethene-2,1-diyl))bis-(E)-N-(2,5-bis(octyloxy)benzylidene)) imine derivatives were synthesized via a condensation reaction with p-toluenesulfonic acid as a catalyst. The effects of the end groups and vinylene (-HC[double bond, length as m-dash]CH-) moieties on the structural, thermal, optical, electrochemical and photovoltaic properties of imines were investigated to check the influence of TiO2 on the imine properties. The thermal behavior of imines and their complexes with TiO2 was widely investigated using FT-IR, XRD, DSC and POM methods in order to determine the order type in the imine structure. All imines present the highest occupied molecular orbital (HOMO) levels of about -5.39 eV (SAI1 and SAI2) and -5.27 eV (SAI3) and the lowest unoccupied molecular orbital (LUMO) levels at about -3.17 eV. The difference of the end groups in the imines in each case did not affect redox properties. Generally, both oxidation and reduction are easier after TiO2 addition and it also changes the HOMO-LUMO levels of imines. Moreover, changes in the characteristic bands for imines in the region 1500-1700 cm-1 observed as a drastic decrease of intensity or even disappearance of bands in the imine : TiO2 mixture suggest the formation of a complex (C[double bond, length as m-dash]N)-TiO2. Organic devices with the configuration of ITO/TiO2/SAIx (or SAIx : TiO2)/Au were fabricated and investigated in the presence and absence of visible light irradiation with an intensity of 93 mW cm-2. In all imines and complexes with TiO2, the generation of the photocurrent indicates their use as photodiodes and the best result was observed for SAI3 : TiO2 complexes.

  8. Optical, electrochemical and hydrophilic properties of Y2O3 doped TiO2 nanocomposite films.

    PubMed

    Zhang, Xiangchao; Yang, Huaming; Tang, Aidong

    2008-12-25

    The 5% Y2O3 doped TiO2 nanocomposite film (YTF) deposited on ITO glass substrate has been synthesized by the sol-gel dip-coating method. The as-synthesized samples were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), voltage-current (V-I), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible (UV-vis) analysis technologies. The crystalline structure, surface morphology and surface chemical composition of YTF sample have been primarily investigated. The results demonstrate that YTF is anatase crystalline phase with thickness of 480 nm and consists of spherical shape particles with a grain size of about 15.8 nm. The binding energy appears as a chemical shift, and relatively more Y and Ti species are present on the surface, indicating that active surfaces of the nanocomposite film have been enhanced with more oxygen vacancies Vö due to doping Y2O3 to TiO2. The absorption edge of YTF has a red shift, and the optical properties of YTF in visible light region have been obviously improved. The water contact angle is about 8 degrees after daylight lamp irradiation 60 min. An equivalent circuit model provided a reliable description for the electrochemical systems. Based on the Mott-Schottky equation, the donor concentration (ND) for YTF is 1.05 x 10(20) cm(-3), which enhances 1 order of magnitude than that for pure TiO2 film (TF), the flat-band potential (V(fb)) and the space charge layer (d(sc)) obviously decreased. With the incorporation of Y2O3 into TiO2, the optical, electrochemical and photoinduced hydrophilic properties of YTF in visible light region have obviously improved, indicating that YTF shows promising applications in solar energy conversion, self-cleaning and other potential fields.

  9. High temperature hydrothermal synthesis of rare-earth titanates: synthesis and structure of RE5Ti4O15(OH) (RE = La, Er), Sm3TiO5(OH)3, RE5Ti2O11(OH) (RE = Tm-Lu) and Ce2Ti4O11.

    PubMed

    Fulle, Kyle; Sanjeewa, Liurukara D; McMillen, Colin D; Kolis, Joseph W

    2018-05-15

    Reactions of rare-earth oxides with TiO2 were performed in high temperature (650-700 °C) hydrothermal fluids. Two different mineralizer fluids were examined, 20 M KOH and 30 M CsF, and their respective products analyzed. When concentrated KOH fluids were used, single crystals of a variety of new OH- containing species were isolated and structurally characterized: RE5Ti4O15(OH) (RE = La, Er) I, Sm3TiO5(OH)3II and RE5Ti2O11(OH) (RE = Tm-Lu) III. La5Ti4O15(OH) I crystallizes in the orthorhombic space group Pnnm with unit cell dimensions of a = 30.5152(12) Å, b = 5.5832(2) Å, c = 7.7590(3) Å and V = 1321.92(9) Å3, Z = 4. Sm3TiO5(OH)3II crystallizes in the monoclinic space group P21/m with unit cell parameters of a = 5.6066(2) Å, b = 10.4622(4) Å, c = 6.1258(2) Å and β = 104.7390(10)°, V = 347.50(2) Å3, Z = 2. Lu5Ti2O11(OH) III crystallizes in the monoclinic space group C2/m with unit cell dimensions of a = 12.1252(9) Å, b = 5.8243(4) Å, c = 7.0407(5) Å, β = 106.939(3)° and V = 475.65(6) Å3, Z = 2. When concentrated fluoride solutions are used, mostly RE2Ti2O7 type compounds were isolated in either cubic or monoclinic phases. In the case of cerium, Ce2Ti4O11IV was isolated that crystallizes in the monoclinic space group C2/c with unit cell parameters of a = 13.6875(7) Å, b = 5.0955(3) Å, c = 12.8592(7) Å, β = 108.964(2)° and V = 848.18(8) Å3, Z = 4. The synthesis, structural characterization, and supporting characterization are reported for all compounds. The work highlights the complementary nature of hydroxide and fluoride fluids in studying the reactivity of refractory oxides.

  10. Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Yang, Hsiao-Ching; Hsu, Yung-Fu; Hsieh, Chung-Kai

    2015-01-01

    In this study, the effects of SnO2, WO3 and ZrO2 addition at levels up to 5 wt% on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. Only Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with a SnO2 addition of ≥3.5 wt% required a densification temperature of 1150 °C, while the others reached maximum densification at 1075 °C. All samples revealed a pure spinel phase and a uniform microstructure, except for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with the WO3 addition, which showed an exaggerated grain growth accompanied with a small amount of needle-shaped Cu0.85Zn0.15WO4 second phase. The fracture mode in the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic revealed a transgranular phase, as the CuO second phase increased the grain boundary strength; the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics sintered with 5 wt% additives showed an intergranular phase. The Vickers hardness and the bending strength of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic were 733.6 and 62.0 MPa, respectively. The Vickers hardness of the ferrite with added SnO2 or ZrO2 showed only a slight improvement, while an apparent change (832.7) was observed with the addition of 5.0 wt% WO3. The bending strength of the ferrite was optimized at 75.7 MPa with 2.0 wt% SnO2 and at 90.5 MPa with 3.5 wt% ZrO2, while that of the ferrite sintered with WO3 added dropped gradually from 62.0 to 47.7 MPa as the amount of WO3 was increased from 0 to 5.0 wt% due to the non-uniform microstructure. The pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic sintered at 1075 °C had an initial permeability of 356.9 and a quality factor of 71.2. The addition of ZrO2 led to a significant increase in the initial permeability (588.4 at 5.0 wt% ZrO2), but a slight decline in the quality factor (56.6 at 5.0 wt% ZrO2).

  11. TiO2-Containing Carbon Derived from a Metal-Organic Framework Composite: A Highly Active Catalyst for Oxidative Desulfurization.

    PubMed

    Bhadra, Biswa Nath; Song, Ji Yoon; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2017-09-13

    A new metal-organic framework (MOF) composite consisting of Ti- and Zn-based MOFs (ZIF-8(x)@H 2 N-MIL-125; in brief, ZIF(x)@MOF) was designed and synthesized. The pristine MOF [H 2 N-MIL-125 (MOF)]- and an MOF-composite [ZIF(30)@MOF]-derived mesoporous carbons consisting of TiO 2 nanoparticles were prepared by pyrolysis (named MDC-P and MDC-C, respectively). MDC-C showed a higher surface area, larger pore sizes, and larger mesopore volumes than MDC-P. In addition, the TiO 2 nanoparticles on MDC-C have more uniform shapes and sizes and are smaller than those of MDC-P. The obtained MDC-C and MDC-P [together with MOF, ZIF(30)@MOF, pure/nanocrystalline TiO 2 , and activated carbon] were applied in the oxidative desulfurization reaction of dibenzothiophene in a model fuel. The MDC-C, even with a lower TiO 2 content than that of MDC-P, showed an outstanding catalytic performance, especially with a very low catalyst dose (i.e., a very high quantity of dibenzothiophene was converted per unit weight of the catalyst), fast kinetics (∼3 times faster than that for MDC-P), and a low activation energy (lower than that for any reported catalyst) for the oxidation of dibenzothiophene. The large mesopores of MDC-C and the well-dispersed/small TiO 2 might be the dominant factors for the superior catalytic conversions. The oxidative desulfurization of other sulfur-containing organic compounds with various electron densities was also studied with MDC-C to understand the mechanism of catalysis. Moreover, the MDC-C catalyst can be reused many times in the oxidative desulfurization reaction after a simple washing with acetone. Finally, composing MOFs and subsequent pyrolysis is suggested as an effective way to prepare a catalyst with well-dispersed active sites, large pores, and high mesoporosity.

  12. The Reactivity and Structure of Size Selected VxO y Clusters on a TiO2 (110)-(1 X 1) Surface of Variable Oxidation State

    NASA Astrophysics Data System (ADS)

    Neilson, Hunter L.

    structure of size-selected V2O6 clusters, upon adsorption to the surface, varies considerably with the oxidation state of the support, in good agreement with our reactivity studies. V 3O9 was shown to catalyze the oxidation of methanol to both formaldehyde and methyl formate on a reduced surface while STM suggests that, unlike V2O6, these clusters are prone to decomposition upon adsorption to the surface. Furthermore, TPD/R of size selected V 2O5 and V2O7 on TiO2 suggests that altering the stoichiometry of the (VO3)n clusters by a single oxygen atom significantly inhibits the activity of these catalysts.

  13. Study of the photocatalytic activity of Fe 3+, Cr 3+, La 3+ and Eu 3+ single-doped and co-doped TiO 2 catalysts produced by aqueous sol-gel processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malengreaux, Charline M.; Pirard, Sophie L.; Léonard, Géraldine

    An aqueous sol-gel process, previously developed for producing undoped and Cu 2+, Ni 2+, Zn 2+ or Pb 2+ doped TiO 2 photocatalysts with remarkably high photocatalytic activity without requiring any calcination step, has been adapted to produce Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped TiO 2 photocatalysts as well as La3+-Fe3+ and Eu3+-Fe3+ co-doped TiO 2 catalysts. The physicochemical properties of the obtained catalysts have been characterized using a suite of complementary techniques, including ICP-AES, XRD, UV-Vis spectroscopy, nitrogen adsorption-desorption and Fe-57 M ssbauer. The active crystalline phase is obtained without requiring any calcination step andmore » all the different catalysts are composed of nanocrystallites of anatase with a size of 6-7 nm and a high specific surface area varying from 181 to 298 m 2 g -1. In this study, the effect of the NO 3:Ti(IV) mole ratio used to induce the peptisation reaction during the synthesis has been studied and the results revealed that this ratio can influence significantly the textural properties of the resulting catalyst. A screening of the photocatalytic activity of the undoped and Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped and co-doped photocatalysts has been performed by evaluating the degradation of 4-nitrophenol under UV-Visible light (330 nm < < 800 nm). This study suggests that the photocatalytic activity is significantly influenced by the dopant nature and content with an optimal dopant content being observed in the case of Fe 3+ or La 3+ single-doped as well as in the case of La 3+-Fe 3+ and Eu 3+-Fe 3+ co-doped catalysts. In the case of Cr 3+ single-doped catalysts, a detrimental effect of the dopant on the photocatalytic degradation of 4-nitrophenol has been observed while no significant influence of the dopant has been detected in the case of Eu 3+ single-doped catalysts. In conclusion, the role of the different dopants in modulating the photocatalytic activity is discussed.« less

  14. Study of the photocatalytic activity of Fe 3+, Cr 3+, La 3+ and Eu 3+ single-doped and co-doped TiO 2 catalysts produced by aqueous sol-gel processing

    DOE PAGES

    Malengreaux, Charline M.; Pirard, Sophie L.; Léonard, Géraldine; ...

    2016-08-30

    An aqueous sol-gel process, previously developed for producing undoped and Cu 2+, Ni 2+, Zn 2+ or Pb 2+ doped TiO 2 photocatalysts with remarkably high photocatalytic activity without requiring any calcination step, has been adapted to produce Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped TiO 2 photocatalysts as well as La3+-Fe3+ and Eu3+-Fe3+ co-doped TiO 2 catalysts. The physicochemical properties of the obtained catalysts have been characterized using a suite of complementary techniques, including ICP-AES, XRD, UV-Vis spectroscopy, nitrogen adsorption-desorption and Fe-57 M ssbauer. The active crystalline phase is obtained without requiring any calcination step andmore » all the different catalysts are composed of nanocrystallites of anatase with a size of 6-7 nm and a high specific surface area varying from 181 to 298 m 2 g -1. In this study, the effect of the NO 3:Ti(IV) mole ratio used to induce the peptisation reaction during the synthesis has been studied and the results revealed that this ratio can influence significantly the textural properties of the resulting catalyst. A screening of the photocatalytic activity of the undoped and Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped and co-doped photocatalysts has been performed by evaluating the degradation of 4-nitrophenol under UV-Visible light (330 nm < < 800 nm). This study suggests that the photocatalytic activity is significantly influenced by the dopant nature and content with an optimal dopant content being observed in the case of Fe 3+ or La 3+ single-doped as well as in the case of La 3+-Fe 3+ and Eu 3+-Fe 3+ co-doped catalysts. In the case of Cr 3+ single-doped catalysts, a detrimental effect of the dopant on the photocatalytic degradation of 4-nitrophenol has been observed while no significant influence of the dopant has been detected in the case of Eu 3+ single-doped catalysts. In conclusion, the role of the different dopants in modulating the photocatalytic activity is discussed.« less

  15. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  16. One-dimensional TiO2 nanomaterials: preparation and catalytic applications.

    PubMed

    Wu, Yu; Yu, Jie; Liu, Hong-Mei; Xu, Bo-Qing

    2010-10-01

    This work reports on the syntheses of one-dimensional (1D) H2Ti3O7 materials (nanotubes, nanowires and their mixtures) by autoclaving anatase titania (Raw-TiO2) in NaOH-containing ethanol-water solutions, followed by washing with acid solution. The synthesized nanosized materials were characterized using XRD, TEM/HRTEM, BET and TG techniques. The autoclaving temperature (120-180 degrees C) and ethanol-to-water ratio (V(EtOH)/V(H2O) = 0/60 approximately 30/30) were shown to be critical to the morphology of H2Ti3O7 product. The obtained H2Ti3O7 nanostructures were calcined at 400-900 degrees C to prepare 1D-TiO2 nanomaterials. H2Ti3O7 nanotubes were converted to anatase nanorods while H2Ti3O7 nanowires to TiO2(B) nanowires after the calcination at 400 degrees C. The calcination at higher temperatures led to gradual decomposition of the wires to rods and phase transformation from TiO2(B) to anatase then to rutile. Photocatalytic degradation of methyl orange was conducted to compare the photocatalytic activity of these 1D materials. These 1D materials were used as new support to prepare Au/TiO2 catalysts for CO oxidation at 0 degrees C and 1,3-butadiene hydrogenation at 120 degrees C. For the CO oxidation reaction, Au particles supported on anatase nanorods derived from the H2Ti3O7 nanotubes (Au/W-180-400) were 1.6 times active that in Au/P25-TiO2, 4 times that in Au/Raw-TiO2, and 8 times that on TiO2(B) nanowires derived from the H2Ti3O7 nanotubes (Au/M-180-400). For the hydrogenation of 1,3-butadiene, however, the activity of Au particles in Au/M-180-400 was 3 times higher than those in Au/W-180-400 but similar to those in Au/P25-TiO2. These results demonstrate that the potential of 1D-TiO2 nanomaterials in catalysis is versatile.

  17. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  18. Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2

    NASA Astrophysics Data System (ADS)

    Xu, Difa; Hai, Yang; Zhang, Xiangchao; Zhang, Shiying; He, Rongan

    2017-04-01

    Photocatalytic hydrogen production using water splitting is of potential importance from the viewpoint of renewable energy development. Herein, Bi2O3-TiO2 composite photocatalysts presented as Bi-Bi2O3-anatase-rutile TiO2 multijunction were first fabricated by a simple impregnation-calcination method using Bi2O3 as H2-production cocatalysts. The obtained multijunction samples exhibit an obvious enhancement in photocatalytic H2 evolution activity in the presence of glycerol. The effect of Bi2O3 amount on H2-evolution activity of TiO2 was investigated and the optimal Bi2O3 content was found to be 0.89 mol%, achieving a H2-production rate of 920 μmol h-1, exceeding that of pure TiO2 by more than 73 times. The enhanced mechanism of photocatalytic H2-evolution activity is proposed. This study will provide new insight into the design and fabrication of TiO2-based hydrogen-production photocatalysts using low-cost Bi2O3 as cocatalyst.

  19. Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Telford, P. J.; Pope, F. D.; Rkiouak, L.; Abraham, N. L.; Archibald, A. T.; Braesicke, P.; Pyle, J. A.; McGregor, J.; Watson, I. M.; Cox, R. A.; Kalberer, M.

    2014-06-01

    Injection of aerosol particles (or their precursors) into the stratosphere to scatter solar radiation back into space has been suggested as a solar-radiation management scheme for the mitigation of global warming. TiO2 has recently been highlighted as a possible candidate particle because of its high refractive index, but its impact on stratospheric chemistry via heterogeneous reactions is as yet unknown. In this work the heterogeneous reaction of airborne sub-micrometre TiO2 particles with N2O5 has been investigated for the first time, at room temperature and different relative humidities (RH), using an atmospheric pressure aerosol flow tube. The uptake coefficient of N2O5 onto TiO2, γ(N2O5), was determined to be ~1.0 × 10-3 at low RH, increasing to ~3 × 10-3 at 60% RH. The uptake of N2O5 onto TiO2 is then included in the UKCA chemistry-climate model to assess the impact of this reaction on stratospheric chemistry. While the impact of TiO2 on the scattering of solar radiation is chosen to be similar to the aerosol from the Mt Pinatubo eruption, the impact of TiO2 injection on stratospheric N2O5 is much smaller.

  20. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    NASA Astrophysics Data System (ADS)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  1. Nb2O5-γ-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural

    NASA Astrophysics Data System (ADS)

    Jiao, Huanfeng; Zhao, Xiaoliang; Lv, Chunxiao; Wang, Yijun; Yang, Dongjiang; Li, Zhenhuan; Yao, Xiangdong

    2016-09-01

    One-dimensional γ-Al2O3 nanofibers were modified with Nb2O5 to be used as an efficient heterogeneous catalyst to catalyze biomass into 5-hydroxymethylfurfural (5-HMF). At low Nb2O5 loading, the niobia species were well dispersed on γ-Al2O3 nanofiber through Nb-O-Al bridge bonds. The interaction between Nb2O5 precursor and γ-Al2O3 nanofiber results in the niobia species with strong Lewis acid sites and intensive Brønsted acid sites, which made 5-HMF yield from glucose to reach the maximum 55.9~59.0% over Nb2O5-γ-Al2O3 nanofiber with a loading of 0.5~1 wt% Nb2O5 at 150 °C for 4 h in dimethyl sulfoxide. However, increasing Nb2O5 loading could lead to the formation of two-dimensional polymerized niobia species, three-dimensional polymerized niobia species and crystallization, which significantly influenced the distribution and quantity of the Lewis acid sites and Brönst acid sites over Nb2O5-γ-Al2O3 nanofiber. Lewis acid site Nbδ+ played a key role on the isomerization of glucose to fructose, while Brønsted acid sites are more active for the dehydration of generated fructose to 5-HMF. In addition, the heterogeneous Nb2O5-γ-Al2O3 nanofiber catalyst with suitable ratio of Lewis acid to Brönsted sites should display an more excellent catalytic performance in the conversion of glucose to 5-HMF.

  2. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    PubMed

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  3. Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP.

    PubMed

    Bethi, Bhaskar; Sonawane, S H; Rohit, G S; Holkar, C R; Pinjari, D V; Bhanvase, B A; Pandit, A B

    2016-01-01

    In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Design and synthesis of hierarchical mesoporous WO3-MnO2 composite nanostructures on carbon cloth for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Shinde, Pragati A.; Lokhande, Vaibhav C.; Patil, Amar M.; Ji, Taeksoo; Lokhande, Chandrakant D.

    2017-12-01

    To enhance the energy density and power performance of supercapacitors, the rational design and synthesis of active electrode materials with hierarchical mesoporous structure is highly desired. In the present work, fabrication of high-performance hierarchical mesoporous WO3-MnO2 composite nanostructures on carbon cloth substrate via a facile hydrothermal method is reported. By varying the content of MnO2 in the composite, different WO3-MnO2 composite thin films are obtained. The formation of composite is confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The Brunauer-Emmett-Teller (BET) analysis reveals maximum specific surface area of 153 m2 g-1. The optimized WO3-MnO2 composite electrode demonstrates remarkable electrochemical performance with high specific capacitance of 657 F g-1 at a scan rate of 5 mV s-1 and superior longterm cycling stability (92% capacity retention over 2000 CV cycles). Furthermore, symmetric flexible solid-state supercapacitor based on WO3-MnO2 electrodes has been fabricated. The device exhibits good electrochemical performance with maximum specific capacitance of 78 F g-1 at a scan rate of 5 mV s-1 and specific energy of 10.8 Wh kg-1 at a specific power of 0.65 kW kg-1. The improved electrochemical performance could be ascribed to the unique combination of multivalence WO3 and MnO2 nanostructures and synergistic effect between them

  5. Preparation and characterization of mesoporous TiO2-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Huang, Shouying; Zhu, Baolin; Zhang, Shoumin; Huang, Weiping

    2016-11-01

    Mesoporous TiO2-sphere-supported Au-nanoparticles (Au/m-TiO2-spheres) catalysts have been synthesized by a simple method using tetrabutyl titanate as TiO2 precursor and characterized with XRD, BET, ICP, SEM, TEM, UV-Vis DRS, XPS, as well as FT-IR. The samples with the size in the range of 200-400 nm were almost perfectly spherical. The average diameter of pores was about 3.6 nm, and the mesopore size distribution was in the range of 2-6 nm with a narrow distribution. When the catalyst was calcined at 300 °C, the Au NPs with the size ca. 5 nm were highly dispersed on the surfaces of m-TiO2 spheres and partially embedded in the supports. Remarkably, the specific surface area of the Au/m-TiO2-spheres was as high as 117 m2 g-1. The CO-adsorbed catalyst showed an apparent IR adsorption peak at 1714 cm-1 that matched with bridging model CO. It means the catalysts should be of high catalytic activity for the CO oxidation due to they could adsorb and activate CO commendably. When Au-content was 0.48 wt.%, the Au/m-TiO2-spheres could convert CO completely into CO2 at ambient temperature.

  6. Frequency and temperature dependent dielectric properties of TiO2-V2O5 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ray, Apurba; Roy, Atanu; De, Sayan; Chatterjee, Souvik; Das, Sachindranath

    2018-03-01

    In this manuscript, we have reported the crystal structure, dielectric response, and transport phenomenon of TiO2-V2O5 nanocomposites. The nanocomposites were synthesized using a sol-gel technique having different molar ratios of Ti:V (10:10, 10:15, and 10:20). The phase composition and the morphology have been studied using X-ray diffraction and field emission scanning electron microscope, respectively. The impedance spectroscopy studies of the three samples over a wide range of temperature (50 K-300 K) have been extensively described using the internal barrier layer capacitor model. It is based on the contribution of domain and domain boundary, relaxations of the materials, which are the main crucial factors for the enhancement of the dielectric response. The frequency dependent ac conductivity of the ceramics strongly obeys the well-known Jonscher's power law, and it has been clearly explained using the theory of jump relaxation model. The temperature dependent bulk conductivity is fairly recognized to the variable-range hopping of localized polarons. The co-existence of mixed valence state of Ti ions (Ti3+ and Ti4+) in the sample significantly contributes to the change of dielectric property. The overall study of dielectric response explains that the dielectric constant and the dielectric loss are strongly dependent on temperature and frequency and decrease with an increase of frequency as well as temperature.

  7. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  8. Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst.

    PubMed

    Zhao, Binxia; Mele, Giuseppe; Pio, Iolanda; Li, Jun; Palmisano, Leonardo; Vasapollo, Giuseppe

    2010-04-15

    Photocatalytic degradation of 4-nitrophenol was investigated using Fe-doped (1, 3, 5 and 8 wt.% Fe) TiO(2) catalysts under UV light irradiation in aqueous dispersions in the presence of H(2)O(2). Photocatalysts with the lowest Fe content (1%) showed a considerably better behavior with respect to the unloaded TiO(2) and the catalysts with higher Fe contents. Photocatalytic degradation was studied under different conditions such as amounts of 1% Fe-TiO(2) catalyst, H(2)O(2) dose and initial pH of 4-NP solution. The results indicated that about 67.53% total organic carbon of a solution containing 20 mg L(-1) 4-NP was removed at pH 6.17 by using 4.9 mM of H(2)O(2) and 0.4 g L(-1) of the catalyst in a 2-L batch photo-reactor, the complete degradation of 4-NP occurring after 60 min. It was also observed that catalytic behavior could be reproduced in consecutive experiments without a considerable decrease of the UV/Fe-TiO(2)/H(2)O(2) process efficiency. 2009 Elsevier B.V. All rights reserved.

  9. Data and Summaries for Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-Fired Selective Catalytic Reduction Systems

    EPA Pesticide Factsheets

    Table 1 summarizes and explanis the Operating Conditions of the SCR Reactor used in the Benzene-Destruction.Table 2 summarizes and explains the Experimental Design and Test Results.Table 3 summarizes and explains the Estimates for Individual Effects and Cross Effects Obtained from the Linear Regression Models for Destruction of C6H6 and Reduction of NO.Fig. 1 shows the Down-flow SCR reactor system in detail.Fig. 2 shows the graphical summary of the Effect of the inlet C6H6 concentration to the SCR reactor on the destruction of C6H6.Fig.3 shows the summary of Carbon mass balance for C6H6 destruction promoted by the V2O5-WO3/TiO2 catalyst.This dataset is associated with the following publication:Lee , C., Y. Zhao, S. Lu, and W.R. Stevens. Catalytic Destruction of a Surrogate Organic Hazardous Air Polutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems. AMERICAN CHEMICAL SOCIETY. American Chemical Society, Washington, DC, USA, 30(3): 2240-2247, (2016).

  10. Syntheses, crystal structures, and properties of new layered tungsten(VI)-containing materials based on the hexagonal-WO{sub 3} structure: M{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} (M = NH{sub 4}, Rb, Cs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, W.T.A.; Dussack, L.L.; Jacobson, A.J.

    The hydrothermal syntheses and crystal structures of (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO{sub 6} octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH{sub 4}{sup +} or Cs{sup +} cations provide charge balance. The full H-bonding scheme in (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} has been elucidated from Rietveld refinement againstmore » neutron powder diffraction data. The WO{sub 6} octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO{sub 6} unit in both these phases. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural with their molybdenum(VI)-containing analogues (NH{sub 4}){sub 2}(MoO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2} (MoO{sub 3}){sub 3}SeO{sub 3}. Crystal data: (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 858.58, hexagonal, space group P6{sub 3} (No. 173), a = 7.2291(2) {angstrom}, c = 12.1486(3) {angstrom}, V = 549.82(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 1.81%, and R{sub wp} = 2.29% (2938 neutron powder data). Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 1088.31, hexagonal, space group P6{sub 3} (no. 173), a = 7.2615(2) {angstrom}, c = 12.5426(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 4.84%, and R{sub wp} = 5.98% (2588 neutron powder data).« less

  11. Sintering characteristic and microwave dielectric properties of 0.45Ca0.6Nd0.267TiO3-0.55Li0.5Nd0.5TiO3 ceramics with La2O3-B2O3-ZnO additive

    NASA Astrophysics Data System (ADS)

    Chen, Yawei; Zhang, Shuren; Li, Enzhu; Niu, Na; Yang, Hongcheng

    2018-02-01

    The La2O3-B2O3-ZnO (LBZ) glass was proved to be an effective sintering aid of the 0.45Ca0.6Nd0.26TiO3-0.55Li0.5Nd0.5TiO3 (CNT-LNT) ceramics. The influence of LBZ glass on the phase composition, low temperature sintering process, microstructure, activation energy, and dielectric properties of CNT-LNT ceramics was investigated in detail. The LBZ glass induced an obvious decrease of the CNT-LNT ceramics sintering temperature from 1350 to 1000 °C due to the liquid phase formation, which reduced the activation energy ( E a) of the CNT-LNT ceramics. In addition, the near zero temperature coefficient of resonant frequency (τƒ) value was obtained by adding moderate quantity of LBZ glass. CNT-LNT + 5 wt% LBZ (CNT-LNT + 5L) ceramics sintered at 1000°C/4 h displayed good microwave dielectric properties of: ɛ r = 101.7, Q × f = 1560 GHz ( f = 3.25 GHz) and τ ƒ = 2.3 ppm °C-1.

  12. A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sulgiye; Rittman, Dylan R.; Tracy, Cameron L.

    The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressuremore » range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.« less

  13. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO2 , γ-Al2 O3 , CeO2 /SiO2 , Al2 O3 /SiO2 and TiO2 /SiO2.

    PubMed

    Kulyk, Kostiantyn; Palianytsia, Borys; Alexander, John D; Azizova, Liana; Borysenko, Mykola; Kartel, Mykola; Larsson, Mats; Kulik, Tetiana

    2017-07-19

    Valeric acid is an important renewable platform chemical that can be produced efficiently from lignocellulosic biomass. Upgrading of valeric acid by catalytic pyrolysis has the potential to produce value added biofuels and chemicals on an industrial scale. Understanding the different mechanisms involved in the thermal transformations of valeric acid on the surface of nanometer-sized oxides is important for the development of efficient heterogeneously catalyzed pyrolytic conversion techniques. In this work, the thermal decomposition of valeric acid on the surface of nanoscale SiO 2 , γ-Al 2 O 3 , CeO 2 /SiO 2 , Al 2 O 3 /SiO 2 and TiO 2 /SiO 2 has been investigated by temperature-programmed desorption mass spectrometry (TPD MS). Fourier transform infrared spectroscopy (FTIR) has also been used to investigate the structure of valeric acid complexes on the oxide surfaces. Two main products of pyrolytic conversion were observed to be formed depending on the nano-catalyst used-dibutylketone and propylketene. Mechanisms of ketene and ketone formation from chemisorbed fragments of valeric acid are proposed and the kinetic parameters of the corresponding reactions were calculated. It was found that the activation energy of ketenization decreases in the order SiO 2 >γ-Al 2 O 3 >TiO 2 /SiO 2 >Al 2 O 3 /SiO 2 , and the activation energy of ketonization decreases in the order γ-Al 2 O 3 >CeO 2 /SiO 2 . Nano-oxide CeO 2 /SiO 2 was found to selectively catalyze the ketonization reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  15. Radiation-induced synthesis of Fe-doped TiO 2: Characterization and catalytic properties

    NASA Astrophysics Data System (ADS)

    Bzdon, Sylwia; Góralski, Jacek; Maniukiewicz, Waldemar; Perkowski, Jan; Rogowski, Jacek; Szadkowska-Nicze, Magdalena

    2012-03-01

    Fe-doped TiO 2 catalyst was prepared by wet impregnation, using TiO 2 P25 Degussa as a precursor and Fe(NO 3) 3 as a dopant, followed by irradiation with an electron beam or γ-rays. Surface properties of Fe/TiO 2 samples were examined by BET, XRD, ToF-SIMS, and TPR methods. The photocatalytic activity towards destruction of the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), in aqueous solutions was higher for the irradiated Fe/TiO 2 catalysts than for bare TiO 2 P25 or that calcined at 500 °C. The results show that irradiated catalysts exhibit a more uniform texture with high dispersion of iron species. An enhancement of the activity of irradiated Fe/TiO 2 systems can be attributed to the synergetic effects of small crystallite size and homogenous distribution of iron species including FeTiO 3 phase.

  16. Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Dhar, J. C.; Mondal, A.; Bhattacharyya, A.; Singh, N. K.

    2012-04-01

    The glancing angle deposition technique has been employed to synthesize TiO2 nanowire (NW) arrays which have been characterized by x-ray diffraction, field emission-scanning electron microscopy and high resolution transmission electron microscopy. Optical absorption measurements show the absorption edge at 3.42 eV and 3.48 eV for TiO2 thin film (TF) and NW, respectively. The blue shift in absorption band is attributed to quantum confinement in NW structures. Photoluminescence measurement revealed oxygen-defect-related emission at 425 nm (˜2.9 eV). Ag/TiO2 (NW) and Ag/TiO2 (TF) contacts exhibit Schottky behaviour, and a higher turn-on voltage (˜6.5 V) was observed for NW devices than that of TF devices (˜5.25 V) under dark condition. In addition, TiO2-NW-based devices show twofold improvement in photodetection efficiency in the UV region, compared with TiO2-TF-based devices.

  17. Structural peculiarities and Raman spectra of TeO{sub 2}/WO{sub 3}-based glasses: A fresh look at the problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirgorodsky, Andreie; Colas, Maggy; Smirnov, Mikhael

    2012-06-15

    Ideas currently dominating the field of structural studies of TeO{sub 2}-based glasses are critically considered. A new physically and chemically consistent approach to the constitution of binary TeO{sub 2}-WO{sub 3} glasses is proposed, in which the reasoning coming from the Raman spectra reexamination are correlated with the basic principles of thermodynamics. Separation into two phases is suggested in such glasses. One phase is TeO{sub 2}, and another is Te(WO{sub 4}){sub 2} consisting of tetrahedral [WO{sub 4}]{sup 2-} anions and of Te{sup 4+} cations. Supplementary M{sub n}O{sub k} oxides added to the glasses are found incorporated in the former phase, thusmore » producing solid solutions (for M=Ti, Nb) or tellurite compounds (for M=Nd). - Graphical abstract: Raman scattering spectra of TeO{sub 2}-based glasses with the following compositions (mol%): (a) pure TeO{sub 2}, (b) 85TeO{sub 2}-15WO{sub 3}, (c) 80TeO{sub 2}-15WO{sub 3}-5TiO{sub 2} ,(d) 80TeO{sub 2}-10WO{sub 3}-5TiO{sub 2}-5Nb{sub 2}O{sub 5}, (e) 80TeO{sub 2}-12WO{sub 3}-5TiO{sub 2}-3 Nd{sub 2}O{sub 3}, (f) 80TeO{sub 2}-10WO{sub 3}-5TiO{sub 2}-5Nd{sub 2}O{sub 3}. Highlights: Black-Right-Pointing-Pointer Structural studies of TeO{sub 2}-WO{sub 3} glasses are critically considered. Black-Right-Pointing-Pointer The oxide glass formation is analyzed from Raman spectra and thermodynamic principles. Black-Right-Pointing-Pointer Separation into two phases, TeO{sub 2} and Te(WO{sub 4}){sub 2}, is intrinsic in such glasses. Black-Right-Pointing-Pointer TiO{sub 2} or Nb{sub 2}O{sub 5} addition to TeO{sub 2}-WO{sub 3} glasses leads to produce solid solutions. Black-Right-Pointing-Pointer Nd{sub 2}O{sub 3} addition to TeO{sub 2}-WO{sub 3} glasses leads to produce a tellurite compound.« less

  18. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    PubMed

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  19. Novel synthesis of manganese and vanadium mixed oxide (V{sub 2}O{sub 5}/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Soleimani, Shima

    2014-03-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidationmore » using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential

  20. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  1. Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment.

    PubMed

    Li, X Z; Liu, H S

    2005-06-15

    In this study, an innovative E-H2O2/TiO2 (E-H2O2 = electrogenerated hydrogen peroxide) photoelectrocatalytic (PEC) oxidation system was successfully developed for water and wastewater treatment. A TiO2/Ti mesh electrode was applied in this photoreactor as the anode to conduct PEC oxidation, and a reticulated vitreous carbon (RVC) electrode was used as the cathode to electrogenerate hydrogen peroxide simultaneously. The TiO2/Ti mesh electrode was prepared with a modified anodic oxidation process in a quadrielectrolyte (H2SO4-H3PO4-H2O2-HF) solution. The crystal structure, surface morphology, and film thickness of the TiO2/Ti mesh electrode were characterized by X-ray diffraction and scanning electron microscopy. The analytical results showed that a honeycomb-type anatase film with a thickness of 5 microm was formed. Photocatalytic oxidation (PC) and PEC oxidation of 2,4,6-trichlorophenol (TCP) in an aqueous solution were performed under various experimental conditions. Experimental results showed that the TiO2/Ti electrode, anodized in the H2SO4-H3PO4-H2O2-HF solution, had higher photocatalytic activity than the TiO2/Ti electrode anodized in the H2SO4 solution. It was found that the maximum applied potential would be around 2.5 V, corresponding to an optimum applied current density of 50 microA cm(-2) under UV-A illumination. The experiments confirmed that the E-H2O2 on the RVC electrode can significantly enhance the PEC oxidation of TCP in aqueous solution. The rate of TCP degradation in such an E-H2O2-assisted TiO2 PEC reaction was 5.0 times that of the TiO2 PC reaction and 2.3 times that of the TiO2 PEC reaction. The variation of pH during the E-H2O2-assisted TiO2 PEC reaction, affected by individual reactions, was also investigated. It was found that pH was well maintained during the TCP degradation in such an E-H2O2/TiO2 reaction system. This is beneficial to TCP degradation in an aqueous solution.

  2. Growth of TiO2 nanofibers on FTO substrates and their application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suryana, R.; Rahmawati, L. R.; Triyana, K.

    2016-11-01

    Growth of TiO2 nanofibers on fluorine-doped tin oxide (FTO) substrates have been performed using electrospinning method. Homogenous TiO2 solution as nanofibers material was prepared with titanium tetraisopropoxide (TTIP), ethanol, acetic acid and polyvinyl pyrrolidone (PVP) which was stirred for 24 h. TiO2 solution was loaded into the syringe pump. Electrospun voltage was operated under 15 kV with optimum distance between syringe tip and collector was 15 cm. FTO substrates were attached on the collector surface. Electrospinning coating time was varied at 15 min, 30 min, 45 min, and 60 min. Then TiO2 nanofibers layer was annealed at temperature of 450° C for 3 h. X-ray diffraction spectrum of TiO2 nanofibers showed major anatase peaks at 25.3°, 48.0° and 37.8° correlating crystal orientation of (101), (200), and (004), respectively while only one rutile peak at 27.5°(110). TiO2 nanofibers diameter was measured using atomic force microscopy (AFM). TiO2 nanofibers have diameter in range of 100-1000 nm. The obtained-TiO2 nanofibers were applied in dye-sensitized solar cell (DSSC) with beta-carotene as dye, carbon as catalyst, and I-/I3- redox couple as electrolyte. DSSC performance was analyzed from I-V characterization. Growth of TiO2 nanofibers at electrospinning time for 45 min has highest efficiency that is 0.016%. It is considered that TiO2 nanofibers at electrospinning time for 45 min can produce optimum thickness so that it is speculated many dyes adsorb on the nanofiber surfaces and many electrons diffuse toward the electrodes.

  3. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  4. Study on physicochemical properties of functionalized-MWNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Amirah; Razali, Mohd Hasmizam; Amin, Khairul Anuar Mat

    2017-09-01

    One of the exciting developments in science today is the design and synthesis of carbon nanotubes (CNTs) that possess novel properties and not exhibited by other individual organic and inorganic materials. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO2. Mesoporous Ni-MCM41 catalyst is first synthesized by hydrothermal method using sodium metasilicate as silica source and cetyltrimethylammonium bromide (CTABr) as a template. Results of Raman spectroscopy confirm that the synthesized carbon nanotubes are multi-walled. The type IV nitrogen adsorption-desorption isotherm and narrow pore size distribution proved that the functionalized-MWNTs loaded TiO2 is in mesopore range. Field Emission Scanning Electron Microscopy reveals that good dispersions of TiO2 nanoparticles onto functionalized-MWNTs with hair-like structure in between 3-8 nm. BET results indicate that functionalized-MWNTs loaded TiO2 possessed high surface area thus has considerable potential as an adsorbent and photocatalyst in environmental applications.

  5. ZnO, TiO(2), SiO(2,) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts.

    PubMed

    Zhang, Xiao Qiang; Yin, Li Hong; Tang, Meng; Pu, Yue Pu

    2011-12-01

    This study aims to investigate and compare the toxic effects of four types of metal oxide (ZnO, TiO(2), SiO(2,) and Al(2)O(3)) nanoparticles with similar primary size (∼20 nm) on human fetal lung fibroblasts (HFL1) in vitro. The HFL1 cells were exposed to the nanoparticles, and toxic effects were analyzed by using MTT assay, cellular morphology observation and Hoechst 33 258 staining. The results show that the four types of metal oxide nanoparticles lead to cellular mitochondrial dysfunction, morphological modifications and apoptosis at the concentration range of 0.25-1.50 mg/mL and the toxic effects are obviously displayed in dose-dependent manner. ZnO is the most toxic nanomaterials followed by TiO(2), SiO(2), and Al(2)O(3) nanoparticles in a descending order. The results highlight the differential cytotoxicity associated with exposure to ZnO, TiO(2), SiO(2), and Al(2)O(3) nanoparticles, and suggest an extreme attention to safety utilization of these nanomaterials. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  6. Dual role of TiO2 buffer layer in Pt catalyzed BiFeO3 photocathodes: Efficiency enhancement and surface protection

    NASA Astrophysics Data System (ADS)

    Shen, Huanyu; Zhou, Xiaoxue; Dong, Wen; Su, Xiaodong; Fang, Liang; Wu, Xi; Shen, Mingrong

    2017-09-01

    Polycrystalline ferroelectric BiFeO3 (BFO) films deposited on transparent indium tin oxide (ITO) electrodes have shown to be an interesting photocathode for photoelectrochemical (PEC) water splitting; however, its PEC performance and stability are far from perfection. Herein, we reported an amorphous TiO2 buffer layer, inserted between BFO and Pt catalyst, improves significantly both its PEC activity and stability. A photocathodic current density of -460 μA/cm2 at 0 V vs. reversible hydrogen electrode (RHE) and an onset potential of 1.25 V vs. RHE were obtained in ITO/BFO/TiO2/Pt photocathode under 100 mW/cm2 Xe-lamp illumination. TiO2 functions as a buffer layer to remove the upward barrier between BFO and Pt, and makes the photogenerated carriers separate efficiently. The photocathode also shows high stability in acid solution after a 10-h PEC continuous testing.

  7. Cs2Bi(PO4)(WO4)

    PubMed Central

    Terebilenko, Kateryna V.; Zatovsky, Igor V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.

    2009-01-01

    Dicaesium bis­muth(III) phosphate(V) tungstate(VI), Cs2Bi(PO4)(WO4), has been synthesized during complex investigation in a molten pseudo-quaternary Cs2O–Bi2O3–P2O5WO3 system. It is isotypic with K2Bi(PO4)(WO4). The three-dimensional framework is built up from [Bi(PO4)(WO4)] nets, which are organized by adhesion of [BiPO4] layers and [WO4] tetra­hedra above and below of those layers. The inter­stitial space is occupied by Cs atoms. Bi, W and P atoms lie on crystallographic twofold axes. PMID:21577386

  8. K2Ho(PO4)(WO4)

    PubMed Central

    Terebilenko, Katherina V.; Zatovsky, Igor V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.; Shishkin, Oleg V.

    2008-01-01

    A new compound, dipotassium holmium(III) phosphate(V) tungstate(VI), K2Ho(PO4)(WO4), has been obtained during investigation of the K2O–P2O5WO3–HoF3 phase system using the flux technique. The compound is isotypic with K2Bi(PO4)(WO4). Its framework structure consists of flat ∞ 2[HoPO4] layers parallel to (100) that are made up of ∞ 1[HoO8] zigzag chains inter­linked via slightly distorted PO4 tetra­hedra. WO4 tetra­hedra are attached above and below these layers, leaving space for the K+ counter-cations. The HoO8, PO4 and WO4 units exhibit 2 symmetry. PMID:21580811

  9. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3.

    PubMed

    Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Yue, Jin; Liu, Chang

    2015-01-01

    Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3 dielectrics have been fabricated on indium tin oxide-coated polyethylene naphthalate substrates by atomic layer deposition. A capacitance density of 7.8 fF/μm(2) at 10 KHz was obtained, corresponding to a dielectric constant of 26.3. Moreover, a low leakage current density of 3.9 × 10(-8) A/cm(2) at 1 V has been realized. Bending test shows that the capacitors have better performances in concave conditions than in convex conditions. The capacitors exhibit an average optical transmittance of about 70% in visible range and thus open the door for applications in transparent and flexible integrated circuits.

  10. Photoreduction of CO2 on TiO2/SrTiO3 Heterojunction Network Film

    NASA Astrophysics Data System (ADS)

    Bi, Yongsheng; Zong, Lanlan; Li, Chen; Li, Qiuye; Yang, Jianjun

    2015-08-01

    Nanotube titanic acid (NTA) network film has a porous structure and large BET surface area, which lead them to possessing high utilization of the incident light and strong adsorption ability. We used NTA as the precursor to fabricate a TiO2/ SrTiO3 heterojunction film by the hydrothermal method. In the process of the reaction, part of NTA reacted with SrCl2 to form SrTiO3 nanocubes, and the remainder dehydrated to transform to the rutile TiO2. The ratio of TiO2 and SrTiO3 varied with the hydrothermal reaction time. SEM and TEM images indicated that SrTiO3 nanocubes dispersed uniformly on TiO2 film, and the particle size and crystallinity of SrTiO3 nanocubes increased with the reaction time prolonging. The TiO2/SrTiO3 heterojunction obtained by 1 h showed the best activity for CO2 photoreduction, where the mole ratio of TiO2 and SrTiO3 was 4:1. And the photo-conversion efficiency of CO2 to CH4 improved remarkably after the foreign electron traps of Pt and Pd nanoparticles were loaded. The highest photocatalytic production rate of CH4 reached 20.83 ppm/h cm2. In addition, the selectivity of photoreduction product of CO2 was also increased apparently when Pd acted as the cocatalyst on TiO2/SrTiO3 heterojunction film.

  11. Efficient Bulk Heterojunction CH3NH3PbI3-TiO2 Solar Cells with TiO2 Nanoparticles at Grain Boundaries of Perovskite by Multi-Cycle-Coating Strategy.

    PubMed

    Shao, Jun; Yang, Songwang; Liu, Yan

    2017-05-17

    A novel bulk heterojunction (BHJ) perovskite solar cell (PSC), where the perovskite grains act as donor and the TiO 2 nanoparticles act as acceptor, is reported. This efficient BHJ PSC was simply solution processed from a mixed precursor of CH 3 NH 3 PbI 3 (MAPbI 3 ) and TiO 2 nanoparticles. With dissolution and recrystallization by multi-cycle-coating, a unique composite structure ranging from a MAPbI 3 -TiO 2 -dominated layer on the substrate side to a pure perovskite layer on the top side is formed, which is beneficial for the blocking of possible contact between TiO 2 and the hole transport material at the interface. Scanning electron microscopy clearly shows that TiO 2 nanoparticles accumulate along the grain boundaries (GBs) of perovskite. The TiO 2 nanoparticles at the GBs quickly extract and reserve photogenerated electrons before they transport into the perovskite phase, as described in the multitrapping model, retarding the electron-hole recombination and reducing the energy loss, resulting in increased V OC and fill factor. Moreover, the pinning effect of the TiO 2 nanoparticles at the GBs from the strong bindings between TiO 2 and MAPbI 3 suppresses massive ion migration along the GBs, leading to improved operational stability and diminished hysteresis. Photoluminescence (PL) quenching and PL decay confirm the efficient exciton dissociation on the heterointerface. Electrochemical impedance spectroscopy and open-circuit photovoltage decay measurements show the reduced recombination loss and improved carrier lifetime of the BHJ PSCs. This novel strategy of device design effectively combines the benefits of both planar and mesostructured architectures whilst avoiding their shortcomings, eventually leading to a high PCE of 17.42% under 1 Sun illumination. The newly proposed approach also provides a new way to fabricate a TiO 2 -containing perovskite active layer at a low temperature.

  12. Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications

    PubMed Central

    Mahy, Julien G.; Cerfontaine, Vincent; Devred, François; Gaigneaux, Eric M.; Heinrichs, Benoît; Lambert, Stéphanie D.

    2018-01-01

    In this paper, TiO2 prepared with an aqueous sol-gel synthesis by peptization process is doped with nitrogen precursor to extend its activity towards the visible region. Three N-precursors are used: urea, ethylenediamine and triethylamine. Different molar N/Ti ratios are tested and the synthesis is adapted for each dopant. For urea- and trimethylamine-doped samples, anatase-brookite TiO2 nanoparticles of 6–8 nm are formed, with a specific surface area between 200 and 275 m2·g−1. In ethylenediamine-doped samples, the formation of rutile phase is observed, and TiO2 nanoparticles of 6–8 nm with a specific surface area between 185 and 240 m2·g−1 are obtained. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance measurements show the incorporation of nitrogen in TiO2 materials through Ti–O–N bonds allowing light absorption in the visible region. Photocatalytic tests on the remediation of water polluted with p-nitrophenol show a marked improvement for all doped catalysts under visible light. The optimum doping, taking into account cost, activity and ease of synthesis, is up-scaled to a volume of 5 L and compared to commercial Degussa P25 material. This up-scaled sample shows similar properties compared to the lab-scale sample, i.e., a photoactivity 4 times higher than commercial P25. PMID:29642626

  13. Enhanced photodegradation of 2,4-dichlorophenoxyacetic acid using a novel TiO2@MgFe2O4 core@shell structure.

    PubMed

    Huy, Bui The; Jung, Da-Som; Kim Phuong, Nguyen Thi; Lee, Yong-Ill

    2017-10-01

    A novel TiO 2 @MgO-Fe 2 O 3 core-shell structure has been synthesized via a hydrolysis and co-precipitation method followed by calcination at 500 °C and has proven to be an efficient photocatalyst. The obtained TiO 2 @MgO-Fe 2 O 3 core-shell was characterized by scanning electron microscopy, X-ray diffraction, and UV-Vis diffused reflectance techniques. Its photocatalytic activity toward 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated in aqueous solutions with and without visible light irradiation in the presence and absence of hydrogen peroxide. It was revealed that a strong electronic coupling exists between two components within the TiO 2 @MgO-Fe 2 O 3 core-shell structure. The present findings clearly highlight that TiO 2 @MgO-Fe 2 O 3 exhibits excellent photocatalytic activity under visible light irradiation in the presence of H 2 O 2 . More than 83% degradation of 2,4-D was observed within 240 min, at an initial concentration of 100 mg L -1 with 0.5 g of catalyst per liter. Moreover, the material showed high chemical stability after four consecutive experiments with no significant difference in the rate of photocatalytic degradation. Therefore, the results reported herein offer a green, low cost and highly efficient photocatalyst for environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The effect of sintering temperature on electrical characteristics of Fe2TiO5/Nb2O5 ceramics for NTC thermistor

    NASA Astrophysics Data System (ADS)

    Wiendartun, Risdiana, Fitrilawati, Siregar, R. E.

    2016-02-01

    A study on the fabrication of Iron Titanium Oxide (Fe2TiO5) ceramics for negative temperature coefficient (NTC) thermistors has been carried out, in order to know the effect of sintering temperature on the electrical characteristic of 1.0 % mole Nb2O5 doped Fe2TiO5 ceramics.These ceramics were made by mixing commercial powders of Fe2O3, TiO2 and Nb2O5 with proportional composition to produce Fe2TiO5 based ceramic. The raw pellet was sintered at 1000 °C, 1100 °C and 1200 °C temperature for 2 hours in air. Analysis of the microstructure and crystal structure were performed by using a scanning electron microscope (SEM) and x-ray diffraction (XRD) respectively. XRD spectra showed that the crystal structure of all ceramics of Fe2TiO5 made at various sintering temperatures are orthorhombic. The SEM images showed that the grain size of pellet ceramics increase with increasing sintering temperatures. From electrical resistances data that was measured at temperature 30-300 °C, it is found that the value of thermistor constant (B), activation energy (Ea), thermistor sensitivity (α) and room temperature resistance (RRT) decreases with respect to the increasing of sintering temperature. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 6394-6959 K). This can be applied as temperature sensor, and will fulfill the market requirement.

  15. Thermally Stable TiO2 - and SiO2 -Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts.

    PubMed

    Hartman, Thomas; Weckhuysen, Bert M

    2018-03-12

    Raman spectroscopy is known as a powerful technique for solid catalyst characterization as it provides vibrational fingerprints of (metal) oxides, reactants, and products. It can even become a strong surface-sensitive technique by implementing shell-isolated surface-enhanced Raman spectroscopy (SHINERS). Au@TiO 2 and Au@SiO 2 shell-isolated nanoparticles (SHINs) of various sizes were therefore prepared for the purpose of studying heterogeneous catalysis and the effect of metal oxide coating. Both SiO 2 - and TiO 2 -SHINs are effective SHINERS substrates and thermally stable up to 400 °C. Nano-sized Ru and Rh hydrogenation catalysts were assembled over the SHINs by wet impregnation of aqueous RuCl 3 and RhCl 3 . The substrates were implemented to study CO adsorption and hydrogenation under in situ conditions at various temperatures to illustrate the differences between catalysts and shell materials with SHINERS. This work demonstrates the potential of SHINS for in situ characterization studies in a wide range of catalytic reactions. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Interplay between the spin-selection rule and frontier orbital theory in O2 activation and CO oxidation by single-atom-sized catalysts on TiO2(110).

    PubMed

    Li, Shunfang; Zhao, Xingju; Shi, Jinlei; Jia, Yu; Guo, Zhengxiao; Cho, Jun-Hyung; Gao, Yanfei; Zhang, Zhenyu

    2016-09-28

    Exploration of the catalytic activity of low-dimensional transition metal (TM) or noble metal catalysts is a vital subject of modern materials science because of their instrumental role in numerous industrial applications. Recent experimental advances have demonstrated the utilization of single atoms on different substrates as effective catalysts, which exhibit amazing catalytic properties such as more efficient catalytic performance and higher selectivity in chemical reactions as compared to their nanostructured counterparts; however, the underlying microscopic mechanisms operative in these single atom catalysts still remain elusive. Based on first-principles calculations, herein, we present a comparative study of the key kinetic rate processes involved in CO oxidation using a monomer or dimer of two representative TMs (Pd and Ni) on defective TiO2(110) substrates (TMn@TiO2(110), n = 1, 2) to elucidate the underlying mechanism of single-atom catalysis. We reveal that the O2 activation rates of the single atom TM catalysts deposited on TiO2(110) are governed cooperatively by the classic spin-selection rule and the well-known frontier orbital theory (or generalized d-band picture) that emphasizes the energy gap between the frontier orbitals of the TM catalysts and O2 molecule. We further illuminate that the subsequent CO oxidation reactions proceed via the Langmuir-Hinshelwood mechanism with contrasting reaction barriers for the Pd monomer and dimer catalysts. These findings not only provide an explanation for existing observations of distinctly different catalytic activities of Pd@TiO2(110) and Pd2@TiO2(110) [Kaden et al., Science, 2009, 326, 826-829] but also shed new insights into future utilization and optimization of single-atom catalysis.

  17. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2-

  18. A Green Synthesis of Xanthenone Derivatives in Aqueous Media Using TiO2-CNTs Nanocomposite as an Eco-Friendly and Re-Usable Catalyst.

    PubMed

    Samani, Amir; Abdolmohammadi, Shahrzad; Otaredi-Kashani, Asieh

    2018-01-01

    The xanthene (dibenzopyran) framework constitutes the core structure of many biologically active compounds, that they have been of interest because of their pharmacological activities like antiviral, antibacterial, anti-inflammatory, and CCR1 antagonist. As heterogeneous catalysts offer several advantages over homogeneous catalysts, the performance of reactions on the surface of nanosized heterogeneous salts has received a great deal of interest in recent years. In the area of nanosized heterogeneous catalysts there is a noticeable range of reactions that are catalyzed efficiently by TiO2 NPs. Moreover, carbon nanotubes (CNTs) as a support can be used to obtain nanoparticles with modified morphology, structural, chemical, electrical, and optical properties. The catalytic activity of titanium dioxide supported on carbon nanotubes has been greatly improved. The present methodology focus on the synthesis of 7,7-dimethyl-10-aryl- 6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones, through a condensation reaction of dimedone, aromatic aldehydes and 3,4-methylenedioxyphenol, using a catalytic amount of TiO2- CNTs nanocomposite (15 mol%) at 80 ˚C in aqueous media, within 60-90 min. The TiO2-CNTs nanocomposite was also prepared by a known simple sonochemical method. A series of 7,7-dimethyl-10-aryl-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones were successfully synthesized in high yields (92-98%). All synthesized compounds were well characterized by their satisfactory elemental analyses, IR, 1H and 13C NMR spectroscopy. The synthesized catalyst was fully characterized by SEM, TEM, XRD, and EDX techniques. In summary, this investigation constitutes a novel and efficient route for the synthesis of 7,7-dimethyl-10-aryl-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones in high yields, by a three-component reaction of dimedone, aromatic aldehydes and 3,4-methylenedioxyphenol in water and in the presence of the TiO2-CNTs nanocomposite as a green

  19. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88.

    PubMed

    Balachandran, K; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P

    2014-07-15

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m(2)/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthesis and Characterization of Photocatalytic TiO 2 -ZnFe 2 O 4 Nanoparticles

    DOE PAGES

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    A new coprecipimore » tation/hydrolysis synthesis route is used to create a TiO 2 -ZnFe 2 O 4 nanocomposite that is directed towards extending the photoresponse of TiO 2 from UV to visible wavelengths ( > 400   nm ). The effect of TiO 2 's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe 2 O 4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe 2 O 4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe 2 O 4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO 2 -ZnFe 2 O 4 nanocomposites has been compared to an Aldrich TiO 2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.« less

  1. Microstructural Evolution of Dy2O3-TiO2 Powder Mixtures during Ball Milling and Post-Milled Annealing

    PubMed Central

    Huang, Jinhua; Ran, Guang; Lin, Jianxin; Shen, Qiang; Lei, Penghui; Wang, Xina; Li, Ning

    2016-01-01

    The microstructural evolution of Dy2O3-TiO2 powder mixtures during ball milling and post-milled annealing was investigated using XRD, SEM, TEM, and DSC. At high ball-milling rotation speeds, the mixtures were fined, homogenized, nanocrystallized, and later completely amorphized, and the transformation of Dy2O3 from the cubic to the monoclinic crystal structure was observed. The amorphous transformation resulted from monoclinic Dy2O3, not from cubic Dy2O3. However, at low ball-milling rotation speeds, the mixtures were only fined and homogenized. An intermediate phase with a similar crystal structure to that of cubic Dy2TiO5 was detected in the amorphous mixtures annealed from 800 to 1000 °C, which was a metastable phase that transformed to orthorhombic Dy2TiO5 when the annealing temperature was above 1050 °C. However, at the same annealing temperatures, pyrochlore Dy2Ti2O7 initially formed and subsequently reacted with the remaining Dy2O3 to form orthorhombic Dy2TiO5 in the homogenous mixtures. The evolutionary mechanism of powder mixtures during ball milling and subsequent annealing was analyzed. PMID:28772375

  2. Reaction of silanes in supercritical CO2 with TiO2 and Al2O3.

    PubMed

    Gu, Wei; Tripp, Carl P

    2006-06-20

    Infrared spectroscopy was used to investigate the reaction of silanes with TiO2 and Al2O3 using supercritical CO2 (Sc-CO2) as a solvent. It was found that contact of Sc-CO2 with TiO2 leads to partial removal of the water layer and to the formation of carbonate, bicarbonate, and carboxylate species on the surface. Although these carbonate species are weakly bound to the TiO2 surface and can be removed by a N2 purge, they poison the surface, resulting in a lower level of reaction of silanes with TiO2. Specifically, the amount of hexamethyldisilazane adsorbed on TiO2 is about 10% of the value obtained when the reaction is performed from the gas phase. This is not unique to TiO2, as the formation of carbonate species also occurs upon contact of Al2O3 with Sc-CO2 and this leads to a lower level of reaction with hexamethyldisilazane. This is in contrast to reactions of silanes on SiO2 where Sc-CO2 has several advantages over conventional gaseous or nonaqueous methods. As a result, caution needs to be applied when using Sc-CO2 as a solvent for silanization reactions on oxides other than SiO2.

  3. Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.

    2017-12-01

    The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.

  4. Heterogeneous UV/Fenton degradation of bisphenol A catalyzed by synergistic effects of FeCo2O4/TiO2/GO.

    PubMed

    Bai, Xue; Lyu, Lingling; Ma, Wenqiang; Ye, Zhengfang

    2016-11-01

    A new method for bisphenol A (BPA) degradation in aqueous solution was developed. The characteristics of BPA degradation in a heterogeneous ultraviolet (UV)/Fenton reaction catalyzed by FeCo 2 O 4 /TiO 2 /graphite oxide (GO) were studied. The properties of the synthesized catalysts were characterized using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. FeCo 2 O 4 and TiO 2 were grown as spherical shape, rough surface, and relatively uniform on the surface of GO (FeCo 2 O 4 /TiO 2 /GO). Batch tests were conducted to evaluate the effects of the initial pH, FeCo 2 O 4 /TiO 2 /GO dosage, and H 2 O 2 concentration on BPA degradation. In a system with 0.5 g L -1 of FeCo 2 O 4 /TiO 2 /GO and 10 mmol L -1 of H 2 O 2 , approximately 90 % of BPA (20 mg L -1 ) was degraded within 240 min of UV irradiation at pH 6.0. The reused FeCo 2 O 4 /TiO 2 /GO catalyst retained its activity after three cycles, which indicates that it is stable and reusable. The heterogeneous UV/Fenton reaction catalyzed by FeCo 2 O 4 /TiO 2 /GO is a promising advanced oxidation technology for treating wastewater that contains BPA.

  5. Photodecolorisation of melanoidins in vinasse with illuminated TiO2-ZnO/activated carbon composite.

    PubMed

    Otieno, Benton O; Apollo, Seth O; Naidoo, Bobby E; Ochieng, Aoyi

    2017-06-07

    A hybrid photo-catalyst, TiO 2 -ZnO, was synthesized by immobilizing ZnO on commercial TiO 2 (aeroxide P25). Activated carbon (AC) was subsequently used to support the hybrid, thus forming a TiO 2 -ZnO/AC composite catalyst. Fourier transform infrared (FTIR) analysis and scanning electron microscopy integrated with energy-dispersive X-ray spectroscopy (SEM-EDX) investigations revealed successful catalyst synthesis. Optical properties of the hybrid determined from photoluminescence (PL) and Ultraviolet-visible (UV-vis) spectroscopy confirmed a restrained recombination of electron-hole pairs and reduced energy band gap due to a successful heterojunction formation. The prepared catalysts were used to photodecolorise vinasse in a 12-W UVC batch photoreactor. TiO 2 -ZnO had improved photocatalytic activity compared with TiO 2 and ZnO separately. On supporting the hybrid onto AC, both adsorption and photocatalytic activities were further enhanced with improved overall color removal of 86% from 68%. Photodecolorisation followed the pseudo-first-order reaction model with the rate constant ([Formula: see text]) observed decreasing from 0.0701 to 0.0436 min -1 on increasing the initial concentration from 5,000 to 14,000 ppm. The UV process was found to be 33-fold less energy intensive for color reduction as compared to total organic carbon (TOC) reduction. Formation of nitrates during the photodecolorisation process was attributed to the mineralization of nitrogen heteroatoms in the color-causing melanoidin compounds.

  6. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  7. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  8. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  9. A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte-insulator-semiconductor.

    PubMed

    Pan, Tung-Ming; Huang, Ming-De; Lin, Wan-Ying; Wu, Min-Hsien

    2010-06-11

    A urea biosensor based on pH-sensitive Sm(2)TiO(5) electrolyte-insulator-semiconductor (EIS) has been described. We used X-ray diffraction, Auger electron spectroscopy, and atomic force microscopy to investigate the structural and morphological features of high-k Sm(2)TiO(5) sensing membranes that had been subjected to annealing at different temperatures. The EIS device incorporating a high-k Sm(2)TiO(5) sensing film that had been annealed at 900 degrees C exhibited good sensing characteristics, including a high sensitivity of 60.5 mV/pH (in solutions from pH 2 to 12), a small hysteresis voltage of 2.72 mV (in the pH loop 7-->4-->7-->10-->7), and a low drift rate of 1.15 mV h(-1) (in the buffer solution at pH 7). The Sm(2)TiO(5) EIS device also showed a high selective response towards H(+). This improvement can be attributed to the small number of crystal defects and the large surface roughness. In addition, the urea biosensor based on pH-sensitive EIS incorporating a Sm(2)TiO(5) sensing membrane annealed at 900 degrees C allowed the potentiometric analysis of urea, at concentrations ranging from 0.1 to 32 mM, with a sensitivity of 72.85 mV/purea. Copyright 2010 Elsevier B.V. All rights reserved.

  10. A magnetically separable and recyclable Ag-supported magnetic TiO2 composite catalyst: Fabrication, characterization, and photocatalytic activity.

    PubMed

    Chung, Woo Jin; Nguyen, Dinh Duc; Bui, Xuan Thanh; An, Sang Woo; Banu, J Rajesh; Lee, Sang Moon; Kim, Sung Su; Moon, Dea Hyun; Jeon, Byong Hun; Chang, Soon Woong

    2018-05-01

    In this study, a magnetically separable, highly active, and recyclable photocatalyst was synthesized by physico-chemical incorporation of Ag, TiO 2 , and Fe 3 O 4 into one structure. The physical and chemical properties of the catalysts were evaluated by X-ray diffraction, X-ray fluorescence spectrometry, scanning electron microscopy, field emission transmission electron microscopy, energy dispersive X-ray spectroscopy, and diffuse reflectance spectroscopy. The Ag-supported magnetic TiO 2 composite demonstrated desirable properties and features such as a narrow band gap of 1.163 eV, modifiable structure, and high degradation efficiency. The activity and durability of the synthesized photocatalyst in the degradation of methyl orange (MO) in aqueous solutions under visible light irradiation and different experimental conditions were evaluated and compared to those of commercial TiO 2 and Ag/TiO 2 composites. It was found that the synthesized composite showed a much higher MO photodegradation efficiency than the other composites under visible light irradiation. Moreover, it exhibited a high photocatalytic activity and was recoverable and durable; its photocatalytic efficiency in MO removal was consistently higher than 93.1% after five reuses without any evident signs of deactivation. Thus, the developed photocatalyst is a very promising material for practical applications in environmental pollution remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Spectroscopic and optical properties of the VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system

    NASA Astrophysics Data System (ADS)

    Swapna; Upender, G.; Sreenivasulu, V.; Prasad, M.

    2016-04-01

    Studies such as optical absorption, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electron paramagnetic resonance (EPR) spectroscopy and Differential scanning calorimetry (DSC) were carried out on VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system. Raman and FTIR spectra of the glasses revealed the presence of [TeO3], [TeO4] and [NbO6] structural units in the glass network. The Urbach energy (Δ E), cut-off wavelength (λ c ), optical band gap ( E opt ), optical basicity (Λ) and electron polarizability ( α) of the glasses were determined from optical absorption studies. The density ( ρ), molar volume ( V m ), oxygen molar volume ( V o ) and refractive index ( n) were also measured. Spin-Hamiltonian parameters were calculated from the EPR studies. When Nb2O5 was increased at the expense of ZnO, the density, optical band gap and Urbach energy of the glasses increased, and the electronic polarizability and optical basicity decreased. The EPR spectra clearly showed that vanadium was in the glass as VO2+ and occupied octahedral sites with tetrahedral compression. Spin-Hamiltonian parameters g‖ and g⊥ decreased as Nb2O5 content increased in the glass. The glass transition temperature ( T g ) also increased with increasing Nb2O5 content in the glass.

  12. Promotion effect of Pt on a SnO2-WO3 material for NOx sensing

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Yang; Hong, Zih-Siou; Wu, Ren-Jang

    2015-05-01

    Metal-oxide nanocomposites were prepared over screen-printed gold electrodes to be used as room-temperature NOx (nitric-oxide (NO) and nitrogen dioxide (NO2)) sensors. Various weight ratios of SnO2-WO3 and Pt loadings were used for NO sensing. The sensing materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface analysis. The NO-sensing results indicated that SnO2-WO3 (1:2) was more effective than other materials were. The sensor response (S=resistance of N2/resistance of NO=RN2/RNO) for detecting 1000 ppm of NO at room temperature was 2.6. The response time (T90) and recovery time (TR90) was 40 s and 86 s, respectively. By further loading with 0.5% Pt, the sensor response increased to 3.3. The response and recovery times of 0.5% Pt/SnO2-WO3 (1:2) were 40 s and 206 s, respectively. The linearity of the sensor response for a NO concentration range of 10-1000 ppm was 0.9729. A mechanism involving Pt promotion of the SnO2-WO3 heterojunction was proposed for NO adsorption, surface reaction, and adsorbed NO2 desorption.

  13. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  14. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    PubMed

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Impedance spectroscopy of V2O5-Bi2O3-BaTiO3 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Al-syadi, Aref M.; Yousef, El Sayed; El-Desoky, M. M.; Al-Assiri, M. S.

    2013-12-01

    The glasses within composition as: (80 - x)V2O5/20Bi2O3/xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol% have been prepared. The glass transition (Tg) increases with increasing BaTiO3 content. Synthesized glasses ceramic containing BaTi4O9, Ba3TiV4O15 nanoparticles of the order of 25-35 nm and 30-46 nm, respectively were estimated using XRD. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of BaTiO3 content by impedance spectroscopy measurements. The hopping frequency, ωh, dielectric constant, ɛ', activation energies for the DC conduction, Eσ, the relaxation process, Ec, and stretched exponential parameter β of the glasses samples have been estimated. The, ωh,β, decrease from 51.63 to 0.31 × 106 (s-1), 0.84 to 0.79 with increasing BaTiO3 respectively. Otherwise, the Eσ, increase from 0.279 to 0.306 eV with increasing BaTiO3. The value of dielectric constant equal 9.5·103 for the 2.5BaTiO3/77.5V2O5/20Bi2O3 glasses-ceramic at 330 K for 1 KHz which is ten times larger than that of same glasses composition. Finally the relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy were determined.

  16. Reactivity of Hydrogen and Methanol on (001) Surfaces of WO3, ReO3, WO3/ReO3 and ReO3/WO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Sanliang; Mei, Donghai; Gutowski, Maciej S.

    2011-05-16

    Bulk tungsten trioxide (WO3) and rhenium trioxide (ReO3) share very similar structures but display different electronic properties. WO3 is a wide bandgap semiconductor while ReO3 is an electronic conductor. With the advanced molecular beam epitaxy techniques, it is possible to make heterostructures comprised of layers of WO3 and ReO3. These heterostructures might display reactivity different than pure WO3 and ReO3. The interactions of two probe molecules (hydrogen and methanol) with the (001) surfaces of WO3, ReO3, and two heterostructures ReO3/WO3 and WO3/ReO3 were investigated at the density functional theory level. Atomic hydrogen prefers to adsorb at the terminal O1C sitesmore » forming a surface hydroxyl on four surfaces. Dissociative adsorption of a hydrogen molecule at the O1C site leads to formation of a water molecule adsorbed at the surface M5C site. This is thermodynamically the most stable state. A thermodynamically less stable dissociative state involves two surface hydroxyl groups O1CH and O2CH. The interaction of molecular hydrogen and methanol with pure ReO3 is stronger than with pure WO3 and the strength of the interaction substantially changes on the WO3/ReO3 and ReO3/WO3 heterostructures. The reaction barriers for decomposition and recombination reactions are sensitive to the nature of heterostructure. The calculated adsorption energy of methanol on WO3(001) of -65.6 kJ/mol is consistent with the previous experimental estimation of -67 kJ/mol. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  17. Hydrogenated TiO2 nanotube arrays for supercapacitors.

    PubMed

    Lu, Xihong; Wang, Gongming; Zhai, Teng; Yu, Minghao; Gan, Jiayong; Tong, Yexiang; Li, Yat

    2012-03-14

    We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors. © 2012 American Chemical Society

  18. Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Guohui; Ji, Shaozheng; Sang, Yuanhua; Chang, Sujie; Wang, Yana; Hao, Pin; Claverie, Jerome; Liu, Hong; Yu, Guangwei

    2015-02-01

    A novel scaly Sn3O4/TiO2 nanobelt heterostructured photocatalyst was fabricated via a facile hydrothermal route. The scaly Sn3O4 nanoflakes can be synthesized in situ and assembled on surface coarsened TiO2 nanobelts through a hydrothermal process. The morphology and distribution of Sn3O4 nanoflakes can be well-controlled by simply tuning the Sn/Ti molar ratio of the reactants. Compared with single phase nanostructures of Sn3O4 and TiO2, the scaly hybrid nanobelts exhibited markedly enhanced photoelectrochemical (PEC) response, which caused higher photocatalytic hydrogen evolution even without the assistance of Pt as a co-catalyst, and enhanced the degradation ability of organic pollutants under both UV and visible light irradiation. In addition to the increased exposure of active facets and broad light absorption, the outstanding performance is ascribed to the matching energy band structure between Sn3O4 and TiO2 at the two sides of the heterostructure, which efficiently reduces the recombination of photo-excited electron-hole pairs and prolongs the lifetime of charge carriers. Both photocatalytic assessment and PEC tests revealed that Sn3O4/TiO2 heterostructures with a molar ratio of Sn/Ti of 2/1 exhibited the highest photocatalytic activity. This study provides a facile and low-cost method for the large scale production of Sn3O4 based materials in various applications.A novel scaly Sn3O4/TiO2 nanobelt heterostructured photocatalyst was fabricated via a facile hydrothermal route. The scaly Sn3O4 nanoflakes can be synthesized in situ and assembled on surface coarsened TiO2 nanobelts through a hydrothermal process. The morphology and distribution of Sn3O4 nanoflakes can be well-controlled by simply tuning the Sn/Ti molar ratio of the reactants. Compared with single phase nanostructures of Sn3O4 and TiO2, the scaly hybrid nanobelts exhibited markedly enhanced photoelectrochemical (PEC) response, which caused higher photocatalytic hydrogen evolution even without the

  19. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols.

    PubMed

    Mante, Ofei D; Rodriguez, Jose A; Babu, Suresh P

    2013-11-01

    This study is focused on defunctionalizing monomeric phenolics from lignin into simple phenols for applications such as phenol/formaldehyde resins, epoxidized novolacs, adhesives and binders. Towards this goal, Titanium dioxide (TiO2) was used to selectively remove hydroxyl, methoxy, carbonyl and carboxyl functionalities from the monomeric phenolic compounds from lignin to produce mainly phenol, cresols and xylenols. The results showed that anatase TiO2 was more selective and active compared to rutile TiO2. Catechols were found to be the most reactive phenolics and 4-ethylguaiacol the least reactive with anatase TiO2. An overall conversion of about 87% of the phenolics was achieved at 550°C with a catalyst-to-feed ratio of 5 w/w. Over 97% conversion of phenolics is achievable at moderate temperatures (550°C or ≤ 600°C) and a moderate catalyst-to-feed ratio of 6.5:1. The reactivity of catechols on TiO2 suggests that titania is a promising catalyst in the removal of hydroxyl moiety. Published by Elsevier Ltd.

  20. NO and NO2 Sensing Properties of WO3 and Co3O4 Based Gas Sensors

    PubMed Central

    Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2013-01-01

    Semiconductor-based gas sensors that use n-type WO3 or p-type Co3O4 powder were fabricated and their gas sensing properties toward NO2 or NO (0.55 ppm in air) were investigated at 100 °C or 200 °C. The resistance of the WO3-based sensor increased on exposure to NO2 and NO. On the other hand, the resistance of the Co3O4-based sensor varied depending on the operating temperature and the gas species. The chemical states of the surface of WO3 or those of the Co3O4 powder on exposure to 1 ppm NO2 and NO were investigated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. No clear differences between the chemical states of the metal oxide surface exposed to NO2 or NO could be detected from the DRIFT spectra. PMID:24048338

  1. Electron-Selective TiO 2 Contact for Cu(In,Ga)Se 2 Solar Cells

    DOE PAGES

    Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; ...

    2015-11-03

    The non-toxic and wide bandgap material TiO 2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se 2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO 2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO 2 buffer layer result in a high short-circuit current density of 38.9 mA/cm 2 as compared to 36.9 mA/cm 2 measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UVmore » part of the spectrum, can be attributed to the low parasitic absorption loss in the ultrathin TiO 2 layer (~10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO 2 on an active cell area of 10.5 mm2. In conclusion, optimized TiO 2/CIGS solar cells show excellent long-term stability. The results imply that TiO 2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage.« less

  2. Temperature compensation effects of TiO2 on Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave dielectric ceramic

    NASA Astrophysics Data System (ADS)

    Hu, Mingzhe; Wei, Huanghe; Xiao, Lihua; Zhang, Kesheng; Hao, Yongde

    2017-10-01

    The crystal structure and dielectric properties of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave ceramics are investigated in the present paper. The crystal structure is probed by XRD patterns and their Rietveld refinement, results show that a single perovskite phase is formed in TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics with the crystal structure belonging to the orthorhombic Pbnm 62 space group. Raman spectra results indicate that the B-site order-disorder structure transition is a key point to the dielectric loss of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics at microwave frequencies. After properly modified by TiO2, the large negative temperature coefficient of Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramic can be compensated and the optimal microwave dielectric properties can reach 𝜀r = 25.66, Qf = 18,894 GHz and TCF = -6.3 ppm/∘C when sintered at 1170∘C for 2.5 h, which manifests itself for potential use in microwave dielectric devices for modern wireless communication.

  3. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light.

    PubMed

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.

  4. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  5. Nanoscale TiO2 and Fe2O3 Architectures for Solar Energy Conversion Schemes

    NASA Astrophysics Data System (ADS)

    Sedach, Pavel Anatolyvich

    The direct conversion of sunlight into more useable forms of energy has the potential of alleviating the environmental and social problems associated with a dependence on fossil fuels. If solar energy is to be utilized en-masse, however, it must be inexpensive and widely available. In this vein, the focus of this thesis is on nanostructured materials relevant to solar energy conversion and storage. Specifically, this thesis describes the ambient sol-gel synthesis of titanium dioxide (Ti02) nanowires designed for enhanced charge-transfer in solar collection devices, and the synthesis of novel disordered metal-oxide (MOx) catalysts for water oxidation. The introductory chapter of this thesis gives an overview of the various approaches to solar energy conversion. Sol---gel reaction conditions that enable the growth of one-dimensional (1-D) anatase TiO2 nanostructures from fluorine-doped tin oxide (FTO) for photovoltaics (PVs) are described in the second chapter. The generation of these linear nanostructures in the absence of an external bias or template is achieved by using facile experimental conditions (e.g., acetic acid (HOAc) and titanium isopropoxide (Ti(OiPr)4) in anhydrous heptane). The procedure was developed by functionalizing base-treated substrates with Ti-oxide nucleation sites that serve as a foundation for the growth of linear Ti-oxide macromolecules, which upon calcination, render uniform films of randomly oriented anatase TiO2 nanowires. A systematic evaluation of how reaction conditions (e.g., solvent volume, stoichiometry of reagents, substrate base treatment) affect the generation of these TiO 2 films is presented. A photo-organic MO. deposition route (i.e., photochemical metal-organic deposition (PMOD)) used to deposit thin-films of amorphous iron oxide (a-Fe2O3) for water oxidation catalysis is detailed in third chapter. It is shown that the irradiation of a spin-coated metal-organic film produces a film of non-crystalline a-Fe203. It is shown

  6. Expansion of antimonato polyoxovanadates with transition metal complexes: (Co(N3C5H15)2)2[{Co(N3C5H15)2}V15Sb6O42(H2O)]·5H2O and (Ni(N3C5H15)2)2[{Ni(N3C5H15)2}V15Sb6O42(H2O)]·8H2O.

    PubMed

    Antonova, Elena; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2012-02-20

    Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) Å, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) Å(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) Å, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) Å(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not

  7. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  8. TiO2-nanowire/MWCNT composite with enhanced performance and durability for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Selvaganesh, S. Vinod; Dhanasekaran, P.; Bhat, Santoshkumar D.

    2017-12-01

    Durability is a major issue and has been the growing focus of research for the commercialization of polymer electrolyte fuel cells (PEFCs). Corrosion of carbon support is a key parameter as it triggers the Pt catalyst degradation and affects cell performance, which in turn affects the longevity of the cells. Herein, we describe a hybrid composite support of TiO2-nanowires and Multiwalled carbon nanotubes (MWCNTs) that offers resistance to corrosion under stressful operating conditions. Titania nanowireswhich have been shown to be more efficient and catalytically active than spherically shaped TiO2. TiO2-MWCNT composites are prepared through a hydrothermal method, followed by Pt deposition using a polyol method. Crystal structure, morphology, and oxidation state are examined through various characterization techniques. Electrochemical performance of TiO2-nanowire/MWCNT composite-supported Pt at various ratios of TiO2/MWCNT is assessed in PEFCs. Pt on support with optimum composition of TiO2-nanowires to MWCNTs exhibits fuel cell performance superior to Pt onMWCNTs. Accelerated stress testing (AST) between 1 and 1.5 V reveals that the designed catalyst on nanocomposite support possesses superior electrochemical activity and shows only 16% loss in catalytic activity in relation to 35% for Pt/MWCNTs even after 6000 potential cycles. Subsequently, the samples were characterized after AST to correlate the loss in fuel cell performance

  9. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers.

    PubMed

    Lin, Lu; Wang, Huiyao; Jiang, Wenbin; Mkaouar, Ahmed Radhi; Xu, Pei

    2017-07-05

    Incorporating reduced graphene oxide (rGO) or Fe 3+ ions in TiO 2 photocatalyst could enhance photocatalytic degradation of organic contaminants in aqueous solutions. This study characterized the photocatalytic activities of TiO 2 -Fe and TiO 2 -rGO nanocomposites immobilized on optical fibers synthesized by polymer assisted hydrothermal deposition method. The photocatalysts presented a mixture phase of anatase and rutile in the TiO 2 -rGO and TiO 2 -Fe nanocomposites. Doping Fe into TiO 2 particles (2.40eV) could reduce more band gap energy than incorporating rGO (2.85eV), thereby enhancing utilization efficiency of visible light. Incorporating Fe and rGO in TiO 2 decreased significantly the intensity of TiO 2 photoluminescence signals and enhanced the separation rate of photo-induced charge carriers. Photocatalytic performance of the synthesized nanocomposites was measured by the degradation of three pharmaceuticals under UV and visible light irradiation, including carbamazepine, ibuprofen, and sulfamethoxazole. TiO 2 -rGO exhibited higher photocatalytic activity for the degradation of pharmaceuticals under UV irradiation, while TiO 2 -Fe demonstrated more suitable for visible light oxidation. The results suggested that the enhanced photocatalytic performance of TiO 2 -rGO could be attributed to reduced recombination rate of photoexcited electrons-hole pairs, but for TiO 2 -Fe nanocomposite, narrower band gap would contribute to increased photocatalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    PubMed

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage.

  11. SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2

    NASA Astrophysics Data System (ADS)

    Choi, Jina; Qu, Yan; Hoffmann, Michael R.

    2012-08-01

    In recent years, the search for environmentally friendly alternative energy sources with reduced carbon footprints has increased. The coupling of photovoltaic power sources with advanced electrolysis systems for hydrogen production via water splitting using organic contaminants as sacrificial electron donors has been considered to a be viable alternative. In this report, we demonstrated the feasibility of a scaled-up rooftop prototype of the proposed hybrid photovoltaic-electrolysis system, which utilizes semiconductor nanoparticles coated on to metal substrates as electrodes for the generation of hydrogen coupled with the oxidation of wastewater. Application of an anodic bias of >2.0 V to bismuth-doped TiO2 (BiO x -TiO2) on Ti metal anodes with a sequential under-coatings of nanoparticulate SnO2, IrO2, Ta2O5, and Bi2O3 results in the electrochemical degradation of a variety of organic chemical contaminants in water (i.e., rhodamine B (Rh.B), methylene blue (MB), salicylic acid, triclosan, and phenol) and actual wastewater from a chemical manufacturing plant, while at the same time, molecular hydrogen is produced at stainless steel (SS) cathodes. The kinetics of the anodic substrates oxidation is investigated as a function of the cell current ( I cell), substrate concentration, and background electrolyte composition (e.g., NaCl, Na2SO4, or seawater). Average current efficiencies were found to be in the range of 4-22 %, while the cathodic current and energy efficiencies for hydrogen production were found to be in the range of 50-70 % and 20-40 %, respectively.

  12. Thermochromic VO2 Films Deposited by RF Magnetron Sputtering Using V2O3 or V2O5 Targets

    NASA Astrophysics Data System (ADS)

    Shigesato, Yuzo; Enomoto, Mikiko; Odaka, Hidehumi

    2000-10-01

    Thermochromic monoclinic-tetragonal VO2 films were successfully deposited on glass substrates with high reproducibility by rf magnetron sputtering using V2O3 or V2O5 targets. In the case of reactive sputtering using a V-metal target, the VO2 films could be obtained only under the very narrow deposition conditions of the “transition region” where the deposition rate decreases drastically with increasing oxygen gas flow rate. In the case of a V2O3 target, polycrystalline VO2 films with a thickness of 400 to 500 nm were obtained by the introduction of oxygen gas [O2/(Ar+O2)=1--1.5%], whereas hydrogen gas [H2/(Ar+H2)=2.5--10%] was introduced in the case of a V2O5 target. Furthermore, the VO2 films were successfully grown heteroepitaxially on a single-crystal sapphire [α-Al2O3(001)] substrate, where the epitaxial relationship was confirmed to be VO2(010)[100]\\parallelAl2O3(001)[100], [010], [\\bar{1}\\bar{1}0] by an X-ray diffraction pole figure measurement. The resistivity ratio between semiconductor and metal phases for the heteroepitaxial VO2 films was much larger than the ratio of the polycrystalline films on glass substrates under the same deposition conditions.

  13. Friction and wear behaviour of plasma sprayed Cr2O3-TiO2 coating

    NASA Astrophysics Data System (ADS)

    Bagde, Pranay; Sapate, S. G.; Khatirkar, R. K.; Vashishtha, Nitesh; Tailor, Satish

    2018-02-01

    Cr2O3-25TiO2 coating was deposited by atmospheric plasma spray (APS) coating technique. Effect of load (5-30 N) and sliding velocity (0.25, 0.75 m s-1) on friction coefficient and abrasive wear behaviour of the Cr2O3-25TiO2 coating was studied. Mechanical and microstructural characterization of the Cr2O3-25TiO2 coating was carried out. With an increase in sliding velocity, abrasive wear rate and friction coefficient (COF) decreased while wear rate and friction coefficient showed an increasing trend with the load. The worn out surfaces were analyzed by SEM, EDS and XRD. At lower sliding velocity, XRD analysis revealed peaks of Ti2O3, Ti3O5, CrO2 and CrO3. In addition, peak of Ti4O7 was also detected at higher sliding velocity and at 30 N load. At higher sliding velocity medium to severe tribo oxidation was observed. XPS analysis of worn surfaces at both the sliding velocities, showed surface film of oxides of titanium and chromium along with Cr(OH)3. Magneli phase titanium oxides with sub stoichiometric composition, along with surface films of chromium oxides and hydroxides altered the friction and wear behaviour of the coating. The decrease in friction coefficient with an increase in sliding velocity was attributed to tribo oxides and tribochemical reaction films having lower shear strength with good lubricating properties. The mechanism of material removal involved plastic deformation at lower load whereas inter-granular and trans-granular fracture, delamination cracking and splat fracture was observed with an increase load from 10 N to 30 N.

  14. The effect of Substrate temperature on physical and electrical properties of DC magnetron sputtered (Ta2O5)0.85(TiO2)0.15 films

    NASA Astrophysics Data System (ADS)

    Sekhar, M. Chandra; Uthanna, S.; Martins, R.; Jagadeesh Chandra, S. V.; Elangovan, E.

    2012-04-01

    Thin films of (Ta2O5)0.85(TiO2)0.15 were deposited on quartz and p-Si substrates by DC reactive magnetron sputtering at different substrate temperatures (Ts) in the range 303 - 873 K. The films deposited at 303 0K were in the amorphous and it transformed to crystalline at substrate temperatures >= 573 0K. The crystallite size was increased from 50 nm to 72 nm with the increase of substrate temperature. The surface morphology was significantly influenced with the substrate temperature. After deposition of the (Ta2O5)0.85(TiO2)0.15 films on Si, aluminium (Al) electrode was deposited to fabricate metal/oxide/semiconductor (MOS) capacitors with a configuration of Al/(Ta2O5)0.85(TiO2)0.15/Si. A low leakage current of 7.7 × 10-5 A/cm2 was obtained from the films deposited at 303 K. The leakage current was decreased to 9.3 × 10-8 A/cm2 with the increase of substrate temperature owing to structural changes. The conduction mechanism of the Al/(Ta2O5)0.85(TiO2)0.15/Si capacitors was analyzed and compared with mechanisms of Poole-Frenkel and Schottky emissions. The optical band gap (Eg) was decreased from 4.45 eV to 4.38 eV with the increase in substrate temperature.

  15. Photodegradation of Orange II by mesoporous TiO2.

    PubMed

    Kuang, Liyuan; Zhao, Yaping; Liu, Lu

    2011-09-01

    Mesoporous TiO(2) microspheres were prepared by a hydrothermal reaction and are characterized in this paper. Decoloration and mineralization during photodegradation of Orange II by mesoporous TiO(2) at different pH values, formation of sulfate, relative luminosity to luminous bacteria and recycling experiments of the catalyst were studied. The FTIR results further suggested that the novel mesoporous TiO(2) can not only decolor and mineralize dyes completely but also can be effectively reused several times. On the basis of the research, mesoporous TiO(2) would be a promising photocatalyst for practical use.

  16. In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation.

    PubMed

    Zhang, Yong-Gang; Ma, Li-Li; Li, Jia-Lin; Yu, Ying

    2007-09-01

    TiO2/Cu2O composite is prepared by a simple electrochemical method and coated on glass matrix through a spraying method. The obtained composite is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of TiO2/Cu2O composite films with different ratio of TiO2 and Cu2O on photodegradation of the dye methylene blue under visible light is investigated in detail. It is found that the photocatalytic activity of TiO2/Cu2O composite film with the presence of FeSO4 and EDTA is much higher than that for the similar system with only TiO2 and Cu2O film respectively. Without the presence of FeSO4 and EDTA, there is no degradation for methylene blue. The exploration of the optimized parameters for the degradation of methylene blue by using TiO2/Cu2O composite film as catalyst under visible light was also carried out. The most significant factor is the amount of Ti02 in the composite, and the second significant factor is the concentration of FeSO4. During the degradation of methylene blue under visible light, TiO2/Cu2O composite film generates H202, and Fenton regent is formed with Fe2+ and EDTA, which is detected in this study. The mechanism for the great improvement of photocatalytic activity of TiO2/Cu2O composite film under visible light is proposed by the valence band theory. Electrons excitated from TiO2/Cu2O composite under visible light are transferred from the conduction band of Cu2O to that of Ti02. The formed intermediate state of Ti 3+ ion is observed by X-ray photoelectron spectroscopy (XPS) on the TiO/Cu2O composite film. Additionally, the accumulated electrons in the conduction band of TiO2 are transferred to oxygen on the TiO2 surface for the formation of O2- or O2(2-), which combines with H+ to form H2O2. The evolved H202 with FeSO4 and EDTA forms Fenton reagentto degrade methylene blue. Compared to the traditional Fenton reagent, this new kind of in situ Fenton reagent generated from TiO2/Cu2O composite film does not need to

  17. Thermodynamic and kinetic analyses of the CO2 chemisorption mechanism on Na2TiO3: Experimental and theoretical evidences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2014-01-01

    ABSTRACT: Sodium metatitanate (Na2TiO3) was successfully synthesized via a solid-state reaction. The Na2TiO3 structure and microstructure were characterized using X-ray diffraction, scanning and transmission electron microscopy, and N2 adsorption. Then, the CO2 chemisorption mechanism on Na2TiO3 was systematically analyzed to determine the influence of temperature. The CO2 chemisorption capacity of Na2TiO3 was evaluated both dynamically and isothermally, and the products were reanalyzed to elucidate the Na2TiO3-CO2 reaction mechanism. Different chemical species (Na2CO3, Na2O, and Na4Ti5O12 or Na16Ti10O28) were identified during the CO2 capture process in Na2TiO3. In addition, some CO2 chemisorption kinetic parameters were determined. The ΔH‡ was found tomore » be 140.9 kJ/mol, to the Na2TiO3-CO2 system, between 600 and 780 °C. Results evidenced that CO2 chemisorption on Na2TiO3 highly depends on the reaction temperature. Furthermore, the experiments were theoretically supported by different thermodynamic calculations. The calculated thermodynamic properties of CO2 capture reactions by (Na2TiO3, Na4Ti5O12, and Na16Ti10O28) sodium titanates were fully investigated.« less

  18. AN INVESTIGATION OF CFC12 (CCI2F2) DECOMPOSITION ON TIO2 CATALYST

    EPA Science Inventory

    The catalytic oxidation of CFC12 was studied over a titania (TiO2) catalyst in a fixed-bed reactor at temperatures ranging from 200 to 400 degrees C and space velocity of 10,500 h-1. Results showed substantially complete conversion of CFC12 (>90%) to CO2 and halogen acids at and...

  19. Y-doping TiO2 nanorod arrays for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu

    2018-05-01

    To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.

  20. The Effect of TiO2 on the Liquidus Zone and Apparent Viscosity of SiO2-CaO-8wt.%MgO-14wt.%Al2O3 System

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Zhang, Jie; Xu, Jian

    TiO2 has been approved as a viscosity-decreasing agent in blast furnace slag under inert atmosphere both by experimental and structure calculation. However, the validity of the above conclusion in a much bigger zone in CaO-SiO2-Al2O3-MgO phase diagram has not approved. The viscosity of slag dependent on the TiO2 content and basicity were measured in the present work. It was found that the viscosity and viscous activation energy decrease with increasing TiO2 content and basicity at a reasonable range, indicating TiO2 behaved as a viscosity-decreasing agent by depolymerizing the silicate network structure when its less than 50wt. %. The liquidity of the slag can be improved when TiO2 content less than 50wt. % and basicity from 0.5 to 1.1. The free running temperature increase at TiO2 content from 10wt.% to 30wt. %. The results of calculation does not agree well with the experimental values at a high basicity of 1.3 with TiO2 content from 20wt.% to 30wt.% and the lower basicity of 0.5 with TiO2 content more than 50wt.%.

  1. Preparation of Fe3O4/SiO2-guanidine organobase catalyst for 1,5-diphenylpenta-2,4-dien-1-one synthesis

    NASA Astrophysics Data System (ADS)

    Cahyana, A. H.; Fitria, D.; Ardiansah, B.; Rahayu, D. U. C.

    2017-04-01

    A novel heterogeneous organobase catalyst of Fe3O4/SiO2-guanidine was prepared in three stages. First, Fe3O4 nanoparticle was obtained by co-precipitation method using seaweed Sargassum Sp. as natural reductant. Fe3O4 was then coated by SiO2 using TEOS as silica source, resulting Fe3O4/SiO2. Finally, Fe3O4/SiO2-Guanidine was obtained by modifying Fe3O4/SiO2 with guanidine in the suitable reaction condition. This organobase catalyst was characterized by Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Particle Size Analyzer (PSA). The material was then used as a highly active catalyst in aldol condensation reaction between acetophenone and cinnamaldehyde to produce 1,5-diphenylpenta-2,4-dien-1-one. The structure elucidation of the organic product was confirmed by UV-Vis, FTIR, and LC-MS.

  2. The promoting effect of CeO2@Ce-O-P multi-core@shell structure on SO2 tolerance for selective catalytic reduction of NO with NH3 at low temperature

    NASA Astrophysics Data System (ADS)

    Yao, Weiyuan; Liu, Yue; Wu, Zhongbiao

    2018-06-01

    A series of CeO2@Ce-O-P "multi-core@shell" catalysts were synthesized in this paper for selective catalytic reduction (SCR) of NO with NH3. The experimental results had showed that CeO2@Ce-O-P-30:3 yielded best SO2 tolerance of an over 70% deNOx efficiency at 250 °C in the presence of 100 ppm SO2 for 20 h, which was much higher compared to pure Ce-O-P and CeO2 samples. Further characterization results indicated that Ce-O-P coating layer could somewhat inhibit sulfur depositing on the catalysts during SCR reaction in the presence of SO2, thereby protecting the active sites from SO2 poisoning. Especially, O2-TPD results illustrated that a great amount of active oxygen species were retained on used CeO2@Ce-O-P catalyst after a long term reaction. The synergetic effect of "multi-core@shell" structure could be attributed to such enhanced performances. The "core" CeO2 devoted abundant active oxygen sites to fulfill the SCR reaction. And the "shell" Ce-O-P could not only provide acid sites, but also protect the active oxygen species by avoiding the over-adsorption of SO2 on the catalyst. This work could provide a new way to increase the sulfur resistance for low temperature SCR catalysts.

  3. Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction.

    PubMed

    Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro

    2018-04-05

    A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Synthesis of a Core-Shell Photocatalyst Material YF3:Ho3+@TiO2 and Investigation of Its Photocatalytic Properties

    PubMed Central

    Xu, Xuan; Zhou, Shiyu; Long, Jun; Wu, Tianhu; Fan, Zihong

    2017-01-01

    In this paper, YF3:Ho3+@TiO2 core-shell nanomaterials were prepared by hydrolysis of tetra-n-butyl titanate (TBOT) using polyvinylpyrrolidone K-30 (PVP) as the coupling agent. Characterization methods including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) under TEM, X-ray photoelectron spectroscopy (XPS), fluorescence spectrometry, ultraviolet-visible diffuse reflectance spectroscopy, and electron spin resonance (ESR) were used to characterize the properties and working mechanism of the prepared photocatalyst material. They indicated that the core phase YF3 nanoparticles were successfully coated with a TiO2 shell and the length of the composite was roughly 100 nm. The Ho3+ single-doped YF3:Ho3+@TiO2 displayed strong visible absorption peaks with wavelengths of 450, 537, and 644 nm, respectively. By selecting these three peaks as excitation wavelengths, we could observe 288 nm (5D4→5I8) ultraviolet emission, which confirmed that there was indeed an energy transfer from YF3:Ho3+ to anatase TiO2. In addition, this paper investigated the influences of different TBOT dosages on photocatalysis performance of the as-prepared photocatalyst material. Results showed that the YF3:Ho3+@TiO2 core-shell nanomaterial was an advanced visible-light-driven catalyst, which decomposed approximately 67% of rhodamine b (RhB) and 34.6% of phenol after 10 h of photocatalysis reaction. Compared with the blank experiment, the photocatalysis efficiency was significantly improved. Finally, the visible-light-responsive photocatalytic mechanism of YF3:Ho3+@TiO2 core-shell materials and the influencing factors of photocatalytic degradation were investigated to study the apparent kinetics, which provides a theoretical basis for improving the structural design and functions of this new type of catalytic material. PMID:28772662

  5. Large optical second-order nonlinearity of poled WO3-TeO2 glass.

    PubMed

    Tanaka, K; Narazaki, A; Hirao, K

    2000-02-15

    Second-harmonic generation, one of the second-order nonlinear optical properties of thermally and electrically poled WO>(3)-TeO>(2) glasses, has been examined. We poled glass samples with two thicknesses (0.60 and 0.86 mm) at various temperatures to explore the effects of external electric field strength and poling temperature on second-order nonlinearity. The dependence of second-harmonic intensity on the poling temperature is maximum at a specific poling temperature. A second-order nonlinear susceptibility of 2.1 pm/V was attained for the 0.60-mm-thick glass poled at 250 degrees C. This value is fairly large compared with those for poled silica and tellurite glasses reported thus far. We speculate that the large third-order nonlinear susceptibility of WO>(3)- TeO>(2) glasses gives rise to the large second-order nonlinearity by means of a X((2)) = 3X((3)) E(dc) process.

  6. TiO2 and Al2O3 promoted Pt/C nanocomposites as low temperature fuel cell catalysts for electro oxidation of methanol in acidic media

    NASA Astrophysics Data System (ADS)

    Naeem, Rabia; Ahmed, Riaz; Shahid Ansari, Muhammad

    2014-06-01

    Carbon corrosion and platinum dissolution are the two major catalyst layer degradation problems in polymer electrolyte membrane fuel cells (PEMFC). Ceramic addition can reduce the corrosion of carbon and increase the stability of catalysts. Pt/TiO2, Pt/TiO2-C, Pt/Al2O3 and Pt/Al2O3-C catalysts were synthesized and characterized. Electrochemical surface area of Pt/TiO2-C and Pt/Al2O3-C nanocomposite catalysts was much higher than the Pt/TiO2 and Pt/Al2O3 catalysts. Peak current, specific activity and mass activity of the catalysts was also determined by cyclic voltammetry and were much higher for the carbon nanocomposites. Exchange current densities were determined from Tafel plots. Heterogeneous rates of reaction of electro oxidation of methanol were determined for all the catalysts and were substantially higher for titania catalysts as compared to alumina added catalysts. Mass activity of Pt/TiO2-C was much higher than mass activity of Pt/Al2O3-C. Stability studies showed that addition of ceramics have increased the catalytic activity and durability of the catalysts considerably.

  7. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    NASA Astrophysics Data System (ADS)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  8. A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton

    A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysismore » using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.« less

  9. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.

    PubMed

    Ferguson, Megan A; Hering, Janet G

    2006-07-01

    Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally

  10. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing

    NASA Astrophysics Data System (ADS)

    Patil, S. M.; Dhodamani, A. G.; Vanalakar, S. A.; Deshmukh, S. P.; Delekar, S. D.

    2018-04-01

    TiO2-based mixed metal oxide heteronanostructures have multiple applications in photocatalysis and gas sensing because of their charge transport properties. In this study, we prepared tetragonal TiO2/SnO2 nanocomposites (NCs) with different weight percentages using a simple wet impregnation method. The physicochemical properties of the NCs were investigated using X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and Brunauer-Emmett-Teller surface area analysis. The results showed that the surface area of the NCs increased significantly and the anatase TiO2 was sensitized after the addition of a small amount of cassiterite SnO2 NPs. We systematically studied the as-prepared NCs during the photocatalytic degradation of Congo Red dye under visible light irradiation (λ > 420 nm) and NH3 gas sensing, which demonstrated the efficient photocatalytic performance and the superior sensing response of the catalyst with a weight composition of 25% SnO2 in TiO2 (4:1) compared with the other NCs or the bare individual nanoparticles. The improved photocatalytic and gas sensing performance of the TiO2/SnO2 (4:1) NCs may be attributed to the increased active surface area, the increased adsorption of the dye and target gas molecules, as well as efficient electron-hole charge separation and transfer.

  11. Effect of Thermal Processes on the Electrical and Optical Properties of Fe2TiO5 Ceramics

    NASA Astrophysics Data System (ADS)

    Fajarin, R.; Widyastuti; Baqiya, M. A.; Putri, I. Y. S.

    2017-05-01

    Pseudobrookite (Fe2TiO5) is one of the Fe-Ti oxides that have been commonly studied. It is the most stable phase among the Fe-titanates. The multiferroic properties of Fe2TiO5 make the material can be used as a potential candidate for new applications due to the combination of semiconducting, magnetic, dielectric, and optical properties. In this research, Fe2TiO5 ceramics were synthesized using mechanical milling method for 7 h with various temperatures of 1100 °C, 1200 °C, and 1300 °C. Scanning electron microscopy (SEM) observation and x-ray diffraction (XRD) measurements were performed to analyze the microstructures and crystal structures of the Fe2TiO5 ceramics. In order to investigate the band gap of the Fe2TiO5, the UV-Vis Diffuse Reflectance measurements were conducted. It has been found that the Fe2TiO5 ceramic can be applied as a promising candidate for semiconducting devices in which the electrical conductivity and the band gap of the Fe2TiO5 ceramic were 1.73 × 10-7 Ω-1.cm-1 and 1.71 eV, respectively.

  12. Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass.

    PubMed

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Gao, Yuan

    2005-10-01

    Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.

  13. Low temperature biosynthesis of Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction.

    PubMed

    Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng

    2013-04-01

    We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Surface modification of layered perovskite Sr2TiO4 for improved CO2 photoreduction with H2O to CH4.

    PubMed

    Kwak, Byeong Sub; Do, Jeong Yeon; Park, No-Kuk; Kang, Misook

    2017-11-27

    Layered perovskite Sr 2 TiO 4 photocatalyst was synthesized by using sol-gel method with citric acid. In order to increase the surface area of layered perovskite Sr 2 TiO 4 , and thus to improve its photocatalytic activity for CO 2 reduction, its surface was modified via hydrogen treatment or exfoliation. The physical and chemical properties of the prepared catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy, elemental mapping analysis, energy-dispersive X-ray spectroscopy, N 2 adsorption-desorption, UV-Vis spectroscopy, X-ray photoelectron spectroscopy, photoluminescence, and electrophoretic light scattering. CO 2 photoreduction was performed in a closed reactor under 6 W/cm 2 UV irradiation. The gaseous products were analyzed using a gas chromatograph equipped with flame ionization and thermal conductivity detectors. The exfoliated Sr 2 TiO 4 catalyst (E-Sr 2 TiO 4 ) exhibited a narrow band gap, a large surface area, and high dispersion. Owing to these advantageous properties, E-Sr 2 TiO 4 photocatalyst showed an excellent catalytic performance for CO 2 photoreduction reaction. The rate of CH 4 production from the photoreduction of CO 2 with H 2 O using E-Sr 2 TiO 4 was about 3431.77 μmol/g cat after 8 h.

  15. Activities of Combined TiO2 Semiconductor Nanocatalysts Under Solar Light on the Reduction of CO2.

    PubMed

    Liu, Hongfang; Dao, Anh Quang; Fu, Chaoyang

    2016-04-01

    The materials based on TiO2 semiconductors are a promising option for electro-photocatalytic systems working as solar energy low-carbon fuels exchanger. These materials' structures are modified by doping metals and metal oxides, by metal sulfides sensitization, or by graphene supported membrane, enhancing their catalytic activity. The basic phenomenon of CO2 reduction to CH4 on Pd modified TiO2 under UV irradiation could be enhanced by Pd, or RuO2 co-doped TiO2. Sensitization with metal sulfide QDs is effective by moving of photo-excited electron from QDs to TiO2 particles. Based on characteristics of the catalysts various combinations of catalysts are proposed in order to creat catalyst systems with good CO2 reduction efficiency. From this critical review of the CO2 reduction to organic compounds by converting solar light and CO2 to storable fuels it is clear that more studies are still attractive and needed.

  16. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    NASA Astrophysics Data System (ADS)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-04-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  17. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  18. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    PubMed

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  19. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).

    PubMed

    Migani, Annapaola; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje

    2015-01-13

    Knowledge of the frontier levels' alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O-TiO2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O-TiO2(110) interface.

  20. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.

    PubMed

    Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju

    2008-12-30

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).

  1. Hydrophilic TiO2 porous spheres anchored on hydrophobic polypropylene membrane for wettability induced high photodegrading activities.

    PubMed

    Niu, Fang; Zhang, Le-Sheng; Chen, Chao-Qiu; Li, Wei; Li, Lin; Song, Wei-Guo; Jiang, Lei

    2010-08-01

    TiO(2) porous nanospheres on polypropylene (PP) films (TiO(2)/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO(2) catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO(2) catalyst. In photodegrading reactions, the resulting TiO(2)/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO(2) catalyst in a traditional batch-type setup.

  2. Quasiparticle Interfacial Level Alignment of Highly Hybridized Frontier Levels: H2O on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migani, Annapaola; Mowbray, Duncan J.; Zhao, Jin

    Knowledge of the frontier levels’ alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O–TiO2(110) interface. Using the projected density of states (DOS)more » from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O–TiO2(110) interface.« less

  3. An innovative ultrasound, Fe(2+) and TiO(2) photoassisted process for bisphenol A mineralization.

    PubMed

    Torres-Palma, Ricardo A; Nieto, Jessica I; Combet, Evelyne; Pétrier, Christian; Pulgarin, Cesar

    2010-04-01

    This paper explores the degradation of a model pollutant, bisphenol A, by an advanced oxidation process that combines sonolysis, Fe(2+), and TiO(2) in a photoassisted process. Experiments were done under saturated oxygen conditions. The effect of different Fe(2+) (0.56 and 5.6 mg/L) and TiO(2) (10 and 50 mg/L) concentrations was investigated on both the elimination and mineralization of the pollutant. A pronounced synergistic effect that led to the complete and rapid elimination of dissolved organic carbon (DOC) was observed even at low catalyst loadings. In this system, almost a complete removal of DOC (93%) was observed after 4 h using 10 and 5.6 mg/L of TiO(2) and Fe(2+), respectively, whereas at the same time, only 5, 6, and 22% of DOC was removed by an individual process alone (TiO(2) photocatalysis, ultrasound, and photo-Fenton, respectively). In this system, ultrasound has the principal role of eliminating the initial substrate and providing hydrogen peroxide for the photocatalytic systems, while photo-Fenton and TiO(2) photocatalysis are mainly responsible for the transformation of the intermediates in CO(2) and H(2)O. The role of H(2)O(2) generated from the sonochemical process is also discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Effect of dissolved ozone or ferric ions on photodegradation of thiacloprid in presence of different TiO2 catalysts.

    PubMed

    Cernigoj, Urh; Stangar, Urska Lavrencic; Jirkovský, Jaromír

    2010-05-15

    Combining TiO(2) photocatalysis with inorganic oxidants (such as O(3) and H(2)O(2)) or transition metal ions (Fe(3+), Cu(2+) and Ag(+)) often leads to a synergic effect. Electron transfer between TiO(2) and the oxidant is usually involved. Accordingly, the degree of synergy could be influenced by TiO(2) surface area. With this in mind, the disappearance of thiacloprid, a neonicotinoid insecticide, was studied applying various photochemical AOPs and different TiO(2) photocatalysts. In photocatalytic ozonation experiments, synergic effect of three different TiO(2) photocatalysts was quantified. Higher surface area resulted in a more pronounced synergic effect but an increasing amount of TiO(2) did not influence the degree of the synergy. This supports the theory that the synergy is a consequence of adsorption of ozone on the TiO(2) surface. No synergy was observed in photocatalytic degradation of thiacloprid in the presence of dissolved iron(III) species performed under varied experimental conditions (concentration, age of iron(III) solution, different TiO(2) films, usage of TiO(2) slurries). This goes against the literature for different organic compounds (i.e., monuron). It indicates different roles of iron(III) in the photodegradation of different organic molecules. Moreover, TiO(2) surface area did not affect photodegradation efficiency in iron(III)-based experiments which could confirm absence of electron transfer between TiO(2) photocatalyst and iron(III). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  5. Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

    NASA Astrophysics Data System (ADS)

    Gosteva, I.; Morgalev, Yu; Morgaleva, T.; Morgalev, S.

    2015-11-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ50=5 nm, Δ50=50 nm, Δ50=90 nm), aluminum oxide alpha-forms (Δ50=7 nm and Δ50=70 nm) and macro forms (TiO2 Δ50=350 nm, Al2O3 A50=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO2 and nAl2O3 on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO2 and nAl2O3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO2 and nAl2O3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO2 (Δ50=5 nm) belong to the category «Acute toxicity 1», nTiO2 (A50=90 nm) and nAl2O3 (Δ50=70 nm) - to the category «Acute toxicity 2», nAl2O3 (Δ50=7 nm) - to the category «Acute toxicity 3». No acute toxicity was registered for nTiO2 (Δ50=50 nm) and macro form TiO2.

  6. Preparation of weak-light-driven TiO2-based catalysts via adsorbed-layer nanoreactor synthesis and enhancement of their photo-degradation performance in seawater

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Xu, Zhi-yong; Zhu, Yi-chen; Wu, Li-guang; Yuan, Hao-xuan; Li, Chang-chun; Liu, Ya-yu; Cai, Jing

    2017-11-01

    Graphene oxide (GO) was first employed as a support in preparing TiO2 nanoparticles by adsorbed-layer nanoreactor synthesis (ALNS). Both TiO2 crystallization and GO reduction simultaneously occurred during solvothermal treatment with alcohol as a solvent. By transmission electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy, the results showed that TiO2 nanoparticles with less than 10 nm of size distributed very homogeneously on the GO surface. Tight interaction between TiO2 particles and GO surface could effectively inhibit the aggregation of TiO2 particles, during solvothermal treatment for anatase TiO2 formation. Alcohol could also reduce oxygenated functional groups on GO surface after solvothermal treatment. TiO2 particles with small size and the decrease in oxygenated functional groups on the GO surface both caused high separation efficiency of photo-generated charge carriers, thus resulting in high photo-degradation performance of catalysts. Strong phenol adsorption on photocatalyst was key to enhancing photo-degradation efficiency for phenol in seawater. Moreover, the change in catalyst structure was minimal at different temperatures of solvothermal treatment. But, the degradation rate and efficiency for phenol in seawater were obviously enhanced because of the sensitive structure-activity relationship of catalysts under weak-light irradiation.

  7. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Nayak, Arpan Kumar; Ghosh, Ruma; Santra, Sumita; Guha, Prasanta Kumar; Pradhan, Debabrata

    2015-07-01

    noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02571k

  8. Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Juma, A.; Oja Acik, I.; Oluwabi, A. T.; Mere, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2016-11-01

    Chemical spray pyrolysis (CSP) is a flexible deposition technique that allows for mixing of the precursor solutions in different proportions suitable for doping thin films. The CSP method was used to dope TiO2 thin films with Zr by adding zirconium(IV) acetylacetonate into a solution of titanium(IV) isopropoxide in ethanol stabilized by acetylacetone at [Zr]/[Ti] of 0, 5, 10 and 20 at%. The Zr-doped TiO2 thin films were uniform and homogeneous showing much smaller grains than the undoped TiO2 films. Zr stabilized the anatase phase to temperatures above 800 °C depending on Zr concentration in the spray solution. The concentration of Zr determined by XPS was 6.4 at% for the thin film deposited from the 20 at% solution. According to AFM studies, Zr doping decreased the root mean square roughness of TiO2 film from 5.9 to 1.1 nm. An XRD study of samples with the highest Zr amount showed the ZrTiO4 phase started forming after annealing at 800 °C. The optical band gap for TiO2 decreased from 3.3 eV to 3.0 eV after annealing at 800 °C but for the TiO2:Zr(20) film it remained at 3.4 eV. The dielectric constant increased by more than four times with Zr-doping and this was associated with the change in the bond formations caused by substitution of Ti by Zr in the lattice.

  9. Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Huang, Yunfang; Wei, Yuelin; Wang, Jing; Luo, Dan; Fan, Leqing; Wu, Jihuai

    2017-11-01

    Three-dimensional Bi2O3/TiO2 hierarchical composites have been successfully prepared by a two-step hydrothermal method and subsequent calcination. The samples were characterized using XRD, SEM, TEM, EDS, BET and DRS. The measurement results signified that heterojunctions of various morphologies β-Bi2O3 growing on the three-dimensional hierarchical anatase TiO2 nanorods arrays on FTO glass were apparently formed. The morphology of Bi2O3 changed from three-dimension flower-like microstructures to the sphere-like nanoparticles as the Li(OH) dosage increased. The photocatalytic results showed that all samples exhibited much higher photocatalytic activities than that of pure Bi2O3 and TiO2 (P25) in photocatalytic degradation of methyl blue (MB) under visible-light irradiation. Whereas BTL4 sample exhibited the highest photoactivity with increasing the dosage of Li(OH) to 2 mmol. Furthermore, the absorption edge of the Bi2O3/TiO2 series composites displayed a broad-spectrum photoabsorption from UV to visible-light compared with the individual component. The as-synthesized Bi2O3/TiO2 composites possessed excellent photocatalytic activity and outstanding recyclability. The enhanced photocatalytic efficiency was mainly attributed to the Bi2O3/TiO2p-n heterojunctions and hierarchical nanostructure. The recombination of photogenerated electron-hole pairs was efficiently suppressed by the Bi2O3/TiO2p-n heterojunctions.

  10. Size-Selective Synthesis and Stabilization of Small Silver Nanoparticles on TiO 2 Partially Masked by SiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Zhenyu; Eaton, Todd R.; Gallagher, James R.

    Controlling metal nanoparticle size is one of the principle challenges in developing new supported catalysts. Typical methods where a metal salt is deposited and reduced can result in a polydisperse mixture of metal nanoparticles, especially at higher loading. Polydispersity can exacerbate the already significant challenge of controlling sintering at high temperatures, which decreases catalytic surface area. Here, we demonstrate the size-selective photoreduction of Ag nanoparticles on TiO2 whose surface has been partially masked with a thin SiO2 layer. To synthesize this layered oxide material, TiO2 particles are grafted with tert-butylcalix[4]arene molecular templates (~2 nm in diameter) at surface densities ofmore » 0.05–0.17 templates.nm–2, overcoated with ~2 nm of SiO2 through repeated condensation cycles of limiting amounts of tetraethoxysilane (TEOS), and the templates are removed oxidatively. Ag photodeposition results in uniform nanoparticle diameters ≤ 3.5 nm (by transmission electron microscopy (TEM)) on the partially masked TiO2, whereas Ag nanoparticles deposited on the unmodified TiO2 are larger and more polydisperse (4.7 ± 2.7 nm by TEM). Furthermore, Ag nanoparticles on the partially masked TiO2 do not sinter after heating at 450 °C for 3 h, while nanoparticles on the control surfaces sinter and grow by at least 30%, as is typical. Overall, this new synthesis approach controls metal nanoparticle dispersion and enhances thermal stability, and this facile synthesis procedure is generalizable to other TiO2-supported nanoparticles and sizes and may find use in the synthesis of new catalytic materials.« less

  11. Structural, electronic properties and stability of metatitanic acid (H 2TiO 3) nanotubes

    NASA Astrophysics Data System (ADS)

    Enyashin, A. N.; Denisova, T. A.; Ivanovskii, A. L.

    2009-12-01

    Quite recently, metatitanic acid (H 2TiO 3) has been successfully prepared, which extended the family of known titanic acids H 2Ti nO 2n+1 ( n = 2, 3 and 4). Here the atomic models for nanotubes (NTs) of metatitanic acid are designed and their cohesive and electronic properties are considered depending on their chirality and radii by means of density-functional theory-tight-binding (DFTB) method. Our main findings are that the proposed H 2TiO 3 tubes are stable and that all these NTs will be the insulators (independently from their chirality and the diameters) with forbidden gaps at about ˜4.6 eV. We have found also that aforementioned properties of predicted H 2TiO 3 NTs are very similar with those of recently prepared fabricated nanotubes of polytitanic acids; thus, it is possible to expect that the proposed H 2TiO 3 tubular materials may be fabricated.

  12. The Influence of Fe2O3 Addition on the Tio2 Structure and Photoactivity Properties

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Prasetyawati, L.; Saputri, L. N. M. Z.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The influence of Fe2O3 addition on the TiO2 structure and photoactivity properties have been studied. The addition of Fe2O3 on the TiO2 done by TiO2-Fe2O3 synthesized with variation of annealing temperature. The result showed that peak of anatase TiO2 at 2θ = 25.35° and Fe2O3 at 2θ = 54.20°. The XRD of TiO2 show annealing temperature at 400°C is anatase phase and the composite with annealing at temperature 150°C, 300°C, 400°C and 500°C is crystalline anatase phase, due to the addition of Fe2O3. Photodegradation of Rhodamin B with TiO2 at 400°C annealing temperature showed optimum degradation 36.2 %, and the composite with annealing at 400°C showed optimum degradation 44.3% for 300 minutes irradiation.

  13. Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders.

    PubMed

    McManamon, Colm; Holmes, Justin D; Morris, Michael A

    2011-10-15

    This paper studies the photocatalytic degradation of phenol using zirconia-doped TiO(2) nanoparticles. ZrO(2) was chosen due to its promising results during preliminary studies. Particles smaller than 10nm were synthesised and doped with quantities of ZrO(2) ranging from 0.5 to 4% (molar metal content). Particles were calcined at different temperatures to alter the TiO(2) structure, from anatase to rutile, in order to provide an ideal ratio of the two phases. Powder X-ray diffraction (PXRD) analysis was used to examine the transformation between anatase and rutile. Degradation of phenol was carried out using a 40 W UV bulb at 365 nm and results were measured by UV-vis spectrometry. TEM images were obtained and show the particles exhibit a highly ordered structure. TiO(2) doped with 1% ZrO(2) (molar metal content) calcined at 700 °C proved to be the most efficient catalyst. This is due to an ideal anatase:rutlie ratio of 80:20, a large surface area and the existence of stable electron-hole pairs. ZrO(2) doping above the optimum loading acted as an electron-hole recombination centre for electron-hole pairs and reduced photocatalytic degradation. Synthesised photocatalysts compared favourably to the commercially available photocatalyst P25. The materials also demonstrated the ability to be recycled with similar results to those achieved on fresh material after 5 uses. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Synthesis and characterization of Cu-Zn/TiO2 for the photocatalytic conversion of CO2 to methane.

    PubMed

    Rana, Adeem Ghaffar; Ahmad, Waqar; Al-Matar, Ali; Shawabkeh, Reyad; Aslam, Zaheer

    2017-05-01

    Different Cu-Zn/TiO 2 catalysts were synthesized by using the wet impregnation method. The prepared catalysts were used for the conversion of CO 2 into methane by photocatalysis. Various characterization techniques were used to observe the surface morphology, crystalline phase, Brunauer-Emmett-Teller (BET) surface area, presence of impregnated Cu and Zn, and functional group. Scanning electron microscope analysis showed spherical morphology, and slight agglomeration of catalyst particles was observed. BET analysis revealed that the surface area of the catalyst was decreased from 10 to 8.5 m 2 /g after impregnation of Cu and Zn over TiO 2 support. Synergetic effect of Cu and Zn over TiO 2 support (Cu 2.6 /TiO 2 , Zn 0.5 /TiO 2 and Cu 2.6 -Zn 0.5 /TiO 2 ) and the effects of Cu loading (0, 1.8, 2.1, 2.6 and 2.9 wt%) were also investigated at different feed molar ratios of H 2 /CO 2 (2:1 and 4:1). The Cu 2.6 -Zn 0.5 /TiO 2 catalyst showed a maximum conversion of 14.3% at a feed molar ratio of 4. The addition of Zn over the catalyst surface increased the conversion of CO 2 from 10% to 14.3% which might be due to synergy of Cu and Zn over TiO 2 support.

  15. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie

    2015-11-01

    Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.

  16. Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings

    NASA Astrophysics Data System (ADS)

    Berger, Lutz-Michael; Sempf, Kerstin; Sohn, Yoo Jung; Vaßen, Robert

    2018-04-01

    The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite-anosovite) solid solution Al2- x Ti1+ x O5 instead of Al2TiO5 existed in the initial powder and the coatings.

  17. Study on the pulse reaction technique. VI. Kinetics of the reaction of NO with NH/sub 3/ on a V/sub 2/O/sub 5/ catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, A.; Yamazaki, Y.; Hattori, T.

    1982-01-01

    In order to examine the applicability of the rectangular pulse technique to the determination of the kinetics of a two-components' reaction on a catalyst in the specified surface state, the kinetics of the reaction of NO with NH/sub 3/ on the V/sub 2/O/sub 5/ catalyst, that is, NO + NH/sub 3/ + VVertical BarO ..-->.. N/sub 2/ + H/sub 2/O + V-OH, has been investigated using the rectangular pulse apparatus. Chromatograms of the individual components have shown that NH/sub 3/ is strongly adsorbed on the catalyst while NO or N/sub 2/ is not or only very weakly adsorbed. The adsorptionmore » of NH/sub 3/ has been approximately described by the Langmuir adsorption isotherm. The yield of N/sub 2/ produced by the reaction has changed significantly with the pusle width. This indicates a separation of NO and NH/sub 3/ in the catalyst bed during the pulse experiments. By analyzing the experimental data with the theory of the pulse technique, the kinetics of the above-mentioned two-components' reaction has successfully been determined and it has agreed with the kinetics of the reaction of NO with NH/sub 3/ under excess oxygen conditions determined by using the continuous flow technique. On the basis of these results, the rectangular pulse technique coupled with the theoretical analsysis of the experimental data has been concluded to be a method effective for the determination of the kinetics of a multicomponents' reaction on a catalyst in the specified surface state.« less

  18. The preparation of TiO2@rGO nanocomposite efficiently activated with UVA/LED and H2O2 for high rate oxidation of acetaminophen: Catalyst characterization and acetaminophen degradation and mineralization

    NASA Astrophysics Data System (ADS)

    Cheshme Khavar, Amir Hossein; Moussavi, Gholamreza; Mahjoub, Ali Reza

    2018-05-01

    The present work was focused on the preparation of TiO2@rGO nanocomposite using an innovative facile synthesis method and the investigation of its photocatalytic activity in a UVA/LED photoreactor. The XRD patterns indicated anatase structure for all samples. Presence of rGO in nanocomposites was confirmed by FT-IR and Raman spectra. Also, mono-dispersed TiO2 nanoparticles on rGO sheet were shown in the SEM and HRTEM images. The prepared TiO2@rGO nanocomposite was used as the photocatalyst for degradation of acetaminophen (ACT) in the photoreactor illuminated with UVA/LEDs having the intensity of 95 μW/cm2. The complete degradation of 50 mg/L ACT was attained within 50 min in the LED/TiO2@rGO process while P25/LED process only showed 17% ACT degradation under similar experimental conditions. The photocatalytic activity was strongly affected by the rGO to TiO2 ratio in the nanocomposites and the highest photocatalytic activity was observed at 3.0 wt.% of rGO. Reaction with free radOH was the main mechanism involved in the ACT photodegradation in the TiO2@rGO/LED process under the selected conditions. The performance of LED/TiO2@rGO process improved by four and three times in ACT degradation and mineralization, respectively, at the presence of H2O2. As made TiO2@rGO nanocompsite could preserve its catalytic activity during five consecutive recycles in the process. Accordingly, TiO2@rGO nanocomposite is an active and stable catalyst in the UVA/LED photoreactor for high rate degradation of pharmaceuticals in the contaminated water.

  19. Green synthesis of α-aminophosphonate derivatives on a solid supported TiO2 -SiO2 catalyst and their anticancer activity.

    PubMed

    Chinthaparthi, Radha Rani; Bhatnagar, Ira; Gangireddy, Chandra Sekhar Reddy; Syama, Sundar Chereddy; Cirandur, Suresh Reddy

    2013-09-01

    Syntheses of a new series of biologically potent α-aminophosphonates were accomplished by one-pot Kabachnik-Fields reaction using TiO2-SiO2 as solid supported catalyst under microwave irradiation conditions. The chemical structures of all the newly synthesized compounds were confirmed by analytical and spectral (IR, 1H, 13C, 31P NMR, and mass) data. Their anticancer nature was evaluated by screening the in vitro activity on two human cancer cell lines, HeLa and SK-BR-3. Compounds 4i and 4o showed the best activity on these cancer cells even though the majority of the compounds, and particularly 4l and 4p, have good cytotoxic activity against them. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO 2, Nb 2O 5, or Ta 2O 5 high-index layers

    DOE PAGES

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    2016-09-21

    Broad bandwidth coatings allow angle of incidence flexibility and accommodate spectral shifts due to aging and water absorption. Higher refractive index materials in optical coatings, such as TiO 2, Nb 2O 5, and Ta 2O 5, can be used to achieve broader bandwidths compared to coatings that contain HfO 2 high index layers. We have identified the deposition settings that lead to the highest index, lowest absorption layers of TiO 2, Nb 2O 5, and Ta 2O 5, via e-beam evaporation using ion-assisted deposition. We paired these high index materials with SiO 2 as the low index material to createmore » broad bandwidth high reflection coatings centered at 1054 nm for 45 deg angle of incidence and P polarization. Furthermore, high reflection bandwidths as large as 231 nm were realized. Laser damage tests of these coatings using the ISO 11254 and NIF-MEL protocols are presented, which revealed that the Ta 2O 5/SiO 2 coating exhibits the highest resistance to laser damage, at the expense of lower bandwidth compared to the TiO 2/SiO 2 and Nb 2O 5/SiO 2 coatings.« less

  1. New insight into the promoting role of process on the CeO₂-WO₃/TiO₂ catalyst for NO reduction with NH₃ at low-temperature.

    PubMed

    Zhang, Shule; Zhong, Qin; Shen, Yuge; Zhu, Li; Ding, Jie

    2015-06-15

    This study aimed at investigating the reason of high catalytic activity for CeO2-WO3/TiO2 catalyst from the aspects of WO3 interaction with other species and the NO oxidation process. Analysis by X-ray diffractometry, photoluminescence spectra, diffuse reflectance UV-visible, X-ray photoelectron spectroscopy, density functional theory calculations, electron paramagnetic resonance spectroscopy, temperature-programmed-desorption of NO and in situ diffuse reflectance infrared transform spectroscopy showed that WO3 could interact with CeO2 to improve the electron gaining capability of CeO2 species. In addition, WO3 species acted as electron donating groups to transfer the electrons to CeO2 species. The two aspects enhanced the formation of reduced CeO2 species to improve the formation of superoxide ions. Furthermore, the Ce species were the active sites for the NO adsorption and the superoxide ions over the catalyst needed oxidizing the adsorbed NO to improve the NO oxidation. This process was responsible for the high catalytic activity of CeO2-WO3/TiO2 catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light.

    PubMed

    Naraginti, Saraschandra; Thejaswini, T V L; Prabhakaran, D; Sivakumar, A; Satyanarayana, V S V; Arun Prasad, A S

    2015-10-05

    This work is focused on sol-gel synthesis of silver and strontium co-doped TiO2 nanoparticles and their utilization as photo-catalysts in degradation of two textile dyes. Effect of pH, intensity of light, amount of photo-catalyst, concentration of dye, sensitizers, etc., were studied to optimize conditions for obtaining enhanced photo-catalytic activity of synthesized nanoparticles. XRD, BET, HR-TEM, EDAX and UV-Vis (diffused reflectance mode) techniques were used to characterize the nanoparticles. Interestingly, band gap of Sr and Ag co-doped TiO2 nanoparticles showed considerable narrowing (2.6 eV) when compared to Ag doped TiO2 (2.7 eV) and undoped TiO2 (3.17 eV) nanoparticles. Incorporation of Ag and Sr in the lattice of TiO2 could bring isolated energy levels near conduction and valence bands thus narrowing band gap. The XRD analysis shows that both Ag and Sr nanoparticles are finely dispersed on the surface of titania framework, without disturbing its crystalline structure. TEM images indicate that representative grain sizes of Ag-doped TiO2 & Sr and Ag co-doped TiO2 nanoparticles are in the range of 8-20 nm and 11-25 nm, respectively. Effective degradation of Direct Green-6 (DG-6) and Reactive Blue-160 (RB-160) under UV and visible light has been achieved using the photo-catalysts. Sr and Ag co-doped TiO2 photo-catalysts showed higher catalytic activity during degradation process in visible region when compared to Ag-doped and undoped TiO2 nanoparticles which could be attributed to the interactive effect caused by band gap narrowing and enhancement in charge separation. For confirming degradation of the dyes, total organic carbon (TOC) content was monitored periodically. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance.

    PubMed

    Abdulagatov, A I; Yan, Y; Cooper, J R; Zhang, Y; Gibbs, Z M; Cavanagh, A S; Yang, R G; Lee, Y C; George, S M

    2011-12-01

    Al(2)O(3) and TiO(2) atomic layer deposition (ALD) were employed to develop an ultrathin barrier film on copper to prevent water corrosion. The strategy was to utilize Al(2)O(3) ALD as a pinhole-free barrier and to protect the Al(2)O(3) ALD using TiO(2) ALD. An initial set of experiments was performed at 177 °C to establish that Al(2)O(3) ALD could nucleate on copper and produce a high-quality Al(2)O(3) film. In situ quartz crystal microbalance (QCM) measurements verified that Al(2)O(3) ALD nucleated and grew efficiently on copper-plated quartz crystals at 177 °C using trimethylaluminum (TMA) and water as the reactants. An electroplating technique also established that the Al(2)O(3) ALD films had a low defect density. A second set of experiments was performed for ALD at 120 °C to study the ability of ALD films to prevent copper corrosion. These experiments revealed that an Al(2)O(3) ALD film alone was insufficient to prevent copper corrosion because of the dissolution of the Al(2)O(3) film in water. Subsequently, TiO(2) ALD was explored on copper at 120 °C using TiCl(4) and water as the reactants. The resulting TiO(2) films also did not prevent the water corrosion of copper. Fortunately, Al(2)O(3) films with a TiO(2) capping layer were much more resilient to dissolution in water and prevented the water corrosion of copper. Optical microscopy images revealed that TiO(2) capping layers as thin as 200 Å on Al(2)O(3) adhesion layers could prevent copper corrosion in water at 90 °C for ~80 days. In contrast, the copper corroded almost immediately in water at 90 °C for Al(2)O(3) and ZnO films by themselves on copper. Ellipsometer measurements revealed that Al(2)O(3) films with a thickness of ~200 Å and ZnO films with a thickness of ~250 Å dissolved in water at 90 °C in ~10 days. In contrast, the ellipsometer measurements confirmed that the TiO(2) capping layers with thicknesses of ~200 Å on the Al(2)O(3) adhesion layers protected the copper for ~80 days in

  4. Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

    PubMed Central

    Buruiana, Tinca; Melinte, Violeta; Buruiana, Emil C

    2017-01-01

    Polymer nanocomposites containing titanium oxide nanoparticles (TiO2 NPs) combined with other inorganic components (Si–O–Si or/and γ-Fe2O3) were prepared by the dispersion of premade NPs (nanocrystalline TiO2, TiO2/SiO2, TiO2/Fe2O3, TiO2/SiO2/Fe2O3) within a photopolymerizable urethane dimethacrylate (polytetrahydrofuran-urethane dimethacrylate, PTHF-UDMA). The physicochemical characterization of nanoparticles and hybrid polymeric composites with 10 wt % NPs (S1–S4) was realized through XRD, TEM and FTIR analyses. The mean size (10–30 nm) and the crystallinity of the NPs varied as a function of the inorganic constituent. The catalytic activity of these hybrid films was tested for the photodegradation of phenol, hydroquinone and dopamine in aqueous solution under UV or visible-light irradiation. The best results were obtained for the films with TiO2/Fe2O3 or TiO2/SiO2/Fe2O3 NPs. The degradation of the mentioned model pollutants varied between 71% and 100% (after 250 min of irradiation) depending on the composition of the hybrid film tested and the light applied (UV–visible light). Also, it was established that such hybrid films can be reused at least for five cycles, without losing too much of the photocatalytic efficiency (ca. 7%). These findings could have implications in the development of new nanocatalysts. PMID:28243566

  5. Electrical properties of crystallized 30B2O3-70V2O5 glass

    NASA Astrophysics Data System (ADS)

    Gwoo, Donggun; Kim, Taehee; Han, Kyungseok; Choi, Wongyu; Kim, Jonghwan; Ryu, Bongki

    2013-05-01

    30B2O3-70V2O5 binary-system glass was prepared, and variations in structural and electrical property were examined using crystallization. While different related research studies exist, few have evaluated the variations in the structure and properties with changes in the crystallization rate. 30B2O3-70V2O5 glass was annealed in the graphite mold above the glass transition temperature for 2 h and heat-treated at each crystallization temperature for 3 h. 30B2O3-70V2O5 glass showed predominantly electronic conductive characteristic. FTIR was preferentially used for analyzing the structural changes of B-O bond after crystallization, while XRD was utilized to verify the inferred changes in the structure array (BO3 + V2O5 ↔ BO4 + 2VO2). Structural changes induced by heat treatment were confirmed by analyzing the molecular volume determined from the sample density, and conductance was measured to correlate structural and property changes. Conductivity is discussed based on the migration of vanadate ions with different valence states because of the increase in VO2 crystallinity at 130°C, which, however, was not observed at 170°C. After VO2 structures were reinforced, a 1.8-fold increase in conductance was observed (as compared to the annealed sample) after crystallization at 130°C for 3 h.

  6. Photocatalytic oxidation of organic dyes with visible-light-driven codoped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Dongfang; Zeng, Fanbin

    2011-06-01

    A novel copper (II) and zinc (II) codoped TiO2 photocatalyst was synthesized by a modified sol-gel method using titanium (IV) isopropoxide, Zn(NO3)2 · 6H2O and copper(Il) nitrate as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and photo-luminescence spectra (PL). The XRD results showed undoped and Zn, Cu-codoped TiO2 nanoparticles mainly including anatase phase and a tiny amount of Zn- and Cu-oxides exist in the mixed system, which is attributed to the decomposition of copper and zinc nitrates in the TiO2 gel to form CuO and ZnO and randomly dispersed on the TiO2 surface. On the basis of the optical characterization results, we found that the codoping of copper (II) and zinc (II) resulted a red shift of adsorption and lower recombination probability between electrons and holes, which were the reasons for high photocatalytic activity of Zn, Cu-codoped TiO2 nanoparticles under visible light (λ > 400 nm). The photocatalytic activity of samples was tested for degradation of methyl orange (MO) in solutions. The results indicated that the visible-light driven capability of the codoped catalyst were much higher than that of the pure TiO2 catalyst under visible irradiation. Because of the synergetic effect of copper (II) and zinc (II) element, the Zn, Cu-codoped TiO2 catalyst will show higher quantum yield and enhance absorption of visible light. In the end, a key mechanism was proposed in order to account for the enhanced activity.

  7. Synthesis of GO supported Fe2O3-TiO2 nanocomposites for enhanced visible-light photocatalytic applications.

    PubMed

    Jo, Wan-Kuen; Selvam, N Clament Sagaya

    2015-09-28

    This article reports novel ternary composites consisting of Fe2O3 nanorods, TiO2 nanoparticles, and graphene oxide (GO) flakes that provide enhanced photocatalytic performance and stability. Fe2O3 nanorods grow evenly and embed themselves on the agglomerated TiO2/GO surface, which facilitate the formation of heterojunctions for effective migration of charge carriers at the interface of Fe2O3/TiO2 in the ternary composites. The formation of heterostructured Fe2O3-TiO2/GO composites and the effect of GO addition on the photophysical properties of the composites were systematically investigated using various spectroscopic techniques. The photocatalytic performance of Fe2O3 was improved by coupling with TiO2 in the presence of GO, suggesting uncommon electron transfer from the conduction band of Fe2O3 to that of TiO2via GO under visible-light irradiation. An improved charge separation in the composite materials compared with that in bare Fe2O3 was confirmed by drastic fluorescence quenching and stronger absorption in the visible range. The optimum content of GO in the ternary composite was 1.0 wt%, which exhibited enhanced photocatalytic activity. The synergistic effect, heterostructured composite and role of GO, as an electron transporter, in the ternary composites account for the enhanced photocatalytic activity.

  8. Pd Nanoparticles Coupled to WO 2.72 Nanorods for Enhanced Electrochemical Oxidation of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Zheng; Erdosy, Daniel P.; Mendoza-Garcia, Adriana

    We synthesize a new type of hybrid Pd/WO2.72 structure with 5 nm Pd nanoparticles (NPs) anchored on 50 × 5 nm WO2.72 nanorods. The strong Pd/WO2.72 coupling results in the lattice expansion of Pd from 0.23 to 0.27 nm and the decrease of Pd surface electron density. As a result, the Pd/WO2.72 shows much enhanced catalysis toward electrochemical oxidation of formic acid in 0.1 M HClO4; it has a mass activity of ~1600 mA/mgPd in a broad potential range of 0.4–0.85 V (vs RHE) and shows no obvious activity loss after a 12 h chronoamperometry test at 0.4 V. Ourmore » work demonstrates an important strategy to enhance Pd NP catalyst efficiency for energy conversion reactions.« less

  9. Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst

    USDA-ARS?s Scientific Manuscript database

    This paper discusses the potential use of (Fe3O4@SiO2-SO3H) nanoparticle catalyst for the dehydration of glucose into 5-hydroxymethylfurfural (HMF). A magnetically recoverable (Fe3O4@SiO2-SO3H) nanoparticle catalyst was successfully prepared by supporting sulfonic acid groups (SO3H) on the surface o...

  10. Liquid-phase deposition of TiO2 nanoparticles on core-shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Jian-Qi; Guo, Shao-Bo; Guo, Xiao-Hua; Ge, Hong-Guang

    2015-07-01

    To prevent and avoid magnetic loss caused by magnetite core phase transition involving in high-temperature crystallization of amorphous sol-gel TiO2, core-shell Fe3O4@SiO2@TiO2 composite spheres were synthesized via non-thermal process of TiO2. First, core-shell Fe3O4@SiO2 particles were synthesized through a solvothermal method followed by a sol-gel process. Second, anatase TiO2 nanoparticles (NPs) were directly coated on Fe3O4@SiO2 surface by liquid-phase deposition method, which uses (NH4)2TiF6 as Ti source for TiO2 and H3BO3 as scavenger for F- ions at 50 °C. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs with an average size of 6-8 nm were uniformly deposited on the Fe3O4@SiO2 surface. Magnetic hysteresis curves indicate that the composite spheres exhibit superparamagnetic characteristics with a magnetic saturation of 32.5 emu/g at room temperature. The magnetic TiO2 composites show high photocatalytic performance and can be recycled five times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

  11. Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix

    NASA Astrophysics Data System (ADS)

    Cruz, Marta; Gomez, Cristina; Duran-Valle, Carlos J.; Pastrana-Martínez, Luisa M.; Faria, Joaquim L.; Silva, Adrián M. T.; Faraldos, Marisol; Bahamonde, Ana

    2017-09-01

    The photocatalytic activity of a home-made titanium dioxide (TiO2) and its corresponding composite based on graphene oxide (GO), the GO-TiO2 catalyst, has been investigated under UV-vis in the photodegradation of a mixture of four pesticides classified by the European Union as priority pollutants: diuron, alachlor, isoproturon and atrazine. The influence of two water matrices (ultrapure or natural water) was also studied. Natural water led to a decrease on the degradation of the studied pollutants when the bare TiO2 photocatalyst was employed, since this water contains both inorganic and organic species that are dissolved and commonly restrain the photocatalytic process. On the contrary, the photo-efficiency of the GO-TiO2 composite seems to be less affected by water matrix variation, with very good initial pesticide photodegradation rates under both natural and ultrapure water matrices. A comparative study between GO-TiO2 and the commercial Evonik TiO2 P25 catalyst was also carried out to analyze the photocatalytic degradation of these pesticides under visible light illumination conditions. Once again, a higher photocatalytic activity was found for the GO-TiO2 composite.

  12. Switching characteristics of (Bi 1/2Na 1/2)TiO 3-BaTiO 3-(Bi 1/2K 1/2)TiO 3 lead-free ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Shieh, J.; Wu, K. C.; Chen, C. S.

    2007-04-01

    The polarization switching characteristics of lead-free a(Bi 1/2Na 1/2)TiO 3-bBaTiO 3-c(Bi 1/2K 1/2)TiO 3 (abbreviated as BNBK 100a/100b/100c) ferroelectric ceramics are investigated. This is achieved through examining their polarization and strain hystereses inside and outside the morphotropic phase boundary (MPB). The total induced electrostrain (ɛ 33,total) and apparent piezoelectric charge coefficient (d 33) first increase dramatically and then decrease gradually as the BNBK composition moves from the tetragonal phase to the MPB and then to the rhombohedral phase. The measured polarization hystereses indicate that the BNBK compositions situated near the rhombohedral side of the MPB typically possess higher coercive field (E c) and remanent polarization (P r), while the compositions situated near the tetragonal side of the MPB possess higher apparent permittivity. Adverse effects on the ferroelectric properties are observed when BNBK is doped with donor dopants such as La and Nb. On the contrary, intricate hysteresis behaviors are observed when acceptor dopant Mn is introduced into BNBK. Under an alternating electric field of +/-5.0 MVm -1, BNBK 85.4/2.6/12, a composition well within the MPB, exhibits an ɛ 33,total of ~0.14%, an apparent d 33 of 295 pCN -1, an E c of 2.5 MVm -1 and a Pr of 22.5 μCcm -2. These notable ferroelectric property values suggest a candidate material for lead-free actuator applications. The present study provides a systematic set of hysteresis measurements which can be used to characterize the switching behaviors of BNBK-based lead-free ferroelectrics.

  13. Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports

    NASA Astrophysics Data System (ADS)

    Camposeco, R.; Castillo, S.; Mejía-Centeno, Isidro; Navarrete, J.; Nava, N.

    2015-11-01

    In this study, titanate nanotubes (NT) and titanate nanotubes with alumina (NT-Al) were studied as solid acid catalytic supports to show the relationship between the kind of acidity and catalytic activity. The supports were characterized by XRD, TEM, FTIR, XPS, and tested in the SCR-NO with NH3. It was found that the amount of Brönsted acid sites was maintained and the Lewis acid sites were significantly affected by the addition of alumina (1, 3, 5 and 10 wt.%); such acidity was higher than that of the titanate nanotubes (NT) by two-fold. To confirm the formation of titanate nanotubes and titanate nanotubes with alumina, transmission electron microscopy (TEM) was used. X-ray diffraction (XRD) revealed the formation of the H2Ti4O9·H2O phase. All NT and NT-Al supports presented catalytic activity to remove NO with NH3 under lean conditions, confirming the presence of an important amount of Brönsted and Lewis acid sites in both NT and NT-Al supports.

  14. High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong

    2017-06-01

    In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm-2) than conventional PEMFC (699.30 mW cm-2). Electrochemically active surface area (ECSA) and charge transfer impedance (Rct) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order-structured membrane electrode with lower Pt loading for PEMFC in the future.

  15. Effect of V-Nd co-doping on phase transformation and grain growth process of TiO2

    NASA Astrophysics Data System (ADS)

    Khatun, Nasima; Amin, Ruhul; Anita, Sen, Somaditya

    2018-05-01

    The pure and V-Nd co-doped TiO2 samples are prepared by the modified sol-gel process. The phase formation is confirmed by XRD spectrum. Phase transformation is delayed in V-Nd co-doped TiO2 (TVN) samples compared to pure TiO2. The particle size is comparatively small in TVN samples at both the temperature 450 °C and 900 °C. Hence the effect of Nd doping is dominated over V doping in both phase transformation and grain growth process of TiO2.

  16. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    PubMed

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  17. Photoelectrochemical Performance of TiO2/Ti Electrode for Organic Compounds

    NASA Astrophysics Data System (ADS)

    Maulidiyah, M.; Wijawan, I. B. P.; Wibowo, D.; Aladin, A.; Hamzah, B.; Nurdin, M.

    2018-05-01

    Photoelectrochemical performance of TiO2/Ti electrode was investigated by using organic compounds. The TiO2/Ti electrode was prepared by anodic oxidation at a potential bias of 25 V for 4 h then calcined for 450 °C to obtain the anatase polymorph. Subsequently, it was characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX). The XRD pattern showed that TiO2 has anatase phase as confirmed by 2θ peaks at 37.93° 63.00°, and 83.00°. Using SEM-EDX data the TiO2 layer was formed on Ti plate with the composition of Ti (4.5 keV) and O (0.5 keV) elements. Furthermore, the photoelectrochemical sensing on the three organic compounds (ascorbic acid, glucose, and titan yellow) with the electrolyte addition showed that the linearity of TiO2/Ti electrode were 0.937, 0.968, and 0.938, meanwhile without the electrolyte were 0.998, 0.989, and 0.923, respectively.

  18. Photocatalytic degradation of 17α-ethinylestradiol (EE2) in the presence of TiO2-doped zeolite.

    PubMed

    Pan, Zhong; Stemmler, Elizabeth A; Cho, Hong Je; Fan, Wei; LeBlanc, Lawrence A; Patterson, Howard H; Amirbahman, Aria

    2014-08-30

    Current design limitations and ineffective remediation techniques in wastewater treatment plants have led to concerns about the prevalence of pharmaceutical and personal care products (PPCPs) in receiving waters. A novel photocatalyst, TiO2-doped low-silica X zeolite (TiO2-LSX), was used to study the degradation of the pharmaceutical compound, 17α-ethinylestradiol (EE2). The catalyst was synthesized and characterized using XRD, BET surface analysis, SEM-EDAX, and ICP-OES. The effects of different UV light intensities, initial EE2 concentrations, and catalyst dosages on the EE2 removal efficiency were studied. A higher EE2 removal efficiency was attained with UV-TiO2-LSX when compared with UV-TiO2 or UV alone. The EE2 degradation process followed pseudo-first-order kinetics. A comprehensive empirical model was developed to describe the EE2 degradation kinetics under different conditions using multiple linear regression analysis. The EE2 degradation mechanism was proposed based on molecular calculations, identification of photoproducts using HPLC-MS/MS, and reactive species quenching experiments; the results showed that oxidative degradation pathways initiated by hydroxyl radicals were predominant. This novel TiO2-doped zeolite system provides a promising application for the UV disinfection process in wastewater treatment plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. OPTICAL AND SPECTROSCOPIC STUDIES OF Fe2O3-Bi2O3-B2O3:V2O5 GLASSES

    NASA Astrophysics Data System (ADS)

    Sanjay; Kishore, N.; Agarwal, A.; Dahiya, S.; Pal, Inder; Kumar, Navin

    2013-11-01

    The glasses of compositions xFe2O3ṡ (40 - x)Bi2O3ṡ60B2O32V2O5 have been prepared by the standard melt-quenching technique. Amorphous nature of these samples is ascertained by XRD patterns. The presence of BO3 and BO4 units is identified by IR spectra of glass samples. The absorption edge (λcut-off) shifts toward longer wavelengths with an increase in Fe2O3 content in the glass matrix. The values of optical band gap energy for indirect allowed and forbidden transitions have been determined and it is found to decrease with increase in transition metal ions. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  20. Improved Photo-Detection Using Zigzag TiO2 Nanostructures as an Active Medium.

    PubMed

    Tiwari, A K; Mondal, A; Mahajan, B K; Choudhuri, B; Goswami, T; Sarkar, M B; Chakrabartty, S; Ngangbam, C; Saha, S

    2015-07-01

    Zigzag TiO2 nanostructures were fabricated using oblique angle deposition technique. The field emission gun-scanning electron microscope (FEG-SEM) image shows that the TiO2 zigzag nanostructures were ~500 nm in length. Averagely two times enhanced UV-Vis absorption was recorded for zigzag structure compared to perpendicular TiO2 nanowires. The main band transition was observed at ~3.4 eV. The zigzag TiO2 exhibited high turn on voltage (+11 V) than that of nanowire (+2 V) detector under dark which were reduced to +0.2 V and +1.0 V under white light illumination, respectively. A maximum ~6 fold photo-responsivity was observed for the zigzag TiO2 compared with nanowire device at + 1.0 V applied potential. The maximum photo-responsivity of 0.36 A/W at 370 nm was measured for the zigzag TiO2 detector. The TiO2 zigzag detector showed slow response with rise time of 10.2 s and fall time of 10.3 s respectively. The UV (370 nm) to visible (450 nm) wavelength rejection ratio of photo-responsivity was recorded ~4 times for the detector.

  1. Facile synthesis of GO@SnO2/TiO2 nanofibers and their behavior in photovoltaics.

    PubMed

    Mohamed, Ibrahim M A; Dao, Van-Duong; Yasin, Ahmed S; Choi, Ho-Suk; Khalil, KhalilAbdelrazek; Barakat, Nasser A M

    2017-03-15

    Chemical doping is a widely-used strategy to improve the performance of TiO 2 for the dye-sensitized solar cells (DSCs). However, the effect of two efficient dopants has been rarely investigated. We present the synthesis of GO@SnO 2 /TiO 2 nanofibers (NFs) by a facile method using electrospinning and hydrothermal processes. The synthesized NFs are described in terms of morphology, crystallinity and chemistry through FESEM, TEM, HR-TEM, XRD, EDX, XPS, FT-IR and Raman spectra. As the results, the axial ratio and the average diameter of NFs decreased after the hydrothermal treatment and calcination process, respectively. The prepared Titania-based nanofibers have 81.82% anatase and 18.18% rutile-structure. The developed materials are applied as working electrodes of DSCs. The photovoltaic performances showed that the efficiency of the device employed GO@SnO 2 /TiO 2 photoanode gave 5.41%, which was higher than those of cells fabricated with SnO 2 /TiO 2 NFs (3.41%) and GO@TiO 2 NFs (4.52%) photoanodes. The photovoltaic parameters such as J sc , V oc , FF and R ct are calculated and found to be 11.19mAcm -2 , 0.72V, 0.67 and 9.26Ω, respectively. The high photovoltaic response of DSC based of GO@SnO 2 /TiO 2 NFs may be attributed to the large surface area of the NFs, and the low electron recombination. Furthermore, the start-stop switches of the cell devices with the developed photoanode affirmed the stability and photovoltaic performance of the cell. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Hamid, Sharifah Bee Abd; Juan, Joon Ching; Basirun, Wan Jefrey; Kandjani, Ahmad Esmaielzadeh

    2015-12-01

    Preparation of highly photo-activated TiO2 is achievable by hydrogenation at constant temperature and pressure, with controlled hydrogenation duration. The formation of surface disorders and Ti3+ is responsible for the color change from white unhydrogenated TiO2 to bluish-gray hydrogenated TiO2. This color change, together with increased oxygen vacancies and Ti3+ enhanced the solar light absorption from UV to infra-red region. Interestingly, no band gap narrowing is observed. The photocatalytic activity in the UV and visible region is controlled by Ti3+ and oxygen vacancies respectively. Both Ti3+ and oxygen vacancies increases the electron density on the catalyst surface thus facilitates rad OH radicals formation. The lifespan of surface photo-excited electrons and holes are also sustained thus prevents charge carrier recombination. However, excessive amount of oxygen vacancies deteriorates the photocatalytic activity as it serves as charge traps. Hydrogenation of TiO2 also promotes the growth of active {0 0 1} facets and facilitates the photocatalytic activity by higher concentration of surface OH radicals. However, the growth of {0 0 1} facets is small and insignificant toward the overall photo-kinetics. This work also shows that larger role is played by Ti3+ and oxygen vacancies rather than the surface disorders created during the hydrogenation process. It also demonstrates the ability of hydrogenated TiO2 to absorb wider range of photons even though at a similar band gap as unhydrogenated TiO2. In addition, the photocatalytic activity is shown to be decreased for extended hydrogenation duration due to excessive catalyst growth and loss in the total surface area. Thus, a balance in the physico-chemical properties of hydrogenated TiO2 is crucial to enhance the photocatalytic activity by simply controlling the hydrogenation duration.

  3. Lean NO x reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends

    DOE PAGES

    Gunnarsson, Fredrik; Pihl, Josh A.; Toops, Todd J.; ...

    2016-09-04

    This paper focuses on the activity for lean NO x reduction over sol-gel synthesized silver alumina (Ag/Al 2O 3) catalysts, with and without platinum doping, using ethanol (EtOH), EtOH/C 3H 6 and EtOH/gasoline blends as reducing agents. The effect of ethanol concentration, both by varying the hydrocarbon-to-NO x ratio and by alternating the gasoline concentration in the EtOH/gasoline mixture, is investigated. High activity for NO x reduction is demonstrated for powder catalysts for EtOH and EtOH/C 3H 6 as well as for monolith coated catalysts (EtOH and EtOH/gasoline). The results show that pure Ag/Al 2O 3 catalysts display higher NOmore » x reduction and lower light-off temperature as compared to the platinum doped samples. The 4 wt.% Ag/Al 2O 3 catalyst displays 100% reduction in the range 340–425 °C, with up to 37% selectivity towards NH 3. These results are also supported by DRIFTS (Diffuse reflection infrared Fourier transform spectroscopy) experiments. Finally, the high ammonia formation could, in combination with an NH 3-SCR catalyst, be utilized to construct a NO x reduction system with lower fuel penalty cf. stand alone HC-SCR. In addition, it would result in an overall decrease in CO 2 emissions.« less

  4. The influence of excess K2O on the electrical properties of (K,Na)1/2Bi1/2TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Linhao; Li, Ming; Sinclair, Derek C.

    2018-04-01

    The solid solution (KxNa0.50-x)Bi0.50TiO3 (KNBT) between Na1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 (KBT) has been extensively researched as a candidate lead-free piezoelectric material because of its relatively high Curie temperature and good piezoelectric properties, especially near the morphotropic phase boundary (MPB) at x ˜ 0.10 (20 mol. % KBT). Here, we show that low levels of excess K2O in the starting compositions, i.e., (Ky+0.03Na0.50-y)Bi0.50TiO3.015 (y-series), can significantly change the conduction mechanism and electrical properties compared to a nominally stoichiometric KNBT series (KxNa0.50-x)Bi0.50TiO3 (x-series). Impedance spectroscopy measurements reveal significantly higher bulk conductivity (σb) values for y ≥ 0.10 samples [activation energy (Ea) ≤ 0.95 eV] compared to the corresponding x-series samples which possess bandgap type electronic conduction (Ea ˜ 1.26-1.85 eV). The largest difference in electrical properties occurs close to the MPB composition (20 mol. % KBT) where y = 0.10 ceramics possess σb (at 300 °C) that is 4 orders of magnitude higher than that of x = 0.10 and the oxide-ion transport number in the former is ˜0.70-0.75 compared to <0.05 in the latter (between 600 and 800 °C). The effect of excess K2O can be rationalised on the basis of the (K + Na):Bi ratio in the starting composition prior to ceramic processing. This demonstrates the electrical properties of KNBT to be sensitive to low levels of A-site nonstoichiometry and indicates that excess K2O in KNBT starting compositions to compensate for volatilisation can lead to undesirable high dielectric loss and leakage currents at elevated temperatures.

  5. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    PubMed

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  6. Simultaneous oxidation of Hg0 and NH3-SCR of NO by nanophase Ce x Zr y Mn z O2 at low temperature: the interaction and mechanism.

    PubMed

    Wu, Wanrong; Zeng, Zheng; Lu, Pei; Xing, Yi; Wei, Jianjun; Yue, Huifang; Li, Rui

    2018-03-10

    Simultaneous oxidation of Hg 0 and NH 3 -SCR of NO by catalyst is one of the key methods for co-purification of coal-fired flue gas. Till now, the interaction between the oxidation of Hg 0 and NH 3 -SCR of NO and its mechanism have not clarified. In this study, a series of nanophase Ce x Zr y Mn z O 2 was prepared for the simultaneous oxidation of Hg 0 and NH 3 -SCR of NO at low temperature. The catalysts were characterized using surface area analysis, X-ray diffraction, temperature-programmed techniques, and several types of microscopy and spectroscopy. The experimental results indicated that the Ce 0.47 Zr 0.22 Mn 0.31 O 2 exhibited superior Hg 0 removal efficiency (> 99%) and NO conversion efficiency (> 90%) even at 150 °C, and it also exhibited a good durability in the presence of SO 2 and H 2 O. The excellent performance of Ce 0.47 Zr 0.22 Mn 0.31 O 2 on co-purifying Hg 0 and NO was due to the stronger synergistic effects of Ce-Zr-Mn in Ce 0.47 Zr 0.22 Mn 0.31 O 2 than that of the others, which was illustrated by the characterization results of XPS, XRD, and FT-IR. Moreover, it was found that the NO conversion of Ce 0.47 Zr 0.22 Mn 0.31 O 2 could be slightly influenced by Hg 0 and was decreased about 4% to the max, while that of Hg 0 could rarely be affected by the selected catalytic reduction process of NO. It might be due to the co-purification mechanism of NO and Hg 0 . The mechanism of the simultaneous oxidation of Hg 0 and NH 3 -SCR of NO was mainly due to the synergetic effect on the mobility of surface oxygen and the activation of lattice oxygen of Ce 0.47 Zr 0.22 Mn 0.31 O 2 . The effect of the oxidation of Hg 0 on the NH 3 -SCR of NO was mainly due to the absorbed Hg 0 /Hg 2+ on the surface of Ce 0.47 Zr 0.22 Mn 0.31 O 2 , which attenuated the formation of NH 3(ad) , -NH 2(ad) , and NH 4 + on its acid sites. Similarly, the NH 3 -SCR of NO process could hardly influence the oxidation of Hg 0 when NO and Hg 0 were co-purified.

  7. Semiconducting and quartz microbalance (QCM) humidity sensor properties of TiO2 by sol gel calcination method

    NASA Astrophysics Data System (ADS)

    Yakuphanoglu, Fahrettin

    2012-06-01

    Titanium dioxide (TiO2) material was synthesized using the sol gel calcination method. The structural properties of the TiO2 semiconductor were investigated by atomic force microscopy. The electrical conductivity of the TiO2 was measured as a function of temperature and TiO2 exhibits a conductivity of 2.55 × 10-6 S/m at room temperature with activation energy of 104 meV. The electrical conductivity of the TiO2 at room temperature is higher than that of nanocrystalline TiO2 (3 × 10-7 S/m) and TiO2 thin film in air (5 × 10-9 S/m) and in vacuum (8.8 × 10-10 S/m). It was found that the electrical transport mechanism of the TiO2 is controlled by thermally activated mechanism. The optical band gap of the TiO2 powder sample was determined to be 3.17 eV, which is good in agreement with the bulk TiO2 (Eg = 3.2 eV). Up to our knowledge, there is no any reported data about the band gap of TiO2 nanopowder based on the diffused reflectance calculation. Quartz crystal microbalance (QCM) TiO2 humidity sensor was prepared. The sensor indicates a large frequency change with an interaction occurred between TiO2 and humidity molecules. The sensor exhibits a good repeatability when it was exposed to the moist air of 65% RH.

  8. Thermostable photocatalytically active TiO2 anatase nanoparticles

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Moiseev, Anna; Deubener, Joachim; Weber, Alfred

    2011-03-01

    Anatase is the low-temperature (300-550 °C) crystalline polymorph of TiO2 and it transforms to rutile upon heating. For applications utilizing the photocatalytic properties of nanoscale anatase at elevated temperatures (over 600 °C) the issue of phase stabilisation is of major interest. In this study, binary TiO2/SiO2 particles were synthesized by a flame aerosol process with TiCl4 and SiCl4 as precursors. The theoretical Si/Ti ratio was varied in the range of 0.7-1.3 mol/mol. The synthesized TiO2/SiO2 samples were heat treated at 900 and 1,000 °C for 3 h to determine the thermostability of anatase. Pyrogenic TiO2 P25 (from Evonik/Degussa, Germany) widely applied as photocatalyst was used as non-thermostabilized reference material for comparison of photocatalytic activity of powders. Both the non-calcinated and calcinated powders were characterized by means of XRD, TEM and BET. Photocatalytic activity was examined with dichloroacetic acid (DCA) chosen as a model compound. It was found that SiO2 stabilized the material retarding the collapse of catalyst surface area during calcination. The weighted anatase content of 85% remains completely unchanged even after calcination at 1,000 °C. The presence of SiO2 layer/bridge as spacer between TiO2 particles freezes the grain growth: the average crystallite size increased negligibly from 17 to 18 nm even during the calcination at 1,000 °C. Due to the stabilizing effect of SiO2 the titania nanoparticles calcinated at 900 and 1,000 °C show significant photocatalytic activity. Furthermore, the increase in photocatalytic activity with calcination temperature indicates that the titania surface becomes more accessible either due to intensified cracking of the SiO2 layer or due to enhanced transport of SiO2 into the necks thus releasing additional titania surface.

  9. Gamma ray shielding and structural properties of PbO-P2O5-Na2WO4 glass system

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder

    2017-05-01

    The present work has been undertaken to study the gamma ray shielding properties of PbO-P2O5-Na2WO4 glass system. The values of mass attenuation coefficient and half value layer parameter at photon energies 511, 662 and 1173 KeV have been determined using XCOM computer software developed by National Institute of Standards and Technology. The density, molar volume, XRD, UV-VIS and Raman studies have been performed to study the structural properties of the prepared glass system to check the possibility of the use of prepared samples as an alternate to conventional concrete for gamma ray shielding applications.

  10. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    PubMed

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  11. Metal-Organic Framework Photosensitized TiO2 Co-catalyst: A Facile Strategy to Achieve a High Efficiency Photocatalytic System.

    PubMed

    Xie, Ming-Hua; Shao, Rong; Xi, Xin-Guo; Hou, Gui-Hua; Guan, Rong-Feng; Dong, Peng-Yu; Zhang, Qin-Fang; Yang, Xiu-Li

    2017-03-17

    A 3D metal-organic framework (ADA-Cd=[Cd 2 L 2 (DMF) 2 ]⋅3 H 2 O where H 2 L is (2E,2'E)-3,3'-(anthracene-9,10-diyl)diacrylic acid) constructed from diacrylate substituted anthracene, sharing structural characteristics with some frequently employed anthraquinone-type dye sensitizers, was introduced as an effective sensitizer for anatase TiO 2 to achieve enhanced visible light photocatalytic performance. A facile mechanical mixing procedure was adopted to prepare the co-catalyst denoted as ADA-Cd/TiO 2 , which showed enhanced photodegradation ability, as well as sustainability, towards several dyes under visible light irradiation. Mechanistic studies revealed that ADA-Cd acted as the antenna to harvest visible light energy, generating excited electrons, which were injected to the conduction band (CB) of TiO 2 , facilitating the separation efficiency of charge carriers. As suggested by the results of control experiments, combined with the corresponding redox potential of possible oxidative species, . O 2 - , generated from the oxygen of ambient air at the CB of TiO 2 was believed to play a dominant role over . OH and h + . UV/Vis and photoluminescence technologies were adopted to monitor the generation of . O 2 - and . OH, respectively. This work presents a facile strategy to achieve a visible light photocatalyst with enhanced catalytic activity and sustainability; the simplicity, efficiency, and stability of this strategy may provide a promising way to achieve environmental remediation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability

    NASA Astrophysics Data System (ADS)

    Kim, Minjoong; Kwon, Chorong; Eom, Kwangsup; Kim, Jihyun; Cho, Eunae

    2017-03-01

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2.

  13. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability.

    PubMed

    Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe

    2017-03-14

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO 2 (Nb-TiO 2 ) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO 2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb 0.25 Ti 0.75 O 2 ). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO 2 -nanofibers (Pt/Nb-TiO 2 ) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO 2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO 2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO 2 nanofiber catalyst can be attributed to high corrosion resistance of TiO 2 and strong interaction between Pt and TiO 2 .

  14. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability

    PubMed Central

    Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe

    2017-01-01

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2. PMID:28290503

  15. TiO2 Nanowires/Poly(Methyl Methacrylate) Based Hybrid Photodetector: Improved Light Detection.

    PubMed

    Saha, S; Mondal, A; Choudhur, B; Goswami, T; Sarkar, M B; Chattopadhyay, K K

    2016-03-01

    Hybrid photodetector with a maximum external quantum efficiency of ~3.08% in the UV region at 370 nm, was fabricated by spin-coated poly(methyl methacrylate) (PMMA) polymer onto glancing angle deposited (GLAD) vertically aligned TiO2 nanowire (NW) arrays. The TiO2 NWs/PMMA detector shows excellent rectification and constant 1.3 times photo-responsivity in the reverse bias condition from -1 V to -10 V. The photodiode possesses a low ideality factor of 5.1 as compared to bared TiO2 NWs device of 7.1. The hybrid device produces sharp turn-on of -0.8 s and turn-off transient of -0.9 s respectively.

  16. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites.

    PubMed

    Ahmad, Amirah; Razali, Mohd Hasmizam; Mamat, Mazidah; Mehamod, Faizatul Shimal Binti; Anuar Mat Amin, Khairul

    2017-02-01

    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO 2 . Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO 2 nanoparticles onto functionalized-CNTs loaded TiO 2 , with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO 2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO 2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO 2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    NASA Astrophysics Data System (ADS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  18. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe

    Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less

  19. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion

    DOE PAGES

    Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe; ...

    2017-05-17

    Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less

  20. Dielectric and ferroelectric properties of highly (100)-oriented (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 thin films grown on LaNiO 3/γ-Al 2O 3/Si substrates by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Guo, Yiping; Akai, Daisuke; Sawada, Kazauki; Ishida, Makoto

    2008-07-01

    A (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 chemical solution was prepared by using barium acetate, nitrate of sodium, nitrate of bismuth, and Ti-isopropoxide as raw materials. A white precipitation appeared during the preparation was analyzed to be Ba(NO 3) 2. We found that ethanolamine is a very effective coordinating ligand of Ba 2+. A transparent and stable (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 precursor chemical solution has been achieved by using ethanolamine as a ligand of Ba 2+. (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 films were grown on LaNiO 3/γ-Al 2O 3/Si substrates. Highly (100)-oriented (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 films were obtained in this work due to lattice match growth. The dielectric, ferroelectric and insulative characteristics against applied field were studied. The conduction current shows an Ohmic conduction behavior at lower voltages and space-charge-limited behavior at higher voltages, respectively. These results indicate that, the (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 film is a promising lead-free ferroelectric film.

  1. Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays.

    PubMed

    Tang, Yanhong; Luo, Shenglian; Teng, Yarong; Liu, Chengbin; Xu, Xiangli; Zhang, Xilin; Chen, Liang

    2012-11-30

    A new photocatalyst, Ag nanoparticles (NPs) and reduced graphene oxide (RGO) co-decorated TiO(2) nanotube arrays (NTs) (Ag/RGO-TiO(2) NTs), was designed and facilely produced by combining electrodeposition and photoreduction processes. The structures and properties of the photocatalysts were characterized. The ternary catalyst exhibited almost 100% photocatalytic removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water under simulated solar light irradiation. The photodegradation rate toward 2,4-D over Ag/RGO-TiO(2) NTs is 11.3 times that over bare TiO(2) NTs. After 10 successive cycles with 1600 min of irradiation, Ag/RGO-TiO(2) NTs maintained as high 2,4-D removal efficiency as 97.3% with excellent stability and easy recovery, which justifies the photocatalytic system a promising application for herbicide removal from water. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Constructing inverse V-type TiO2-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Ding, Jian; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2015-08-01

    Bio-template approach was employed to construct inverse V-type TiO2-based photocatalyst with well distributed AgBr in TiO2 matrix by making dead Troides Helena wings with inverse V-type scales as the template. A cross-linked titanium precursor with homogenous hydrolytic rate, good liquidity, and low viscosity was employed to facilitate a perfect duplication of the template and the dispersion of AgBr based on appropriate pretreatment of the template by alkali and acid. The as-synthesized inverse V-type TiO2/AgBr can be turned into inverse V-type TiO2/Ag0 from AgBr photolysis during photocatalysis to achieve in situ deposition of Ag0 in TiO2 matrix, by this approach, to avoid the deformation of surface microstructure inherited from the template. The result showed that the cooperation of perfect inverse V-type structure and the well distributed TiO2/Ag0 microstructures can efficiently boost the photosynthetic water oxidation compared to non-inverse V-type TiO2/Ag0 and TiO2/Ag0 without using template. The anti-reflection function of inverse V-type structure and the plasmatic effect of Ag0 might be able to account for the enhanced photon capture and efficient photoelectric conversion.

  3. Morphology modulation of SrTiO3/TiO2 heterostructures for enhanced photoelectrochemical performance.

    PubMed

    Jiao, Zhengbo; Chen, Tao; Yu, Hongchao; Wang, Teng; Lu, Gongxuan; Bi, Yingpu

    2014-04-01

    Design and fabrication of nanoscale semiconductors with regulatable morphology or structure has attracted tremendous interest due to the dependency relationship between properties and architectures. Two types of SrTiO3/TiO2 nanocomposites with different morphologies and structures have been fabricated by controlling the kinetics of hydrothermal reactions. One is TiO2 nanotube arrays densely wrapped by SrTiO3 film and the other is SrTiO3 nanospheres distributed on the top region of TiO2 nanotube arrays, which has been firstly fabricated. It has been found that the photoelectrochemical performances of these heterostructures are crucially dominated by their architectures. Heterostructured SrTiO3/TiO2 nanotube arrays were fabricated by traditional method in the absence of NaOH and they exhibited higher photoelectrochemical performance than pure TiO2 nanotube arrays. However, the compact SrTiO3 coating film on the sidewalls of TiO2 nanotube arrays could inevitably destroy the tubular structures of TiO2 and thus go against the vectorial transport of electrons. Interestingly, when excess NaOH was added into the growth solution, SrTiO3 nanospheres would be rationally grafted on the top of TiO2 nanotube arrays, which could preserve the tubular structures of TiO2, and thus further improve the photoelectrochemical performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Fabrication of a Highly Sensitive Single Aligned TiO2 and Gold Nanoparticle Embedded TiO2 Nano-Fiber Gas Sensor.

    PubMed

    Nikfarjam, Alireza; Hosseini, Seyedsina; Salehifar, Nahideh

    2017-05-10

    In this research, a single-aligned nanofiber of pure TiO 2 and gold nanoparticle (GNP)-TiO 2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C 12 H 28 O 4 Ti), acetic acid (CH 3 COOH), ethanol (C 2 H 5 OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO 2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO 2 and GNP-TiO 2 triangular samples was about 5 ppb and 700 ppt, respectively.

  5. Data on the effect of improved TiO2/FTO interface and Ni(OH)2 cocatalyst on the photoelectrochemical performances and stability of CdS cased ZnIn2S4/TiO2 heterojunction.

    PubMed

    Mahadik, Mahadeo A; Shinde, Pravin S; Lee, Hyun Hwi; Cho, Min; Jang, Jum Suk

    2018-04-01

    This data article presents the experimental evidences of the effect of TiO 2 -fluorine doped tin oxide interface annealing and Ni(OH) 2 cocatalysts on the photoelectrochemical, structural, morphological and optical properties of Ni(OH) 2 /CdS/ZnIn 2 S 4 /TiO 2 heterojunction. The Raman spectroscopy exhibits the sharp features of the rutile phase of TiO 2 and in agreement with the X-ray diffraction data. The band gap energy of the 500 °C sample was found to be 3.12 eV, further it was increased to 3.20, 3.22 eV for samples annealed at 600 and 700 °C respectively. The decrease in the band gap energy at 500 °C related to the oxygen vacancies and was analysed by photoluminescence spectroscopy analysis. The synthesis, characterization methods and other experimental details of TiO 2 based heterostructure are also provided. The presence of CdS and ZnIn 2 S 4 coating on surface of TiO 2 electrodes providing a high surface area, extended visible absorption and helps to improve the change separation. This data article contains data related to the research article entitled "Highly efficient and stable 3D Ni(OH) 2 /CdS/ZnIn 2 S 4 /TiO 2 heterojunction under solar light: Effect of an improved TiO 2 /FTO interface and cocatalyst" (Mahadik et al., 2017) [1].

  6. Preparation and characterization of WO{sub 3} nanoparticles, WO{sub 3}/TiO{sub 2} core/shell nanocomposites and PEDOT:PSS/WO{sub 3} composite thin films for photocatalytic and electrochromic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyadjiev, Stefan I., E-mail: boiajiev@gmail.com; Santos, Gustavo dos Lopes; Szűcs, Júlia

    2016-03-25

    In this study, monoclinic WO{sub 3} nanoparticles were obtained by thermal decomposition of (NH{sub 4}){sub x}WO{sub 3} in air at 600 °C. On them by atomic layer deposition (ALD) TiO{sub 2} films were deposited, and thus core/shell WO{sub 3}/TiO{sub 2} nanocomposites were prepared. We prepared composites of WO{sub 3} nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO{submore » 3} and core/shell WO{sub 3}/TiO{sub 2} nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO{sub 3} thin films, and the coloring and bleaching states were studied.« less

  7. Modelling studies for photocatalytic degradation of organic dyes using TiO2 nanofibers.

    PubMed

    Singh, Narendra; Rana, Mohit Singh; Gupta, Raju Kumar

    2017-09-05

    In this work, modelling of the photocatalytic degradation of para-nitrophenol (PNP) using synthesized electrospun TiO 2 nanofibers under UV light illumination is reported. A dynamic model was developed in order to understand the behaviour of operating parameters, i.e. light intensity and catalyst loading on the photocatalytic activity. This model was simulated and analysed for both TiO 2 solid nanofibers and TiO 2 hollow nanofibers, applied as photocatalysts in the Langmuir-Hinshelwood kinetic framework. The entire photocatalytic degradation rate follows pseudo-first-order kinetics. The simulated results obtained from the developed model are in good agreement with the experimental results. At a catalyst loading of 1.0 mg mL -1 , better respective degradation rates were achieved at UV light irradiance of 4 mW cm -2 , for both the TiO 2 solid and hollow nanofibers. However, it was also observed that TiO 2 hollow nanofibers have a higher adsorption rate than that of TiO 2 solid nanofibers resulting in a higher photocatalytic degradation rate of PNP.

  8. On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization.

    PubMed

    Suárez, Silvia; Coronado, Juan M; Portela, Raquel; Martín, Juan Carlos; Yates, Malcolm; Avila, Pedro; Sánchez, Benigno

    2008-08-15

    Hybrid structured photocatalysts based on sepiolite, an adsorbent, and TiO2 were prepared by extrusion of ceramic dough and conformed as plates. The influence of the photocatalyst configuration was studied either by including TiO2 in the extrusion process (incorporated materials) or by coating the sepiolite plates with a TiO2 film (coated materials). The influence of the OH- surface concentration in the photocatalytic performance was studied by treating the ceramic plates at different temperatures. The samples were characterized by N2 adsorption-desorption, MIP, SEM, XRD, and UV-vis-NIR spectroscopy and tested in the photocatalytic degradation of trichloroethylene (TCE) as a target VOC molecule. Most of the catalysts presented high photoactivity, but considerable differences were observed when the CO2 selectivity was analyzed. The results demonstrate that there is a significant effect of the catalyst configuration on the selectivity of the process. An intimate contact between the sepiolite fibers and TiO2 particles for incorporated materials with a corncob-like structure favored the migration of nondesirable reaction products such as COCl2 and dichloroacetyl chloride (DCAC) to the adsorbent, reacting with OH- groups of the adsorbent and favoring the TCE mimeralization.

  9. Dielectric properties of Ba0.6Sr0.4TiO3-La(B0.5Ti0.5)O3 (B=Mg, Zn) ceramics.

    PubMed

    Xu, Yebin; Liu, Ting; He, Yanyan; Yuan, Xiao

    2009-11-01

    Ba(0.6)Sr(0.4)TiO(3)-La(B(0.5)Ti(0.5))O(3) (B = Mg, Zn) ceramics were prepared by a solid-state reaction method, and their microwave dielectric characteristics and tunability were investigated. The ferroelectric-dielectric solid solutions with cubic perovskite structures were obtained for compositions of 10 to 60 mol% La(Mg(0.5)Ti(0.5))O(3) and 10 to 50 mol% La(Zn(0.5)Ti(0.5))O(3). With the increase of linear oxide dielectric content, the dielectric constant and tunability were decreased and Qf was increased. Ba(0.6)Sr(0.4)TiO(3)-La(Mg(0.5)Ti(0.5))O(3) has better dielectric properties than Ba(0.6)Sr(0.4)TiO(3)-La(Zn(0.5)Ti(0.5))O(3). 0.9Ba(0.6)Sr(0.4)TiO(3)-0.1La(Mg(0.5)Ti(0.5))O(3) has a dielectric constant epsilon = 338.2, Qf = 979 GHz and a tunability of was 3.7% at 100 kHz under 1.67 kV/mm. The Qf value of 0.5Ba(0.6)Sr(0.4)TiO(3)- 0.5La(Mg(0.5)Ti(0.5))O(3) reached 9367 GHz, but the tunable properties were lost.

  10. A hybridization approach to efficient TiO2 photodegradation of aqueous benzalkonium chloride.

    PubMed

    Suchithra, Padmajan Sasikala; Carleer, Robert; Ananthakumar, Solaippan; Yperman, Jan

    2015-08-15

    TiO2 get positively charged upon UV-irradiation and repel the cationic pollutants away from the surface. Hybridization of AC onto TiO2 (ACT) tends catalyst surface negatively charged besides providing highly favorable adsorptions sites for cationic pollutants. The photodegradation of benzalkonium chloride (BKC), a quaternary ammonium surfactant and a pharmaceutical, is investigated with ACT. The surface charge of the catalyst in surfactant and non-surfactant aqueous dispersion under UV-irradiation is investigated and explained. The anomalous increase in COD values at the beginning of BKC-photodegradation is explained. The intermediate products formed are identified in both solution and solid phase. Trace amount of dodecane remained adsorbed on the catalyst surface after 1h UV-irradiation, but complete mineralization of BKC is achieved with 2h UV-irradiation. We propose that BKC photodegradation starts by central fission of benzyl CN bond followed by dealkylation, and demethylation steps. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide

    NASA Astrophysics Data System (ADS)

    Mao, Dongsen; Lu, Guanzhong

    2007-02-01

    The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO 2-ZrO 2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO 2-ZrO 2 into a crystalline ZrTiO 4 compound, while a larger amount of boria (⩾8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO 4 units delay, while a build-up of trigonal BO 3 promote, the crystallization of amorphous TiO 2-ZrO 2 to form ZrTiO 4 crystals.

  12. A Novel Highly Sensitive NO2 Sensor Based on Perovskite Na0.5+xBi0.5TiO3-δ Electrolyte.

    PubMed

    Xiao, Yihong; Zhang, Chufan; Zhang, Xu; Cai, Guohui; Zheng, Yong; Zheng, Ying; Zhong, Fulan; Jiang, Lilong

    2017-07-10

    NO x is one of dangerous air pollutants, and the demands for reliable sensors to detect NO x are extremely urgent recently. Conventional fluorite-phase YSZ used for NO x sensor requires higher operating temperature to obtain desirable oxygen ion conductivity. In this work, perovskite-phase Na 0.5 Bi 0.5 TiO 3 (NBT) oxygen conductor was chosen as the solid electrolyte to fabricate a novel highly sensitive NO 2 sensor with CuO as the sensing electrode and Pt as reference electrode. Na dopped Na 0.5 Bi 0.5 TiO 3 greatly improved the sensing performance of this sensor. The optimal sensor based on Na 0.51 Bi 0.50 TiO 3-δ exhibited good response-recovery characteristics to NO 2 and the response current values were almost linear to NO 2 concentrations in the range of 50-500 ppm at 400-600 °C. The response current value towards NO 2 reached maximum 11.23 μA at 575 °C and the value on NO 2 is much higher than other gases (CH 4 , C 2 H 4 , C 3 H 6 , C 3 H 8 , CO), indicating good selectivity for detecting NO 2 . The response signals of the sensor were slightly affected by coexistent O 2 varying from 2 to 21 vol% at 575 °C. The response current value decreased only 4.9% over 2 months, exhibiting the potential application in motor vehicles.

  13. Biocorrosion of TiO2 nanoparticle coating of Ti-6Al-4V in DMEM under specific in vitro conditions

    NASA Astrophysics Data System (ADS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-02-01

    A TiO2 nanoparticle coating was prepared on a biomedical Ti-6Al-4V alloy using "spin-coating" technique with a colloidal suspension of TiO2 nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO2 nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO2. Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti-6Al-4V shows a complete coverage by a Ca-phosphate layer in contrast to the non-coated Ti-6Al-4V alloy. Hence, the TiO2-NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO2-NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti-6Al-4V alloy is significant for at least 28 days of immersion in DMEM.

  14. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    PubMed Central

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-01-01

    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612

  15. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts

    DOE PAGES

    Gao, Feng; Szanyi, Janos

    2018-05-07

    Cu/SSZ-13 SCR catalysts have been extensively studied in the past decade or so. Hydrothermal stability of these catalysts has been identified as the most important criterion for application. In this perspective, we describe recent atomic-level understanding of their hydrothermal stability. In particular, electron paramagnetic resonance (EPR) is shown to rather accurately quantify isolated Cu(II) ions and CuO clusters in fresh and aged catalysts to demonstrate the remarkable hydrothermal stability for Cu 2+ ions located in 6-membered ring windows, and the conversion of [Cu(OH)] + ions in Chabazite cages to CuO clusters. The hydrothermal stability difference of the two isolated Cu(II)more » ions is confirmed with DFT simulations and the conversion of [Cu(OH)] + to CuO is proposed to involve formation, migration and condensation of Cu(OH) 2 intermediates. The structural destructive role of CuO clusters is attributed to mesopore formation from their migration, which more severely damages the catalysts than dealumination. Lastly, perspectives are given on new strategies for low-temperature NO x removal, rational design and refinement of Cu/SSZ-13, and development of new Cu/zeolite SCR catalysts with even better performance than the state-of-the-art Cu/SSZ-13.« less

  16. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Szanyi, Janos

    Cu/SSZ-13 SCR catalysts have been extensively studied in the past decade or so. Hydrothermal stability of these catalysts has been identified as the most important criterion for application. In this perspective, we describe recent atomic-level understanding of their hydrothermal stability. In particular, electron paramagnetic resonance (EPR) is shown to rather accurately quantify isolated Cu(II) ions and CuO clusters in fresh and aged catalysts to demonstrate the remarkable hydrothermal stability for Cu 2+ ions located in 6-membered ring windows, and the conversion of [Cu(OH)] + ions in Chabazite cages to CuO clusters. The hydrothermal stability difference of the two isolated Cu(II)more » ions is confirmed with DFT simulations and the conversion of [Cu(OH)] + to CuO is proposed to involve formation, migration and condensation of Cu(OH) 2 intermediates. The structural destructive role of CuO clusters is attributed to mesopore formation from their migration, which more severely damages the catalysts than dealumination. Lastly, perspectives are given on new strategies for low-temperature NO x removal, rational design and refinement of Cu/SSZ-13, and development of new Cu/zeolite SCR catalysts with even better performance than the state-of-the-art Cu/SSZ-13.« less

  17. Crystal structure and phase transition in (NH4)3WO2F5: from dynamic to static orientational disorder.

    PubMed

    Udovenko, Anatoly; Laptash, Natalia

    2015-08-01

    Single crystals of tungsten double salt (NH4)3WO2F5 = (NH4)3[WO2F4]F have been synthesized by solid-state reaction or from fluoride solution and its crystal structures at 296 and 193 K were determined by X-ray diffraction. At room temperature, the crystal structure of the compound is dynamically disordered with the ligand atoms statistically distributed on two positions (6e and 24m) of the Pm3m unit cell [a = 6.0298 (1) Å], and the tungsten atom dynamically disordered on 12 orientations forming a spatial cuboctahedron [W12] that enables the real geometry of cis-WO2F4 octahedron to be determined with two short W-O distances. On cooling, the compound undergoes a first-order phase transition with the symmetry change Pm3m → Pa3 and a doubling of the unit-cell parameter [a = 11.9635 (7) Å]. The ligand F(O) atoms statistically occupy two general 24d sites and form W1X6 and W2X6 octahedra, in which the O and F atoms are not crystallographically different that means a static orientational disorder of (NH4)3WO2F5.

  18. Enhanced Sintering of β"-Al2O3/YSZ with the Sintering Aids of TiO2 and MnO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong

    2015-07-11

    β"-Al2O3 has been the dominated choice for the electrolyte materials of sodium batteries because of its high ionic conductivity, excellent stability with the electrode materials, satisfactory mechanical strength, and low material cost. To achieve adequate electrical and mechanical performance, sintering of β"-Al2O3 is typically carried out at temperatures above 1600oC with deliberate efforts on controlling the phase, composition, and microstructure. Here, we reported a simple method to fabricate β"-Al2O3/YSZ electrolyte at relatively lower temperatures. With the starting material of boehmite, single phase of β"-Al2O3 can be achieved at as low as 1200oC. It was found that TiO2 was extremely effectivemore » as a sintering aid for the densification of β"-Al2O3 and similar behavior was observed with MnO2 for YSZ. With the addition of 2 mol% TiO2 and 5 mol% MnO2, the β"-Al2O3/YSZ composite was able to be densified at as low as 1400oC with a fine microstructure and good electrical/mechanical performance. This study demonstrated a new approach of synthesis and sintering of β"-Al2O3/YSZ composite, which represented a simple and low-cost method for fabrication of high-performance β"-Al2O3/YSZ electrolyte.« less

  19. Photopyroelectric spectroscopic studies of ZnO-MnO(2)-Co(3)O(4)-V(2)O(5) ceramics.

    PubMed

    Rizwan, Zahid; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2011-01-01

    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.

  20. Photopyroelectric Spectroscopic Studies of ZnO-MnO2-Co3O4-V2O5 Ceramics

    PubMed Central

    Rizwan, Zahid; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2011-01-01

    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO2 + 0.4Co3O4 + xV2O5), x = 0–1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300–800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (Eg) was 2.11 eV for 0.3 mol% V2O5 at a sintering temperature of 1025 °C as determined from the plot (ρhυ)2 versus hυ. With a further increase in V2O5, the value of Eg was found to be 2.59 eV. Steepness factor ‘σA’ and ‘σB’, which characterize the slope of exponential optical absorption, is discussed with reference to the variation of Eg. XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively. PMID:21673911

  1. Preparation, characterization and photocatalytic activities of TiO2-SrTiO3 composites

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhu, Lianjie; Gao, Fubo; Xie, Hanjie

    2017-01-01

    Series of TiO2-SrTiO3 composites were synthesized by hydrothermal method, using TiO2 nanotube array as a precursor and Sr(OH)2 as a Sr source material. TiO2-SrTiO3 products with various composition were obtained by simply changing the reaction time. The as-synthesized products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical properties were studied by means of UV-Vis absorption spectroscopy and photoluminescence (PL) spectra. Their photocatalytic activities were assessed by photodegradation of rhodamine B (RhB) solution and the photocatalytic reaction mechanism was discussed. The TiO2-SrTiO3 composites obtained at 2 h exhibits the highest activity for photodegradation of RhB.

  2. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  3. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    NASA Astrophysics Data System (ADS)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na2Ti2O5·H2O) particles (W = 9-12 nm and L = 82-115 nm) and rice like pure anatase-TNR particles (W = 8-13 nm and L = 81-134 nm) are obtained by the hydrothermal treatment of P25-TiO2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = -2.82 (P25-TiO2), -13.5 (TNT) and -22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C9H10ClN5O2) degradation to CO2 formation under UV irradiation because of its largest surface area 176 m2 g-1 among the catalysts studied.

  4. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    PubMed

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.

  5. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: A comparative study of photo catalysis on acid red 88

    NASA Astrophysics Data System (ADS)

    Balachandran, K.; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P.

    2014-07-01

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m2/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4 h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  6. Sono-synthesis of solar light responsive S-N-C-tri doped TiO2 photo-catalyst under optimized conditions for degradation and mineralization of Diclofenac.

    PubMed

    Ramandi, Sara; Entezari, Mohammad H; Ghows, Narjes

    2017-09-01

    C-N-S-tri doped TiO 2 anatase phase was synthesized using a facile, effective and novel sonochemical method at low frequency (20kHz) and at room temperature. Titanium butoxide as the titanium precursor and thiourea as the dopant source were used in the synthesis of the photo-catalyst. The effects of important parameters such as thiourea/Ti molar ratio, ultrasound intensity, sonication time and temperature were studied on the synthesis of tri-doped TiO 2 . The XPS results confirmed the presence of N, S, and C in the photo-catalyst. The photo-catalytic efficiency of the synthesized catalyst was studied toward the removal of Diclofenac as a model pharmaceutical organic pollutant. The results confirmed that the photo-catalyst synthesized with narrower band gap energy, shorter sonication time and higher ultrasound intensity leads to a rapid removal of Diclofenac. The effect of operational variables on the photo-catalytic activity of C-N-S tri doped TiO 2 nanoparticles was studied and optimized using the Taguchi method as a statistical technique. Additionally, the degradation process followed the pseudo-first-order kinetics model and the highest apparent rate constant of 0.0632min -1 achieved in 90min. Chemical oxygen demand (COD) analysis confirmed that the mineralization took place completely (100%) under the optimized conditions in 180min. Different scavengers were applied during the degradation process and active species such as OH and O 2 - had key roles in the photo-catalytic process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.

    PubMed

    Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M

    2017-11-22

    The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in

  8. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE PAGES

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.; ...

    2017-03-17

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  9. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  10. Temperature-dependent local structural properties of redox Pt nanoparticles on TiO 2 and ZrO 2 supports

    DOE PAGES

    Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; ...

    2015-01-21

    This paper examined the local structural properties of Pt nanoparticles on SiO 2, TiO 2–SiO 2, and ZrO 2–SiO 2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H 2, and O 2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO 2–SiO 2 and ZrO 2–SiO 2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO 2more » supports. Contrary to the SiO 2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO 2–SiO 2 and ZrO 2–SiO 2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO 2 or ZrO 2 on the surface of SiO 2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less

  11. Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO2 and Au-TiO2

    DTIC Science & Technology

    2013-05-23

    methanol photochemistry at three-dimensionally (3D) networked aerogels of TiO2 or Au–TiO2 reveals that incorporated Au nanoparticles strongly sensitize...the oxide nanoarchitecture to visible light. Methanol dissociatively adsorbs at the surfaces of TiO2 and Au–TiO2 aerogels under dark, high-vacuum...photochemistry at three-dimensionally (3D) networked aerogels of TiO2 or Au–TiO2 reveals that incorporated Au nanoparticles strongly sensitize the oxide

  12. Assessing Photocatalytic Oxidation Using Modified TiO 2 Nanomaterials for Virus Inactivation in Drinking Water: Mechanisms and Application

    NASA Astrophysics Data System (ADS)

    Liga, Michael Vincent

    Photocatalytic oxidation is an alternative water treatment method under consideration for disinfecting water. Chlorine disinfection can form harmful byproducts, and some viruses (e.g. adenoviruses) are resistant to other alternative disinfection methods. Photocatalytic oxidation using nano-sized photocatalytic particles (e.g. TiO2, fullerene) holds promise; however, it is limited by its low efficiency and long required treatment times. This research focuses on improving virus inactivation by photocatalytic oxidation by modifying catalysts for improved activity, by analyzing virus inactivation kinetics, and by elucidating the inactivation mechanisms of adenovirus serotype 2 (AdV2) and bacteriophage MS2. Modifying TiO2 with silver (nAg/TiO2) or silica (SiO2-TiO2) improves the inactivation kinetics of bacteriophage MS2 by a factor of 3-10. nAg/ TiO2 increases hydroxyl radical (HO·) production while SiO2 increases the adsorption of MS2 to TiO 2. These results suggest that modifying the photocatalyst surface to increase contaminant adsorption is an important improvement strategy along with increasing HO· production. The inactivation kinetics of AdV2 by P25 TiO2 is much slower than the MS2 inactivation kinetics and displays a strong shoulder, which is not present in the MS2 kinetics. nAg/TiO2 initially improves the inactivation rate of AdV2. SiO2-TiO2 reduces the AdV2 inactivation kinetics since adsorption is not significantly enhanced, as it is with MS2. Amino-C60 is highly effective for AdV2 inactivation under visible light irradiation, making it a good material for use in solar disinfection systems. The efficacy of amino-fullerene also demonstrates that singlet oxygen is effective for AdV2 inactivation. When exposed to irradiated TiO2, AdV2 hexon proteins are heavily damaged resulting in the release of DNA. DNA damage is also present but may occur after capsids break. With MS2, the host interaction protein is rapidly damaged, but not the coat protein. The kinetics

  13. Hydrodeoxygenation of p -Cresol over Pt/Al 2 O 3 Catalyst Promoted by ZrO 2 , CeO 2 , and CeO 2 –ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weiyan; Wu, Kui; Liu, Pengli

    2016-07-20

    ZrO 2-Al 2O 3 and CeO 2-Al 2O 3 were prepared by a co-precipitation method and selected as supports for Pt catalysts. The effects of CeO 2 and ZrO 2 on the surface area and Brønsted acidity of Pt/Al 2O 3 were studied. In the hydrodeoxygenation (HDO) of p-cresol, the addition of ZrO 2 promoted the direct deoxygenation activity on Pt/ZrOO 2-Al 2O 3 via Caromatic-O bond scission without benzene ring saturation. Pt/CeOO 2-Al 2O 3 exhibited higher deoxygenation extent than Pt/Al 2O 3 due to the fact that Brønsted acid sites on the catalyst surface favored the adsorption ofmore » p-cresol. With the advantages of CeO 2 and ZrO 2 taken into consideration, CeO 2-ZrOO 2-Al 2O 3 was prepared, leading to the highest HDO activity of Pt/CeO 2-ZrOO 2-Al 2O 3. The deoxygenation extent for Pt/CeO 2-ZrOO 2-Al 2O 3 was 48.4% and 14.5% higher than that for Pt/ZrO2O 2-Al 2O 3 and Pt/CeOO 2-Al 2O 3, respectively.« less

  14. Au/MxOy/TiO2 catalysts for CO oxidation: promotional effect of main-group, transition, and rare-earth metal oxide additives.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhen; Overbury, Steven; Dai, Sheng

    Au/TiO2 catalysts are active for CO oxidation, but they suffer from high-temperature sintering of the gold particles, and few attempts have been made to promote or stabilize Au/TiO2. Our recent communication addressed these issues by loading gold onto Al2O3/TiO2 prepared via surface-sol-gel processing of Al(sec-OC4H9)3 on TiO2. In our current full paper, Au/Al2O3/TiO2 catalysts were prepared alternatively by thermal decomposition of Al(NO3)3 on TiO2 followed by loading gold, and the influences of the decomposition temperature and Al2O3 content were systematically surveyed. This facile method was subsequently extended to the preparation of a battery of metal oxide-modified Au/TiO2 catalysts virtually notmore » reported. It was found that Au/TiO2 modified by CaO, NiO, ZnO, Ga2O3, Y2O3, ZrO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Ho2O3, Er2O3, or Yb2O3 could retain significant activity at ambient temperature even after aging in O2-He at 500 C, whereas unmodified Au/TiO2 lost its activity. Moreover, some 200 C-calcined promoted catalysts showed high activity even at about -100 C. The deactivation and regeneration of some of these new catalysts were studied. This work furnished novel catalysts for further fundamental and applied research.« less

  15. Structural investigation of MO ṡ P2O5ṡ Li2O (MO = Fe2O3 or V2O5) glass systems by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin I.; Racolta, Dania

    2014-11-01

    Glasses from the systems xMO ṡ(100-x )[ P2O5ṡ Li2O ] (MO = Fe2O3 or V2O5) with 0 ≤ x ≤ mol % were prepared in the same conditions and characterized by IR spectroscopy. It was established the mode in which both Fe2O3 and V2O5 influences the local structure of these glasses. The iron ions generally modify in a different way the local structure of these glasses then vanadium ions. The results shown that phosphate units are the main structural units of glass system and the iron and vanadium ions are located in the network.

  16. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption.

    PubMed

    Yu, Lian; Peng, Xianjia; Ni, Fan; Li, Jin; Wang, Dongsheng; Luan, Zhaokun

    2013-02-15

    A novel Fe-Ti binary oxide magnetic nanoparticles which combined the photocatalytic oxidation property of TiO(2) and the high adsorption capacity and magnetic property of γ-Fe(2)O(3) have been synthesized using a coprecipitation and simultaneous oxidation method. The as-prepared samples were characterized by powder XRD, TEM, TG-DTA, VSM and BET methods. Photocatalytic oxidation of arsenite, the effect of solution pH values and initial As(III) concentration on arsenite removal were investigated in laboratory experiments. Batch experimental results showed that under UV light, As(III) can be efficiently oxidized to As(V) by dissolved O(2) in γ-Fe(2)O(3)-TiO(2) nanoparticle suspensions at various pH values. At the same time, As(V) was effectively removed by adsorption onto the surface of nanoparticles. The maximum removal capability of the nano-material for arsenite was 33.03 mg/g at pH 7.0. Among all the common coexisting ions investigated, phosphate was the greatest competitor with arsenic for adsorptive sites on the nano-material. Regeneration studies verified that the γ-Fe(2)O(3)-TiO(2) nanoparticles, which underwent five successive adsorption-desorption processes, still retained comparable catalysis and adsorption performance, indicating the excellent stability of the nanoparticles. The excellent photocatalytic oxidation performance and high uptake capability of the magnetic nano-material make it potentially attractive material for the removal of As(III) from water. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Pressure-induced Structural Transformations in LanthanideTitanates: La2TiO5 and Nd2TiO5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Zhang; J Wang; M Lang

    The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a x b x 2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedramore » remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.« less

  18. The Influence of Cr3+ on TiO2 Crystal Growth and Photoactivity Properties

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Hidayatika, W. N.; Sari, P. L.; Sari, P. P.; Hidayat, R.; Munawaroh, H.; Ramelan, A. H.

    2018-03-01

    The photocatalyst technology is an integrated combination of photochemical processes and catalysis in order to carry out a chemical transformation reaction. One of the semiconductor materials that have good photocatalytic activity is TiO2 anatase. This study aim to determine the effect of the Cr3+ addition on the growth of TiO2 rutile crystal and the increasing of TiO2 photoactivity. Diffractogram X-Ray of the samples showed that the synthesized TiO2 at 400 °C has been produced 100% TiO2 anatase. Synthesis of TiO2 doped Cr3+ composite was using wet impregnation method. The TiO2 doped Cr3+ composites have beed grown by annealed at a temperature of 300, 400, 500, 600 and 700 °C, respectively Annealing process have capabled to gain to the TiO2 doped Cr3+ nanocomposite. The result product annealed at 500 °C only appear anatase phase due to the Cr3+ addition influence that was able to suppress the growth of rutile. Identification of TiO2 doped Cr3+ composite using Fourier Transform Infra-Red (FT-IR) showed O-Cr vibration at 2283.72 cm-1. The TiO2 doped Cr3+ photoactivity was studied to degrade Rhodamin B. The best result on photodegradation of Rhodamin B was performed by using TiO2 doped Cr3+ composite which was annealed at 700 °C i.e. 74.71%.

  19. One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Tang, Qian; Meng, Xianfeng; Wang, Zhiying; Zhou, Jianwei; Tang, Hua

    2018-02-01

    TiO2/g-C3N4 composite nanofibers have been successfully synthesized by one-step electrospinning method, using titanium (IV) n-butoxide (TNBT) and urea as raw materials. The structure and compositions of TiO2/g-C3N4 samples are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Diffuse reflectance spectroscopy (DRS), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), X-ray photoelectron spectrometer (XPS) and Brunauer-Emmett-Teller (BET), respectively. The results show that the porous uniform TiO2/g-C3N4 composite nanofibers, with diameter of 100-150 nm, can be successfully prepared through electrospinning method combining 550 °C calcination process. The photocatalytic activity is evaluated by the degradation of rhodamine B (RhB) under simulated solar light. The enhanced catalytic activity is attributed predominantly to the heterojunction between TiO2 and g-C3N4, which promotes the transferring of carriers and prohibits their recombination. With the optimal doping amount of 0.6 g urea (corresponding to 3 g TNBT), the TiO2/g-C3N4 composite nanofibers exhibit the highest rate towards the photocatalytic degradation of RhB. A diagram is presented to explicate the mechanism of the whole catalytic experiment. This study might provide a promising future of applying green catalysts to solving water pollution problems.

  20. A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation

    NASA Astrophysics Data System (ADS)

    Jiang, Minhong; Wang, Baowei; Yao, Yuqin; Li, Zhenhua; Ma, Xinbin; Qin, Shaodong; Sun, Qi

    2013-11-01

    The CeO2-Al2O3 supports prepared with impregnation (IM), deposition precipitation (DP), and solution combustion (SC) methods for MoO3/CeO2-Al2O3 catalyst were investigated in the sulfur-resistant methanation. The supports and catalysts were characterized by N2-physisorption, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy (RS), and temperature-programmed reduction (TPR). The N2-physisorption results indicated that the DP method was favorable for obtaining better textural properties. The TEM and RS results suggested that there is a CeO2 layer on the surface of the support prepared with DP method. This CeO2 layer not only prevented the interaction between MoO3 and γ-Al2O3 to form Al2(MoO4)3 species, but also improved the dispersion of MoO3 in the catalyst. Accordingly, the catalysts whose supports were prepared with DP method exhibited the best catalytic activity. The catalysts whose supports were prepared with SC method had the worst catalytic activity. This was caused by the formation of Al2(MoO4)3 and crystalline MoO3. Additionally, the CeO2 layer resulted in the instability of catalysts in reaction process. The increasing of calcination temperature of supports reduced the catalytic activity of all catalysts. The decrease extent of the catalysts whose supports were prepared with DP method was the lowest as the CeO2 layer prevented the interaction between MoO3 and γ-Al2O3.

  1. Electrochemical corrosion, wear and cell behavior of ZrO2/TiO2 alloyed layer on Ti-6Al-4V.

    PubMed

    Li, Jianfang; He, Xiaojing; Zhang, Guannan; Hang, Ruiqiang; Huang, Xiaobo; Tang, Bin; Zhang, Xiangyu

    2018-06-01

    Ti-6Al-4V (TC4) has received increasing attention as biomaterial but also raised concerns about the long-term safety of releasing of metal ions and poor wear resistance. In this work, an ZrO 2 /TiO 2 alloyed layer was prepared on TC4 by plasma surface alloying with Zr and subsequently annealed in the air for improved corrosion and wear resistant. To assess the corrosion performance of the alloyed layer, the specimens were measured by open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid solution. The result shows that the ZrO 2 /TiO 2 alloyed layer exhibits strikingly high polarization resistance, wide passive region and very low current density, indicating the excellent corrosion resistance. The layer also displays significant improvement of wear resistance. Furthermore, the alloyed layer restricts cell adhesion and spreading. We infer that the ZrO 2 /TiO 2 alloyed layer might be potentially useful implanted devices such as biosensors, bioelectronics or drug delivery devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Toxicity assessment of metoprolol and its photodegradation mixtures obtained by using different type of TiO2 catalysts in the mammalian cell lines.

    PubMed

    Četojević-Simin, Dragana D; Armaković, Sanja J; Šojić, Daniela V; Abramović, Biljana F

    2013-10-01

    Toxicity of metoprolol (MET) alone and in mixtures with its photocatalytic degradation intermediates obtained by using TiO2 Wackherr and Degussa P25 under UV irradiation in the presence of O2 was evaluated in vitro in a panel of three histologically different cell lines: rat hepatoma (H-4-II-E), human colon adenocarcinoma (HT-29) and human fetal lung (MRC-5). Both catalysts promoted a time-dependent increase in the toxicity of the photodegradation products, and those obtained using Degussa P25 photocatalyst were more toxic. The most pronounced and selective toxic action of MET and products of its photodegradation was observed in the hepatic cell line. The higher toxicity of the mixtures obtained using Degussa P25 catalyst could be explained by a different mechanism of MET degradation, i.e. by the presence or higher concentrations of some intermediates. Although the concentrations of intermediates obtained using TiO2 Wackherr catalyst were higher, they did not affect significantly the growth of the examined cell lines, indicating their lower toxicity. This suggests that a treatment aiming at complete mineralization should be performed bearing in mind that the type of catalyst, the concentration of target molecule, and the duration of the process are significant factors that determine the nature and toxicity of the resulting mixtures. Although the EC50 values of MET obtained in mammalian cell lines were higher compared to the bioassays for lower trophic levels, the time-dependent promotion of toxicity of degradation mixtures should be attributed to the higher sensitivity of mammalian cell bioassays. © 2013 Elsevier B.V. All rights reserved.

  3. Enhanced photocatalytic activity towards degradation and H2 evolution over one dimensional TiO2@MWCNTs heterojunction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Cao, Shuang; Wu, Zhijiao; Zhao, Suling; Piao, Lingyu

    2017-04-01

    With the distinct electronic and optical properties, multiwall carbon nanotubes (MWCNTs) are identified as an outstanding catalyst support, which can effectively improve the performance of the TiO2 photocatalysts. Herein, the unique one dimensional TiO2@MWCNTs nanocomposites have been prepared by a facile hydrothermal method. The TiO2 coating layers are extremely uniform and the thickness is adjustable for different nanocomposites. XPS measurements confirm that intimate electronic interactions are existed between MWCNTs and TiO2 via interfacial Tisbnd Osbnd C bond and the photoluminescence intensity of the TiO2@MWCNTs nanocomposites are effectively quenched compared with pure TiO2, suggesting the fast electron transfer rates. The thickness of TiO2 coating layers of the TiO2@MWCNTs nanocomposites plays a significant role in the photocatalytic degradation of organic pollutants, such as methylene blue (MB) and Rhodamine B (RhB), and photocatalytic H2 evolution from water. Due to the formation of one dimensional heterojunction of TiO2@MWCNTs nanocomposites and the positive synergistic effect between TiO2 and carbon nanotubes, it is found that the photocatalytic activity of the system is significantly improved.

  4. UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol-gel method during MCPA degradation.

    PubMed

    Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L

    2017-05-01

    Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO 2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO 2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO 2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO 2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.

  5. X-ray diffraction and infrared spectroscopy studies of Ba(Fe1/2Nb1/2)O3-(Na1/2Bi1/2)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Yadav, Anjana; Prasad, K.

    2018-05-01

    Ceramics (1-x)Ba(Fe1/2Nb1/2)O3-x(Na1/2Bi1/2)TiO3; 0≤x≤1.0 were prepared by conventional ceramic synthesis technique. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba(Fe1/2Nb1/2)O3 has cubic structure with space group Pm 3 ¯ m and Na1/2Bi1/2)TiO3 has rhombohedral structure with space group R3c. Addition of (Na1/2Bi1/2)TiO3 to Ba(Fe1/2Nb1/2)O3 resulted in the change of unit cell structure from cubic to tetragonal (P4/mmm) for x = 0.75 and the X-Ray diffraction peaks slightly shift towards higher Bragg's angle, suggesting slight decrease in unit cell volume. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain shapes with the increase of (Na1/2Bi1/2)TiO3 content. FTIR spectra confirmed the formation of perovskite type solid solutions.

  6. Evaluate humidity sensing properties of novel TiO{sub 2}–WO{sub 3} composite material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wang-De; Department of Center for General Education, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26644 Taiwan, ROC; Lai, De-Sheng

    2013-10-15

    Graphical abstract: TiO{sub 2}–WO{sub 3} (1:1) showed better humidity sensing properties than others within the range of 12–90% relative humidity (RH), the response and recovery time were about 20 s and 160 s, respectively. Compared to the previous studies, the prepared sensor exhibits higher sensitivity (S = 451) and the low hysteresis value was around 0.13% at 32% RH. - Highlights: • Novel TiO{sub 2}–WO{sub 3} composite material was prepared for humidity sensor. • The sensor exhibits higher sensitivity (S = 451). • Low hysteresis value was around 0.13% at 32% RH. - Abstract: A novel TiO{sub 2}–WO{sub 3} compositemore » material was prepared using a different proportion of TiO{sub 2} and WO{sub 3} to that investigated in previous studies. The obtained mesoporous material was characterized using X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and N{sub 2} adsorption-desorption techniques. The humidity-sensing properties were measured using an inductance, capacitance and resistance analyzer. The results demonstrated that the TiO{sub 2}–WO{sub 3} sample with a ratio of 1:1 showed better humidity sensing properties. Compared to previous studies, the prepared sensor exhibited higher sensitivity (S = 451) and the lower hysteresis value was around 0.13% at 32% RH. Complex impedance analysis indicated that the enhanced humidity sensitivity was probably due to spherical Brunauer–Emmett–Teller surface area and the hetero-junction between TiO{sub 2}–WO{sub 3} thin films, while the impedance varied about three orders of magnitude. Our results demonstrated the potential application of TiO{sub 2}–WO{sub 3} composite for fabricating high performance humidity sensors.« less

  7. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.

    PubMed

    Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein

    2016-01-01

    Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.

  8. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    PubMed

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. Copyright © 2013. Published by Elsevier Ltd.

  9. Visible-light-driven Bi 2 O 3 /WO 3 composites with enhanced photocatalytic activity

    DOE PAGES

    Adhikari, Shiba P.; Dean, Hunter; Hood, Zachary D.; ...

    2015-10-19

    Semiconductor heterojunctions (composites) have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from electron–hole recombination and narrow photo-response range. We prepared a novel visible-light-driven Bi 2O 3/WO 3 composite photocatalyst by hydrothermal synthesis. The composite was characterized by scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area, Raman spectroscopy, photoluminescence spectroscopy (PL) and electrochemical impedance spectroscopy (EIS) to better understand the structures, compositions, morphologies and optical properties. Bi 2O 3/WO 3 heterojunction was found to exhibit significantly higher photocatalyticmore » activity towards the decomposition of Rhodamine B (RhB) and 4-nitroaniline (4-NA) under visible light irradiation compared to that of Bi 2O 3 and WO 3. A tentative mechanism for the enhanced photocatalytic activity of the heterostructured composite is discussed based on observed activity, band position calculations, photoluminescence, and electrochemical impedance data. Our study provides a new strategy for the design of composite materials with enhanced visible light photocatalytic performance.« less

  10. Enhanced electrostricitive properties and thermal endurance of textured (Bi0.5Na0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Hao, Jigong; Ye, Chenggen; Shen, Bo; Zhai, Jiwei

    2013-08-01

    Textured 0.92(Bi0.5Na0.5)TiO3-0.06BaTiO3-0.02(K0.5Na0.5)NbO3 (BNT-BT-KNN) ceramics have been produced by tape casting with pure-phase (Bi0.5Na0.5)TiO3 templates. Through the approach of texture construction, enhanced electrostrictive response was obtained with an electrostrictive coefficient Q33 (˜0.024 m4/C2 at 60 kV/cm) and good thermostability comparable with that of traditional Pb-based electrostrictors. Even at an electric-field as low as 35 kV/cm or at a temperature as high as 180 °C, samples still possess a large electrostrictive response with Q33 > 0.022 m4/C2, suggesting it is very promising for practical applications as a lead-free electrostrictive material owning to its wide usage range. Moreover, reducing the applied electric-filed or increasing temperature can both induce the predominant to pure electrostriction transition due to the little contributions of electrostriction strain from ferroelectric domain switching. Our work may provide a new recipe for designing high-performance BNT-based lead-free electrostrictive materials by means of texture construction.

  11. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    PubMed

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  12. Role of CeO2 promoter in NiO/α-Al2O3 catalyst for dry reforming of methane

    NASA Astrophysics Data System (ADS)

    Loc, Luu Cam; Phuong, Phan Hong; Tri, Nguyen

    2017-09-01

    A series of Ni/α-Al2O3 (NiAl) catalysts promoted by CeO2 was prepared by co-impregnation methods with content of (NiO+CeO2) being in the range of 10-30 wt%. The NiO:CeO2 weight ratio was fluctuated at 1:1, 1:2 and 1:3. Several techniques, including X-ray powder diffraction (XRD), Hydrogen temperature-programmed reduction (H2-TPR), and transmission electron microscopy (TEM) were used to investigate catalysts' physico-chemical properties. The activity of these catalysts in dry reforming of CH4 was investigated at temperature range of 550-800 °C. The results revealed that the most suitable CeO2 promoted Ni catalyst contained 20 wt% of (NiO+CeO2) and NiO:CeO2 weight ratio of 1:2. The best catalytic performance of catalyst [20(1Ni2Ce)Al] due to a better reducibility resulted in a higher amount of free small particle NiO. At 700 °C and CH4:CO2 molar ratio of 1:1, the conversion of CH4 and CO2 on the most suitable CeO2 promoted Ni catalyst reached 86% and 67%, respectively; H2 and CO selectivity of 90% and H2:CO molar ratio of 1.15 were obtained. Being similar to MgO [1], promoter CeO2 could improve catalytic activity of Ni/α-Al2O3 catalyst at a lower range of temperature. Besides, both MgO and CeO2 had a great impact on improving coke resistance of Ni catalysts. At higher temperature, the role of CeO2 as well as MgO in preventing coke formation on catalyst was clarified by temperature-programmed oxidation (TPO) technique. Coke amount formed after 30-h TOS on 20(1Ni2Ce) catalyst was found to be 22.18 mgC/gcat, being less than on non-promoted catalyst (36.75 mgC/gcat), but more than on 20(1Ni2Mg)Al one (5.25 mgC/gcat).

  13. Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces

    NASA Astrophysics Data System (ADS)

    Li, Peiqiang; Wang, Huying; Xu, Jinfeng; Jing, Hua; Zhang, Jun; Han, Haixiang; Lu, Fusui

    2013-11-01

    In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1 cm-2 after 6 h, respectively. This high-efficiency catalyst with photoelectric dual catalytic interfaces has a great guidance and reference significance for CO2 reduction to liquid carbon fuels.In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1

  14. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping

    NASA Astrophysics Data System (ADS)

    Zhou, Aiyi; Yu, Danqing; Yang, Liu; Sheng, Zhongyi

    2016-08-01

    A series of Mn-Ce/TiO2 catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH3). Na2SO4 was added into the catalyst to simulate the combined effects of alkali metal and SO2 in the flue gas. Experimental results showed that Na2SO4 had strong and fluctuant influence on the activity of Mn-Ce/TiO2, because the effect of Na2SO4 included pore occlusion and sulfation effect simultaneously. When Na2SO4 loading content increased from 0 to 1 wt.%, the SCR activities of Na2SO4-doped catalysts decreased greatly. With further increasing amount of Na2SO4, however, the catalytic activity increased gradually. XRD results showed that Na2SO4 doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na2SO4. XPS results indicated that part of Ce4+ and Mn3+ were transferred to Ce3+ and Mn4+ due to the sulfation after Na2SO4 deposition on the surface of the catalysts. When the doped amounts of Na2SO4 increased, NH3-TPD results showed that the Lewis acid sites decreased and the Brønsted acid sites of Mn-Ce/TiO2 increased quickly, which could be considered as another reason for the observed changes in the catalytic activity. The decreased Mn and Ce atomic concentration, the changes of their oxidative states, and the variation in acidic properties on the surface of Na2SO4-doped catalysts could be the reasons for the fluctuant changes of the catalytic activity.

  15. Evaluation of the photocatalytic activity of Ln3+-TiO2 nanomaterial using fluorescence technique for real wastewater treatment.

    PubMed

    Saif, M; Aboul-Fotouh, S M K; El-Molla, S A; Ibrahim, M M; Ismail, L F M

    2014-07-15

    Evaluation the photocatalytic activity of different Ln(3+) modified TiO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, xmol Ln(3+) modified TiO2 nanomaterials (Ln = Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+) and Er(3+) ions; x = 0.005, 0.008, 0.01, 0.02 and 0.03) were synthesized by sol-gel method and characterized using different advanced techniques. The photocatalytic efficiency of the modified TiO2 expressed in the charge carrier separation and OH radicals formation were assigned using TiO2 fluorescence quenching and fluorescence probe methods, respectively. The obtained fluorescence measurements confirm that doping treatment significantly decreases the electron-hole recombination probability in the obtained Ln(3+)/TiO2. Moreover, the rate of OH radicals formation is increased by doping. The highly active nanoparticles (0.02Gd(3+)/TiO2 and 0.01Eu(3+)/TiO2) were applied for industrial wastewater treatment using solar radiation as a renewable energy source. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Characterization of emission properties of Er3+ ions in TeO2-CdF2-WO3 glasses.

    PubMed

    Bilir, G; Mustafaoglu, N; Ozen, G; DiBartolo, B

    2011-12-01

    TeO(2)-CdF(2)-WO(3) glasses with various compositions and Er(3+) concentrations were prepared by conventional melting method. Their optical properties were studied by measuring the absorption, luminescence spectra and the decay patterns at room temperature. From the optical absorption spectra the Judd-Ofelt parameters (Ω(t)), transition probabilities, branching ratios of various transitions, and radiative lifetimes were calculated. The absorption and emission cross-section spectra of the (4)I(15/2) to (4)I(13/2) transition of erbium were determined. Emission quantum efficiencies and the average critical distance R(0) which provides a measure for the strength of cross relaxation were determined. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Thermal properties and optical transition probabilities of Tm3 + doped TeO2-WO3 glass.

    PubMed

    Cenk, S; Demirata, B; Oveçoglu, M L; Ozen, G

    2001-10-01

    Glasses with the composition of (1 - x)TeO2 + (x)WO3, where x = 0.15, 0.25 and 0.3 were prepared and, their thermal and absorption measurements were carried out. Differential thermal analysis (DTA) curves taken in the 23-600 degrees C temperature range with a heating rate of 10 degrees C/min reveal a change in the value of the glass transition temperature, Tg, while crystallization was not observed for the glasses containing a WO3 content of more than 15 mol%. All the glasses were found to be moisture-resistant. The absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level of the Tm3+ ion were observed in the optical absorption spectra. Integrated absorption cross-sections of each band except that of 3H5 level was found to vary with the glass composition. Judd-Ofelt analysis was carried out for the samples doped with 1.0 mol% Tm2O3. The omega2 parameter shows the strongest dependence on the host composition and it increases with the increasing WO3 amount. The value of omega4 increases rather slowly while the value of omega6 is practically independent of the composition. The strong dependence of the parameter omega2 indicates that this parameter is related to the structural change and the symmetry of the local environment of the Tm3+ ions in this glass.

  18. Effect of molarity on sol-gel routed nano TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lourduraj, Stephen; Williams, Rayar Victor

    The nanostructured titanium dioxide (TiO2) thin films have been prepared for the molar concentrations of titanium tetra isopropoxide (TTIP) 0.05M, 0.1M, 0.15M and 0.2M by sol-gel routed spin coating technique with calcination at 450∘C. The processing parameters such as, pH value (8), catalyst HCl (0.1ml), spin speed (3000rpm) and calcination temperature (450∘C) are optimized. The crystalline nature and surface morphology were analyzed by XRD, SEM and AFM analysis. The XRD results confirm that the films are crystalline with anatase phase, and are nanostructured. The SEM micrographs of the TiO2 film reveal the spherical nature of the particle. AFM analysis establishes that the uniformity of the TiO2 thin film was optimized at 0.2M. The optical measurements show that the transmittance depends on the molarity, and the optical band gap energy of TiO2 films is found to be inversely proportional to molarity. The I-V characteristics exhibit that the molarity strongly influences the electrical conductivity of the film. The results indicate that the significant effect of molarity on structural, optical and electrical properties of the nanostructured TiO2 thin films will be useful to photovoltaic application.

  19. Characterization and application of the hetero-junction ZnFe2O4/TiO2 for Cr(VI) reduction under visible light

    NASA Astrophysics Data System (ADS)

    Rekhila, G.; Trari, M.; Bessekhouad, Y.

    2017-06-01

    The spinel ZnFe2O4 prepared by nitrate route is used as dispersed photons collector capable to sensitize TiO2 under visible light and to reduce Cr(VI) into trivalent state. The transport properties, optical and photo-electrochemical characterizations are correlated, to build the energetic diagram of the hetero-system ZnFe2O4/TiO2/CrO4 - solution. A gap of 1.97 eV is obtained for the spinel from the diffuse reflectance. The conduction band of ZnFe2O4 (-1.47 V SCE) favors the electrons injection into TiO2, permitting a physical separation of the charge carriers. The oxidation of oxalic acid by photoholes prevents the corrosion of the spinel. The best configuration ZnFe2O4 (75 %)/TiO2 (25 %) is used to catalyze the downhill reaction (2HCrO4 - + 3C2H4O4 + 1.5O2 + 8H+ → 2Cr3+ + 6CO2 + 11 H2O, Δ G° = -557 kcal mol-1). 60 % of Cr(VI) are reduced after 3 h of visible light illumination and the photoactivity follows a first-order kinetic with a half-life of 70 min. The water reduction competes with the HCrO4 - reduction which is the reason in the regression of the photoactivity; a hydrogen evolution rate of 24 µmol mg-1 h-1 is obtained.

  20. Strain Effects in Epitaxial VO2 Thin Films on Columnar Buffer-Layer TiO2/Al2O3 Virtual Substrates.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Burgess, Katherine; Charipar, Nicholas; Cheng, Shu-Fan; Stroud, Rhonda; Piqué, Alberto

    2017-01-18

    Epitaxial VO 2 /TiO 2 thin film heterostructures were grown on (100) (m-cut) Al 2 O 3 substrates via pulsed laser deposition. We have demonstrated the ability to reduce the semiconductor-metal transition (SMT) temperature of VO 2 to ∼44 °C while retaining a 4 order of magnitude SMT using the TiO 2 buffer layer. A combination of electrical transport and X-ray diffraction reciprocal space mapping studies help examine the specific strain states of VO 2 /TiO 2 /Al 2 O 3 heterostructures as a function of TiO 2 film growth temperatures. Atomic force microscopy and transmission electron microscopy analyses show that the columnar microstructure present in TiO 2 buffer films is responsible for the partially strained VO 2 film behavior and subsequently favorable transport characteristics with a lower SMT temperature. Such findings are of crucial importance for both the technological implementation of the VO 2 system, where reduction of its SMT temperature is widely sought, as well as the broader complex oxide community, where greater understanding of the evolution of microstructure, strain, and functional properties is a high priority.

  1. Enhancement of the photocatalytic activity of TiO(2) by doping it with calcium ions.

    PubMed

    Akpan, U G; Hameed, B H

    2011-05-01

    Titanium dioxide (TiO(2)) with an enhanced photocatalytic activity was developed by doping it with calcium ions through a sol-gel method. The developed photocatalysts were characterized by Fourier transform infrared (FTIR) spectroscopy, N(2) physisorption, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction. Their surface morphologies were studied using surface scanning electron microscopy (SEM). The XPS analyses confirmed the presence of Ti, O, Ca, and C in the Ca-doped TiO(2) sample. The activities of the catalysts were evaluated by photocatalytic degradation of an azo dye, acid red 1 (AR1), using UV light irradiation. The results of the investigations revealed that the samples calcined at 300 °C for 3.6h in a cyclic (2 cycles) mode had the best performance. Lower percentage dopant, 0.3-1.0 wt.%, enhanced the photocatalytic activity of TiO(2), with the best at 0.5 wt.% Ca-TiO(2). The performance of 0.5 wt.% Ca-TiO(2) in the degradation of AR1 was far superior to that of a commercial anatase TiO(2) Sigma product CAS No. 1317-70-0. The effect of pH on the degradation of AR1 was studied, and the pH of the dye solution exerted a great influence on the degradation of the dye. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Optimized photodegradation of Bisphenol A in water using ZnO, TiO2 and SnO2 photocatalysts under UV radiation as a decontamination procedure

    NASA Astrophysics Data System (ADS)

    Abo, Rudy; Kummer, Nicolai-Alexeji; Merkel, Broder J.

    2016-09-01

    Experiments on photodegradation of Bisphenol A (BPA) were carried out in water samples by means photocatalytic and photo-oxidation methods in the presence of ZnO, TiO2 and SnO2 catalysts. The objective of this study was to develop an improved technique that can be used as a remediation procedure for a BPA-contaminated surface water and groundwater based on the UV solar radiation. The photodegradation of BPA in water performed under a low-intensity UV source mimics the UVC and UVA spectrum of solar radiation between 254 and 365 nm. The archived results reveal higher degradation rates observed in the presence of ZnO than with TiO2 and SnO2 catalysts during 20 h of irradiation. The intervention of the advanced photocatalytic oxidation (PCO) reduces the time of degradation to less than 1 h to reach a degradation rate of 90 % for BPA in water. The study proposes the use of ZnO as a competitor catalyst to the traditional TiO2, providing the most effective treatment of contaminated water with phenolic products.

  3. Enhancement of Glycerol Steam Reforming Activity and Thermal Stability by Incorporating CeO2 and TiO2 in Ni- and Co-MCM-41 Catalysts

    NASA Astrophysics Data System (ADS)

    Dade, William N.

    Hydrogen (H2) has many applications in industry with current focus shifted to production of hydrocarbon fuels and valuable oxygenates using the Fischer-Tropsch technology and direct use in proton exchange membrane fuel cell (PEMFC). Hydrogen is generally produced via steam reforming of natural gas or alcohols like methanol and ethanol. Glycerol, a by-product of biodiesel production process, is currently considered to be one of the most attractive sources of sustainable H2 due to its high H/C ratio and bio-based origin. Ni and Co based catalysts have been reported to be active in glycerol steam reforming (GSR); however, deactivation of the catalysts by carbon deposition and sintering under GSR operating conditions is a major challenge. In this study, a series of catalysts containing Ni and Co nanoparticles incorporated in CeO2 and TiO2 modified high surface area MCM-41 have been synthesized using one-pot method. The catalysts are tested for GSR (at H2O/Glycerol mole ratio of 12 and GHSV of 2200 h-1) to study the effect of support modification and reaction temperature (450 - 700 °C) on the product selectivity and long term stability. GSR results revealed that all the catalysts performed significantly well exhibiting over 85% glycerol conversion at 650 °C except Ni catalysts that showed better low temperature activities. Deactivation studies of the catalysts conducted at 650 °C indicated that the Ni-TiO2-MCM-41 and Ni-CeO 2-MCM-41 were resistant to deactivation with ˜100% glycerol conversion for 40 h. In contrast, Co-TiO2-MCM-41 perform poorly as the catalyst rapidly deactivated after 12 h to yield ˜20% glycerol conversion after 40 h. The WAXRD and TGA-DSC analyses of spent catalysts showed a significant amount of coke deposition that might explain catalysts deactivation. The flattening shape of the original BET type IV isotherm with drastic reduction of catalyst surface area can also be responsible for observed drop in catalysts activities.

  4. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells.

    PubMed

    Kim, In-Sun; Baek, Miri; Choi, Soo-Jin

    2010-05-01

    The increased applications of nanoparticles in a wide range of industrial fields raise the concern about their potential toxicity to human. The aim of this study was to assess and compare the toxicity of four different oxide nanoparticles (Al2O3, CeO2, TiO2 and ZnO) to human lung epithelial cells, A549 carcinoma cells and L-132 normal cells, in vitro. We focused on the toxicological effects of the present nanoparticles on cell proliferation, cell viability, membrane integrity and oxidative stress. The long-term cytotoxicity of nanoparticles was also evaluated by employing the clonogenic assay. Among four nanoparticles tested, ZnO exhibited the highest cytotoxicity in terms of cell proliferation, cell viability, membrane integrity and colony formation in both cell lines. Al2O3, CeO2 and TiO2 showed little adverse effects on cell proliferation and cell viability. However, TiO2 induced oxidative stress in a concentration- and time-dependent manner. CeO2 caused membrane damage and inhibited colony formation in long-term, but with different degree depending on cell lines. Al2O3 seems to be less toxic than the other nanoparticles even after long time exposure. These results highlight the need for caution during manufacturing process of nanomaterials as well as further investigation on the toxicity mechanism.

  5. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    PubMed

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  6. Stabilizing CuPd Nanoparticles via CuPd Coupling to WO 2.72 Nanorods in Electrochemical Oxidation of Formic Acid

    DOE PAGES

    Xi, Zheng; Li, Junrui; Su, Dong; ...

    2017-10-05

    Stabilizing a 3d-transition metal component M from an MPd alloy structure in an acidic environment is key to the enhancement of MPd catalysis for various reactions. Here we show a strategy to stabilize Cu in 5 nm CuPd nanoparticles (NPs) by coupling the CuPd NPs with perovskite-type WO 2.72 nanorods (NRs). The CuPd NPs are prepared by controlled diffusion of Cu into Pd NPs and the coupled CuPd/WO 2.72 are synthesized by growing WO 2.72 NRs in the presence of CuPd NPs. The CuPd/WO 2.72 can stabilize Cu in 0.1 M HClO4 solution and, as a result, they show Cu,more » Pd composition dependent activity for the electrochemical oxidation of formic acid in 0.1 M HClO 4 + 0.1 M HCOOH. Among three different CuPd/WO 2.72 studied, the Cu 48Pd 52/WO 2.72 is the most efficient catalyst with its mass activity reaching 2086 mA/mgPd in a broad potential range of 0.40 to 0.80 V (vs. RHE) and staying at this value after the 12 h chronoamperometry test at 0.40 V. The synthesis can be extended to obtain other MPd/WO 2.72 (M = Fe, Co, Ni), making it possible to study MPd-WO 2.72 interactions and MPd stabilization on enhancing MPd catalysis for various chemical reactions.« less

  7. Enhancement of photoelectrochemical activity of SnS thin-film photoelectrodes using TiO2, Nb2O5, and Ta2O5 metal oxide layers

    NASA Astrophysics Data System (ADS)

    Vequizo, Junie Jhon M.; Yokoyama, Masanori; Ichimura, Masaya; Yamakata, Akira

    2016-06-01

    Tin sulfide (SnS) fine photoelectrodes fabricated by three-step pulsed electrodeposition were active for H2 evolution. The incident-photon-conversion-efficiency increases from 900 nm and offers a good fit with the absorption spectrum. The activity was enhanced by 3.4, 3.0, and 1.8 times compared to bare SnS by loading Nb2O5, TiO2, and Ta2O5, respectively. Nb2O5 was most efficient because its conduction band is low enough to facilitate effective electron transfer from SnS; it also has sufficiently high potential for H2 evolution. The overall activity is determined by the competitive interfacial electron transfer between SnS/metal-oxide and metal-oxide/water. Therefore, constructing appropriate heterojunctions is necessary for further improving photoelectrochemical systems.

  8. Determination of COD based on Photoelectrocatalysis of FeTiO3.TiO2/Ti Electrode

    NASA Astrophysics Data System (ADS)

    Wibowo, D.; Ruslan; Maulidiyah; Nurdin, M.

    2017-11-01

    Iron infrastructure technology of (Fe)-doped TiO2 nanotubes arrays (NTAs) was prepared for COD photoelectrocatalysis sensor. Fe-TiO2 NTAs was prepared using sol-gel method and coated with TiO2/Ti electrode by immersion technique. The optimization of COD photoelectrocatalytic sensor against Rhodamine B, Methyl Orange, and Methylene Blue organic dyes using photoelectrochemical system in a batch reactor. The high ordered FeTiO3.TiO2/Ti NTAs to determine COD value showed the high photocurrent response linearity and sensitivity to MO organic dye from the concentration of 5 ppm to 75 ppm with an average RSD value of 3.35. The development in this research is to utilize ilmenite mineral as model applied to COD sensor.

  9. Photochemically deposited nano-Ag/sol-gel TiO2-In2O3 mixed oxide mesoporous-assembled nanocrystals for photocatalytic dye degradation.

    PubMed

    Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2014-05-01

    This work focused on the improvement of the photocatalytic activity for Congo Red (CR) azo dye degradation of mesoporous-assembled 0.95 TiO2-0.05 In2O3 mixed oxide photocatalyst (with a TiO2-to-In2O3 molar ratio of 0.95:0.05) by loading with Ag nanoparticles. The mesoporous-assembled 0.95TiO2-0.05In2O3 mixed oxide photocatalyst was synthesized by a hydrolytic sol-gel method with the aid of a structure-directing surfactant, prior to loading with various Ag contents (0.5-2 wt.%) by a photochemical deposition method. The optimum Ag loading content was found to be 1.5 wt.%, exhibiting a great increase in photocatalytic CR dye degradation activity. The 1.5 wt.% Ag-loaded 0.95TiO2-0.05In2O3 mixed oxide photocatalyst was further applied for the CR dye degradation in the presence of water hardness. Different types (Ca2+ and Ca2+ -Mg2+ mixture) and concentrations (200 and 500 mg/l) of water hardness were investigated. The results showed that the water hardness reduced the photocatalytic CR dye degradation activity, particularly for the extremely hard water with 500 mg/l of Ca2+ -Mg2+ mixture. The adjustment of initial solution pH of the CR dye-containing hard water to an appropriate value was found to improve the photocatalytic CR dye degradation activity under the identical reaction conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. One-pot synthesis and optical properties of Eu3+-doped nanocrystalline TiO2 and ZrO2

    NASA Astrophysics Data System (ADS)

    Julián, Beatriz; Corberán, Rosa; Cordoncillo, Eloisa; Escribano, Purificación; Viana, Bruno; Sanchez, Clément

    2005-11-01

    A simple and versatile one-pot sol-gel synthesis of Eu3+-doped nanocrystalline TiO2 and ZrO2 nanomaterials is reported in this paper. It consists of the controlled crystallization of Eu3+-doped TiO2 or ZrO2 nanoparticles from an initial solution containing the metal alkoxide, the lanthanide precursor, a complexing agent and a non-complexing acid. The main interest is that it could be extended to different lanthanide ions and inorganic metal oxides to prepare other multifunctional nanomaterials. The characterization by XRD, HRTEM and SAED techniques showed that the TiO2 and ZrO2 crystallization takes place at very low temperatures (60 °C) and that the crystallite size can be tailored by modifying the synthetic conditions. The optical properties of the resulting materials were studied by emission spectra and decay measurements. Both Eu3+:TiO2 and Eu3+:ZrO2 samples exhibited long lifetime values after removing organic components (τ = 0.7 and 1.3 ms, respectively), but the Eu3+:ZrO2 system is specially promising for photonic applications since its τ value is longer than some reported for other inorganic or hybrid matrices in which Eu3+ ions are complexed. This behaviour has been explained through an effective dispersion of the lanthanide ions within the ZrO2 nanocrystals.

  11. A facile in-situ hydrothermal synthesis of SrTiO3/TiO2 microsphere composite

    NASA Astrophysics Data System (ADS)

    Wang, Hongxing; Zhao, Wei; Zhang, Yubo; Zhang, Shimeng; Wang, Zihao; Zhao, Dan

    2016-06-01

    TiO2 was successfully used as sacrificed template to synthesise SrTiO3/TiO2 microsphere composite via an in-situ hydrothermal process. The diameter of SrTiO3/TiO2 microsphere was about 700 nm with the same size of the template, and all of the microspheres were in good dispersity. The optimized reaction parameters for the phase and morphology of the as-synthesized samples were investigated. The results showed the SrTiO3/TiO2 microsphere can be synthesized at 170 °C when the concentration of sodium hydroxide was 0.1 M. Lower hydrothermal temperature hampered the formation of the SrTiO3/TiO2 composite, the higher alkali concentration, however, will destroy the morphology of products. The formation mechanism of SrTiO3/TiO2 microsphere composite was proposed and the photocatalytic properties of the samples were characterized using methylene blue solution as the pollutant under the UV light irradiation. The results indicated the proper OH- concentration will provide a channel for Sr2+ to react with Ti4+ located in the template and form the SrTiO3/TiO2 composite, and those with micro-scaled spherical morphology exhibited good photocatalytic activities.

  12. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jinglei; Li, Fei; Zhuang, Yongyong; Jin, Li; Wang, Linghang; Wei, Xiaoyong; Xu, Zhuo; Zhang, Shujun

    2014-08-01

    The (Nb + In) co-doped TiO2 ceramics recently attracted considerable attention due to their colossal dielectric permittivity (CP) (˜100,000) and low dielectric loss (˜0.05). In this research, the 0.5 mol. % In-only, 0.5 mol. % Nb-only, and 0.5-7 mol. % (Nb + In) co-doped TiO2 ceramics were synthesized by standard conventional solid-state reaction method. Microstructure studies showed that all samples were in pure rutile phase. The Nb and In ions were homogeneously distributed in the grain and grain boundary. Impedance spectroscopy and I-V behavior analysis demonstrated that the ceramics may compose of semiconducting grains and insulating grain boundaries. The high conductivity of grain was associated with the reduction of Ti4+ ions to Ti3+ ions, while the migration of oxygen vacancy may account for the conductivity of grain boundary. The effects of annealing treatment and bias filed on electrical properties were investigated for co-doped TiO2 ceramics, where the electric behaviors of samples were found to be susceptible to the annealing treatment and bias field. The internal-barrier-layer-capacitance mechanism was used to explain the CP phenomenon, the effect of annealing treatment and nonlinear I-V behavior for co-doped rutile TiO2 ceramics. Compared with CaCu3Ti4O12 ceramics, the high activation energy of co-doped rutile TiO2 (3.05 eV for grain boundary) was thought to be responsible for the low dielectric loss.

  13. An Investigation of Dielectric, Piezoelectric Properties and Microstructures of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 Lead-Free Piezoelectric Ceramics Doped with K2AlNbO5 Compound

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Jiang, Wentao; Liu, Kaihua; Liu, Xiaokui; Song, Chunlin; Yan, Yan; Jin, Li

    2017-08-01

    The effect of K2AlNbO5 compound acting as both donor and accepter on the phase, microstructures and electrical properties of the 0.9362(Bi0.5Na0.5)TiO3-0.0637BaTiO3-0.02(Bi0.5K0.5)TiO3 [(1- x)(0.9163BNT-0.0637BT-0.02BKT)- x(K2AlNbO5)] (BNKBT-1000 xKAN) ternary lead-free piezoelectric ceramics was systematically investigated. When doping content of K2AlNbO5 was varied from 0 to 0.009, the BNKBT-1000 xKAN ceramics showed a single perovskite structure, and the phase structure transferred from a rhombohedral-tetragonal coexistent morphotropic phase boundaries zone to a tetragonal zone. The x-ray photoelectron spectroscopy analysis indicated that the chemical valence of the Nb and Al element are 5+ and 3+, respectively. Strong relaxor characteristics were revealed by the temperature-dependent dielectric properties of the ceramics. Typical square polarization-electric field ( P- E) hysteresis loops were observed in the samples with doping content lower than 0.005. However, with further increasing the doping content ( x = 0.007 and 0.009), round P- E hysteresis loops were observed due to the high conductivity of these samples. Moreover, when the doping content was less than 0.005, the ceramic samples exhibited good piezoelectric properties. Specially, when the doping content was 0.001, the piezoelectric constant d 33 and electromechanical coupling coefficient k p of the sample were 197 pC/N and 22%, respectively. However, further addition would deteriorate both the dielectric and piezoelectric properties.

  14. A TiO2 abundance map for the northern maria

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Saunders, R. S.; Matson, D. L.; Mosher, J. A.

    1977-01-01

    A map of TiO2 abundance for most of the northern maria is presented. The telescopic data base used is the 0.38/0.56-micron ratio mosaic from Johnson et at. (1977). The titanium content has been estimated using the correlation established by Charette et al. (1974). The combination of observational, processing, and calibration errors indicates that the TiO2 map is accurate to + or - 2% (wt% TiO2) for high TiO2 content (more than 5%) and + or - 1% for low values of TiO2. Analysis of the lunar sample and telescopic data suggests strongly that the spectral parameter mapped is sensitive primarily to TiO2 abundance in the range 3-9% and does not correlate directly with iron content. It is suggested, however, that for the low TiO2 mare regions (less than 2-3% TiO2) there may be a relation between the spectral ratio and iron content and that some of the reddest mare areas in the Imbrium region may have low iron contents as well as low titanium abundances.

  15. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    PubMed

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-09

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.

  16. Preparation of Fe2O3-TiO2 composite from Sukabumi iron sand through magnetic separation, pyrometallurgy, and hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Pranata, H. P.; Hanif, Q. A.; Ismoyo, Y. A.; Ichsan, K. F.

    2016-11-01

    Preparation of Fe2O3/TiO2 composite from Sukabumi iron sand by magnetic separation, roasting, leaching and precipitation treatment has been carried out. Magnetic separation can separate magnetic particles and non-magnetic particles of iron sand content, while the non-magnetic particles (wustite (FeO), hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4)) was washing with oxalic acid 1 M. The result product then was roasted at 800 °C treated by sodium carbonate (Na2CO3) addition of 1:1; 2:1 and 1:2 (w/w) of iron sand to Na2CO3 weight ratio, respectively. The X-Ray Fluorescence (XRF) analysis result shown that Sukabumi iron sand have hematite (Fe2O3) and titanium dioxide (TiO2) content about 72.17% dan 14.42%. XRD analysis of roasted iron sand shown the rutile (TiO2), Hematite (Fe2O3), NaFeO2, FeO, and Na2TiO3. Leaching of roasted iron sand using sulphuric acid (H2SO4) have influenced by concentrations of the H2SO4 solution. The optimum iron sand dissolution occurred in H2SO4 9 M, which condensation product of the leachant have a weight ratio of Fe:Ti = 1:1 (w/w). Meanwhile, the settling back-filtrate result of second condensation was obtained a ratio of Fe2O3: TiO2 of 3: 1 (w/w).

  17. Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao

    2018-06-01

    Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.

  18. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    PubMed

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

  19. Radio-Frequency-Controlled Urea Dosing for NH3-SCR Catalysts: NH3 Storage Influence to Catalyst Performance under Transient Conditions

    PubMed Central

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip. PMID:29182589

  20. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  1. Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors.

    PubMed

    Chen, Xueyuan; Luo, Wenqin

    2010-03-01

    Trivalent rare-earth (RE3+) ion-doped TiO2 nanophosphors belong to one kind of novel optical materials and have attracted increasing attention. The luminescence properties of different RE3+ ions in various TiO2 nanomaterials have been reviewed. Much attention is paid to our recent progresses on the luminescence properties of RE3+ (RE = Eu, Er, Sm, Nd) ions in anatase TiO2 nanoparticles prepared by a sol-gel-solvothermal method. Using Eu3+ as a sensitive optical probe, three significantly different luminescence centers of Eu3+ in TiO2 nanoparticles were detected by means of site-selective spectroscopy at 10 K. Based on the crystal-field (CF) splitting of Eu3+ at each site, C2v and D2 symmetries were proposed for Eu3+ incorporated at two lattice sites. A structural model for the formation of multiple sites was proposed based on the optical behaviors of Eu3+ at different sites. Similar multi-site luminescence was observed in Sm(3+)- or Nd(3+)-doped TiO2 nanoparticles. In Eu(3+)-doped TiO2 nanoparticles, only weak energy transfer from the TiO2 host to the Eu3+ ions was observed at 10 K due to the mismatch of energy between the TiO2 band-gap and the Eu3+ excited states. On the contrary, efficient host-sensitized luminescences were realized in Sm(3+)- or Nd(3+)-doped anatase TiO2 nanoparticles due to the match of energy between TiO2 band-gap and the Sm3+ and Nd3+ excited states. The excitation spectra of both Sm(3+)- and Nd(3+)-doped samples exhibit a dominant broad peak centered at approximately 340 nm, which is associated with the band-gap of TiO2, indicating that sensitized emission is much more efficient than direct excitation of the Sm3+ and Nd3+ ions. Single lattice site emission of Er3+ in TiO2 nanocrystals can be achieved by modifying the experimental conditions. Upon excitation by a Ti: sapphire laser at 978 nm, intense green upconverted luminescence was observed. The characteristic emission of Er3+ ions was obtained both in the ultraviolet-visible (UV-vis) and

  2. Self-doped Ti(3+)-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation.

    PubMed

    Sasan, Koroush; Zuo, Fan; Wang, Yuan; Feng, Pingyun

    2015-08-28

    Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti(3+) into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation.

  3. Preparation of Ag@AgCl-doped TiO2/sepiolite and its photocatalytic mechanism under visible light.

    PubMed

    Liu, Shaomin; Zhu, Dinglong; Zhu, Jinglin; Yang, Qing; Wu, Huijun

    2017-10-01

    A cube-like Ag@AgCl-doped TiO 2 /sepiolite (denoted Ag@AgCl-TiO 2 /sepiolite) was successfully synthesized via a novel method. X-ray diffraction, scanning electron microscopy, energy dispersion X-ray fluorescence, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and diffuse reflectance ultraviolet-visible spectroscopy were performed to determine the structure and physicochemical properties of Ag@AgCl-TiO 2 /sepiolite. SEM micrographs revealed that Ag@AgCl nanoparticles and TiO 2 film are well deposited on the surface of tube-like sepiolite. As a result, Ag@AgCl-TiO 2 /sepiolite exhibits a red shift relative to TiO 2 /sepiolite. Photocatalytic experiments demonstrated that the dosage of catalysts plays an important role during photocatalysis. The photoelectrochemical activities of Ag@AgCl-TiO 2 /sepiolite and TiO 2 /sepiolite were also investigated. Photocurrent responses confirmed that the ability of Ag@AgCl-TiO 2 /sepiolite to separate photo-generated electron-hole pairs is stronger than that of TiO 2 /sepiolite. Methylene Blue degradation is also improved under alkaline conditions and visible light irradiation because more OH is produced by visible light excitation. This excellent catalytic ability is mainly attributed to the formed Ag nanoparticles and the Schottky barrier at the Ag/TiO 2 interface. Active species analysis indicated that O 2 - and h + are implicated as active species in photocatalysis. Therefore, catalysts are excited to produce abundant electron-hole pairs after they absorb photons in photocatalysis. Copyright © 2017. Published by Elsevier B.V.

  4. Characterization of N,C-codoped TiO 2 films prepared by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Kee-Rong; Hung, Chung-Hsuang

    2009-12-01

    Titanium dioxide (TiO 2) films are deposited by codoping nitrogen and carbon on indium tin oxide-coated substrates as visible light (Vis)-enabled catalysts. The X-ray diffraction peak intensity of the preferential orientation in (2 1 1) plane declines when the topmost 1.0 μm layer of the film is ground off. The decrease in the crystallite size and the crystallinity of anatase TiO 2 film is also evidenced by a shift towards the high wave number and broadening of the Raman spectra. Low doping concentrations of N (1.3%) and C (1.8%) are estimated by X-ray photoelectron spectroscopy (XPS) which displays an N 1 s peak at 396.8 eV and a C 1 s peak at 282.1 eV, respectively. This is attributed to the substitution of the oxygen sites with nitrogen and carbon, which is believed to be responsible for the Vis photocatalytic activity into a wavelength of >500 nm. The cross-sectional transmission electron microscopy images show larger pores at the grain boundaries and in larger columnar crystals than in the undoped TiO 2 film. All of these results indicate that porosity, crystallinity and shift in the preferential orientation are more pronounced close to the surface than close to the bottom of the sample. Wettability upon measurement of the water contact angle, methylene blue degradation and radical formation tests under both ultraviolet and Vis irradiation demonstrate that the topmost surface renders not only a larger reactive surface area but also a better carrier transport route than the rest of the film, improving its photocatalytic activity. These results show that surface porosity of the film is dominant than the tailoring of the photocatalytic activities of N,C-codoped TiO 2 catalysts.

  5. Chemical quenching of positronium in Fe 2O 3/Al 2O 3 catalysts

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhang, H. J.; Chen, Z. Q.

    2010-09-01

    Fe 2O 3/Al 2O 3 catalysts were prepared by solid state reaction method using α-Fe 2O 3 and γ-Al 2O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al 2O 3 grain and between the grains, respectively. With increasing Fe 2O 3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  6. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation.

    PubMed

    Ahmed, M A; Abou-Gamra, Z M; Medien, H A A; Hamza, M A

    2017-11-01

    As known, porphyrins have central role in photosynthesis, biological oxidation and reduction and oxygen transport beside to their intensive color which qualify them to be good photosensitizers. Herein, tetra (4-carboxyphenyl) porphyrin (TCPP) was prepared by a simple one-pot synthesis to use as a visible antenna for TiO 2 nanoparticles that were prepared via a simple template-free sol-gel method. Various loading percentages of TCPP (0.05-1%) were incorporated on the surface of TiO 2 as photosensitizer for photocatalytic degradation of Rhodamine B (Rh B) dye as a primary cationic pollutant model. Among them, 0.1% TCPP-TiO 2 was the most reactive sample. It was found that the photoactivity of 0.1% TCPP-TiO 2 sample (0.5g/L) was approximately 1.5 times greater than that of pure TiO 2 (0.5g/L) toward the degradation of Rh B (1×10 -5 M) under UV-A irradiation. Transient fluorescence decay measurements showed that the life time of TiO 2 excited state has doubled after anchoring TCPP, thus the probability of electron-hole recombination has decreased. The samples were characterized by XRD, HR-TEM, DRS and N 2 adsorption-desorption isotherms. The XRD patterns confirmed the successful preparation of TiO 2 nanoparticles with average crystalline size of 25.7nm. Also, XRD patterns suggested the presence of mixed phase TiO 2 nanoparticles of 77% anatase and 23% rutile. DRS showed that the characteristic peaks of TCPP covered the whole visible range 400-700nm. HR-TEM images showed the spheroids shape of TiO 2 nanoparticles and confirmed the presence of anatase and rutile phases as suggested from XRD data. The different parameters affecting the photodegradation of Rh B dye such as catalyst dose, dye concentration and pH were studied to obtain the optimum conditions. Almost complete degradation of Rh B was obtained which confirmed by HPLC and TOC measurements. The effect of scavengers was studied to indicate the most active species. TCPP-TiO 2 gave a good response toward the

  7. Preparation, stabilization and characterization of TiO(2) on thin polyethylene films (LDPE). Photocatalytic applications.

    PubMed

    Zhiyong, Yu; Mielczarski, E; Mielczarski, J; Laub, D; Buffat, Ph; Klehm, U; Albers, P; Lee, K; Kulik, A; Kiwi-Minsker, L; Renken, A; Kiwi, J

    2007-02-01

    An innovative way to fix preformed nanocrystalline TiO(2) on low-density polyethylene film (LDPE-TiO(2)) is presented. The LDPE-TiO(2) film was able to mediate the complete photodiscoloration of Orange II using about seven times less catalyst than a TiO(2) suspension and proceeded with a photonic efficiency of approximately 0.02. The catalyst shows photostability over long operational periods during the photodiscoloration of the azo dye Orange II. The LDPE-TiO(2) catalyst leads to full dye discoloration under simulated solar light but only to a 30% TOC reduction since long-lived intermediates generated in solution seem to preclude full mineralization of the dye. Physical insight is provided into the mechanism of stabilization of the LDPE-TiO(2) composite during the photocatalytic process by X-ray photoelectron spectroscopy (XPS). The adherence of TiO(2) on LDPE is investigated by electron microscopy (EM) and atomic force microscopy (AFM). The thickness of the TiO(2) film is seen to vary between 1.25 and 1.69 microm for an unused LDPE-TiO(2) film and between 1.31 and 1.50 microm for a sample irradiated 10h during Orange II discoloration pointing out to a higher compactness of the TiO(2) film after the photocatalysis.

  8. Development of wet process with substitution reaction for the mass production of Li 2TiO 3 pebbles

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2000-12-01

    Recently, lithium titanate (Li 2TiO 3) has attracted the attention of many researchers from the point of good tritium recovery at low temperature, chemical stability, etc. As the shape of Li 2TiO 3, a small pebble was selected as the Japanese design for a fusion reactor blanket. On the other hand, as the fabrication method of Li 2TiO 3 pebbles, the wet process is the most advantageous from the viewpoint of mass production, etc. In this study, fabrication of small Li 2TiO 3 pebbles less than ∅0.5 mm was performed by the wet process with substitution reaction, and the characteristics of Li 2TiO 3 pebbles fabricated by this process were evaluated. From the results of the fabrication tests, excellent prospects were obtained concerning mass production of Li 2TiO 3 pebbles with the target density (80-85% T.D.) and target diameter (less than ∅0.5 mm).

  9. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs.

    PubMed

    Elmaslmane, A R; Watkins, M B; McKenna, K P

    2018-06-21

    We present a computationally efficient and predictive methodology for modeling the formation and properties of electron and hole polarons in solids. Through a nonempirical and self-consistent optimization of the fraction of Hartree-Fock exchange (α) in a hybrid functional, we ensure the generalized Koopmans' condition is satisfied and self-interaction error is minimized. The approach is applied to model polaron formation in known stable and metastable phases of TiO 2 including anatase, rutile, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B). Electron polarons are predicted to form in rutile, TiO 2 (H), and TiO 2 (R) (with trapping energies ranging from -0.02 eV to -0.35 eV). In rutile the electron localizes on a single Ti ion, whereas in TiO 2 (H) and TiO 2 (R) the electron is distributed across two neighboring Ti sites. Hole polarons are predicted to form in anatase, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B) (with trapping energies ranging from -0.16 eV to -0.52 eV). In anatase, brookite, and TiO 2 (B) holes localize on a single O ion, whereas in TiO 2 (H) and TiO 2 (R) holes can also be distributed across two O sites. We find that the optimized α has a degree of transferability across the phases, with α = 0.115 describing all phases well. We also note the approach yields accurate band gaps, with anatase, rutile, and brookite within six percent of experimental values. We conclude our study with a comparison of the alignment of polaron charge transition levels across the different phases. Since the approach we describe is only two to three times more expensive than a standard density functional theory calculation, it is ideally suited to model charge trapping at complex defects (such as surfaces and interfaces) in a range of materials relevant for technological applications but previously inaccessible to predictive modeling.

  10. Nanocrystallized SrHA/SrHA SrTiO3/SrTiO3 TiO2 multilayer coatings formed by micro-arc oxidation for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Han, Y.; Chen, D. H.; Zhang, L.

    2008-08-01

    Novel photocatalytic coatings containing strontium hydroxyapatite (SrHA), strontium titanate (SrTiO3), and TiO2 were formed by micro-arc oxidation (MAO) in an aqueous electrolyte containing strontium acetate and β-glycerophosphate disodium at 530 V for 0.1-5 min. The structure evolution of the coatings was investigated as a function of processing time, and the photocatalytic activity of the coatings was evaluated by measuring the decomposition rate of methyl orange under ultraviolet irradiation. During the MAO processing of the coatings, it was observed that some granules appeared in the electrolyte adjacent to the anode and they increased in amount as the processing time was prolonged. The obtained results show that the granules are amorphous and poorly crystallized SrHA with negative charges. The coating prepared for 5 min presents a microporous structure of SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayers, in which the SrHA outermost layer and the SrHA-SrTiO3 intermediate layer are nanocrystallized. It is suggested that formation of the granules, electro-migration of the granules onto the pre-formed layer, and crystallization of the adhered granules are possible mechanisms for the formation of a SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayer coating. This coating shows much higher photocatalytic decomposition efficiency relative to the MAO-formed TiO2 coating, and is expected to have an important photocatalytic application.

  11. Multivalent Mn-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lin, C. Y. W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C. C.

    2012-07-01

    Thin films of TiO2 doped with Mn were deposited on F-doped SnO2-coated glass using spin coating. The concentration of the dopant was in the range 0-7 wt% Mn (metal basis). The films were examined in terms of the structural, chemical, and optical properties. Glancing angle X-ray diffraction data show that the films consisted of the anatase polymorph of TiO2, without any contaminant phases. The X-ray photoelectron spectroscopy data indicate the presence of Mn3+ and Mn4+ in the doped films as well as atomic disorder and associated structural distortion. Ultraviolet-visible spectrophotometry data show that the optical indirect band gap of the films decreased significantly with increasing manganese doping, from 3.32 eV for the undoped composition to 2.90 eV for that doped with 7 wt% Mn.

  12. Experimental study of the visible-light photocatalytic activity of oxygen-deficient TiO2 prepared with Ar/H2 plasma surface treatment

    NASA Astrophysics Data System (ADS)

    Nakano, Takuma; Yazawa, Shota; Araki, Shota; Kogoshi, Sumio; Katayama, Noboru; Kudo, Yusuke; Nakanishi, Tetsuya

    2015-01-01

    Oxygen-deficient TiO2 (TiO2-x) has been proposed as a visible-light-responsive photocatalyst. TiO2-x thin films were prepared by Ar/H2 plasma surface treatment, applying varying levels of microwave input power and processing times. The highest visible light photocatalytic activity was observed when using an input power of 200 W, a plasma processing time of 10 min, and a 1:1 \\text{Ar}:\\text{H}2 ratio, conditions that generate an electron temperature of 5.7(±1.0) eV and an electron density of 8.5 × 1010 cm-3. The maximum formaldehyde (HCHO) removal rate of the TiO2-x film was 2.6 times higher than that obtained from a TiO2-xNx film under the same test conditions.

  13. Tunable growth of TiO2 nanostructures on Ti substrates

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Wang, Jingpeng; Thomas, Dan F.; Chen, Aicheng

    2005-10-01

    A simple and facile method is described to directly synthesize TiO2 nanostructures on titanium substrates by oxidizing Ti foil using small organic molecules as the oxygen source. The effect of reaction temperature and oxygen source on the formation of the TiO2 nanostructures has been studied using scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy and water contact angle measurement. Polycrystalline grains are formed when pure oxygen and formic acid are used as the oxygen source; elongated micro-crystals are produced when water vapour is used as the oxygen source; oriented and aligned TiO2 nanorod arrays are synthesized when ethanol, acetaldehyde or acetone are used as the oxygen source. The growth mechanism of the TiO2 nanostructures is discussed. The diffusion of Ti atoms to the oxide/gas interface via the network of the grain boundaries of the thin oxide layer is the determining factor for the formation of well-aligned TiO2 nanorod arrays. The wetting properties of the TiO2 nanostructured surfaces formed are dictated by their structure, varying from a hydrophilic surface to a strongly hydrophobic surface as the surface structure changes from polycrystalline grains to well-aligned nanorod arrays. This tunable growth of TiO2 nanostructures is desirable for promising applications of TiO2 nanostructures in the development of optical devices, sensors, photo-catalysts and self-cleaning coatings.

  14. Performance characterization of CNTs and γ-Al2O3 supported cobalt catalysts in Fischer-Tropsch reaction

    NASA Astrophysics Data System (ADS)

    Ali, Sardar; Zabidi, Noor Asmawati Mohd; Subbarao, Duvvuri

    2014-10-01

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H2-TPR) and carbon dioxide desorption (CO2-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H2/ CO = 2v / v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al2O3 support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion and FTS reaction rate was observed over CNTs support compared to that of Co / Al2O3. Co/CNTs resulted in higher C5+ hydrocarbons selectivity compared to that of Co / Al2O3 catalyst. CNTs are a better support for Co compared to Al2O3.

  15. Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature

    NASA Astrophysics Data System (ADS)

    Gao, Fengyu; Tang, Xiaolong; Yi, Honghong; Zhao, Shunzheng; Wang, Jiangen; Shi, Yiran; Meng, Xiaomi

    2018-06-01

    Novel hydroxyl-containing Me-Mn binary oxides (Me = Co, Ni) were prepared for the selective catalytic reduction of NOx with NH3 by a combined complexation-esterification method. The binary oxides of Co-MnOx and Ni-MnOx with mixed crystal phases of Mn3O4 and Co3O4, Mn2O3 and NiMnO3 were obtained at 550 °C. SCR activity decreased in the order of Mn3O4-Co3O4-OH > Mn2O3-NiMnO3-OH > Mn2O3-OH > Mn3O4-OH, benefiting from the high concentration of chemisorbed oxygen and effective electron transformation of cations. Mn2O3-containing catalysts had better selectivity to N2 than those containing Mn3O4. Higher selectivity to N2O over Mn3O4-containing catalysts was attributed to the depth dehydrogenation of coordinated NH3 by the active oxygen species with lower Mnsbnd O band energy. The typical Eley-Rideal mechanism over Mn3O4-OH and Mn3O4-Co3O4-OH, and the additional formation pathway of NH4NO3 species over Mn2O3-OH and Mn2O3-NiMnO3-OH catalysts were proposed via the in-situ DRIFTS experiments. Although the Co and Ni elements had a good role in delaying the poisoning of SO2, these catalysts were eventually sulfated by SO2 over the postponement, which might due to the metal sulfate and ammonia hydrogensulfite species.

  16. TiO2 fotokatalyse in de gasfase van morfologisch ontwerp tot plasmoneffecten

    NASA Astrophysics Data System (ADS)

    Verbruggen, Sammy

    . Surface plasmon resonance can be regarded as a collective oscillation of free electrons in a metal. This way incident (visible) light energy can be 'captured' in the resonance and subsequently transferred to T1O2. First, a theoretical model is established that enables to predict the plasmon resonance wavelength of such alloy nanoparticles, based on the combined effect of particle size and alloy composition. It is shown that the feature of alloying presents high wavelength tunability of the visible light response. Next, alloy nanoparticles are deposited on TiO2. Thus obtained plasmonic photocatalysts are tested towards their self-cleaning performance in the degradation of stearic acid located at the catalyst-air interface. The highest quantum efficiency is obtained when the resonance wavelength of the plasmonic catalyst exactly matches that of the incident light. This is demonstrated for the case of Au 0.3Ag0.7, nanoparticles on TiO2 under 490 nm illumination, provided by LEDs.

  17. Swift-heavy ion irradiation response and annealing behavior of A2TiO5 (A = Nd, Gd, and Yb)

    NASA Astrophysics Data System (ADS)

    Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang; Palomares, Raul I.; Park, Changyong; Trautmann, Christina; Lang, Maik; Mao, Wendy L.; Ewing, Rodney C.

    2018-02-01

    The structural responses of A2BO5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb2TiO5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the high cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd2TiO5 and Gd2TiO5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. These compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.

  18. The Effects of Leaching Process to the TiO2 Synthesis from Bangka Ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Pramono, E.; Argawan, P.; Djatisulistya, A.; Firdiyono, F.; Sulistiyono, E.; Sari, P. P.

    2018-03-01

    Ilmenite mineral is a naturally occurring iron titanate (FeTiO3) and is abundant in nature. The separation of components into TiO2 and Fe2O3 must be expand. The purpose of this research is to synthesis TiO2 nanoparticles from the filtrate of Bangka ilmenite leaching process. Leaching of ilmenite was done with H2SO4 and HCl at various concentrations. The formation of TiO2 crystal determined by hydrolysis conditions and condensation reaction. TiO2 synthesized from the filtrate of sulfuric acid leaching that produced from TiO2 anatase phase when hydrolyzed in an aquaregia solvent and low concentrations of HCl (0.1M). Hydrolysis conditions at higher concentrations of HCl (1M) was produced TiO2 anatase-rutile phase. The synthesis of TiO2 from the filtrate of hydrochloric acid leaching was produced anatase phase. While the condition under the alcoholic solvent (2-propanol: H2O (v/v) = 9: 1) anatase phase crystallites grow in the temperature range up to 550 °C, above this temperature, TiO2 transform into rutile phase.

  19. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    NASA Astrophysics Data System (ADS)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-05-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  20. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    NASA Astrophysics Data System (ADS)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  1. Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation.

    PubMed

    Mendiola-Alvarez, Sandra Yadira; Hernández-Ramírez, Ma Aracely; Guzmán-Mar, Jorge Luis; Garza-Tovar, Lorena Leticia; Hinojosa-Reyes, Laura

    2018-05-24

    Mesoporous phosphorous-doped TiO 2 (TP) with different wt% of P (0.5, 1.0, and 1.5) was synthetized by microwave-assisted sol-gel method. The obtained materials were characterized by XRD with cell parameters refinement approach, Raman, BET-specific surface area analysis, SEM, ICP-OES, UV-Vis with diffuse reflectance, photoluminescence, FTIR, and XPS. The photocatalytic activity under visible light was evaluated on the degradation of sulfamethazine (SMTZ) at pH 8. The characterization of the phosphorous materials (TP) showed that incorporation of P in the lattice of TiO 2 stabilizes the anatase crystalline phase, even increasing the annealing temperature. The mesoporous P-doped materials showed higher surface area and lower average crystallite size, band gap, and particle size; besides, more intense bands attributed to O-H bond were observed by FTIR analysis compared with bare TiO 2 . The P was substitutionally incorporated in the TiO 2 lattice network as P 5+ replacing Ti 4+ to form Ti-O-P bonds and additionally present as PO 4 3-  on the TiO 2 surface. All these characteristics explain the observed superior photocatalytic activity on degradation (100%) and mineralization (32%) of SMTZ under visible radiation by TP catalysts, especially for P-doped TiO 2 1.0 wt% calcined at 450 °C (TP1.0-450). Ammonium, nitrate, and sulfate ions released during the photocatalytic degradation were quantified by ion chromatography; the nitrogen and sulfur mass balance evidenced the partial mineralization of this recalcitrant molecule.

  2. Investigating the solubility and cytocompatibility of CaO-Na2 O-SiO2 /TiO2 bioactive glasses.

    PubMed

    Wren, Anthony W; Coughlan, Aisling; Smith, Courtney M; Hudson, Sarah P; Laffir, Fathima R; Towler, Mark R

    2015-02-01

    This study aims to investigate the solubility of a series of titanium (TiO2 )-containing bioactive glasses and their subsequent effect on cell viability. Five glasses were synthesized in the composition range SiO2 -Na2 O-CaO with 5 mol % of increments TiO2 substituted for SiO2 . Glass solubility was investigated with respect to (1) exposed surface area, (2) particle size, (3) incubation time, and (4) compositional effects. Ion release profiles showed that sodium (Na(+) ) presented high release rates after 1 day and were unchanged between 7 and 14 days. Calcium (Ca(2+) ) release presented a significant change at each time period and was also composition dependent, where a reduction in Ca(2+) release is observed with an increase in TiO2 concentration. Silica (Si(4+) ) release did not present any clear trends while no titanium (Ti(4+) ) was released. Cell numbers were found to increase up to 44%, compared to the growing control population, with a reduction in particle size and with the inclusion of TiO2 in the glass composition. © 2014 Wiley Periodicals, Inc.

  3. Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocataltyic degradation of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Zhang, Yiyang; Gu, Di; Zhu, Lingyue; Wang, Baohui

    2017-10-01

    Highly ordered TiO2 nanotube arrays (TiO2 NTs) were prepared through a facile two-step electrochemical anodization, subsequently, active iron ions were introduced into the TiO2 NTs via a direct impregnation method. The XPS results showed that the iron elements existed in TiO2 NTs in the form of Fe3+ ions. Compared with the undoped TiO2 NTs, the absorption edge of Fe3+/TiO2 NTs showed an overt red shift and the photocurrent improved obviously, which indicated that Fe3+/TiO2 had a much higher photocatalytic activity. The optimal doping content was tested to be 0.1 mol/L which could make the photocatalytic activity of TiO2 NTs obviously improves under both visible and ultraviolent light. The prepared samples were adopted as photocatalyst to degrade nitrobenzene (NB). The reaction rate constants ks under UV light were in the order kone-stepTiO2NTs = 0.00338 TiO NTs = 0.00455 3+/TiO NTs = 0.00736 which showed the superior photocatalysis activity of Fe3+/TiO2 NTs. The final degradation products were probed to be CO2 and H2O, which demonstrated that NB could be completely mineralized to harmless inorganic substance. The mechanism of NB degradation with Fe3+/TiO2 was also discussed and the quenching experiments further confirm that rad OH, h+ and rad O2- are active intermediates in the process of photocatalytic degradation.

  4. Degradations of acetaminophen via a K2S2O8-doped TiO2 photocatalyst under visible light irradiation.

    PubMed

    Lin, Justin Chun-Te; de Luna, Mark Daniel G; Aranzamendez, Graziel L; Lu, Ming-Chun

    2016-07-01

    Acetaminophen (ACT) is a mild analgesic commonly used for relief of fever, headache and some minor pains. It had been detected in both fixed factory-discharged wastewaters, and diverse sources, e.g. surface waters during festival events. Degradation of such trace emergent pollutants by titanium dioxide (TiO2) photocatalysts is a common approach; however, the band gap that can be utilized in the UV range is limited. In order to extend downward the energy required to excite the photocatalytic material, doping with potassium peroxodisulfate (K2S2O8) by a sol-gel method was done in this work. The visible-light active photocatalyst was tested on the degradation of ACT under four parameters including: initial ACT concentration, catalyst dose, initial pH, and system temperature. Optimal conditions, which achieved 100% ACT degradation, were obtained by using 0.1 mM ACT initial concentration, catalyst dose of 1 g L(-1), initial pH of 9.0 and system temperature of 22 °C at the end of 9-h irradiation. Meanwhile, three types of degradation kinetic models (i.e. zero, pseudo first and second order) were tested. The feasible model followed a pseudo-first order model with the computed constant (kapp) of 7.29 × 10(-3) min(-1). The present study provides a better photocatalytic degradation route by K2S2O8-modified TiO2 in comparison with pristine TiO2, in wastewater treatment dealing with ACT and other persistent organic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.

    PubMed

    Yu, Yunbo; Li, Yi; Zhang, Xiuli; Deng, Hua; He, Hong; Li, Yuyang

    2015-01-06

    The catalytic partial oxidation of ethanol and selective catalytic reduction of NOx with ethanol (ethanol-SCR) over Ag/Al2O3 were studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The intermediates were identified by PIMS and their photoionization efficiency (PIE) spectra. The results indicate that H2 promotes the partial oxidation of ethanol to acetaldehyde over Ag/Al2O3, while the simultaneously occurring processes of dehydration and dehydrogenation were inhibited. H2 addition favors the formation of ammonia during ethanol-SCR over Ag/Al2O3, the occurrence of which creates an effective pathway for NOx reduction by direct reaction with NH3. Simultaneously, the enhancement of the formation of ammonia benefits its reaction with surface enolic species, resulting in producing -NCO species again, leading to enhancement of ethanol-SCR over Ag/Al2O3 by H2. Using VUV-PIMS, the reactive vinyloxy radical was observed in the gas phase during the NOx reduction by ethanol for the first time, particularly in the presence of H2. Identification of such a reaction occurring in the gas phase may be crucial for understanding the reaction pathway of HC-SCR over Ag/Al2O3.

  6. Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Alamelu, K.; Raja, V.; Shiamala, L.; Jaffar Ali, B. M.

    2018-02-01

    We present characterization of biphasic TiO2 nanoparticles and its graphene nanocomposite synthesized by cost effective, hydrothermal method. The structural properties and morphology of the samples were characterized by series of spectroscopic and microscopic techniques. Introducing high surface area graphene could suppress the electron hole pair recombination rate in the nanocomposite. Further, the nanocomposite shows red-shift of the absorption edge and contract of the band gap from 2.98 eV to 2.85 eV. We have characterized its photocatalytic activity under natural sunlight and UV filtered sunlight irradiation. Data reveal graphene-TiO2 composite exhibit about 15 and 3.5 folds increase in degradability of Congo red and Methylene Blue dyes, respectively, comparison to pristine TiO2. This underscores the marginal effect of UV component of sunlight on the degradation ability of composite, implying its increased efficiency in harnessing visible region of solar spectrum. We have thus developed a visible light active graphene composite catalyst that can degrade both cationic and anionic dyes and making it potentially useful in environmental remediation and water splitting applications, under direct sunlight.

  7. Magnetic Fe3O4@V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation.

    PubMed

    Boruah, Purna K; Szunerits, Sabine; Boukherroub, Rabah; Das, Manash R

    2018-01-01

    Reduced graphene oxide nanosheets decorated with Fe 3 O 4 and V 2 O 5 nanoparticles as a magnetically recoverable nanocomposite (Fe 3 O 4 @V 2 O 5 /rGO) was synthesized by a simple solution chemistry approach. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier transform infrared (FTIR), fluorescence, and zeta potential measurements. The narrow band gap and different band gap energies of Fe 3 O 4 and V 2 O 5 proved to be suitable for the absorption of visible light in the solar spectrum. The Fe 3 O 4 @V 2 O 5 /rGO displayed indeed excellent photocatalytic activity towards the degradation of harmful cationic Bismarck Brown (BB) as well as anionic Acid Orange 7 (AO) dyes under direct sunlight irradiation. The photocatalytic activity of the Fe 3 O 4 @V 2 O 5 /rGO is influenced by solution pH, catalyst loading, initial dye concentration and the presence of different inorganic ions (NH 4 + , Na + , Mg 2+ , Ca 2+, SO 4 2- , Br - , NO 3 - , Cl - , HCO 3 - ). This study provides a new scientific knowledge on the sunlight driven photocatalytic degradation of dye molecules using novel mixed metal oxide/rGO nanocomposite photocatalyst. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Enhanced photochemical catalysis of TiO2 inverse opals by modification with ZnO or Fe2O3 using ALD and the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Jiatong; Sun, Cuifeng; Fu, Ming; Long, Jie; He, Dawei; Wang, Yongsheng

    2018-02-01

    The development of porous materials exhibiting photon regulation abilities for improved photoelectrochemical catalysis performance is always one of the important goals of solar energy harvesting. In this study, methods to improve the photocatalytic activity of TiO2 inverse opals were discussed. TiO2 inverse opals were prepared by atomic layer deposition (ALD) using colloidal crystal templates. In addition, TiO2 inverse opal heterostructures were fabricated using colloidal heterocrystals by repeated vertical deposition using different colloidal spheres. The hydrothermal method and ALD were used to prepare ZnO- or Fe2O3-modified TiO2 inverse opals on the internal surfaces of the TiO2 porous structures. Although the photonic reflection band was not significantly varied by oxide modification, the presence of Fe2O3 in the TiO2 inverse opals enhanced their visible absorption. The conformally modified oxides on the TiO2 inverse opals could also form energy barriers and avoid the recombination of electrons and holes. The fabrication of the TiO2 photonic crystal heterostructures and modification with ZnO or Fe2O3 can enhance the photocatalytic activity of TiO2 inverse opals.

  9. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm < λ < 780 nm) irradiation is used to evaluate the photocatalytic activity of the composites. Compared with pure TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  10. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    PubMed

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  11. TiO2 used as photocatalyst for rhodamine B degradation under solar radiation

    NASA Astrophysics Data System (ADS)

    Ariyanti, Dessy; Maillot, Mathilde; Gao, Wei

    2017-07-01

    Transition metal oxide photocatalysis is a relatively new method representing advanced oxidation process to be applied in industrial wastewater treatment especially for degradation of organic pollutants. We investigate TiO2 as a photocatalyst for the photocatalytic degradation of Rhodamine B (RhB) under simulated sunlight. Various parameters and their effectiveness have been studied. The effects of processing parameters including catalyst loading and feed concentration were investigated; and the degradation pathway was proposed based on the UHPLC-MS analysis. The result showed that a higher kinetic rate can be obtained by employing low catalyst loading and feed concentration, i.e., 0.5 g/L of TiO2 loading and 5 ppm of RhB concentration, respectively. For this particular system, the optimum degradation rate (k) can achieve 0.297/min. The effectiveness of solar light-TiO2 system for RhB degradation shows this method can be used for wastewater treatment.

  12. BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell.

    PubMed

    Baek, Ji Hyun; Kim, Byeong Jo; Han, Gill Sang; Hwang, Sung Won; Kim, Dong Rip; Cho, In Sun; Jung, Hyun Suk

    2017-01-18

    Coupling dissimilar oxides in heterostructures allows the engineering of interfacial, optical, charge separation/transport and transfer properties of photoanodes for photoelectrochemical (PEC) water splitting. Here, we demonstrate a double-heterojunction concept based on a BiVO 4 /WO 3 /SnO 2 triple-layer planar heterojunction (TPH) photoanode, which shows simultaneous improvements in the charge transport (∼93% at 1.23 V vs RHE) and transmittance at longer wavelengths (>500 nm). The TPH photoanode was prepared by a facile solution method: a porous SnO 2 film was first deposited on a fluorine-doped tin oxide (FTO)/glass substrate followed by WO 3 deposition, leading to the formation of a double layer of dense WO 3 and a WO 3 /SnO 2 mixture at the bottom. Subsequently, a BiVO 4 nanoparticle film was deposited by spin coating. Importantly, the WO 3 /(WO 3 +SnO 2 ) composite bottom layer forms a disordered heterojunction, enabling intimate contact, lower interfacial resistance, and efficient charge transport/transfer. In addition, the top BiVO 4 /WO 3 heterojunction layer improves light absorption and charge separation. The resultant TPH photoanode shows greatly improved internal quantum efficiency (∼80%) and PEC water oxidation performance (∼3.1 mA/cm 2 at 1.23 V vs RHE) compared to the previously reported BiVO 4 /WO 3 photoanodes. The PEC performance was further improved by a reactive-ion etching treatment and CoO x electrocatalyst deposition. Finally, we demonstrated a bias-free and stable solar water-splitting by constructing a tandem PEC device with a perovskite solar cell (STH ∼3.5%).

  13. Synthesis of Ag metallic nanoparticles by 120 keV Ag- ion implantation in TiO2 matrix

    NASA Astrophysics Data System (ADS)

    Sharma, Himanshu; Singhal, Rahul

    2017-12-01

    TiO2 thin film synthesized by the RF sputtering method has been implanted by 120 keV Ag- ion with different doses (3 × 1014, 1 × 1015, 3 × 1015, 1 × 1016 and 3 × 1016 ions/cm2). Further, these were characterized by Rutherford back Scattering, XRD, X-ray photoelectron spectroscopy (XPS), UV-visible and fluorescence spectroscopy. Here we reported that after implantation, localized surface Plasmon resonance has been observed for the fluence 3 × 1016 ions/cm2, which was due to the formation of silver nanoparticles. Ag is in metallic form in the matrix of TiO2, which is very interestingly as oxidation of Ag was reported after implantation. Also, we have observed the interaction between nanoparticles of Ag and TiO2, which results in an increasing intensity in lower charge states (Ti3+) of Ti. This interaction is supported by XPS and fluorescence spectroscopy, which can help improve photo catalysis and antibacterial properties.

  14. Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Jin; Chattopadhyay, Saptarshi; Kim, Jae Jin; Kim, Sang-Joon; Tuller, Harry L.; Rutledge, Gregory C.; Kim, Il-Doo

    2016-04-01

    , catalytic Pd nanoparticles (NPs) were synthesized using bio-inspired protein cages, i.e., apoferritin, and uniformly dispersed within the shell solution and subsequently on the WO3 NTs. The resulting Pd functionalized macroporous WO3 NTs were demonstrated to be high performance hydrogen (H2) sensors. In particular, Pd-functionalized macroporous WO3 NTs exhibited a very high H2 response (Rair/Rgas) of 17.6 at 500 ppm with a short response time. Furthermore, the NTs were shown to be highly selective for H2 compared to other gases such as carbon monoxide (CO), ammonia (NH3), and methane (CH4). The results demonstrate a new synthetic method to prepare highly porous nanotubular structures with well-dispersed nanoscale catalysts, which can provide improved microstructures for chemical sensing. Electronic supplementary information (ESI) available: Coaxial electrospinning with different feeding rates, additional TEM analysis for pore size analysis, XPS analysis of Pd-loaded macroporous WO3 NTs, and dynamic response transition properties of sensors. See DOI: 10.1039/c5nr06611e

  15. Structural, dielectric and magnetic studies of (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Giridharan, N. V.; Chaudhuri, Arka; Sankarappa, T.

    2016-05-01

    The Magneto-electric composites (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 (x=15%,30%,45%) were synthesized by sintering mixtures of highly ferroelectric Ba0.8Zr0.2TiO3 (BZT) and highly magneto-strictive component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The magnetic properties of synthesized composites were analyzed using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.

  16. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    NASA Astrophysics Data System (ADS)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  17. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    PubMed

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  18. Enhanced TiO2 Photocatalytic Processing of Organic Wastes for Green Space Exploration

    NASA Technical Reports Server (NTRS)

    Udom, I.; Goswami, D. Y.; Ram, M. K.; Stefanakos, E. K.; Heep, A. F.; Kulis, M. J.; McNatt, J. S.; Jaworske, D. A.; Jones, C. A.

    2013-01-01

    The effect of transition metal co-catalysts on the photocatalytic properties of TiO2 was investigated. Ruthenium (Ru), palladium, platinum, copper, silver, and gold, were loaded onto TiO2 powders (anatase and mixed-phase P25) and screened for the decomposition of rhodamine B (RhB) under broad-band irradiation. The morphology and estimated chemical composition of photocatalysts were determined by scanning electron microscopy and energy dispersive spectroscopy, respectively. Brunhauer, Emmett and Teller (BET) analysis measured mass-specific surface area(s). X-ray diffraction analysis was performed to confirm the identity of titania phase(s) present. The BET surface area of anatase TiO2/Ru 1% (9.2 sq m/gm) was one of the highest measured of all photocatalysts prepared in our laboratory. Photolyses conducted under air-saturated and nitrogen-saturated conditions revealed photodegradation efficiencies of 85 and 2 percent, respectively, after 60 min compared to 58 percent with no catalyst. The cause of low photocatalytic activity under an inert atmosphere is discussed. TiO2/Ru 1% showed a superior photocatalytic activity relative to P25-TiO2 under broad-band irradiation. A potential deployment of photocatalytic technologies on a mission could be a reactor with modest enhancement in solar intensity brought about by a trough-style reactor, with reactants and catalyst flowing along the axis of the trough and therefore being illuminated for a controlled duration based on the flow rate.

  19. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    PubMed

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  20. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding

    NASA Astrophysics Data System (ADS)

    Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar

    2018-06-01

    Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.