Sample records for v79 cells irradiated

  1. Structural changes in plasma membranes prepared from irradiated Chinese hamster V79 cells as revealed by Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, S.P.; Sonwalkar, N.

    1991-04-01

    The effect of gamma irradiation on the integrity of plasma membranes isolated from Chinese hamster V79 cells was investigated by Raman spectroscopy. Plasma membranes of control V79 cells show transitions between {minus}10 and 5{degree}C (low-temperature transition), 10 and 22{degree}C (middle-temperature transition), and 32 and 40{degree}C (high-temperature transition). Irradiation (5 Gy) alters these transitions markedly. First, the low-temperature transition shifts to higher temperature (onset and completion temperatures 4 and 14{degree}C). Second, the middle-temperature transition shifts up to the range of about 20-32{degree}C, but the width remains unchanged. Third, the higher temperature transition broadens markedly and shifts to the range of aboutmore » 15-40{degree}C. Protein secondary structure as determined by least-squares analysis of the amide I bands shows 36% total helix, 55% total beta-strand, and 9% turn plus undefined for control plasma membrane proteins. Plasma membrane proteins of irradiated V79 cells show an increase in total helix (40 and 45% at 5 and 10 Gy, respectively) and a decrease in the total beta-strand (48 and 44% at 5 and 10 Gy, respectively) structures. The qualitative analysis of the Raman features of plasma membranes and model compounds in the 1600 cm-1 region, assigned to tyrosine groups, revealed that irradiation alters the microenvironment of these groups. We conclude that the radiation dose used in the survival range of Chinese hamster V79 cells can cause damage to plasma membrane proteins without detectable lipid peroxidation, and that the altered proteins react differently with lipids, yielding a shift in the thermal transition properties.« less

  2. Response to high LET radiation 12C (LET, 295 keV/microm) in M5 cells, a radio resistant cell strain derived from Chinese hamster V79 cells.

    PubMed

    Pathak, R; Sarma, A; Sengupta, B; Dey, S K; Khuda-Bukhsh, A R

    2007-01-01

    To study the effects of 12C-beam of 295 keV/microm (57.24 MeV) on M5 and Chinese hamster V79 cells by using cytogenetic assays like micronuclei (MN) induction, chromosomal aberrations (CA) and apoptosis. Additionally, the relative survival of these two cell lines was tested by the colony forming ability of the cells, with a view to understanding the mechanism of cellular damages that lead to difference in cell survival. Confluent cells were irradiated with 12C-beam at various doses using 15UD Pelletron accelerator. Cell survival was studied by the colony forming ability of cells. MN assay was done by fluorescent staining. Different types of chromosomal aberrations in metaphase cells were scored at 12 h after irradiation. Apoptosis was measured at different post irradiation times as detected by nuclear fragmentation and DNA ladder was prepared after 48 h of incubation. Dose-dependent decrease in surviving fractions was found in both the cell lines. However, the surviving fractions were higher in M5 cells in comparison to V79 cells when exposed to the same radiation doses. On the other hand, induced MN frequencies, CA frequencies and apoptosis percentages were less in M5 cells than V79 cells. Very good correlations between surviving fractions and induced MN frequencies or induced total CA or induced apoptosis percentages were obtained in this study. The cell strain M5 showed relatively more radio-resistance to 12C-beam compared to Chinese hamster V79 cells in this study. As the MN formation, CA and apoptosis induction were less in M5 cells as compared to parental V79 cells, the higher cell survival in the former could possibly be attributed to their better repairing ability leading to higher cell survival.

  3. Minisatellite and Hprt mutations in V79 cells irradiated with helium ions and gamma rays.

    PubMed

    Cherubinit, R; Canova, S; Favaretto, S; Bruna, V; Battivelli, P; Celotti, L

    2002-09-01

    To evaluate and compare cytotoxic and mutational effects of graded doses of gamma-rays and 4He++ ions at different LET values (nominally 80 and 123 keV/microm) in V79 cells. 4He++ ion beams at 80 and 123 keV/microm were supplied by the 7 MV Van de Graaff CN accelerator of the INFN-LNL in the dose range 0.3 2.4 Gy at a dose rate of 1 Gy/min. Gamma-irradiation was performed by the 60Co 'gamma beam' of CNR-FRAE (at the INFN-LNL) in the dose range 0.5 6.0 Gy at a dose rate of 1 Gy/min. After irradiation, the cells were seeded to measure surviving fraction (SF) and mutant frequency (MF) at the Hprt locus on the basis of 6-thioguanine resistance. Alterations at minisatellite sequences (MS) of clones derived from irradiated and unirradiated cells were detected by Southern blot analysis using a multi-locus probe (DNA fingerprinting). Survival data from 4He++ irradiation at two LET values (80 and 123 keV/microm) yielded similar results: alpha = (1.08 +/- 0.04)/Gy and (0.90 +/- 0.03)/Gy, respectively. The best fit for mutant induction at the Hprt locus after 80keV/microm 4He++ was a linear function of the dose in the dose-interval 0-1.5 Gy: alpha= (47.77 +/- 16.01) x 10(-6)/Gy. The best fit for mutant induction after 123 keV/microm 4He++ in the dose-interval 0-1.2 Gv was a linear-quadratic function: alpha=(86.01 +/- 13.80) x 10(-6)/Gy; beta = (42.87 +/- 11.03) x 10(-6)/Gy2. For gamma-irradiation, the best fit of Hprt mutation data gave: alpha = (4.14+2.67)x 10(-6)/Gy: beta = (0.63 +/- 0.86) x 10(-6)/Gy2. The best fitting of MS alteration data with linear-quadratic or linear relationships gave: for gamma-rays, alpha = 0.56 mutants/Gy and beta = 0.52 mutants/Gy2; for 80 keV/microm 4He++, alpha = 3.70 mutants/Gy and beta = 9.00 mutants/Gy2; for 123keV/microm 4He++, alpha = 4.36 mutants/Gy. The results reported here confirmed the higher cytotoxic and mutagenic effects of helium ions in comparison with gamma-irradiation and the ability of DNA fingerprint analysis to investigate

  4. Influence of caffeine on X-ray-induced killing and mutation in V79 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, S.B.; Bhattacharyya, N.; Chatterjee, S.

    1987-02-01

    Effects produced by caffeine on X-irradiated Chinese hamster V79 cells depended on the growth conditions of the cells. For exponentially growing cells, nontoxic concentrations of caffeine decreased the shoulder width from the survival curve, but the slope remained unchanged. The yield of mutants under the same conditions also remained unaffected. In case of density-inhibited cells, delaying trypsinization for 24 h after X irradiation increased the survival and decreased the yield of mutants. The presence of caffeine during this incubation period inhibited such recovery and significantly increased the yield of X-ray-induced mutants.

  5. A I-V analysis of irradiated Gallium Arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Heulenberg, A.; Maurer, R. H.; Kinnison, J. D.

    1991-01-01

    A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells.

  6. Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy

    PubMed Central

    Sato, Eisuke; Zaboronok, Alexander; Yamamoto, Tetsuya; Nakai, Kei; Taskaev, Sergey; Volkova, Olga; Mechetina, Ludmila; Taranin, Alexander; Kanygin, Vladimir; Isobe, Tomonori; Mathis, Bryan J; Matsumura, Akira

    2018-01-01

    Abstract In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2–3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.5–3.0 mA proton current, resulting in a neutron fluence of 2.16 × 1012 cm−2. The survival curves of cells loaded with boron were normalized to those irradiated without boron (to exclude the influence of the fast neutron and gamma dose components) and fit to the linear–quadratic (LQ) model. Colony formation assays showed the following cell survival rates (means ± SDs): CHO-K1: 0.348 ± 0.069 (10 ppm), 0.058 ± 0.017 (20 ppm), 0.018 ± 0.005 (40 ppm); V79: 0.476 ± 0.160 (10 ppm), 0.346 ± 0.053 (20 ppm), 0.078 ± 0.015 (40 ppm); and U251MG: 0.311 ± 0.061 (10 ppm), 0.131 ± 0.022 (20 ppm), 0.020 ± 0.010 (40 ppm). The difference between treated cells and controls was significant in all cases (P < 0.01) and confirmed that the neutron source and irradiation regimen were sufficient for control over cell colony formation. We believe our study will serve as a model for ongoing in vitro experiments on neutron capture therapy to advance in this area for further development of accelerator-based BNCT into the clinical phase. PMID:29281044

  7. Ultraviolet-induced sister chromatid exchanges in V-79 cells with normal and BrdUrd-substituted DNA and the influence of intercalating substances and cysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speit, G.; Mehnert, K.; Wolf, M.

    1982-06-01

    The influence of intercalating substances (proflavine, ethidium bromide) and of an SH compound (L-cysteine) on uv-induced sister chromatid exchanges (SCEs) was investigated in V-79 cells with normal and BrdUrd-substituted DNA. The results are discussed in relation to the primary damages leading to SCE induction produced by uv irradiation. The data indicate that neither the pyrimidine dimers nor DNA single-strand breaks are the primary cause of SCE induction, and that the damages leading to SCEs by uv irradiation differ from those which cause chromosome aberrations.

  8. X-ray-induced bystander responses reduce spontaneous mutations in V79 cells

    PubMed Central

    Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomita, Masanori

    2013-01-01

    The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10–5 (background level), and the frequency decreased to 5.3 × 10–6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. PMID:23660275

  9. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines.

    PubMed

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540, 1080, and 2161 ng/ml B equivalents) concentrations

  10. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.

    PubMed

    León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas

    2016-12-01

    Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.

  11. V79 Chinese-hamster cells rendered resistant to high cadmium concentration also become resistant to oxidative stress.

    PubMed Central

    Mello-Filho, A C; Chubatsu, L S; Meneghini, R

    1988-01-01

    Chinese hamster cells (V79) resistant to high concentrations of Cd2+ in the medium were obtained by using the procedure of Beach & Palmiter [(1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2110-2114], which in mouse led to amplification of metallothionein (MT) genes and to an enrichment in cellular MT. The Cd-resistant V79 clones isolated were significantly more resistant than parental cells to oxidative stress by extracellular H2O2 or a mixture of H2O2 and superoxide anion (O2-) generated by xanthine oxidase plus acetaldehyde. On a per-cell basis, there was no difference between the two cells in their total H2O2-decomposing or O2-(-)dismutating activity. The most likely explanation is that an enrichment in MT content in the Cd-resistant cells was responsible for this effect, because of the antioxidant properties already described for this protein. Images Fig. 2. PMID:2851992

  12. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    PubMed Central

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Objective Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). Results The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540

  13. The application of the micronucleus test in Chinese hamster V79 cells to detect drug-induced photogenotoxicity.

    PubMed

    Kersten, B; Zhang, J; Brendler-Schwaab, S Y; Kasper, P; Müller, L

    1999-09-15

    Recent reports on the photochemical carcinogenicity and photochemical genotoxicity of fluoroquinolone antibacterials led to an increasing awareness for the need of a standard approach to test for photochemical genotoxicity. In this study the micronucleus test using V79 cells was adapted to photogenotoxicity testing. Results of using different UVA/UVB relationships enabled us to identify a suitable irradiation regimen for the activation of different kinds of photosensitizers. Using this regimen, 8-methoxypsoralen and the fluoroquinolones lomefloxacin, grepafloxacin and Bay Y 3118 were identified to cause micronuclei and toxicity upon photochemical activation. Among the phenothiazines tested, chlorpromazine and 2-chlorophenothiazine, were positive for both endpoints, whereas triflupromazine was only slightly photoclastogenic in the presence of strong phototoxicity. Among the other potential human photosensitizers tested (oxytetracycline, doxycycline, metronidazole, emodin, hypericin, griseofulvin), only hypericin was slightly photogenotoxic. Photochemical toxicity in the absence of photochemical genotoxicity was noted for doxycycline and emodin. With the assay system described, it is possible to determine photochemical toxicity and photochemical genotoxicity concomitantly with sufficient reliability.

  14. Involvement of basic fibroblast growth factor in suramin-induced inhibition of V79/AP4 fibroblast cell proliferation.

    PubMed Central

    Bernardini, N.; Giannessi, F.; Bianchi, F.; Dolfi, A.; Lupetti, M.; Citti, L.; Danesi, R.; Del Tacca, M.

    1993-01-01

    The V79/AP4 Chinese hamster fibroblasts were densely stained with the anti-basic fibroblast growth factor (bFGF) antibody demonstrating an endogenous production of the peptide. The in vitro proliferation of these cells was stimulated by exogenous bFGF and the maximum growth (259% increase in 3H-thymidine incorporation into DNA) was reached with bFGF 10 ng ml-1. Inhibition of bFGF-mediated mitogenic pathway was obtained with a 15-mer antisense oligodeoxynucleotide targeted against bFGF mRNA and with suramin, a drug which blocks the biological activity of heparin-binding growth factors. bFGF antisense oligomer reduced the synthesis of DNA by 79.5 and 89.5% at 20 and 60 microM, respectively; this effect was reversed by the addition of exogenous bFGF to the culture medium. A short-term exposure to suramin 300 micrograms ml-1 produced a modest reduction in 3H-thymidine incorporation but suppressed the mitogenic effect of bFGF on V79/AP4 cells. In cells treated with suramin 300 micrograms ml-1 the drug concentration increased linearly over 3 days, reaching 13.15 micrograms mg-1 of protein; cell proliferation was inhibited in a dose-related manner as evaluated by the colony formation assay (IC50: 344.22 micrograms ml-1) and by the number of mitoses observed in culture. Furthermore, the drug induced ultrastructural alterations, consisting of perinuclear cisternae swelling, chromatin condensation, nucleolar segregation and cytoplasmic vacuolations. These findings demonstrated that the endogenous production of bFGF plays an important role in V79/AP4 fibroblasts proliferation, and the inhibition of bFGF-mediated mitogenic signalling with bFGF antisense oligomer or suramin is an effective mean of reducing cell growth. Images Figure 1 Figure 5 Figure 6 PMID:7685616

  15. Relative Biologic Effectiveness (RBE) of 50 kV X-rays Measured in a Phantom for Intraoperative Tumor-Bed Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi; Schneider, Frank; Ma, Lin

    Purpose: Intraoperative radiation therapy (IORT) with low-energy x-rays is used to treat the tumor bed during breast-conserving surgery. The purpose was to determine the relative biologic effectiveness (RBE) of 50-kV x-rays for inactivation of cells irradiated in a tumor-bed phantom. Methods and Materials: The RBE was determined for clonogenic inactivation of human tumor and normal cells (MCF7, human umbilical vein endothelial cells, normal skin fibroblasts), and hamster V79 cells. The 50-kV x-rays from the Intrabeam machine (Carl Zeiss Surgical) with a spherical 4-cm applicator were used. Cells were irradiated in a water-equivalent phantom at defined distances (8.1-22.9 mm) from themore » applicator surface. The 50-kV x-rays from a surface therapy machine (Dermopan, Siemens) were included for comparison; 6-MV x-rays were used as reference radiation. Results: At 8.1-mm depth in the phantom (dose rate 15.1 Gy/h), mean RBE values of 50-kV x-rays from Intrabeam were 1.26 to 1.42 for the 4 cell types at doses yielding surviving fractions in the range of 0.01 to 0.5. Confidence intervals were in the range of 1.2 and 1.5. Similar RBE values were found for 50-kV x-rays from Dermopan for V79 (1.30, CI 1.25-1.36, P=.74) and GS4 (1.42, CI 1.30-1.54, P=.67). No significant dependence of RBE on dose was found for Intrabeam, but RBE decreased at a larger distance (12.7 mm; 9.8 Gy/h). Conclusions: An increased clinically relevant RBE was found for cell irradiation with Intrabeam at depths in the tumor bed targeted by IORT. The reduced RBE values at larger distances may be related to increased repair of sublethal damage during protracted irradiation or to hardening of the photon beam energy.« less

  16. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells.

    PubMed

    Ustündağ, Aylin; Behm, Claudia; Föllmann, Wolfram; Duydu, Yalçin; Degen, Gisela H

    2014-06-01

    The toxic heavy metals cadmium (Cd) and lead (Pb) are important environmental pollutants which can cause serious damage to human health. As the metal ions (Cd(2+) and Pb(2+)) accumulate in the organism, there is special concern regarding chronic toxicity and damage to the genetic material. Metal-induced genotoxicity has been attributed to indirect mechanisms, such as induction of oxidative stress and interference with DNA repair. Boron is a naturally occurring element and considered to be an essential micronutrient, although the cellular activities of boron compounds remain largely unexplored. The present study has been conducted to evaluate potential protective effects of boric acid (BA) against genotoxicity induced by cadmium chloride (CdCl2) and lead chloride (PbCl2) in V79 cell cultures. Cytotoxicity assays (neutral red uptake and cell titer blue assay) served to determine suitable concentrations for subsequent genotoxicity assays. Chromosomal damage and DNA strand breaks were assessed by micronucleus tests and comet assays. Both PbCl2 and CdCl2 (at 3, 5 and 10 µM) were shown to induce concentration-dependent increases in micronucleus frequencies and DNA strand breaks in V79 cells. BA itself was not cytotoxic (up to 300 µM) and showed no genotoxic effects. Pretreatment of cells with low levels of BA (2.5 and 10 µM) was found to strongly reduce the genotoxic effects of the tested metals. Based on the findings of this in vitro study, it can be suggested that boron provides an efficient protection against the induction of DNA strand breaks and micronuclei by lead and cadmium. Further studies on the underlying mechanisms for the protective effect of boron are needed.

  17. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  18. DLTS analysis of radiation-induced defects in one-MeV electron irradiated germanium and Alsub0.17Gasub0.83As solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. B.; Choi, C. G.; Loo, R. Y.

    1985-01-01

    The radiation-induced deep-level defects in one-MeV electron-irradiated germanium and AlxGal-xAs solar cell materials using the deep-level transient spectroscopy (DLTS) and C-V techniques were investigated. Defect and recombination parameters such as defect density and energy levels, capture cross sections and lifetimes for both electron and hole traps were determined. The germanium and AlGaAs p/n junction cells were irradiated by one-MeV electrons. The DLTS, I-V, and C-V measurements were performed on these cells. The results are summarized as follows: (1) for the irradiated germanium samples, the dominant electron trap was due to the E sub - 0.24 eV level with density around 4x10 to the 14th power 1/cu cm, independent of electron fluence, its origin is attributed to the vacancy-donor complex defect formed during the electron irradiation; (2) in the one-MeV electron irradiated Al0.17Ga0.83 as sample, two dominant electron traps with energies of Ec-0.19 and -0.29 eV were observed, the density for both electron traps remained nearly constant, independent of electron fluence. It is shown that one-MeV electron irradiation creates very few or no new deep-level traps in both the germanium and AlxGa1-xAs cells, and are suitable for fabricating the radiation-hard high efficiency multijunction solar cells for space applications.

  19. Interlaboratory studies with the Chinese hamster V79 cell metabolic cooperation assay to detect tumor-promoting agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohrman, J.S.; Burg, J.R.; Elmore, E.

    1988-01-01

    Three laboratories participated in an interlaboratory study to evaluate the usefulness of the Chinese hamster V79 cell metabolic cooperation assay to predict the tumor-promoting activity of selected chemical. Twenty-three chemicals of different chemical structures (phorbol esters, barbiturates, phenols, artificial sweeteners, alkanes, and peroxides) were chosen for testing based on in vivo promotion activities, as reported in the literature. Assay protocols and materials were standardized, and the chemicals were coded to facilitate unbiased evaluation. A chemical was tested only once in each laboratory, with one of the three laboratories testing only 15 out of 23 chemicals. Dunnett's test was used formore » statistical analysis. Chemicals were scored as positive (at least two concentration levels statistically different than control), equivocal (only one concentration statistically different), or negative. For 15 chemicals tested in all three laboratories, there was complete agreement among the laboratories for nine chemicals. For the 23 chemicals tested in only two laboratories, there was agreement on 16 chemicals. With the exception of the peroxides and alkanes, the metabolic cooperation data were in general agreement with in vivo data. However, an overall evaluation of the V79 cell system for predicting in vivo promotion activity was difficult because of the organ specificity of certain chemicals and/or the limited number of adequately tested nonpromoting chemicals.« less

  20. HPRT mutations in V79 Chinese hamster cells induced by accelerated Ni, Au and Pb ions.

    PubMed

    Stoll, U; Barth, B; Scheerer, N; Schneider, E; Kiefer, J

    1996-07-01

    Mutation induction by accelerated heavy ions to 6-TG resistance (HPRT system) in V79 Chinese hamster cells was investigated with Ni (6-630 Me V/u), Au (2.2, 8.7 Me V/u) and Pb ions (11.6-980 Me V/u) corresponding to a LET range between 180 and 12895 ke V/microns. Most experiments could only be performed once due to technical limitations using accelerator beam times. Survival curves were exponential, mutation induction curves linear with fluence. From their slopes inactivation- and mutation-induction cross-sections were derived. If they are plotted versus LET, single, ion-specific curves are obtained. It is shown that other parameters like ion energy and effective charge play an important role. In the case of Au and Pb ions the cross-sections follow a common line, since these ions have nearly the same atomic weight, so that they should have similar spatial ionization patterns in matter at the same energies. Calculated RBEs were higher for mutation induction than for killing for all LETs.

  1. Proliferation kinetics of cultured cells after irradiation with X-rays and 14 MeV neutrons studied by time-lapse cinematography.

    PubMed

    Kooi, M W; Stap, J; Barendsen, G W

    1984-06-01

    Exponentially growing cells of an established line derived from a mouse osteosarcoma (MOS) have been studied by time-lapse cinematography after irradiation with 3 Gy of 200 kV X-rays or 1.5 Gy of 14 MeV neutrons. Cell cycle times (Tc) of individual cells and their progeny in three subsequent generations as well as the occurrence of aberrant mitosis have been determined to evaluate the variation in expression of damage in relation to the stage in the intermitotic cycle and the radiation quality. The results show that the radiation doses applied cause an equal elongation of the mean Tc, which is largest in the irradiated cells but persists in the three subsequent generations. After 3 Gy of X-rays, mitotic delay is largest in cells irradiated in later stages of the cycle, but this difference is not observed after 1.5 Gy of 14 MeV neutrons. In subsequent generations the Tc values show larger variations among descendents of cells treated in the same stage of the cycle as compared to controls but this variation is equal for the doses of X-rays and neutrons applied. Division probability was significantly reduced in irradiated cells as well as in subsequent generations, whereby with neutrons as compared to X-rays the damage is expressed in earlier generations, with less variation as a function of the cell cycle.

  2. Comparative ecotoxicity of potential biofuels to water flea (Daphnia magna), zebrafish (Danio rerio) and Chinese hamster (Cricetulus griseus) V79 cells.

    PubMed

    Heger, Sebastian; Du, Miaomiao; Bauer, Kevin; Schäffer, Andreas; Hollert, Henner

    2018-08-01

    The ecotoxicity of two biofuel candidates (1‑octanol and 2‑butanone) was investigated by an integrative test strategy using three bioassays: the acute immobilisation test with water flea (D. magna), the fish embryo acute toxicity test with zebrafish (Danio rerio) and the in vitro micronucleus assay with Chinese hamster (Cricetulus griseus) V79 cells. The median effective concentration (EC 50 ) values were 14.9±0.66mgL -1 for 1‑octanol, and 2152.1±44.6mgL -1 for 2‑butanone in the D. magna test. Both 1‑octanol and 2‑butanone caused teratogenic and lethal effects on zebrafish embryos, while exposure to 1‑octanol significantly induced these effects at concentrations ≥2.0mgL -1 . These results indicate that 1‑octanol exert much higher ecotoxicity than 2‑butanone to D. magna and zebrafish embryos. Moreover, both 1‑octanol and 2‑butanone did not cause significant genotoxic effects, while their metabolites significantly induced micronuclei in V79 cells. The present study proposed an integrative test approach to evaluate the potential ecotoxicity of biofuels using simple, quick and inexpensive bioassays. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Investigation of the radiation resistance of triple-junction a-Si:H alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1993-01-01

    The effect of 1.00 MeV proton irradiation on hydrogenated amorphous silicon alloy triple-junction solar cells is reported for the first time. The cells were designed for radiation resistance studies and included 0.35 cm(sup 2) active areas on 1.0 by 2.0 cm(sup 2) glass superstrates. Three cells were irradiated through the bottom contact at each of six fluences between 5.10E12 and 1.46E15 cm(sup -2). The effect of the irradiations was determined with light current-voltage measurements. Proton irradiation degraded the cell power densities from 8.0 to 98 percent for the fluences investigated. Annealing irradiated cells at 200 C for two hours restored the power densities to better than 90 percent. The cells exhibited radiation resistances which are superior to cells reported in the literature for fluences less than 1E14 cm(sup -2).

  4. Protective effect of N-acetyl-L-cysteine against disulfiram-induced oxidative stress and apoptosis in V79 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosicka-Maciag, Emilia; Kurpios-Piec, Dagmara; Grzela, Tomasz

    2010-11-01

    This work investigated the effect of N-acetyl-L-cysteine (NAC) on disulfiram (DSF) induced oxidative stress in Chinese hamster fibroblast cells (V79). An increase in oxidative stress induced by DSF was observed up to a 200 {mu}M concentration. It was evidenced by a statistically significant increase of both GSH{sub t} and GSSG levels, as well as elevated protein carbonyl (PC) content. There was no increase in lipid peroxidation (measured as TBARS). DSF increased CAT activity, but did not change SOD1 and SOD2 activities. Analysis of GSH related enzymes showed that DSF significantly increased GR activity, did not change Se-dependent GPx, but statisticallymore » significantly decreased non-Se-dependent GPx activity. DSF showed also pro-apoptotic activity. NAC alone did not produce any significant changes, besides an increase of GSH{sub t} level, in any of the variables measured. However, pre-treatment of cells with NAC ameliorated DSF-induced changes. NAC pre-treatment restored the viability of DSF-treated cells evaluated by Trypan blue exclusion assay and MTT test, GSSG level, and protein carbonyl content to the control values as well as it reduced pro-apoptotic activity of DSF. The increase of CAT and GR activity was not reversed. Activity of both GPx was significantly increased compared to their values after DSF treatment. In conclusion, oxidative properties are at least partially attributable to the cellular effects of disulfiram and mechanisms induced by NAC pre-treatment may lower or even abolish the observed effects. These observations illustrate the importance of the initial cellular redox state in terms of cell response to disulfiram exposure. -- Research Highlights: {yields}This report explores biological properties of disulfiram under a condition of modulated intra-cellular GSH level. It shows a protective role of N-acetyl-L-cysteine in V79 cells exposed to disulfiram (in GSH metabolism as well as in changes of antioxidant enzyme activity).« less

  5. Induction of micronuclei in V79 cells after combined treatments with heterocyclic aromatic amines.

    PubMed

    Perez, C; Lopez de Cerain, A; Bello, J

    2002-10-01

    Heterocyclic aromatic amines (HAs) appear in foods rich in proteins when subjected to different cooking processes. These amines have been demonstrated to be mutagenic in bacteria; in eucaryotic cells, controversial results have been referred. The objective of this study is to evaluate the clastogenic and/or aneugenic capacity of three HAs--2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx), and 2-amino-3-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)--in isolated as well as in combined treatments. The micronucleus test in vitro was used on V79 cells in the presence and absence of metabolic activation. The duration of the treatment was 2 h, and cytochalasin B was added for 21 h to stop cytokinesis; then, micronuclei (MN) were counted in binucleated cells. In the presence of metabolic activation, the three amines showed a significant increase in the number of MN with respect to the negative control. The PhIP amine presented the highest values and it also resulted slightly active in the absence of metabolic activation, although these differences have not been considered to be significant. The combined treatments of these amines have shown that the effects attributed to them when administered together are those that are expected for a possible additive effect; the effect attributed to each HA separately is not potentiated nor inhibited.

  6. Photocarrier Radiometry for Non-contact Evaluation of Monocrystalline Silicon Solar Cell Under Low-Energy (< 200 keV) Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Oliullah, Md.; Liu, J. Y.; Song, P.; Wang, Y.

    2018-06-01

    A three-layer theoretical model is developed for the characterization of the electronic transport properties (lifetime τ, diffusion coefficient D, and surface recombination velocity s) with energetic particle irradiation on solar cells using non-contact photocarrier radiometry. Monte Carlo (MC) simulation is carried out to obtain the depth profiles of the proton irradiation layer at different low energies (< 200 keV). The monocrystalline silicon (c-Si) solar cells are investigated under different low-energy proton irradiation, and the carrier transport parameters of the three layers are obtained by best-fitting of the experimental results. The results show that the low-energy protons have little influence on the transport parameters of the non-irradiated layer, but high influences on both of the p and n-region irradiation layers which are consisted of MC simulation.

  7. Biological Response of Cancer and Normal Cells on Irradiation from Electrons with Energies up to 200 keV.

    NASA Astrophysics Data System (ADS)

    Prilepskiy, Yuriy

    2007-03-01

    This paper presents continuation data of the series of experiments with the electron gun of the CEBAF machine at Jefferson Lab (Newport News, VA), which is capable of delivering electrons with energies up to 200 keV. This 1.5 GHz beam permits to generate cellular damage within minutes. We have performed irradiation of cancer and normal cells with different electron energies and currents to investigate cell biological responses. The biological response is measured through proteomics analysis before and after irradiation. The living cells are encased in special air containers allowing proper positioning in vacuum where the electrons are present. The containers receive the irradiation from the mono energetic electrons with energy up to 120 keV, resulting in an irradiation from both electrons and a small number of photons from the original beam passing through the thin container window. This window allows approximately half of the beam to come through. The study will permit to address the physical processes involved in the RBE and LET at a level that supersedes current data listed in the literature. We will discuss the experimental setup and the second stage of data collected with the new more developed system. This research is part of a global program to provide detailed information for the understanding of radiation based cancer treatments.

  8. Measured and Simulated Dark J-V Characteristics of a-Si:H Single Junction p-i-n Solar Cells Irradiated with 40 keV Electrons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth; Woodyard, James R.

    2002-01-01

    The effect of 40 keV electron irradiation on a-Si:H p-i-n single-junction solar cells was investigated using measured and simulated dark J-V characteristics. EPRI-AMPS and PC-1D simulators were explored for use in the studies. The EPRI-AMPS simulator was employed and simulator parameters selected to produce agreement with measured J-V characteristics. Three current mechanisms were evident in the measured dark J-V characteristics after electron irradiation, namely, injection, shunting and a term of the form CV(sup m). Using a single discrete defect state level at the center of the band gap, good agreement was achieved between measured and simulated J-V characteristics in the forward-bias voltage region where the dark current density was dominated by injection. The current mechanism of the form CV(sup m) was removed by annealing for two hours at 140 C. Subsequent irradiation restored the CV(sup m) current mechanism and it was removed by a second anneal. Some evidence of the CV(sup m) term is present in device simulations with a higher level of discrete density of states located at the center of the bandgap.

  9. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions.

    PubMed

    Mäckel, V; Meissl, W; Ikeda, T; Clever, M; Meissl, E; Kobayashi, T; Kojima, T M; Imamoto, N; Ogiwara, K; Yamazaki, Y

    2014-01-01

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.

  10. Emulsions Made of Oils from Seeds of GM Flax Protect V79 Cells against Oxidative Stress

    PubMed Central

    Skorkowska-Telichowska, Katarzyna; Hasiewicz-Derkacz, Karolina; Gębarowski, Tomasz; Kulma, Anna; Kostyn, Kamil; Gębczak, Katarzyna; Szyjka, Anna; Wojtasik, Wioleta; Gąsiorowski, Kazimierz

    2016-01-01

    Polyunsaturated fatty acids, sterols, and hydrophilic phenolic compounds are components of flax oil that act as antioxidants. We investigated the impact of flax oil from transgenic flax in the form of emulsions on stressed Chinese hamster pulmonary fibroblasts. We found that the emulsions protect V79 cells against the H2O2 and the effect is dose dependent. They reduced the level of intracellular reactive oxygen species and protected genomic DNA against damage. The rate of cell proliferation increased upon treatment with the emulsions at a low concentration, while at a high concentration it decreased significantly, accompanied by increased frequency of apoptotic cell death. Expression analysis of selected genes revealed the upregulatory impact of the emulsions on the histones, acetylases, and deacetylases. Expression of apoptotic, proinflammatory, and anti-inflammatory genes was also altered. It is thus suggested that flax oil emulsions might be useful as a basis for biomedical products that actively protect cells against inflammation and degeneration. The beneficial effect on fibroblast resistance to oxidative damage was superior in the emulsion made of oil from transgenic plants which was correlated with the quantity of antioxidants and squalene. The emulsions from transgenic flax are promising candidates for skin protection against oxidative damage. PMID:26779302

  11. Effects of low temperature periodic annealing on the deep-level defects in 200 keV proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Chiu, T. T.; Loo, R. Y.

    1981-01-01

    The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.

  12. Antimutagenic and antioxidant properties of the aqueous extracts of organic and conventional grapevine Vitis labrusca cv. Isabella leaves in V79 cells.

    PubMed

    Trindade, Cristiano; Bortolini, Giovana Vera; Costa, Bárbara Segalotto; Anghinoni, Joanna Carra; Guecheva, Temenouga Nikolova; Arias, Ximena; Césio, Maria Verónica; Heinzen, Horácio; Moura, Dinara Jaqueline; Saffi, Jenifer; Salvador, Mirian; Henriques, João Antonio Pêgas

    2016-01-01

    Grapes are one of the most commonly consumed fruit, in both fresh and processed forms; however, a significant amount is disposed of in the environment. Searching for a use of this waste, the antigenotoxic, antimutagenic, and antioxidant activities of aqueous extracts from organic and conventional Vitis labrusca leaves were determined using V79 cells as model. The antigenotoxic activity was analyzed by the alkaline comet assay using endonuclease III and formamidopyrimidine DNA glycosylase enzymes. The antimutagenic property was assessed through the micronucleus (MN) formation, and antioxidant activities were assessed using 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH(●)) radical scavenging, as well as with superoxide dismutase (SOD) and catalase (CAT) activity assays. In addition, phenolic content and ascorbic acid levels of both extracts were determined. Data showed that both organic and conventional grapevine leaves extracts possessed antigenotoxic and antimutagenic properties. The extract of organic leaves significantly reduced intracellular reactive oxygen species (ROS) levels in V79 cells, and displayed greater ability for DPPH(●) scavenging and higher SOD and CAT activities than extract from conventional leaves. Further, the extract from organic leaves contained higher phenolic and ascorbic acid concentrations. In summary, extracts from organic and conventional grape leaves induced important in vitro biological effects.

  13. Annealing characteristics of amorphous silicon alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman S.; Woodyard, James R.

    1991-01-01

    Amorphous Si:H and amorphous Si sub x, Ge sub (1-x):H solar cells were irradiated with 1.00 MeV proton fluences in the range of 1.00E14 to 1.25E15 cm (exp -2). Annealing of the short circuit current density was studied at 0, 22, 50, 100, and 150 C. Annealing times ranged from an hour to several days. The measurements confirmed that annealing occurs at 0 C and the initial characteristics of the cells are restored by annealing at 200 C. The rate of annealing does not appear to follow a simple nth order reaction rate model. Calculations of the short-circuit current density using quantum efficiency measurements and the standard AM1.5 global spectrum compare favorably with measured values. It is proposed that the degradation in J sub sc with irradiation is due to carrier recombination through the fraction of D (o) states bounded by the quasi-Fermi energies. The time dependence of the rate of annealing of J sub sc does appear to be consistent with the interpretation that there is a thermally activated dispersive transport mechanism which leads to the passivation of the irradiation induced defects.

  14. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  15. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  16. [Effects of damage and post-radiation reparation of cornea epithelium cells chromosomal apparatus in mice following irradiation by protons with the energy of 25 MeV].

    PubMed

    2012-01-01

    Damage and post-radiation reparation processes were studied in cornea epithelium cells of mice irradiated by protons with the energy of 25 MeV and 60Co gamma-rays singly and in 2 fractions. Protons linear energy transfer (LET) was equal to 2.1 keV/microm, dose rate - 0.5 cGy/s. Animals were irradiated singly by 25 and 750 cGy and doubly (25 + 25; 50 + 50; 125 + 125; 250 + 250 cGy) with a 24-hr interval. Investigations were performed in 24, 72 and 120 hrs. after single and in 24 hrs. after double irradiation. Preparations were analyzed with the anaphase technique. 25 MeV protons were shown to cause more severe damages to the chromosomal apparatus in mammal cells including dramatic suppression of cell division and profuse formation of cells with aberrant mitoses as compared with gamma-induced damages. Exchange-type aberrations were more frequent. There was a reliable decrease of the aberrant mitosis rate in consequence of fractionated irradiation by 25 MeV protons and gamma-rays. On passing 24, 72 and 120 hours, coefficients of relative biological effectiveness (RBE) of 25 MeV protons were equal to 1.4 +/- 0.2; 1.3 +/- 0.1; 1.2 +/- 0.1 for the mitotic index and 1.5 +/- 0.1; 1.3 +/- 0.2; 1.1 +/- 0.1 for aberrant mitosis, respectively.

  17. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  18. Cell performance and defect behavior in proton-irradiated lithium-counterdoped n(+)p silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Stupica, J. W.; Swartz, C. K.; Goradia, C.

    1986-01-01

    Lithium-counterdoped n(+)p silicon solar cells were irradiated by 10-MeV protons, and their performance was determined as a function of fluence. It was found that the cell with the highest lithium concentration exhibited the higher radiation resistance. Deep-level transient spectroscopy studies of deep-level defects were used to identify two lithium-related defects. Defect energy levels obtained after the present 10-MeV irradiations were found to be markedly different than those observed after previous 1-MeV electron irradiations. However, the present DLTS data are consistent with previous suggestion by Weinberg et al. (1984) of a lithium-oxygen interaction which tends to inhibit formation of an interstitial boron-oxygen defect.

  19. AT cells show dissimilar hypersensitivity to heavy-ion and X-rays irradiation.

    PubMed

    Kitajima, Shoichiro; Nakamura, Hideaki; Adachi, Makoto; Ijichi, Kei; Yasui, Yoshihiro; Saito, Noriko; Suzuki, Masao; Kurita, Kenichi; Ishizaki, Kanji

    2010-01-01

    Ataxia telangiectasia (AT) cells, with their defective double-strand break (DSB) repair processes, exhibit high sensitivity to low-LET radiation such as X-rays irradiation and gamma beams. Since heavy ion beam treatment for cancer is becoming increasingly common in Japan and elsewhere, it is important to also determine their sensitivity to high-LET radiation. For this purpose we irradiated AT and normal human cells immortalized with the human telomerase gene using high- (24-60 keV/microm carbon and 200 keV/microm iron ions) or low-LET (X-rays) radiation in non-proliferative conditions. In normal cells the RBE (relative biological effectiveness) of carbon and iron ions increased from 1.19 to 1.81 in proportion to LET. In contrast, their RBE in AT cells increased from 1.32 at 24 keV/microm to 1.59 at 40 keV/microm, and exhibited a plateau at over 40 keV/microm. In normal cells most gamma-H2AX foci induced by both carbon- and iron-ion beams had disappeared at 40 h. In AT cells, however, a significant number of gamma-H2AX foci were still observed at 40 h. The RBEs found in the AT cells after heavy-ion irradiation were consistent with the effects predicted from the presence of non-homologous end joining defects. The DSBs remaining after heavy-ion irradiation suggested defects in the AT cells' DSB repair ability.

  20. [Effect of electromagnetic pulse irradiation on structure and function of Leydig cells in mice].

    PubMed

    Wang, Shui-Ming; Wang, De-Wen; Peng, Rui-Yun; Gao, Ya-Bing; Yang, Yi; Hu, Wen-Hua; Chen, Hao-Yu; Zhang, You-Ren; Gao, Yan

    2003-08-01

    To explore the effect of electromagnetic pulse (EMP) irradiation on structure and function of Leydig cells in mice. One hundred and fourteen male Kunming mice were randomly divided into irradiated and control group, the former radiated generally by 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP respectively five times within two minutes. Pathological changes of Leydig cells were observed by light and electron microscope. Serum testosterone (T), luteinizing hormone (LH) and estradiol (E2) were measured dynamically by radioimmunoassay at 6 h, 1 d, 3 d, 7 d, 14 d and 28 d after irradiation. Main pathological changes were edema and vacuolation, swelling of cytoplasmic mitochondria, reduce of lipid droplets, pale staining of most of lipid droplets, and partial or complete cavitation of lipid droplets in Leydig cells within 28 days after EMP radiation. Compared with normal controls, serum T decreased in all in different degrees within 28 days, and dropped significantly at 6 h-14 d, 6 h-7 d and 1 d-28 d after 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP irradiation(P < 0.05 or P < 0.01). EMP irradiation caused no significant changes in serum LH and E2. Leydig cells are among those that are the most susceptible to EMP irradiation. EMP irradiation may cause significant injury in structure and function of Leydig cells in mice, whose earlier and continuous effect is bound to affect sexual function and sperm production.

  1. Cancer Cell Radiobiological Studies Using In-House-Developed α-Particle Irradiator.

    PubMed

    Nilsson, Jenny; Bauden, Monika Posaric; Nilsson, Jonas M; Strand, Sven-Erik; Elgqvist, Jörgen

    2015-11-01

    An α-particle irradiator, enabling high-precision irradiation of cells for in vitro studies, has been constructed. The irradiation source was a (241)Am source, on which well inserts containing cancer cells growing in monolayer were placed. The total radioactivity, uniformity, and α-particle spectrum were determined by use of HPGe detector, Gafchromic dosimetry film, and PIPS detector measurements, respectively. Monte Carlo simulations were used for dosimetry. Three prostate cancer (LNCaP, DU145, PC3) and three pancreatic cancer (Capan-1, Panc-1, BxPC-3) cell lines were irradiated by α-particles to the absorbed doses 0, 0.5, 1, and 2 Gy. For reference, cells were irradiated using (137)Cs to the absorbed doses 0, 1, 2, 4, 6, 8, and 10 Gy. Radiation sensitivity was estimated using a tetrazolium salt-based colorimetric assay with absorbance measurements at 450 nm. The relative biological effectiveness for α-particles relative to γ-irradiation at 37% cell survival for the LNCaP, DU145, PC3, Capan-1, Panc-1, and BxPC-3 cells was 7.9 ± 1.7, 8.0 ± 0.8, 7.0 ± 1.1, 12.5 ± 1.6, 9.4 ± 0.9, and 6.2 ± 0.7, respectively. The results show the feasibility of constructing a desktop α-particle irradiator as well as indicate that both prostate and pancreatic cancers are good candidates for further studies of α-particle radioimmunotherapy.

  2. Cell irradiation setup and dosimetry for radiobiological studies at ELBE

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Beyreuther, E.; Lessmann, E.; Wagner, W.; Pawelke, J.

    2009-07-01

    The radiation source ELBE delivers different types of secondary radiation, which is used for cell irradiation studies in radiobiological research. Thereby an important issue is the determination of the biological effectiveness of photon radiation as a function of photon energy by using low-energetic, monochromatic channeling radiation (10-100 keV) and high-energetic bremsstrahlung (up to 40 MV). Radiobiological studies at the research facility ELBE demand special technical and dosimetric prerequisites. Therefore, a cell irradiation system (CIS) has been designed, constructed and installed at the beam line. The CIS allows automatic irradiation of a larger cell sample number and the compensation of spatial inhomogeneity of the dose distribution within the beam spot. The recently introduced GafChromic ® EBT radiochromic film model has been used to verify the cell irradiation dose deposition achieving a dose uncertainty of <5%. Both, the installed cell irradiation system and the developed dosimetric procedure based on the use of the EBT film have been experimentally tested at ELBE. The biological effectiveness of 34 MV bremsstrahlung with respect to 200 kV X-rays from a conventional X-ray tube has been determined. An RBE value of 0.75 has been measured in good agreement with literature.

  3. Anti-biofilm efficacy of 100 MeV gold ion irradiated polycarbonate against Salmonella typhi

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, G.; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2017-12-01

    Polycarbonate (PC) films were irradiated by 100 MeV gold (Au7+) ions and characterized to study changes in its optical, chemical, surface morphology and thermal properties. UV-Visible spectroscopic results revealed the decrease in the optical band gap of PC after ion irradiation due to chain scission mainly at the carbonyl group which is corroborated by Fourier Transform Infrared spectroscopic results. X-ray diffractogram study showed decrease in crystallinity of PC film after irradiation. Scanning electron microscopic results showed the micropores formation in PC which results in surface roughening. Differential scanning calorimetric results revealed decrease in glass transition temperature indicating the decrease in molecular weight of PC corroborated by rheometric studies. PC films irradiated by 100 MeV Au7+ ions showed increased anti-biofilm activity against the human pathogen, Salmonella typhi (S. typhi). Morphology of S. typhi was changed due to stress of Au7+ irradiated PC. Cells length was increased with increasing fluences. The average cell length, cell volume and surface area was increased significantly (P<0.05) with increasing ion fluences. Biofilm formation was inhibited ≈ 20% at lower fluence and 96% at higher fluence, which observed to be enhanced anti-biofilm activity in Au7+ irradiated PC.

  4. Modeling the effect of 1 MeV electron irradiation on the performance of n+-p-p+ silicon space solar cells

    NASA Astrophysics Data System (ADS)

    Hamache, Abdelghani; Sengouga, Nouredine; Meftah, Afak; Henini, Mohamed

    2016-06-01

    Energetic particles such as electrons and protons induce severe degradation on the performance of solar cells used to power satellites and space vehicles. This degradation is usually attributed to lattice damage in the active region of the solar cell. One of the phenomena observed in silicon solar cells exposed to 1 MeV electron irradiation is the anomalous degradation of the short circuit current. It initially decreases followed by a recovery before falling again with increasing electron fluence. This behavior is usually attributed to type conversion of the solar cell active region. The other figures of merit, on the other hand, decrease monotonically. In this work numerical simulator SCAPS (Solar Cell Capacitance Simulator) is used to elucidate this phenomenon. The current-voltage characteristics of a Si n+-p-p+ structure are calculated under air mass zero spectrum with the fluence of 1 MeV electrons as a variable parameter. The effect of irradiation on the solar cell is simulated by a set of defects of which the energy levels lie deep in energy gap of silicon (much larger than the characteristic thermal energy kT far from either the conduction or valence band). Although several types of deep levels are induced by irradiation including deep donors (exchange electrons mainly with the conduction band), deep acceptors (exchange electrons mainly with the valence band) and/or generation-recombination centers (exchange electrons with both the conduction and valence bands), it was found that, only one of them (the shallowest donor) is responsible for the anomalous degradation of the short circuit current. It will be also shown, by calculating the free charge carrier profile in the active region, that this behavior is not related to type conversion but to a lateral widening of the space charge region.

  5. EPR and transient capacitance studies on electron-irradiated silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.

    1977-01-01

    One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.

  6. Estimation of the initial slope of the cell survival curve after irradiation from micronucleus frequency in cytokinesis-blocked cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, K.; Masunaga, S.; Akaboshi, M.

    1994-04-01

    We have already reported that the {alpha}/{beta} ratio of the cell survival curve could be estimated from the micronucleus frequency in cytokinesis-blocked cells treated with cytochalasin-B after irradiation. In this paper, we investigate the direct relationship between the {alpha} value and the appearance of micronuclei. Cells of the SCCVII, RIF-1, EMT6, V-79, CHO, HeLa and human esophageal cancer cell lines were used for the study. Low-dose-rate irradiation was used to determine the {alpha} component of the relationship between dose and micronucleus frequency according to the linear-quadratic (LQ) model. A reduction of the dose rate from 3.09 to 0.0142 Gy/min correspondinglymore » decreased the micronucleus frequency; however, the fraction of binucleate cells without micronuclei was not affected in SCCVII and RIF-1 cells. When this fraction was defined as the normal nuclear division fraction, it decreased exponentially as a function of radiation dose. Then dose vs normal nuclear division fraction (NNDF) was fitted as follows: -In NNDF = aD + C, where D is radiation dose in grays and C is constant. The slope of the dose vs normal nuclear division fraction was not affected by dose rate. The correlation was also explored between the slope (a) and the {alpha} value of the cell survival curve determined by the colony formation assay in cells of eight cell lines. These two values showed extremely high agreement: {alpha} = 1.01a + 0.00795 (r = 0.99, P < 0.01). This assay was applied to estimate the {alpha} value of the cell survival curve of human esophageal cancer cell lines established from surgical specimens. 13 refs., 5 figs.« less

  7. The attachment of V79 and human periodontal ligament fibroblasts on periodontally involved root surfaces following treatment with EDTA, citric acid, or tetracycline HCL: an SEM in vitro study.

    PubMed

    Chandra, R Viswa; Jagetia, Ganesh Chandra; Bhat, K Mahalinga

    2006-02-15

    The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Commercially available V79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 microg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration.

  8. Investigation of solar cells fabricated on low-cost silicon sheet materials using 1 MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Kachare, A. H.; Hyland, S. L.; Garlick, G. F. J.

    1981-01-01

    The use of high energy electron irradiation is investigated as a controlled means to study in more detail the junction depletion layer processes of solar cells made on various low-cost silicon sheet materials. Results show that solar cells made on Czochralski grown silicon exhibit enhancement of spectral response in the shorter wavelength region when irradiated with high energy electrons. The base region damage can be reduced by subsequent annealing at 450 C which restores the degraded longer wavelength response, although the shorter wavelength enhancement persists. The second diode component of the cell dark forward bias current is also reduced by electron irradiation, while thermal annealing at 450 C without electron irradiation can also produce these same effects. Electron irradiation produces small changes in the shorter wavelength spectral responses and junction improvements in solar cells made on WEB, EFG, and HEM silicon. It is concluded that these beneficial effects on cell characteristics are due to the reduction of oxygen associated deep level recombination centers in the N(+) diffused layer and in the junction.

  9. Electronic properties of deep-level defects in proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1981-01-01

    Deep level transient spectroscopy and capacitance voltage techniques as well as analysis of the forward current voltage (I-V) characteristics and SEM-EIC data were carried out for proton irradiated GaAs solar cells over a wide range of proton energies and proton fluences. Defect and recombination parameters such as defect energy levels and density, carrier capture cross sections and lifetimes as well as diffusion lengths in the undoped n-GaAs LPE layers were determined. Good correlation between these defect parameters and solar cell performance parameters was obtained for GaAs solar cells irradiated by 200 and 290 KeV protons. It was found that 200 to 290 KeV protons will produce the most defects and damages to the GaAs solar cell structure used. The influence of the low temperature (200 to 400 C) periodic thermal annealing on the deep level defects and the performance of the 200 KeV proton irradiated cells is discussed.

  10. Preventive efficacy of hydroalcoholic extract of Cymbopogon citratus against radiation-induced DNA damage on V79 cells and free radical scavenging ability against radicals generated in vitro.

    PubMed

    Rao, B S S; Shanbhoge, R; Rao, B N; Adiga, S K; Upadhya, D; Aithal, B K; Kumar, M R S

    2009-04-01

    This study presents the findings of free radical scavenging and antigenotoxic effect of hydroalcoholic extract of Cymbopogon citratus (CCE). The CCE at a concentration of 60 microg/mL resulted in a significant scavenging ability of 2,2-diphenyl-2-picryl hydrazyl (DPPH; (85%), 2,2-azinobis (3-ethyl benzothiazoline-6-sulphonic acid) (ABTS; 77%), hydroxyl (70%), superoxide (76%), nitric oxide (78%) free radicals generated using in vitro and also a moderate anti-lipid peroxidative effect (57%). Further, the radiation-induced antigenotoxic potential of CCE was assessed in Chinese hamster lung fibroblast cells (V79) using micronucleus assay. The CCE resulted in a dose-dependent decrease in the yield of radiation-induced micronuclei, with a maximum effect at 125 microg/mL CCE for 1 h before 2 Gy of radiation. Similarly, there was a significant (P < 0.05-0.0001) decrease in percentage of micronuclei when V79 cells were treated with optimal dose of CCE (125 microg/mL) before exposure to different doses of gamma radiation, that is, 0.5-4 Gy, compared with radiation alone groups. The results of the micronucleus study indicated antigenotoxic effect demonstrating the radioprotective potential of CCE and, which may partly due to its and antioxidant capacity as it presented its ability to scavenge various free radicals in vitro and anti-lipid peroxidative potential.

  11. Re-irradiation for head and neck squamous cell carcinoma.

    PubMed

    Benson, Rony; Giridhar, Prashant; Venkatesulu, Bhanu Prasad; Mallick, Supriya; Raza, Mohd Waseem; Rath, Goura Kishor

    2017-03-01

    Local recurrences after curative treatment have a potential for cure with salvage surgery or with re-irradiation. We reviewed the PubMed for articles published in English with key words squamous cell carcinoma, recurrent, re-irradiation, prognostic factors to find relevant articles describing prognostic factors, re-irradiation, and outcome for recurrent head and neck squamous cell carcinoma. Various factors including age, performance status, time for recurrence, previous radiation dose volume and site of recurrence, previous use of chemotherapy are all prognostic factors in recurrent head and neck squamous cell carcinoma. Surgery is feasible in very select subgroup of patients and must be done when feasible. Re-irradiation with the aid of modern sophisticated technology is safe and confers durable and clinically meaningful survival benefit. Re-irradiation in head and neck recurrent squamous cell carcinoma may provide an expected median survival of 10-12months. Chemotherapy may be added along with radiation in the recurrent setting. Treatment approaches may have to be personalized. Re surgery must be done in all patients in whom it is feasible. In patients in whom surgery is not feasible, re-irradiation must be evaluated as a therapeutic option especially in patients with limited volume recurrence. Copyright © 2016 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  12. Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions.

    PubMed

    Antonovic, L; Brahme, A; Furusawa, Y; Toma-Dasu, I

    2013-01-01

    Light-ion radiation therapy against hypoxic tumors is highly curative due to reduced dependence on the presence of oxygen in the tumor at elevated linear energy transfer (LET) towards the Bragg peak. Clinical ion beams using spread-out Bragg peak (SOBP) are characterized by a wide spectrum of LET values. Accurate treatment optimization requires a method that can account for influence of the variation in response for a broad range of tumor hypoxia, absorbed doses and LETs. This paper presents a parameterization of the Repairable Conditionally-Repairable (RCR) cell survival model that can describe the survival of oxic and hypoxic cells over a wide range of LET values, and investigates the relationship between hypoxic radiation resistance and LET. The biological response model was tested by fitting cell survival data under oxic and anoxic conditions for V79 cells irradiated with LETs within the range of 30-500 keV/µm. The model provides good agreement with experimental cell survival data for the range of LET investigated, confirming the robustness of the parameterization method. This new version of the RCR model is suitable for describing the biological response of mixed populations of oxic and hypoxic cells and at the same time taking into account the distribution of doses and LETs in the incident beam and its variation with depth in tissue. The model offers a versatile tool for the selection of LET and dose required in the optimization of the therapeutic effect, without severely affecting normal tissue in realistic tumors presenting highly heterogeneous oxic and hypoxic regions.

  13. Correlation of electron and proton irradiation-induced damage in InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.

    1996-01-01

    The measured degradation of epitaxial shallow homojunction n(+)/p InP solar cells under 1 MeV electron irradiation is correlated with that measured under 3 MeV proton irradiation based on 'displacement damage dose'. The measured data is analyzed as a function of displacement damage dose from which an electron to proton dose equivalency ratio is determined which enables the electron and proton degradation data to be described by a single degradation curve. It is discussed how this single curve can be used to predict the cell degradation under irradiation by any particle energy. The degradation curve is used to compare the radiation response of InP and GaAs/Ge cells on an absolute damage energy scale. The comparison shows InP to be inherently more resistant to displacement damage deposition than the GaAs/Ge.

  14. Irradiation and measurements of fluorinated ethylene-propylene-A on silicon solar cells in vacuum

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Broder, J. D.

    1975-01-01

    Silicon monoxide (SiO) coated silicon solar cells covered with fluorinated ethylene-propylene-A (FEP-A) were irradiated by 1-MeV electrons in vacuum. The effect of irradiation on the light transmittance of FEP-A was checked by measuring the short-circuit current of the cells while in vacuum after each dose increment, immediately after the irradiation, and again after a minimum elapsed time of 16 hr. The results indicated no apparent loss in transmission due to irradiation of FEP-A and no delamination from the SiO surface while the cells were in vacuum, but embrittlement of FEP-A occurred at the accumulated dose.

  15. Annealing characteristics of irradiated hydrogenated amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Payson, J. S.; Abdulaziz, S.; Li, Y.; Woodyard, J. R.

    1991-01-01

    It was shown that 1 MeV proton irradiation with fluences of 1.25E14 and 1.25E15/sq cm reduces the normalized I(sub SC) of a-Si:H solar cell. Solar cells recently fabricated showed superior radiation tolerance compared with cells fabricated four years ago; the improvement is probably due to the fact that the new cells are thinner and fabricated from improved materials. Room temperature annealing was observed for the first time in both new and old cells. New cells anneal at a faster rate than old cells for the same fluence. From the annealing work it is apparent that there are at least two types of defects and/or annealing mechanisms. One cell had improved I-V characteristics following irradiation as compared to the virgin cell. The work shows that the photothermal deflection spectroscopy (PDS) and annealing measurements may be used to predict the qualitative behavior of a-Si:H solar cells. It was anticipated that the modeling work will quantitatively link thin film measurements with solar cell properties. Quantitative predictions of the operation of a-Si:H solar cells in a space environment will require a knowledge of the defect creation mechanisms, defect structures, role of defects on degradation, and defect passivation and annealing mechanisms. The engineering data and knowledge base for justifying space flight testing of a-Si:H alloy based solar cells is being developed.

  16. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was

  17. Effect of 30 MeV Li3+ ion and 8 MeV electron irradiation on N-channel MOSFETs

    NASA Astrophysics Data System (ADS)

    Prakash, A. P. G.; Ganesh, K. C. P.; Nagesha, Y. N.; Umakanth, D.; Arora, S. K.; Siddappa, K.

    The effect of 30 MeV Li3+ ion and 8 MeV electron irradiation on the threshold voltage (V-TH), the voltage shift due to interface trapped charge (DeltaV(Nit)), the voltage shift due to oxide trapped charge (DeltaV(Not)), the density of interface trapped charge (DeltaN(it)), the density of oxide trapped charge (DeltaN(ot) ) and the drain saturation current (I-D Sat) were studied as a function of fluence. Considerable increase in DeltaN(it) and DeltaN(ot) , and decrease in V-TH and I-D Sat were observed in both types of irradiation. The observed difference in the properties of Li3+ ion and electron irradiated MOSFETs are interpreted on the basis of energy loss process associated with the type of radiation. The study showed that the 30 MeV Li3+ ion irradiation produce more damage when compared to the 8 MeV electron irradiation because of the higher electronic energy loss value. High temperature annealing studies showed that trapped charge generated during ion and electron irradiation was annealed out at 500 degreesC.

  18. Effects of Nrf2 knockdown on the properties of irradiated cell conditioned medium from A549 human lung cancer cells.

    PubMed

    Yoshino, Hironori; Murakami, Kanna; Nawamaki, Mikoto; Kashiwakura, Ikuo

    2018-05-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in cellular defense against oxidative stress. Recent studies have demonstrated that Nrf2 is a useful target for cancer treatment, including radiation therapy. Ionizing radiation affects, not only the irradiated cells, but also the non-irradiated neighboring cells, and this effect is known as radiation-induced bystander effect. Upon exposure to radiation, the irradiated cells transmit signals to the non-irradiated cells via gap junctions or soluble factors. These signals in turn cause biological effects, such as a decrease in the clonogenic potential and cell death, in the non-irradiated neighboring cells. Nrf2 inhibition enhances cellular radiosensitivity. However, whether this modification of radiosensitivity by Nrf2 inhibition affects the radiation-induced bystander effects is unknown. In this study, we prepared an Nrf2 knockdown human lung cancer cell A549 and investigated whether the effects of irradiated cell conditioned medium (ICCM) on cell growth and cell death induction of non-irradiated cells vary depending on the Nrf2 knockdown. We found that Nrf2 knockdown resulted in a decrease in the cell growth and an increase in the radiosensitivity of A549 cells. When non-irradiated A549 cells were transfected with control siRNA and treated with ICCM, no significant difference was observed in the cell growth and proportion of Annexin V + dead cells between ICCM from non-irradiated cells and that from 2 or 8 Gy-irradiated cells. Similarly, no significant difference was observed in the cell growth and cell death induction upon treatment with ICCM in the Nrf2 knockdown A549 cells. Taken together, these results suggest that Nrf2 knockdown decreases cell growth and enhances the radiosensitivity of A549 cells; however, it does not alter the effect of ICCM on cell growth.

  19. Effect of electron irradiation in vacuum on FEP-A silicon solar cell covers

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Broder, J. D.

    1975-01-01

    Fluorinated ethylene-propylene-A (FEP-A) covers on silicon solar cells were irradiated with 1-MeV electrons, in vacuum, to an accumulated fluence equivalent to approximately 28 years in synchronous orbit. The effect of irradiation on the light transmittance of FEP-A was checked by measuring the short-circuit current of the cells after each dose increment. The results indicate no apparent overall loss in transmission due to irradiation of FEP-A. Filter wheel measurements revealed some darkening of the FEP-A at the blue end of the spectrum. Although no delamination from the cell surface was observed while in vacuum, embrittlement of FEP-A occurred at the accumulated dose.

  20. 95 MeV oxygen ion irradiation effects on N-channel MOSFETs

    NASA Astrophysics Data System (ADS)

    Prakash, A. P. G.; Ke, S. C.; Siddappa, K.

    2003-09-01

    The N-channel metal oxide semiconductor field effect transistors (MOSFETs) were exposed to 95 MeV oxygen ions, in the fluence range of 5 x 10(10) to 5 x 10(13) ions/cm(2). The influence of ion irradiation on threshold voltage (V-TH), linear drain current (I-DLin), leakage current (I-L), drain conductance (g(D)), transconductance (g(m)), mobility (mu) and drain saturation current (I-DSat) of MOSFETs was studied systematically for various fluence. The V-TH of the irradiated MOSFET was found to decrease significantly after irradiation. The interface (N-it) and oxide trapped charge (N-ot) were estimated from the subthreshold measurements and were found to increase after irradiation. The densities of oxide-trapped (DeltaN(it)) charge in irradiated MOSFETs were found to he higher than those of the interface trapped charge (DeltaN(ot)). The I-DLin and I-Dsat of MOSFETs were also found to decrease significantly after irradiation. Studies on effects of 95 MeV oxygen ion irradiation on g(m), g(D) and mu show a degradation varying front 70 to 75% after irradiation. The mobility degradation coefficients for N-it(alpha(it)) and N-ot(alpha(it)) were estimated. The results of these studies are presented and discussed.

  1. Cell cycle tracking for irradiated and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam.

    PubMed

    Kaminaga, Kiichi; Noguchi, Miho; Narita, Ayumi; Hattori, Yuya; Usami, Noriko; Yokoya, Akinari

    2016-11-01

    To establish a new experimental technique to explore the photoelectric and subsequent Auger effects on the cell cycles of soft X-ray microbeam-irradiated cells and unirradiated bystander cells in a single colony. Several cells located in the center of a microcolony of HeLa-Fucci cells consisting of 20-80 cells were irradiated with soft X-ray (5.35 keV) microbeam using synchrotron radiation as a light source. All cells in the colony were tracked for 72 h by time-lapse microscopy imaging. Cell cycle progression, division, and death of each cell in the movies obtained were analyzed by pedigree assay. The number of cell divisions in the microcolony was also determined. The fates of these cells were clarified by tracking both irradiated and unirradiated bystander cells. Irradiated cells showed significant cell cycle retardation, explosive cell death, or cell fusion after a few divisions. These serious effects were also observed in 15 and 26% of the bystander cells for 10 and 20 Gy irradiation, respectively, and frequently appeared in at least two daughter or granddaughter cells from a single-parent cell. We successfully tracked the fates of microbeam-irradiated cells and unirradiated bystander cells with live cell recordings, which have revealed the dynamics of soft X-ray irradiated and unirradiated bystander cells for the first time. Notably, cell deaths or cell cycle arrests frequently arose in closely related cells. These details would not have been revealed by a conventional immunostaining imaging method. Our approach promises to reveal the dynamic cellular effects of soft X-ray microbeam irradiation and subsequent Auger processes from various endpoints in future studies.

  2. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  3. In vitro analysis of low-level laser irradiation on human osteoblast-like cells proliferation

    NASA Astrophysics Data System (ADS)

    Bloise, Nora; Saino, Enrica; Bragheri, Francesca; Minzioni, Paolo; Cristiani, Ilaria; Imbriani, Marcello; Visai, Livia

    2011-07-01

    The objective of this study was to examine the in vitro effect of a single or a multiple doses of low-level laser irradiation (LLLI) on proliferation of the human osteosarcoma cell line, SAOS-2. SAOS-2 cells were divided in five groups and exposed to LLLI (659 nm diode laser; 11 mW power output): group I as a control (dark), group II exposed to a single laser dose of 1 J/cm2, group III irradiated with a single dose of 3 J/cm2, and group IV and V exposed for three consecutive days to 1 or 3 J/cm², respectively. Cellular proliferation was assessed daily up to 7 days of culturing. The obtained results showed an increase in proliferative capacity of SAOS-2 cells during the first 96 h of culturing time in once-irradiated cells, as compared to control cells. Furthermore, a significantly higher proliferation in the group IV and V was detected if compared to a single dose or to control group after 96 h and 7 days. In conclusion, the effect of the single dose on cell proliferation was transitory and repeated irradiations were necessary to observe a strong enhancement of SAOS-2 growth. As a future perspective, we would like to determine the potential of LLLI as a new approach for promoting bone regeneration onto biomaterials.

  4. Induction of micronuclei and apoptosis in natural killer cells compared to T lymphocytes after gamma-irradiation.

    PubMed

    Louagie, H; Philippé, J; Vral, A; Cornelissen, M; Thierens, H; De Ridder, L

    1998-02-01

    To investigate the chromosomal damage caused by gamma-irradiation in T lymphocytes and natural killer (NK) cells and compare this with apoptosis induction in both lymphocyte subsets. Apoptosis induction by gamma-irradiation in T lymphocytes and NK cells was quantified using the annexin V flow cytometric assay. The cytokinesis-block micronucleus (MN) assay was used to evaluate the induced cytogenetic damage. For the MN assays on NK cells, gamma-irradiated peripheral blood mononuclear cells were cultured and stimulated with interleukin 15 (IL-15). Afterwards the NK cells (characterized by the CD3-/CD56+ phenotype) were separated with the FACSort flow cytometer and the number of MN in the sorted binuclear cells was scored. Doses of 1 and 2 Gy gamma-irradiation were applied. Higher numbers of MN in NK cells were found compared with the MN yield in T lymphocytes. In contrast, NK cells were less than T lymphocytes prone to apoptosis after gamma-irradiation. The results support the view that cytogenetic damage and apoptosis after gamma-irradiation are not necessarily correlated.

  5. CD79B limits response of diffuse large B cell lymphoma to ibrutinib.

    PubMed

    Kim, Joo Hyun; Kim, Won Seog; Ryu, Kyungju; Kim, Seok Jin; Park, Chaehwa

    2016-01-01

    Blockage of B cell receptor signaling with ibrutinib presents a promising clinical approach for treatment of B-cell malignancies. However, many patients show primary resistance to the drug or develop secondary resistance. In the current study, cDNA microarray and Western blot analyses revealed CD79B upregulation in the activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) that display differential resistance to ibrutinib. CD79B overexpression was sufficient to induce resistance to ibrutinib and enhanced AKT and MAPK activation, indicative of an alternative mechanism underlying resistance. Conversely, depletion of CD79B sensitized primary refractory cells to ibrutinib and led to reduced phosphorylation of AKT or MAPK. Combination of the AKT inhibitor or the MAPK inhibitor with ibrutinib resulted in circumvention of both primary and acquired resistance in ABC-DLBCL. Our data collectively indicate that CD79B overexpression leading to activation of AKT/MAPK is a potential mechanism underlying primary ibrutinib resistance in ABC-DLBCL, and support its utility as an effective biomarker to predict therapeutic response to ibrutinib.

  6. Annealing results on low-energy proton-irradiated GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Kachare, R.; Anspaugh, B. E.; O'Meara, L.

    1988-01-01

    AlGaAs/GaAs solar cells with an approximately 0.5-micron-thick Al(0.85)Ga(0.15)As window layer were irradiated using normal and isotropic incident protons having energies between 50 and 500 keV with fluence up to 1 x 10 to the 12th protons/sq cm. The irradiated cells were annealed at temperatures between 150 and 300 C in nitrogen ambient. The annealing results reveal that significant recovery in spectral response at longer wavelengths occurred. However, the short-wavelength spectral response showed negligible annealing, irrespective of the irradiation energy and annealing conditions. This indicates that the damage produced near the AlGaAs/GaAs interface and the space-charge region anneals differently than damage produced in the bulk. This is explained by using a model in which the as-grown dislocations interact with irradiation-induced point defects to produce thermally stable defects.

  7. Kinetics of depopulation, repopulation and host cell infiltration in the rhabdomyosarcoma R1H after 14 MeV neutron irradiation.

    PubMed

    Brammer, I; Zywietz, F; Beck-Bornholdt, H P; Jung, H

    1992-05-01

    The kinetics of depopulation and repopulation of the solid transplantable rhabdomyosarcoma R1H in the rat was studied following irradiation with 5 Gy of 14 MeV neutrons. Several parameters were sequentially measured over a time period of 4 weeks after irradiation: the tumour volume was assessed by in situ caliper measurements; the numerical density of tumour cells was obtained by morphometry; the clonogenic fraction of tumour cells was derived from in vitro colony assay; and the numerical ratio of host to tumour cells was determined by flow cytometry. From these primary parameters the number of clonogenic tumour cells, non-clonogenic tumour cells, and nucleated host cells per tumour, as well as their variation with time, were derived. The results were compared with two sets of data obtained previously for the same tumour exposed to 15 Gy of 200 kVp X-rays. Survival of tumour cells was reduced to 5.5 +/- 0.5% by 5 Gy neutrons and to 4.5 +/- 0.5% by 15 Gy X-rays, i.e. an RBE of close to 3. There was a lag period before the onset of repopulation (4.9 +/- 0.4 days and 4.9 +/- 0.5 days, respectively), followed by a high initial rate of repopulation corresponding to a doubling time of 2.0 +/- 0.2 days for neutrons and 2.1 +/- 0.2 days for X-rays. The rate of depopulation was significantly different for the two treatment modalities; the halving time for the number of non-clonogenic tumour cells was 11 +/- 4 days for neutrons and 2.8 +/- 0.5 days for X-rays.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling

    PubMed Central

    Cao, Guo-fan; Cao, Cong; Jiang, Qin

    2016-01-01

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis. PMID:27517753

  9. Performance, Defect Behavior and Carrier Enhancement in Low Energy, Proton Irradiated p(+)nn(+) InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    InP p(+)nn(+) cells, processed by MOCVD, were irradiated by 0.2 MeV protons and their performance and defect behavior observed to a maximum fluence of 10(exp 13)/sq cm. Their radiation induced degradation, over this fluence range, was considerably+less than observed for similarly irradiated, diffused junction n p InP cells. Significant degradation occurred in both the cell's emitter and base regions the least degradation occurring in the depletion region. A significant increase in series resistance occurs at the highest fluenc.e. Two majority carrier defect levels, E7 and E10, are observed by DLTS with activation energies at (E(sub C) - 0.39)eV and (E(sub C) - 0.74)eV respectively. The relative concentration of these defects differs considerably from that observed after 1 MeV electron irradiation. An increased carrier concentration in the cell's n-region was observed at the highest proton fluence, the change in carrier concentration being insignificant at the lower fluences. In agreement with previous results, for 1 and 1.5 MeV electron irradiated InP p(+)n junctions, the defect level E10 is attributed to a complex between zinc, diffused into the n-region from the zinc doped emitter, and a radiation induced defect. The latter is assumed to be either a phosphorus vacancy or interstitial. The increased, or enhanced carrier concentration is attributed to this complex acting as a donor.

  10. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  11. Evaluation of the genotoxic and antigenotoxic potential of Baccharis dracunculifolia extract on V79 cells by the comet assay.

    PubMed

    Munari, Carla Carolina; Alves, Jacqueline Morais; Bastos, Jairo Kenupp; Tavares, Denise Crispim

    2010-01-01

    Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, is a shrub of the Brazilian 'cerrado'. In folk medicine it is used as an anti-inflammatory agent, mainly for the treatment of gastrointestinal diseases. The aim of the present study was to evaluate the genotoxic and antigenotoxic effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) on Chinese hamster lung fibroblasts (V79 cells) by the comet assay. Methyl methanesulfonate (MMS; 200 microM) was used as an inducer of DNA damage. Genotoxicity was evaluated using four different concentrations of Bd-EAE: 12.5, 25.0, 50.0 and 100.0 microg ml(-1). Antigenotoxicity was assessed before, simultaneously, and after treatment with the mutagen. The results showed a significant increase in the frequency of DNA damage in cultures treated with 50.0 and 100.0 microg ml(-1) Bd-EAE. Regarding its antigenotoxic potential, Bd-EAE reduced the frequency of DNA damage induced by MMS. However, this chemopreventive activity depended on the concentrations and treatment regimens used. The antioxidant activity of phenolic components present in Bd-EAE may contribute to reduce the alkylation damage induced by MMS. In conclusion, our findings confirmed the chemopreventive activity of Bd-EAE and showed that this effect occurs under different mechanism.

  12. Mutation of Chinese Hamster V79 cells and transformation and mutation of mouse fibroblast C3H/10T1/2 clone 8 cells by aflatoxin B1 and four other furocoumarins isolated from two Nigerian medicinal plants.

    PubMed

    Uwaifo, A O; Billings, P C; Heidelberger, C

    1983-03-01

    Mutation by aflatoxin B1 (AFB1), imperatorin, marmesin, chalepin, and 8-methoxypsoralen (MOP), with and without black light (BL; long-wavelength ultraviolet light) activation, was determined at the hypoxanthine-guanine phosphoribosyltransferase locus (8-azaguanine resistance) in Chinese hamster V79 cells and at the ouabain locus in mouse C3H/1OT1/2 cells. Transformation by these furocoumarins under the same activation conditions was also investigated in C3H/1OT1/2 cells. In V79 cells, AFB1 induced a 4-fold maximum mutation frequency over controls under BL activation at a concentration of 5 micrograms/ml; marmesin induced a 2-fold increased mutation frequency at 1.5 micrograms/ml; MOP induced a 19-fold increase at 10 micrograms/ml; chalepin induced a 3-fold increase at 5 micrograms/ml; and imperatorin induced a 20-fold increase at 10 micrograms/ml. Essentially no mutation was observed at the ouabain-resistant (Ouar) locus in C3H/1OT1/2 cells with any of these compounds. In the transformation assays, type II and type III foci were observed at a 1-microgram/ml addition of AFB1 with or without BL activation; while with MOP and imperatorin, these types of foci were observed only with BL activation. Marmesin, although relatively more cytotoxic than the other furocoumarins studied, with a 50% lethal dose of less than 0.5 micrograms/ml, was not as mutagenic or potentially carcinogenic as were AFB1, imperatorin, or MOP with BL activation. These furocoumarins are considered to be involved in the etiology of the high incidence of skin cancer in Nigeria. Our experiments reinforce that concept and suggest that exposure to these furocoumarins may constitute a real carcinogenic hazard.

  13. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  14. Silicon solar cell characterization at low temperatures and low illumination as a function of particulate irradiation

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Little, S. A.; Peacock, C. L., Jr.

    1983-01-01

    Various configurations of back surface reflector silicon solar cells including small (2 x 2) cm and large (approx. 6 x 6) cm cells with conventional and wraparound contacts were subjected to 1 MeV electron irradiation and characterized under both Earth orbital and deep space conditions of temperatures and illuminations. Current-Voltage (I-V) data were generated from +65 C to -150 C and at incident illuminations from 135.3 mW/sq cm to 5.4 mW/sq cm for these cells. Degradation in cell performance which is manifested only under deep space conditions is emphasized. In addition, the effect of particle irradiation on the high temperature and high intensity and low temperature and low intensity performance of the cells is described. The cells with wraparound contacts were found to have lower efficiencies at Earth orbital conditions than the cells with conventional contacts.

  15. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  16. Effect of γ-irradiation on structure and nutraceutical potential of β-D-glucan from barley (Hordeum vulgare).

    PubMed

    Shah, Asima; Ahmad, Mudasir; Ashwar, Bilal Ahmad; Gani, Adil; Masoodi, Farooq Ahmad; Wani, Idrees Ahmed; Wani, Sajad Mohd; Gani, Asir

    2015-01-01

    This paper reports the characterization and potential antioxidant activity of β-D-glucan isolated from barley treated with γ-rays. The β-D-glucan was irradiated with 0, 2, 4 and 8 kGy by gamma ray. The samples were characterized by Fourier transform-infrared spectroscopy, gel permeation chromatography (GPC) and quantitative estimation by Megazyme β-D-glucan assay kit. The average molecular weight of non-irradiated β-D-glucan was 177 kDa that decreased to 79 kDa at 8 kGy. Antioxidant activity was evaluated by five complementary assays including DPPH, lipid peroxidation, reducing power, metal chelating ability and oxidative DNA damage assays. Further, the antiproliferative potential of irradiated β-D-glucan was tested against three human cancer cell lines including Colo-205, T47D and MCF7 using MTT assay. Irradiated β-D-glucan exhibited dose dependent cancer cell growth inhibition. In conclusion, the present study demonstrates that irradiation leads to the formation of low molecular weight β-D-glucan with enhanced antioxidant and antiproliferative activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    NASA Technical Reports Server (NTRS)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  18. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  19. Action of caffeine on x-irradiated HeLa cells. V. Identity of the sector of cells that expresses potentially lethal damage in G/sub 1/ and G/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetham, K.L.; Tolmach, L.J.

    1982-07-01

    When HeLa S3 cells are irradiated in early G/sub 1/ with 4 Gy of 220-kV x rays and are then incubated in growth medium containing up to 5 mM caffeine, survival is reduced (as reported previously), reaching a concentration-dependent plateau. Cell killing presumably occurs as a result of the fixation of a portion of the potentially lethal damage the cells contain. These cells respond to continued treatment with caffeine at concentrations greater than 2 mM during S, but less so than during G/sub 1/. When they reach G/sub 2/ arrest, however, extensive cell killing again occurs (reported previously), presumably alsomore » the result of potentially lethal damage fixation. G/sub 1/-irradiated cultures that are treated with caffeine either continuously at a concentration in the range 1 to 5 mM, or at 10 mM for 8 hr and subsequently with the low concentration, achieve the same survival level in G/sub 2/, provided that the potentially lethal damage is not repaired during G/sub 1/ and S. Repair seems to be completely inhibited in the presence of 3 to 4 mM caffeine. The results indicate that fixation of potentially lethal damage occurs in the same sector of cells in G/sub 1/ and G/sub 2/, suggesting that the same cellular lesion gives rise to cell killing in the two phases.« less

  20. Cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with accelerated 56Fe ions

    NASA Technical Reports Server (NTRS)

    Suzuki, M.; Piao, C.; Hall, E. J.; Hei, T. K.

    2001-01-01

    We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.

  1. Radiation damage and defect behavior in proton irradiated lithium-counterdoped n+p silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving

    1987-01-01

    Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.

  2. 14 MeV Neutron Irradiation Effect on Superconducting Magnet Materials for Fusion Device

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Hishinuma, Y.; Seo, K.; Tanaka, T.; Muroga, T.; Nishijima, S.; Katagiri, K.; Takeuchi, T.; Shindo, Y.; Ochiai, K.; Nishitani, T.; Okuno, K.

    2006-03-01

    As a large-scale plasma experimental device is planned and designed, the importance of investigations on irradiation effect of 14 MeV neutron increases and an experimental database is desired to be piled up. Recently, intense streaming of fast neutron from ports are reported and degradation of superconducting magnet performance is anticipated. To investigate the pure neutron effect on superconducting magnet materials, a cryogenic target system was newly developed and installed at Fusion Neutronics Source in Japan Atomic Energy Research Institute. Although production rate of 14 MeV neutron is not large, only 14 MeV neutron can be supplied to irradiation test without gamma ray. Copper wires, superconducting wires, glass fiber reinforced composites are irradiated and the irradiation effects are characterized. At the same time, sensors for measuring temperature and magnetic field are irradiated and their performance was investigated after irradiation. This paper presents outline of the cryogenic target system and some irradiation test results.

  3. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line.

    PubMed

    Nair, Rohini M; Balla, Murali Ms; Khan, Imran; Kalathur, Ravi Kiran Reddy; Kondaiah, Paturu; Vemuganti, Geeta K

    2017-11-21

    Retinoblastoma (Rb), the most common childhood intraocular malignant tumor, is reported to have cancer stem cells (CSCs) similar to other tumors. Our previous investigation in primary tumors identified the small sized cells with low CD133 (Prominin-1) and high CD44 (Hyaluronic acid receptor) expression to be putative Rb CSCs using flow cytometry (FSC lo /SSC lo /CD133 lo /CD44 hi ). With this preliminary data, we have now utilized a comprehensive approach of in vitro characterization of Y79 Rb cell line following CSC enrichment using CD133 surface marker and subsequent validation to confirm the functional properties of CSCs. The cultured Rb Y79 cells were evaluated for surface markers by flow cytometry and CD133 sorted cells (CD133 lo /CD133 hi ) were compared for CSC characteristics by size/percentage, cell cycle assay, colony formation assay, differentiation, Matrigel transwell invasion assay, cytotoxicity assay, gene expression using microarray and validation by semi-quantitative PCR. Rb Y79 cell line shared the profile (CD133, CD90, CXCR4 and ABCB1) of primary tumors except for CD44 expression. The CD133 lo cells (16.1 ± 0.2%) were FSC lo /SSC lo , predominantly within the G0/G1 phase, formed larger and higher number of colonies with ability to differentiate to CD133 hi cells, exhibited increased invasive potential in a matrigel transwell assay (p < 0.05) and were resistant to Carboplatin treatment (p < 0.001) as compared to CD133 hi cells. The CD133 lo cells showed higher expression of several embryonic stem cell genes (HOXB2, HOXA9, SALL1, NANOG, OCT4, LEFTY), stem cells/progenitor genes (MSI2, BMI1, PROX1, ABCB1, ABCB5, ABCG2), and metastasis related gene- MACC1, when compared to the CD133 hi cells. This study validates the observation from our earlier primary tumor study that CSC properties in Rb Y79 cell line are endowed within the CD133 lo population, evident by their characteristics- i.e. small sized, dormant in nature, increased colony forming

  4. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  5. Biological X-ray irradiator characterization for use with small animals and cells.

    PubMed

    Bruno, A Colello; Mazaro, S J; Amaral, L L; Rego, E M; Oliveira, H F; Pavoni, J F

    2017-03-02

    This study presents the characterization of an X-ray irradiator through dosimetric tests, which confirms the actual dose rate that small animals and cells will be exposed to during radiobiological experiments. We evaluated the linearity, consistency, repeatability, and dose distribution in the positions in which the animals or cells are placed during irradiation. In addition, we evaluated the performance of the X-ray tube (voltage and tube operating current), the radiometric survey (leakage radiation) and safety devices. The irradiator default setting was established as 160 kV and 25 mA. Tests showed that the dose rate was linear overtime (R2=1) and remained stable for long (constant) and short (repeatability) intervals between readings. The mean dose rate inside the animal cages was 1.27±0.06 Gy/min with a uniform beam of 95.40% (above the minimum threshold guaranteed by the manufacturer). The mean dose rate inside the cell plates was 0.92±0.19 Gy/min. The dose rate dependence with tube voltage and current presented a quadratic and linear relationship, respectively. There was no observed mechanical failure during evaluation of the irradiator safety devices and the radiometric survey obtained a maximum ambient equivalent dose rate of 0.26 mSv/h, which exempts it from the radiological protection requirements of the International Atomic Energy Agency. The irradiator characterization enables us to perform radiobiological experiments, and assists or even replaces traditional therapy equipment (e.g., linear accelerators) for cells and small animal irradiation, especially in early research stages.

  6. Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation

    PubMed Central

    Ristić-Fira, Aleksandra M; Korićanac, Lela B; Žakula, Jelena J; Valastro, Lucia M; Iannolo, Gioacchin; Privitera, Giuseppe; Cuttone, Giacomo; Petrović, Ivan M

    2009-01-01

    Background Considering that HTB140 melanoma cells have shown a poor response to either protons or alkylating agents, the effects of a combined use of these agents have been analysed. Methods Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg peak (SOBP). Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy. Four days after irradiation cells were treated with fotemustine (FM) or dacarbazine (DTIC). Drug concentrations were 100 and 250 μM, values close to those that produce 50% of growth inhibition. Cell viability, proliferation, survival and cell cycle distribution were assessed 7 days after irradiation that corresponds to more than six doubling times of HTB140 cells. In this way incubation periods providing the best single effects of drugs (3 days) and protons (7 days) coincided at the same time. Results Single proton irradiations have reduced the number of cells to ~50%. FM caused stronger cell inactivation due to its high toxicity, while the effectiveness of DTIC, that was important at short term, almost vanished with the incubation of 7 days. Cellular mechanisms triggered by proton irradiation differently influenced the final effects of combined treatments. Combination of protons and FM did not improve cell inactivation level achieved by single treatments. A low efficiency of the single DTIC treatment was overcome when DTIC was introduced following proton irradiation, giving better inhibitory effects with respect to the single treatments. Most of the analysed cells were in G1/S phase, viable, active and able to replicate DNA. Conclusion The obtained results are the consequence of a high resistance of HTB140 melanoma cells to protons and/or drugs. The inactivation level of the HTB140 human melanoma cells after protons, FM or DTIC treatments was not enhanced by their combined application. PMID:19358719

  7. Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation.

    PubMed

    Ristić-Fira, Aleksandra M; Korićanac, Lela B; Zakula, Jelena J; Valastro, Lucia M; Iannolo, Gioacchin; Privitera, Giuseppe; Cuttone, Giacomo; Petrović, Ivan M

    2009-04-09

    Considering that HTB140 melanoma cells have shown a poor response to either protons or alkylating agents, the effects of a combined use of these agents have been analysed. Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg peak (SOBP). Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy. Four days after irradiation cells were treated with fotemustine (FM) or dacarbazine (DTIC). Drug concentrations were 100 and 250 microM, values close to those that produce 50% of growth inhibition. Cell viability, proliferation, survival and cell cycle distribution were assessed 7 days after irradiation that corresponds to more than six doubling times of HTB140 cells. In this way incubation periods providing the best single effects of drugs (3 days) and protons (7 days) coincided at the same time. Single proton irradiations have reduced the number of cells to approximately 50%. FM caused stronger cell inactivation due to its high toxicity, while the effectiveness of DTIC, that was important at short term, almost vanished with the incubation of 7 days. Cellular mechanisms triggered by proton irradiation differently influenced the final effects of combined treatments. Combination of protons and FM did not improve cell inactivation level achieved by single treatments. A low efficiency of the single DTIC treatment was overcome when DTIC was introduced following proton irradiation, giving better inhibitory effects with respect to the single treatments. Most of the analysed cells were in G1/S phase, viable, active and able to replicate DNA. The obtained results are the consequence of a high resistance of HTB140 melanoma cells to protons and/or drugs. The inactivation level of the HTB140 human melanoma cells after protons, FM or DTIC treatments was not enhanced by their combined application.

  8. Development of a MeV proton beam irradiation system.

    PubMed

    Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok

    2008-02-01

    A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.

  9. Effects of electron irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nicoletta, C. A.

    1973-01-01

    One OHM-cm and 10 OHM-cm silicon solar cells were exposed to 1.0 MeV electrons at a fixed flux of 10 to the 11th power e/sq cm/sec and fluences of 10 to the 13th power, 10 to the 14th power and 10 to the 15th power e/sq.cm. 1-V curves of the cells were made at room temperature, - 63 C and + or - 143 C after each irradiation. A value of 139.5 mw/sq cm was used as AMO incident energy rate per unit area. The 10 OHM-cm cells appear more efficient than 1 OHM-cm cells after exposure to a fluence greater than 10 to the 14th power e/sq cm. The 1.0 MeV electron damage coefficients for both 1 OHM-cm and 10 OHM-cm cells are somewhat less than those for previously irradiated cells at room temperature. The values of the damage coefficients increase as the cell temperatures decrease. Efficiencies pertaining to maximum power output are about the same as those of n on p silicon cells evaluated previously.

  10. Blister formation at subcritical doses in tungsten irradiated by MeV protons

    NASA Astrophysics Data System (ADS)

    Gavish Segev, I.; Yahel, E.; Silverman, I.; Makov, G.

    2017-12-01

    The material response of tungsten to irradiation by MeV protons has been studied experimentally, in particular with respect to bubble and blister formation. Tungsten samples were irradiated by 2.2 MeV protons at the Soreq Applied Research Accelerator Facility (SARAF) to doses of the order of 1017 protons/cm2 which are below the reported critical threshold for blister formation derived from keV range irradiation studies. Large, well-developed blisters are observed indicating that for MeV range protons the critical threshold is at least an order of magnitude lower than the lowest value reported previously. The effects of fluence, flux, and corresponding temperature on the distribution and characteristics of the obtained blisters were studied. FIB cross sections of several blisters exposed their depth and structure.

  11. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  12. SPICE-NIRS Microbeam: a focused vertical system for proton irradiation of a single cell for radiobiological research

    PubMed Central

    Konishi, Teruaki; Oikawa, Masakazu; Suya, Noriyoshi; Ishikawa, Takahiro; Maeda, Takeshi; Kobayashi, Alisa; Shiomi, Naoko; Kodama, Kumiko; Hamano, Tsuyoshi; Homma-Takeda, Shino; Isono, Mayu; Hieda, Kotaro; Uchihori, Yukio; Shirakawa, Yoshiyuki

    2013-01-01

    The Single Particle Irradiation system to Cell (SPICE) facility at the National Institute of Radiological Sciences (NIRS) is a focused vertical microbeam system designed to irradiate the nuclei of adhesive mammalian cells with a defined number of 3.4 MeV protons. The approximately 2-μm diameter proton beam is focused with a magnetic quadrupole triplet lens and traverses the cells contained in dishes from bottom to top. All procedures for irradiation, such as cell image capturing, cell recognition and position calculation, are automated. The most distinctive characteristic of the system is its stability and high throughput; i.e. 3000 cells in a 5 mm × 5 mm area in a single dish can be routinely irradiated by the 2-μm beam within 15 min (the maximum irradiation speed is 400 cells/min). The number of protons can be set as low as one, at a precision measured by CR-39 detectors to be 99.0%. A variety of targeting modes such as fractional population targeting mode, multi-position targeting mode for nucleus irradiation and cytoplasm targeting mode are available. As an example of multi-position targeting irradiation of mammalian cells, five fluorescent spots in a cell nucleus were demonstrated using the γ-H2AX immune-staining technique. The SPICE performance modes described in this paper are in routine use. SPICE is a joint-use research facility of NIRS and its beam times are distributed for collaborative research. PMID:23287773

  13. Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice.

    PubMed

    Chang, Jianhui; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-12-01

    Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.

  14. Development of a facility for high-precision irradiation of cells with carbon ions.

    PubMed

    van Goethem, Marc-Jan; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A; Coppes, Robert P; van Luijk, Peter

    2011-01-01

    Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed +/-1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing the irradiation of cell

  15. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm / 10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements made during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 ×more » 10 13 cm -2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 10 13 cm -2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.« less

  16. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; Dowling, Karen M.; Wang, Yongqiang; Senesky, Debbie G.

    2017-12-01

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm/10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W, while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements performed during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 × 1013 cm-2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 1013 cm-2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.

  17. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    DOE PAGES

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; ...

    2017-12-11

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm / 10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements made during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 ×more » 10 13 cm -2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 10 13 cm -2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.« less

  18. Post-irradiation-examination of irradiated fuel outside the hot cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran

    Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

  19. Short circuit current changes in electron irradiated GaAlAs/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells with junction depths of 0.8, 1.5, and 4 microns were irradiated with 1 MeV electrons. The short-circuit current for the 4 micron junction depth cells is significantly reduced by the electron irradiation. Reduction of the junction depth to 1.5 microns improves the electron radiation resistance of the cells while further reduction of the junction depth to 0.8 microns improves the stability of the cells even more. Primary degradation is in the blue region of the spectrum. Considerable recovery of lost response is obtained by annealing the cells at 200 C. Computer modeling shows that the degradation is caused primarily by a reduction in the minority carrier diffusion length in the p-GaAs.

  20. Defect studies in one MeV electron irradiated GaAs and in Al/sub x Ga/sub l-x As P-N junction solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1984-01-01

    Deep level transient spectroscopy reveals that the main electron traps for one-MeV electron irradiated GaAs cells are E9c)-0.31, E(c)-0.90 eV, and the main hole trap is due to the level. Electron trap density was found to vary from 3/tens-trillion ccm for 2/one quadrillion cm 3/3.7 quadrillion cm for 21 sextillion cm electron fluence for electron fluence; a similar result was also obtained for the hole trap density. As for the grown-in defects in the Al(x)Ga(1-x)As p-n junciton cells, only two electron traps with energies of E(c)-0.20 and E(c)-0.34 eV were observed in samples with x = 0.17, and none was found for x 0.05. Auger analysis on the Al(x)Ga(1-x) As window layer of the GaAs solar cell showed a large amount of oxygen and carbon contaminants near the surface of the AlGaAs epilayer. Thermal annealing experiment performed at 250 C for up to 100 min. showed a reduction in the density of both electron traps.

  1. 5-Fluorouracil, colchicine, benzo[a]pyrene and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster V79 cells at Covance Laboratories, Harrogate, UK in support of OECD draft Test Guideline 487.

    PubMed

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster V79 cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In Vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Detection of a deuterium isotope effect in di- and trisubstituted alkylphenylnitrosoureas. An SCE study in Chinese hamster V79-E cells.

    PubMed

    Thust, R; Mendel, J; Bach, B; Schwarz, H

    1985-06-01

    The genotoxicity of 1-methyl-3-phenyl-1-nitrosourea (MPNU), 1-methyl-3-(p-chlorophenyl)-1-nitrosourea (C1-MPNU), 1-ethyl-3-phenyl-1-nitrosourea (EPNU), 1,3-dimethyl-3-phenyl-1-nitrosourea (DMPNU) and their derivatives substituted by deuterium in different positions was studied using sister chromatid exchange (SCE) induction in Chinese hamster V79-E cells. Deuterium substitution in the 1-methyl group of MPNU (MPNU-d3) and C1-MPNU (C1-MPNU-d3) diminished the SCE-inducing capacity by 20-30% and by 30-40% in DMPNU (DMPNU-d3B). There was no altered SCE activity detected when the phenyl group of MPNU (MPNU-d5) or the 3-methyl group of DMPNU (DMPNU-d3A) was deuterium labeled. No isotope effect was detected in deuterated EPNU derivatives, presumably due to the instability of these compounds. It is surmised that the easier delocalization of the positive charge in the deuterated alkyl diazonium ion causes a diminished reactivity and therefore influences the type and amount of DNA alkylation. Furthermore, the experiments with DMPNU and its derivatives revealed that, in contrast to mono- and disubstituted nitrosoureas, the biological activities of these very stable trisubstituted nitrosoureas are strongly influenced by a serum factor in the culture fluid.

  3. Survival of tumor cells after proton irradiation with ultra-high dose rates

    PubMed Central

    2011-01-01

    Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289

  4. The Effect of Solar Irradiated Vibrio cholerae on the Secretion of Pro-Inflammatory Cytokines and Chemokines by the JAWS II Dendritic Cell Line In Vitro

    PubMed Central

    Ssemakalu, Cornelius Cano; Ubomba-Jaswa, Eunice; Motaung, Keolebogile Shirley; Pillay, Michael

    2015-01-01

    The use of solar irradiation to sterilize water prior to its consumption has resulted in the reduction of water related illnesses in waterborne disease endemic communities worldwide. Currently, research on solar water disinfection (SODIS) has been directed towards understanding the underlying mechanisms through which solar irradiation inactivates the culturability of microorganisms in water, enhancement of the disinfection process, and the health impact of SODIS water consumption. However, the immunological consequences of SODIS water consumption have not been explored. In this study, we investigated the effect that solar irradiated V. cholerae may have had on the secretion of cytokines and chemokines by the JAWS II dendritic cell line in vitro. The JAWS II dendritic cell line was stimulated with the different strains of V. cholerae that had been: (i) prepared in PBS, (ii) inactivated through a combination of heat and chemical, (iii) solar irradiated, and (iv) non-solar irradiated, in bottled water. As controls, LPS (1 μg/ml) and CTB (1 μg/ml) were used as stimulants. After 48 hours of stimulation the tissue culture media from each treatment was qualitatively and quantitatively analysed for the presence of IL-1α, IL-1β, IL-6, IL-7, IL-10, IL-12p40, IL-12p70, IL-15, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α, IL-23 and IL-27. Results showed that solar irradiated cultures of V. cholerae induced dendritic cells to secrete significant (p<0.05) levels of pro-inflammatory cytokines in comparison to the unstimulated dendritic cells. Furthermore, the amount of pro-inflammatory cytokines secreted by the dendritic cells in response to solar irradiated cultures of V. cholerae was not as high as observed in treatments involving non-solar irradiated cultures of V. cholerae or LPS. Our results suggest that solar irradiated microorganisms are capable of inducing the secretion of pro-inflammatory cytokines and chemokines. This novel finding is key towards understanding the

  5. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1996-01-01

    Indium phosphide (InP) solar cells were made on silicon (Si) wafers (InP/Si) by to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. Spire has made N/P InP/Si cells of sizes up to 2 cm by 4 cm with beginning-of-life (BOL) AM0 efficiencies over 13% (one-sun, 28C). These InP/Si cells have higher absolute efficiency and power density after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells after a fluence of about 2e15 1 MeV electrons/sq. cm. In this work, we investigate the minority carrier (electron) base diffusion lengths in the N/P InP/Si cells. A quantum efficiency model was constructed for a 12% BOL AM0 N/P InP/Si cell which agreed well with the absolutely measured quantum efficiency and the sun-simulator measured AM0 photocurrent (30.1 mA/sq. cm). This model was then used to generate a table of AM0 photocurrents for a range of base diffusion lengths. AM0 photocurrents were then measured for irradiations up to 7.7e16 1 MeV electrons/sq. cm (the 12% BOL cell was 8% after the final irradiation). By comparing the measured photocurrents with the predicted photocurrents, base diffusion lengths were assigned at each fluence level. A damage coefficient K of 4e-8 and a starting (unirradiated) base electron diffusion length of 0.8 microns fits the data well. The quantum efficiency was measured again at the end of the experiment to verify that the photocurrent predicted by the model (25.5 mA/sq. cm) agreed with the simulator-measured photocurrent after irradiation (25.7 mA/sq. cm).

  6. Identification of a Secondary Promoter within the Human B Cell Receptor Component Gene hCD79b*

    PubMed Central

    Yoo, Eung Jae; Cooke, Nancy E.; Liebhaber, Stephen A.

    2013-01-01

    The human B cell-specific protein, CD79b (also known as Igβ and B29) constitutes an essential signal transduction component of the B cell receptor. Although its function is central to the triggering of B cell terminal differentiation in response to antigen stimulation, the transcriptional determinants that control CD79b gene expression remain poorly defined. In the present study, we explored these determinants using a series of hCD79b transgenic mouse models. Remarkably, we observed that the previously described hCD79b promoter along with its associated enhancer elements and first exon could be deleted without appreciable loss of hCD79b transcriptional activity or tissue specificity. In this deletion setting, a secondary promoter located within exon 2 maintained full levels and specificity of hCD79b transcription. Of note, this secondary promoter was also active, albeit at lower levels, in the wild-type hCD79b locus. The activity of the secondary promoter was dependent on the action(s) of a conserved sequence element mapping to a chromatin DNase I hypersensitive site located within intron 1. mRNA generated from this secondary promoter is predicted to encode an Igβ protein lacking a signal sequence and thus unable to serve normal B cell receptor function. Although the physiologic role of the hCD79b secondary promoter and its encoded protein remain unclear, the current data suggest that it has the capacity to play a role in normal as well as pathologic states in B cell proliferation and function. PMID:23649625

  7. Treatment of lupus nephritis with total lymphoid irradiation. Observations during a 12-79-month followup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strober, S.; Farinas, M.C.; Field, E.H.

    1988-07-01

    Seventeen patients with intractable lupus nephritis and nephrotic syndrome were treated with total lymphoid irradiation. Statistically significant improvement in mean renal disease and serologic activity parameters occurred within 3 months and persisted for at least 3 years. Although there was a marked reduction of T helper cell numbers and function after total lymphoid irradiation, recovery of these parameters was not associated with a return of disease activity. Risks of sterility, severe infections, and hematologic malignancy appeared to be lower than with alkylating agents.

  8. Electron Resonance Decay into a Biological Function: Decrease in Viability of E. coli Transformed by Plasmid DNA Irradiated with 0.5-18 eV Electrons.

    PubMed

    Kouass Sahbani, S; Cloutier, P; Bass, A D; Hunting, D J; Sanche, L

    2015-10-01

    Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.

  9. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, Peter W.; Hosper, Nynke A.; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This responsemore » was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.« less

  10. Recovery of shallow junction GaAs solar cells damaged by electron irradiation

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Solar cells operated in space are subject to degradation from electron and proton radiation damage. It has been found that for deep junction p-GaAlAs/p-GaAs solar cells some of the electron radiation damage is removed by annealing the cells at 200 C. The reported investigation shows that shallow junction p-GaAlAs/p-GaAs/n-GaAs heteroface solar cells irradiated with 1 MeV electrons show a more complete recovery of short-circuit current than do the deep junction cells. The heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells studied were fabricated using the etch-back epitaxy process.

  11. Viability of a human melanoma cell after single and combined treatment with fotemustine, dacarbazine, and proton irradiation.

    PubMed

    Petrović, Ivan M; Korićanac, Lela B; Todorović, Danijela V; Ristić-Fira, Aleksandra M; Valastro, Lucia M; Privitera, Giuseppe; Cuttone, Giacomo

    2007-01-01

    Viability of human HTB140 melanoma cells after being exposed to fotemustine (FM) and dacarbazine (DTIC) as well as to proton irradiation was studied. Effects of 100 and 250 microM drugs were assessed after incubation of 6, 24, 48, 72, and 96 h. Irradiations were performed with 62 MeV therapeutic protons, delivering to the cell monolayer single doses of 2, 4, 8, 12, and 16 Gy. Viability was evaluated 7 days after irradiation. Inactivation level was estimated using microtetrasolium (MTT) and sulforhodamine B (SRB) assays. Combined effects of each drug and protons, were carried out using the same drug concentrations. Proton doses applied were those used in therapy, that is, 12 and 16 Gy. With the increase of drug concentration or irradiation dose, level of cell inactivation reached approximately 60%, 48 h after drug treatment or 7 days after irradiation at 16 Gy. Considering the rate of drug concentrations used, as well as the level of doses applied, it appears that HTB140 cells are more resistant to proton irradiation than to alkylating agents tested. The combined treatment with FM or DTIC and protons did not show significant changes of cell viability as compared to the effects of single agents. Since the time point for measuring cumulative effects of drug and irradiation was 48 h post irradiation, it seems that the obtained level of viability could be attributed primarily to the effects of drugs.

  12. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    NASA Astrophysics Data System (ADS)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  13. Correlation of electron and proton irradiation-induced damage in InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.

  14. Photo-recovery of electron-irradiated GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Meulenberg, Andrew

    1995-01-01

    The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has produced some unexpected and important results. Two results, independent of the coverslide coatings, are of particular importance in terms of the predictability of GaAs solar-array lifetime in space: ( 1) The GaAs/Ge solar cells used for this series of tests displayed a much higher radiation degradation than that predicted based on JPL Solar Cell Radiation Handbook data. Covered cells degraded more in Isc than did bare cells. Short-term illumination at 60 C did not produce significant recovery (-1%) of the radiation damage. (2) However, electron radiation damage to these GaAs solar celIs anneals at 40 C when exposed to approximately 1 sun AM0 UV light sources for extended periods. The effect appears to be roughly linear with time (-1% of lsc per 1000 UVSH), is large (greater than or equal to 3%), and has not yet saturated (at 3000 hours). This photo-recovery of radiation damage to GaAs solar cells is a new effect and potentially important to the spacecraft community. The figure compares the effects of extended UV on irradiated and unirradiated GaAs solar cells with INTELSAT-6 Si cells. The effect and its generality, the extent of and conditions for photo-recovery, and the implications of such recovery for missions in radiation environments have not yet been determined.

  15. Cell micro-irradiation with MeV protons counted by an ultra-thin diamond membrane

    NASA Astrophysics Data System (ADS)

    Barberet, Philippe; Pomorski, Michal; Muggiolu, Giovanna; Torfeh, Eva; Claverie, Gérard; Huss, Cédric; Saada, Samuel; Devès, Guillaume; Simon, Marina; Seznec, Hervé

    2017-12-01

    We report the development of thin single crystal diamond membranes suitable for dose control in targeted cell irradiation experiments with a proton microbeam. A specific design was achieved to deliver single protons with a hit detection efficiency approaching 100%. The membranes have thicknesses between 1.8 and 3 μm and are used as vacuum windows on the microbeam line. The impact of these transmission detectors on the microbeam spot size is estimated by Monte-Carlo simulations, indicating that a beam lateral resolution below 2 μm is achieved. This is confirmed by experiments showing the accumulation online of X-ray Repair Cross-Complementing protein 1 (XRCC1)-Green Fluorescent Protein (GFP) at DNA damaged sites in living cells.

  16. Phase change in CoTi2 induced by MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Zensho, Akihiro; Sato, Kazuhisa; Yasuda, Hidehiro; Mori, Hirotaro

    2018-07-01

    The phase change induced by MeV electron irradiation in the intermetallic compound E93-CoTi2 was investigated using high-voltage electron microscopy. Under MeV electron irradiation, CoTi2 was first transformed into an amorphous phase and, with continued irradiation, crystallite formation in the amorphous phase (i.e. formation of crystallites of a solid-solution phase within the amorphous phase) was induced. The critical temperature for amorphisation was around 250 K. The total dose (dpa) required for crystallite formation (i.e. that required for partial crystallisation) was high (i.e. 27-80 dpa) and, even after prolonged irradiation, the amorphous phase was retained in the irradiated sample. Such partial crystallisation behaviour of amorphous Co33Ti67 was clearly different from the crystallisation behaviour (i.e. amorphous-to-solid solution, polymorphous transformation) of amorphous Cr67Ti33 reported in the literature. A possible cause of the difference is discussed.

  17. Alkylarylnitrosoureas--stability in aqueous solution, partition coefficient, alkylating activity and its relationship to SCE induction in Chinese hamster V 79-E cells.

    PubMed

    Mendel, J; Thust, R; Schwarz, H

    1982-01-01

    The alkylating activity, chemical stability in aqueous solution (pH 7.0; 37 degrees C), and partition coefficient (octanol/water) of the following compounds were determined: 1-methyl-3-phenyl-1-nitrosourea (MPNU), 1-ethyl-3-phenyl-1-nitrosourea (EPNU), 1-isopropyl-3-phenyl-1-nitrosourea (i-PrPNU), 1-methyl-3-(p-fluorophenyl)-1-nitrosourea (F-MPNU), 1-methyl-3-(p-chlorophenyl)-1-nitrosourea (Cl-MPNU), 1-methyl-3-(p-bromophenyl)-1-nitrosourea (Br-MPNU), 1,3-dimethyl-3-phenyl-1-nitrosourea (DMPNU), and 1-methyl-3-naphthyl-1-nitrosocarbamate (NCA). 1-Methyl-1-nitrosourea (MNU) and 1-ethyl-1-nitrosourea (ENU) were used for the comparison. THe rate of decomposition in aqueous solution is discussed concerning the influences of the substituents at the 1- and 3-N-atom. The mono- and disubstituted N-nitrosoureas showed a coarse correlation between alkylating activity and SCE induction in Chinese hamster V 79-E cells. On the other hand, this correlation is missing in the case of NCA, which is a potent SCE inducer despite relatively low alkylating activity. DMPNU is the strongest SCE inducer, but this compound shows a high stability in aqueous solution and, consequently, we were not able to detect an alkylating activity.

  18. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamlah, Florentine, E-mail: Kamlah@staff.uni-marburg.de; Haenze, Joerg; Arenz, Andrea

    2011-08-01

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug,more » allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells

  19. Cell cycle progression in irradiated endothelial cells cultured from bovine aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, D.B.; Drab, E.A.; Ward, W.F.

    1988-11-01

    Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and anmore » increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous (3H)thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro.« less

  20. Effect of 1 MeV electrons on ceria-doped solar cell cover glass

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.

    1973-01-01

    The effect of 1 MeV electrons on the transmission properties of 1.5-percent ceria-doped solar cell cover glass was studied. Samples of doped and undoped cover glass and synthetic fused silica were irradiated with a total integrated flux of 10 to the 15th power e/sq cm. Wideband transmission and spectral transmission measurements were made before and after irradiation. The results indicate that 1.5-percent ceria-doped cover glass is much less sensitive to radiation induced discoloration than undoped cover glass. Consequently, the glass is comparable to synthetic fused silica when used as a radiation resistant solar cell cover for many space missions.

  1. Freely-migrating-defect production during irradiation at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Rehn, L. E.; Okamoto, P. R.

    1988-12-01

    Radiation-induced segregation in a Cu-1 at. % Au alloy was investigated using in situ Rutherford backscattering spectrometry. The amount of Au atom depletion in the near surface region was measured as a function of dose during irradiation at 350 °C with four ions of substantially different masses. Relative efficiencies for producing freely migrating defects were evaluated for 1.8-MeV 1H, 4He, 20Ne, and 84Kr ions by determining beam current densities that gave similar radiation-induced segregation rates. Irradiations with primary knock-on atom median energies of 1.7, 13, and 79 keV yielded relative efficiencies of 53, 7, and 6 %, respectively, compared to the irradiation with a 0.83-keV median energy. Despite quite different defect and host alloy properties, the relative efficiencies for producing freely migrating defects determined in Cu-Au are remarkably similar to those found previously in Ni-Si alloys. Hence, the reported efficiencies appear to offer a reliable basis for making quantitative correlations of microstructural changes induced in different alloy systems by a wide variety of irradiation particles.

  2. Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth.

    PubMed

    Ginani, Fernanda; Soares, Diego Moura; de Oliveira Rocha, Hugo Alexandre; de Souza, Lélia Batista; Barboza, Carlos Augusto Galvão

    2018-01-01

    The aim of this study was to evaluate the effect of low-level laser irradiation (LLLI) on the proliferation and viability of stem cells from human exfoliated deciduous teeth (SHED). Cells were irradiated or not (control) with an InGaAlP laser diode (660 nm, 30 mW, continuous action mode) using two different energy densities (0.5 J/cm 2 -16 s; 1.0 J/cm 2 -33 s). Irradiation was performed at 0 and 48 h, with the laser probe fixed at a distance of 0.5 cm from the cells. Cell proliferation was analyzed at 0, 24, 48, and 72 h by the Trypan blue exclusion method and MTT assay. Cell cycle and Ki67 expression were analyzed by flow cytometry. Apoptosis-related events were evaluated by expression of annexin V/PI and nuclear morphological changes by staining with DAPI. Differences between groups at each time were analyzed by the Kruskal-Wallis and Mann-Whitney tests, adopting a level of significance of 5% (p < 0.05). The results showed that an energy density of 1.0 J/cm 2 promoted an increase in cell proliferation at 48 and 72 h compared to the control and 0.5 J/cm 2 groups. Cell cycle analysis revealed a predominance of cells in the S and G2/M phases in the irradiated groups. This finding was confirmed by the increased expression of Ki67. Low positive staining for annexin V and PI was observed in all groups, and no nuclear changes were detected, indicating that cell viability was not affected by the energy densities tested. It can be concluded that the LLLI parameters used (660 nm, 30 mW, 1.0 J/cm 2 ) promote the proliferation of SHEDs and the maintenance of cell viability.

  3. The study on the electrical resistivity of Cu/V multilayer films subjected to helium (He) ion irradiation

    NASA Astrophysics Data System (ADS)

    Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.

    2018-05-01

    Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.

  4. Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype.

    PubMed

    Jeon, Hee-Young; Kim, Jun-Kyum; Ham, Seok Won; Oh, Se-Yeong; Kim, Jaebong; Park, Jae-Bong; Lee, Jae-Yong; Kim, Sung-Chan; Kim, Hyunggee

    2016-05-01

    Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17-20 % of GBM cells dead, but resulted in 60-80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21(CIP1)-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.

  5. Bombyx mori nucleopolyhedrovirus ORF79 is a per os infectivity factor associated with the PIF complex.

    PubMed

    Dong, Zhan-Qi; Zhang, Jun; Chen, Xue-Mei; He, Qian; Cao, Ming-Ya; Wang, La; Li, Hai-Qing; Xiao, Wen-Fu; Pan, Cai-Xia; Lu, Cheng; Pan, Min-Hui

    2014-05-12

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF79 (Bm79) encodes an occlusion-derived virus (ODV)-specific envelope protein, which is a homologue of the per os infectivity factor 4 (PIF4) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To investigate the role of ORF79 in the BmNPV life cycle, a Bm79 knockout virus (vBm(Bm79KO)) was constructed through homologous recombination in Escherichia coli. Viral DNA replication, budded virus (BV) production and polyhedra formation were unaffected by the absence of BM79. However, results of the larval bioassay demonstrated that the Bm79 deletion resulted in a complete loss of per os infection. Immunofluorescence analysis showed that BM79 localized at the innernuclear membrane of infected cells through its N-terminal sorting motif (SM). Further bimolecular fluorescence protein complementation and co-immunoprecipitation assays demonstrated the interaction of BM79 with PIF1, PIF2, PIF3 and ODV-E66. Thus, BM79 plays an important role in per os infection and is associated with the viral PIF complex of BmNPV. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. X-irradiation of human bronchial cancer cells causes the bystander effects in normal bronchial cells in vitro.

    PubMed

    Konopacka, M; Rogoliński, J

    2010-01-01

    Using X radiation commonly used in radiotherapy of cancers we investigated bystander interactions between human cells: irradiated A549 bronchial carcinoma human cells and non irradiated BEAS-2B normal bronchial epithelial cells. Non irradiated cells were incubated in medium transferred from irradiated A549 cells (ICM-irradiation conditioned medium) for 48h and next the chromosomal damage and apoptosis were estimated. Conditioned medium collected from irradiated cancer cells induced in non irradiated cells of the same line as well as in BEAS-2B normal cells genetic changes such as micronuclei, chromatid and chromosomal breaks and condensation of chromatin characteristic for processes of apoptosis. Addition of only 1% of conditioned medium to fresh medium was sufficient to induction of bystander response to normal bronchial cells. The presented results in this study could have implications for human radiation risk and in evaluating the secondary effects of radiotherapy.

  7. BIANCA, a biophysical model of cell survival and chromosome damage by protons, C-ions and He-ions at energies and doses used in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Pietro Carante, Mario; Aimè, Chiara; Tello Cajiao, John James; Ballarini, Francesca

    2018-04-01

    An upgraded version of the BIANCA II biophysical model, which describes more realistically interphase chromosome organization and the link between chromosome aberrations and cell death, was applied to V79 and AG01522 cells exposed to protons, C-ions and He-ions over a wide LET interval (0.6–502 keV µm‑1), as well as proton-irradiated U87 cells. The model assumes that (i) ionizing radiation induces DNA ‘cluster lesions’ (CLs), where by definition each CL produces two independent chromosome fragments; (ii) fragment (distance-dependent) mis-rejoining, or un-rejoining, produces chromosome aberrations; (iii) some aberrations lead to cell death. The CL yield, which mainly depends on radiation quality but is also modulated by the target cell, is an adjustable parameter. The fragment un-rejoining probability, f, is the second, and last, parameter. The value of f, which is assumed to depend on the cell type but not on radiation quality, was taken from previous studies, and only the CL yield was adjusted in the present work. Good agreement between simulations and experimental data was obtained, suggesting that BIANCA II is suitable for calculating the biological effectiveness of hadrontherapy beams. For both V79 and AG01522 cells, the mean number of CLs per micrometer was found to increase with LET in a linear-quadratic fashion before the over-killing region, where a less rapid increase, with a tendency to saturation, was observed. Although the over-killing region deserves further investigation, the possibility of fitting the CL yields is an important feature for hadrontherapy, because it allows performing predictions also at LET values where experimental data are not available. Finally, an approach was proposed to predict the ion-response of the cell line(s) of interest from the ion-response of a reference cell line and the photon response of both. A pilot study on proton-irradiated AG01522 and U87 cells, taking V79 cells as a reference, showed encouraging

  8. B cell receptor accessory molecule CD79α: Characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias)

    PubMed Central

    Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J.

    2013-01-01

    CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5′ flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. PMID:23454429

  9. B cell receptor accessory molecule CD79α: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias).

    PubMed

    Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J

    2013-06-01

    CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Higher Efficiency for Quasi-Solid State Dye Sensitized Solar Cells Under Low Light Irradiance

    NASA Astrophysics Data System (ADS)

    Desilva, Ajith; Bandara, T. M. W. J.; Fernado, H. D. N. S.; Fernando, P. S. L.; Dissanayake, M. A. K. L.; Jayasundara, W. J. M. J. S. R.; Furlani, M.; Mellander, B.-E.

    2014-03-01

    Dye-sensitized solar cells (DSSCs), lower cost solar energy conversion devices are alternative green energy source. The liquid based electrolyte DSSCs have higher efficiencies with many practical issues while the quasi-solid-state DSSCs resolve the key problems but efficiencies are relatively low. Polyacrylonitrile (PAN) based gel polymer electrolytes were fabricated as DSSCs by incorporating ethylene carbonate and propylene carbonate plasticizers and tetrapropylammonium iodide salt. A thin layer of electrolyte was sandwiched between the TiO2 anode (sensitized with N719 dye) and the Pt counter electrode. The electrolyte had an ionic conductivity of 2.6 mS/cm at 25 degrees of Celsius. DSSCs incorporating this gel electrolyte revealed Vsc circuit, Jsc, fill factor (FF) and efficiency values of 0.71 V, 11.8 mA, 51 percent and 4.2 percent respectively under 1 sun irradiation. The efficiency of the cell increased with decreasing solar irradiance achieving up to 10 percent efficiency and 80 percent FF at low irradiance values. This work uncovers that quasi-solid state DSSCs can reach efficiencies close to that of liquid electrolytes based cells.

  11. Anisotropic expansion and amorphization of Ga2O3 irradiated with 946 MeV Au ions

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Lang, Maik; Severin, Daniel; Bender, Markus; Trautmann, Christina; Ewing, Rodney C.

    2016-05-01

    The structural response of β-Ga2O3 to irradiation-induced electronic excitation was investigated. A polycrystalline pellet of this material was irradiated with 946 MeV Au ions and the resulting structural modifications were characterized using in situ X-ray diffraction analysis at various ion fluences, up to 1 × 1013 cm-2. Amorphization was induced, with the accumulation of the amorphous phase following a single-impact mechanism in which each ion produces an amorphous ion track along its path. Concurrent with this phase transformation, an increase in the unit cell volume of the material was observed and quantified using Rietveld refinement. This unit cell expansion increased as a function of ion fluence before saturating at 1.8%. This effect is attributed to the generation of defects in an ion track shell region surrounding the amorphous track cores. The unit cell parameter increase was highly anisotropic, with no observed expansion in the [0 1 0] direction. This may be due to the structure of β-Ga2O3, which exhibits empty channels of connected interstitial sites oriented in this direction.

  12. Annealing and anomalous high-energy electron irradiation effects in low-cost silicon N+P solar cells

    NASA Technical Reports Server (NTRS)

    Garlick, G. F. J.; Kachare, A. H.

    1981-01-01

    Silicon solar cells of N(+)P type were subjected to 1 MeV electron irradiation (up to 10 to the 16th electrons/sq cm) and then annealed at 450 C for 20 min or annealed with no electron irradiation. Electron irradiation resulted in a degradation of longer wavelength cell response, but produced a marked enhancement of response at shorter wavelengths with a peak change of 40% at 0.44 microns. Subsequent thermal anneal at 450 C reduced the long-wavelength degradation, but enhancement at shorter wavelengths persisted. Excitation at the shorter wavelengths was in the N(+)-diffused layer and in the junction region of the cell. Anneal of unirradiated cells produced shorter-wavelength enhancement with a similar peaking at 0.44 microns, but with a relative change of only 20%. More enhancement was produced in the longer wavelength region (up to 0.8 microns). These effects in the different cell regions are explained by a decrease in the interstitial oxygen-impurity complexes (deep recombination levels) and the formation of substantial oxygen-silicon vacancy centers (donors).

  13. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1995-01-01

    Indium phosphide (InP) solar cells are being made on silicon (Si) wafers (InP/Si) to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers compared to InP or germanium (Ge) wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. InP/Si cells have higher absolute efficiency after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells. In this work, base electron diffusion lengths in the N/P cell are extracted from measured AM0 short-circuit photocurrent at various irradiation levels out to an equivalent 1 MeV fluence of 1017 1 MeV electrons/sq cm for a 1 sq cm 12% BOL InP/Si cell. These values are then checked for consistency by comparing measured Voc data with a theoretical Voc model that includes a dark current term that depends on the extracted diffusion lengths.

  14. Combinatorial BTK and MALT1 inhibition augments killing of CD79 mutant diffuse large B cell lymphoma

    PubMed Central

    Nagel, Daniel; Bognar, Miriam; Eitelhuber, Andrea C.; Kutzner, Kerstin; Vincendeau, Michelle; Krappmann, Daniel

    2015-01-01

    Survival of activated B cell-subtype (ABC) of diffuse large B cell lymphoma (DLBCL) is driven by chronic B cell receptor (BCR) signaling that activates the canonical NF-κB pathway. Inhibition of BTK by Ibrutinib has been shown to kill ABC DLBCL cells that carry activating mutations in the BCR adaptor CD79. However, mutations in BTK or in downstream components such as CARMA1/CARD11 can render lymphomas Ibrutinib resistant. Therefore, we assessed here the simultaneous inhibition of BTK and the protease MALT1 that acts downstream of CARMA1 and is essential for ABC DLBCL tumor growth. We show that in CD79 mutant cells BTK is a crucial upstream regulator of MALT1, but dispensable in CARMA1 mutant ABC DLBCL. Combined inhibition of BTK by Ibrutinib and MALT1 by S-Mepazine additively impaired MALT1 cleavage activity and expression of NF-κB pro-survival factors. Thereby, combinatorial Ibrutinib and S-Mepazine treatment enhanced killing of CD79 mutant ABC DLBCL cells. Moreover, while expression of oncogenic CARMA1 in CD79 mutant cells conferred Ibrutinib resistance, double mutant cells were still sensitive to MALT1 inhibition by S-Mepazine. Thus, based on the genetic background combinatorial BTK and MALT1 inhibition may improve effectiveness of therapeutic treatment and reduce the chances for the development of drug resistances. PMID:26540570

  15. Investigation of the Stability and 1.0 MeV Proton Radiation Resistance of Commercially Produced Hydrogenated Amorphous Silicon Alloy Solar Cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1E14 sq cm fluences above 1E14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed In dark I-V measurements. The current mechanism were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  16. Reevaluation of induced radioactivity in 10MeV electron-irradiated pepper for public acceptance

    NASA Astrophysics Data System (ADS)

    Furuta, M.; Katayama, T.; Ito, N.; Mizohata, A.; Toratani, H.; Takeda, A.

    In order to examine whether or not radioactivity could be produced in black pepper and white pepper with 10MeV electrons, the sample was irradiated with 10MeV electrons from a linear accelerator and its radioactivity was measured by gamma-ray spectrometry and beta-ray counting. The patterns of gamma-ray spectra showed that there was no difference between the irradiated and the non-irradiated samples, suggesting that the induced radioactivity in the irradiated sample was below the detection limit of its induced radioactivity. For further estimation, elemental composition was analyzed and photonuclear reactions which could produce radioactivity in the sample were investigated based on the data already published. Some photonuclear target nuclides in the list were spiked to the sample, being checked in the same way. Although short lived photonuclear products were observed, these radioactivities were found to decrease below the detection limit in a week. It is concluded that the induced radioactivity in the 10MeV electron-irradiated pepper and hence, its biological effect is far smaller than the natural radioactivity arising from 40K contained in the non-irradiated sample.

  17. Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells.

    PubMed

    Yang, H; Magpayo, N; Rusek, A; Chiang, I-H; Sivertz, M; Held, K D

    2011-12-01

    In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ∼0.47 mGy iron ions (∼0.02 iron ions/cell) or ∼70 μGy protons (∼2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.

  18. Delayed expression of hpS2 and prolonged expression of CIP1/WAF1/SDI1 in human tumour cells irradiated with X-rays, fission neutrons or 1 GeV/nucleon Fe ions

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Harrison, G. H.; Zhou, X. J.; Vigneulle, R. M.; Ove, R.; McCready, W. A.; Xu, J. F.

    1999-01-01

    PURPOSE: Differences in gene expression underlie the phenotypic differences between irradiated and unirradiated cells. The goal was to identify late-transcribed genes following irradiations differing in quality, and to determine the RBE of 1 GeV/n Fe ions. MATERIALS AND METHODS: Clonogenic assay was used to determine the RBE of Fe ions. Differential hybridization to cDNA target clones was used to detect differences in expression of corresponding genes in mRNA samples isolated from MCF7 cells irradiated with iso-survival doses of Fe ions (0 or 2.5 Gy) or fission neutrons (0 or 1.2 Gy) 7 days earlier. Northern analysis was used to confirm differential expression of cDNA-specific mRNA and to examine expression kinetics up to 2 weeks after irradiation. RESULTS: Fe ion RBE values were between 2.2 and 2.6 in the lines examined. Two of 17 differentially expressed cDNA clones were characterized. hpS2 mRNA was elevated from 1 to 14 days after irradiation, whereas CIP1/WAF1/SDI1 remained elevated from 3 h to 14 days after irradiation. Induction of hpS2 mRNA by irradiation was independent of p53, whereas induction of CIP1/WAF1/SDI1 was observed only in wild-type p53 lines. CONCLUSIONS: A set of coordinately regulated genes, some of which are independent of p53, is associated with change in gene expression during the first 2 weeks post-irradiation.

  19. The evaluation of 6 and 18 MeV electron beams for small animal irradiation

    NASA Astrophysics Data System (ADS)

    Chao, T. C.; Chen, A. M.; Tu, S. J.; Tung, C. J.; Hong, J. H.; Lee, C. C.

    2009-10-01

    A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm × 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses (<=2.5% for 6 MeV e; <=1.8% for 18 MeV e) and profiles (FWHM <= 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d90. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.

  20. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0

  1. Anti-CD22 and anti-CD79b antibody-drug conjugates preferentially target proliferating B cells.

    PubMed

    Fuh, Franklin K; Looney, Caroline; Li, Dongwei; Poon, Kirsten A; Dere, Randall C; Danilenko, Dimitry M; McBride, Jacqueline; Reed, Chae; Chung, Shan; Zheng, Bing; Mathews, William Rodney; Polson, Andrew; Prabhu, Saileta; Williams, Marna

    2017-04-01

    CD22 and CD79b are cell-surface receptors expressed on B-cell-derived malignancies such as non-Hodgkin's lymphoma (NHL). An anti-mitotic agent, monomethyl auristatin E, was conjugated to anti-CD22 and anti-CD79b antibodies to develop target-specific therapies for NHL. The mechanism of action (MOA) and pharmacological and pharmacokinetic (PK) profiles of these antibody-drug conjugates (ADCs) were investigated in cynomolgus monkeys. Animals were administered anti-CD22 or anti-CD79b ADCs, respective unconjugated antibodies or vehicle. Pharmacodynamic effects on total and proliferating B cells and serum PK were then assessed. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) of the ADCs were evaluated in vitro. Depletion of B cells was observed after administration of either ADC or the respective unconjugated antibodies. An extended duration of depletion was observed in animals administered ADCs. Similarly, preferential depletion of proliferating B cells in blood and germinal centre B cells in spleen were only observed in animals administered ADCs. Serum PK profiles of ADCs and respective unconjugated antibodies were comparable. In vitro, anti-human CD22 and anti-human CD79b antibodies showed no or only moderate ADCC activity, respectively; neither antibody had CDC activity. The findings support the proposed MOA: initial depletion of total B cells by antibody-mediated opsonization, followed by preferential, sustained depletion of proliferating B cells by the auristatin conjugate due to its anti-mitotic action. Delivering potent anti-mitotic agents to B cells via the specificity of monoclonal antibodies provides a means to eliminate pathogenic B cells in NHL with improved risk-benefit profiles over traditional chemotherapeutics. © 2016 Genentech. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  2. Gamma irradiation preserves immunosuppressive potential and inhibits clonogenic capacity of human bone marrow-derived mesenchymal stromal cells

    PubMed Central

    de Andrade, Ana Valéria Gouveia; Riewaldt, Julia; Wehner, Rebekka; Schmitz, Marc; Odendahl, Marcus; Bornhäuser, Martin; Tonn, Torsten

    2014-01-01

    Mesenchymal stromal cells (MSCs) are promising candidates for the treatment of graft-versus-host and autoimmune diseases. Here, by virtue of their immunosuppressive effects, they are discussed to exhibit inhibitory actions on various immune effector cells, including T lymphocytes that promote the underlying pathology. While it becomes apparent that MSCs exhibit their therapeutic effect in a transient manner, they are usually transplanted from third party donors into heavily immunocompromised patients. However, little is known about potential late complications of persisting third party MSCs in these patients. We therefore analysed the effect of gamma irradiation on the potency and proliferation of MSCs to elucidate an irradiation dose, which would allow inhibition of MSC proliferation while at the same time preserving their immunosuppressive function. Bone marrow-derived MSCs (BM-MSCs) were gamma-irradiated at increasing doses of 5, 10 and 30 Gy and subsequently assessed by colony formation unit (CFU)-assay, Annexin V-staining and in a mixed lymphocyte reaction, to assess colony growth, apoptosis and the immunosuppressive capacity, respectively. Complete loss of proliferative capacity measured by colony formation was observed after irradiation with a dose equal to or greater than 10 Gy. No significant decrease of viable cells was detected, as compared to non-irradiated BM-MSCs. Notably, irradiated BM-MSCs remained highly immunosuppressive in vitro for at least 5 days after irradiation. Gamma irradiation does not impair the immunosuppressive capacity of BM-MSCs in vitro and thus might increase the safety of MSC-based cell products in clinical applications. PMID:24655362

  3. Toxicological and radiological safety of chicken meat irradiated with 7.5 MeV X-rays

    NASA Astrophysics Data System (ADS)

    Song, Beom-Seok; Lee, Yunjong; Park, Jong-Heum; Kim, Jae-Kyung; Park, Ha-Young; Kim, Dong-Ho; Kim, Chang-Jong; Kang, Il-Jun

    2018-03-01

    This study was conducted to evaluate the toxicological and radiological safety of chicken meat that had been irradiated at 30 kGy with 7.5 MeV X-rays. In a sub-chronic toxicity study, ICR mice were fed X-ray-irradiated chicken meat at 2500 mg/kg body weight daily for 90 days, and no mortality or abnormal clinical signs were observed throughout the study period. However, several hematological and serum biochemical parameters of the ICR mice differed significantly from those in the control group; nevertheless, the observed values were all within the normal range for the respective parameters. In addition, no toxicological effects were determined in male or female mice. Furthermore, no differences in gamma-ray spectrometric patterns were detected between the non-irradiated and irradiated samples, indicating that the radioactivity induced by 7.5 MeV X-ray irradiation was below the detection limit. These results tentatively suggest that chicken meat irradiated with 7.5 MeV X-rays would be safe for human consumption in terms of toxicology and radiology.

  4. Modification of Optical, Structural and Dielectric Properties of MeV Ions Irradiated PS/Cu Nanocomposites.

    PubMed

    Gavade, Chaitali; Singh, N L; Khanna, P K; Shah, Sunil

    2015-12-01

    In order to study structural, thermal, optical and dielectric behaviors of composites, the films of Cu/polystyrene nanocomposites were synthesized at different concentrations of Cu-nanoparticles. These polymer nanocomposites were irradiated with carbon (85 MeV) and silicon (120 MeV) ions at different fluences. The samples were characterized using different techniques viz: X-ray diffraction, UV-visible spectroscopy, differential scanning calorimetry, and impedance gain phase analyzer. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 120 MeV Si-ions, which may be attributed to radiation-induced cross-linking in polymer. Optical properties like band gap was estimated for pure polymer and nanocomposite films from their optical absorption spectra in the wavelength region 200-800 nm. It was found that the band gap value shifted to lower energy (from 4.38 eV to 3.40 eV) on doping with silver nanoparticles and also upon irradiation. Differential scanning calorimetry analysis revealed an increase in the glass transition temperature upon irradiation, which may be attributed to cross linking of polymer chain due to ion beam irradiation which is also corroborated with XRD analysis. Dependence of dielectric properties on frequency, ions and filler concentration was studied. The results revealed the enhancement in dielectric properties after doping nanoparticles and also upon irradiation. It was observed that the effect of Si-beam is more effectual than the C-beam because of large electronic energy loss of heavy ion.

  5. Effects of Normothermic Conditioned Microwave Irradiation on Cultured Cells Using an Irradiation System with Semiconductor Oscillator and Thermo-regulatory Applicator

    PubMed Central

    Asano, Mamiko; Sakaguchi, Minoru; Tanaka, Satoshi; Kashimura, Keiichiro; Mitani, Tomohiko; Kawase, Masaya; Matsumura, Hitoshi; Yamaguchi, Takako; Fujita, Yoshikazu; Tabuse, Katsuyoshi

    2017-01-01

    We investigated the effects of microwave irradiation under normothermic conditions on cultured cells. For this study, we developed an irradiation system constituted with semiconductor microwave oscillator (2.45 GHz) and thermos-regulatory applicator, which could irradiate microwaves at varied output powers to maintain the temperature of cultured cells at 37 °C. Seven out of eight types of cultured cells were killed by microwave irradiation, where four were not affected by thermal treatment at 42.5 °C. Since the dielectric properties such as ε’, ε” and tanδ showed similar values at 2.45 GHz among cell types and media, the degree of microwave energy absorbed by cells might be almost the same among cell types. Thus, the vulnerability of cells to microwave irradiation might be different among cell types. In HL-60 cells, which were the most sensitive to microwave irradiation, the viability decreased as irradiation time and irradiation output increased; accordingly, the decrease in viability was correlated to an increase in total joule. However, when a high or low amount of joules per minute was supplied, the correlation between cellular viability and total joules became relatively weak. It is hypothesized that kinds of cancer cells are efficiently killed by respective specific output of microwave under normothermic cellular conditions. PMID:28145466

  6. Low Doses of Gamma-Irradiation Induce an Early Bystander Effect in Zebrafish Cells Which Is Sufficient to Radioprotect Cells

    PubMed Central

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817

  7. Dedicated high dose rate 192Ir brachytherapy radiation fields for in vitro cell exposures at variable source-target cell distances: killing of mammalian cells depends on temporal dose rate fluctuation

    NASA Astrophysics Data System (ADS)

    Veigel, Cornelia; Hartmann, Günther H.; Fritz, Peter; Debus, Jürgen; Weber, Klaus-Josef

    2017-02-01

    Afterloading brachytherapy is conducted by the stepwise movement of a radioactive source through surgically implanted applicator tubes where at predefined dwell positions calculated dwell times optimize spatial dose delivery with respect to a planned dose level. The temporal exposure pattern exhibits drastic fluctuations in dose rate at a given coordinate and within a single treatment session because of the discontinuous and repeated source movement into the target volume. This could potentially affect biological response. Therefore, mammalian cells were exposed as monolayers to a high dose rate 192Ir source by utilizing a dedicated irradiation device where the distance between a planar array of radioactive source positions and the plane of the cell monolayer could be varied from 2.5 mm to 40 mm, thus varying dose rate pattern for any chosen total dose. The Gammamed IIi afterloading system equipped with a nominal 370 GBq (10 Ci) 192-Ir source was used to irradiate V79 Chinese hamster lung fibroblasts from both confluent and from exponential growth phase with dose up to 12 Gy (at room temperature, total exposure not exceeding 1 h). For comparison, V79 cells were also exposed to 6 MV x-rays from a clinical linear accelerator (dose rate of 2.5 Gy min-1). As biological endpoint, cell survival was determined by standard colony forming assay. Dose measurements were conducted with a diamond detector (sensitive area 7.3 mm2), calibrated by means of 60Co radiation. Additionally, dose delivery was simulated by Monte Carlo calculations using the EGSnrc code system. The calculated secondary electron fluence spectra at the cell location did not indicate a significant change of radiation quality (i.e. higher linear energy transfer) at the lower distances. Clonogenic cell survival curves obtained after brachytherapy exhibited an altered biological response compared to x-rays which was characterized by a significant reduction of the survival curve shoulder when dose rate

  8. Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation

    NASA Astrophysics Data System (ADS)

    Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.

  9. Anti‐CD22 and anti‐CD79b antibody‐drug conjugates preferentially target proliferating B cells

    PubMed Central

    Fuh, Franklin K; Looney, Caroline; Li, Dongwei; Poon, Kirsten A; Dere, Randall C; Danilenko, Dimitry M; McBride, Jacqueline; Reed, Chae; Chung, Shan; Zheng, Bing; Mathews, William Rodney; Polson, Andrew; Williams, Marna

    2017-01-01

    Background and Purpose CD22 and CD79b are cell‐surface receptors expressed on B‐cell‐derived malignancies such as non‐Hodgkin's lymphoma (NHL). An anti‐mitotic agent, monomethyl auristatin E, was conjugated to anti‐CD22 and anti‐CD79b antibodies to develop target‐specific therapies for NHL. The mechanism of action (MOA) and pharmacological and pharmacokinetic (PK) profiles of these antibody‐drug conjugates (ADCs) were investigated in cynomolgus monkeys. Experimental Approach Animals were administered anti‐CD22 or anti‐CD79b ADCs, respective unconjugated antibodies or vehicle. Pharmacodynamic effects on total and proliferating B cells and serum PK were then assessed. Antibody‐dependent cellular cytotoxicity (ADCC) and complement‐dependent cytotoxicity (CDC) of the ADCs were evaluated in vitro. Key Results Depletion of B cells was observed after administration of either ADC or the respective unconjugated antibodies. An extended duration of depletion was observed in animals administered ADCs. Similarly, preferential depletion of proliferating B cells in blood and germinal centre B cells in spleen were only observed in animals administered ADCs. Serum PK profiles of ADCs and respective unconjugated antibodies were comparable. In vitro, anti‐human CD22 and anti‐human CD79b antibodies showed no or only moderate ADCC activity, respectively; neither antibody had CDC activity. Conclusions and Implications The findings support the proposed MOA: initial depletion of total B cells by antibody‐mediated opsonization, followed by preferential, sustained depletion of proliferating B cells by the auristatin conjugate due to its anti‐mitotic action. Delivering potent anti‐mitotic agents to B cells via the specificity of monoclonal antibodies provides a means to eliminate pathogenic B cells in NHL with improved risk–benefit profiles over traditional chemotherapeutics. PMID:28009435

  10. Bioassay for assessing cell stress in the vicinity of radio-frequency irradiating antennas.

    PubMed

    Monselise, Edna Ben-Izhak; Levkovitz, Aliza; Gottlieb, Hugo E; Kost, Daniel

    2011-07-01

    The 24 h exposure of water plants (etiolated duckweed) to RF-EMF between 7.8 V m(-1) and 1.8 V m(-1), generated by AM 1.287 MHz transmitting antennas, resulted in alanine accumulation in the plant cells, a phenomenon we have previously shown to be a universal stress signal. The magnitude of the effect corresponds qualitatively to the level of RF-EMF exposure. In the presence of 10 mM vitamin C, alanine accumulation is completely suppressed, suggesting the involvement of free radicals in the process. A unique biological connection has thus been made between exposure to RF-EMF and cell stress, in the vicinity of RF transmitting antennas. This simple test, which lasts only 24 h, constitutes a useful bioassay for the quick detection of biological cell stress caused in the vicinity of RF irradiating antennas.

  11. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    PubMed

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  12. Comparison of human chordoma cell-kill for 290 MeV/n carbon ions versus 70 MeV protons in vitro

    PubMed Central

    2013-01-01

    Background While the pace of commissioning of new charged particle radiation therapy facilities is accelerating worldwide, biological data pertaining to chordomas, theoretically and clinically optimally suited targets for particle radiotherapy, are still lacking. In spite of the numerous clinical reports of successful treatment of these malignancies with this modality, the characterization of this malignancy remains hampered by its characteristic slow cell growth, particularly in vitro. Methods Cellular lethality of U-CH1-N cells in response to different qualities of radiation was compared with immediate plating after radiation or as previously reported using the multilayered OptiCell™ system. The OptiCell™ system was used to evaluate cellular lethality over a broad dose-depth deposition range of particle radiation to anatomically mimic the clinical setting. Cells were irradiated with either 290 MeV/n accelerated carbon ions or 70 MeV accelerated protons and photons and evaluated through colony formation assays at a single position or at each depth, depending on the system. Results There was a cell killing of approximately 20–40% for all radiation qualities in the OptiCell™ system in which chordoma cells are herein described as more radiation sensitive than regular colony formation assay. The relative biological effectiveness values were, however, similar in both in vitro systems for any given radiation quality. Relative biological effectiveness values of proton was 0.89, of 13–20 keV/μm carbon ions was 0.85, of 20–30 keV/μm carbon ions was 1.27, and >30 keV/μm carbon ions was 1.69. Carbon-ions killed cells depending on both the dose and the LET, while protons depended on the dose alone in the condition of our study. This is the first report and characterization of a direct comparison between the effects of charged particle carbon ions versus protons for a chordoma cell line in vitro. Our results support a potentially superior therapeutic value

  13. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.

    PubMed

    Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter

    2013-03-01

    Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.

  14. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  15. Nuclear Data Sheets for A = 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Balraj

    2016-07-15

    Nuclear spectroscopic information for known nuclides of mass number 79 (Ni,Cu,Zn,Ga,Ge,As,Se,Br,Kr,Rb, Sr,Y,Zr) has been evaluated and presented together with adopted energies, Jπ, and decay modes of levels in these nuclei. No data are yet available for excited states in {sup 79}Ni, {sup 79}Cu and {sup 79}Zr. The half–life of {sup 79}Se, a nuclide of importance in reactor–irradiated fuel composition has been measured by several independent groups and reported in a number of publications after 1995, and seems to be converging to a narrow margin of experimental values. These measurements were likely prompted by a recommendation made in the 1993 updatemore » of A = 79 nuclides (1993Si28), that since a 1949PaZZ report, there had been no measurement until 1993, and that based on simulation studies by 1993HeZW, the value listed in 1949PaZZ, and cited in all data tables and charts for 44 years, was quite likely in error, being too low by a factor of 10. According to conclusions in recent papers such as 2014Do20, there is still room for improvement in the measurement of this half–life, and further experiments are expected. This evaluation supersedes earlier Nuclear Data Sheets for A = 79 (2002Si13,1993Si28, 1982Si21,1975Ur03).« less

  16. Nutritional stress enhances cell viability of odontoblast-like cells subjected to low level laser irradiation

    NASA Astrophysics Data System (ADS)

    Tagliani, M. M.; Oliveira, C. F.; Lins, E. M. M.; Kurachi, C.; Hebling, J.; Bagnato, V. S.; de Souza Costa, C. A.

    2010-03-01

    In spite of knowing that cells under stress are biostimulated by low level laser (LLL) irradiation, the ideal condition of stress to different cell lines has not yet been established. Consequently, the aim of the present in vitro study was to evaluate the effects of a defined parameter of LLL irradiation applied on stressed odontoblast-like pulp cells (MDPC-23). The cells were seeded (12500 cells/cm2) in wells of 24-well plates using complete culture medium (DMEM) and incubated for 24 hours. Then, the DMEM was replaced by a new medium with low concentrations (nutritional stress condition) of fetal bovine serum (FBS) giving rise to the following experimental groups: G1: 2% FBS; G2: 5% FBS; and G3: 10% FBS. The cells were irradiated three times with LLL in specific parameters (808±3 nm, 100 mW, 1.5 J/cm2) every 24 hours. No irradiation was carried out in groups G4 (2% FBS-Control), G5 (5% FBS-Control), and G6 (10% FBS-Control). For all groups, the cell metabolism (MTT assay) and morphology (SEM) was evaluated. The experimental groups showed enhanced cell metabolism and normal cell morphology regardless of FBS concentration. A slight increase in the cell metabolism was observed only in group G2. It was concluded that cell nutritional stress caused by reducing the concentration of FBS to 5% is the most suitable method to assess the biostimulation of LLL irradiated MDPC-23 cells.

  17. Fluence Uniformity Measurements in an Electron Accelerator Used for Irradiation of Extended Area Solar Cells and Electronic Circuits for Space Applications

    NASA Technical Reports Server (NTRS)

    Uribe, Roberto M.; Filppi, Ed; Zhang, Shubo

    2007-01-01

    It is common to have liquid crystal displays and electronic circuit boards with area sizes of the order of 20x20 sq cm on board of satellites and space vehicles. Usually irradiating them at different fluence values assesses the radiation damage in these types of devices. As a result, there is a need for a radiation source with large spatial fluence uniformity for the study of the damage by radiation from space in those devices. Kent State University s Program on Electron Beam Technology has access to an electron accelerator used for both research and industrial applications. The electron accelerator produces electrons with energies in the interval from 1 to 5 MeV and a maximum beam power of 150 kW. At such high power levels, the electron beam is continuously scanned back and forth in one dimension in order to provide uniform irradiation and to prevent damage to the sample. This allows for the uniform irradiation of samples with an area of up to 1.32 sq m. This accelerator has been used in the past for the study of radiation damage in solar cells (1). However in order to irradiate extended area solar cells there was a need to measure the uniformity of the irradiation zone in terms of fluence. In this paper the methodology to measure the fluence uniformity on a sample handling system (linear motion system), used for the irradiation of research samples, along the irradiation zone of the above-mentioned facility is described and the results presented. We also illustrate the use of the electron accelerator for the irradiation of large area solar cells (of the order of 156 sq cm) and include in this paper the electrical characterization of these types of solar cells irradiated with 5 MeV electrons to a total fluence of 2.6 x 10(exp 15) e/sq cm.

  18. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsumi, H.; Elkind, M.M.

    1983-11-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of thesemore » cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.« less

  19. Generation of colour centres in yttria-stabilized zirconia by heavy ion irradiations in the GeV range.

    PubMed

    Costantini, Jean-Marc; Beuneu, François; Schwartz, Kurt; Trautmann, Christina

    2010-08-11

    We have studied the colour centre production in yttria-stabilized zirconia (ZrO(2):Y(3 +)) by heavy ion irradiation in the GeV range using on-line UV-visible optical absorption spectroscopy. Experiments were performed with 11.4 MeV amu(-1) (127)Xe, (197)Au, (208)Pb and (238)U ion irradiations at 8 K or room temperature (RT). A broad and asymmetrical absorption band peaked at a wavelength about 500 nm is recorded regardless of the irradiation parameters, in agreement with previous RT irradiations with heavy ions in the 100 MeV range. This band is de-convoluted into two broad Gaussian-shaped bands centred at photon energies about 2.4 and 3.1 eV that are respectively associated with the F(+)-type centres (involving a singly ionized oxygen vacancy, VO· and T centres (i.e. Zr(3+) in a trigonal symmetry) observed by electron paramagnetic resonance (EPR) spectroscopy. In the case of 8 K Au ion irradiation at low fluences, six bands are used at about 1.9, 2.3, 2.7, 3.1 and 4.0 eV. The three bands near 2.0-2.5 eV can be assigned to oxygen divacancies (i.e. F(2)(+) centres). No significant effect of the irradiation temperature is found on the widths of all absorption bands for the same ion and fluence. This is attributed to the inhomogeneous broadening arising from the static disorder due to the native charge-compensating oxygen vacancies. However, the colour centre production yield is strongly enhanced at 8 K with respect to RT. When heating irradiated samples from 8 K to RT, the extra colour centres produced at low temperature do not recover completely to the level of RT irradiation. The latter results are accounted for by an electronically driven defect recovery process.

  20. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells

    PubMed Central

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated 13C-ions at the Grand Accélérateur National d’Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  1. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells.

    PubMed

    Shi, Ying; Liu, Na; Lai, Weiwei; Yan, Bin; Chen, Ling; Liu, Shouping; Liu, Shuang; Wang, Xiang; Xiao, Desheng; Liu, Xiaoli; Mao, Chao; Jiang, Yiqun; Jia, Jiantao; Liu, Yating; Yang, Rui; Cao, Ya; Tao, Yongguang

    2018-05-28

    Radiation therapy has become an important tool in the treatment of cancer patients, but most patients relapse within 5 years. Relapse is due to the presence of cancer stem cells (CSCs), but the molecular mechanism of radioresistance in CSCs remains largely elusive. Here, we found that irradiation-resistant (IR) cells exhibited increased stem cell-like properties together with elevated anchorage-independent growth and metastasis ability. EGFR not only leads to increased acquisition of endometrial cancer stem cell markers in radioresistant sublines but is critical for the cancer stem-cell phenotype and tumorigenicity. Moreover, PKM2 functions as an interacting partner of EGFR, which induces the EMT phenotype and stem cell-like properties in IR cells. Finally, we found that the regulatory function of the EGFR-PKM2 axis is dependent on nuclear EGFR. In sum, our study indicated that EGFR and PKM2 directly interact and bind with each other to regulate the transcription of stemness-related genes and promote the stem-like phenotype, thus promoting invasion and metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effect of ultrasonic irradiation on mammalian cells and chromosomes in vitro

    NASA Technical Reports Server (NTRS)

    Roseboro, J. A.; Buchanan, P.; Norman, A.; Stern, R.

    1978-01-01

    Human peripheral blood and HeLa cells were irradiated in vitro at the ultrasonic frequency of 65 kHz. The whole blood and HeLa cell suspensions were exposed to continuous and pulsed ultrasonic power levels of 0.12, 0.16, 0.72, 1.12 and 2.24 W for a period of one minute. The method of ultrasonic irradiation was carried out with the whole blood or HeLa cell suspensions coupled directly to a cylindrical transducer while heating of the cell suspensions in excess of 41 C was avoided. Irradiated and unirradiated peripheral blood lymphocyte chromosome cultures were prepared and scored for selected numerical and morphological aberrations. There was no significant difference in the frequency of chromosomal aberrations between irradiated and unirradiated cells.

  3. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset.

    PubMed

    Gualde, N; Goodwin, J S

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [3H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [3H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  4. Effect of 100 MeV Si7+ ions' irradiation on Pd/n-GaAs Schottky diodes

    NASA Astrophysics Data System (ADS)

    Sinha, O. P.

    2017-12-01

    Pd/n-GaAs realized devices (junction made on a virgin substrate prior to irradiation) and Pd/n-GaAs fabricated devices (junction realized after the virgin substrate irradiation) have been irradiated with 100 MeV Si7+ ions for the varying fluence of 1012-1013 ions/cm2. The devices have been characterized by I-V and C-V techniques for an electrical response. The electrical characterization of these devices shows the presence of interfacial layer. Moreover, the C-V characteristics show strong frequency dependence behavior, which indicates the involvement of interfacial charge layer with deep electron states. The hydrogenation of these devices has not caused any significant change in the electrical (I-V and C-V) characteristics. The observed results have been discussed in the realm of radiation-induced defects, which cause the carrier removal and compensation phenomena to cause the observed high resistivity and filling and unfilling of these traps' level to cause strong frequency dependence behavior.

  5. Effect of MeV electron irradiation on the free volume of polyimide

    NASA Astrophysics Data System (ADS)

    Alegaonkar, P. S.; Bhoraskar, V. N.

    2004-08-01

    The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from similar to13.70 to similar to10.98 Angstrom(3) and then increased to similar to18.11 Angstrom(3) with increasing the electron fluence, over the range of 5 x 10(14) - 5 x 10(15) e/cm(2). The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2 x 10(15) e/cm(2), at which microvoids of size greater than or equal to3 Angstrom are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size greater than or equal to3 Angstrom were retained in the surface region through which silver atoms of size similar to2.88 Angstrom could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was similar to2.5 mum.

  6. Post-focus expansion of ion beams for low fluence and large area MeV ion irradiation: Application to human brain tissue and electronics devices

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Guibert, Edouard; Jeanneret, Patrick; Homsy, Alexandra; Roth, Joy; Krause, Sven; Roux, Adrien; Eggermann, Emmanuel; Stoppini, Luc

    2017-08-01

    Irradiation with ∼3 MeV proton fluences of 106-109 protons cm-2 have been applied to study the effects on human brain tissue corresponding to single-cell irradiation doses and doses received by electronic components in low-Earth orbit. The low fluence irradiations were carried out using a proton microbeam with the post-focus expansion of the beam; a method developed by the group of Breese [1]. It was found from electrophysiological measurements that the mean neuronal frequency of human brain tissue decreased to zero as the dose increased to 0-1050 Gy. Enhancement-mode MOSFET transistors exhibited a 10% reduction in threshold voltage for 2.7 MeV proton doses of 10 Gy while a NPN bipolar transistor required ∼800 Gy to reduce the hfe by 10%, which is consistent the expected values.

  7. Comparative viability of unirradiated and gamma irradiated bacterial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxcy, R.B.

    1977-01-01

    Gamma radiation injured Escherichia coli, Salmonella typhimurium, and Moraxella sp. were studied under various environmental stresses to determine their fate relative to the parent population. Irradiated cultures formed smaller colonies on surface plates with fewer cells per colony. Unirradiated cultures had a shorter lag phase than irradiated cultures in broth and duration of lag increased as a result of increasing the radiation dose. Repeated irradiation and subculture progressively retarded growth rate. Multiple radiation of highly resistant Moraxella sp. showed radiation injured cells to be more sensitive than uninjured cells. With the three species studied, irradiation raised the lower limits ofmore » growth temperature, increased the sensitivity to freezing and thawing, and increased the susceptibility to lowered water activity. This work indicated that the production of a bizarre, resistant strain of bacteria through recycling in a food processing operation is highly unlikely.« less

  8. Mechanisms of taste bud cell loss after head and neck irradiation

    PubMed Central

    Nguyen, Ha M.; Reyland, Mary E.; Barlow, Linda A.

    2012-01-01

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on a progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of X-ray irradiation to the head and neck, and analyzed taste epithelium at 1–21 days post-irradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1–3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5–7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5–6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using BrdU birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1–2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. By contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement underlies taste loss after irradiation. PMID:22399770

  9. Mitochondrial gene expression changes in cultured human skin cells following simulated sunlight irradiation.

    PubMed

    Kelly, J; Murphy, J E

    2018-02-01

    Exposure of skin to simulated sunlight irradiation (SSI) has being extensively researched and shown to be the main cause for changes in the skin including changes in cellular function and generation of reactive oxygen species (ROS). This oxidative stress can subsequently exert downstream effects and the subcellular compartments most affected by this oxidative stress are mitochondria. The importance of functional mitochondrial morphology is apparent as morphological defects are related to many human diseases including diabetes mellitus, liver disease, neurodegenerative diseases, aging and cancer. The main objective of this study was to evaluate solar radiation-induced changes in mitochondrial gene expression in human skin cells using a Q-Sun solar simulator to deliver a close match to the intensity of summer sunlight. Spontaneously immortalised human skin epidermal keratinocytes (HaCaT) and Human Dermal Fibroblasts (HDFn) were divided into two groups. Group A were irradiated once and Group B twice 7days apart; following irradiation, mitochondrial gene expression was evaluated 1, 4 and 7days post primary exposure for group A and 1, 4, 7 and 14days post-secondary exposure for group B. Both the epidermal and dermal cells displayed significant reduced expression of the genes analysed for mitochondrial morphology and function; however, epidermal cells displayed this reduction post SSI earlier then dermal cells at multiple time points. The data presented here reinforces the fact that epidermal cells, while displaying a heightened sensitivity to sunlight, are less prone to changes in gene expression, while dermal cells, which appear to be more resilient are possibly more prone to genomic instability and mitochondrial damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The study of optical property of sapphire irradiated with 73 MeV Ca ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Liu, Juan; Xian, Yongqiang

    2015-12-01

    Single crystals of sapphire were irradiated with 73 MeV Ca ions at room temperature to the fluences of 0.1, 0.5 and 1.0 × 1014 ions/cm2. Optical properties of these samples were characterized by ultraviolet-visible spectrometry (UV-VIS) and fluorescence spectrometer (PL). In UV-VIS spectra, it is observed the absorbance bands from oxygen single vacancy (F and F+ color centers) and vacancy pair (F2+ and F22+ color centers). The oxygen single vacancy initially increases rapidly and then does not increase in the fluence range from 0.1 to 0.5 × 1014 ions/cm2. When the fluence is higher than 0.5 × 1014 ions/cm2, oxygen single vacancy starts to increase again. Oxygen vacancy pair increases monotonically with fluence for all irradiated samples. The variation of oxygen single vacancy with fluence is probably associated with the recombination of oxygen vacancies with Al interstitials and complex defect formation (such as vacancy clusters). From PL spectra, two emission bands around 3.1 and 2.34 eV are observed. The PL intensity of the emission band around 3.1 eV decreases for all the irradiated samples. For the emission band around 2.34 eV, the PL intensity initially decreases, and then increases with fluence. Meanwhile, the peak position of the emission band around 2.34 eV gradually shifts to high energy direction with increase of fluence. The decrease of the intensity of the emission bands around 3.1 and 2.34 eV could be induced by stress from the damage layer in the irradiated samples. The shift of peak position for the emission band around 2.34 eV is induced by the appearance of emission band from Al interstitials.

  11. Proton beam irradiation inhibits the migration of melanoma cells.

    PubMed

    Jasińska-Konior, Katarzyna; Pochylczuk, Katarzyna; Czajka, Elżbieta; Michalik, Marta; Romanowska-Dixon, Bożena; Swakoń, Jan; Urbańska, Krystyna; Elas, Martyna

    2017-01-01

    In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.

  12. Accurate reconstruction of the jV-characteristic of organic solar cells from measurements of the external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl

    2018-04-01

    In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.

  13. Investigation of the stability and 1.0 MeV proton radiation resistance of commercially produced hydrogenated amorphous silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters or fluences below 1(exp 14) cm(exp -2); fluences above 1(exp 14) cm(exp -2) require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  14. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Heilmann, J.; Rink, H.

    The lens epithelium is the initiation site for the development of radiation induced cataracts. While in the cortex and nucleus radiation interacts with proteins, experimental results from cultured lenses and lens epithelial cells demonstrate mutagenic and cytotoxic effects in the epithelium. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the radiation's relative biological effectiveness (RBE), because cosmic rays differ significantly from X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiations. Irradiations were performed either with 300 kV X-rays or at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. For strand break measurements hydroxyapatite chromatography of alka-line unwound DNA (overall strand breaks) and non-denaturing filter elution technique (double strand breaks) were applied. Experiments showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV/μm more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of

  15. Low doses of oxygen ion irradiation cause long-term damage to bone marrow hematopoietic progenitor and stem cells in mice

    PubMed Central

    Wang, Yingying; Chang, Jianhui; Li, Xin; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong

    2017-01-01

    During deep space missions, astronauts will be exposed to low doses of charged particle irradiation. The long-term health effects of these exposures are largely unknown. We previously showed that low doses of oxygen ion (16O) irradiation induced acute damage to the hematopoietic system, including hematopoietic progenitor and stem cells in a mouse model. However, the chronic effects of low dose 16O irradiation remain undefined. In the current study, we investigated the long-term effects of low dose 16O irradiation on the mouse hematopoietic system. Male C57BL/6J mice were exposed to 0.05 Gy, 0.1 Gy, 0.25 Gy and 1.0 Gy whole body 16O (600 MeV/n) irradiation. The effects of 16O irradiation on bone marrow (BM) hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) were examined three months after the exposure. The results showed that the frequencies and numbers of BM HPCs and HSCs were significantly reduced in 0.1 Gy, 0.25 Gy and 1.0 Gy irradiated mice compared to 0.05 Gy irradiated and non-irradiated mice. Exposure of mice to low dose 16O irradiation also significantly reduced the clongenic function of BM HPCs determined by the colony-forming unit assay. The functional defect of irradiated HSCs was detected by cobblestone area-forming cell assay after exposure of mice to 0.1 Gy, 0.25 Gy and 1.0 Gy of 16O irradiation, while it was not seen at three months after 0.5 Gy and 1.0 Gy of γ-ray irradiation. These adverse effects of 16O irradiation on HSCs coincided with an increased intracellular production of reactive oxygen species (ROS). However, there were comparable levels of cellular apoptosis and DNA damage between irradiated and non-irradiated HPCs and HSCs. These data suggest that exposure to low doses of 16O irradiation induces long-term hematopoietic injury, primarily via increased ROS production in HSCs. PMID:29232383

  16. Economic Analysis. Volume V. Course Segments 65-79.

    ERIC Educational Resources Information Center

    Sterling Inst., Washington, DC. Educational Technology Center.

    The fifth volume of the multimedia, individualized course in economic analysis produced for the United States Naval Academy covers segments 65-79 of the course. Included in the volume are discussions of monopoly markets, monopolistic competition, oligopoly markets, and the theory of factor demand and supply. Other segments of the course, the…

  17. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), andmore » OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.« less

  18. Cell migration under ultrasound irradiations in micrometer scale

    NASA Astrophysics Data System (ADS)

    Murakami, Shinya; Otsuka, Yo; Oshima, Yusuke; Hikita, Atsuhiko; Mitsui, Toshiyuki

    2013-03-01

    Cell movements, migration play an important role in many physiological processes including cell proliferation and differentiation. C2C12, a line of mouse myoblasts is known to differentiate into osteoblast under appropriate conditions. Therefore, C2C12 cells can be chosen for the differentiation studies. However, the movement of the C2C12's has not been fully investigated although the movements may provide a better understanding of the healing processes of bone repair, regeneration and differentiation. In addition, low intensity ultrasound has been thought and used to promote bone fracture healing although the microscopic mechanism of this healing is not well understood. As a first step, we have investigated single cell migration of C2C12 under optical microscopy with and without ultrasound irradiations. The ultrasound is irradiated from an apex of a sharp needle. The frequency is 1.5 MHz and the power intensity is near 24 mW/cm2. These values were similar to the ultrasound treatment values. In this conference, we will show the influence of the ultrasound irradiation on the cell movement by plotting the mean squared displacement and the velocity autocorrelation function as a function of time.

  19. Experimental study on rat NK cell activity improvement by laser acupoint irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Dongxiao; Chen, Xiufeng; Ruan, Buqing; Yang, Feng

    1998-08-01

    To study the improvement of the natural killer (NK) cell activity by semiconductor laser acupoint irradiation, rats were used in this experiment and were injected immunosuppressant in their abdomen. The immunoassay was made after the surface irradiation and inner irradiation at Baihui point by semiconductor laser. The NK cell activity is an important index of immunologic function. The results showed that the NK cell activity after laser acupoint irradiation was enhanced. This enhancement is relatively important in the clinical therapy of tumor.

  20. I-V-T analysis of radiation damage in high efficiency Si solar cells

    NASA Technical Reports Server (NTRS)

    Banerjee, S.; Anderson, W. A.; Rao, B. B.

    1985-01-01

    A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved.

  1. Magnetic properties of a stainless steel irradiated with 6 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Xu, Chaoliang; Liu, Xiangbing; Qian, Wangjie; Li, Yuanfei

    2017-11-01

    Specimens of austenitic stainless steel were irradiated with 6 MeV Xe ions at room temperature to 2, 7, 15 and 25 dpa. The vibrating sample magnetometer (VSM), grazing incidence X-ray diffraction (GIXRD) and positron annihilation lifetime spectroscopy (PLS) were carried out to analysis the magnetic properties and microstructural variations. The magnetic hysteresis loops indicated that higher irradiation damage causes more significant magnetization phenomenon. The equivalent saturated magnetization Mes and coercive force Hc were obtained from magnetic hysteresis loops. It is indicated that the Mes increases with irradiation damage. While Hc increases first to 2 dpa and then decreases continuously with irradiation damage. The different contributions of irradiation defects and ferrite precipitates on Mes and Hc can explain these phenomena.

  2. The 14 MeV Neutron Irradiation Facility in MARIA Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopowicz, R.; Pytel, K.; Dorosz, M.

    2015-07-01

    The MARIA reactor with thermal neutron flux density up to 3x10{sup 14} cm{sup -2} s{sup -1} and a number of vertical channels is well suited to material testing by thermal neutron treatment. Beside of that some fast neutron irradiation facilities are operated in MARIA reactor as well. One of them is thermal to 14 MeV neutron converter launched in 2014. It is especially devoted to fusion devices material testing irradiation. The ITER and DEMO research thermonuclear facilities are to be run using the deuterium - tritium fusion reaction. Fast neutrons (of energy approximately 14 MeV) resulting from the reaction aremore » essential to carry away the released thermonuclear energy and to breed tritium. However, constructional materials of which thermonuclear reactors are to be built must be specially selected to survive intense fluxes of fast neutrons. Strong sources of 14 MeV neutrons are needed if research on resistance of candidate materials to such fluxes is to be carried out effectively. Nuclear reactor-based converter capable to convert thermal neutrons into 14 MeV fast neutrons may be used to that purpose. The converter based on two stage nuclear reaction on lithium-6 and deuterium compounds leading to 14 MeV neutron production. The reaction chain is begun by thermal neutron capture by lithium-6 nucleus resulted in triton release. The neutron and triton transport calculations have been therefore carried-out to estimate the thermal to 14 MeV neutron conversion efficiency and optimize converter construction. The usable irradiation space of ca. 60 cm{sup 3} has been obtained. The released energy have been calculated. Heat transport has been asses to ensure proper device cooling. A set of thermocouples has been installed in converter to monitor its temperature distribution on-line. Influence of converter on reactor operation has been studied. Safety analyses of steady states and transients have been done. Performed calculations and analyses allow designing the

  3. Whole-Body Proton Irradiation Causes Long-Term Damage to Hematopoietic Stem Cells in Mice

    PubMed Central

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R.; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  4. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells.

    PubMed

    Wei, Hong; Zhu, Zijie; Lu, Longtao

    2017-01-01

    Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.

  5. Irradiated fibroblasts promote epithelial–mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei

    2015-03-06

    Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiatedmore » fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.« less

  6. Time-Lapse Cinemicrographic Studies of X-Irradiated HeLa S3 Cells

    PubMed Central

    Hurwitz, Camilla; Tolmach, L. J.

    1969-01-01

    Analysis of time-lapse cinemicrographs of X-irradiated HeLa S3 cells has shown that the incidence of cell fusion was increased from 0.9% (following 1267 divisions) in control cells to an average of 22% (following 655 divisions) in cells irradiated with 500 rad doses of 220 kv X-rays. The incidence depended on the stage of the generation cycle at which the parent cells were irradiated. It was nearly constant in the first three postirradiation generations. Fusion occurred at all stages of the generation cycle, but preferentially during the first 20%. Cells undergoing fusion progressed more slowly through the generation cycle and had a higher probability of disintegrating than did irradiated cells that did not fuse. The occurrence of fusion was clonally distributed in the population. It took place only between sister (or closely related) cells. Protoplasmic bridges were often visible between sister cells prior to fusion. Giant cells arose only as a result of fusion. The incidence of multipolar divisions, though higher than in unirradiated cells, was only 5.5% in cultures irradiated with 500 rads. Fusion occurred following 85% of the multipolar divisions and was often followed by a multipolar division. ImagesFigure 1 PMID:5807221

  7. Irradiation chamber and sample changer for biological samples

    NASA Astrophysics Data System (ADS)

    Kraft, G.; Daues, H. W.; Fischer, B.; Kopf, U.; Liebold, H. P.; Quis, D.; Stelzer, H.; Kiefer, J.; Schöpfer, F.; Schneider, E.; Weber, K.; Wulf, H.; Dertinger, H.

    1980-01-01

    This paper describes an irradiation system with which living cells of different origin are irradiated with heavy ion beams (18⩽ Z⩽92) at energies up to 10 MeV/amu. The system consists of a beam monitor connected to the vacuum system of the accelerator and the irradiation chamber, containing the biological samples under atmospheric pressure. The requirements and aims of the set up are discussed. The first results with saccharomyces cerevisiae and Chinese Hamster tissue cells are presented.

  8. Origin of MeV ion irradiation-induced stress changes in SiO2

    NASA Astrophysics Data System (ADS)

    Brongersma, M. L.; Snoeks, E.; van Dillen, T.; Polman, A.

    2000-07-01

    The 4 MeV Xe ion irradiation of a thin thermally grown SiO2 film on a Si substrate leads to four different effects in which each manifests itself by a characteristic change in the mechanical stress state of the film: densification, ascribed to a beam-induced structural change in the silica network; stress relaxation by radiation-enhanced plastic flow; anisotropic expansion and stress generation; and transient stress relaxation ascribed to the annealing of point defects. Using sensitive wafer-curvature measurements, in situ measurements of the in-plane mechanical stress were made during and after ion irradiation at various temperatures in the range from 95 to 575 K, in order to study the magnitude of these effects, the mechanism behind them, as well as their interplay. It is found that the structural transformation leads to a state with an equilibrium density that is 1.7%-3.2% higher than the initial state, depending on the irradiation temperature. Due to the constraint imposed by the substrate, this transformation causes a tensile in-plane stress in the oxide film. This stress is relaxed by plastic flow, leading to densification of the film. The anisotropic strain-generation rate decreases linearly with temperature from (2.5±0.4)×10-17cm2/ion at 95 K to (-0.9±0.7)×10-17 cm2/ion at 575 K. The spectrum of irradiation-induced point defects, measured from the stress change after the ion beam was switched off, peaks below 0.23 eV and extends up to 0.80 eV. All four irradiation-induced effects can be described using a thermal spike model.

  9. Hypoxic cell sensitizers and heavy charged-particle radiations.

    PubMed Central

    Chapman, J. D.; Urtasun, R. C.; Blakely, E. A.; Smith, K. C.; Tobias, C. A.

    1978-01-01

    Stationary-phase populations of Chinese hamster V-79 cells were irradiated with 250 kV X-rays and the Bragg peaks (spread to a width of 4 cm) of energetic He-, C-, Ne-, and A-ion beams produced at the 184-inch cyclotron and BEVALAC at Lawrence Berkeley Laboratory. Survival curves were generated with each radiation for cells suspended in air-saturated and nitrogen-saturated medium with and without sensitizer present. The oxygen enhancement ratios (OERs) measured for X-rays with 1mM metronidazole and 0.5 mM misonidazole were 2.0 and 1.6 respectively. The OERs without sensitizer for He-, C-, Ne-, and A-ion Bragg peaks were 2.4, 1.7, 1.6 and 1.4 respectively. For each type of radiation tested the presence of hypoxic-cell sensitizers resulted in an additional reduction in the measured OERs, indicating that these drugs should be of benefit in the radiotherapy planned with these and other high LET radiations. PMID:277223

  10. Radiation damage induced in Al2O3 single crystal sequentially irradiated with reactor neutrons and 90 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2016-06-01

    The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al2O3 single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al2O3 samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al2O3 samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 1013 Xe/cm2). It can be assigned to the formation of new lattice plane.

  11. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis

    NASA Astrophysics Data System (ADS)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-05-01

    Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6 J mice were exposed to 0.3, 0.6 and 0.9 Gy 28Si (600 MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.

  12. Influence of laser and LED irradiation on mast cells of cutaneous wounds of rats with iron deficiency anemia

    NASA Astrophysics Data System (ADS)

    Becher Rosa, Cristiane; Oliveira Sampaio, Susana C. P.; Monteiro, Juliana S. C.; Ferreira, Maria F. L.; Zanini, Fátima A. A.; Santos, Jean N.; Cangussú, Maria Cristina T.; Pinheiro, Antonio L. B.

    2011-03-01

    This work aimed to study histologically the effect of Laser or LED phototherapy on mast cells on cutaneous wounds of rats with iron deficiency. 18 rats were used and fed with special peleted iron-free diet. An excisional wound was created on the dorsum of each animal which were divided into: Group I - Control with anemia + no treatment; Group II - Anemia + Laser; Group III - Anemia + LED; Group IV - Healthy + no treatment; Group V - Healthy + Laser; Group VI - Healthy + LED. Irradiation was performed using a diode Laser (λ660nm, 40mW, CW, total dose of 10J/cm2, 4X2.5J/cm2) or a RED-LED ( λ700nm, 15mW, CW, total dose of 10J/cm2). Histological specimens were routinely processed, cut and stained with toluidine blue and mast cell counts performed. No significant statistic difference was found between groups as to the number of degranulated, non-degradulated or total mast cells. Greater mean values were found for degranulated mast cells in the Anemia + LED. LED irradiation on healthy specimens resulted in a smaller number of degranulated mast cells. Our results leads to conclude that there are no significant differences in the number of mast cells seven days after irradiation following Laser or LED phototherapy.

  13. Sub-micrometer 20MeV protons or 45MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA double-strand breaks.

    PubMed

    Schmid, T E; Friedland, W; Greubel, C; Girst, S; Reindl, J; Siebenwirth, C; Ilicic, K; Schmid, E; Multhoff, G; Schmitt, E; Kundrát, P; Dollinger, G

    2015-11-01

    In conventional experiments on biological effects of radiation types of diverse quality, micrometer-scale double-strand break (DSB) clustering is inherently interlinked with clustering of energy deposition events on nanometer scale relevant for DSB induction. Due to this limitation, the role of the micrometer and nanometer scales in diverse biological endpoints cannot be fully separated. To address this issue, hybrid human-hamster AL cells have been irradiated with 45MeV (60keV/μm) lithium ions or 20MeV (2.6keV/μm) protons quasi-homogeneously distributed or focused to 0.5×1μm(2) spots on regular matrix patterns (point distances up to 10.6×10.6μm), with pre-defined particle numbers per spot to provide the same mean dose of 1.7Gy. The yields of dicentrics and their distribution among cells have been scored. In parallel, track-structure based simulations of DSB induction and chromosome aberration formation with PARTRAC have been performed. The results show that the sub-micrometer beam focusing does not enhance DSB yields, but significantly affects the DSB distribution within the nucleus and increases the chance to form DSB pairs in close proximity, which may lead to increased yields of chromosome aberrations. Indeed, the experiments show that focusing 20 lithium ions or 451 protons per spot on a 10.6μm grid induces two or three times more dicentrics, respectively, than a quasi-homogenous irradiation. The simulations reproduce the data in part, but in part suggest more complex behavior such as saturation or overkill not seen in the experiments. The direct experimental demonstration that sub-micrometer clustering of DSB plays a critical role in the induction of dicentrics improves the knowledge on the mechanisms by which these lethal lesions arise, and indicates how the assumptions of the biophysical model could be improved. It also provides a better understanding of the increased biological effectiveness of high-LET radiation. Copyright © 2015 Elsevier B.V. All

  14. Loss of cellular transformation efficiency induced by DNA irradiation with low-energy (10 eV) electrons.

    PubMed

    Kouass Sahbani, Saloua; Sanche, Leon; Cloutier, Pierre; Bass, Andrew D; Hunting, Darel J

    2014-11-20

    Low energy electrons (LEEs) of energies less than 20 eV are generated in large quantities by ionizing radiation in biological matter. While LEEs are known to induce single (SSBs) and double strand breaks (DSBs) in DNA, their ability to inactivate cells by inducing nonreparable lethal damage has not yet been demonstrated. Here we observe the effect of LEEs on the functionality of DNA, by measuring the efficiency of transforming Escherichia coli with a [pGEM-3Zf (-)] plasmid irradiated with 10 eV electrons. Highly ordered DNA films were prepared on pyrolitic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap(2+)). The uniformity of these films permits the inactivation of approximately 50% of the plasmids compared to <10% using previous methods, which is sufficient for the subsequent determination of their functionality. Upon LEE irradiation, the fraction of functional plasmids decreased exponentially with increasing electron fluence, while LEE-induced isolated base damage, frank DSB, and non DSB-cluster damage increased linearly with fluence. While DSBs can be toxic, their levels were too low to explain the loss of plasmid functionality observed upon LEE irradiation. Similarly, non-DSB cluster damage, revealed by transforming cluster damage into DSBs by digestion with repair enzymes, also occurred relatively infrequently. The exact nature of the lethal damage remains unknown, but it is probably a form of compact cluster damage in which the lesions are too close to be revealed by purified repair enzymes. In addition, this damage is either not repaired or is misrepaired by E. coli, since it results in plasmid inactivation, when they contain an average of three lesions. Comparison with previous results from a similar experiment performed with γ-irradiated plasmids indicates that the type of clustered DNA lesions, created directly on cellular DNA by LEEs, may be more difficult to repair than those produced by other species from radiolysis.

  15. RESISTANCE TO X-IRRADIATION BY EMBRYONIC CELLS OF THE LIMB-BUDS OF TADPOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, B.M.; Ewell, L.M.

    1959-01-01

    Both total-body irradiation and shielding of the trunk were used to study the effects of x irradiation from 1000 to 30000 r upon the limb-buds of Bufo boreas and Hyla regilla tadpoles. The object was to test the view that the younger the cells the more sensitive they are to irradiation. The answer is negative. If there is any special susceptibility of these undifferentiated cells it should appear at levels far below the 30000 r maximum employed. A sharp distinction is made between the very susceptible mitotic cells and the resistant non-dividing embryonic cells that have been accumulated in suchmore » numbers that they may rapidly differentiate into the characteristic limb tissues under the stimulus of the thyroid hormone. Many irradiated ectoderm cells were changed to form bizarre excrescences but were not destroyed. Unicellular cuthneous gland cells continued to arise even after the heaviest irradiation. Irradiated tadpoles with hind limb-buds from 0.6 mm down to 0.2 mm length were unable to develop normal limbs. This capacity was propontional to the number of non-dividing embryonic cells stored at the time of irradiation. Irradiation of 5000, equal degree but the rapidity was greatest in the cases of higher dosage. Not only did these levels of irradiation fail to destroy the non-dividing embryonic cells but they did not effect their pre-deterrmined specificity nor modify their capacity for subsequent differentiation and growth. Exposure to a thyroxin solution caused the hind limb-buds without visible differentiation of cells to grow from a length of 0.8 or 0.9 mm or 1.0 mm at the time of irradiation to a length of as much as 5.0 mm in the course of 7 days. Development of thigh, shank, ankle, and toes was complete. Microscopic studies showed characteristic tissues such as cartilage, connective tissue, and muscle, developed to a comparable degree in control and irradiated specimens. (auth)« less

  16. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieken, Stefan, E-mail: Stefan.Rieken@med.uni-heidelberg.de; Habermehl, Daniel; Wuerth, Lena

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration onmore » both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.« less

  17. Analysis of Giant-nucleated Cell Formation Following X-ray and Proton Irradiations

    NASA Astrophysics Data System (ADS)

    Almahwasi, Ashraf Abdu

    Radiation-induced genetic instability has been observed in survivors of irradiated cancerous and normal cells in vitro and in vivo and has been determined in different forms, such as delayed cell death, chromosomal aberration or mutation. A well defined and characterized normal human-diploid AG1522 fibroblast cell line was used to study giant-nucleated cell (GCs) formation as the ultimate endpoint of this research. The average nuclear cross-sectional areas of the AG1522 cells were measured in mum2. The doubling time required by the AG1522 cells to divide was measured. The potential toxicity of the Hoechst dye at a working concentration on the live AG1522 cells was assessed. The yield of giant cells was determined at 7, 14 and 21 days after exposure to equivalent clinical doses of 0.2, 1 or 2 Gy of X-ray or proton irradiation. Significant differences were found to exist between X-ray or proton irradiation when compared with sham-irradiated control populations. The frequency of GCs induced by X-rays was also compared to those formed in proton irradiated cultures. The results confirm that 1 Gy X-rays are shown to induce higher rates of mitotically arrested GCs, increasing continually over time up to 21 days post-irradiation. The yield of GCs was significantly greater (10%) compared to those formed in proton populations (2%) 21 days postirradiation. The GCs can undergo a prolonged mitotic arrest that significantly increases the length of cell cycle. The arrest of GCs at the mitotic phase for longer periods of time might be indicative of a strategy for cell survival, as it increases the time available for DNA repair and enables an alternative route to division for the cells. However, the reduction in their formation 21 days after both types of radiation might favour GCs formation, ultimately contributing to carcinogenesis or cancer therapy resistance. The X-ray experiments revealed a dose-dependent increase in the GCs up to 14 days after irradiation. Although the proton

  18. Biological characterization of a novel in vitro cell irradiator

    PubMed Central

    Fowler, Tyler L.; Fisher, Michael M.; Bailey, Alison M.; Bednarz, Bryan P.

    2017-01-01

    To evaluate the overall robustness of a novel cellular irradiator we performed a series of well-characterized, dose-responsive assays to assess the consequences of DNA damage. We used a previously described novel irradiation system and a traditional 137Cs source to irradiate a cell line. The generation of reactive oxygen species was assessed using chloromethyl-H2DCFDA dye, the induction of DNA DSBs was observed using the comet assay, and the initiation of DNA break repair was assessed through γH2AX image cytometry. A high correlation between physical absorbed dose and biologic dose was seen for the production of intracellular reactive oxygen species, physical DNA double strand breaks, and modulation of the cellular double stand break pathway. The results compared favorably to irradiation with a traditional 137Cs source. The rapid, straightforward tests described form a reasonable approach for biologic characterization of novel irradiators. These additional testing metrics go beyond standard physics testing such as Monte Carlo simulation and thermo-luminescent dosimeter evaluation to confirm that a novel irradiator can produce the desired dose effects in vitro. Further, assessment of these biological metrics confirms that the physical handling of the cells during the irradiation process results in biologic effects that scale appropriately with dose. PMID:29232400

  19. MeV per Nucleon Ion Irradiation of Nuclear Materials with High Energy Synchrotron X-ray Characterization

    DOE PAGES

    Pellin, M. J.; Yacout, Abdellatif M.; Mo, Kun; ...

    2016-01-14

    The combination of MeV/Nucleon ion irradiation (e.g. 133 MeV Xe) and high energy synchrotron x-ray characterization (e.g. at the Argonne Advanced Photon Source, APS) provides a powerful characterization method to understand radiation effects and to rapidly screen materials for the nuclear reactor environment. Ions in this energy range penetrate ~10 μm into materials. Over this range, the physical interactions vary (electronic stopping, nuclear stopping and added interstitials). Spatially specific x-ray (and TEM and nanoindentation) analysis allow individual quantification of these various effects. Hard x-rays provide the penetration depth needed to analyze even nuclear fuels. Here, this combination of synchrotron x-raymore » and MeV/Nucleon ion irradiation is demonstrated on U-Mo fuels. A preliminary look at HT-9 steels is also presented. We suggest that a hard x-ray facility with in situ MeV/nucleon irradiation capability would substantially accelerate the rate of discovery for extreme materials.« less

  20. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    PubMed

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  1. Mechanisms of taste bud cell loss after head and neck irradiation.

    PubMed

    Nguyen, Ha M; Reyland, Mary E; Barlow, Linda A

    2012-03-07

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.

  2. Characterization of Treefoil Peptide Genes in Iron-Ion or X-Irradiated Human Cells

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Harrison, G. H.; Xu, J. F.; Zhou, X. F.

    1999-01-01

    The gastrointestinal (GI) tract is especially sensitive to ionizing radiation, probably because of its high rate of cell turn over. Most of the data in the literature concerns the histological/anatomical description of damage rather than functional studies. In fact, previous reports in humans have shown that, at doses of 2 Gy or more, functional abnormalities appear indicating that in radiation sensitive tissues the effects of radiation are not limited to cell death. GI functions are controlled in particular by GI peptides. One hypothesis is that ionizing radiation may modulate the synthesis and release of these peptides and consequently may contribute largely to abnormalities in GI function. However, no previous studies have been concerned with GI-specific gene expression in irradiated GI tissues. The family of human trefoil peptides comprises three members thus far, all of which are expressed in specific regions of the GI tract. In addition, two trefoil peptides, pS2 (TFFI) and HITF (TFF2) are expressed in breast tissue. Their exact function in GI and breast tissues is unclear but mucosal integrity, repair, mucin secretion and responsiveness to hormones have been shown. We recently isolated and characterized pS2 as a novel p53- and estrogen receptor-independent gene whose MRNA expression in several cells lines was found to be delayed 4 to 7 days after irradiation with X-rays, fission neutrons or 1 GeV/n Fe-ions. The aim of the present study was to determine whether pS2 and HITF have a similar induction kinetics in irradiated gastric and breast cell lines, and whether they have the phorbol ester (TPA) responsive element (TRE).

  3. Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro.

    PubMed

    Sekhejane, Palesa R; Houreld, Nicolette N; Abrahamse, Heidi

    2011-08-01

    This study investigated the effect of low-intensity laser irradiation (LILI) on pro-inflammatory cytokines involved in wound healing processes in diabetes and hypoxia. Diabetes is associated with impaired wound healing and a prolonged inflammatory phase. Pro-inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6 are elevated in diabetes. LILI has been reported to accelerate wound healing and decrease inflammatory cytokines. A human skin fibroblast cell line (WS1) was used in vitro. Cells were exposed to various insults, namely, wounding, and a diabetic or hypoxic environment. Experimental cells were exposed to an energy density of 5  J/cm(2) using a continuous wave 636-nm diode laser at an average power of 95  mW, an illuminated area of 9.05  cm(2), and an irradiance of 11 mW/cm(2) (irradiation time, 476  sec). The effect of laser irradiation on cytokine expression was examined at 1 or 24  h post-irradiation. Cellular morphology, viability, proliferation, and cytokine expression (IL-1β, IL-6, and TNF-α) were investigated. Translocation of nuclear factor-kappa B (NF-κB) was also determined. There was a higher rate of migration in irradiated wounded cultures, and irradiated hypoxic cells showed an improvement in cellular morphology. All cell models showed an increase in proliferation. Normal wounded cells showed a decrease in apoptosis, TNF-α, and IL-1β. Diabetic wounded cells showed an increase in viability and a decrease in apoptosis and IL-1β, whereas hypoxic cells showed an increase in viability and IL-6, and a decrease in apoptosis and TNF-α. NF-κB was translocated into the nucleus post-irradiation. Phototherapy resulted in hastened wound closure, increased proliferation, and normalization of cellular function. The decrease in the different pro-inflammatory cytokines and NF-κB translocation was model and time dependent. Overall, laser irradiation resulted in a reduction in inflammatory cytokines and

  4. Response of single junction GaAs/GaAs and GaAs/Ge solar cells to multiple doses of 1 MeV electrons

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Szedon, J. R.; Bartko, J.; Chung, M. A.

    1989-01-01

    A comparison of the radiation tolerance of MOCVD-grown GaAs cells and GaAs/Ge cells was undertaken using 1 MeV electrons. The GaAs/Ge cells are somewhat more tolerant of 1 MeV electron irradiation and more responsive to annealing than are the GaAs/GaAs cells examined in this study. However, both types of cells suffer a greater degradation in efficiency than has been observed in other recent studies. The reason for this is not certain, but it may be associated with an emitter thickness which appears to be greater than desired. The deep level transient spectroscopy (DLTS) spectra following irradiation are not significantly different for the GaAs/Ge and the GaAs/GaAs cells, with each having just two peaks. The annealing behavior of these peaks is also similar in the two samples examined. It appears that no penalty in radiation tolerance, and perhaps some benefit, is associated with fabricating MOCVD GaAs cells on Ge substrates rather than GaAs substrates.

  5. High and Low Energy Proton Radiation Damage in p/n InP MOCVD Solar Cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irv; Scheiman, Dave; Vargas-Aburto, Carlos; Uribe, Roberto

    1995-01-01

    InP p(+)/n/n(+) solar cells, fabricated by metal organic chemical vapor deposition, (MOCVD) were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The power output degradation, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton-irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 MeV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton-irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a deep level transient spectroscopy (DLTS) study of the irradiated samples, the minority carrier defects H4 and H5 at E(sub v) + 0.33 and E(sub v) + 0.52 eV and the majority carrier defects E7 and El0 at E(sub c) - 0.39 and E(sub c) - 0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect El0, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  6. High and low energy proton radiation damage in p/n InP MOCVD solar cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irving; Scheiman, Dave; Vargas-Aburto, Carlos

    1995-01-01

    InP p(+)nn(+) MOCVD solar cells were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The degradation of power output, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 meV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a DLTS study of the irradiated samples, the minority carrier defects H4 and H5 at E(v) + 0.33 and E(v) + 0.52 eV and the majority carrier defects E7 and E10 at E(c)- 0.39 and E(c)-0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect E10, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  7. The Effect of Lycopene Preexposure on UV-B-Irradiated Human Keratinocytes

    PubMed Central

    Ascenso, Andreia; Pedrosa, Tiago; Pinho, Sónia; Pinho, Francisco; de Oliveira, José Miguel P. Ferreira; Cabral Marques, Helena; Oliveira, Helena; Simões, Sandra; Santos, Conceição

    2016-01-01

    Lycopene has been reported as the antioxidant most quickly depleted in skin upon UV irradiation, and thus it might play a protective role. Our goal was to investigate the effects of preexposure to lycopene on UV-B-irradiated skin cells. Cells were exposed for 24 h to 10 M lycopene, and subsequently irradiated and left to recover for another 24 h period. Thereafter, several parameters were analyzed by FCM and RT-PCR: genotoxicity/clastogenicity by assessing the cell cycle distribution; apoptosis by performing the Annexin-V assay and analyzing gene expression of apoptosis biomarkers; and oxidative stress by ROS quantification. Lycopene did not significantly affect the profile of apoptotic, necrotic and viable cells in nonirradiated cells neither showed cytostatic effects. However, irradiated cells previously treated with lycopene showed an increase in both dead and viable subpopulations compared to nonexposed irradiated cells. In irradiated cells, lycopene preexposure resulted in overexpression of BAX gene compared to nonexposed irradiated cells. This was accompanied by a cell cycle delay at S-phase transition and consequent decrease of cells in G0/G1 phase. Thus, lycopene seems to play a corrective role in irradiated cells depending on the level of photodamage. Thus, our findings may have implications for the management of skin cancer. PMID:26664697

  8. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes.

    PubMed

    Pfeifer, M; Zheng, B; Erdmann, T; Koeppen, H; McCord, R; Grau, M; Staiger, A; Chai, A; Sandmann, T; Madle, H; Dörken, B; Chu, Y-W; Chen, A I; Lebovic, D; Salles, G A; Czuczman, M S; Palanca-Wessels, M C; Press, O W; Advani, R; Morschhauser, F; Cheson, B D; Lenz, P; Ott, G; Polson, A G; Mundt, K E; Lenz, G

    2015-07-01

    Antibody drug conjugates (ADCs), in which cytotoxic drugs are linked to antibodies targeting antigens on tumor cells, represent promising novel agents for the treatment of malignant lymphomas. Pinatuzumab vedotin is an anti-CD22 ADC and polatuzumab vedotin an anti-CD79B ADC that are both linked to the microtubule-disrupting agent monomethyl auristatin E (MMAE). In the present study, we analyzed the activity of these agents in different molecular subtypes of diffuse large B-cell lymphoma (DLBCL) both in vitro and in early clinical trials. Both anti-CD22-MMAE and anti-CD79B-MMAE were highly active and induced cell death in the vast majority of activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL cell lines. Similarly, both agents induced cytotoxicity in models with and without mutations in the signaling molecule CD79B. In line with these observations, relapsed and refractory DLBCL patients of both subtypes responded to these agents. Importantly, a strong correlation between CD22 and CD79B expression in vitro and in vivo was not detectable, indicating that patients should not be excluded from anti-CD22-MMAE or anti-CD79B-MMAE treatment because of low target expression. In summary, these studies suggest that pinatuzumab vedotin and polatuzumab vedotin are active agents for the treatment of patients with different subtypes of DLBCL.

  9. Characteristics of surface modified Ti-6Al-4V alloy by a series of YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Zeng, Xian; Wang, Wenqin; Yamaguchi, Tomiko; Nishio, Kazumasa

    2018-01-01

    In this study, a double-layer Ti (C, N) film was successfully prepared on Ti-6Al-4V alloy by a series of YAG laser irradiation in nitrogen atmosphere, aiming at improving the wear resistance. The effects of laser irradiation pass upon surface chemical composition, microstructures and hardness were investigated. The results showed that the surface chemicals were independent from laser irradiation pass, which the up layer of film was a mixture of TiN and TiC0.3N0.7, and the down layer was nitrogen-rich α-Ti. Both the surface roughness and hardness increased as raising the irradiation passes. However, surface deformation and cracks happened in the case above 3 passes' irradiation. The wear resistance of laser modified sample by 3 passes was improved approximately by 37 times compared to the as received substrate. Moreover, the cytotoxic V ion released from laser modified sample was less than that of as received Ti-6Al-4V alloy in SBF, suggesting the potentiality of a new try to modify the sliding part of Ti-based hard tissue implants in future biomedical application.

  10. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  11. Non-thermal cytocidal effect of infrared irradiation on cultured cancer cells using specialized device.

    PubMed

    Tanaka, Yohei; Matsuo, Kiyoshi; Yuzuriha, Shunsuke; Yan, Huimin; Nakayama, Jun

    2010-06-01

    As infrared penetrates the skin, thermal effects of infrared irradiation on cancer cells have been investigated in the field of hyperthermia. We evaluated non-thermal effects of infrared irradiation using a specialized device (1100-18000 nm with filtering of wavelengths between 1400 and 1500 nm and contact cooling) on cancer cells. In in vitro study, five kinds of cultured cancer cell lines (MCF7 breast cancer, HeLa uterine cervical cancer, NUGC-4 gastric cancer, B16F0 melanoma, and MDA-MB435 melanoma) were irradiated using the infrared device, and then the cell proliferation activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Proliferation of all the cancer cell lines was significantly suppressed by infrared irradiation. Total infrared output appeared to be correlated with cell survival. Increased temperature during infrared irradiation appeared not to play a role in cell survival. The maximum temperature elevation in the wells after each shot in the 20 and 40 J/cm(2) culture was 3.8 degrees C and 6.9 degrees C, respectively. In addition, we have shown that infrared irradiation significantly inhibited the tumor growth of MCF7 breast cancer transplanted in severe combined immunodeficiency mice and MDA-MB435 melanoma transplanted in nude mice in vivo. Significant differences between control and irradiated groups were observed in tumor volume and frequencies of TUNEL-positive and Ki-67-positive cells. These results indicate that infrared, independent of thermal energy, can induce cell killing of cancer cells. As this infrared irradiation schedule reduces discomfort and side effects, reaches the deep subcutaneous tissues, and facilitates repeated irradiations, it may have potential as an application for treating various forms of cancer.

  12. New insight into mitochondrial changes in vascular endothelial cells irradiated by gamma ray.

    PubMed

    Hu, Shunying; Gao, Yajing; Zhou, Hao; Kong, Fanxuan; Xiao, Fengjun; Zhou, Pingkun; Chen, Yundai

    2017-05-01

    To investigate alterations of mitochondria in irradiated endothelial cells to further elucidate the mechanism underlying radiation-induced heart disease. Experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were irradiated with single gamma ray dose of 0, 5, 10 and 20 Gy, respectively. Apoptosis was assessed by flow cytometry at 24, 48 and 72 h post-irradiation, respectively. The intracellular reactive oxygen species (ROS) was measured with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) at 24 h post-irradiation. Mitochondrial membrane potential (ΔΨm) by JC-1 and the opening of mitochondrial permeability transition pore (mPTP) by a calcein-cobalt quenching method were detected at 24 h post-irradiation in order to measure changes of mitochondria induced by gamma ray irradiation. Gamma ray irradiation increased HUVECs apoptosis in a dose-dependent and time-dependent manner. Irradiation also promoted ROS production in HUVECs in a dose-dependent manner. At 24 h post-irradiation, the results showed that irradiation decreases ΔΨm, however, paradoxically, flow cytometry showed green fluorescence instensity higher in irradiated HUVECs than in control HUVECs in an irradiation dose-dependent manner which indicated gamma ray irradiation inhibited mPTP opening in HUVECs. Gamma ray irradiation induces apoptosis and ROS production of endothelial cells, and decreases ΔΨm meanwhile contradictorily inhibiting the opening of mPTP.

  13. Effects of irradiation of Aplysia pacemaker neurons with 20-MeV electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, D.O.; Gaubatz, G.; Willis, J.A.

    1978-10-01

    Aplysia pacemaker neurons are excited by irradiation with 20-MeV electrons. The response is an increase in discharge frequency occurring immediately after exposure and decaying within a few seconds to minutes except at very high exposures. The threshold is on the order of 1000 rad, and cell inactivation occurs acutely only at doses on the order of 20,000 rad. Within these limits the excitatory effect is more or less linear with dose. The acute effect is not associated with dramatic resistance changes, although the resulting depolarization indicates an increase in Na/sup +/ permeability. Synaptic transmission in this preparation does not appearmore » to be more sensitive than impulse propagation. At very high doses, spike generation is blocked. Neurons recorded for a number of hours following irradiation show a hyperpolarization prior to final depolarization, which suggests that one terminal event may be an accumulation of intracellular Ca/sup 2 +/ leading to increased K/sup +/ conductance. These studies confirm and extend previous observations on the relative radioresistance of Aplysia neurons. With respect to mammalian studies on nervous system susceptibility to high doses of radiation, no events were found which correlate in time with early transient incapacitation. However, the depressed excitability occurring several hours after exposure may correlate with the occurrence of death due to the central nervous system syndrome which is seen in higher aminals.« less

  14. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  15. Structural and optical modification in 4H-SiC following 30 keV silver ion irradiation

    NASA Astrophysics Data System (ADS)

    Kaushik, Priya Darshni; Aziz, Anver; Siddiqui, Azher M.; Lakshmi, G. B. V. S.; Syväjärvi, Mikael; Yakimova, Rositsa; Yazdi, G. Reza

    2018-05-01

    The market of high power, high frequency and high temperature based electronic devices is captured by SiC due to its superior properties like high thermal conductivity and high sublimation temperature and also due to the limitation of silicon based electronics in this area. There is a need to investigate effect of ion irradiation on SiC due to its application in outer space as outer space is surrounded both by low and high energy ion irradiations. In this work, effect of low energy ion irradiation on structural and optical property of 4H-SiC is investigated. ATR-FTIR is used to study structural modification and UV-Visible spectroscopy is used to study optical modifications in 4H-SiC following 30 keV Ag ion irradiation. FTIR showed decrease in bond density of SiC along the ion path (track) due to the creation of point defects. UV-Visible absorption spectra showed decrease in optical band gap from 3.26 eV to 2.9 eV. The study showed degradation of SiC crystallity and change in optical band gap following low energy ion irradiation and should be addressed while fabricationg devices based on SiC for outer space application. Additionally, this study provides a platform for introducing structural and optical modification in 4H-SiC using ion beam technology in a controlled manner.

  16. Specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells in vivo. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, K.; Hayakawa, H.; Sekiguchi, M.

    1977-07-01

    The specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells was examined using an in vivo assay system with hemagglutinating virus of Japan (Sendai virus) inactivated by uv light. A clear dose response was observed between the level of uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells and the amount of T4 endonuclease V activity added. The T4 enzyme was unstable in human cells, and its half-life was 3 hr. Fractions derived from an extract of Escherichia coli infected with T4v/sub 1/, a mutant defective in the endonuclease V gene, showed no ability to restore themore » uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells. However, fractions derived from an extract of T4D-infected E. coli with endonuclease V activity were effective. The T4 enzyme was effective in xeroderma pigmentosum cells on DNA damaged by uv light but not in cells damaged by 4-nitroquinoline 1-oxide. The results of these experiments show that the T4 enzyme has a specific action on human cell DNA in vivo. Treatment with the T4 enzyme increased the survival of group A xeroderma pigmentosum cells after uv irradiation.« less

  17. The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response.

    PubMed

    Raimbault, Ophélie; Benayoun, Stephane; Anselme, Karine; Mauclair, Cyril; Bourgade, Tatiana; Kietzig, Anne-Marie; Girard-Lauriault, Pierre-Luc; Valette, Stephane; Donnet, Christophe

    2016-12-01

    To study the biological activity effects of femtosecond laser-induced structures on cell behavior, TA6V samples were micro-textured with focused femtosecond laser pulses generating grooves of various dimensions on the micrometer scale (width: 25-75μm; depth: 1-10μm). LIPSS (Laser Induced Periodic Surface Structures) were also generated during the laser irradiation, providing a supplementary structure (sinusoidal form) of hundreds of nanometers at the bottom of the grooves oriented perpendicular (⊥ LIPPS) or parallel (// LIPPS) to the direction of these grooves. C3H10 T1/2 murine mesenchymal stem cells were cultivated on the textured biomaterials. To have a preliminary idea of the spreading of biological media on the substrate, prior to cell culture, contact angle measurement were performed. This showed that the post-irradiation hydrophilicity of the samples can decrease with time according to its storage environment. The multiscale structuration either induced a collaborative or a competitive influence of the LIPSS and grooves on the cells. It has been shown that cells individually and collectively were most sensitive to microscale grooves which were narrower than 25μm and deeper than 5μm with ⊥ LIPPS. In some cases, cells were individually sensitive to the LIPSS but the cell layer organization did not exhibit significant differences in comparison to a non-textured surface. These results showed that cells are more sensitive to the nanoscale structures (LIPSS), unless the microstructures's size is close to the cell size and deeper than 5μm. There, the cells are sensitive to the microscale structures and go on spreading following these structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Efficient production of reactive oxygen species in neural precursor cells after exposure to 250 MeV protons.

    PubMed

    Giedzinski, Erich; Rola, Radoslaw; Fike, John R; Limoli, Charles L

    2005-10-01

    The space radiation environment is composed of highly energetic ions, dominated by protons, that pose a range of potential health risks to astronauts. Traversals of these particles through certain tissues may compromise the viability and/or function of sensitive cells, including neural precursors found within the dentate subgranular zone of the hippocampus. Irradiation has been shown to deplete these cells in vivo, and reductions of these critical cells are believed to impair neurogenesis and cognition. To more fully understand the mechanisms underlying the behavior of these precursor cells after irradiation, we have developed an in vitro neural precursor cell system and used it to assess acute (0-48 h) changes in ROS and mitochondrial end points after exposure to Bragg-peak protons of 250 MeV. Relative ROS levels were increased at nearly all doses (1-10 Gy) and postirradiation times (6-24 h) compared to unirradiated controls. The increase in ROS after proton irradiation was more rapid than that observed with X rays and showed a well-defined dose response at 6 and 24 h, increasing approximately 10% and 3% per gray, respectively. However, by 48 h postirradiation, ROS levels fell below controls and coincided with minor reductions in mitochondrial content. Use of the antioxidant alpha-lipoic acid (before or after irradiation) was shown to eliminate the radiation-induced rise in ROS levels. Our results corroborate earlier studies using X rays and provide further evidence that elevated ROS are integral to the radioresponse of neural precursor cells.

  19. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  20. SU-C-204-04: Irradiation of Human Cell Lines Using Various Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y; McMahon, S; Kaminuma, T

    2016-06-15

    Purpose: The purpose of this study is to investigate and quantify the biological effects of ion radiation using several human cell lines. We aim to answer the question of whether carbon ion the most ideal ion species for heavy ion radiotherapy. Methods: The cells were irradiated at different positions along the pristine Bragg peak of several ions with different atomic number. The biological effectiveness was evaluated using the clonogenic cell survival assay. Irradiation of three human lung cancer cell lines and a fibroblast cell line were undertaken using the charged particle beam at the NASA Space Radiation Laboratory at Brookhavenmore » National Lab. Four mono-energetic ion beams (carbon, oxygen, helium and lithium) were used to irradiate the cells. Water or media-filled T25 flasks were lined up along the beam line so that the cell-containing surfaces of the flasks were placed at a specific depth along the pristine Bragg curve. Four depths along the curve, representing entrance point, rising peak, peak and distal fall off, were selected to determine biological effectiveness. Gaf-chromic films were placed between the flasks to monitor the irradiation as soon as it was finished. Results: For all ion radiations, the maximum cell killing effect occurs at either peak or distal fall off, depending on the cell lines. For instance, for the fibroblast cell line AGO1522, RBEs of 1.4, 1.2, 1.4 and 1.9 were observed at the Bragg peak for Helium, Lithium, Carbon and Oxygen ions. Comparing positions, RBEs of 0.9, 1.2, 1.4 and 1.8 were observed for carbon irradiation of AGO-1522 cells positions corresponding to entrance, rising peak, peak and distal fall off. Conclusion: RBE values differ with position in the Bragg peak, ion species and cell line. Ions other than carbon may prove more effective in certain irradiation conditions and may contribute to optimized heavy ion therapy.« less

  1. Low- and high-dose laser irradiation effects on cell migration and destruction

    NASA Astrophysics Data System (ADS)

    Layton, Elivia; Gallagher, Kyra A.; Zukerman, Sara; Stevens, Brianna; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2018-02-01

    Metastases are the cause of more than 90 percent of cancer-related deaths. Current treatment methods, including chemotherapy, radiation, and surgery, fail to target the metastases effectively. One potential treatment for metastatic cancer is laser immunotherapy (LIT). LIT combines the use of a photothermal laser with an immunoadjuvant, Glycated Chitosan (GC). GC combined with single-walled carbon nanotubes (SWNTs) has proven to be a viable alternative to traditional cancer treatment methods, when under irradiation of laser with appropriate wavelength. In this study, the effects of low dose and high dose laser irradiation on metastatic pancreatic cancer cell migration were observed. It was found that low dose irradiation increased the migration rate, but the high dose irradiation significantly decreased the migration rate of the cancer cells. When using LIT, the goal is to kill tumor cells and to prompt the correct immune response. If the tumor were irradiated with a low dose, it would promote metastasis. If the dose of irradiation were too high, it would destroy the entire tumor and the immune response would not recognize the tumor. Therefore, the laser dose plays an important role in LIT, particularly when using SWNT as light absorbing agent. Our results from this study will delineate the optimal laser irradiation dose for destroying tumor cells and at the same time preserve and release tumor antigens as a precursor of antitumor immune response.

  2. Effect of irradiation temperature and strain rate on the mechanical properties of V-4Cr-4Ti irradiated to low doses in fission reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Snead, L.L.; Rowcliffe, A.F.

    Tensile tests performed on irradiated V-(3-6%)Cr-(3-6%)Ti alloys indicate that pronounced hardening and loss of strain hardening capacity occurs for doses of 0.1--20 dpa at irradiation temperatures below {approximately}330 C. The amount of radiation hardening decreases rapidly for irradiation temperatures above 400 C, with a concomitant increase in strain hardening capacity. Low-dose (0.1--0.5 dpa) irradiation shifts the dynamic strain aging regime to higher temperatures and lower strain rates compared to unirradiated specimens. Very low fracture toughness values were observed in miniature disk compact specimens irradiated at 200--320 C to {approximately}1.5--15 dpa and tested at 200 C.

  3. X-ray microbeam stand-alone facility for cultured cells irradiation

    NASA Astrophysics Data System (ADS)

    Bożek, Sebastian; Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M.

    2017-03-01

    The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.

  4. Protection by beverages, fruits, vegetables, herbs, and flavonoids against genotoxicity of 2-acetylaminofluorene and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in metabolically competent V79 cells.

    PubMed

    Edenharder, R; Sager, J W; Glatt, H; Muckel, E; Platt, K L

    2002-11-26

    Chinese hamster lung fibroblasts, genetically engineered for the expression of rat cytochrome P450 dependent monooxygenase 1A2 and rat sulfotransferase 1C1 (V79-rCYP1A2-rSULT1C1 cells), were utilized to check for possible protective effects of beverages of plant origin, fruits, vegetables, and spices against genotoxicity induced by 2-acetylaminofluorene (AAF) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Antigenotoxic activities of juices from spinach and red beets against AAF could be monitored with similar effectivity by the HPRT-mutagenicity test (IC(50)=0.64%; 2.57%) and alkaline single cell gel electrophoresis (comet assay; IC(50)=0.12%; 0.89%) which detects DNA strand breaks and abasic sites. Applying the comet assay, genotoxicity of PhIP could, however, be demonstrated only in the presence of hydroxyurea and 1-[beta-D-arabinofuranosyl]cytosine, known inhibitors of DNA repair synthesis. As expected, AAF and PhIP were unable to induce any genotoxic effects in the parent V79 cells. Genotoxic activity of PhIP was strongly reduced in a dose-related manner by green tea and red wine, by blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach, while two brands of beer, coffee, black tea, rooibos tea, morellos, black-currants, plums, red beets, broccoli (raw and cooked), and chives were somewhat less active. One brand of beer was only moderately active while white wine, bananas, white grapes, and strawberries were inactive. Similarly, genotoxicity of AAF was strongly reduced by green, black, and rooibos tea, red wine, morellos, black-currants, kiwi, watermelon, and spinach while plums, red beets, and broccoli (raw) were less potent. Broccoli cooked exerted only moderate and white wine weak antigenotoxic activity. With respect to the possible mechanism(s) of inhibition of genotoxicity, benzo[a]pyrene-7,8-dihydrodiol (BaP-7,8-OH) and N-OH-PhIP were applied as substrates for the CYP1A family and for rSULT 1C1, respectively. Morellos

  5. Carbon ion irradiation of the human prostate cancer cell line PC3: A whole genome microarray study

    PubMed Central

    SUETENS, ANNELIES; MOREELS, MARJAN; QUINTENS, ROEL; CHIRIOTTI, SABINA; TABURY, KEVIN; MICHAUX, ARLETTE; GRÉGOIRE, VINCENT; BAATOUT, SARAH

    2014-01-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/μm) at the beam of the Grand Accélérateur National d’Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy. PMID:24504141

  6. Reaction of cells to local, regional, and general low-intensive laser irradiation

    NASA Astrophysics Data System (ADS)

    Baibekov, Iskander M.; Kasymov, A. S.; Musaev, Erkin S.; Vorojeikin, V. M.; Artikov, S. N.

    1993-07-01

    Local influence of low intensive laser irradiation (LILI) of Helium-Neon (HNL), Copper vapor (CVL), Nitrogen (UVL) and Arsenic Gallium (AGL) lasers cause stimulation of processes of physiological and reparative regeneration in intact skin, and mucous membrane of stomach and duodenum, dermatome wounds and gastroduodenal ulcers. Structural bases of these effects are the acceleration of cell proliferation and differentiation and also the activation of intracellular structures and intensification of cell secretion. Regional influence of the pointed types of LILI on hepar in cirrhosis and hepatitis causes decreasing of the inflammatory and cirrhotic changes. After endo- and exo-vascular laser irradiations of blood the decreasing of the number of pathological forms of erythrocytes and the increasing of their catalase activity, are indicated. General (total) laser irradiation of the organism--laser shower, increases the bone marrow cells proliferation, especially myeloid series. It is accompanied with acceleration of their differentiation and migration in circulation. It was revealed, that HNL to a considerable extent influences the epithelial cells and CVL the connective tissue cells. UVL increases the amount of microorganisms on cell surfaces (membrane bound microorganisms). Regional irradiation of the LILI causes both direct and indirect influence of cells. Structural changes of bone marrow cells and gut mucous membrane cells indicate intersystemic interaction.

  7. Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length

    NASA Astrophysics Data System (ADS)

    Lee, Jonathan; Flitsiyan, Elena; Chernyak, Leonid; Yang, Jiancheng; Ren, Fan; Pearton, Stephen J.; Meyler, Boris; Salzman, Y. Joseph

    2018-02-01

    The influence of 1.5 MeV electron irradiation on minority transport properties of Si doped β-Ga2O3 vertical Schottky rectifiers was observed for fluences up to 1.43 × 1016 cm-2. The Electron Beam-Induced Current technique was used to determine the minority hole diffusion length as a function of temperature for each irradiation dose. This revealed activation energies related to shallow donors at 40.9 meV and radiation-induced defects with energies at 18.1 and 13.6 meV. Time-resolved cathodoluminescence measurements showed an ultrafast 210 ps decay lifetime and reduction in carrier lifetime with increased irradiation.

  8. Target depth dependence of damage rate in metals by 150 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ishi, Y.; Kuriyama, Y.; Mori, Y.; Sato, K.; Uesugi, T.; Xu, Q.

    2015-01-01

    A series of irradiation experiments with 150 MeV protons was performed. The relationship between target depth (or shield thickness) and displacement damage during proton irradiation was obtained by in situ electrical resistance measurements at 20 K. Positron annihilation lifetime measurements were also performed at room temperature after irradiation, as a function of the target thickness. The displacement damage was found to be high close to the beam incident surface area, and decreased with increasing target depth. The experimental results were compared with damage production calculated with an advanced Monte Carlo particle transport code system (PHITS).

  9. Rescue of CD8+ T cell vaccine memory following sublethal γ irradiation.

    PubMed

    McFarland, Hugh I; Berkson, Julia D; Lee, Jay P; Elkahloun, Abdel G; Mason, Karen P; Rosenberg, Amy S

    2015-07-31

    Sublethal γ irradiation eliminates CD8+ T cell mediated memory responses. In this work, we explored how these memory responses could be rescued in the aftermath of such exposure. We utilized two models of CD8+ T cell mediated immunity: a mouse model of Listeria monocytogenes (LM) infection in which CD8+ T cells specific for LM expressed antigens (Listeriolysin O, LLO) can be tracked, and a murine skin graft model in which CD8+ T cells mediate rejection across a MHC class I (D(d)) disparity. In the LM immunized mice, LL0 specific CD8+ T memory cells were lost on irradiation, preserved with rapid revaccination with an attenuated strain 1-3 days post-irradiation (PI), and these mice survived a subsequent wild type LM challenge. A genetic "signature of rescue" identified a group of immune-associated mRNA maintained or upregulated following irradiation and rescue. A number of these factors, including IL-36γ, dectin-2 (Clec4n), and mir101c are upregulated rapidly after exposure of mice to sublethal γ radiation alone and are sustained by early, but not later rescue. Such factors will be evaluated as potential therapeutics to replace individual vaccines for global rescue of CD8+ T memory cell responses following sublethal γ irradiation. The skin allograft model mirrored that of the LM model in that the accelerated D(d) skin allograft rejection response was lost in mice exposed to sublethal γ radiation, but infusion of allogeneic D(d) expressing bone marrow cells 1-4 days PI preserved the CD8+ T memory mediated accelerated rejection response, further suggesting that innate immune responses may not always be essential to rescue of CD8+ memory T cells following γ irradiation. Published by Elsevier Ltd.

  10. Detection of Irradiation Treatment of Foods Using DNA `Comet Assay'

    NASA Astrophysics Data System (ADS)

    Khan, Hasan M.; Delincée, Henry

    1998-06-01

    Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results.

  11. Outcome in patients with small cell lung cancer re-irradiated for brain metastases after prior prophylactic cranial irradiation.

    PubMed

    Bernhardt, Denise; Bozorgmehr, Farastuk; Adeberg, Sebastian; Opfermann, Nils; von Eiff, Damian; Rieber, Juliane; Kappes, Jutta; Foerster, Robert; König, Laila; Thomas, Michael; Debus, Jürgen; Steins, Martin; Rieken, Stefan

    2016-11-01

    Patients with brain metastases from small-cell lung cancer (SCLC) who underwent prior prophylactic cranial irradiation (PCI) are often treated with a second course of whole brain radiation therapy (Re-WBRT) or stereotactic radiosurgery (SRS) for purposes of palliation in symptomatic patients, hope for increased life expectancy or even as an alternative to untolerated steroids. Up to date there is only limited data available regarding the effect of this treatment. This study examines outcomes in patients in a single institution who underwent cerebral re-irradiation after prior PCI. We examined the medical records of 76 patients with brain metastases who had initially received PCI between 2008 and 2015 and were subsequently irradiated with a second course of cerebral radiotherapy. Patients underwent re-irradiation using either Re-WBRT (88%) or SRS (17%). The outcomes, including symptom palliation, radiation toxicity, and overall survival (OS) following re-irradiation were analyzed. Survival and correlations were calculated using log-rank, univariate, and multivariate Cox proportional hazards-ratio analyses. Treatment-related toxicity was classified according to CTCAE v4.0. Median OS of all patients was 3 months (range 0-12 months). Median OS after Re-WBRT was 3 months (range 0-12 months). Median OS after SRS was 5 months (range 0-12 months). Karnofsky performance status scale (KPS ≥50%) was significantly associated with improved OS in both univariate (HR 2772; p=0,009) and multivariate analyses (HR 2613; p=0,024) for patients receiving Re-WBRT. No unexpected toxicity was observed and the observed toxicity remained consistently low. Symptom palliation was achieved in 40% of symptomatic patients. In conclusion, cerebral re-irradiation after prior PCI is beneficial for symptom palliation and is associated with minimal side effects in patients with SCLC. Our survival data suggests that it is primarily useful in patients with adequate performance status. Copyright

  12. The activation of directional stem cell motility by green light-emitting diode irradiation.

    PubMed

    Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun

    2013-03-01

    Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    PubMed

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  14. Performance and temperature dependencies of proton irradiated n/p GaAs and n/p silicon cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1985-01-01

    The n/p homojunction GaAs cell is found to be more radiation resistant than p/nheteroface GaAs under 10 MeV proton irradiation. Both GaAs cell types outperform conventional silicon n/p cells under the same conditions. An increase temperature dependency of maximum power for the GaAs n/p cells is attributed largely to differences in Voc between the two GaAs cell types. These results and diffusion length considerations are consistent with the conclusion that p-type GaAs is more radiation resistant than n-type and therefore that the n/p configuration is possibly favored for use in the space radiation environment. However, it is concluded that additional work is required in order to choose between the two GaAs cell configurations.

  15. Calculations of the displacement damage and short-circuit current degradation in proton irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, C. S.; Li, S. S.; Loo, R. Y.

    1987-01-01

    A theoretical model for computing the displacement damage defect density and the short-circuit current (I sub sc) degradation in proton-irradiated (AlGa)As-GaAs p-n junction solar cells is presented. Assumptions were made with justification that the radiation induced displacement defects form an effective recombination center which controls the electron and hole lifetimes in the junction space charge region and in the n-GaAs active layer of the irradiated GaAs p-n junction cells. The degradation of I sub sc in the (AlGa)As layer was found to be negligible compared to the total degradation. In order to determine the I sub sc degradation, the displacement defect density, path length, range, reduced energy after penetrating a distance x, and the average number of displacements formed by one proton scattering event were first calculated. The I sub sc degradation was calculated by using the electron capture cross section in the p-diffused layer and the hole capture cross section in the n-base layer as well as the wavelength dependent absorption coefficients. Excellent agreement was found between the researchers calculated values and the measured I sub sc in the proton irradiated GaAs solar cells for proton energies of 100 KeV to 10 MeV and fluences from 10 to the 10th power p/square cm to 10 to the 12th power p/square cm.

  16. The calculated influence of atmospheric conditions on solar cell ISC under direct and global solar irradiances

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.

    1987-01-01

    Calculations of the influence of atmospheric conditions on solar cell short-circuit current (Isc) are made using a recently developed computer model for solar spectral irradiance distribution. The results isolate the dependence of Isc on changes in the spectral irradiance distribution without the direct influence of the total irradiance level. The calculated direct normal irradiance and percent diffuse irradiance are given as a reference to indicate the expected irradiance levels. This method can be applied to the calibration of photovoltaic reference cells. Graphic examples are provided for amorphous silicon and monocrystalline silicon solar cells under direct normal and global normal solar irradiances.

  17. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun

    2005-06-01

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessedmore » by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.« less

  18. MOLECULAR DESORPTION OF BAKED STAINLESS STEEL FROM IRRADIATION WITH 9 GeV/NUCLEON Au79+, 10 GeV/NUCLEON Cu29+, AND 23GeV p+ UNDER PERPENDICULAR IMPACT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FISCHER,W.; IRISO, U.; MUSTAFIN, E.

    We report on molecular desorption of baked stainless steel from irradiation with high energy ions under perpendicular impact. Ion induced molecular desorption has affected the performance of a number of ion accelerators, in which the beam loss typically occurs under small angles. However, experimental parameters can be easier controlled in measurements with perpendicular impact. Desorption coefficients for small angle impact can be estimated from these measurements. The measurements were carried out at Brookhaven's Relativistic Heavy Ion Collider.

  19. Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells.

    PubMed

    Houreld, Nicolette N; Masha, Roland T; Abrahamse, Heidi

    2012-07-01

    Low-intensity laser irradiation (LILI) has been used to modulate a variety of biological processes, including diabetic wound healing. The mechanism of action is thought to exist primarily with the mitochondria. This study aimed to determine the effect of irradiation on normal, diabetic, and ischemic mitochondrial electron transport chain (ETC) complexes. Normal, diabetic and ischemic human skin fibroblast mitochondria were irradiated in vitro at a wavelength of 660 nm and a fluence of either 5 or 15 J/cm(2). Non-irradiated mitochondria served as controls. Enzyme activities of mitochondrial complexes I, II, III, and IV were determined immediately post-irradiation. Normal, diabetic, and ischemic cells were irradiated and adenosine triphosphate (ATP) and active mitochondria were determined by luminescence and fluorescent microscopy, respectively. Irradiated diabetic mitochondria at a fluence of 15 J/cm(2) showed a significant decrease in complex III activity (P < 0.05). Normal (P < 0.01) and diabetic (P < 0.05) mitochondria irradiated at either 5 or 15 J/cm(2) showed a significant increase in complex IV activity. ATP results showed a significant increase in irradiated normal cells (5 J/cm(2); P < 0.05) and diabetic cells (15 J/cm(2); P < 0.01). There was a higher accumulation of active mitochondria in irradiated cells than non-irradiated cells. Irradiation at 660 nm has the ability to influence mitochondrial enzyme activity, in particular cytochrome c oxidase. This leads to increased mitochondrial activity and ATP synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  20. Long-term cognitive effects of human stem cell transplantation in the irradiated brain.

    PubMed

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L

    2014-09-01

    Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function.

  1. Temperature dependence of damage coefficient in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1973-01-01

    Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.

  2. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  3. Theileria parva: effects of irradiation on a culture of parasitized bovine lymphoid cells. [Gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvin, A.D.; Brown, C.G.D.; Stagg, D.A.

    1975-01-01

    Aliquots of a culture of Theileria parva-infected bovine lymphoid cells were irradiated at 0, 300, 600, 900, and 1200 rads. The short-term effects of irradiation were evaluated on examination of Giemsa-stained smears and on autoradiography of cells labeled with (/sup 3/H)thymidine. Irradiation inhibited cell division but parasite division did not appear to be inhibited and macroschizont nuclear particles increased in number, frequently to several hundred per schizont. There was no evidence of an increased percentage switch from macro- to microschizont. Apparently viable cells were still present in all cultures 4 days after irradiation.

  4. Spatially-Selective Membrane Permeabilization Induced by Cell-Solution Electrode Atmospheric Pressure Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Hokari, Yutaro; Kanzaki, Makoto; Kaneko, Toshiro

    2015-09-01

    Gene transfection, which is the process of deliberately introducing nucleic acids into cells, is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure plasma (APP). We have previously reported that the cell membrane permeability, which is closely related with gene transfection, is improved using a cell-solution electrode for generating He-APP. He-APP is irradiated to the solution containing the adherent cells and delivery materials such as fluorescent dyes (YOYO-1) and plasmid DNA (GFP). In case of YOYO-1 delivery, more than 80% of cells can be transferred only in the plasma-irradiated area and the spatially-selective membrane permeabilization is realized by the plasma irradiation. In addition, it is confirmed that plasmid DNA is transfected and the GFP genes are expressed using same APP irradiation system with no obvious cellular damage.

  5. The RBE-LET relationship for rodent intestinal crypt cell survival, testes weight loss, and multicellular spheroid cell survival after heavy-ion irradiation

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.

    1992-01-01

    This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.

  6. DLTS and in situ C-V analysis of trap parameters in swift 50 MeV Li3+ ion-irradiated Ni/SiO2/Si MOS capacitors

    NASA Astrophysics Data System (ADS)

    Shashank, N.; Singh, Vikram; Gupta, Sanjeev K.; Madhu, K. V.; Akhtar, J.; Damle, R.

    2011-04-01

    Ni/SiO2/Si MOS structures were fabricated on n-type Si wafers and were irradiated with 50 MeV Li3+ ions with fluences ranging from 1×1010 to 1×1012 ions/cm2. High frequency C-V characteristics are studied in situ to estimate the build-up of fixed and oxide charges. The nature of the charge build-up with ion fluence is analyzed. Defect levels in bulk Si and its properties such as activation energy, capture cross-section, trap concentration and carrier lifetimes are studied using deep-level transient spectroscopy. Electron traps with energies ranging from 0.069 to 0.523 eV are observed in Li ion-irradiated devices. The dependence of series resistance, substrate doping and accumulation capacitance on Li ion fluence are clearly explained. The study of dielectric properties (tan δ and quality factor) confirms the degradation of the oxide layer to a greater extent due to ion irradiation.

  7. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Heilmann, J.; Rink, H.

    The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV μ -1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non

  8. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation.

    PubMed

    Baumstark-Khan, C; Heilmann, J; Rink, H

    2003-01-01

    The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV micrometers-1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of

  9. Chromatin remodeling modulates radiosensitivity of the daughter cells derived from cell population exposed to low- and high-LET irradiation

    PubMed Central

    Chen, Xiaoyan; Zhu, Lin; Zhang, Hang; Wang, Chen; Shao, Chunlin

    2017-01-01

    Radiation effects are dependent of linear energy transfer (LET), but it is still obscure whether the daughter cells (DCs) derived from irradiated population are radioresistance and much less the underlying mechanism. With the measurements of survival, proliferation and γH2AX foci, this study shows that the DCs from γ-ray irradiated cells (DCs-γ) became more radioresistant than its parent control without irradiation, but the radiosensitivity of DCs from α-particle irradiated cells (DCs-α) was not altered. After irradiation with equivalent doses of γ-rays and α-particles, the foci number of histone H3 lysine 9 dimethylation (H3K9me3) and the activity of histone deacetylase (HDAC) in DCs-γ was extensively higher than these in DCs-α and its parent control, indicating that a higher level of heterochromatin was formed in DCs-γ but not in DCs-α. Treatment of cells with SAHA (an inhibitor of HDAC) decreased the level of heterochromatin domains by inhibiting the expressions of H3K9m3 and HP-1a proteins and triggering the expression of acetylated core histone H3 (Ac-H3). When cells were treated with SAHA, the radioresistance phenotype of DCs-γ was eliminated so that the radiosensitivities of DCs-γ, DCs-α and their parent cells approached to same levels. Our current results reveal that γ-rays but not α-particles could induce chromatin remodeling and heterochromatinization which results in the occurrence of radioresistance of DCs, indicating that the combination treatment of irradiation and HDAC inhibitor could serve as a potential cancer therapy strategy, especially for the fraction radiotherapy of low-LET irradiation. PMID:28881774

  10. Synthesis and characterization of two crystallographic forms of Ag{sub 0.79}VS{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Mazhar N., E-mail: maz@berkeley.edu; Ji, Huiwen; Hirai, Daigorou

    2013-06-15

    A previously unreported compound, Ag{sub 0.79}VS{sub 2}, has been synthesized; its structure and elementary properties are reported. Ag{sub 0.79}VS{sub 2} crystallizes in two forms, designated as the α and β, related to the 1s-InTaS{sub 2} structure. Single crystal x-ray diffraction shows the α form to have a single layer hexagonal structure with a unit cell of 3.213(3) Å×7.809(6) Å, consisting of layers of edge-shared VS{sub 6} triangular prisms separated by layers of Ag. The β form is similar but has an a{sub o}√((3)) supercell in the basal plane, yielding a unit cell of 5.573(5) Å×7.822(6) Å. Both forms have disorderedmore » and displaced silver in the basal plane, but the β form has partial ordering of its silver sublattice and in-plane vanadium trimers. Resistivity measurements show metallic temperature dependence with an unusual hysteresis between 210 K and 130 K. Magnetic susceptibility measurements show Pauli Paramagnetic behavior. The Seebeck coefficient at 300 K is 42 µV/K. - Graphical abstract: Red=Vanadium, Gray=Silver, Yellow=Sulfur. Top left is α-Ag{sub 0.79}VS{sub 2} in the 1s-InTaS{sub 2} structure type. Top right: 2a×2b projection down the c-axis with displacement ellipsoids (50% probability) of atoms drawn to illustrate the split silver model. Bottom left is β-Ag{sub 0.79}VS{sub 2} having the a{sub o}√((3)) supercell. Bottom right: projection along the c-axis, displacement ellipsoids of atoms drawn. - Highlights: • Two crystallographic forms of Ag{sub 0.79}VS{sub 2}, designated α and β, are reported. • They are found to crystallize in the 1s-InTaS{sub 2} structure type. • β-Ag{sub 0.79}VS{sub 2} has partial ordering of the Ag sublattice and vanadium trimers. • Ag{sub 0.79}VS{sub 2} shows Pauli Paramagnetic behavior, a Seebeck coefficient of 42 µV/K at 300 K. • Ag{sub 0.79}VS{sub 2} shows metallic resistivity with an unusual hysteresis between 210 K and 130 K.« less

  11. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    NASA Astrophysics Data System (ADS)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  12. Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions.

    PubMed

    Keta, Otilija D; Todorović, Danijela V; Bulat, Tanja M; Cirrone, Pablo Ga; Romano, Francesco; Cuttone, Giacomo; Petrović, Ivan M; Ristić Fira, Aleksandra M

    2017-05-01

    The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied.

  13. Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions

    PubMed Central

    Keta, Otilija D; Todorović, Danijela V; Bulat, Tanja M; Cirrone, Pablo GA; Romano, Francesco; Cuttone, Giacomo; Petrović, Ivan M

    2016-01-01

    The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied. PMID:27633574

  14. Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    PubMed Central

    Barrio, María Marcela; Abes, Riad; Colombo, Marina; Pizzurro, Gabriela; Boix, Charlotte; Roberti, María Paula; Gélizé, Emmanuelle; Rodriguez-Zubieta, Mariana

    2012-01-01

    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter. PMID:22768350

  15. The effect of in vivo and in vitro irradiation (25 Gy) on the subsequent in vitro growth of satellite cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Schultz, E.; Cassens, R. G.

    1996-01-01

    The effect of in vivo and in vitro irradiation on subsequent satellite cell growth, in vitro, was investigated to ascertain the ability of a 25 Gy dose to inhibit satellite cell proliferation. Satellite cells were isolated from the left (irradiated) and right (non-irradiated) Pectoralis thoracicus of two-week-old tom turkeys 16 h (n=3) and seven weeks (n=2) after the left Pectoralis thoracicus had been irradiated (25 Gy). Satellite cells isolated from the irradiated and non-irradiated muscles exhibited similar (P>0.10) in vitro proliferation indicating that a population of satellite cells survived an in vivo dose of 25 Gy. In additional experiments, satellite cell cultures derived from tom turkey Pectoralis thoracicus were irradiated (25 Gy) in vitro. The number of satellite cells did not (P>0.05) increase in irradiated cultures for 134 h following irradiation, while satellite cells in non-irradiated cultures proliferated (P<0.05) over this time. At later time periods, satellite cell number increased (P<0.05) in irradiated cultures indicating that a population of satellite cells survived irradiation. The results of these in vitro experiments suggest that a 25 Gy dose of irradiation does not abolish satellite cell divisions in the turkey Pectoralis thoracicus.

  16. Inhibition of N-acetylglucosaminyltransferase V enhances the cetuximab-induced radiosensitivity of nasopharyngeal carcinoma cells likely through EGFR N-glycan alterations.

    PubMed

    Huang, Xiaomin; Liu, Ting; Wang, Qiongyao; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2017-05-23

    N-acetylglucosaminyltransferase V (GnT-V), an enzyme that catalyses the formation of the N-linked β-1-6 branching of oligosaccharides, is related to the radiosensitivity of nasopharyngeal carcinoma (NPC). Cetuximab (C225) is an epidermal growth factor receptor (EGFR) inhibitor used as a radiosensitizer in the treatment of NPC. In this study, we used GnT-V as a molecular target to further sensitize cetuximab-treated NPC cells to radiation. The results from two NPC cell lines (CNE1 and CNE2) revealed that the silencing of GnT-V enhanced cetuximab-induced radiosensitivity by decreasing the β-1-6 branching of oligosaccharides on the EGFR. GnT-V down-regulation combined with cetuximab decreased the survival fraction, healing rate and cell viability and increased the apoptosis rate. Concomitantly, the combination of cetuximab and irradiation did not change the EGFR mRNA and protein levels and decreased the β-1-6 branching on the EGFR. Subsequently, we further explored the signalling downstream of EGF, particularly the PI3K/Akt signalling pathway, and discovered that treatment consisting of GnT-V down-regulation, irradiation and cetuximab was negatively correlated with phospho-Akt and phspho-PI3K. Finally, an in vivo experiment with radiotherapy revealed that the combination of GnT-V down-regulation and cetuximab decelerated tumour growth. In summary, our study demonstrated that the combination of decreased GnT-V activity and cetuximab enhanced NPC radiosensitivity, and the possible mechanism underlying this effect might involve the N-linked β1-6 branching of the EGFR. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Ascorbate, added after irradiation, reduces the mutant yield and alters the spectrum of CD59- mutations in A(L) cells irradiated with high LET carbon ions

    NASA Technical Reports Server (NTRS)

    Ueno, Akiko; Vannais, Diane; Lenarczyk, Marek; Waldren, Charles A.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    It has been reported that X-ray induced HPRT- mutation in cultured human cells is prevented by ascorbate added after irradiation. Mutation extinction is attributed to neutralization by ascorbate, of radiation-induced long-lived radicals (LLR) with half-lives of several hours. We here show that post-irradiation treatment with ascorbate (5 mM added 30 min after radiation) reduces, but does not eliminate, the induction of CD59- mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon ions (LET of 100 KeV/microm). RibCys, [2(R,S)-D-ribo-1',2',3',4'-Tetrahydroxybutyl]-thiazolidene-4(R)-ca riboxylic acid] (4 mM) gave a similar but lesser effect. The lethality of the carbon ions was not altered by these chemicals. Preliminary data are presented that ascorbate also alters the spectrum of CD59- mutations induced by the carbon beam, mainly by reducing the incidence of small mutations and mutants displaying transmissible genomic instability (TGI), while large mutations are unaffected. Our results suggest that LLR are important in initiating TGI.

  18. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells.

    PubMed

    Le, M; Mothersill, C E; Seymour, C B; Ahmad, S B; Armstrong, A; Rainbow, A J; McNeill, F E

    2015-08-21

    The luminescence intensity of 340±5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to (90)Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1 x 10(4) cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8 x 10(3)±2.5 x 10(3) counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for (90)Y activities 14 to 703 μCi where a positive relationship between photoemission and (90)Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1 x 10(4) cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  19. Influence of homologous recombinational repair on cell survival and chromosomal aberration induction during the cell cycle in γ-irradiated CHO cells

    PubMed Central

    Wilson, Paul F.; Hinz, John M.; Urbin, Salustra S.; Nham, Peter B.; Thompson, Larry H.

    2010-01-01

    The repair of DNA double-strand breaks (DSB) by homologous recombinational repair (HRR) underlies the high radioresistance and low mutability observed in S-phase mammalian cells. To evaluate the contributions of HRR and nonhomologous end-joining (NHEJ) to overall DSB repair capacity throughout the cell cycle after γ-irradiation, we compared HRR-deficient RAD51D-knockout 51D1 to CgRAD51D-complemented 51D1 (51D1.3) CHO cells for survival and chromosomal aberrations (CAs). Asynchronous cultures were irradiated with 150 or 300 cGy and separated by cell size using centrifugal elutriation. Cell survival of each synchronous fraction (~20 fractions total from early G1 to late G2/M) was measured by colony formation. 51D1.3 cells were most resistant in S, while 51D1 cells were most resistant in early G1 (with survival and chromosome-type CA levels similar to 51D1.3) and became progressively more sensitive throughout S and G2. Both cell lines experienced significantly reduced survival from late S into G2. Metaphases were collected from every third elutriation fraction at the first post-irradiation mitosis and scored for CAs. 51D1 cells irradiated in S and G2 had ~2-fold higher chromatid-type CAs and a remarkable ~25-fold higher level of complex chromatid-type exchanges compared to 51D1.3 cells. Complex exchanges in 51D1.3 cells were only observed in G2. These results show an essential role for HRR in preventing gross chromosomal rearrangements in proliferating cells and, with our previous report of reduced survival of G2-phase NHEJ-deficient prkdc CHO cells [Hinz et al. DNA Repair 4, 782–792, 2005], imply reduced activity/efficiency of both HRR and NHEJ as cells transition from S to G2. PMID:20434408

  20. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Jianfei; Belikova, Natalia A.; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cellmore » surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.« less

  1. Heritable non-lethal damage to cultured human cells irradiated with heavy ions.

    PubMed

    Walker, James T; Todd, Paul; Walker, Olivia A

    2002-12-01

    During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (Linear Energy Transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 microm2, at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. The views expressed in this article are those of the author(s) and do not necessarily reflect the views or policies of the USEPA.

  2. The growth of human fibroblasts and A431 epidermoid carcinoma cells on gamma-irradiated human amnion collagen substrata.

    PubMed

    Liu, B; Harrell, R; Lamb, D J; Dresden, M H; Spira, M

    1989-10-15

    Human fibroblasts and A431 human epidermoid carcinoma cells were cultured on gamma-irradiated human amnion collagen as well as on plastic dishes and non-irradiated collagen coated dishes. The morphology, attachment, growth and short-term cytotoxicity of these culture conditions have been determined. Both irradiated and non-irradiated amnion collagen enhanced the attachment and proliferation of fibroblasts as compared to the plastic dishes. No differences in these properties were observed for A431 cells cultured on irradiated collagen when compared with culture on non-irradiated collagen substrates. Cytotoxicity assays showed that irradiated and non-irradiated collagens were not cytotoxic for either fibroblasts or A431 cells. The results demonstrated that amnion collagen irradiated at doses of 0.25-2.0 Mrads is optimal for cell growth.

  3. Synthesis and characterization of γ-irradiated cadmium-borate glasses doped V2O5

    NASA Astrophysics Data System (ADS)

    Bahammam, S.; Abd El Al, S.; Ezz-Eldin, F. M.

    In this work, we study the relationship between the optical and magnetic properties for the irradiated and unirradiated V2O5-doped cadmium borate glasses and examined their optical band energy that has compromise of non-bridging oxygen (NBO) and bridging oxygen (BO), V3+, V4+ and V5+, and BO3 units and BO4 units. The induced defects created by γ-rays were characterized by optical and EPR spectroscopy. The dependability of the defects and the tendency for recombination or conversion of the defects besides the environment of optically dynamic V centers was also discussed. It is concluded that the development of both optical and magnetic intensity is related to V4+ ions at tetrahedral sites whereas the decrease in their intensity is recognized to the ligand-metal charge transfer transitions of V4+ ions coupled to V5+. The optical band gap energy (Eg) has been observed to decrease with increasing either V2O5 content or γ-doses. High γ-dose reduces the values of the allowed direct optical band gap Eg of 0.5 Mol% V2O5 glass up to 45 kGy after which Eg increases, but remain lower than that of un-irradiated glass. Borate glasses under this study showed linear optical absorption response over the dose range of 5-80 kG. Fading under dark and room light in 2 h after exposure in the course of 30 days have been studied in detail and presented. Our results and findings indicate that, the investigated samples may be seemed to be a good candidate for radiation processing purposes.

  4. Leptin induction following irradiation is a conserved feature in mammalian epithelial cells and tissues.

    PubMed

    Licursi, Valerio; Cestelli Guidi, Mariangela; Del Vecchio, Giorgia; Mannironi, Cecilia; Presutti, Carlo; Amendola, Roberto; Negri, Rodolfo

    2017-09-01

    Leptin (LEP) is a peptide hormone with multiple physiological functions. Besides its systemic actions, it has important peripheral roles such as a mitogen action on keratinocytes following skin lesions. We previously showed that LEP mRNA is significantly induced in response to neutron irradiation in mouse skin and that the protein increases in the irradiated epidermis and in the related subcutaneous adipose tissue. In this work, we investigated the post-transcriptional regulation of LEP by miRNAs and the conservation of LEP's role in radiation response in human cells. We used microarray analysis and real-time polymerase chain reaction (RT-PCR) to analyze modulation of miRNAs potentially targeting LEP in mouse skin following irradiation and bioinformatic analysis of transcriptome of irradiated human cell lines and cancer tissues from radiotherapy-treated patients to evaluate LEP expression. We show that a network of miRNAs potentially targeting LEP mRNA is modulated in irradiated mouse skin and that LEP itself is significantly modulated by irradiation in human epithelial cell lines and in breast cancer tissues from radiotherapy-treated patients. These results confirm and extend the previous evidence that LEP has a general and important role in the response of mammalian cells to irradiation.

  5. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation

    PubMed Central

    Yao, Cuiping; Rudnitzki, Florian; Hüttmann, Gereon; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2017-01-01

    Purpose Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs) attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. Materials and methods AuNPs (30 nm) were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell–AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate–dextran uptake. Results Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. Conclusion Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium, and cell–AuNP incubation time. PMID:28848345

  6. Increased viability of odontoblast-like cells subjected to low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Oliveira, C. F.; Basso, F. G.; Lins, E. C.; Kurachi, C.; Hebling, J.; Bagnato, V. S.; de Souza Costa, C. A.

    2010-07-01

    Studies have shown that the increase of cell metabolism depends on the low level laser therapy (LLLT) parameters used to irradiate the cells. However, the optimal laser dose to up-regulate pulp cell activity remains unknown. Consequently, the aim of this study was to evaluate the metabolic response of odontoblast-like cells (MDPC-23) exposed to different LLLT doses. Cells at 20000 cells/cm2 were seeded in 24-well plates using plain culture medium (DMEM) and were incubated in a humidified incubator with 5% CO2 at 37°C. After 24 h, the culture medium was replaced by fresh DMEM supplemented with 5% (stress by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to different laser doses from a near infrared diode laser prototype designed to provide a uniform irradiation of the wells. The experimental groups were: G1: 1.5 J/cm2 + 5% FBS; G2: 1.5 J/cm2 + 10% FBS; G3: 5 J/cm2 + 5% FBS; G4: 5 J/cm2 + 10% FBS; G5: 19 J/cm2 + 5% FBS; G6: 19 J/cm2 + 10% FBS. LLLT was performed in 3 consecutive irradiation cycles with a 24-hour interval. Non-irradiated cells cultured in DMEM supplemented with either 5 or 10% FBS served as control groups. The analysis of the metabolic response was performed by the MTT assay 3 h after the last irradiation. G1 presented an increase in SDH enzyme activity and differed significantly (Mann-Whitney test, p < 0.05) from the other groups. Analysis by scanning electron microscopy showed normal cell morphology in all groups. Under the tested conditions, LLLT stimulated the metabolic activity of MDPC-23 cultured in DMEM supplemented with 5% FBS and exposed to a laser dose of 1.5 J/cm2. These findings are relevant for further studies on the action of near infrared lasers on cells with odontoblast phenotype.

  7. The selection of light emitting diode irradiation parameters for stimulation of human mesenchymal stem cells proliferation

    NASA Astrophysics Data System (ADS)

    Lewandowski, Rafał; Trafny, ElŻbieta A.; Stepińska, Małgorzata; Gietka, Andrzej; Kotowski, Paweł; Dobrzyńska, Monika; Łapiński, Mariusz P.

    2016-12-01

    Human mesenchymal stem cells (hMSCs) with their vast differentiation potential are very useful for cell-based regenerative medicine. To achieve sufficient numbers of cells for tissue engineering, many different methods have been used to reach the effective increase of cell proliferation. Low-energy red light provided by light emitting diodes (LEDs) have been recently introduced as a method that promoted biomodulation and proliferation of hMSCs in vitro. The purpose of this study was to find the optimum stimulatory dosimetric parameters of LED (630 nm) irradiation on the hMSCs proliferation. The energy density was 2, 3, 4, 10, 20 J/cm2 and the power density used was 7, 17 or 30 mW/cm2. Human MSCs were irradiated with single or triple exposures daily at room temperature and the cell proliferation rate was evaluated during nine days after irradiation. The results showed that after irradiation 4 J/cm2 and 17 mW/cm2 at a single dose the proliferation rate of hMSCs increased on day 5 and 9 (13% and 7%, respectively) when compared to nonirradiated cells. However, triple LED irradiation under the same parameters resulted in the decline in the cell proliferation rate on day 5, but the proliferation rate was at the same level on day 9, when compared with the cell proliferation after irradiation with a single dose. The effect of a single dose irradiation with 4 J/cm2 and 17 mW/cm2 on the proliferation of cells was the highest when the cells were irradiated in phosphate-buffered saline (PBS) instead of MSCGM culture medium.

  8. Irradiation of breast cancer cells enhances CXCL16 ligand expression and induces the migration of natural killer cells expressing the CXCR6 receptor.

    PubMed

    Yoon, Mee Sun; Pham, Chanh Tin; Phan, Minh-Trang Thi; Shin, Dong-Jun; Jang, Youn-Young; Park, Min-Ho; Kim, Sang-Ki; Kim, Seokho; Cho, Duck

    2016-12-01

    Few studies have examined the migration pattern of natural killer (NK) cells, especially after radiation treatment for cancer. We investigated whether irradiation can modulate the expression of chemokines in cancer cells and the migration of NK cells to irradiated tumor cells. The expression of chemokine receptors (CXCR3, CXCR4 and CXCR6) on interleukin-2 (IL-2)/IL-15-activated NK cells was assessed using flow cytometry. Related chemokine ligands (CXCL11, CXCL12 and CXCL16) in human breast cancer cell lines (MCF7, SKBR3 and MDA-MB231) irradiated at various doses were assessed using reverse transcription-polymerase chain reaction (RT-PCR), fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA). The cell-free culture supernatant was collected 96 h after irradiation of breast cancer cell lines for migration and blocking assays. The activated NK cells expressed CXCR6. Expression of the CXCR6 ligand CXCL16 increased in a time- and dose-dependent manner in all analyzed cancer cell lines. CXCL16 expression was statistically significantly enhanced in all breast cancer cell lines on day 3 after 20 Gy irradiation. Activated NK cells migration correlated with CXCL16 concentration (R 2  = 0.91; P <0.0001). Significantly enhanced migration of NK cells to irradiated cancer cells was observed for a dose of 20 Gy in MCF7 (P = 0.043) and SKBR3 (P = 0.043) cells, but not in MDA-MB231 (P = 0.225) cells. A blocking assay using a CXCR6 antibody showed a significant decrease in the migration of activated NK cells in all cancer cell lines. Our data indicate that irradiation induces CXCL16 chemokine expression in cancer cells and enhances the migration of activated NK cells expressing CXCR6 to irradiated breast cancer cells. These results suggest that radiation would improve the anti-tumor effect of NK cells through enhanced migration of NK cells to tumor site for the treatment of patients with breast cancer. Copyright © 2016

  9. Beta1-integrin and IL-1alpha expression as bystander effect of medium from irradiated cells: the pilot study.

    PubMed

    Osterreicher, Jan; Skopek, Jirí; Jahns, Juta; Hildebrandt, Guido; Psutka, Jan; Vilasová, Zdenka; Tanner, Judith Maria; Vogt, Jürgen; Butz, Tilman

    2003-01-01

    Bystander effects have been proposed as a third action pathway of ionising radiation besides direct and indirect effects. The purpose of the study was to investigate whether expression of interleukin-1alpha (IL-1alpha) and beta1-integrin is elevated in bystander cells as a marker for bystander effects in comparison with classical markers such as the clonogenic assay, apoptosis and the presence of micronuclei. The hybrid cell line E.A. hy.926 obtained by fusion of HUVEC cells with the epithelial cell line A 459 was irradiated with 0-5 Gy. Bystander effects were established via medium transfer at 45 min and 4 h after irradiation from irradiated to nonirradiated cell populations. In order to exclude effects of the irradiated medium itself, irradiated medium only was also used for transfer to nonirradiated cells. Then, cells were fixed at 1, 2, 6, and 24 h after irradiation or medium transport and IL-1alpha and beta1-integrin were detected and evaluated. A higher number of beta1-integrin-positive cells was observed in both irradiated and bystander cell populations than in the control group at 1 and 24 h after irradiation with 1 Gy or medium transfer. Significantly higher numbers of IL-1alpha-positive cells were found at 1, 2, and 6 h after irradiation with 1 Gy or medium transfer as well as at 2 and 6 h after irradiation with 5 Gy or medium transfer. Clonogenic survival decreased dependently on the dose in irradiated cells but did not show any significant difference between the bystander cell populations and sham-irradiated cells. The irradiated medium itself did not have any effect. It is concluded that beta1-integrin and IL-1alpha expression may serve as more sensitive markers of post-irradiation responses in bystander cell populations than the classical radiobiological markers. Moreover, overexpression of beta1-integrin and IL-1alpha may induce increased susceptibility to inflammation of bystander cells.

  10. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line.

    PubMed

    Turunen, Aaro; Hukkanen, Veijo; Nygårdas, Michaela; Kulmala, Jarmo; Syrjänen, Stina

    2014-07-08

    Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann-Whitney U-test was used for statistical calculations. Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis.

  11. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line

    PubMed Central

    2014-01-01

    Background Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Methods Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann–Whitney U-test was used for statistical calculations. Results Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. Conclusions HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis. PMID:25005804

  12. Use of primary cell cultures to measure the late effects in the skins of rhesus monkeys irradiated with protons

    NASA Astrophysics Data System (ADS)

    Cox, A. B.; Wood, D. H.; Lett, J. T.

    Previous pilot investigations of the uses of primary cell cultures to study late damage in stem cells of the skin of the New Zealand white (NZW) rabbit and the rhesus monkey /1-3/, have been extended to individual monkeys exposed to 55 MeV protons. Protons of this energy have a larger range in tissue of (~2.6 cm) than the 32 MeV protons (~0.9 cm) to which the animals in our earlier studies had been exposed. Although the primary emphases in the current studies were improvement and simplification in the techniques and logistics of transportation of biopsies to a central analytical facility, comparison of the quantitative measurements obtained thus far for survival of stem cells in the skins from animals irradiated 21 years ago reveals that the effects of both proton energies are similar.

  13. Study of the Effects of Ultrasonic Waves on the Reproductive Integrity of Mammalian Cells Cultured in Vitro

    NASA Technical Reports Server (NTRS)

    Martins, B. I.

    1971-01-01

    The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.

  14. Temperature and intensity dependence of the performance of an electron-irradiated (AlGa)As/GaAs solar cell

    NASA Technical Reports Server (NTRS)

    Swartz, C. K.; Hart, R. E., Jr.

    1979-01-01

    The performance of a Hughes, liquid-phase epitaxial 2 centimeter-by-2 centimeter, (AlGa)As/GaAs solar cell was measured before and after irradiations with 1 MeV electrons to fluences of 1 x 10 to the 16th power electrons/sq cm. The temperature dependence of performance was measured over the temperature range 135 to 415 K at each fluence level. In addition, temperature dependences were measured at five intensity levels from 137 to 2.57 mW/sq cm before irradiation and after a fluence of 1 x 10 to the 16th power electrons/sq cm. For the intermediate fluences, performance was measured as a function of intensity at 298 K only.

  15. Scorpion venom peptide SPVII promotes irradiated cells proliferation and increases the expression of the IL-3 receptor

    PubMed Central

    2013-01-01

    Background The previous investigation demonstrated the radioprotective efficacy of peptides isolated from the venom of Buthus Martti Karsch. In this study, the effect of isolated scorpion venom peptide II (SVPII) on irradiated M-NFS-60 cells and mouse bone marrow mononuclear cells (BM-MNCs) was observed. The AlamarBlue cell viability assay, a colony-forming unit (CFU) assay, flow cytometry (FCM), immunofluorescence, and Western blotting were used to evaluate cell proliferation, cell cycle progression, and the expression of the IL-3 receptor (IL-3R) protein in non-irradiated and irradiated cells. Results Proliferation of irradiated M-NFS-60 cells was significantly accelerated by SPVII, and this effect was further enhanced by co-application of IL-3. Similarly, SPVII increased the number of BM-MNC CFUs and this proliferative effect was greater in the presence of SVPII plus IL-3. In addition, SPVII significantly altered cell cycle progression; SVPII enhanced the fraction of unirradiated M-NFS-60 cells in S phase and the fraction of irradiated M-NFS-60 cells arrested in G2/M. The expression of IL-3R protein by unirradiated M-NFS-60 cells was enhanced significantly by SVPII, and SVPII-induced IL-3R overexpression was 10-fold greater in irradiated M-NFS-60 cells. Conclusions These results indicated the hematopoietic growth factor (HGF)-like effects of SVPII on irradiated cells, possibly mediated by upregulation of IL-3R. PMID:23835458

  16. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; 21st Century Center of Excellence Program for Biomedical Research Using Accelerator Technology, Maebashi, Gunma

    2010-01-15

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated beta-galactosidase (SA-beta-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependentmore » kinase inhibitor p21{sup WAF1/CIP1} in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells (<1% of initially irradiated cells) could not form a colony: however, they showed a morphological phenotype consistent with cellular senescence, that is, enlarged and flattened appearance. The senescent nature of these attached cells was further indicated by staining for SA-beta-gal. The mean telomere length was not changed after irradiation with C-ions. Phosphorylation of p53 at serine 15 as well as the expression of p21{sup WAF1/CIP1} was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.« less

  17. 5 MeV Proton irradiation effects on 200 GHz silicon-germanium heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Gnana Prakash, A. P.; Hegde, Vinayakprasanna N.; Pradeep, T. M.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Cressler, J. D.

    2017-12-01

    The total dose effects of 5 MeV proton and Co-60 gamma irradiation in the dose range from 1 to 100 Mrad on advanced 200 GHz Silicon-Germanium heterojunction bipolar transistors (SiGe HBTs) are investigated. The SRIM simulation study was conducted to understand the energy loss of 5 MeV proton ions in SiGe HBT structure. Pre- and post-radiation DC figure of merits such as forward- and inverse-mode Gummel characteristics, excess base current, DC current gain and output characteristics were used to quantify the radiation tolerance of the devices. The results show that the proton creates a significant amount of damages in the surface and bulk of the transistor when compared with gamma irradiation. The SiGe HBTs shows robust ionizing radiation tolerance even up to a total dose of 100 Mrad for both radiations.

  18. Mitotic accumulation of dimethylated lysine 79 of histone H3 is important for maintaining genome integrity during mitosis in human cells.

    PubMed

    Guppy, Brent J; McManus, Kirk J

    2015-02-01

    The loss of genome stability is an early event that drives the development and progression of virtually all tumor types. Recent studies have revealed that certain histone post-translational modifications exhibit dynamic and global increases in abundance that coincide with mitosis and exhibit essential roles in maintaining genomic stability. Histone H2B ubiquitination at lysine 120 (H2Bub1) is regulated by RNF20, an E3 ubiquitin ligase that is altered in many tumor types. Through an evolutionarily conserved trans-histone pathway, H2Bub1 is an essential prerequisite for subsequent downstream dimethylation events at lysines 4 (H3K4me2) and 79 (H3K79me2) of histone H3. Although the role that RNF20 plays in tumorigenesis has garnered much attention, the downstream components of the trans-histone pathway, H3K4me2 and H3K79me2, and their potential contributions to genome stability remain largely overlooked. In this study, we employ single-cell imaging and biochemical approaches to investigate the spatial and temporal patterning of RNF20, H2Bub1, H3K4me2, and H3K79me2 throughout the cell cycle, with a particular focus on mitosis. We show that H2Bub1, H3K4me2, and H3K79me2 exhibit distinct temporal progression patterns throughout the cell cycle. Most notably, we demonstrate that H3K79me2 is a highly dynamic histone post-translational modification that reaches maximal abundance during mitosis in an H2Bub1-independent manner. Using RNAi and chemical genetic approaches, we identify DOT1L as a histone methyltransferase required for the mitotic-associated increases in H3K79me2. We also demonstrate that the loss of mitotic H3K79me2 levels correlates with increases in chromosome numbers and increases in mitotic defects. Collectively, these data suggest that H3K79me2 dynamics during mitosis are normally required to maintain genome stability and further implicate the loss of H3K79me2 during mitosis as a pathogenic event that contributes to the development and progression of tumors

  19. Reduction of aqueous Crvi using nanoscale zero-valent iron dispersed by high energy electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan

    2013-09-01

    High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of Crvi to Criii in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.

  20. Mortality, size of the gonads, and ultrastructure of primordial germ cell in chick embryos treated with gamma-irradiation or injected with donor cells.

    PubMed

    Maeda, T; Clark, M E; Etches, R J

    1998-06-01

    The effects of injection and/or gamma-irradiation prior to injection on mortality, size of the gonads, and ultrastructure of primordial germ cell (PGC) were examined after 5 d of incubation. The mortality of embryos injected with donor cells was significantly higher than that of control and irradiated embryos. All irradiated embryos were alive, although their development was delayed compared to those not exposed to irradiation. The size of the gonads of embryos injected with donor cells were similar to those of control embryos, however, the size of the gonads in irradiated embryos was significantly smaller than those of control embryos. The number of PGC in the gonads was significantly decreased by irradiation. There was no notable effect of irradiation or injection on the nuclei and cytoplasmic organelles in PGC.

  1. Irradiation effects on multilayered W/ZrO2 film under 4 MeV Au ions

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Gao, Yuan; Fu, Engang; Yang, Tengfei; Xue, Jianming; Yan, Sha; Chu, Paul K.; Wang, Yugang

    2014-12-01

    Irradiation induced structural changes in multilayered W/ZrO2 nanocomposites with periodic bilayer thicknesses of (7/14 nm) and (70/140 nm) were investigated following Au+ ion irradiation. The samples were irradiated by 4 MeV Au ions with fluences ranging from 6 × 1014 to 1 × 1016 ions/cm2. The immiscible W/ZrO2 interfaces remained unchanged without intermixing of the layers upon the irradiation. No voids were observed in the samples with different periodic layer thicknesses. The XRD and XTEM studies reveal thickness dependent microstructural changes in the samples. W and ZrO2 grains in the thinner (7/14 nm) bilayer sample exhibit significant resistance to grain growth compared to the thicker (70/140 nm) bilayer sample as well as a W monolayer film. The high fraction of flat interfaces as well as grain boundaries in multilayer films plays a role in suppressing ion irradiation-induced grain growth and void formation.

  2. Hundred joules plasma focus device as a potential pulsed source for in vitro cancer cell irradiation

    NASA Astrophysics Data System (ADS)

    Jain, J.; Moreno, J.; Andaur, R.; Armisen, R.; Morales, D.; Marcelain, K.; Avaria, G.; Bora, B.; Davis, S.; Pavez, C.; Soto, L.

    2017-08-01

    Plasma focus devices may arise as useful source to perform experiments aimed to study the effects of pulsed radiation on human cells in vitro. In the present work, a table top hundred joules plasma focus device, namely "PF-400J", was adapted to irradiate colorectal cancer cell line, DLD-1. For pulsed x-rays, the doses (energy absorbed per unit mass, measured in Gy) were measured using thermoluminescence detectors (TLD-100 dosimeters). The neutron fluence and the average energy were used to estimate the pulsed neutron doses. Fifty pulses of x-rays (0.12 Gy) and fifty pulses of neutrons (3.5 μGy) were used to irradiate the cancer cells. Irradiation-induced DNA damage and cell death were assessed at different time points after irradiation. Cell death was observed using pulsed neutron irradiation, at ultralow doses. Our results indicate that the PF-400J can be used for in vitro assessment of the effect of pulsed radiation in cancer cell research.

  3. Performance and temperature dependencies of proton irradiated n/p and p/n GaAs and n/p silicon cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1985-01-01

    n/p homojunction GaAs cells are found to be more radiation resistant than p/n heteroface GaAs under 10 MeV proton irradiation. Both GaAs cell types outperform conventional silicon n/p cells under the same conditions. An increased temperature dependency of maximum power for the GaAs n/p cells is attributed to differences in Voc between the two GaAs cell types. These results and diffusion length considerations are consistent with the conclusion that p-type GaAs is more radiation resistant than n-type and therefore that the n/p configuration is possibly favored for use in the space radiation environment. However, it is concluded that additional work is required in order to choose between the two GaAs cell configurations.

  4. Hydrogen release from 800 MeV proton-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Oliver, B. M.; Venhaus, T. J.; Causey, R. A.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ˜300 to ˜1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ˜7%. There is a small additional release fraction occurring at ˜550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  5. Cell oxidation-reduction imbalance after modulated radiofrequency radiation.

    PubMed

    Marjanovic, Ana Marija; Pavicic, Ivan; Trosic, Ivancica

    2015-01-01

    Aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells.

  6. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  7. Importance of dosimetry protocol for cell irradiation on a low X-rays facility and consequences for the biological response.

    PubMed

    Dos Santos, Morgane; Paget, Vincent; Ben Kacem, Mariam; Trompier, François; Benadjaoud, Mohamed Amine; François, Agnès; Guipaud, Olivier; Benderitter, Marc; Milliat, Fabien

    2018-06-01

    The main objective of radiobiology is to establish links between doses and radiation-induced biological effects. In this context, well-defined dosimetry protocols are crucial to the determination of experimental protocols. This work proposes a new dosimetry protocol for cell irradiation in a SARRP and shows the importance of the modification of some parameters defined in dosimetry protocol for physical dose and biological outcomes. Once all parameters of the configuration were defined, dosimetry measurements with ionization chambers and EBT3 films were performed to evaluate the dose rate and the attenuation due to the cell culture medium. To evaluate the influence of changes in cell culture volume and/or additional filtration, 6-well plates containing EBT3 films with water were used to determine the impact on the physical dose at 80 kV. Then, experiments with the same irradiation conditions were performed by replacing EBT3 films by HUVECs. The biological response was assessed using clonogenic assay. Using a 0.15 mm copper filter lead to a variation of +1% using medium thickness of 0.104 cm to -8% using a medium thickness of 0.936 cm on the physical dose compare to the reference condition (0.313 cm). For the 1 mm aluminum filter, a variation of +8 to -40% for the same medium thickness conditions has been observed. Cells irradiated in the same conditions showed significant differences in survival fraction, corroborating the effects of dosimetric changes on physical dose. This work shows the importance of dosimetry in radiobiology studies and the need of an accurate description of the dosimetry protocol used for irradiation.

  8. Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia

    2016-07-01

    Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are

  9. Eckol protects V79-4 lung fibroblast cells against gamma-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH(2)-terminal kinase pathway.

    PubMed

    Zhang, Rui; Kang, Kyoung Ah; Piao, Mei Jing; Ko, Dong Ok; Wang, Zhi Hong; Lee, In Kyung; Kim, Bum Joon; Jeong, Il Yun; Shin, Taekyun; Park, Jae Woo; Lee, Nam Ho; Hyun, Jin Won

    2008-09-04

    The radioprotective effect of eckol against gamma-ray radiation-induced oxidative stress and its possible protective mechanisms were investigated. Eckol was found to reduce the intracellular reactive oxygen species generated by gamma-ray radiation. Moreover, eckol also protected against radiation-induced cellular DNA damage and membrane lipid peroxidation, which are the main targets of radiation-induced damage. In addition, eckol recovered the cell viability damaged by radiation via the inhibition of apoptosis. Irradiated cells with eckol treatment reduced the expression of bax, the activation of caspase 9 and caspase 3, which were induced by radiation. However, irradiated cells with eckol recovered the expression of bcl-2 and mitochondrial cytochrome c which were decreased by radiation. The anti-apoptotic effect of eckol exerted via the inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1)-c-Jun NH(2)-terminal kinase (JNK)-activator protein 1 (AP-1) cascades induced by radiation. In summary, the results suggest that eckol protects cells against the oxidative stress induced by radiation via the reduction of reactive oxygen species and the attenuation of activation in SEK1-JNK-AP-1 pathway.

  10. Production and aging of paramagnetic point defects in P-doped floating zone silicon irradiated with high fluence 27 MeV electrons

    NASA Astrophysics Data System (ADS)

    Joita, A. C.; Nistor, S. V.

    2018-04-01

    Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm-2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.

  11. Microstructural examination of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelles, D.S.

    Microstructural examination results are reported for four heats of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment to {approximately}4 dpa at {approximately}200 and 300 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment or composition.

  12. Dietary Antioxidants Protect Hematopoietic Cells and Improve Animal Survival after Total-Body Irradiation

    PubMed Central

    Wambi, Chris; Sanzari, Jenine; Wan, X. Steven; Nuth, Manunya; Davis, James; Ko, Ying-Hui; Sayers, Carly M.; Baran, Matthew; Ware, Jeffrey H.; Kennedy, Ann R.

    2009-01-01

    The purpose of this study was to determine whether a dietary supplement consisting of L-selenomethionine, vitamin C, vitamin E succinate, α-lipoic acid and N-acetyl cysteine could improve the survival of mice after total-body irradiation. Antioxidants significantly increased the 30-day survival of mice after exposure to a potentially lethal dose of X rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 h after 1 Gy and 8 Gy. Antioxidants were effective in preventing peripheral lymphopenia only after low-dose irradiation. Antioxidant supplementation was also associated with increased bone marrow cell counts after irradiation. Supplementation with antioxidants was associated with increased Bcl2 and decreased Bax, caspase 9 and TGF-β1 mRNA expression in the bone marrow after irradiation. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow after sublethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival, and modulation of apoptosis is implicated as a mechanism for the radioprotection of the hematopoietic system by antioxidants. PMID:18363433

  13. Metabolic activity of odontoblast-like cells irradiated with blue LED (455 nm).

    PubMed

    de Almeida, Leopoldina Fátima Dantas; Basso, Fernanda Gonçalves; Turrioni, Ana Paula Silveira; de-Souza-Costa, Carlos Alberto; Hebling, Josimeri

    2016-01-01

    Blue light emitting diodes (LEDs) are frequently used in dentistry for light activation of resin-based materials; however, their photobiostimulatory effects have not yet been fully investigated. This study aimed to investigate the effect of blue LED (455 nm) on the metabolism of odontoblast-like cells MDPC-23. Energy doses of 2 and 4 J/cm(2) were used at 20 mW/cm(2) fixed power density. MDPC-23 cells were seeded at 10,000 cells/cm(2) density in Dulbecco's modified Eagle's medium (DMEM) containing 10 % fetal bovine serum (FBS). After 12 h, the culture medium was replaced with new DMEM supplemented with 0.5 % of FBS, and the cells were incubated for further 12 h. After that, single irradiation was performed to the culture, under selected parameters. Cell viability evaluations (Alamar Blue Assay, n = 12), number of viable cells (Trypan Blue Assay, n = 12), morphological analysis by scanning electron microscopy (SEM, n = 2), gene expression (n = 6) of alkaline phosphatase (Alp), collagen (Col-1a1), and dental matrix protein (Dmp-1) (quantitative polymerase chain reaction (qPCR)) were performed 72 h after irradiation. Data were analyzed by Kruskal-Wallis, ANOVA, and Tukey tests (p < 0.05). Direct light application at 4 J/cm(2) energy dose had no negative effects on cell viability, while irradiation with 2 J/cm(2) reduced cell metabolism. None of doses affected the number of viable cells compared with the control group. The two energy doses downregulated the expression of Alp; however, expression of Col-1a1 and Dmp-1 had no alteration. Cells presented change in the cytoskeleton only when irradiated with 2 J/cm(2). In conclusion, the blue LED (455 nm) irradiation, under the evaluated parameters, had no biostimulatory effects on MDPC-23 cells.

  14. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (Figure D79-1) may be excluded from the leak check. (b) Pressure side leak...

  15. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (Figure D79-1) may be excluded from the leak check. (b) Pressure side leak...

  16. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (Figure D79-1) may be excluded from the leak check. (b) Pressure side leak...

  17. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (Figure D79-1) may be excluded from the leak check. (b) Pressure side leak...

  18. Hydrogen-Rich Water Ameliorates Total Body Irradiation-Induced Hematopoietic Stem Cell Injury by Reducing Hydroxyl Radical

    PubMed Central

    Xue, Xiaolei; Han, Xiaodan; Li, Yuan; Lu, Lu; Li, Deguan

    2017-01-01

    We examined whether consumption of hydrogen-rich water (HW) could ameliorate hematopoietic stem cell (HSC) injury in mice with total body irradiation (TBI). The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical (∙OH) levels in the c-kit+ cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs) increased and apoptotic c-kit+ cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI) of γ-H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit+ cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit+ cells. Finally, the cell cycle (P21), cell apoptosis (BCL-XL and BAK), and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1) proteins were significantly altered by HW in irradiated mouse c-kit+ cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury. PMID:28243358

  19. Hydrogen-Rich Water Ameliorates Total Body Irradiation-Induced Hematopoietic Stem Cell Injury by Reducing Hydroxyl Radical.

    PubMed

    Zhang, Junling; Xue, Xiaolei; Han, Xiaodan; Li, Yuan; Lu, Lu; Li, Deguan; Fan, Saijun

    2017-01-01

    We examined whether consumption of hydrogen-rich water (HW) could ameliorate hematopoietic stem cell (HSC) injury in mice with total body irradiation (TBI). The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical ( ∙ OH) levels in the c-kit + cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs) increased and apoptotic c-kit + cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI) of γ -H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit + cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit + cells. Finally, the cell cycle (P21), cell apoptosis (BCL-XL and BAK), and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1) proteins were significantly altered by HW in irradiated mouse c-kit + cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury.

  20. Treating cell culture media with UV irradiation against adventitious agents: minimal impact on CHO performance.

    PubMed

    Yen, Sandi; Sokolenko, Stanislav; Manocha, Bhavik; Blondeel, Eric J M; Aucoin, Marc G; Patras, Ankit; Daynouri-Pancino, Farnaz; Sasges, Michael

    2014-01-01

    Sterility of cell culture media is an important concern in biotherapeutic processing. In large scale biotherapeutic production, a unit contamination of cell culture media can have costly effects. Ultraviolet (UV) irradiation is a sterilization method effective against bacteria and viruses while being non-thermal and non-adulterating in its mechanism of action. This makes UV irradiation attractive for use in sterilization of cell culture media. The objective of this study was to evaluate the effect of UV irradiation of cell culture media in terms of chemical composition and the ability to grow cell cultures in the treated media. The results showed that UV irradiation of commercial cell culture media at relevant disinfection doses impacted the chemical composition of the media with respect to several carboxylic acids, and to a minimal extent, amino acids. The cumulative effect of these changes, however, did not negatively influence the ability to culture Chinese Hamster Ovary cells, as evaluated by cell viability, growth rate, and protein titer measurements in simple batch growth compared with the same cells cultured in control media exposed to visible light. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  1. Delayed persistence of giant-nucleated cells induced by X-ray and proton irradiation in the progeny of replicating normal human f ibroblast cells

    NASA Astrophysics Data System (ADS)

    Almahwasi, A. A.; Jeynes, J. C.; Merchant, M. J.; Bradley, D. A.; Regan, P. H.

    2017-08-01

    Ionising radiation can induce giant-nucleated cells (GCs) in the progeny of irradiated populations, as demonstrated in various cellular systems. Most in vitro studies have utilised quiescent cancerous or normal cell lines but it is not clear whether radiation-induced GCs persist in the progeny of normal replicated cells. In the current work we show persistent induction of GCs in the progeny of normal human-diploid skin fibroblasts (AG1522). These cells were originally irradiated with a single equivalent clinical dose of 0.2, 1 or 2 Gy of either X-ray or proton irradiation and maintained in an active state for various post-irradiation incubation interval times before they were replated for GC analysis. The results demonstrate that the formation of GCs in the progeny of X-ray or proton irradiated cells was increased in a dose-dependent manner when measured 7 days after irradiation and this finding is in agreement with that reported for the AG1522 cells using other radiation qualities. For the 1 Gy X-ray doses it was found that the GC yield increased continually with time up to 21 days post-irradiation. These results can act as benchmark data for such work and may have important implications for studies aimed at evaluating the efficacy of radiation therapy and in determining the risk of delayed effects particularly when applying protons.

  2. Optical and structural properties of 100 MeV Fe{sup 9+} ion irradiated InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, R. L., E-mail: radhekrishna.dubey@xaviers.edu; Department of Physics, University of Mumbai, Mumbai-400 032; Dubey, S. K.

    2016-05-06

    Single crystal InP samples were irradiated with 100 MeV Fe{sup 9+} ions for ion fluences 1x10{sup 12} and 1x10{sup 13} cm{sup −2}. Optical properties of irradiated InP was investigated by Spectroscopic Ellipsometry and UV-VIS-NIR spectroscopy. The optical parameters like, refractive index, extinction coefficient, absorption coefficient is found to be fluence dependent near the surface as well as near the projected range. Small change in the optical parameters near the surface region as investigated by Spectroscopic Ellipsometry indicatesthat the surfaces of irradiated InP are similar to non-irradiated InP. This is also supported by RBS/C measurements. The UV-VIS-NIR study revealed the decrease inmore » the band gap and increase in the defect concentration in the irradiated sample as a result of nuclear energy loss.« less

  3. Regulation of Glutathione in a Rat Diploid Hepatic Epithelial Cell Line

    DTIC Science & Technology

    1990-06-01

    supporting the contention that they are not pre-neoplastic (60). Metabolic cooperation by gap- junctional intercellular communication has been demonstrated...counted. The resulting population statistics allowed calculation and display of cycle-specific cell characteristics and compartment transit times (see...was repeated in chinese hamster V79 cells to see if the effect is idiosyncratic. It is not - V79 cells respond to CYC in the same fashion as WB344(s) if

  4. Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense[C][W

    PubMed Central

    Irmisch, Sandra; Clavijo McCormick, Andrea; Boeckler, G. Andreas; Schmidt, Axel; Reichelt, Michael; Schneider, Bernd; Block, Katja; Schnitzler, Jörg-Peter; Gershenzon, Jonathan; Unsicker, Sybille B.; Köllner, Tobias G.

    2013-01-01

    Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom. PMID:24220631

  5. Irradiation of the Crude Venom of Bothrops jararacussu to Obtain Toxoid

    NASA Astrophysics Data System (ADS)

    Ferreira, Camila G.; Avalloni, Tânia M.; Oshima-Franco, Yoko; de J. Oliveira, Sara; de Oliveira, José M.; Cogo, José C.

    2011-08-01

    The aim of this work was to reduce the toxicity of Bothrops jararacussu venom using gamma-rays of low-energy coming from a source of Americium-241 (E = 59.6 keV and 3.7×109 Bq of activity) in order to obtain a toxoid. The radiation dose that each sample received was controlled by exposure time of the venom to the radiation beam. Mouse nerve phrenic-diaphragm preparation was used for testing the loss of venom toxicity, since the venom causes an irreversible neuromuscular blockade. In this condition, the several samples of irradiated venom, when assayed in neuromuscular preparation showed that with a dose of 0.051 Gy the paralysis caused by the irradiated venom was of 91%, at 0.360 Gy was of 79%, at 1.662 Gy was of 50% and at 2.448 Gy was of 42%. Therefore, it can be concluded that the irradiation model was able to induce a progressive loss of the venom toxicity.

  6. EQUILUMINANCE CELLS IN VISUAL CORTICAL AREA V4

    PubMed Central

    Bushnell, Brittany N.; Harding, Philip J.; Kosai, Yoshito; Bair, Wyeth; Pasupathy, Anitha

    2011-01-01

    We report a novel class of V4 neuron in the macaque monkey that responds selectively to equiluminant colored form. These "equiluminance" cells stand apart because they violate the well established trend throughout the visual system that responses are minimal at low luminance contrast and grow and saturate as contrast increases. Equiluminance cells, which compose about 22% of V4, exhibit the opposite behavior: responses are greatest near zero contrast and decrease as contrast increases. While equilumiance cells respond preferentially to equiluminant colored stimuli, strong hue tuning is not their distinguishing feature—some equilumiance cells do exhibit strong unimodal hue tuning but many show little or no tuning for hue. We find that equiluminance cells are color and shape selective to a degree comparable to other classes of V4 cells with more conventional contrast response functions. Those more conventional cells respond equally well to achromatic luminance and equiluminant color stimuli, analogous to color-luminance cells described in V1. The existence of equiluminance cells, which have not been reported in V1 or V2, suggests that chromatically-defined boundaries and shapes are given special status in V4 and raises the possibility that form at equiluminance and form at higher contrasts are processed in separate channels in V4. PMID:21880901

  7. Irradiation at Different Fetal Stages Results in Different Translocation Frequencies in Adult Mouse Thyroid Cells

    DOE PAGES

    Hamasaki, K.; Landes, R. D.; Noda, A.; ...

    2016-10-01

    While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed aftermore » fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was then conducted using fluorescence in situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 x 10 -3) than nonirradiated adult controls (0/1,007 or 0.1 x 10 -3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 x 10 -3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 x 10 -3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The

  8. Differential growth of allogeneic bone marrow and leukemia cells in irradiated guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhan, A,K.; Kumar, V.; Bennett, M.

    1979-11-01

    Growth of normal bone marrow and L/sub 2/C leukemia cell grafts was studied in lethally irradiated strain 2 and strain 13 guinea pigs. Allogeneic bone marrow cells proliferated as well as syngeneic cells in both strain 2 and 13 animals. This observation indicates that Ia disparities are not relevant to marrow graft rejection in the guinea pig. Both Ia positive and Ia negative L/sub 2/C leukemia cells of strain 2 origin grew well in the spleen of irradiated strain 2 animals. However, irradiated strain 13 animals showed resistance to the growth of both leukemia cell lines. F/sub 1/ hybrids (2more » x 13) also showed resistance to the growth of the leukemia cells. These observations suggest the existence of an effector system capable of mediating natural resistance to L/sub 2/C cells in unimmunized strain 13 and F/sub 1/ guinea pigs. The nature of antigens recognized by these radiation resistant effector cells are not entirely clear. However, Ia antigens, or tumor-associated antigens dependent upon Ia antigens for immunogenicity, do not seem to be the primary targets in this phenomenon.« less

  9. Effect of Laser Irradiation on Cell Function and Its Implications in Raman Spectroscopy.

    PubMed

    Yuan, Xiaofei; Song, Yanqing; Song, Yizhi; Xu, Jiabao; Wu, Yinhu; Glidle, Andrew; Cusack, Maggie; Ijaz, Umer Z; Cooper, Jonathan M; Huang, Wei E; Yin, Huabing

    2018-04-15

    Lasers are instrumental in advanced bioimaging and Raman spectroscopy. However, they are also well known for their destructive effects on living organisms, leading to concerns about the adverse effects of laser technologies. To implement Raman spectroscopy for cell analysis and manipulation, such as Raman-activated cell sorting, it is crucial to identify nondestructive conditions for living cells. Here, we evaluated quantitatively the effect of 532-nm laser irradiation on bacterial cell fate and growth at the single-cell level. Using a purpose-built microfluidic platform, we were able to quantify the growth characteristics, i.e., specific growth rates and lag times of individual cells, as well as the survival rate of a population in conjunction with Raman spectroscopy. Representative Gram-negative and Gram-positive species show similar trends in response to a laser irradiation dose. Laser irradiation could compromise the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. Gram-positive bacterial cells are more susceptible than Gram-negative bacterial strains to irradiation-induced damage. By directly correlating Raman acquisition with single-cell growth characteristics, we provide evidence of nondestructive characteristics of Raman spectroscopy on individual bacterial cells. However, while strong Raman signals can be obtained without causing cell death, the variety of responses from different strains and from individual cells justifies careful evaluation of Raman acquisition conditions if cell viability is critical. IMPORTANCE In Raman spectroscopy, the use of powerful monochromatic light in laser-based systems facilitates the detection of inherently weak signals. This allows environmentally and clinically relevant microorganisms to be measured at the single-cell level. The significance of being able to

  10. Increased affinity of endothelial cells to NiTi using ultraviolet irradiation: An in vitro study.

    PubMed

    Tateshima, Satoshi; Kaneko, Naoki; Yamada, Masahiro; Duckwiler, Gary; Vinuela, Fernando; Ogawa, Takahiro

    2018-04-01

    Nickel-titanium alloy (NiTi) is one of the most popular materials used endovascularly because of its shape memory and superelasticity. The NiTi device needs to be covered by endothelial cells after being placed in the blood vessel to reduce ischemic complications. The objective of this study was to examine the impact of ultraviolet (UV) irradiation on the biocompatibility of NiTi surfaces with endothelial cells. NiTi sheets were treated with UV irradiation for 48 h and human aorta derived endothelial cells were used in this study. UV irradiation converted the NiTi surface to hydrophilic state and increased albumin adsorption. The number of endothelial cell migration, attachment, proliferation as well as their metabolic activity were significantly increased on UV treated NiTi. This study provides the first evidence of the photoactivation of NiTi surfaces by UV irradiation and demonstrates improved biocompatibility of UV-treated NiTi surfaces with vascular endothelial cells. These results suggest that UV irradiation may promote endothelialization of NiTi devices in blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1034-1038, 2018. © 2017 Wiley Periodicals, Inc.

  11. Radiosensitization of high-Z compounds by medium-energy 160 kV vs. high-energy 6 MV X-rays for radiation therapy: Theoretical, in vitro and in vivo studies of platinum compounds activating glioma F98 cancer cells

    NASA Astrophysics Data System (ADS)

    Lim, S.; Pradhan, A.; Nahar, S.; Montenegro, M.; Barth, R.; Nakkula, R.; Turro, C.

    2013-03-01

    Energy dependence of X-ray irradiation of high-Z compounds for enhanced radiosensitization is explored thoeretically and via in vitro and in vivo experiments. The cell killing ability of medium-energy X-rays from 160 kV source are found to be more effective than 6 MV X-rays in activating high-Z contrast agents. Results are presented for a newly synthesized Pt compound, Pyridine Terpyridine Pt(II) Nitrate ([Pt(typ)(py)]) and carboplatin in treating F98 rat glioma. In-vitro results show considerable reduction in cell viability for radiosensitized cells irradiated with a 160 kV irradiator. Cells treated with 6 MV LINAC radiation find little variation with radiation dose. Maximum dose enhancement factors (DEFs) and minimum cancer cell survival fractions correspond to 50-200 keV range, and fall rapidly at higher energies. Theoretical calculations of photoelectric absorption vis-a-vis total scattering demonstrates this energy dependence. However, in vivo studies of rats treated with [Pt(tpy)(py)] had a severe negative neurotoxic response, confirmed by histopathological analysis. But subsequent in vivo studies using carboplatin showed very positive results in the treatment of F98 glioma bearing rats and potential clinical radiation therapy.

  12. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation.

    PubMed

    Kiro, N E; Hamblin, M R; Abrahamse, H

    2017-06-01

    Breast and cervical cancers are dangerous threats with regard to the health of women. The two malignancies have reached the highest record in terms of cancer-related deaths among women worldwide. Despite the use of novel strategies with the aim to treat and cure advanced stages of cancer, post-therapeutic relapse believed to be caused by cancer stem cells is one of the challenges encountered during tumor therapy. Therefore, further attention should be paid to cancer stem cells when developing novel anti-tumor therapeutic approaches. Low-intensity laser irradiation is a form of phototherapy making use of visible light in the wavelength range of 630-905 nm. Low-intensity laser irradiation has shown remarkable results in a wide range of medical applications due to its biphasic dose and wavelength effect at a cellular level. Overall, this article focuses on the cellular responses of healthy and cancer cells after treatment with low-intensity laser irradiation alone or in combination with a photosensitizer as photodynamic therapy and the influence that various wavelengths and fluencies could have on the therapeutic outcome. Attention will be paid to the biomodulative effect of low-intensity laser irradiation on cancer stem cells.

  13. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responsesmore » to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at

  14. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples

    PubMed Central

    Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Bailey, Denis; Crump, Michael; da Cunha Santos, Gilda

    2013-01-01

    BACKGROUND: Numerous genomic abnormalities in B-cell non-Hodgkin lymphomas (NHLs) have been revealed by novel high-throughput technologies, including recurrent mutations in EZH2 (enhancer of zeste homolog 2) and CD79B (B cell antigen receptor complex-associated protein beta chain) genes. This study sought to determine the evolution of the mutational status of EZH2 and CD79B over time in different samples from the same patient in a cohort of B-cell NHLs, through use of a customized multiplex mutation assay. METHODS: DNA that was extracted from cytological material stored on FTA cards as well as from additional specimens, including archived frozen and formalin-fixed histological specimens, archived stained smears, and cytospin preparations, were submitted to a multiplex mutation assay specifically designed for the detection of point mutations involving EZH2 and CD79B, using MassARRAY spectrometry followed by Sanger sequencing. RESULTS: All 121 samples from 80 B-cell NHL cases were successfully analyzed. Mutations in EZH2 (Y646) and CD79B (Y196) were detected in 13.2% and 8% of the samples, respectively, almost exclusively in follicular lymphomas and diffuse large B-cell lymphomas. In one-third of the positive cases, a wild type was detected in a different sample from the same patient during follow-up. CONCLUSIONS: Testing multiple minimal tissue samples using a high-throughput multiplex platform exponentially increases tissue availability for molecular analysis and might facilitate future studies of tumor progression and the related molecular events. Mutational status of EZH2 and CD79B may vary in B-cell NHL samples over time and support the concept that individualized therapy should be based on molecular findings at the time of treatment, rather than on results obtained from previous specimens. Cancer (Cancer Cytopathol) 2013;121:377–386. © 2013 American Cancer Society. PMID:23361872

  15. Limbal Stem Cell Preservation During Proton Beam Irradiation for Diffuse Iris Melanoma.

    PubMed

    Singh, Arun D; Dupps, William J; Biscotti, Charles V; Suh, John H; Lathrop, Kira L; Nairn, John P; Shih, Helen

    2017-01-01

    To report the outcome after limbal stem cell preservation during proton beam irradiation for diffuse iris melanoma. This is a single-case report of diffuse iris melanoma that was managed with proton beam radiation (53 Gy), wherein preemptively harvested superior and inferior limbal stem cells before radiation were replaced after irradiation. Regeneration of the palisades of Vogt and the limbal stem cells was documented by an optical coherence tomography-based imaging protocol. At 24 months after radiation therapy, best-corrected visual acuity was 20/25. The cornea was clear without evidence of limbal stem cell dysfunction. Clinical examination (including gonioscopy and ultrasound biomicroscopy [UBM]) was indicative of local control, and systemic surveillance was negative for metastatic disease. At posttransplant (21 months), there were more palisade structures visible in both anterior and posterior regions of the superior and inferior limbus, and the linear presentation of the inferior palisades appears to have regenerated. Diffuse iris melanoma can be managed successfully with proton beam radiation while preserving corneal limbal stem cells by harvesting them before radiation and then replacing them after irradiation. Regeneration of the palisades of Vogt could be documented by an optical coherence tomography-based imaging protocol.

  16. Ion, X-ray, UV and Neutron Microbeam Systems for Cell Irradiation.

    PubMed

    Bigelow, A W; Randers-Pehrson, G; Garty, G; Geard, C R; Xu, Y; Harken, A D; Johnson, G W; Brenner, D J

    2010-08-08

    The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the electrostatic quadrupole lenses on the microbeam II system and the magnetic quadrupole lenses on the PMM system are arranged as compound lenses consisting of two quadrupole triplets with "Russian" symmetry. Also, the RARAF accelerator is a source for a proton-induced x-ray microbeam (undergoing testing) and is projected to supply protons to a neutron microbeam based on the (7)Li(p, n)(7)Be nuclear reaction (under development). Leveraging from the multiphoton microscope technology integrated within the microbeam II endstation, a UV microspot irradiator - based on multiphoton excitation - is available for facility users. Highlights from radiation-biology demonstrations on single living mammalian cells are included in this review of microbeam systems for cell irradiation at RARAF.

  17. Paracrine Effects of Bone Marrow Soup Restore Organ Function, Regeneration, and Repair in Salivary Glands Damaged by Irradiation

    PubMed Central

    Tran, Simon D.; Liu, Younan; Xia, Dengsheng; Maria, Ola M.; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan

    2013-01-01

    Background There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. Methods To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as “BM Soup”) injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup’s donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. Results BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. Conclusion BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs. PMID:23637870

  18. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation.

    PubMed

    Tran, Simon D; Liu, Younan; Xia, Dengsheng; Maria, Ola M; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan

    2013-01-01

    There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as "BM Soup") injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup's donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs.

  19. 80 MeV C{sup 6+} ion irradiation effects on the DC electrical characteristics of silicon NPN power transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharathi, M. N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in

    The total dose effects of 80 MeV C{sup 6+} ions on the DC electrical characteristics of Silicon NPN rf power transistors have been studied in the dose range of 100 krad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of the ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (ΔI{sub B} = I{sub Bpost} - I{sub Bpre}), dc forward current gain (h{sub FE}), transconductance (g{sub m}), displacement damage factor (K) and output characteristics (V{sub CE}-I{sub C}) were studied systematically before and after irradiation. The significantmore » degradation in base current (I{sub B}) and h{sub FE} was observed after irradiation. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. These results were compared with {sup 60}C0 gamma irradiation results in the same dose range.« less

  20. Flagellin preconditioning enhances the efficacy of mesenchymal stem cells in an irradiation-induced proctitis model.

    PubMed

    Linard, Christine; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Benderitter, Marc

    2016-09-01

    The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin

  1. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. Hyperkalemia after irradiation of packed red blood cells: Possible effects with intravascular fetal transfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorp, J.A.; Plapp, F.V.; Cohen, G.R.

    1990-08-01

    Plasma potassium, calcium, and albumin concentrations in irradiated blood, and in fetal blood before and after transfusion, were measured. Dangerously high plasma potassium levels were observed in some units of irradiated packed red blood cells (range, 13.9 to 66.5 mEq/L; mean, 44.7 mEq/L) and could be one possible explanation for the high incidence of fetal arrhythmia associated with fetal intravascular transfusion. There are many factors operative in the preparation of irradiated packed red blood cells that may predispose to high potassium levels: the age of the red blood cells, the number of procedures used to concentrate the blood, the durationmore » of time elapsed from concentration, the duration of time elapsed from irradiation, and the hematocrit. Use of fresh blood, avoidance of multiple packing procedures, limiting the hematocrit in the donor unit to less than or equal to 80%, and minimizing the time between concentration, irradiation and transfusion may minimize the potassium levels, and therefore making an additional washing procedure unnecessary.« less

  3. Action of caffeine on x-irradiated HeLa cells. VII. Evidence that caffeine enhances expression of potentially lethal radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetham, K.L.; Tolmach, L.J.

    1984-12-01

    HeLa cells irradiated with 2 Gy of 220-kV X rays suffer a 60-70% loss of colony-forming ability which is increased to 90% by postirradiation treatment with 10 mM caffeine for 6 hr. The detailed postirradiation patterns of cell death and sister-cell fusion in such cultures and in cultures in which the colony-forming ability was brought to about the same level by treatment with a larger (4 Gy) X-ray dose alone or by longer (48 hr) treatment with 10 mM caffeine alone were recorded by time-lapse cinemicrography. Because the patterns of cell death and fusion differ radically in irradiated and inmore » caffeine-treated cultures, the response of the additional cells killed by the combined treatment can be identified as X-ray induced rather than caffeine induced. The appearance of cultures after several days of incubation confirms the similarity of the post-treatment patterns of proliferation in cultures suffering enhanced killing to those occurring in cultures treated with larger doses of X rays alone. It is concluded that x rays do not sensitize cells to caffeine, but rather that caffeine enhanced the expression of potentially lethal radiation-induced damage.« less

  4. Study of damage to red blood cells exposed to different doses of γ-ray irradiation.

    PubMed

    Xu, Deyi; Peng, Mingxi; Zhang, Zhe; Dong, Guofei; Zhang, Yiqin; Yu, Hongwei

    2012-07-01

    The aims of this research were to study alterations in the ultrastructure of red blood cells, the changes in concentrations of plasma electrolytes and the killing effect of lymphocytes in samples of blood exposed to different doses of γ-ray irradiation. Blood samples were treated with different doses of γ-ray irradiation and then preserved for different periods. Specimens were prepared for standard electron microscopy and transmission electron microscopy. At the same time, changes in the concentrations of Na(+), K(+) and Cl(-) and pH values in the plasma as well as Fas and FasL expression of lymphocytes before and after irradiation were determined. The proportions of reversibly and irreversibly transformed cells, for example, echinocytes, sphero-echinocytes, and degenerated forms, increased with increasing doses of irradiation and storage period, while the number of discocyte shaped red blood cells decreased. The change in K(+) concentration was greater than that of Na+ or Cl(-) after irradiation and was dosage-dependent. Plasma pH was influenced by different doses of radiation and storage time. After exposure to (137)Cs γ-irradiation, the expression of both Fas and FasL in lymphocytes differed significantly from that in the control group: the expression was positively correlated with irradiation dose (r=0.95, 0.96), but no significant difference in the Fas/FasL ratio was observed (P>0.05). We conclude that the ultrastructure of red blood cells is not changed obviously by irradiation with some doses of γ-rays and various periods of storage. However, irradiation does have some dose-dependent and time-dependent adverse effects on the erythrocytes.

  5. Low energy proton radiation damage to (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Kamath, S.; Knechtli, R. C.

    1979-01-01

    Twenty-seven 2 times 2 sq cm (AlGa)As-GaAs solar cells were fabricated and subjected to 50 keV, 100 keV, and 290 keV of proton irradiation along with eighteen high efficiency silicon solar cells. The results of the study further corroborate the advantages for space missions offered by GaAs cells over state of the art silicon cells. Thus, even though the GaAs cells showed greater degradation when irradiated by protons with energy less than 5 MeV, the solar cells were normally protected from these protons by the glass covers used in space arrays. The GaAs cells also offered superior end of life power capability compared with silicon. The change in the open circuit voltage, short circuit current, spectral response, and dark 1-5 characteristics after irradiation at each proton energy and fluence were found to be consistent with the explanation of the effect of the protons. Also dark 1-5 characteristics showed that a new recombination center dominates the current transport mechanism after irradiation.

  6. X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162

    DOE PAGES

    Elbakhshwan, Mohamed; McDonald, Kirk T.; Ghose, Sanjit; ...

    2016-08-03

    AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x10 20 cm -2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic postirradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based onmore » the absence of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.« less

  7. Spectroscopic investigations upon 100MeV oxygen ions irradiation on polyaniline and poly-o-toluidine

    NASA Astrophysics Data System (ADS)

    Patil, Harshada K.; Deshmukh, Megha A.; Bodkhe, Gajanan A.; Asokan, K.; Shirsat, Mahendra D.

    2018-05-01

    Conducting polymers are the materials been extensively studied in the field of organic devise applications. The extended π-orbital which enables electron to move from one to another end of polymer made it flexible in tailoring different properties and therefore are known to be the considerably attractive materials. Here in this report Polyaniline (PANI) and Poly-o-toluidine (PoT) the derivative of PANI where one hydrogen atom of main polymer chain is substituted with the methyl group are studied upon irradiation with 100MeV oxygen ions irradiation at different fluences. PANI and PoT consist of interesting properties viz. electrochemical and optical properties, moderate conductivity, as well as environmental stability, may be applicable to the chemical sensing applications. Swift Heavy Ions (SHI) irradiation is the exclusively applied tool in detrimental modifications of solid materials. The effects of SHI irradiation on PANI and PoT were studied using UV - Vis spectroscopy and Raman spectroscopy. The band gap studies were done with Tauc plot calculations.

  8. Effects of 200 keV argon ions irradiation on microstructural properties of titanium nitride films

    NASA Astrophysics Data System (ADS)

    Popović, M.; Novaković, M.; Šiljegović, M.; Bibić, N.

    2012-05-01

    This paper reports on a study of microstructrual changes in TiN/Si bilayers due to 200 keV Ar+ ions irradiation at room temperature. The 240 nm TiN/Si bilayers were prepared by d.c. reactive sputtering on crystalline Si (1 0 0) substrates. The TiN films were deposited at the substrate temperature of 150 °C. After deposition the TiN/Si bilayers were irradiated to the fluences of 5 × 1015 and 2 × 1016 ions/cm2. The structural changes induced by ion irradiation in the TiN/Si bilayers were analyzed by Rutherford Backscattering Spectroscopy (RBS), X-ray diffraction analyses (XRD) and Transmission Electron Microscopy (TEM). The irradiations caused the microstructrual changes in TiN layers, but no amorphization even at the highest argon fluence of 2 × 1016 ions/cm2. It is also observed that the mean crystallite size decreases with the increasing ion fluence.

  9. Modification of uptake and antiproliferative effect of methylglyoxal bis(guanylhydrazone) by treatment with alpha-difluoromethylornithine in rodent cell lines with different sensitivities to methylglyoxal bis(guanylhydrazone).

    PubMed

    Alhonen-Hongisto, L; Levin, V A; Marton, L J

    1985-02-01

    Uptake characteristics and growth-inhibitory effects of methylglyoxal bis(guanylhydrazone) (MGBG), a competitive inhibitor of S-adenosylmethionine decarboxylase, were investigated in 9L rat brain tumor cells and in V79 hamster lung cells. Proliferation of 9L cells was only slightly inhibited by treatment with 40 microM MGBG alone, but when used in combination with 0.5 mM alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, proliferation was much more effectively inhibited. The intracellular concentration of MGBG was approximately 2-fold higher 4 days after cells were treated with both DFMO and MGBG, either simultaneously or when MGBG was added after a 48-hr DFMO pretreatment, than that in cells treated with MGBG alone. Polyamine levels in DFMO- and MGBG-treated cells correlated with the antiproliferative effects of the drugs. Used either alone or in combination with 1 mM DFMO, 0.5 microM MGBG inhibited the growth of and eventually killed V79 cells. Simultaneous or sequential treatment with DFMO and MGBG increased intracellular concentrations of MGBG at 4 days by 2- and 3-fold, respectively, compared to treatment with MGBG alone. Intracellular polyamine levels did not correlate with the antiproliferative effect of the two drugs in V79 cells. In both cell lines, polyamines and MGBG share a common transport system. The net transport of polyamines and MGBG was more temperature dependent and up to 10-fold more active in V79 cells than in 9L cells. The Km and Vmax values for spermidine and MGBG measured 10 sec after addition (initial permeation) were not affected by DFMO pretreatment in either cell line. However, 1 hr after administration, the Vmax values for spermidine and MGBG uptake were doubled in V79 cells pretreated for 48 hr with DFMO; no significant change occurred in 9L cells. Mitochondrial function, assessed by pyruvate oxidation, was substantially impaired by MGBG in V79 cells but not in 9L cells when the intracellular

  10. Reduction of aqueous CrVI using nanoscale zero-valent iron dispersed by high energy electron beam irradiation.

    PubMed

    Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan

    2013-10-21

    High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of CrVI to CrIII in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.

  11. Pure Single-Crystalline Na1.1V3O7.9 Nanobelts as Superior Cathode Materials for Rechargeable Sodium-Ion Batteries.

    PubMed

    Yuan, Shuang; Liu, Yong-Bing; Xu, Dan; Ma, De-Long; Wang, Sai; Yang, Xiao-Hong; Cao, Zhan-Yi; Zhang, Xin-Bo

    2015-03-01

    Pure single-crystalline Na 1.1 V 3 O 7.9 nanobelts are successfully synthesized for the first time via a facile yet effective strategy. When used as cathode materials for Na-ion batteries, the novel nanobelts exhibit excellent electrochemical performance. Given the ease and effectiveness of the synthesis route as well as the very promising electrochemical performance, the results obtained may be extended to other next-generation cathode materials for Na-ion batteries.

  12. Cell sheets image validation of phase-diversity homodyne OCT and effect of the light irradiation on cells

    NASA Astrophysics Data System (ADS)

    Senda, Naoko; Osawa, Kentaro

    2016-04-01

    Optical coherence tomography (OCT) is one of powerful 3D tissue imaging tools with no fluorescence staining. We have reported that Phase-Diversity Homodyne OCT developed in Hitachi could be useful for non-invasive regeneration tissue evaluation test. The OCT enables cell imaging because of high resolution (axial resolution; ~2.6 μm, lateral resolution; ~1 μm, in the air), whereas conventional OCT was not used for cell imaging because of low resolution (10~20 μm). Furthermore, the OCT has advantage over other 3D imaging devices in cost because the light source and the objective were originally used as an optical pickup of compact disc. In this report, we aimed to assess effectiveness and safety of Phase-Diversity Homodyne OCT cell imaging. Effectiveness of OCT was evaluated by imaging a living cell sheet of human oral mucosal epithelial cells. OCT images were compared with reflection confocal microscopy (RCM) images, because confocal optical system is the highest resolution (<1 μm) 3D in vivo imaging technique. Similar nuclei images were confirmed with OCT and RCM, which suggested the OCT has enough resolution to image nuclei inside a cell sheet. Degree of differentiation could be estimated using OCT images, which becomes possible because the size of cells depends on distribution of differentiation. Effect of the OCT light irradiation on cells was studied using NIH/3T3 cells. Light irradiation, the exposure amount of which is equivalent to OCT, had no impact on cell shape, cell viability, and proliferation rate. It suggested that the light irradiation has no cell damage under the condition.

  13. Enhanced mutagenesis parallels enhanced reactivation of herpes virus in a human cell line.

    PubMed Central

    Lytle, C D; Knott, D C

    1982-01-01

    U.v. irradiation of human NB-E cells results in enhanced mutagenesis and enhanced reactivation of u.v.-irradiated H-1 virus grown in those cells ( Cornelis et al., 1982). This paper reports a similar study using herpes simplex virus (HSV) in NB-E cells. The mutation frequency of HSV (resistance of virus plaque formation to 40 micrograms/ml iododeoxycytidine ) increased approximately linearly with exposure of the virus to u.v. radiation. HSV grown in unirradiated cells gave a slope of 1.8 X 10(-5)m2/J, with 3.2 X 10(-5)m2/J for HSV grown in cells irradiated (3 J/m2) 24 h before infection. There was no evidence for mutagenesis of unirradiated virus by irradiated cells, as seen with H-1 virus. Enhanced reactivation of irradiated HSV in parallel cultures increased virus survival, manifested as a change in slope of the final component of the two-component survival curve from a D0 of 27 J/m2 in unirradiated cells to 45 J/m2 in irradiated cells. Thus, enhanced mutagenesis and enhanced reactivation occurred for irradiated HSV in NB-E cells. The difference in the enhanced mutagenesis of HSV (dependent on damaged DNA sites) and of H-1 virus (primarily independent of damaged DNA sites) is discussed in terms of differences in DNA polymerases. PMID:6329698

  14. Detection of irradiation induced reactive oxygen species production in live cells

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Zhu, Debin

    2006-09-01

    Reactive oxygen species (ROS) is thought to play an important role in cell signaling of apoptosis, necrosis, and proliferation. Light irradiation increases mitochondrial reactive oxygen species (ROS) production and mediates its intracellular signaling by adjusting the redox potential in tumor cells. Mitochondria are the main source of ROS in the living cell. Superoxide anions (0 II - are likely the first ROS generated in the mitochondria following radiation damage, and then convert to hydrogen peroxide (H II0 II), hydroxyl radical (•OH), and singlet oxygen (10 II), etc. Conventional methods for research ROS production in mitochondria mostly use isolated mitochondria rather than mitochondria in living cells. In this study, a highly selective probe to detect mitochondrial 0 II - in live cells, MitoSOX TM Red, was applied to quantify the mitochondrial ROS production in human lung adenocarcinoma cells (ASTC-a-1) with laser scanning microscope (LSM) after ultraviolet C (UVC) and He-Ne laser irradiation. Dichiorodihydrofluoresein diacetate (DCFHDA), a common used fluorescent probe for ROS detection without specificity, were used as a comparison to image the ROS production. The fluorescent image of MItoSOX TM Red counterstained with MitoTracker Deep Red 633, a mitochondria selective probe, shows that the mitochondrial ROS production increases distinctly after UVC and He-Ne laser irradiation. DCFH-DA diffuses labeling throughout the cell though its fluorescence increases markedly too. In conclusion, the fluorescent method with MitoSOX TM Red reagent is proved to be a promising technique to research the role of ROS in radiation induced apoptosis.

  15. Alteration of Radiosensitivity of Quiescent Cell Populations in Solid Tumors Irradiated with X‐Rays Twice at Various Intervals

    PubMed Central

    Ono, Koji; Mitsumori, Michihide; Abe, Mitsuyuki

    1993-01-01

    5‐Bromo‐2′‐deoxyuridine (BUdR) was injected into SCC VII or EMT6/KU tumor‐bearing mice intraperitoneally to label all the proliferating tumor cells. First, the mice were irradiated with X‐rays at a dose of 10 Gy, followed by a dose of 0–20 Gy at 0, 12, 24 or 48 h later. During the interval, no BUdR was injected. Immediately after the second irradiation, the tumors were excised and trypsinized. The micronucleus (MN) frequency in cells without BUdR labeling was determined by means of incubation with cytochalasin‐B (a cytokinesis‐blocker) and immunoftuorescence staining for BUdR. When the tumors were not pretreated with BUdR before the first irradiation, the MN frequency in all tumor cells was determined. To determine the labeling indices of SCC VII and EMT6/KU tumors at the time of the second irradiation, each group also included mice that were continuously administered BUdR until just before the second irradiation using mini‐osmotic pumps which had been implanted subcutaneously 5 days before the first irradiation. The MN frequency of all tumor cell populations obtained immediately after the second irradiation decreased in proportion to the increase in interval time. However, in both tumor systems, the MN frequency of unlabeled cell populations, which could be regarded as quiescent cells in the tumors at the time of the first irradiation, was raised with increase in the interval time. In addition, the labeling index at the second irradiation was higher than that at the first irradiation. These findings support the occurrence of recruitment from quiescent to proliferating state during fractionated irradiation. PMID:8276718

  16. Resistance of a cultured fish cell line (CAF-MM1) to. gamma. irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitani, H.; Etoh, H.; Egami, N.

    1982-02-01

    Fish are generally more resistant to whole-body ionizing radiation than mammals. To study the radiosensitivity of fish in vitro, CAF-MM1 cells derived from the fin of the goldfish, Carassius auratus, were used. The survival parameters of CAF-MM1 obtained after ..gamma.. irradiation at 26/sup 0/C were 325 rad for D/sub o/, 975 rad for Dq, and 15 for n. No mammalian cell line with such a low sensitivity in the presence of O/sub 2/ has been reported. It was found that the large initial shoulder of the survival curve was paralleled by substantial repair of sublethal damage as evidenced by split-dosemore » experiments. This low sensitivity to ..gamma.. irradiation did not change upon the administration of caffeine or postirradiation illumination, although these treatments were effective after uv irradiation. The decrease in the mitotic index in CAF-MM1 occurred immediately after irradiation, and it recovered within a very short time. This indicated that the duration of G2 arrest was shorter than that observed in mammalian cells. The data also suggest that the resistance of fish to whole-body irradiation is attributable to resistance at the cellular level.« less

  17. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells.

    PubMed

    Puspitasari, Irma M; Yamazaki, Chiho; Abdulah, Rizky; Putri, Mirasari; Kameo, Satomi; Nakano, Takashi; Koyama, Hiroshi

    2017-01-01

    The administration of radioprotective compounds is one approach to preventing radiation damage in non-cancerous tissues. Therefore, radioprotective compounds are crucial in clinical radiotherapy. Selenium is a radioprotective compound that has been used in previous clinical studies of radiotherapy. However, evidence regarding the effectiveness of selenium in radiotherapy and the mechanisms underlying the selenium-induced reduction of the side effects of radiotherapy remains insufficient. To further investigate the effectiveness of selenium in radiotherapy, the present study examined the protective effects of sodium selenite supplementation administered prior to X-ray radiation treatment in CHEK-1 non-cancerous human esophageal cells. Sodium selenite supplementation increased glutathione peroxidase 1 (GPx-1) activity in a dose- and time-dependent manner. The sodium selenite dose that induced the highest GPx-1 activity was determined to be 50 nM for 72 h prior to radiotherapy. The half-maximal inhibitory concentration of sodium selenite in CHEK-1 cells was 3.6 µM. Sodium selenite supplementation increased the survival rate of the cells in a dose-dependent manner and enhanced the degree of cell viability at 72 h post-irradiation (P<0.05). Combined treatment with 50 nM sodium selenite and 2 gray (Gy) X-ray irradiation decreased the number of sub-G 1 cells from 5.9 to 4.2% (P<0.05) and increased the proportion of G 1 cells from 58.8 to 62.1%, compared with 2 Gy X-ray irradiation alone; however, this difference was not statistically significant (P=1.00). Western blot analysis revealed that treatment with 2 Gy X-ray irradiation significantly increased the expression levels of cleaved poly (ADP-ribose) polymerase (PARP; P<0.05). In addition, combined treatment with 50 nM sodium selenite and 2 Gy X-ray irradiation reduced the expression levels of cleaved PARP protein, compared with 2 Gy X-ray irradiation alone; however, this reduction was not statistically significant (P=0

  18. Hypofractionated Irradiation Has Immune Stimulatory Potential and Induces a Timely Restricted Infiltration of Immune Cells in Colon Cancer Tumors

    PubMed Central

    Frey, Benjamin; Rückert, Michael; Weber, Julia; Mayr, Xaver; Derer, Anja; Lotter, Michael; Bert, Christoph; Rödel, Franz; Fietkau, Rainer; Gaipl, Udo S.

    2017-01-01

    In addition to locally controlling the tumor, hypofractionated radiotherapy (RT) particularly aims to activate immune cells in the RT-modified microenvironment. Therefore, we examined whether hypofractionated RT can activate dendritic cells (DCs), induce immune cell infiltration in tumors, and how the chronology of immune cell migration into tumors occurs to gain knowledge for future definition of radiation breaks and inclusion of immunotherapy. Colorectal cancer treatments offer only limited survival benefit, and immunobiological principles for additional therapies need to be explored with preclinical models. The impact of hypofractionated RT on CT26 colon cancer tumor cell death, migration of DCs toward supernatants (SN) of tumor cells, and activation of DCs by SN were analyzed. The subcutaneous tumor of a BALB/c-CT26 mouse model was locally irradiated with 2 × 5 Gy, the tumor volume was monitored, and the infiltration of immune cells in the tumor was determined by flow cytometry daily. Hypofractionated RT induced a mixture of apoptotic and necrotic CT26 cells, which is known to be in particular immunogenic. DCs that migrated toward SN of CT26 cells particularly upregulated the activation markers CD80 and CD86 when in contact with SN of irradiated tumor cells. After hypofractionated RT, the tumor outgrowth was significantly retarded and in the irradiated tumors an increased infiltration of macrophages (CD11bhigh/F4-80+) and DCs (MHC-II+), but only between day 5 and 10 after the first irradiation, takes place. While CD4+ T cells migrated into non-irradiated and irradiated tumors, CD8+ T cells were only found in tumors that had been irradiated and they were highly increased at day 8 after the first irradiation. Myeloid-derived suppressor cells and regulatory T cells show regular turnover in irradiated and non-irradiated tumors. Tumor cell-specific anti-IgM antibodies were enhanced in the serum of animals with irradiated tumors. We conclude that

  19. Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing.

    PubMed

    Baird, Brandon J; Dickey, Jennifer S; Nakamura, Asako J; Redon, Christophe E; Parekh, Palak; Griko, Yuri V; Aziz, Khaled; Georgakilas, Alexandros G; Bonner, William M; Martin, Olga A

    2011-06-03

    Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0°C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7°C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13°C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13°C during and 12h after irradiation. Mild hypothermia at 20 and 30°C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13°C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX (γ-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (OCDLs) revealed partial repair at 13°C compared to the rapid repair at 37°C. For both γ-H2AX foci and OCDLs, the return of lymphocytes to 37°C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against radiation. 2011. Published by Elsevier B.V.

  20. Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures.

    PubMed

    Roy, A; Krzykwa, E; Lemieux, R; Néron, S

    2001-12-01

    Several normal human cells, such as hematopoietic stem cells, dendritic cells, and B cells, can be cultured in vitro in defined optimal conditions. Several ex vivo culture systems require the use of feeder cells to support the growth of target cells. In such systems, proliferation of feeder cells has to be stopped, so that they can be used as nonreplicating viable support cells. Because feeder cells need to provide one or few active signals, it is important to maintain them in an metabolically active state, allowing continued expression of specific ligands or cytokines. Mitomycin C and gamma-irradiation treatments are commonly used to prepare nonproliferating feeder cells and are usually considered to be equivalent. Normal human B lymphocytes can be expanded in vitro in the presence of feeder cells expressing the CD40 ligand CD154. Here we compared the ability of gamma-irradiation- and mitomycin C-treated feeder cells to support the expansion of normal human B lymphocytes. The results indicate that expansion of B cells during a long-term culture was 100 times more potent using gamma-irradiated feeder cells compared to mitomycin C-treated cells. This difference could be related to a significant reduction in both cellular metabolism and level of CD154 expression observed in mitomycin C-treated feeder cells, but not in gamma-irradiated cells nor in control untreated cells. These results indicate that mitomycin C-treated feeder cells are metabolically altered, and consequently less efficient at maintaining cell expansion in the long-term cell culture system used.

  1. Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells.

    PubMed

    Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French

    2005-04-01

    Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.

  2. Incidental irradiation of mediastinal and hilar lymph node stations during 3D-conformal radiotherapy for non-small cell lung cancer.

    PubMed

    Kepka, Lucyna; Bujko, Krzysztof; Zolciak-Siwinska, Agnieszka; Garmol, Dariusz

    2008-01-01

    To estimate the doses of incidental irradiation in particular lymph node stations (LNS) in different extents of elective nodal irradiation (ENI) in 3D-conformal radiotherapy (3D-CRT) for non-small cell lung cancer (NSCLC). METHODS; Doses of radiotherapy were estimated for particular LNS delineated according to the recommendations of the University of Michigan in 220 patients treated using 3D-CRT with different (extended, limited and omitted) extents of ENI. Minimum doses and volumes of LNS receiving 40 Gy or more (V40) were compared for omitted vs. limited+ extended ENI and limited vs. extended ENI. For omission of the ENI the minimum doses and V40 for particular LNS were significantly lower than for patients treated with ENI. For the limited ENI group, the minimum doses for LNS 5, 6 lower parts of 3A and 3P (not included in the elective area) did not differ significantly from doses given to respective LNS for extended ENI group. When the V40 values for extended and limited ENI were compared, no significant differences were seen for any LNS, except for group 1/2R, 1/2L. Incidental irradiation of untreated LNS seems play a part in case of limited ENI, but not in cases without ENI. For subclinical disease the delineation of uninvolved LNS 5, 6, and lower parts of 3A, 3P may be not necessary, because these stations receive the substantial part of irradiation incidentally, if LNS 4R, 4L, 7, and ipsilateral hilum are included in the elective area while this is not case for stations 1 and 2.

  3. Low Level Laser Irradiation of Nerve Cells In Vitro

    DTIC Science & Technology

    1996-01-01

    Advisor Michael Miloro, D.M.D., M.D. College of Dentistry ABSTRACT Low energy laser treatment of patients with nerve injuries has been reported to achieve...Isolation and Culture 15 vii Cell Lines 17 Cell Expansion 19 Cell Freezing 20 Experimental Design 20 GaA1As Laser Diode 22 Radiation Schedule 23...of 1 six well plate. Two groups served as controls. The remaining groups were irradiated with a 70 mW GaA1As laser diode , wavelength 820-830 nm

  4. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation

    PubMed Central

    Lynnyk, Anna; Lunova, Mariia; Jirsa, Milan; Egorova, Daria; Kulikov, Andrei; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr

    2018-01-01

    Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses. PMID:29541521

  5. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells

    PubMed Central

    Cao, Xu; Wu, Xiangwei; Frassica, Deborah; Yu, Bing; Pang, Lijuan; Xian, Lingling; Wan, Mei; Lei, Weiqi; Armour, Michael; Tryggestad, Erik; Wong, John; Wen, Chun Yi; Lu, William Weijia; Frassica, Frank J.

    2011-01-01

    Radiation therapy can result in bone injury with the development of fractures and often can lead to delayed and nonunion of bone. There is no prevention or treatment for irradiation-induced bone injury. We irradiated the distal half of the mouse left femur to study the mechanism of irradiation-induced bone injury and found that no mesenchymal stem cells (MSCs) were detected in irradiated distal femora or nonirradiated proximal femora. The MSCs in the circulation doubled at 1 week and increased fourfold after 4 wk of irradiation. The number of MSCs in the proximal femur quickly recovered, but no recovery was observed in the distal femur. The levels of free radicals were increased threefold at 1 wk and remained at this high level for 4 wk in distal femora, whereas the levels were increased at 1 wk and returned to the basal level at 4 wk in nonirradiated proximal femur. Free radicals diffuse ipsilaterally to the proximal femur through bone medullary canal. The blood vessels in the distal femora were destroyed in angiographic images, but not in the proximal femora. The osteoclasts and osteoblasts were decreased in the distal femora after irradiation, but no changes were observed in the proximal femora. The total bone volumes were not affected in proximal and distal femora. Our data indicate that irradiation produces free radicals that adversely affect the survival of MSCs in both distal and proximal femora. Irradiation injury to the vasculatures and the microenvironment affect the niches for stem cells during the recovery period. PMID:21220327

  6. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells.

    PubMed

    Cao, Xu; Wu, Xiangwei; Frassica, Deborah; Yu, Bing; Pang, Lijuan; Xian, Lingling; Wan, Mei; Lei, Weiqi; Armour, Michael; Tryggestad, Erik; Wong, John; Wen, Chun Yi; Lu, William Weijia; Frassica, Frank J

    2011-01-25

    Radiation therapy can result in bone injury with the development of fractures and often can lead to delayed and nonunion of bone. There is no prevention or treatment for irradiation-induced bone injury. We irradiated the distal half of the mouse left femur to study the mechanism of irradiation-induced bone injury and found that no mesenchymal stem cells (MSCs) were detected in irradiated distal femora or nonirradiated proximal femora. The MSCs in the circulation doubled at 1 week and increased fourfold after 4 wk of irradiation. The number of MSCs in the proximal femur quickly recovered, but no recovery was observed in the distal femur. The levels of free radicals were increased threefold at 1 wk and remained at this high level for 4 wk in distal femora, whereas the levels were increased at 1 wk and returned to the basal level at 4 wk in nonirradiated proximal femur. Free radicals diffuse ipsilaterally to the proximal femur through bone medullary canal. The blood vessels in the distal femora were destroyed in angiographic images, but not in the proximal femora. The osteoclasts and osteoblasts were decreased in the distal femora after irradiation, but no changes were observed in the proximal femora. The total bone volumes were not affected in proximal and distal femora. Our data indicate that irradiation produces free radicals that adversely affect the survival of MSCs in both distal and proximal femora. Irradiation injury to the vasculatures and the microenvironment affect the niches for stem cells during the recovery period.

  7. Hydrodynamic Determinants of Cell Necrosis and Molecular Delivery Produced by Pulsed Laser Microbeam Irradiation of Adherent Cells

    PubMed Central

    Compton, Jonathan L.; Hellman, Amy N.; Venugopalan, Vasan

    2013-01-01

    Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180–1100 ps and pulse energies of 0.5–10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two

  8. Cytoplasmic Irradiation Induces Metabolic Shift in Human Small Airway Epithelial Cells via Activation of Pim-1 Kinase.

    PubMed

    Wu, Jinhua; Zhang, Qin; Wuu, Yen-Ruh; Zou, Sirui; Hei, Tom K

    2017-04-01

    The unique cellular and molecular consequences of cytoplasmic damage caused by ionizing radiation were studied using a precision microbeam irradiator. Our results indicated that targeted cytoplasmic irradiation induced metabolic shift from an oxidative to glycolytic phenotype in human small airway epithelial cells (SAE). At 24 h postirradiation, there was an increase in the mRNA expression level of key glycolytic enzymes as well as lactate secretion in SAE cells. Using RNA-sequencing analysis to compare genes that were responsive to cytoplasmic versus nuclear irradiation, we found a glycolysis related gene, Pim-1, was significantly upregulated only in cytoplasmic irradiated SAE cells. Inhibition of Pim-1 activity using the selective pharmaceutic inhibitor Smi-4a significantly reduced the level of lactate production and glucose uptake after cytoplasmic irradiation. In addition, Pim-1 also inhibited AMPK activity, which is a well-characterized negative regulator of glycolysis. Distinct from the glycolysis induced by cytoplasmic irradiation, targeted nuclear irradiation also induced a transient and minimal increase in glycolysis that correlated with increased expression of Hif-1α. In an effort to explore the underline mechanism, we found that inhibition of mitochondria fission using the cell-permeable inhibitor mdivi-1 suppressed the induction of Pim-1, thus confirming Pim-1 upregulation as a downstream effect of mitochondrial dysfunction. Our data show and, for the first time, that cytoplasmic irradiation mediate expression level of Pim-1, which lead to glycolytic shift in SAE cells. Additionally, since glycolysis is frequently linked to cancer cell metabolism, our findings further suggest a role of cytoplasmic damage in promoting neoplastic changes.

  9. Cytoplasmic Irradiation Induces Metabolic Shift in Human Small Airway Epithelial Cells via Activation of Pim-1 Kinase

    PubMed Central

    Wu, Jinhua; Zhang, Qin; Wuu, Yen-Ruh; Zou, Sirui; Hei, Tom K.

    2017-01-01

    The unique cellular and molecular consequences of cytoplasmic damage caused by ionizing radiation were studied using a precision microbeam irradiator. Our results indicated that targeted cytoplasmic irradiation induced metabolic shift from an oxidative to glycolytic phenotype in human small airway epithelial cells (SAE). At 24 h postirradiation, there was an increase in the mRNA expression level of key glycolytic enzymes as well as lactate secretion in SAE cells. Using RNA-sequencing analysis to compare genes that were responsive to cytoplasmic versus nuclear irradiation, we found a glycolysis related gene, Pim-1, was significantly upregulated only in cytoplasmic irradiated SAE cells. Inhibition of Pim-1 activity using the selective pharmaceutic inhibitor Smi-4a significantly reduced the level of lactate production and glucose uptake after cytoplasmic irradiation. In addition, Pim-1 also inhibited AMPK activity, which is a well-characterized negative regulator of glycolysis. Distinct from the glycolysis induced by cytoplasmic irradiation, targeted nuclear irradiation also induced a transient and minimal increase in glycolysis that correlated with increased expression of Hif-1α. In an effort to explore the underline mechanism, we found that inhibition of mitochondria fission using the cell-permeable inhibitor mdivi-1 suppressed the induction of Pim-1, thus confirming Pim-1 upregulation as a downstream effect of mitochondrial dysfunction. Our data show and, for the first time, that cytoplasmic irradiation mediate expression level of Pim-1, which lead to glycolytic shift in SAE cells. Additionally, since glycolysis is frequently linked to cancer cell metabolism, our findings further suggest a role of cytoplasmic damage in promoting neoplastic changes. PMID:28170315

  10. Effects of electromagnetic pulse irradiation on the mouse blood-testicle barrier.

    PubMed

    Hou, Wu-Gang; Zhao, Jie; Li, Zhen; Li, Wei; Li, Teng; Xiong, Li-Ze; Zhang, Yuan-Qiang

    2012-07-01

    To investigate the effects of electromagnetic pulse irradiation on the mouse blood-testicle barrier (BTB) and spermatogenesis. After whole body irradiation with 400 kV/m electromagnetic pulse irradiation, the mouse testicles and BTB permeability were observed using hematoxylin-eosin, Evans blue, and lanthanum nitrate as tracers. The expression of the BTB tight junction protein occludin was examined using real-time polymerase chain reaction and Western blotting. At 1, 7, and 14 days after irradiation, the BTB structure was damaged, the BTB permeability was significantly increased, numerous apoptotic or necrotic spermatogenic cells were found in the lumen, and the mRNA and protein expression levels of occludin were markedly decreased. The BTB structure and occludin expression levels had gradually recovered by 21 and 28 days after irradiation. Electromagnetic pulse irradiation damaged the structure and function of mouse BTB, resulting in apoptosis or necrosis of the spermatogenic cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Monte Carlo calculations of initial energies of electrons in water irradiated by photons with energies up to 1GeV.

    PubMed

    Todo, A S; Hiromoto, G; Turner, J E; Hamm, R N; Wright, H A

    1982-12-01

    Previous calculations of the initial energies of electrons produced in water irradiated by photons are extended to 1 GeV by including pair and triplet production. Calculations were performed with the Monte Carlo computer code PHOEL-3, which replaces the earlier code, PHOEL-2. Tables of initial electron energies are presented for single interactions of monoenergetic photons at a number of energies from 10 keV to 1 GeV. These tables can be used to compute kerma in water irradiated by photons with arbitrary energy spectra to 1 GeV. In addition, separate tables of Compton-and pair-electron spectra are given over this energy range. The code PHOEL-3 is available from the Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830.

  12. High local carcinogenic activity of 1,3-dimethyl-3-phenyl-1-nitrosourea and its inactivation by intravenous application in rats: comparison of in vivo findings with the in vitro direct and a combined in vivo/in vitro sister chromatid exchange assay in V79-E cells.

    PubMed

    Thust, R; Martin, J; Mendel, J; Schreiber, D

    1987-02-01

    1,3-Dimethyl-3-phenyl-1-nitrosourea (DMPNU) is a very potent local carcinogen in rats and induces a 100% frequency of forestomach carcinomas when applied i.g. in two different dosages (10 applications of 0.3 or 0.03 mmol/kg body wt, respectively, at 14-day intervals), but it is inactive upon i.v. administration (10 applications of 0.03 mmol/kg body wt at 14-day intervals). By means of the direct sister chromatid exchange (SCE) assay in V79-E cells in the presence of rat blood, serum or plasma, respectively, as well as by a 'host-mediated' SCE assay (in which the agent was given i.v. to rats, and blood taken from the animal was checked for the recovery of genotoxic activity in cell cultures), we tried to elucidate the unexpected lack of carcinogenic activity of i.v. DMPNU. The direct SCE assay revealed a drastic reduction of DMPNU genotoxicity by rat blood, serum or plasma, respectively, which is abolished by the esterase inhibitor diisopropylfluorophosphate. In the 'host-mediated' SCE assay a genotoxic activity of DMPNU was only recoverable after a very high i.v. dose and when the blood added to the cell cultures had been taken from the rat heart within 1 min after DMPNU administration in vivo. 1-Methyl-1-nitrosourea (MNU) and 1-methyl-3-phenyl-1-nitrosourea (MPNU) were used as positive controls in these experiments and also gave a lower response than theoretically expected, but the relative loss of activity with the latter compounds was much lower than with DMPNU. It is assumed that an esterase in rat blood effectively decomposes this trisubstituted nitrosourea. Problems of the novel 'host-mediated' SCE assay are discussed.

  13. Hydroethidine: a fluorescent redox probe for locating hypoxic cells in spheroids and murine tumours.

    PubMed

    Olive, P L

    1989-09-01

    The fluorescent redox probe hydroethidine was accumulated and metabolised about five times faster in aerobic than in hypoxic mammalian cells. Patterns of fluorescence in Chinese hamster V79 spheroids also indicated that internal hypoxic cells were less able to metabolise the drug; toxicity was observed in cells only when cell fluorescence exceeded about 500 times background. In medium equilibrated with air or nitrogen, cell accumulation of the stain was rapid, and began to plateau after 30 min; loss of ethidium was initially rapid, with a slower component after 30 min, and transfer of the metabolite ethidium between stained and unstained cells was observed after 2 h co-incubation. Sorting cells from irradiated spheroids on the basis of ethidium fluorescence provided good separation of aerobic radiosensitive and hypoxic radioresistant cells, although separation using the perfusion probe, Hoechst 33342, was superior. Similar experiments with the murine SCCVII squamous cell carcinoma suggested that hydroethidine might be a useful indirect stain for locating hypoxic cells in experimental tumours when used in combination with a perfusion probe such as Hoechst 33342.

  14. Effect on fast neutron irradiation to 4 dpa at 400{degrees}C on the properties of V-(4-5)Cr-(4-5)Ti alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Alexander, D.J.; Robertson, J.P.

    1997-04-01

    Tensile, Charpy impact and electrical resistivity measurements have been performed at ORNL on V-4Cr-4Ti and V-5Cr-5Ti specimens that were prepared at ANL and irradiated in the lithium-bonded X530 experiment in the EBR-II fast reactor. All of the specimens were irradiated to a damage level of about 4 dpa at a temperature of {approximately}400{degrees}C. A significant amount of radiation hardening was evident in both the tensile and Charpy impact tests. The irradiated V-4Cr-4Ti yield strength measured at {approximately}390{degrees}C was >800 MPa, which is more than three times as high as the unirradiated value. The uniform elongations of the irradiated tensile specimensmore » were typically {approximately}1%, with corresponding total elongations of 4-6%. The ductile to brittle transition temperature of the irradiated specimens was less than the unirradiated resistivity, which suggests that hardening associated with interstitial solute pickup was minimal.« less

  15. 1.00 MeV proton radiation resistance studies of single-junction and single gap dual-junction amorphous-silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.

    1990-01-01

    A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.

  16. The tensile and fatigue properties of DIN 1.4914 martensitic stainless steel after 590 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Victoria, M.

    1992-09-01

    Tensile and low cycle fatigue subsize specimens of DIN 1.4914 martensitic steel (MANET) have been irradiated with 590 MeV protons to doses up to 1 dpa and at temperatures between 363 and 703 K. The helium produced by spallation reactions was measured as 130 appm/dpa. A strong radiation hardening is found, which decreases as the irradiation temperature increases. The tensile elongation is reduced after irradiation, but the fracture mode is always ductile and transgranular. The radition hardening produced at low irradiation temperatures is recovered after annealing at higher temperatures. Continous softening is observed during low cycle fatigue testing. The rate of softening of the irradiated material is stonger than that of the unirradiated material and tends to reach the saturation level of the latter. The irradiation badly affects the fatigue life, particularly in the temperature domain of dynamic strain ageing between 553 and 653 K.

  17. Targeted microbubbles with ultrasound irradiation and PD-1 inhibitor to increase antitumor activity in B-cell lymphoma.

    PubMed

    Zheng, Shiya; Song, Dan; Jin, Xiaoxiao; Zhang, Haijun; Aldarouish, Mohanad; Chen, Yan; Wang, Cailian

    2018-02-01

    Severe cardiac toxicity of doxorubicin and an immunosuppressive tumor micro-environment become main obstacles for the effective treatment of B-cell lymphoma. In this research, rituximab-conjugated and doxorubicin-loaded microbubbles (RDMs) were designed for exploring a combination approach of targeted microbubbles with ultrasound (US) irradiation and PD-1 inhibitor to overcome obstacles mentioned above. In vivo studies were performed on SU-DHL-4 cell-grafted mice and ex vivo studies were performed on CD20 + human SU-DHL-4 cells and human T cells. A greater therapeutic effect and higher expression of PD-L1 protein expression were obtained with RDMs with US irradiation in vivo. A significant inhibitory effect on SU-DHL-4 B-cell lymphoma cells was observed after treated by RDMs with US irradiation and PD-1 inhibitor ex vivo. Combination of RDMs with US irradiation and PD-1 inhibitor could be a promising therapeutic strategy for B-cell lymphoma.

  18. Effects of neratinib and combination with irradiation and chemotherapy in head and neck cancer cells.

    PubMed

    Schneider, S; Thurnher, D; Kadletz, L; Seemann, R; Brunner, M; Kotowski, U; Schmid, R; Lill, C; Heiduschka, G

    2016-11-01

    Prognosis of patients with head and neck squamous cell carcinoma (HNSCC) is still poor. Novel therapeutic approaches are of great interest to improve the effects of radiochemotherapy. We evaluated the effects of tyrosine kinase inhibitor neratinib on HNSCC cell lines CAL27, SCC25 and FaDu as a single agent and in combination with irradiation and chemotherapy. Effects of neratinib were evaluated in HNSCC cell lines CAL27, SCC25 and FaDu. Effect on cell viability of neratinib and combination with cisplatin and irradiation was measured using CCK-8 assays and clonogenic assays. Western blot analysis was performed to distinguish the effect on epithelial growth factor receptor and HER2 expression. Apoptosis was evaluated by flow cytometry analysis. Growth inhibition was achieved in all cell lines, whereas combination of cisplatin and neratinib showed greater inhibition than each agent alone. Apoptosis was induced in all cell lines. Combination of neratinib with irradiation or cisplatin showed significantly increased apoptosis. In clonogenic assays, significant growth inhibition was observed in all investigated cell lines. Neratinib, as a single agent or in combination with chemo-irradiation, may be a promising treatment option for patients with head and neck cancer. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Quantitative image analysis of laminin immunoreactivity in skin basement membrane irradiated with 1 GeV/nucleon iron particles

    NASA Technical Reports Server (NTRS)

    Costes, S.; Streuli, C. H.; Barcellos-Hoff, M. H.

    2000-01-01

    We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.

  20. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  1. Primary Central Nervous System T-Cell Lymphoma With Aberrant Expression of CD20 and CD79a: A Diagnostic Pitfall.

    PubMed

    Gupta, Neha; Nasim, Mansoor; Spitzer, Silvia G; Zhang, Xinmin

    2017-10-01

    Primary central nervous system T-cell lymphoma (PCNSTCL) is rare, accounting for 2% of CNS lymphomas. We report the first case of PCNSTCL with aberrant expression of CD20 and CD79a in an 81-year-old man with a left periventricular brain mass. A biopsy revealed dense lymphoid infiltrate consisting of medium-sized cells in a background of gliosis and many histiocytes. The lymphoid cells were positive for CD2, CD3, CD7, CD8, T-cell intracellular antigen-1, granzyme B, CD20, and CD79a and negative for CD4, CD5, PAX-5, OCT-2, BOB-1, human herpes virus-8, and Epstein-Barr virus-encoded small RNAs. Molecular studies revealed clonal TCR-β and TCR-γ gene rearrangements and negative immunoglobulin gene rearrangements. The patient was treated with chemotherapy (vincristine and methotrexate) and rituximab, but he died 1 month after the diagnosis. This is a unique case that emphasizes the use of a multimodal approach, including a broad immunohistochemical panel and molecular studies in lineage determination for lymphomas with ambiguous phenotype.

  2. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires.

    PubMed

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-05-15

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.

  3. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires

    PubMed Central

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-01-01

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires. PMID:28505116

  4. VE-821, an ATR inhibitor, causes radiosensitization in human tumor cells irradiated with high LET radiation.

    PubMed

    Fujisawa, Hiroshi; Nakajima, Nakako Izumi; Sunada, Shigeaki; Lee, Younghyun; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2015-08-19

    High linear energy transfer (LET) radiation such as carbon ion particles is successfully used for treatment of solid tumors. The reason why high LET radiation accomplishes greater tumor-killing than X-rays is still not completely understood. One factor would be the clustered or complex-type DNA damages. We previously reported that complex DNA double-strand breaks produced by high LET radiation enhanced DNA end resection, and this could lead to higher kinase activity of ATR protein recruited to RPA-coated single-stranded DNA. Although the effect of ATR inhibition on cells exposed to low LET gamma-rays has recently been reported, little is known regarding the effect of ATR inhibitor on cells treated with high LET radiation. The purpose of this study is to investigate the effects of the ATR inhibitor VE-821 in human tumor and normal cells irradiated with high LET carbon ions. HeLa, U2OS, and 1BR-hTERT (normal) cells were pre-treated with 1 μM VE-821 for 1 hour and irradiated with either high LET carbon ions or X-rays. Cell survival, cell cycle distribution, cell growth, and micronuclei formation were evaluated. VE-821 caused abrogation of G2/M checkpoint and forced irradiated cells to divide into daughter cells. We also found that carbon ions caused a higher number of multiple micronuclei than X-rays, leading to decreased cell survival in tumor cells when treated with VE-821, while the survival of irradiated normal cells were not significantly affected by this inhibitor. ATR inhibitor would be an effective tumor radiosensitizer with carbon ion irradiation.

  5. Radiation hardness study of semi-insulating GaAs detectors against 5 MeV electrons

    NASA Astrophysics Data System (ADS)

    Šagátová, A.; Zaťko, B.; Nečas, V.; Sedlačková, K.; Boháček, P.; Fülöp, M.; Pavlovič, M.

    2018-01-01

    A radiation hardness study of Semi-Insulating (SI) GaAs detectors against 5 MeV electrons is described in this paper. The influence of two parameters, the accumulative absorbed dose (from 1 to 200 kGy) and the applied dose rate (20, 40 or 80 kGy/h), on detector spectrometric properties were studied. The accumulative dose has influenced all evaluated spectrometric properties and also negatively affected the detector CCE (Charge Collection Efficiency). We have observed its systematic reduction from an initial 79% before irradiation down to about 51% at maximum dose of 200 kGy. Relative energy resolution was also influenced by electron irradiation. Its degradation was obvious in the range of doses from 24 up to a maximum dose of 200 kGy, where an increase from 19% up to 31% at 200 V reverse voltage was noticed. On the other hand, a global increase of detection efficiency with accumulative absorbed dose was observed for all samples. Concerning the actual detector degradation we can assume that the tested SI GaAs detectors will be able to operate up to a dose of 300 kGy at least, when irradiated by 5 MeV electrons. The second investigated parameter of irradiation, the dose rate of chosen ranges, did not greatly alter the spectrometric properties of studied detectors.

  6. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  7. Irradiation at 660 nm modulates different genes central to wound healing in wounded and diabetic wounded cell models

    NASA Astrophysics Data System (ADS)

    Houreld, Nicolette N.

    2014-02-01

    Wound healing is a highly orchestrated process and involves a wide variety of cellular components, chemokines and growth factors. Laser irradiation has influenced gene expression and release of various growth factors, cytokines and extracellular matrix proteins involved in wound healing. This study aimed to determine the expression profile of genes involved in wound healing in wounded and diabetic wounded fibroblast cells in response to irradiation at a wavelength of 660 nm. Human skin fibroblast cells (WS1) were irradiated with a diode laser (wavelength 660 nm; fluence 5 J/cm2; power output 100 mW; power density 11 mW/cm2; spot size 9.1 cm2; exposure duration 7 min 35 s). Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used as a template in real-time qualitative polymerase chain reaction (qPCR). Eighty four genes involved in wound healing (extracellular matrix and cell adhesion; inflammatory cytokines and chemokines; growth factors; and signal transduction) were evaluated in wounded and diabetic wounded cell models. Forty eight hours post-irradiation, 6 genes were significantly upregulated and 8 genes were down-regulated in irradiated wounded cells, whereas 1 gene was up-regulated and 33 genes down-regulated in irradiated diabetic wounded cells. Irradiation of stressed fibroblast cells to a wavelength of 660 nm and a fluence of 5 J/cm2 modulated the expression of different genes involved in wound healing in different cell models. Modulation of these genes leads to the effects of laser irradiation seen both in vivo and in vitro, and facilitates the wound healing process.

  8. Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins.

    PubMed

    Rangarajan, Savithri; Woodgate, Roger; Goodman, Myron F

    2002-02-01

    In Escherichia coli, UV-irradiated cells resume DNA synthesis after a transient inhibition by a process called replication restart. To elucidate the role of several key proteins involved in this process, we have analysed the time dependence of replication restart in strains carrying a combination of mutations in lexA, recA, polB (pol II), umuDC (pol V), priA, dnaC, recF, recO or recR. We find that both pol II and the origin-independent primosome-assembling function of PriA are essential for the immediate recovery of DNA synthesis after UV irradiation. In their absence, translesion replication or 'replication readthrough' occurs approximately 50 min after UV and is pol V-dependent. In a wild-type, lexA+ background, mutations in recF, recO or recR block both pathways. Similar results were obtained with a lexA(Def) recF strain. However, lexA(Def) recO or lexA(Def) recR strains, although unable to facilitate PriA-pol II-dependent restart, were able to perform pol V-dependent readthrough. The defects in restart attributed to mutations in recF, recO or recR were suppressed in a recA730 lexA(Def) strain expressing constitutively activated RecA (RecA*). Our data suggest that in a wild-type background, RecF, O and R are important for the induction of the SOS response and the formation of RecA*-dependent recombination intermediates necessary for PriA/Pol II-dependent replication restart. In con-trast, only RecF is required for the activation of RecA that leads to the formation of pol V (UmuD'2C) and facilitates replication readthrough.

  9. Differential response of two cell lines sequentially irradiated with low X-ray doses.

    PubMed

    Güerci, A M; Dulout, F N; Grillo, C A; Seoane, A I

    2005-05-01

    An experiment was designed to compare the effect of repeated low doses of X-rays in two different cell lines: one transformed, epithelial like and aneuploid Chinese hamster ovary K-1 (CHO-K1); the other originated from a human primary culture, fibroblast, diploid and non-transformed, MRC-5. CHO and MRC-5 cells were cultured for 14 or eight passages, respectively. Irradiation was performed once per passage when cells were in the quiescent state (90 - 95% in G1/G0). Cells were exposed to 10.0 mSv X-ray doses. Ionizing radiation did not induce apoptosis or necrosis in the exposed CHO cell population. Significant increases of low-level damaged cells (degrees 1 and 2) were found for the 14 cycles of radiation when compared with controls, except for the first irradiation cycle. No significant increases in the frequency of cells with severe damage were observed. The frequency of MRC-5 cells with low-level damage increased significantly when compared with controls for radiation cycles seven and eight. Significant increases of apoptosis, necrosis and severe damage were found only for the highest dose. Transformed and non-transformed cell types responded differently to direct and indirect damage using low-dose repeat exposures to ionizing radiation. Though more investigation is needed to understand the mechanisms of radiation effects in chronic low-dose-exposed cell populations, cellular type should be taken into account in the design of in vitro experiments for understanding low-dose-irradiation effects.

  10. Factors affecting inactivation of Moraxell-Acinetobacter cells in an irradiation process. [/sup 137/Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firstenberg-Eden, R.; Rowley, D.B.; Shattuck, G.E.

    1980-09-01

    The effect of various stages of the irradiation processing of beef on the injury and inactivation of radiation-resistant Moraxella-Acinetobactor cells was studied. Moraxella-Acinetobacter cells were more resistant to heat inactivation and injury when heated in meat with salts (0.75% NaCl and 0.375% sodium tripolyphosphate) than in meat without salts. These salts had no effect on radiation resistance. Heated cells were more sensitive to radiation inactivation and injury than unheated cells. After repair, the cells regained their resistance to both NaCl and irradiation. Freezing and storage at -40/sup 0/C for 14 days had only a slight effect on either unstressed ormore » heat-stressed cells.« less

  11. Determine the yield of micronucleated cells in primary human fibroblasts exposed to focused soft X-rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. Prise

    dose-rates for exposures (See DE-FG02-01ER63236). However, we performed pilot studies measuring bystander responses with titanium-K. To date we have performed studies with V79 cells measuring cell survival as an endpoint and are starting studies in our human fibroblasts to measure micronuclei yields. A significant bystander response is observed in the V79 cells under conditions where only a single cell within a population was irradiated either with carbon-K or titanium-K X-rays. Typically around 10% cell killing is observed under these conditions. These studies are now being extended to measure micronuclei yields in the AG1522 cells under direct and bystander conditions. Our work has suggested that the yield of micronuclei in fibroblasts exposed to soft X-rays may be reduced in comparison to conventional X-ray exposures (Prise et al., 2003). Although further studies are required to confirm this using a range of scoring times.« less

  12. Post-irradiation time effects on the graft of poly(ethylene-alt-tetrafluoroethylene) (ETFE) films for ion exchange membrane application

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana N.; Zen, Heloísa A.; Ribeiro, Geise; Ferreira, Henrique P.; Souza, Camila P.; Parra, Duclerc F.; Santiago, Elisabete I.; Lugão, Ademar B.

    2010-03-01

    Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) was studied for synthesis of ion exchange membranes. Radiation-induced grafting of styrene onto ETFE films was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. The ETFE films were irradiated at 20 kGy dose at room temperature and chemical changes were monitored after contact with styrene for grafting. The post-irradiation time was established at 14 days when the films were remained in styrene/toluene 1:1 v/v. After this period the grafting degree was evaluated in the samples. The grafted films were sulfonated using chlorosulfonic acid and 1, 2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The membranes were analyzed by infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermogravimetric measurements (TG) and degree of grafting (DOG). The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for ETFE membranes were achieved higher than Nafion ® films. Preliminary single cell performance was made using pure H 2 and O 2 as reactants at a cell temperature of 80 °C and atmospheric gas pressure. The fuel cell performance of ETFE films was satisfactory when compared to state-of-art Nafion ® membranes.

  13. Fermi-LAT Observations of Supernova Remnants Kesteven 79

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Slane, Patrick; Castro, Daniel

    2014-03-01

    In this paper, we report on the detection of γ-ray emission coincident with the Galactic supernova remnant (SNR) Kesteven 79 (Kes 79). We analyzed approximately 52 months of data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 79 is thought to be interacting with adjacent molecular clouds, based on the presence of strong 12CO J = 1 → 0 and HCO+ J = 1 → 0 emission and the detection of 1720 MHz line emission toward the east of the remnant. Acceleration of cosmic rays is expected to occur at SNR shocks, and SNRs interacting with dense molecular clouds provide a good testing ground for detecting and analyzing the production of γ-rays from the decay of π0 into two γ-ray photons. This analysis investigates γ-ray emission coincident with Kes 79, which has a detection significance of ~7σ. Additionally, we present an investigation of the spatial and spectral characteristics of Kes 79 using multiple archival XMM-Newton observations of this remnant. We determine the global X-ray properties of Kes 79 and estimate the ambient density across the remnant. We also performed a similar analysis for Galactic SNR Kesteven 78 (Kes 78), but due to large uncertainties in the γ-ray background model, no conclusion can be made about an excess of GeV γ-ray associated with the remnant.

  14. Molecular imaging of low-power laser irradiation induced cell proliferation

    NASA Astrophysics Data System (ADS)

    Gao, Xuejuan; Wang, Fang; Da, Xing

    2006-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Studying the signaling pathways involved in the laser irradiation is important for understanding these processes. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. Protein kinase Cs (PKCs) have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In present study, to monitor the direct interaction between Ras and Raf and PKCs activation after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. Our results show that the direct interaction between Ras and Raf is monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope, and that the increasing dynamics of PKCs activity is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved ASTC-a-1 cells expressing CKAR reporter using the similar way. Taken together, LPLI induces the ASTC-a-1 cell proliferation by activated Ras directly interacting with Raf and by specifically activating PKCs.

  15. Characteristic Behavior and Scaling Studies of Self Organized InP Nano-dots formed via keV and MeV irradiations

    NASA Astrophysics Data System (ADS)

    Paramanik, Dipak; Varma, Shikha

    2008-04-01

    The controlled formation of nano-dots, using ion beams as tool, has become important as it offers a unique method to generate non-equilibrium phases with novel physical properties and structures with nano-dimensions. We have investigated the creation of self assembled nano- dots on InP(111) surfaces after 3 keV as well as 1.5 MeV ion beams at a large range of fluences. We have studied the Scaling exponents of the evolved surfaces by utilizing the technique of Scanning Probe Microscopy (SPM). At keV energies ripening of the nano-dots is seen below a critical time whereas an inverse ripening is observed for longer durations. At the critical time square shaped array of nano --dots are observed. The dots are characterized by narrow height and size distributions. Nano dots have also been observed at MeV ion irradiations. Their size distribution though broad at lowest fluence decreases for larger fluences.

  16. The structural behavior of SrTiO3 under 400 keV Ne2+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Su, X.; Liu, C. G.; Yang, D. Y.; Wen, J.; Fu, E. G.; Zhang, J.; Chen, L. J.; Xu, D. P.; Wang, Y. Q.; Li, Y. H.

    2015-11-01

    The structural behavior of polycrystalline perovskite SrTiO3 under 400 keV Ne2+ ion irradiation at both liquid nitrogen (LN2) and room temperature (RT) has been investigated. The grazing incident X-ray diffraction technique was applied to examine the radiation-induced structural evolution. The radiation behavior of SrTiO3 depends strongly on the irradiation temperature. At LN2 temperature, the samples exhibit significant lattice swelling and amorphization, whereas at RT, the lattice swelling is much less conspicuous and no amorphization is detected even at the highest irradiation dose of 5.0 dpa. Nevertheless, Ne2+ irradiation induces peak splitting in XRD patterns at both temperatures. Furthermore, first-principle calculations have been performed with VASP, involving possible defect types, to identify which defect is responsible for the radiation effect of SrTiO3. The results reveal that the oxygen vacancy defect is the most likely to contribute to the radiation behavior of SrTiO3.

  17. Alpha-induced reactions on selenium between 11 and 15 MeV

    NASA Astrophysics Data System (ADS)

    Fiebiger, Stefan; Slavkovská, Zuzana; Giesen, Ulrich; Göbel, Kathrin; Heftrich, Tanja; Heiske, Annett; Reifarth, René; Schmidt, Stefan; Sonnabend, Kerstin; Thomas, Benedikt; Weigand, Mario

    2017-07-01

    The production of 77,79,85,85m Kr and 77Br via the reaction Se(α ,x) was investigated between {E}α =11 and 15 MeV using the activation technique. The irradiation of natural selenium targets on aluminum backings was conducted at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. The spectroscopic analysis of the reaction products was performed using a high-purity germanium detector located at PTB and a low energy photon spectrometer detector at the Goethe University Frankfurt, Germany. Thick-target yields were determined. The corresponding energy-dependent production cross sections of 77,79,85,85m Kr and 77Br were calculated from the thick-target yields. Good agreement between experimental data and theoretical predictions using the TALYS-1.6 code was found.

  18. Inhibition of SET Domain–Containing Lysine Methyltransferase 7/9 Ameliorates Renal Fibrosis

    PubMed Central

    Sasaki, Kensuke; Nakashima, Ayumu; Irifuku, Taisuke; Yamada, Kyoko; Kokoroishi, Keiko; Ueno, Toshinori; Doi, Toshiki; Hida, Eisuke; Arihiro, Koji; Kohno, Nobuoki

    2016-01-01

    TGF-β1 activity results in methylation of lysine 4 of histone H3 (H3K4) through SET domain–containing lysine methyltransferase 7/9 (SET7/9) induction, which is important for the transcriptional activation of fibrotic genes in vitro. However, in vivo studies utilizing an experimental model of renal fibrosis are required to develop therapeutic interventions that target SET7/9. In this study, we investigated the signaling pathway of TGF-β1-induced SET7/9 expression and whether inhibition of SET7/9 suppresses renal fibrosis in unilateral ureteral obstruction (UUO) mice and kidney cell lines. Among the SET family, SET7/9 was upregulated on days 3 and 7 in UUO mice, and the upregulation was suppressed by TGF-β1 neutralizing antibody. TGF-β1 induced SET7/9 expression via Smad3 in normal rat kidney (NRK)-52E cells. In human kidney biopsy specimens from patients diagnosed with IgA nephropathy and membranous nephropathy, SET7/9 expression was positively correlated with the degree of interstitial fibrosis (r=0.59, P=0.001 in patients with IgA nephropathy; and r=0.58, P<0.05 in patients with membranous nephropathy). In addition, small interfering RNA-mediated knockdown of SET7/9 expression significantly attenuated renal fibrosis in UUO mice. Sinefungin, an inhibitor of SET7/9, also suppressed the expression of mesenchymal markers and extracellular matrix proteins and inhibited H3K4 mono-methylation (H3K4me1) in kidneys of UUO mice. Moreover, sinefungin had an inhibitory effect on TGF-β1-induced α-smooth muscle actin expression and H3K4me1 in both NRK-52E and NRK-49F cells. In conclusion, sinefungin, a SET7/9 inhibitor, ameliorates renal fibrosis by inhibiting H3K4me1 and may be a candidate therapeutic agent. PMID:26045091

  19. Active immunotherapy for mouse breast cancer with irradiated whole-cell vaccine expressing VEGFR2.

    PubMed

    Yan, Heng-Xiu; Cheng, Ping; Wei, Hai-Yan; Shen, Guo-Bo; Fu, Li-Xin; Ni, Jie; Wu, Yang; Wei, Yu-Quan

    2013-04-01

    As tumor-associated antigens are not well characterized for the majority of human tumors, polyvalent vaccines prepared with whole-tumor antigens are an attractive approach for tumor vaccination. Vascular endothelial growth factor receptor-2 (VEGFR2), as a model antigen with which to explore the feasibility of immunotherapy, has shown great promise as a tumor vaccine. However, the efficacy of immunotherapy is often not ideal when used alone. In this study, we explored the therapeutic efficacy of an irradiated AdVEGFR2-infected cell vaccine-based immunotherapy in the weakly immunogenic and highly metastatic 4T1 murine mammary cancer model. An adenovirus encoding the VEGFR2 gene (AdVEGFR2) was constructed. Lethally irradiated, virus-infected 4T1 cells were used as vaccines. Vaccination with lethally irradiated AdVEGFR2-infected 4T1 cells inhibited subsequent tumor growth and pulmonary metastasis compared with challenge inoculations. Angiogenesis was inhibited, and the number of CD8+ T lymphocytes was increased within the tumors. Antitumor activity was also caused by the adoptive transfer of isolated spleen lymphocytes. In vitro, the expression of HMGB1 and HSP70 in the AdVEGFR2‑infected 4T1 cells was increased, and was involved in the activation of tumor antigen-specific T-cell immunity. Our results indicate that the immunotherapy based on irradiated AdVEGFR2-infected whole-cancer cell vaccines may be a potentially effective strategy for 4T1 cancer treatment.

  20. Carcinostatic effects of platinum nanocolloid combined with gamma irradiation on human esophageal squamous cell carcinoma.

    PubMed

    Li, Qiang; Tanaka, Yoshiharu; Saitoh, Yasukazu; Tanaka, Hiroshi; Miwa, Nobuhiko

    2015-04-15

    To explore the carcinostatic effects of platinum nanocolloid (Pt-nc) combined with gamma rays on human esophageal squamous cell carcinoma (ESCC). ESCC-derived KYSE-70 cells were treated with various concentrations of Pt-nc and/or gamma irradiation, and subsequently cultured in phenol red free DMEM with 10% FBS for 48 h. The proliferative status of the KYSE-70 cells was evaluated using trypan blue dye exclusion and WST-8 assays. Cellular and nucleic morphological aspects were evaluated using crystal violet and Hoechst 33342 stainings, respectively. Radiosensitivity was quantified by a cell viability assay, and the activated form of caspase-3, a characteristic apoptosis-related protein, was detected by Western blotting. Although single treatment with either Pt-nc or gamma irradiation could slightly inhibit the growth of the KYSE-70 cells, their combination exerted remarkable carcinostatic effects in a manner dependent on either Pt-nc concentrations or gamma ray doses, compared with the effect of each treatment alone (p<0.05). By fluorescence micrographic observation, the KYSE-70 cells that were treated with Pt-nc and subsequently irradiated with gamma rays, were shown to undergo distinct apoptotic morphological changes. The carcinostatic effect of gamma rays at 7 Gy without Pt-nc was approximately equal to that when 3-Gy irradiation was combined with 100 ppm Pt-nc or that 5-Gy irradiation was combined with 50 ppm Pt-nc. Pt-nc in combination with gamma rays may exert a cooperative effect through platinum- or gamma ray-induced apoptosis resulting in the inhibition of growth of cancer cells, while concurrently enabling the lowering of the radiative dose. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effects of Platinum Nanocolloid in Combination with Gamma Irradiation on Normal Human Esophageal Epithelial Cells.

    PubMed

    Li, Qiang; Tanaka, Yoshiharu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2016-05-01

    Our previous study demonstrated that platinum nanocolloid (Pt-nc), combined with lower-dose gamma irradiation at 3, 5, and 7 Gy significantly decreased proliferation and accelerated apoptosis of the human esophageal squamous cell carcinoma-derived cell line KYSE-70. The aim of the present study was to determine, under the same conditions as our previous study where gamma rays combined with Pt-nc were carcinostatic to KYSE-70 cells, if we could induce a radioprotective or the radiation-sensitizing effect on the human normal esophageal epithelial cells (HEEpiC). HEEpiC were treated with various Pt-nc concentrations and then irradiated with various gamma-ray doses. The proliferative status of HEEpiC was evaluated using trypan blue dye-exclusion and WST-8 assays. The cellular and nucleic morphological features were determined using crystal violet and Hoechst 33342 stainings, respectively. The intracellular level of reactive oxygen species (ROS) in HEEpiC was evaluated with a nitro blue tetrazolium (NBT) assay. The apoptotic status was detected with caspase-3, Bax, and Bcl-2 by Western blotting. Either Pt-nc or gamma irradiation could inhibit the growth of HEEpiC; however, their combined use exerted a significant proliferation-inhibitory effect in a Pt-nc dose-dependent manner than gamma irradiation alone. Pt-nc resulted in radiation sensitization rather than radiation protection on HEEpiC in vitro similar to KYSE-70 cells, when Pt-nc was administrated alone or combined with gamma irradiation. Thus, Pt-nc has an inhibitory effect on cell proliferation, a facilitative effect on apoptosis, and a certain degree of toxicity against HEEpiC.

  2. Loss of Nrf2 promotes alveolar type 2 cell loss in irradiated, fibrotic lung.

    PubMed

    Traver, Geri; Mont, Stacey; Gius, David; Lawson, William E; Ding, George X; Sekhar, Konjeti R; Freeman, Michael L

    2017-11-01

    The development of radiation-induced pulmonary fibrosis represents a critical clinical issue limiting delivery of therapeutic doses of radiation to non-small cell lung cancer. Identification of the cell types whose injury initiates a fibrotic response and the underlying biological factors that govern that response are needed for developing strategies that prevent or mitigate fibrosis. C57BL/6 mice (wild type, Nrf2 null, Nrf2 flox/flox , and Nrf2 Δ/Δ ; SPC-Cre) were administered a thoracic dose of 12Gy and allowed to recover for 250 days. Whole slide digital and confocal microscopy imaging of H&E, Masson's trichrome and immunostaining were used to assess tissue remodeling, collagen deposition and cell renewal/mobilization during the regenerative process. Histological assessment of irradiated, fibrotic wild type lung revealed significant loss of alveolar type 2 cells 250 days after irradiation. Type 2 cell loss and the corresponding development of fibrosis were enhanced in the Nrf2 null mouse. Yet, conditional deletion of Nrf2 in alveolar type 2 cells in irradiated lung did not impair type 2 cell survival nor yield an increased fibrotic phenotype. Instead, radiation-induced ΔNp63 stem/progenitor cell mobilization was inhibited in the Nrf2 null mouse while the propensity for radiation-induced myofibroblasts derived from alveolar type 2 cells was magnified. In summary, these results indicate that Nrf2 is an important regulator of irradiated lung's capacity to maintain alveolar type 2 cells, whose injury can initiate a fibrotic phenotype. Loss of Nrf2 inhibits ΔNp63 stem/progenitor mobilization, a key event for reconstitution of injured lung, while promoting a myofibroblast phenotype that is central for fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effect of gamma irradiation on cell lysis and polyhydroxyalkanoate produced by Bacillus flexus

    NASA Astrophysics Data System (ADS)

    Divyashree, M. S.; Shamala, T. R.

    2009-02-01

    Bacillus flexus cultivated on sucrose and sucrose with plant oil such as castor oil produced polyhydroxybutyrate (PHB), a homopolymer of polyhydroxyalkanoate (PHA) and PHA copolymer (containing hydroxybutyrate and hexanoate), respectively. Gamma irradiation of these cells (5-40 kGy) resulted in cell damage and aided in the isolation of 45% and 54% PHA on biomass weight, correspondingly. Molecular weight of PHB increased from 1.5×10 5 to 1.9×10 5 after irradiation (10 kGy), with marginal increase of tensile strength from 18 to 20 MPa. At the same irradiation dosage, PHA copolymer showed higher molecular weight increase from 1.7×10 5 to 2.3×10 5 and tensile strength from 20 to 35 MPa. GC, GC-MS, FTIR and 1H NMR were used for the characterization of PHA. Gamma irradiation seems to be a novel technique, to induce cross-linking and molecular weight increase of PHA copolymer and aid in easy extractability of intracellular PHA, simultaneously.

  4. Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauner, R.; Czernichow, P.; Cramer, P.

    To assess the effect of testicular irradiation on testicular endocrine function, we studied 12 boys with acute lymphoblastic leukemia who had been treated with direct testicular irradiation 10 months to 8 1/2 years earlier. Insufficient Leydig-cell function, manifested by a low response of plasma testosterone to chorionic gonadotropin or an increased basal level of plasma luteinizing hormone (or both), was observed in 10 patients, 7 of whom were pubertal. Two of these patients had a compensated testicular endocrine insufficiency with only high plasma concentrations of luteinizing hormone. Testosterone secretion was severely impaired in three pubertal boys studied more than fourmore » years after testicular irradiation. A diminished testicular volume indicating tubular atrophy was found in all pubertal patients, including three who had not received cyclophosphamide or cytarabine. These data indicate that testosterone insufficiency is a frequent complication of testicular irradiation, although some patients continue to have Leydig-cell activity for several years after therapy.« less

  5. Micro-Biocidal Activity of Yeast Cells by Needle Plasma Irradiation at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kurumi, Satoshi; Takahashi, Hideyuki; Taima, Tomohito; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    In this study, we report on the biocidal activity technique by needle helium plasma irradiation at atmospheric pressure using borosilicate capillary nozzle to apply for the oral surgery. The diameter of needle plasma was less than 50 µm, and temperature of plasma irradiated area was less than body temperature. Needle plasma showed emission due to OH and O radical. Raman spectra and methylene blue stain showed yeast cells were inactivated by needle plasma irradiation.

  6. The role of repair in the survival of mammalian cells from heavy ion irradiation - Approximation to the ideal case of target theory

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Story, M. D.

    1989-01-01

    Experiments are discussed in which the cell-cycle dependency of the repair deficiency of the S/S variant of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, Ne-20, Si-28, Ar-40, Fe-56, and Nb-93. Evidence from those studies provide support for the notion that as the linear energy transfer of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until it is eliminated around 500 keV/micron. In the region of the latter linear energy transfer value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism does not influence cell survival.

  7. Differential antimutagenicity of WR-1065 added after irradiation in L5178Y cell lines

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Ricanati, M.; McCoy, E. C.

    1999-01-01

    The purpose of this study was to determine the antimutagenicity of WR-1065 added after irradiation of cells of cell lines differing in their ability to rejoin radiation-induced DNA double-strand breaks (DSBs). The postirradiation antimutagenicity of WR-1065 at the thymidine kinase locus was demonstrated for L5178Y (LY)-S1 cells that are deficient in repair of DNA DSBs. Less postirradiation antimutagenicity of WR-1065 was observed in LY-R16 and LY-SR1 cells, which are relatively efficient in DSB repair. Postirradiation treatment with WR-1065 had only a small stimulatory effect on DSB rejoining. A 3-h incubation of irradiated LY cells with WR-1065 caused slight changes in the distribution of cells in the phases of the cell cycle that differed between LY-S1 and LY-SR1 cells. Both LY-S1 and LY-SR1 cells were protected against the cytotoxic and mutagenic effects of radiation when WR-1065 was present 30 min before and during the irradiation. We conclude that the differential postirradiation effects of WR-1065 in the LY-S1 and LY-SR1 cells are not caused by differences in cellular uptake of the radioprotector or in its radical scavenging activity. Possible mechanisms for the postirradiation antimutagenicity of WR-1065 are discussed.

  8. ANTIBODY FORMATION BY TRANSPLANTED BONE MARROW, SPLEEN, LYMPH NODE AND THYMUS CELLS IN IRRADIATED RECIPIENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, R.D.; Bond, V.P.

    1963-01-14

    Immunological competence of immunized mouse bone marrow, spleen, lymph node, and thymus cells was demonstrated when specific recall tetanus antitoxin responses were elicited after transfer of these cells to isologous irradiated mice or rats. Lesser amounts of antibody were obtained as the genetic strain distance was increased between the relation of donor and host in the parental to F/sub 1/ and in the homologous combination within the same species. It was not possible in the heterologous situation to elicit significant amounts of antibody from rat bone marrow and other lymphoid cells following their transplantation into irradiated mice. Minimal but notmore » significant antibody responses were elicited from cells obtained from immunized rat spleen and thymus tissue. In a few experiments, it was possible to elicit antibody formation from a buffy coat suspension of circulating white cells following their transfer to irradiated recipients. Isologous nonimmunized bone marrow did not stimulate or hasten recovery of the ability to eiicit secondary antibody responses in previously immunized irradiated mice. The capacity to elicit primary antibody responses to tetanus toxoid was depressed in parental-bone-marrow-protected F/sub 1/ mice when these chimeras exhibited varying degrees of secondary disease. The depression of primary antibody responses in irradiated F/sub 1/ mice given parental bone marrow provides evidence for a donor mediated immunological depression of antibody synthesis by host-lymphoid tissues. (auth)« less

  9. Alteration of sensitivity of intratumor quiescent and total cells to gamma-rays following thermal neutron irradiation with or without 10B-compound.

    PubMed

    Masunaga, S; Ono, K; Suzuki, M; Sakurai, Y; Kobayashi, T; Takagaki, M; Kinashi, Y; Akaboshi, M

    2000-02-01

    Changes in the sensitivity of intratumor quiescent (Q) and total cells to gamma-rays following thermal neutron irradiation with or without 10B-compound were examined. 5-Bromo-2'-deoxyuridine (BrdU) was injected to SCC VII tumor-bearing mice intraperitoneally 10 times to label all the proliferating (P) tumor cells. As priming irradiation, thermal neutrons alone or thermal neutrons with 10B-labeled sodium borocaptate (BSH) or dl-p-boronophenylalanine (BPA) were administered. The tumor-bearing mice then received a series of gamma-ray radiation doses, 0 through 24 h after the priming irradiation. During this period, no BrdU was administered. Immediately after the second irradiation, the tumors were excised, minced, and trypsinized. Following incubation of tumor cells with cytokinesis blocker, the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells at the time of priming irradiation) was determined using immunofluorescence staining for BrdU. The MN frequency in the total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU before the priming irradiation. To determine the BrdU-labeled cell ratios in the tumors at the time of the second irradiation, each group also included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted subcutaneously 5 days before the priming irradiation. In total cells, during the interval between the two irradiations, the tumor sensitivity to gamma-rays relative to that immediately after priming irradiation decreased with the priming irradiation ranking in the following order: thermal neutrons only > thermal neutrons with BSH > thermal neutrons with BPA. In contrast, in Q cells, during that time the sensitivity increased in the following order: thermal neutrons only < thermal neutrons with BSH < thermal neutrons with BPA. The longer the interval between the two irradiations, the higher was the BrdU-labeled cell

  10. Triphasic low-dose response in zebrafish embryos irradiated by microbeam protons.

    PubMed

    Choi, Viann Wing Yan; Yum, Emily Hoi Wa; Konishi, Teruaki; Oikawa, Masakazu; Cheng, Shuk Han; Yu, Kwan Ngok

    2012-01-01

    The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym as SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed to irradiate dechorionated zebrafish embryos at the 2-cell stage at 0.75 h post fertilization (hpf) by microbeam protons. Either one or both of the cells of the embryos were irradiated with 10, 20, 40, 50, 80, 100, 160, 200, 300 and 2000 protons each with an energy of 3.37 MeV. The embryos were then returned back to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay, with the apoptotic signals captured by a confocal microscope. The results revealed a triphasic dose-response for zebrafish embryos with both cells irradiated at the 2-cell stage, namely, (1) increase in apoptotic signals for < 200 protons (< 30 mGy), (2) hormesis to reduce the apoptotic signals below the spontaneous number for 200-400 protons (at doses of 30-60 mGy), and (3) increase in apoptotic signals again for > 600 protons (at doses > 90 mGy). The dose response for zebrafish embryos with only one cell irradiated at the 2-cell stage was also likely a triphasic one, but the apoptotic signals in the first zone (< 200 protons or < 30 mGy) did not have significant differences from those of the background. At the same time, the experimental data were in line with induction of radiation-induced bystander effect as well as rescue effect in the zebrafish embryos, particular in those embryos with unirradiated cells.

  11. Preliminary low temperature electron irradiation of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2005-01-01

    JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.

  12. DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

    2009-02-01

    Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2

  13. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    A comparison study was conducted of the effects of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue (white pulp) of the mouse spleen with findings as they relate to the mouse thymus. Experimental techniques employed included autoradiography and specific labeling with tritiated thymidine (TdR-(h-3)). The problem studied involved the mechanism of cell proliferation of lymphoid tissue of the mouse spleen and thymus under the stress of continuous irradiation at a dose rate of 10 roentgens (R) per day for 105 days (15 weeks). The aim was to determine whether or not a steady state or near-steady state of cell population could be established for this period of time, and what compensatory mechanisms of cell population were involved.

  14. Apoptotic cell death in erythrocytes of p53-deficient medaka (Oryzias latipes) after γ-irradiation.

    PubMed

    Sayed, Alaa El-Din Hamid; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-10-01

    Previous studies have examined the effects of γ-irradiation (γ-IR) on wild-type and p53 mutant Medaka (Oryzias latipes) 24 hours after irradiation and in the present work, apoptosis and alterations in erythrocytes of 4, 8 and 24 h and 14 days after gamma-ray irradiation were reported as genotoxic biomarkers of γ-irradiation. Sexually mature wild-type, WT (Hd-rR) and p53(-/-) adult female medaka (O. latipes) were exposed to 4 Gy dose of γ-IR and sampling were collected after 4, 8 and 24 h and 14 days. Apoptosis and morphological alterations were observed from 4 h after irradiation and remarkably increased 8 h after irradiation in the wild-type. Apoptotic cell death has been observed 8 h after irradiation most prominently but subtle in p53 mutant medaka. All these phenotypes were recovered 14 days after irradiation in both strains. Although no micronuclei were seen in any group, nuclear abnormalities were observed in red blood cells. Both apoptosis and morphological alterations in erythrocytes were decreased after 24 and 14 days after γ-irradiation. We conclude that apoptosis and malformations caused by 4 Gy γ-irradiation in the erythrocytes of medaka fish occurs from 4-24 h and the initial response until 8 h was p53-dependent.

  15. Proteolytic cleavage and activation of PAK2 during UV irradiation-induced apoptosis in A431 cells.

    PubMed

    Tang, T K; Chang, W C; Chan, W H; Yang, S D; Ni, M H; Yu, J S

    1998-09-15

    Exposure of mammalian cells to ultraviolet (UV) light elicits a cellular response and can also lead to apoptotic cell death. In this report, we show that a 36-kDa myelin basic protein (MBP) kinase detected by an in-gel kinase assay can be dramatically activated during the early stages of UV irradiation-triggered apoptosis of A431 cells. Immunoblot analysis revealed that this 36-kDa MBP kinase could be recognized by an antibody against the C-terminal regions of a family of p21Cdc42/Rac-activated kinases (PAKs). By using this antibody and a PAK2-specific antibody against the N-terminal region of PAK2 as studying tools, we further demonstrated that UV irradiation caused cleavage of PAK2 to generate a 36-kDa C-terminal catalytic fragment and a 30-kDa N-terminal fragment in A431 cells. The appearance of the 36-kDa C-terminal catalytic fragment of PAK2 matched exactly with the activation of the 36-kDa MBP kinase in A431 cells upon UV irradiation. In addition, UV irradiation also led to activation of CPP32/caspase-3, but not ICH-1L/caspase-2 and ICE/caspase-1, in A431 cells and the kinetics of activation of CPP32/caspase-3 appeared to correlate well with that of DNA fragmentation and of cleavage/activation of PAK2, respectively. Moreover, blockage of activation of CPP32/caspase-3 by pretreating the cells with two specific tetrapeptidic inhibitors for caspases (Ac-DEVD-cho and Ac-YVAD-cmk) could significantly attenuate the extent of cleavage/activation of PAK2 induced by UV irradiation. Collectively, the results demonstrate that cleavage and activation of PAK2 can be induced during the early stages of UV irradiation-triggered apoptosis and indicate the involvement of CPP32/caspase-3 in this process.

  16. UV testing of solar cells: Effects of antireflective coating, prior irradiation, and UV source

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.

    1993-01-01

    Short-circuit current degradation of electron irradiated double-layer antireflective-coated cells after 3000 hours ultraviolet (UV) exposure exceeds 3 percent; extrapolation of the data to 10(exp 5) hours (11.4 yrs.) gives a degradation that exceeds 10 percent. Significant qualitative and quantitative differences in degradation were observed in cells with double- and single-layer antireflective coatings. The effects of UV-source age were observed and corrections were made to the data. An additional degradation mechanism was identified that occurs only in previously electron-irradiated solar cells since identical unirradiated cells degrade to only 6 +/- 3 percent when extrapolated 10(exp 5) hours of UV illumination.

  17. Predominant expansion of V gamma 9/V delta 2 T cells in a tularemia patient.

    PubMed Central

    Sumida, T; Maeda, T; Takahashi, H; Yoshida, S; Yonaha, F; Sakamoto, A; Tomioka, H; Koike, T; Yoshida, S

    1992-01-01

    We describe a 58-year-old man with tularemia and expanding gamma delta T cells in his peripheral blood lymphocytes (PBL) (32.7% of total PBL). In the present work, we analyzed the T-cell receptor V gamma/V delta repertoire of these cells by making use of the polymerase chain reaction and flow cytometry and found that they were mostly CD4- CD8- CD3+ V gamma 9/V delta 2+. The sequence analysis of 16 cDNA clones encoding the V gamma 9-J region revealed that the V gamma 9-Jp combination was strikingly overrepresented but that the junctional (N) region was heterogeneous. This suggested that the gamma delta T cells in PBL from a patient with tularemia were polyclonally expanded. Images PMID:1534075

  18. Red blood cells metabolome changes upon treatment with different X-ray irradiation doses.

    PubMed

    Baroni, Fabio; Marraccini, Chiara; Merolle, Lucia; Piccagli, Vando; Lambertini, Daniele; Iori, Mauro; Fasano, Tommaso; Casali, Emanuela; Spisni, Alberto; Baricchi, Roberto; Pertinhez, Thelma A

    2018-06-07

    The upholding of red blood cells (RBC) quality and the removal of leukocytes are two essential issues in transfusion therapy. Leukodepletion provides optimum results, nonetheless there are cases where irradiation is recommended for some groups of hematological patients such as the ones with chronic graft-vs-host disease, congenital cellular immunodeficiency, and hematopoietic stem cell transplant recipients. The European guidelines suggest irradiation doses from 25 to 50 Gray (Gγ). We evaluated the effect of different prescribed doses (15 to 50 Gγ) of X-ray irradiation on fresh leukodepleted RBCs bags using a novel protocol that provides a controlled irradiation. Biochemical assays integrated with RBCs metabolome profile, assessed by nuclear magnetic resonance spectroscopy, were performed on RBC units supernatant, during 14 days storage. Metabolome analysis evidenced a direct correlation between concentration increase of three metabolites, glycine, glutamine and creatine, and irradiation dose. Higher doses (35 and 50 Gγ) effect on RBC mean corpuscular volume, hemolysis, and ammonia concentration are considerable after 7 and 14 days of storage. Our data show that irradiation with 50 Gγ should be avoided and we suggest that 35 Gγ should be the upper limit. Moreover, we suggest for leukodepleted RBCs units the irradiation with the prescribed dose of 15 Gγ, value at center of bag, and ranging between 13.35-15 Gγ, measured over the entire bag volume, may guarantee the same benefits of a 25 Gγ dose assuring, in addition, a better quality of RBCs.

  19. Proteomic Analysis Implicates Dominant Alterations of RNA Metabolism and the Proteasome Pathway in the Cellular Response to Carbon-Ion Irradiation

    PubMed Central

    Xie, Da-Fei; Xie, Yi; Liu, Xiao-Dan; Wang, Qi; Sui, Li; Song, Man; Zhang, Hong; Zhou, Jianhua; Zhou, Ping-Kun

    2016-01-01

    Radiotherapy with heavy ions is considered advantageous compared to irradiation with photons due to the characteristics of the Braggs peak and the high linear energy transfer (LET) value. To understand the mechanisms of cellular responses to different LET values and dosages of heavy ion radiation, we analyzed the proteomic profiles of mouse embryo fibroblast MEF cells exposed to two doses from different LET values of heavy ion 12C. Total proteins were extracted from these cells and examined by Q Exactive with Liquid Chromatography (LC)—Electrospray Ionization (ESI) Tandem MS (MS/MS). Using bioinformatics approaches, differentially expressed proteins with 1.5 or 2.0-fold changes between different dosages of exposure were compared. With the higher the dosage and/or LET of ion irradiation, the worse response the cells were in terms of protein expression. For instance, compared to the control (0 Gy), 771 (20.2%) proteins in cells irradiated at 0.2 Gy of carbon-ion radiation with 12.6 keV/μm, 313 proteins (8.2%) in cells irradiated at 2 Gy of carbon-ion radiation with 12.6 keV/μm, and 243 proteins (6.4%) in cells irradiated at 2 Gy of carbon-ion radiation with 31.5 keV/μm exhibited changes of 1.5-fold or greater. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Munich Information Center for Protein Sequences (MIPS) analysis, and BioCarta analysis all indicated that RNA metabolic processes (RNA splicing, destabilization and deadenylation) and proteasome pathways may play key roles in the cellular response to heavy-ion irradiation. Proteasome pathways ranked highest among all biological processes associated with heavy carbon-ion irradiation. In addition, network analysis revealed that cellular pathways involving proteins such as Col1a1 and Fn1 continued to respond to high dosages of heavy-ion irradiation, suggesting that these pathways still protect cells against damage. However, pathways such as those involving Ikbkg1 responded

  20. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study.

    PubMed

    Cestelli Guidi, M; Mirri, C; Fratini, E; Licursi, V; Negri, R; Marcelli, A; Amendola, R

    2012-09-01

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 × 10(11) 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation.

  1. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  2. Indirect Tumor Cell Death After High-Dose Hypofractionated Irradiation: Implications for Stereotactic Body Radiation Therapy and Stereotactic Radiation Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chang W., E-mail: songx001@umn.edu; Korea Institute of Radiological and Medical Sciences, Seoul; Lee, Yoon-Jin

    Purpose: The purpose of this study was to reveal the biological mechanisms underlying stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). Methods and Materials: FSaII fibrosarcomas grown subcutaneously in the hind limbs of C3H mice were irradiated with 10 to 30 Gy of X rays in a single fraction, and the clonogenic cell survival was determined with in vivo–in vitro excision assay immediately or 2 to 5 days after irradiation. The effects of radiation on the intratumor microenvironment were studied using immunohistochemical methods. Results: After cells were irradiated with 15 or 20 Gy, cell survival in FSaII tumors declined for 2 to 3 daysmore » and began to recover thereafter in some but not all tumors. After irradiation with 30 Gy, cell survival declined continuously for 5 days. Cell survival in some tumors 5 days after 20 to 30 Gy irradiation was 2 to 3 logs less than that immediately after irradiation. Irradiation with 20 Gy markedly reduced blood perfusion, upregulated HIF-1α, and increased carbonic anhydrase-9 expression, indicating that irradiation increased tumor hypoxia. In addition, expression of VEGF also increased in the tumor tissue after 20 Gy irradiation, probably due to the increase in HIF-1α activity. Conclusions: Irradiation of FSaII tumors with 15 to 30 Gy in a single dose caused dose-dependent secondary cell death, most likely by causing vascular damage accompanied by deterioration of intratumor microenvironment. Such indirect tumor cell death may play a crucial role in the control of human tumors with SBRT and SRS.« less

  3. Irradiation effects of 12 eV oxygen ions on polyimide and fluorinated ethylene propylene

    NASA Astrophysics Data System (ADS)

    Majeed, R. M. A.; Purohit, V. S.; Bhoraskar, S. V.; Mandale, A. B.; Bhoraskar, V. N.

    2006-08-01

    Polyimide (PI) and Fluorinated Ethylene Propylene (FEP) samples (15mm x 15mm x 50 mu m ) were exposed to atomic oxygen ions of average energy similar to 12 eV and flux similar to 5x10(13) ions cm(-2) s(-1) , produced in the Electron Cyclotron Resonance (ECR) plasma. The energy and the flux of the oxygen ions at different positions in the plasma were measured by a retarding field analyzer. The fluence of the oxygen ions was varied from sample to sample in the range of similar to 5x10(16) to 2x10(17) ions cm(-2) by changing the irradiation period. The pre- and the post-irradiated samples were characterized by the weight loss, Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared (FTIR) techniques. The weight of the PI and FEP samples decreased with increasing the ion fluence. However, the erosion yield for the PI is found to be higher, by almost a factor five, when compared with that of FEP. On the surface region of irradiated samples, the concentrations of the carbon, fluorine, and oxygen and their corresponding chemical bonds have changed appreciably. Moreover, blisters and nanoglobules were also observed even at a fluence of similar to 10(17) ions cm(-2) . This oxygen ion fluence is almost two orders of magnitude lower than that of the 5 eV atomic oxygen, which a satellite encounters in the space, at the low Earth orbit, during its mission period of about 7 years.

  4. Regulatory influence of germ cells on sertoli cell function in the pre-pubertal rat after acute irradiation of the testis.

    PubMed

    Guitton, N; Touzalin, A M; Sharpe, R M; Cheng, C Y; Pinon-Lataillade, G; Méritte, H; Chenal, C; Jégou, B

    2000-12-01

    While germ cell regulation of Sertoli cells has been extensively explored in adult rats in vivo, in contrast, very little is known about germ cell influence on Sertoli cell function at the time when spermatogenesis begins and develops. In the present study various Sertoli cell parameters (number, testicular androgen binding protein (ABP) and testin, serum inhibin-B and, indirectly, follicle-stimulating hormone (FSH)) were investigated after the exposure of 19-day-old rats to a low dose of 3 Grays of gamma-rays. Differentiated spermatogonia were the primary testicular targets of the gamma-rays, which resulted in progressive maturation depletion, sequentially and reversibly affecting all germ cell classes. Testicular weight declined to a nadir when pachytene spermatocytes and spermatids were depleted from the seminiferous epithelium and complete or near complete recovery of spermatogenesis and testicular weight was observed at the end of the experiment. Blood levels of FSH and ABP were normal during the first 11 days after irradiation, when spermatogonia and early spermatocytes were depleted. While the number of Sertoli cells was not significantly affected by the irradiation, from days 11-66 after gamma-irradiation, ABP production declined and FSH levels increased when pachytene spermatocytes and spermatids were depleted and the recovery of these parameters was only observed when spermatogenesis was fully restored. Comparison of the pattern of change in serum levels of inhibin-B and testicular levels of testin and of germ cell numbers strongly suggest a relationship between the disappearance of spermatocytes and spermatids from the seminiferous epithelium and the decrease in levels of inhibin-B and increase in levels of testin from 7 to 36 days post-irradiation. Levels of testin and inhibin-B were restored before spermatogenesis had totally returned to normal. In conclusion, this in vivo study shows that pre-pubertal Sertoli cell function is under the complex control

  5. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    PubMed Central

    Matnani, Rahul G.; Stewart, Rachel L.; Pulliam, Joseph; Jennings, Chester D.; Kesler, Melissa

    2013-01-01

    A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a), which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV) or Human Herpes Virus 8 (HHV-8). At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones. PMID:24066244

  6. Low-Cost III-V Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Low-Cost III-V Solar Cells Low-Cost III-V Solar Cells At present, the cost of III-V solar cells is to drastically lower the cost of these devices, while maintaining their conversion efficiency, thus costs in the production of high-efficiency III-V devices: the cost of the epitaxy and the single-crystal

  7. Action of caffeine on x-irradiated HeLa cells. IV. Progression delays and enhanced cell killing at high caffeine concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolmach, L.J.; Busse, P.M.

    1980-05-01

    The response of x-irradiated and unirradiated HeLa S3 cells to treatment with caffeine at concentrations between 1 and 10 nM has been examined with respect to both delay in progression through the cell generation cycle and enhancement of the expression of potentially lethal x-ray damage. Progression is delayed in a concentration-dependent fashion: the generation time is doubled at about 4 mM. The duration of G/sub 1/ is lengthened, and the rate of DNA synthesis is reduced, although the kinetics are different in the two phases; the rate of DNA synthesis is usually unaffected at 1 or 2 mM, while theremore » is no concentration threshold for the slowing of progression through G/sub 1/. Progression through G/sub 2/ appears to be unaffected by concentrations up to at least 10 mM. Killing of irradiated cells in G/sub 2/ is somewhat greater after treatment with the higher caffeine concentrations than reported previously for 1 mM. Moreover, an additional mode of killing is observed in irradiated G/sub 1/ cells which had been found previously to be only slightly affected by 1 mM caffeine; they suffer extensive killing at concentrations above 5 mM. The time-survival curves for irradiated, caffeine-treated G/sub 1/ and G/sub 2/ cells have characteristically different shapes. The dose-survival curves for cells treated with the higher caffeine concentrations display steeper terminal slopes and narrower shoulders.« less

  8. Comparison of cell repair mechanisms by means of chromosomal aberration induced by proton and gamma irradiation - preliminary results

    NASA Astrophysics Data System (ADS)

    Kowalska, A.; Czerski, K.; Kaczmarski, M.; Lewocki, M.; Masojć, B.; Łukowiak, A.

    2015-03-01

    DNA damage of peripheral blood lymphocytes exposed to gamma and proton irradiation is studied by means of chromosome aberrations to validate the efficiency of the repair mechanisms of individual cells. A new method based on an observed deviation from the Poisson statistics of the chromosome aberration number is applied for estimation of a repair factor ( RF) defined as a ratio between originally damaged cells to the amount of finally observed aberrations. The repair factors are evaluated by studying the variance of individual damage factors in a collective of healthy persons at a given dose as well as by using the chi-square analysis for the dose-effect curves. The blood samples from fifteen donors have been irradiated by Co60 gamma rays and from nine persons by 150 MeV protons with different doses up to 2 Gy. A standard extraction of lymphocyte has been used whereby dicentrics, acentrics and rings have been scored under a microscope. The RF values determined for the proton radiation are slightly larger than for gamma rays, indicating that up to 70% DNA double strand breaks can be repaired.

  9. Development of lithium doped radiation resistent solar cells

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    Lithium-doped solar cells have been fabricated with initial lot efficiencies averaging 11.9 percent in an air mass zero (AMO) solar simulator and a maximum observed efficiency of 12.8 percent. The best lithium-doped solar cells are approximately 15 percent higher in maximum power than state-of-the-art n-p cells after moderate to high fluences of 1-MeV electrons and after 6-7 months exposure to low flux irradiation by a Sr-90 beta source, which approximates the electron spectrum and flux associated with near Earth space. Furthermore, lithium-doped cells were found to degrade at a rate only one tenth that of state-of-the-art n-p cells under 28-MeV electron irradiation. Excellent progress has been made in quantitative predictions of post-irradiation current-voltage characteristics as a function of cell design by means of capacitance-voltage measurements, and this information has been used to achieve further improvements in lithium-doped cell design.

  10. Influence of heavy ions on cell survival, cytogenetic damage and mitochondrial function of human endothelial cells

    NASA Astrophysics Data System (ADS)

    Ritter, Sylvia; Helm, Alexander; Lee, Ryonfa; Pollet, Dieter; Durante, Marco

    There is increasing evidence that there is an elevated risk of cardiovascular disease among atomic bomb survivors and radiotherapy patients, typically developing with a long latency. However, essentially no information is available on the potential cardiovascular risks associated with space radiation, in particular heavy ions. To address this issue, we have chosen human umbilical vein endothelial cells (HUVEC) as a model system. Cells at an early passage number were irradiated with 0.1 to 4 Gy of either 9.8 MeV/u C-ions (LET=170 keV/µm), 91 MeV/u C-ions (LET=29 keV/µm) or 250 kV X-rays. Cells were regularly subcultured up to 40 days (20 population doublings) post-irradiation. Immediately after exposure cell inactivation was deter-mined by the colony forming assay. Furthermore, at selected time-points cytogenetic damage (formation of micronuclei in binucleated cells) and the mitochondrial membrane potential ΨM (flow cytometric analysis following JC-1 staining) were assessed. Measurement of the directly induced radiation damage showed that 9.8 MeV/u and 91 MeV/u C-ions were more effective than X-rays (i.e. about 3 and 2 times, respectively) with respect to cell inactivation or the in-duction of cytogenetic damage. At the subsequent days in the irradiated cultures the number of cells with micronuclei declined to the control level (3-5Altogether our data indicate that under the applied radiation conditions the integrity of mitochondria which play a significant role in the regulation of cardiovascular cell function is not impaired. With respect to directly induced genetic damage C-ions are more effective than X-rays as observed in other cell systems. If the effectiveness of charged particles for the occurrence of late chromosomal damage in endothelial cells is higher than that of sparsely ionizing radiation needs further clarification. The data obtained up to now indicate that sophisticated cytogenetic techniques have to be applied in order to draw any firm

  11. TLR9-ERK-mTOR signaling is critical for autophagic cell death induced by CpG oligodeoxynucleotide 107 combined with irradiation in glioma cells

    PubMed Central

    Li, Xiaoli; Cen, Yanyan; Cai, Yongqing; Liu, Tao; Liu, Huan; Cao, Guanqun; Liu, Dan; Li, Bin; Peng, Wei; Zou, Jintao; Pang, Xueli; Zheng, Jiang; Zhou, Hong

    2016-01-01

    Synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG ODN) function as potential radiosensitizers for glioma treatment, although the underlying mechanism is unclear. It was observed that CpG ODN107, when combined with irradiation, did not induce apoptosis. Herein, the effect of CpG ODN107 + irradiation on autophagy and the related signaling pathways was investigated. In vitro, CpG ODN107 + irradiation induced autophagosome formation, increased the ratio of LC3 II/LC3 I, beclin 1 and decreased p62 expression in U87 cells. Meanwhile, CpG ODN107 also increased LC3 II/LC3 I expression in U251 and CHG-5 cells. In vivo, CpG ODN107 combined with local radiotherapy induced autophagosome formation in orthotopic transplantation tumor. Investigation of the molecular mechanisms demonstrated that CpG ODN107 + irradiation increased the levels of TLR9 and p-ERK, and decreased the level of p-mTOR in glioma cells. Further, TLR9-specific siRNA could affect the expressions of p-ERK and autophagy-related proteins in glioma cells. Taken together, CpG ODN107 combined with irradiation could induce autophagic cell death, and this effect was closely related to the TLR9-ERK-mTOR signaling pathway in glioma cells, providing new insights into the investigation mechanism of CpG ODN. PMID:27251306

  12. Glioma Cell Death Induced by Irradiation or Alkylating Agent Chemotherapy Is Independent of the Intrinsic Ceramide Pathway

    PubMed Central

    Gramatzki, Dorothee; Herrmann, Caroline; Happold, Caroline; Becker, Katrin Anne; Gulbins, Erich; Weller, Michael; Tabatabai, Ghazaleh

    2013-01-01

    Background/Aims Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS) catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. Methods Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II–IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA) was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ)-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. Results Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. Conclusion Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS inhibition does not

  13. Noise performance of 0.35-(mu)m SOI CMOS devices and micropower preamplifier following 63-MeV, 1-Mrad (Si) proton irradiation

    NASA Technical Reports Server (NTRS)

    Binkley, D. M.; Hopper, C. E.; Cressler, J. D.; Mojarradi, M. M.; Blalock, B. J.

    2004-01-01

    This paper presents measured noise for 0.35(mu)m, silicon-on-insulator devices and a micropower preamplifier following 63-MeV, 1-Mrad (Si) proton irradiation. Flicker noise voltage, important for gyros having low frequency output, increases less than 32% after irradiation.

  14. Purification/annealing of graphene with 100-MeV Ag ion irradiation

    PubMed Central

    2014-01-01

    Studies on interaction of graphene with radiation are important because of nanolithographic processes in graphene-based electronic devices and for space applications. Since the electronic properties of graphene are highly sensitive to the defects and number of layers in graphene sample, it is desirable to develop tools to engineer these two parameters. We report swift heavy ion (SHI) irradiation-induced annealing and purification effects in graphene films, similar to that observed in our studies on fullerenes and carbon nanotubes (CNTs). Raman studies after irradiation with 100-MeV Ag ions (fluences from 3 × 1010 to 1 × 1014 ions/cm2) show that the disorder parameter α, defined by ID/IG ratio, decreases at lower fluences but increases at higher fluences beyond 1 × 1012 ions/cm2. This indicates that SHI induces annealing effects at lower fluences. We also observe that the number of graphene layers is reduced at fluences higher than 1 × 1013 ions/cm2. Using inelastic thermal spike model calculations, we estimate a radius of 2.6 nm for ion track core surrounded by a halo extending up to 11.6 nm. The transient temperature above the melting point in the track core results in damage, whereas lower temperature in the track halo is responsible for annealing. The results suggest that SHI irradiation fluence may be used as one of the tools for defect annealing and manipulation of the number of graphene layers. PACS 60.80.x; 81.05.ue PMID:24636520

  15. Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells.

    PubMed

    Dehghani Soltani, Samereh; Babaee, Abdolreza; Shojaei, Mohammad; Salehinejad, Parvin; Seyedi, Fatemeh; JalalKamali, Mahshid; Nematollahi-Mahani, Seyed Noureddin

    2016-02-01

    Light-emitting diodes (LED) have recently been introduced as a potential factor for proliferation of various cell types in vitro. Nowadays, stem cells are widely used in regenerative medicine. Human umbilical cord matrix-derived mesenchymal (hUCM) cells can be more easily isolated and cultured than adult mesenchymal stem cells. The aim of this study was to evaluate the effect of red and green lights produced by LED on the proliferation of hUCM cells. hUCM cells were isolated from the umbilical cord, and light irradiation was applied at radiation energies of 0.318, 0.636, 0.954, 1.59, 3.18, 6.36, 9.54, and 12.72 J/cm(2). Irradiation of the hUCM cells shows a significant (p < 0.05) increase in cell number as compared to controls after 40 h. In addition, cell proliferation on days 7, 14, and 21 in irradiated groups were significantly (p < 0.001) higher than that in the non-irradiated groups. The present study clearly demonstrates the ability of red and green lights irradiation to promote proliferation of hUCM cells in vitro. The energy applied to the cells through LED irradiation is an effective factor with paradoxical alterations. Green light inserted a much profound effect at special dosages than red light.

  16. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly,more » as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.« less

  17. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    PubMed

    Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R

    2012-01-01

    Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and

  18. Comparison of effect of 5 MeV proton and Co-60 gamma irradiation on silicon NPN rf power transistors and N-channel depletion MOSFETs

    NASA Astrophysics Data System (ADS)

    Gnana Prakash, A. P.; Pradeep, T. M.; Hegde, Vinayakprasanna N.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Bhushan, K. G.

    2017-12-01

    NPN transistors and N-channel depletion metal oxide semiconductor field effect transistors (MOSFETs) were irradiated with 5 MeV protons and 60Co gamma radiation in the dose ranging from 1 Mrad(Si) to 100 Mrad(Si). The different electrical characteristics of the NPN transistor such as Gummel characteristics, excess base current (ΔIB), dc current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics were studied as a function of total dose. The different electrical characteristics of N-channel MOSFETs such as threshold voltage (Vth), density of interface trapped charges (ΔNit), density of oxide trapped charges (ΔNot), transconductance (gm), mobility (µ) and drain saturation current (IDSat) were studied systematically before and after irradiation in the same dose ranges. A considerable increase in the base current (IB) and decrease in the hFE, gm and collector saturation current (ICSat) were observed after irradiation in the case of the NPN transistor. In the N-channel MOSFETs, the ΔNit and ΔNot were found to increase and Vth, gm, µ and IDSat were found to decrease with increase in the radiation dose. The 5 MeV proton irradiation results of both the NPN transistor and N-channel MOSFETs were compared with 60Co gamma-irradiated devices in the same dose ranges. It was observed that the degradation in 5 MeV proton-irradiated devices is more when compared with the 60Co gamma-irradiated devices at higher total doses.

  19. Damage of chromosoms under irradiation of human blood lymphocytes and development of bystander effect.

    PubMed

    Shemetun, O V

    2016-12-01

    the research the distribution of radiation induced damages among chromosomes and their bands in irra diated in vitro human blood lymphocytes and in unirradiated bystander cells.Material and methods of research: cultivation of human peripheral blood lymphocytes by semi micromethod D.A. Hungerford, modeling of radiation induced bystander effect in mixed cultures consisting of irradiated in vitro and non irradiated blood lymphocytes from persons of different gender, GTG staining of metaphase chromosomes and their cytogenetic analysis. Break points in chromosomes under the formation of aberrations were identified in exposed in vitro human peripheral blood lymphocytes in doses 0.25 Gy (95 breaks in 1248 cells) and 1.0 Gy (227 breaks in 726 cells) and in non irradiated bystander cells under their joint cultivation with irradiated in vitro human lymphocytes (51 breaks in 1137 cells at irradiation of adjacent populations of lymphocytes in dose 0.25 Gy and 75 breaks in 1321 cells at irradiation of adjacent population of lymphocytes in a dose 1.0 Gy). The distribution of injuries among the chromo somes and their bands was investigated. in radiation exposed in vitro human peripheral blood lymphocytes as well as in bystander cells the fre quency of damaged bands and number of breaks which localized in them exceeded the control value (p < 0.01). As under direct radiation exposure, as under formation of breaks due to induction of bystander effect, chromosomes were damaged according to their relative length. Location of bands with increasing number of breaks coincided with the «hot spots» of chromosome damage following irradiation and fragile sites. More sensitive to damage were G negative euchromatin chromosome bands, in which were localized 82 88 % breaks. Damageability of telomeric regions in the irradiated cells had no significant difference from the control, while in bystander cells was lower than control value (p < 0.05). O. V. Shemetun.

  20. Survival fraction and phenotype alterations of Xenopus laevis embryos at 3 Gy, 150 kV X-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carotenuto, Rosa; Tussellino, Margherita; Mettivier, Giovanni

    To determine the radiosensitivity of Xenopus laevis embryos, aquatic organism model, for toxicity studies utilizing X-rays at acute high dose levels, by analysing its survival fraction and phenotype alterations under one-exposure integral dose. We used the standard Frog Embryo Teratogenesis Assay Xenopus test during the early stages of X. laevis development. The embryos were harvested until st. 46 when they were irradiated. The radiation effects were checked daily for a week and the survival, malformations and growth inhibition were assessed. Sibling tadpoles as control organisms were used. Statistical analysis was performed to assess the extent of any damage. Irradiation was performedmore » with an X-ray tube operated at 150 kV. The tube containing the tadpoles was exposed to an air kerma of 3 Gy as measured in air with an in-beam ionization chamber. After one week, survival fraction of irradiated embryos was 58%, while for control embryos it was 81%. Hence, irradiation with 150 kV, 3 Gy X-rays produced a 23% decrease of survival in regard to unirradiated embryos. The 70% of the irradiated embryos showed an altered distribution of the skin pigmentation, in particular on the dorsal area and in the olfactory pits, where the pigment concentration increased by a factor 2. In conclusion exposure of X. laevis to 3 Gy, 150 kV X-rays induced a reduction of embryos survival and a significant modification of pigmentation. The authors think that X. laevis embryos, at st 46, is a suitable biological model for large scale investigations on the effects of ionizing radiation.« less

  1. Inhibiting the Aurora B Kinase Potently Suppresses Repopulation During Fractionated Irradiation of Human Lung Cancer Cell Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sak, Ali, E-mail: ali.sak@uni-due.de; Stuschke, Martin; Groneberg, Michael

    2012-10-01

    Purpose: The use of molecular-targeted agents during radiotherapy of non-small-cell lung cancer (NSCLC) is a promising strategy to inhibit repopulation, thereby improving therapeutic outcome. We assessed the combined effectiveness of inhibiting Aurora B kinase and irradiation on human NSCLC cell lines in vitro. Methods and Materials: NSCLC cell lines were exposed to concentrations of AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) inhibiting colony formation by 50% (IC50{sub clone}) in combination with single dose irradiation or different fractionation schedules using multiple 2-Gy fractions per day up to total doses of 4-40 Gy. The total irradiation dose required to control growth of 50% of themore » plaque monolayers (TCD50) was determined. Apoptosis, G2/M progression, and polyploidization were also analyzed. Results: TCD50 values after single dose irradiation were similar for the H460 and H661 cell lines with 11.4 {+-} 0.2 Gy and 10.7 {+-} 0.3 Gy, respectively. Fractionated irradiation using 3 Multiplication-Sign 2 Gy/day, 2 Multiplication-Sign 2 Gy/day, and 1 Multiplication-Sign 2 Gy/day schedules significantly increased TCD50 values for both cell lines grown as plaque monolayers with increasing radiation treatment time. This could be explained by a repopulation effect per day that counteracts 75 {+-} 8% and 27 {+-} 6% of the effect of a 2-Gy fraction in H460 and H661 cells, respectively. AZD1152-HQPA treatment concomitant to radiotherapy significantly decreased the daily repopulation effect (H460: 28 {+-} 5%, H661: 10 {+-} 4% of a 2-Gy fraction per day). Treatment with IC50{sub clone} AZD1152-HPQA did not induce apoptosis, prolong radiation-induced G2 arrest, or delay cell cycle progression before the spindle check point. However, polyploidization was detected, especially in cell lines without functional p53. Conclusions: Inhibition of Aurora B kinase with low AZD1152-HQPA concentrations during irradiation of NSCLC cell lines affects repopulation

  2. Teflon impregnated anatase TiO2 nanoparticles irradiated by 80 keV Xe+ ions

    NASA Astrophysics Data System (ADS)

    Khanam, Rizwin; Paul, Nibedita; Kumar, P.; Kanjilal, D.; Ahmed, Gazi A.; Mohanta, Dambarudhar

    2014-10-01

    We report the effect of 80 keV Xe+ ion irradiation on the morphological and optical responses of TiO2 nanoparticles spread over commercially available polytetrafluoroethylene (PTFE, Teflon). These nanoparticles were synthesized via a convenient, sol-gel approach with titanium isopropoxide as the main precursor. From X-ray diffraction (XRD) studies we found that, the nanoparticles crystallize in anatase phase and with a preferential orientation of crystallites along (1 0 1) plane. Upon irradiation at a fluence of 1.25 × 1017 ions/cm2, the nanoparticle dimension was found to increase from a value of ∼9 nm to ∼20-30 nm. Essentially, particle growth is predicted as a consequence of swelling behavior accompanied by the formation of Xe van der Waal crystals in isolated regions of nano-titania. Evidence of nanoripples was also witnessed on the surface of the irradiated nano-titania. The morphological evolution was assessed both by atomic force and transmission electron microscopies (AFM and TEM) independently. From the UV-Vis optical absorption studies, the estimated optical band gap was found to drop with increasing fluence, while refractive index exhibited a remarkable improvement. Photoluminescence (PL) studies have revealed that, the band edge emission and those due to the self trapped excitons (STE) and other oxygen vacancy related ones were manifested considerably as a result of Xe ion irradiation.

  3. Methods for fabricating thin film III-V compound solar cell

    DOEpatents

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  4. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  5. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons.

    PubMed

    Mousavi, Mehdi; Nedaei, Hassan Ali; Khoei, Samideh; Eynali, Samira; Khoshgard, Karim; Robatjazi, Mostafa; Iraji Rad, Rasoul

    2017-02-01

    Gold nanoparticles (GNP) have significant potential as radiosensitizer agents due to their distinctive properties. Several studies have shown that the surface modification of nanoparticles with methyl polyethylene glycol (mPEG) can increase their biocompatibility. However, the present study investigated the radiosensitization effects of mPEG-coated GNP (mPEG-GNP) in B16F10 murine melanoma cells under irradiation of 6 MeV Electron beam. The synthesized GNP were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy, and zeta potential. Enhancement of radiosensitization was evaluated by the clonogenic assay at different radiation doses of megavoltage electron beams. It was observed that mPEG-GNP with a hydrodynamic size of approximately 50 nm are almost spherical and cellular uptake occurred at all concentrations. Both proliferation efficiency and survival fraction decreased with increasing mPEG-GNP concentration. Furthermore, significant GNP sensitization occurred with a maximum dose enhancement factor of 1.22 at a concentration of 30 μM. Pegylated-GNP are taken up by B16F10 cancer cells and cause radiosensitization in the presence of 6 MeV electrons. The radiosensitization effects of GNP may probably be due to biological processes. Therefore, the underlying biological mechanisms beyond the physical dose enhancement need to be further clarified.

  6. Photo-irradiation paradigm: Mapping a remarkable facile technique used for advanced drug, gene and cell delivery.

    PubMed

    Shaker, Mohamed A; Younes, Husam M

    2015-11-10

    Undoubtedly, the progression of photo-irradiation technique has provided a smart engineering tool for the state-of-the-art biomaterials that guide the biomedical and therapeutic domains for promoting the modern pharmaceutical industry. Many investigators had exploited such a potential technique to create/ameliorate numerous pharmaceutical carriers. These carriers show promising applications that vary from small drug to therapeutic protein delivery and from gene to living cell encapsulation design. Harmony between the properties of precisely engineered precursors and the formed network structure broadens the investigator's intellect for both brilliant creations and effective applications. As well, controlling photo-curing at the formulation level, through manipulating the absorption of light stimuli, photoinitiator system and photo-responsive precursor, facilitates the exploration of novel distinctive biomaterials. Discussion of utilizing different photo-curing procedures in designing/formulation of different pharmaceutical carriers is the main emphasis of this review. In addition, recent applications of these intelligent techniques in targeted, controlled, and sustained drug delivery with understanding of photo-irradiation concept and mechanism are illustrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of irradiation on stem cell response to differentiation inhibitors in the Planarian Dugesia etrusca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, V.E.; Lange, C.S.

    1976-07-01

    The planarian owes its extensive powers of regeneration to the possession of a totipotential stem cell system. The survival of the animal after irradiation depends mainly upon this system. In this respect the planarian is analogous to mammalian organ systems such as bone marrow or gut epithelium. The differentiated cells control the course of stem cell mediated tissue renewal by the secretion of differentiator and/or inhibitor substances. One such inhibitor substance, present in extracts prepared from homogenized whole planarians, specifically inhibits brain formation. This substance is organ specific, but not species specific. The differentiative integrity of the stem cells aftermore » irradiation is measured by comparing the regenerated brain volumes resulting from the presence or absence of the brain inhibitory extract during the regeneration period. Our data suggest that increasing doses of x irradiation decreases the ability of the stem cells to respond to differentiative substances. The data presented also explore the possibility of altering the postirradiation recovery pattern by shifting the differentiative demands placed on the stem cells. The final proportions of animals (one-half regenerated with, and one-half without, the extract) surviving after 60 days were not significantly different.« less

  8. Metabolic oxygen consumption measurement with a single-cell biosensor after particle microbeam irradiation

    PubMed Central

    Zhang, Bo; Messerli, Mark; Randers-Pehrson, Gerhard; Hei, Tom K.; Brenner, David J.

    2015-01-01

    A noninvasive, self-referencing biosensor/probe system has been integrated into the Columbia University Radiological Research Accelerator Facility Microbeam II end station. A single-cell oxygen consumption measurement has been conducted with this type of oxygen probe in 37°C Krebs–Ringer Bicarbonate buffer immediately before and after a single-cell microbeam irradiation. It is the first such measurement made for a microbeam irradiation, and a six fold increment of oxygen flux induced during a 15-s period of time has been observed following radiation exposure. The experimental procedure and the results are discussed. PMID:25335641

  9. Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells.

    PubMed

    Mvula, B; Moore, T J; Abrahamse, H

    2010-01-01

    The study investigated the effects of low-level laser radiation and epidermal growth factor (EGF) on adult adipose-derived stem cells (ADSCs) isolated from human adipose tissue. Isolated cells were cultured to semi-confluence, and the monolayers of ADSCs were exposed to low-level laser at 5 J/cm(2) using 636 nm diode laser. Cell viability and proliferation were monitored using adenosine triphosphate (ATP) luminescence and optical density at 0 h, 24 h and 48 h after irradiation. Application of low-level laser irradiation at 5 J/cm(2) on human ADSCs cultured with EGF increased the viability and proliferation of these cells. The results indicate that low-level laser irradiation in combination with EGF enhances the proliferation and maintenance of ADSCs in vitro.

  10. Diffusion length damage coefficient and annealing studies in proton-irradiated InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Vargas-Aburto, Carlos; Bailey, Sheila G.; Williams, Wendell

    1993-01-01

    We report on the measurement of the diffusion length damage coefficient (K(sub L)) and the annealing characteristics of the minority carrier diffusion length (L(sub n)) in Czochralski-grown zinc-doped indium phosphide (InP), with a carrier concentration of 1 x 10(exp l8) cm(exp -3). In measuring K(sub L) irradiations were made with 0.5 MeV protons with fluences ranging from 1 x 10(exp 11) to 3 x 10(exp 13) cm(exp -2). Pre- and post-irradiation electron-beam induced current (EBIC) measurements allowed for the extraction of L(sub n) from which K(sub L) was determined. In studying the annealing characteristics of L(sub n) irradiations were made with 2 MeV protons with fluence of 5 x 10(exp 13) cm(exp -2). Post-irradiation studies of L(sub n) with time at room temperature, and with minority carrier photoinjection and forward-bias injection were carried out. The results showed that recovery under Air Mass Zero (AMO) photoinjection was complete. L(sub n) was also found to recover under forward-bias injection, where recovery was found to depend on the value of the injection current. However, no recovery of L(sub n) after proton irradiation was observed with time at room temperature, in contrast to the behavior of 1 MeV electron-irradiated InP solar cells reported previously.

  11. Detailed Analysis of Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T Cells after Proton Irradiation and Treatments with Oxidant Agents and Flavonoids

    PubMed Central

    Baran, Irina; Ganea, Constanta; Privitera, Simona; Scordino, Agata; Barresi, Vincenza; Musumeci, Francesco; Mocanu, Maria Magdalena; Condorelli, Daniele F.; Ursu, Ioan; Grasso, Rosaria; Gulino, Marisa; Garaiman, Alexandru; Musso, Nicolò; Cirrone, Giuseppe A. Pablo; Cuttone, Giacomo

    2012-01-01

    Following previous work, we investigated in more detail the relationship between apoptosis and delayed luminescence (DL) in human leukemia Jurkat T cells under a wide variety of treatments. We used menadione and hydrogen peroxide to induce oxidative stress and two flavonoids, quercetin, and epigallocatechin gallate, applied alone or in combination with menadione or H2O2. 62 MeV proton beams were used to irradiate cells under a uniform dose of 2 or 10 Gy, respectively. We assessed apoptosis, cell cycle distributions, and DL. Menadione, H2O2 and quercetin were potent inducers of apoptosis and DL inhibitors. Quercetin decreased clonogenic survival and the NAD(P)H level in a dose-dependent manner. Proton irradiation with 2 Gy but not 10 Gy increased the apoptotic rate. However, both doses induced a substantial G2/M arrest. Quercetin reduced apoptosis and prolonged the G2/M arrest induced by radiation. DL spectroscopy indicated that proton irradiation disrupted the electron flow within Complex I of the mitochondrial respiratory chain, thus explaining the massive necrosis induced by 10 Gy of protons and also suggested an equivalent action of menadione and quercetin at the level of the Fe/S center N2, which may be mediated by their binding to a common site within Complex I, probably the rotenone-binding site. PMID:22829956

  12. Rapid differentiation between gamma-irradiated and non irradiated potato tubers

    NASA Astrophysics Data System (ADS)

    Jona, Roberto; Fronda, Anna

    The use of gamma irradiation as commercial method for the preservation of fruits and vegetables calls for methods of differentiation between irradiated and non-irradiated foodstuffs. In a previous research, the polysaccharidic content of cell walls of irradiated tissue has been investigated, but it required rather long time to reach the result. A method devised to ascertain the vitality of cells has been applied to distinguish irradiated from non-irradiated potato tubers. 500 mg of tissue excised from tubers have been infiltrated with tetrazolium chloride 0.6% in phosphate buffer, pH 7.4. After 15 hrs of incubation at 30°C the treated tissues have been extracted with 95% ethanol whose O.D. has been measured at 530 mμ wavelength. The colour intensity of the alcohol allowed a very clearcut recognition of the irradiated tubers.

  13. Effects of Light and Electron Beam Irradiation on Halide Perovskites and Their Solar Cells.

    PubMed

    Klein-Kedem, Nir; Cahen, David; Hodes, Gary

    2016-02-16

    Hybrid alkylammonium lead halide perovskite solar cells have, in a very few years of research, exceeded a light-to-electricity conversion efficiency of 20%, not far behind crystalline silicon cells. These perovskites do not contain any rare element, the amount of toxic lead used is very small, and the cells can be made with a low energy input. They therefore already conform to two of the three requirements for viable, commercial solar cells-efficient and cheap. The potential deal-breaker is their long-term stability. While reasonable short-term (hours) and even medium term (months) stability has been demonstrated, there is concern whether they will be stable for the two decades or more expected from commercial cells in view of the intrinsically unstable nature of these materials. In particular, they have a tendency to be sensitive to various types of irradiation, including sunlight, under certain conditions. This Account focuses on the effect of irradiation on the hybrid (and to a small degree, all-inorganic) lead halide perovskites and their solar cells. It is split up into two main sections. First, we look at the effect of electron beams on the materials. This is important, since such beams are used for characterization of both the perovskites themselves and cells made from them (electron microscopy for morphological and compositional characterization; electron beam-induced current to study cell operation mechanism; cathodoluminescence for charge carrier recombination studies). Since the perovskites are sensitive to electron beam irradiation, it is important to minimize beam damage to draw valid conclusions from such measurements. The second section treats the effect of visible and solar UV irradiation on the perovskites and their cells. As we show, there are many such effects. However, those affecting the perovskite directly need not necessarily always be detrimental to the cells, while those affecting the solar cells, which are composed of several other phases

  14. Evaluation of differential representative values between Chinese hamster cells and human lymphocytes in mitomycin C-induced cytogenetic assays and caspase-3 activity.

    PubMed

    Liao, Pei-Hu; Lin, Ruey-Hseng; Yang, Ming-Ling; Li, Yi-Ching; Kuan, Yu-Hsiang

    2012-03-01

    Chinese hamster ovary (CHO) cells, its lung fibroblasts (V79), and human lymphocytes are routinely used in in vitro cytogenetic assays, which include micronuclei (MN), sister chromatid exchange (SCE), and chromosome aberration (CA) assays. Mitomycin C (MMC), a DNA cross-link alkylating agent, is both an anticancer medicine and a carcinogen. To study the differential representative values of cell types in MMC-treated cytogenetic assays and its upstream factor, cysteine aspartic acid-specific protease (caspase)-3. Among the chosen cell types, lymphocytes expressed the highest sensitivity in all three MMC-induced assays, whereas CHO and V79 showed varied sensitivity in different assays. In MN assay, the sensitivity of CHO is higher than or equal to V79; in SCE assay, the sensitivity of CHO is the same as V79; and in CA assay, the sensitivity of CHO is higher than V79. In-depth analysis of CA revealed that in chromatid breaks and dicentrics formation, lymphocyte was the most sensitive of all and CHO was more sensitive than V79; and in acentrics and interchanges formation, lymphocyte was much more sensitive than the others. Furthermore, we found caspase-3 activity plays an important role in MMC-induced cytogenetic assays, with MMC-induced caspase-3 activity resulting in more sensitivity in lymphocytes than in CHO and V79. Based on these findings, lymphocyte will make a suitable predictive or representative control reference in cytogenetic assays and caspase-3 activity with its high specificity, positive predictive value, and sensitivity.

  15. Effects of gamma-irradiation on cotyledon cell separation and pectin solubilisation in hard-to-cook cowpeas.

    PubMed

    Jombo, Talknice Z; Minnaar, Amanda; Taylor, John Rn

    2018-03-01

    Cowpeas stored under high temperature and humidity develop the hard-to-cook defect (HTC). This defect greatly increases cooking times and energy costs. To better understand the mechanisms involved in the HTC defect development, the effects of gamma-irradiation on cotyledon cellular structure and pectin solubility in two cowpea cultivars with different susceptibility to HTC defect were investigated. Gamma-irradiation decreased cotyledon cell wall thickness, increased cell size, and intercellular spaces in both cowpea cultivars and reduced cooking time of the less HTC susceptible cultivar. However, it did not reverse the HTC defect in the susceptible cultivar. Gamma-irradiation also increased the levels of cold water- and hot water-soluble pectin. The irradiation effects were thus mainly due to hydrolysis of pectin fractions in the cell walls. However, chelator-soluble pectin (CSP) solubility was not affected. As the cell wall changes brought about by gamma-irradiation were associated with pectin solubilisation, this supports the phytate-phytase-pectin theory as a major cause of the HTC defect. However, the non-reversal of the defect in HTC susceptible cowpeas and the absence of an effect on CSP indicate that other mechanisms are involved in HTC defect development in cowpeas, possibly the formation of alkali-soluble, ester bonded pectins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Electrical, thermal and magnetic studies on 7.5 MeV electron beam irradiated PrCoO3 polycrystalline samples

    NASA Astrophysics Data System (ADS)

    Christopher, Benedict; Rao, Ashok; Deka, Utpal; Prasad K, Shyam; Okram, G. S.; Sanjeev, Ganesh; Chandra Petwal, Vikash; Verma, Vijay Pal; Dwivedi, Jishnu

    2018-07-01

    The study of electronic and magnetic properties of electron beam (EB) irradiated PrCoO3 manganites is presented in this communication. The diffraction data confirms that pristine as well as electron beam irradiated samples are single phased and they crystalize at orthorhombic distorted structure with Pbnm space group. The electrical resistivity of all the samples reveals semiconducting behavior. Small polaron hopping model is appropriately employed to investigate the semiconducting nature of the pristine and EB irradiated samples. The Seebeck coefficient (S) data of the pristine sample exhibits colossally high positive value (about 300 mV/K) and substantial decrease in S value is noticed in the irradiated samples. The high temperature analysis of thermopower data validates the small polaron hopping model. The magnetic measurements display possible existence of super-paramagnetic characteristics in the samples.

  17. Differential S-phase progression after irradiation of p53 functional versus non-functional tumour cells

    PubMed Central

    Zölzer, Friedo; Mußfeldt, Tamare; Streffer, Christian

    2014-01-01

    Background Many pathways seem to be involved in the regulation of the intra-S-phase checkpoint after exposure to ionizing radiation, but the role of p53 has proven to be rather elusive. Here we have a closer look at the progression of irradiated cells through S-phase in dependence of their p53 status. Materials and methods. Three pairs of tumour cell lines were used, each consisting of one p53 functional and one p53 non-functional line. Cells were labelled with bromodeoxyuridine(BrdU) immediately after irradiation, they were then incubated in label-free medium, and at different times afterwards their position within the S-phase was determined by means of flow cytometry. Results While in the p53 deficient cells progression through S-phase was slowed significantly over at least a few hours, it was halted for just about an hour in the p53 proficient cells and then proceeded without further delay or even at a slightly accelerated pace. Conclusions It is clear from the experiments presented here that p53 does play a role for the progress of cells through the S-phase after X-ray exposure, but the exact mechanisms by which replicon initiation and elongation is controlled in irradiated cells remain to be elucidated. PMID:25435848

  18. Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases

    NASA Astrophysics Data System (ADS)

    Tominami, Kanako; Kanetaka, Hiroyasu; Kudo, Tada-aki; Sasaki, Shota; Kaneko, Toshiro

    2016-01-01

    This study investigated the effects of low-temperature atmospheric-pressure plasma on various cells such as rat fibroblastic Rat-1 cell line, rat neuroblastoma-like PC12 cell line, and rat macrophage-like NR8383 cell line. The plasma was irradiated directly to a culture medium containing plated cells for 0-20 s. The applied voltage, excitation frequency, and argon or helium gas flow were, respectively, 3-6 kV, 10 kHz, and 3 L/min. Cell viability and apoptotic activity were evaluated using annexin-V/propidium iodide staining. Results showed that the low-temperature atmospheric-pressure plasma irradiation promoted cell death in a discharge-voltage-dependent and irradiation-time-dependent manner. Furthermore, different effects are produced depending on the cell type. Moreover, entirely different mechanisms might be responsible for the induction of apoptosis in cells by helium and argon plasma.

  19. Effect of 50 MeV Li+3 and 80 MeV C+5 ions' beam irradiation on the optical, structural, chemical and surface topographic properties of PMMA films

    NASA Astrophysics Data System (ADS)

    Bharti, Madhu Lata; Dutt, Sanjay; Joshi, Veena

    2017-10-01

    The self-standing films of polymethyl methacrylate (PMMA) were irradiated under vacuum with 50 MeV lithium (Li3+) and 80 MeV carbon (C5+) ions to the fluences of 3 × 1014, 1 × 1015, 1 × 1016 and 1 × 1017 ions µm-2. The pristine and irradiated samples of PMMA films were studied by using ultraviolet-visible (UV-Vis) spectrophotometry, Fourier transform infrared, X-ray diffractrometer and atomic force microscopy. With increasing ion fluence of swift heavy ion (SHI), PMMA suffers degradation, UV-Vis spectra show a shift in the absorption band from the UV towards visible, attributing the formation of the modified system of bonds. Eg and Ea decrease with increasing ion fluence. The size of crystallite and crystallinity percentage decreases with increasing ion fluence. With SHI irradiation, the intensity of IR bands and characteristic bands of different functional groups are found to shift drastically. The change in (Eg) and (N) in carbon cluster is calculated. Shifting of the absorption band from the UV towards visible along with optical activity and as a result of irradiation, some defects are created in the polymer causing the formation of conjugated bonds and carbon clusters in the polymer, which in turn lead to the modification in optical properties that could be useful in the fabrication of optoelectronic devices, gas sensing, electromagnetic shielding and drug delivery.

  20. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  1. Space radiation effects in InP solar cells

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; Messenger, S. R.; Summers, G. P.; Burke, E. A.; Keavney, C. J.

    1991-12-01

    InP solar cells and mesa diodes grown by metalorganic chemical vapor deposition (MOCVD) were irradiated with electrons and protons at room temperature. The radiation-induced defects (RIDs) were characterized by deep level transient spectroscopy (DLTS), and the degradation of the solar cell performance was determined through I-V measurements. The nonionizing energy loss (NIEL) of electrons and protons in InP was calculated as a function of energy from 1 to 200 MeV and compared to the measured defect introduction rates. A linear dependence was evident. InP solar cells showed significantly more radiation resistance than c-Si or GaAs/Ge cells under 1 MeV electron irradiation. Using the calculated InP damage rates and measured damage factors, the performance of InP solar cells as a function of orbital altitude and time in orbit was predicted and compared with the performance of c-Si solar cells in the same environment. In all cases, the InP cells showed highly superior radiation resistance.

  2. Effect of LED irradiation on the expression of MMP-3 and MMP-13 in SW1353 cells in vitro

    NASA Astrophysics Data System (ADS)

    Zeng, Chang-chun; Guo, Zhou-yi; Zhang, Feng-xue; Deng, Wen-di; Liu, Song-hao

    2007-05-01

    Matrix Metalloproteinase (MMP) plays an active role in remodeling cartilage in osteoarthritic cartilage. To find an effective method of prevention of osteoclasia, this in vitro study focuses on the expression of MMP-3 and MMP-13 in the SW1353 cells by LED irradiation. The human chondrosarcoma cell line SW1353 were stimulated with the proinflammatory cytokine IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and were received the irradiation of LED (632nm, 4mW/cm2). The cell count was assessed over a 96-hour period by using Trypan blue dye exclusion assay, and the cell activity was evaluated with a Cell Counting Kit-8 Assays. The subsequent expression of MMP-3 and MMP-13 was quantified. Results of this experiment showed that the cultural cell activity was decreased, and the expression of MMP-3 and MMP-13 was increased by being stimulated with IL-1beta or TNF-alpha. After received LED irradiation, the death rate of cultural cell was increased and the expression of MMP-3 and MMP-13 was decreased significantly. The present study concluded that particular LED irradiation stimulates SW1353 cell proliferation activity and inhibit the MMP-3 and MMP-13 enzymatic activity. These findings might be clinically relevant, indicating that the low power laser irradiation treatment is likely to achieve the repair of articular cartilage in clinic.

  3. Prophylactic immunization against experimental leishmaniasis. III. Protection against fatal Leishmania tropica infection induced by irradiated promastigotes involves Lyt-1/sup +/2/sup -/ T cells that do not mediate cutaneous DTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liew, F.Y.; Howard, J.G.; Hale, C.

    1984-01-01

    Protective immunity against fatal L. tropica infection in genetically vulnerable BALB/c mice can be induced by prophylactic immunization with irradiated promastigotes even when heat-killed. Such immunity is adoptively transferable transiently into intact or durably into sub-lethally irradiated (200 or 550 rad) syngeneic recipients by splenic T but not B cells. The effector T cells are of the Lyt-1/sup +/2/sup -/ phenotype, devoid of demonstrable cytotoxic activity. The immune splenic T cell population expresses specific helper activity for antibody synthesis. A causal role for helper T cells in this capacity, however, seems unlikely, because it was shown that antibody does notmore » determine the protective immunity against L. tropica. The immunized donors show no detectable cutaneous DTH or its early memory recall in response to live or killed promastigotes or a soluble L. tropica antigen preparation. Spleen, lymph node, and peritoneal exudate cells from protectively immunized donors similarly fail to transfer DTH locally or systemically. These cells also lack demonstrable suppressive activity against the expression or induction of DTH to L. tropica. Thus, protection against L. tropica induced by prophylactic i.v. immunization with irradiated promastigotes appears to be conferred by Lyt-1/sup +/2/sup -/ T cells that are distinguishable from T cells mediating either both DTH and T help, or cytotoxicity.« less

  4. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    PubMed

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  5. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    NASA Astrophysics Data System (ADS)

    Siebenwirth, C.; Greubel, C.; Drexler, S. E.; Girst, S.; Reindl, J.; Walsh, D. W. M.; Dollinger, G.; Friedl, A. A.; Schmid, T. E.; Drexler, G. A.

    2015-04-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.

  6. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    PubMed

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.

  7. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media

    PubMed Central

    Meunier, Sarah M.; Todorovic, Biljana; Dare, Emma V.; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J. Larry; Sasges, Michael; Aucoin, Marc G.

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media. PMID:26975046

  8. Radiosensitivity of human ovarian carcinoma and melanoma cells to γ-rays and protons

    PubMed Central

    Keta, Otilija; Todorović, Danijela; Popović, Nataša; Korićanac, Lela; Cuttone, Giacomo; Petrović, Ivan

    2014-01-01

    Introduction Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons. Material and methods Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88 ±2.15 MeV, corresponding to the linear energy transfer of 4.7 ±0.2 keV/µm. Irradiations with γ-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results Results showed that γ-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91 ±0.01 for γ-rays and 0.81 ±0.01 for protons, while those for HTB140 cells were 0.93 ±0.01 for γ-rays and 0.86 ±0.01 for protons. Relative biological effectiveness of protons, being 2.47 ±0.22 for 59M and 2.08 ±0.36 for HTB140, indicated that protons provoked better cell elimination than γ-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to γ-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. Conclusions The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than γ-rays. The dissimilar response of these cells to radiation is related to their different features. PMID:25097591

  9. Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV X-rays in human tumour cell lines.

    PubMed

    Gerelchuluun, Ariungerel; Hong, Zhengshan; Sun, Lue; Suzuki, Kenshi; Terunuma, Toshiyuki; Yasuoka, Kiyoshi; Sakae, Takeji; Moritake, Takashi; Tsuboi, Koji

    2011-01-01

    To clarify the properties of clinical high-energy protons by comparing with clinical high-energy X-rays. Human tumor cell lines, ONS76 and MOLT4, were irradiated with 200 MeV protons or 10 MV X-rays. In situ DNA double-strand breaks (DDSB) induction was evaluated by immunocytochemical staining of phosphorylated histone H2AX (γ-H2AX). Apoptosis was measured by flow-cytometry after staining with Annexin V. The relative biological effectiveness (RBE) was obtained by clonogenic survival assay. DDSB induction was significantly higher for protons than X-rays with average ratios of 1.28 (ONS76) and 1.59 (MOLT4) at 30 min after irradiation. However the differences became insignificant at 6 h. Also, apoptosis induction in MOLT4 cells was significantly higher for protons than X-rays with an average ratio of 2.13 at 12 h. However, the difference became insignificant at 20 h. RBE values of protons to X-rays at 10% survival were 1.06 ± 0.04 and 1.02 ± 0.15 for ONS76 and MOLT4, respectively. Cell inactivation may differ according to different timings and/or endpoints. Proton beams demonstrated higher cell inactivation than X-rays in the early phases. These data may facilitate the understanding of the biological properties of clinical proton beams.

  10. Exercise in Adulthood after Irradiation of the Juvenile Brain Ameliorates Long-Term Depletion of Oligodendroglial Cells.

    PubMed

    Bull, Cecilia; Cooper, Christiana; Lindahl, Veronica; Fitting, Sylvia; Persson, Anders I; Grandér, Rita; Alborn, Ann-Marie; Björk-Eriksson, Thomas; Kuhn, H Georg; Blomgren, Klas

    2017-10-01

    Cranial radiation severely affects brain health and function, including glial cell production and myelination. Recent studies indicate that voluntary exercise has beneficial effects on oligodendrogenesis and myelination. Here, we hypothesized that voluntary running would increase oligodendrocyte numbers in the corpus callosum after irradiation of the juvenile mouse brain. The brains of C57Bl/6J male mice were 6 Gy irradiated on postnatal day 9 during the main gliogenic developmental phase, resulting in a loss of oligodendrocyte precursor cells. Upon adulthood, the mice were injected with bromodeoxyuridine and allowed to exercise on a running wheel for four weeks. Cell proliferation and survival, Ascl1 + oligodendrocyte precursor and Olig2 + oligodendrocyte cell numbers as well as CC1 + mature oligodendrocytes were quantified using immunohistology. Radiation induced a reduction in the number of Olig2 + oligodendrocytes by nearly 50% without affecting production or survival of new Olig2 + cells. Ascl1 + cells earlier in the oligodendroglial cell lineage were also profoundly affected, with numbers reduced by half. By three weeks of age, Olig2 + cell numbers had not recovered, and this was paralleled by a volumetric loss in the corpus callosum. The deficiency of Olig2 + oligodendrocytes persisted into adulthood. Additionally, the depletion of Ascl1 + progenitor cells was irreversible, and was even more pronounced at 12 weeks postirradiation compared to day 2 postirradiation. Furthermore, the overall number of CC1 + mature oligodendrocytes decreased by 28%. The depletion of Olig2 + cells in irradiated animals was reversed by 4 weeks of voluntary exercise. Moreover, voluntary exercise also increased the number of Ascl1 + progenitor cells in irradiated animals. Taken together, these results demonstrate that exercise in adulthood significantly ameliorates the profound and long-lasting effects of moderate exposure to immature oligodendrocytes during postnatal development.

  11. Residual chromatin breaks as biodosimetry for cell killing by carbon ions.

    PubMed

    Suzuki, M; Kase, Y; Nakano, T; Kanai, T; Ando, K

    1998-01-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/micrometer, 76 keV/micrometer) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/micrometer beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  12. Residual chromatin breaks as biodosimetry for cell killing by carbon ions

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Kase, Y.; Nakano, T.; Kanai, T.; Ando, K.

    1998-11-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/μm, 76 keV/μm) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/μm beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  13. [Combined effects of interferon γ and γ ray irradiation on A549 cells in vitro].

    PubMed

    Xia, Hui; Zhang, Yi-ming; Yu, Chang-hai; Zhang, Wen; Zhang, Bao-shi; Fang, Fang

    2012-02-07

    To define the role of interferon-γ on radiotherapy of lung cancer and explore a new way to clinical treatment. A549 cells were exposed to γ ray with or without IFN-γ co-treatment. MTT assay was performed to evaluate cell viability. Western blot was used to observe the expression of P53 protein. The results showed that co-treatment of IFN-γ decreased the cell viability significantly compared with the γ ray irradiation group (71.4% ± 2.1% vs 44.1% ± 3.1%, n = 7, P < 0.01). In addition, the expression of P53 protein also increased significantly after co-treatment (P < 0.01); Furthermore, the cell cycle was changed obviously in co-treatment group compared with γ ray irradiation group, S phase increased (12.9% vs 20.9%, n = 5, P < 0.05) and also blocked the G2/M phase (28.8% vs 38.9%, n = 5, P < 0.05). The results suggested that γ ray irradiation combined with IFN-γ can increase the efficiency of radiotherapy on A549 cells and there is much broad prospect in the clinical treatment of lung cancer.

  14. Anomalous threshold voltage change by 2 MeV electron irradiation at 100 °C in deep submicron metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Hayama, K.; Ohyama, H.; Simoen, E.; Rafí, J. M.; Mercha, A.; Claeys, C.

    2004-04-01

    The degradation of the electrical properties of deep submicron metal-oxide-semiconductor field-effect transistors (MOSFETs) by 2 MeV electron irradiation at high temperatures was studied. The irradiation temperatures were 30, 100, 150 and 200 °C, and the fluence was fixed at 1015e/cm2. For most experimental conditions, the threshold voltage (VT) is observed to reduce in absolute value both for n- and p-MOSFETs. This reduction is most pronounced at 100 °C, as at this irradiation temperature, the radiation-induced density of interface traps is highest. It is proposed that hydrogen neutralization of the dopants in the substrate plays a key role, whereby the hydrogen is released from the gate by the 2 MeV electrons.

  15. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  16. Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs

    NASA Astrophysics Data System (ADS)

    Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko

    2009-02-01

    Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.

  17. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Tran, D. T.; Murray, D. K.; Rightnar, S. S.; Todd, S.; Nelson, G. A.

    2002-01-01

    The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P < 0.0001, n = 12). As an additional way to determine whether connexin 32 was contributing to the difference in survival, cultures were treated with heptanol, resulting in higher alpha values, with early-passage cultures (0.10 Gy(-1)) nearly equivalent to untreated late-passage cultures (0.11 Gy(-1)) (P > 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the

  18. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eke, Iris; Storch, Katja; Kaestner, Ina

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg,more » {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.« less

  19. Turnover of bone marrow-derived cells in the irradiated mouse cornea

    PubMed Central

    Chinnery, Holly R; Humphries, Timothy; Clare, Adam; Dixon, Ariane E; Howes, Kristen; Moran, Caitlin B; Scott, Danielle; Zakrzewski, Marianna; Pearlman, Eric; McMenamin, Paul G

    2008-01-01

    In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation. PMID:18540963

  20. Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation

    PubMed Central

    Ho, Vincent T.; Vanneman, Matthew; Kim, Haesook; Sasada, Tetsuro; Kang, Yoon Joong; Pasek, Mildred; Cutler, Corey; Koreth, John; Alyea, Edwin; Sarantopoulos, Stefanie; Antin, Joseph H.; Ritz, Jerome; Canning, Christine; Kutok, Jeffery; Mihm, Martin C.; Dranoff, Glenn; Soiffer, Robert

    2009-01-01

    Through an immune-mediated graft-versus-leukemia effect, allogeneic hematopoietic stem cell transplantation (HSCT) affords durable clinical benefits for many patients with hematologic malignancies. Nonetheless, subjects with high-risk acute myeloid leukemia or advanced myelodysplasia often relapse, underscoring the need to intensify tumor immunity within this cohort. In preclinical models, allogeneic HSCT followed by vaccination with irradiated tumor cells engineered to secrete GM-CSF generates a potent antitumor effect without exacerbating the toxicities of graft-versus-host disease (GVHD). To test whether this strategy might be similarly active in humans, we conducted a Phase I clinical trial in which high-risk acute myeloid leukemia or myelodysplasia patients were immunized with irradiated, autologous, GM-CSF-secreting tumor cells early after allogeneic, nonmyeloablative HSCT. Despite the administration of a calcineurin inhibitor as prophylaxis against GVHD, vaccination elicited local and systemic reactions that were qualitatively similar to those previously observed in nontransplanted, immunized solid-tumor patients. While the frequencies of acute and chronic GVHD were not increased, 9 of 10 subjects who completed vaccination achieved durable complete remissions, with a median follow-up of 26 months (range 12–43 months). Six long-term responders showed marked decreases in the levels of soluble NKG2D ligands, and 3 demonstrated normalization of cytotoxic lymphocyte NKG2D expression as a function of treatment. Together, these results establish the safety and immunogenicity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic HSCT, and raise the possibility that this combinatorial immunotherapy might potentiate graft-versus-leukemia in patients. PMID:19717467

  1. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth.

    PubMed

    Fernandes, Ana Paula; Junqueira, Marina de Azevedo; Marques, Nádia Carolina Teixeira; Machado, Maria Aparecida Andrade Moreira; Santos, Carlos Ferreira; Oliveira, Thais Marchini; Sakai, Vivien Thiemy

    2016-01-01

    This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW - 10 s), II (2.5 J/cm2 - 10 mW - 10 s), III (3.7 J/cm2 - 15 mW - 10 s), IV (5.0 J/cm2 - 20 mW - 10 s), V (6.2 J/cm2 - 25 mW - 10 s), and VI (not irradiated - control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study.

  2. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth

    PubMed Central

    FERNANDES, Ana Paula; JUNQUEIRA, Marina de Azevedo; MARQUES, Nádia Carolina Teixeira; MACHADO, Maria Aparecida Andrade Moreira; SANTOS, Carlos Ferreira; OLIVEIRA, Thais Marchini; SAKAI, Vivien Thiemy

    2016-01-01

    ABSTRACT Low-Level Laser Therapy stimulates the proliferation of a variety of types of cells. However, very little is known about its effect on stem cells from human exfoliated deciduous teeth (SHED). Objective This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. Material and Methods SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW – 10 s), II (2.5 J/cm2 – 10 mW – 10 s), III (3.7 J/cm2 – 15 mW – 10 s), IV (5.0 J/cm2 – 20 mW – 10 s), V (6.2 J/cm2 – 25 mW – 10 s), and VI (not irradiated – control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. Results MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. Conclusions The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study. PMID:27556203

  3. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiblak, Sara; Tang, Zili; Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg

    Purpose: To investigate the radiosensitivity of primary glioma stem cell (GSC) cultures with different CD133 status in a 3-dimensional (3D) model after photon versus proton versus carbon irradiation. Methods and Materials: Human primary GSC spheroid cultures were established from tumor specimens of six consented glioblastoma patients. Human U87MG was used as a classical glioblastoma radioresistant cell line. Cell suspensions were generated by mechanical dissociation of GSC spheroids and embedded in a semi-solid 3D matrix before irradiation. Spheroid-like colonies were manually counted by microscopy. Cells were also recovered and quantified by fluorescence. CD133 expression and DNA damage were evaluated by flow cytometry.more » Results: The fraction of CD133{sup +} cells varied between 0.014% and 96% in the six GSC cultures and showed a nonsignificant correlation with plating efficiency and survival fractions. The 4 most photon-radioresistant GSC cultures were NCH644, NCH421k, NCH441, and NCH636. Clonogenic survival for proton irradiation revealed relative biologic effectiveness (RBE) in the range of 0.7-1.20. However, carbon irradiation rendered the photon-resistant GSC cultures sensitive, with average RBE of 1.87-3.44. This effect was partly attributed to impaired capability of GSC to repair carbon ion–induced DNA double-strand breaks as determined by residual DNA repair foci. Interestingly, radiosensitivity of U87 cells was comparable to GSC cultures using clonogenic survival as the standard readout. Conclusions: Carbon irradiation is effective in GSC eradication with similar RBE ranges approximately 2-3 as compared with non-stem GSC cultures (U87). Our data strongly suggest further exploration of GSC using classic radiobiology endpoints such as the here-used 3D clonogenic survival assay and integration of additional GSC-specific markers.« less

  4. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III nonsmall cell lung cancer.

    PubMed

    Yuan, Shuanghu; Sun, Xindong; Li, Minghuan; Yu, Jinming; Ren, Ruimei; Yu, Yonghu; Li, Jianbin; Liu, Xiuqing; Wang, Renben; Li, Baosheng; Kong, Li; Yin, Yong

    2007-06-01

    Radiation dose escalation is limited by the high incidence of pulmonary and esophageal toxicity, leading to calls for the omission of elective nodal irradiation (ENI) and the willingness to use involved-field irradiation (IFI) in patients with nonsmall cell lung cancer (NSCLC). A total of 200 eligible patients with inoperable stage III NSCLC were treated with concurrent chemoradiotherapy and randomized into either an IFI or ENI arm. A total of 4 to 6 cycles of cisplatin-based chemotherapy were delivered, and concurrent radiotherapy was started after the second cycle of chemotherapy. Three-dimensional conformal radiotherapy was delivered in once-daily fractions of 1.8 to 2 Gy to 68 to 74 Gy for IFI or 60 to 64 Gy for ENI. Patients in the IFI arm achieved better overall response rate (90% vs. 79%, P = 0.032) and better 5-years local control rate (51% vs.36%, P = 0.032) than those in the ENI arm. The radiation pneumonitis rate in patients with IFI was lower than in patients with ENI (17% vs. 29%, P = 0.044), and similar trends appeared in the radiation esophagitis, myelosuppression, and radiation pericarditis between 2 study arms, although not significantly. The 1-, 2-, and 5-year survival rates were 60.4%, 25.6%, and 18.3% for the ENI arm and 69.9%, 39.4%, and 25.1% for the IFI arm, respectively. Only the 2-year survival rates were statistically significant (P = 0.048). IFI arm achieved better overall response and local control than ENI arm, and it allowed a dose of 68 to 74 Gy to be safely administered to patients with inoperable stage III NSCLC. Outcome improvement can be expected by conformal IFI combined with chemotherapy for stage III NSCLC.

  5. [Short-term screening of anticarcinogenic ingredients of tea by cell biology assays].

    PubMed

    Liu, L; Han, C; Chen, J

    1998-01-01

    By using a panel of short term cell biology assays, several ingredients of tea (tea pigments, caffeine, tea polysaccharide, tea polyphenols tablet and mixed tea) were screened in order to investigate their anticarcinogenic effects. The cytokinesis block micronuclei test in V79 cells induced by mitomycin, the test of metabolic cooperation between V79 and M cells and the test of growth ability of Hela cells in soft agar were used in the screening. The results showed that the six kinds of tea ingredients tested were effective in the test involved in different stages of carcinogenesis, i.e. initiation, promotion and progression. The effects of mixed tea and tea pigments were the strongest among the ingredients tested.

  6. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    NASA Astrophysics Data System (ADS)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Thin films of tin(IV) oxide (SnO2) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au8+ using 1 pnA current at normal incidence with ion fluences varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV-Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm-1 in FTIR spectrum confirmed the O-Sn-O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO2 were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  7. High-Concentration III-V Multijunction Solar Cells | Photovoltaic Research

    Science.gov Websites

    | NREL High-Concentration III-V Multijunction Solar Cells High-Concentration III-V transfer to the high-efficiency cell industry, and the invention and development of the inverted metamorphic multijunction (IMM) cell technology. PV Research Other Materials & Devices pages: High

  8. Some challenging points in the identification of defects in floating-zone n-type silicon irradiated with 8 and 15 MeV protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emtsev, V. V., E-mail: emtsev@mail.ioffe.ru; Abrosimov, N. V.; Kozlovskii, V. V.

    2016-10-15

    Electrical properties of defects formed in n-Si(FZ) following 8 and 15 MeV proton irradiation are investigated by Hall effect measurements over the wide temperature range of T ≈ 25 to 300 K. Close attention is paid to the damaging factor of proton irradiation, leaving aside passivation effects by hydrogen. The concept of defect production and annealing processes being accepted in the literature so far needs to be reconsidered. Contrary to expectations the dominant impurity-related defects produced by MeV protons turn out to be electrically neutral in n-type material. Surprisingly, radiation acceptors appear to play a minor role. Annealing studies ofmore » irradiated samples of such complex defects as a divacancy tied to a phosphorus atom and a vacancy tied to two phosphorus atoms. The latter defect features high thermal stability. Identification of the dominant neutral donors, however, remains unclear and will require further, more detailed, studies. The electric properties of the material after proton irradiation can be completely restored at T = 800°C.« less

  9. In vitro and in vivo studies on the cytotoxicity of irradiated silk fibroin against mouse melanoma tumor cell

    NASA Astrophysics Data System (ADS)

    Byun, Eui-Baek; Sung, Nak-Yun; Kwon, Sun-Kyu; Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il; Hwang, Han-Joon; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    The physicochemical properties of proteins can be altered by irradiation. But, it is rarely that the researches on the functional properties of irradiated proteins have been reported. Fibroin is a fibrous protein derived from silkworm Bombyx mori and has been suggested as a biomaterial for biomedical application. Therefore, fibroin was selected as a model protein and was examined with the irradiation effects on the cytotoxicity of fibroin on tumor cell. The cytotoxicity of fibroin against mouse melanoma cell (B16BL6) showed a significant increase dependent upon the increase of irradiation dose. And also, the splenocyte proliferation activities of fibroin were increased by gamma irradiation. In addition, the oral administration of irradiated fibroin significantly increased the inhibition rate of tumor growth in tumor-bearing mouse model. The reason might be due to the change of protein structure by gamma irradiation and is being studied. From these result, it could be concluded that the irradiated fibroin might be a potential candidate as a valuable product in food and medical industry.

  10. Synergistic Effects of Incubation in Rotating Bioreactors and Cumulative Low Dose 60Co γ-ray Irradiation on Human Immortal Lymphoblastoid Cells

    NASA Astrophysics Data System (ADS)

    Wei, Lijun; Han, Fang; Yue, Lei; Zheng, Hongxia; Yu, Dan; Ma, Xiaohuan; Cheng, Huifang; Li, Yu

    2012-11-01

    The complex space environments can influence cell structure and function. The research results on space biology have shown that the major mutagenic factors in space are microgravity and ionizing radiation. In addition, possible synergistic effects of radiation and microgravity on human cells are not well understood. In this study, human immortal lymphoblastoid cells were established from human peripheral blood lymphocytes and the cells were treated with low dose (0.1, 0.15 and 0.2 Gy) cumulative 60Co γ-irradiation and simulated weightlessness [obtained by culturing cells in the Rotating Cell Culture System (RCCS)]. The commonly used indexes of cell damage such as micronucleus rate, cell cycle and mitotic index were studied. Previous work has proved that Gadd45 (growth arrest and DNA-damage-inducible protein 45) gene increases with a dose-effect relationship, and will possibly be a new biological dosimeter to show irradiation damage. So Gadd45 expression is also detected in this study. The micronucleus rate and the expression of Gadd45α gene increased with irradiation dose and were much higher after incubation in the rotating bioreactor than that in the static irradiation group, while the cell proliferation after incubation in the rotating bioreactor decreased at the same time. These results indicate synergetic effects of simulated weightlessness and low dose irradiation in human cells. The cell damage inflicted by γ-irradiation increased under simulated weightlessness. Our results suggest that during medium- and long-term flight, the human body can be damaged by cumulative low dose radiation, and the damage will even be increased by microgravity in space.

  11. Ionizing irradiation not only inactivates clonogenic potential in primary normal human diploid lens epithelial cells but also stimulates cell proliferation in a subset of this population.

    PubMed

    Fujimichi, Yuki; Hamada, Nobuyuki

    2014-01-01

    Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that

  12. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia.

    PubMed

    Rutter, A Richard; Ma, Qing-Ping; Leveridge, Mathew; Bonnert, Timothy P

    2005-11-07

    Coassociation of the vanilloid transient receptor potential (Trp) ion channels, TrpV1 and TrpV2, was investigated by immunoprecipitation and immunofluorescence in transfected mammalian cell lines, rat dorsal root ganglia and spinal cord. TrpV1/TrpV2 heteromeric complexes were coimmunoprecipitated from human embryonic kidney cells and F-11 dorsal root ganglion hybridoma cells following their transient coexpression. Immunofluorescent labelling of transfected F-11 cells revealed colocalization of TrpV1 and TrpV2 at the cell surface. Immunoprecipitation from rat dorsal root ganglion lysates identified a minor population of receptor complexes composed of TrpV1/TrpV2 heteromers, consistent with a small proportion of cells double-labelled with TrpV1 and TrpV2 antibodies in rat dorsal root ganglion sections. TrpV1/TrpV2 receptor complexes may represent a functionally distinct ion channel complex that may increase the diversity observed within the Trp ion channel family.

  13. [Radiobiological effects of total mice irradiation with Bragg's peak protons].

    PubMed

    Ivanov, A A; Molokanov, A G; Ushakov, I B; Bulynina, T M; Vorozhtsova, S V; Abrosimova, A N; Kryuchkova, D M; Gaevsky, V N

    2013-01-01

    Outbred CD-1 female mice were irradiated in a proton beam (171 MeV, 5 Gy) on the phasotron at the Joint Institute of Nuclear Research (Dubna, Russia). Radiation was delivered in two points of the depth dose distribution: at the beam entry and on Bragg's peak. Technical requirements for studying the effects of Bragg's peak protons on organism of experimental animals were specified. It was recognized that protons with high linear energy transfer (mean LET = 1.6 keV/microm) cause a more severe damaging effect to the hemopoietic system and cytogenetic apparatus in bone marrow cells as compared with entry protons and 60Co gamma-quanta. It was shown that recovery of the main hemopoietic organs and immunity as well as elimination of chromosomal aberrations take more time following irradiation with Bragg's peak protons but not protons with the energy of 171 MeV.

  14. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  15. Recovery of Electron/Proton Radiation-Induced Defects in n+p AlInGaP Solar Cell by Minority-Carrier Injection Annealing

    NASA Technical Reports Server (NTRS)

    Lee, H. S.; Yamaguchi, M.; Elkins-Daukes, N. J.; Khan, A.; Takamoto, T.; Imaizumi, M.; Ohshima, T.; Itoh, H.

    2007-01-01

    A high efficient In0.48Ga0.52P/In0.01Ga0.99As/Ge triple junction solar cell has been developed for application in space and terrestrial concentrator PV system [1-3]. Recently, a high conversion efficiency of 31.5% (AM1.5G) has been obtained in InGaP/(In)GaAs/Ge triple junction solar cell, and as a new top cell material of triple junction cells, (Al)InGaP [1] has been proposed to improve the open-circuit voltage (Voc) because it shows a higher Voc of 1.5V while maintaining the same short-circuit current (ISC) as a conventional InGaP top cell under AM1.5G conditions as seen in figure 1 (a). Moreover, the spectral response of 1.96eV AlInGaP cell with a thickness of 2.5..m shows a higher response in the long wavelength region, compared with that of 1.87eV InGaP cell with 0.6..m thickness, as shown in figure 1 (b). Its development will realize next generation multijunction (MJ) solar cells such as a lattice mismatched AlInGaP/InGaAs/Ge 3-junction and lattice matched AlInGaP/GaAs/InGaAsN/Ge 4-junction solar cells. Figure 2 shows the super high-efficiency MJ solar cell structures and wide band spectral response by MJ solar cells under AM1.5G conditions. For realizing high efficient MJ space solar cells, the higher radiation-resistance under the electron or proton irradiation is required. The irradiation studies for a conventional top cell InGaP have been widely done [4-6], but little irradiation work has been performed on AlInGaP solar cells. Recently, we made the first reports of 1 MeV electron or 30 keV proton irradiation effects on AlInGaP solar cells, and evaluated the defects generated by the irradiation [7,8]. The present study describes the recovery of 1 MeV electron / 30 keV proton irradiation-induced defects in n+p- AlInGaP solar cells by minority-carrier injection enhanced annealing or isochronal annealing. The origins of irradiation-induced defects observed by deep level transient spectroscopy (DLTS) measurements are discussed.

  16. Bruton's tyrosine kinase and protein kinase C µ are required for TLR7/9-induced IKKα and IRF-1 activation and interferon-β production in conventional dendritic cells.

    PubMed

    Li, Yan-Feng; Lee, Koon-Guan; Ou, Xijun; Lam, Kong-Peng

    2014-01-01

    Stimulation of TLR7/9 by their respective ligands leads to the activation of IκB kinase α (IKKα) and Interferon Regulatory Factor 1 (IRF-1) and results in interferon (IFN)-β production in conventional dendritic cells (cDC). However, which other signaling molecules are involved in IKKα and IRF-1 activation during TLR7/9 signaling pathway are not known. We and others have shown that Bruton's Tyrosine Kinase (BTK) played a part in TLR9-mediated cytokine production in B cells and macrophages. However, it is unclear if BTK participates in TLR7/9-induced IFN-β production in cDC. In this study, we show that BTK is required for IFN-β synthesis in cDC upon TLR7/9 stimulation and that stimulated BTK-deficient cDC are defective in the induction of IKKα/β phosphorylation and IRF-1 activation. In addition, we demonstrate that Protein Kinase C µ (PKCµ) is also required for TLR7/9-induced IRF-1 activation and IFN-β upregulation in cDC and acts downstream of BTK. Taken together, we have uncovered two new molecules, BTK and PKCµ, that are involved in TLR7/9-triggered IFN-β production in cDC.

  17. Generation of novel covalent RNA-protein complexes in cells by ultraviolet B irradiation: implications for autoimmunity.

    PubMed

    Andrade, Felipe; Casciola-Rosen, Livia A; Rosen, Antony

    2005-04-01

    To determine whether ultraviolet B (UVB) irradiation induces novel modifications in autoantigens targeted during experimental photoinduced epidermal damage. To search for novel UVB-induced autoantigen modifications, lysates made from UVB-irradiated human keratinocytes or HeLa cells were immunoblotted using human autoantibodies that recognize ribonucleoprotein autoantigens. Novel autoantigen structures identified were further characterized using nucleases and RNA hybridization. Human sera that recognize U1-70 kd (U1-70K) and La by immunoblotting also recognized multiple novel species when they were used to immunoblot lysates of UVB-irradiated keratinocytes or HeLa cells. These species were not present in control cells and were not observed when apoptosis was induced by Fas ligation or cytotoxic lymphocyte granule contents. Biochemical analysis using multiple assays revealed that these novel UVB-induced molecular species result from the covalent crosslinking between the U1 RNA and the hYRNA molecules with their associated proteins, including U1-70K, La, and likely components of the Sm particle. These data demonstrate that UVB irradiation of live cells can directly induce covalent RNA-protein complexes, which are recognized by human autoantibodies. As previously described for other autoantigens, these covalent complexes of RNA and proteins may have important consequences in terms of antigen capture and processing.

  18. Strand V: Education for Survival. Safety Education. Health Curriculum Materials. Grades 7-9.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    GRADES OR AGES: Grades 7-9. SUBJECT MATTER: Education for survival and safety education. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into eight sections: accident problems, safe behavior, safety in the home, safety in school, safety at work, safety in physical and recreational activities, safety in driving and walking, and safety in…

  19. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells.

    PubMed

    Zaccara, Ivana Maria; Ginani, Fernanda; Mota-Filho, Haroldo Gurgel; Henriques, Águida Cristina Gomes; Barboza, Carlos Augusto Galvão

    2015-12-01

    A positive effect of low-level laser irradiation (LLLI) on the proliferation of some cell types has been observed, but little is known about its effect on dental pulp stem cells (DPSCs). The aim of this study was to identify the lowest energy density able to promote the proliferation of DPSCs and to maintain cell viability. Human DPSCs were isolated from two healthy third molars. In the third passage, the cells were irradiated or not (control) with an InGaAlP diode laser at 0 and 48 h using two different energy densities (0.5 and 1.0 J/cm²). Cell proliferation and viability and mitochondrial activity were evaluated at intervals of 24, 48, 72, and 96 h after the first laser application. Apoptosis- and cell cycle-related events were analyzed by flow cytometry. The group irradiated with an energy density of 1.0 J/cm² exhibited an increase of cell proliferation, with a statistically significant difference (p < 0.05) compared to the control group at 72 and 96 h. No significant changes in cell viability were observed throughout the experiment. The distribution of cells in the cell cycle phases was consistent with proliferating cells in all three groups. We concluded that LLLI, particularly a dose of 1.0 J/cm², contributed to the growth of DPSCs and maintenance of its viability. This fact indicates this therapy to be an important future tool for tissue engineering and regenerative medicine involving stem cells.

  20. Effect of active species on animal cells in culture media induced by DBD Plasma irradiation using air

    NASA Astrophysics Data System (ADS)

    Ohtsubo, Tetsuya; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Little has been reported on action mechanism of active species produced by plasmas affecting living cells. In this study, active species in culture medium generated by torch type DBD and variations of animal cells are attempted to be clarified. Animal cells are irradiated by DBD plasma through various media such as DMEM, PBS and distilled water. Irradiation period is 1 to 15 min. The distance between the lower tip of plasma touch and the surface of the medium is 10 mm. Concentrations of NO2 -, O2 in liquid are measured. After the irradiation, the cells were cultivated in culture medium and their modifications are observed by microscope and some chemical reagents. Concentration of NO2 - and H2 O2 in all media increased with discharge period. Increase rate of NO2 -concentration is much higher than that of hydrogen peroxide. After plasma irradiation for 15 min, concentrations of NO2 were 80 mg/L in DMEM, 30 mg/L in PBS and 15 mg/L in distilled water. Also, the concentration of H2 O2 became 3mg/L in DMEM, 6.5 mg/L in PBS and 6.5mg/L in distilled water. The significant inactivation of cells was observed in the PBS. Above results indicate that, in this experiment, H2 O2 or OH radicals would affect animal cells in culture media.

  1. The molecular cues for the biological effects of ionizing radiation dose and post-irradiation time on human breast cancer SKBR3 cell line: A Raman spectroscopy study.

    PubMed

    Jafarzadeh, Naser; Mani-Varnosfaderani, Ahmad; Gilany, Kambiz; Eynali, Samira; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2018-03-01

    Radiotherapy is one of the main modalities of cancer treatment. The utility of Raman spectroscopy (RS) for detecting the distinct radiobiological responses in human cancer cells is currently under investigation. RS holds great promises to provide good opportunities for personalizing radiotherapy treatments. Here, we report the effects of the radiation dose and post-irradiation time on the molecular changes in the human breast cancer SKBR3 cells, using RS. The SKBR3 cells were irradiated by gamma radiation with different doses of 0, 1, 2, 4, and 6 Gy. The Raman signals were acquired 24 and 48 h after the gamma radiation. The collected Raman spectra were analyzed by different statistical methods such as principal component analysis, linear discriminant analysis, and genetic algorithm. A thorough analysis of the obtained Raman signals revealed that 2 Gy of gamma radiation induces remarkable molecular and structural changes in the SKBR3 cells. We found that the wavenumbers in the range of 1000-1400 cm -1 in Raman spectra are selective for discriminating between the effects of the different doses of irradiation. The results also revealed that longer post-irradiation time leads to the relaxation of the cells to their initial state. The molecular changes that occurred in the 2Gy samples were mostly reversible. On the other hand, the exposure to doses higher than 4Gy induced serious irreversible changes, mainly seen in 2700-2800 cm -1 in Raman spectra. The classification models developed in this study would help to predict the radiation-based molecular changes induced in the cancer cells by only using RS. Also, this designed framework may facilitate the process of biodosimetry. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach.

    PubMed

    Solana, Jordi; Kao, Damian; Mihaylova, Yuliana; Jaber-Hijazi, Farah; Malla, Sunir; Wilson, Ray; Aboobaker, Aziz

    2012-01-01

    Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology.

  3. Single cell analysis of low-power laser irradiation-induced activation of signaling pathway in cell proliferation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan

    2007-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Investigating the signaling pathways involved in the laser irradiation is important for understanding these processes. The small G protein Ras works as a binary switch in many important intracellular signaling pathways and, therefore, has been one of the focal targets of signal-transduction investigations and drug development. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. On the other hand, Protein kinase Cs (PKCs), the Ca 2+ activated, phospholipid-dependent serine/threonine protein kinases, have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In this report, to monitor the direct activations of Ras and PKCs after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. The direct activation of Ras is predominantly initiated from the different microdomains of the plasma membrane. The results are monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved COS-7 cells expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope. Furthermore, the increasing activation of PKCs is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing CKAR reporter using the similar way. Taken together, the dynamic increases of H-Ras and PKCs activities are observed during the processes of cell proliferation induced by LPLI.

  4. Suppression of unprimed T and B cells in antibody responses by irradiation-resistant and plastic-adherent suppressor cells in Toxoplasma gondii-infected mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Y.; Kobayashi, A.

    1983-04-01

    In the acute phase of Toxoplasma infection, the function of both helper T and B cells was suppressed in primary antibody responses to dinitrophenol (DNP)-conjugated protein antigens. During the course of infection, the suppressive effect on T cells seems to continue longer than that on B cells, since suppression in responses to sheep erythrocytes, a T-dependent antigen, persisted longer than those to DNP-Ficoll, a T-independent antigen. Plastic-adherent cells from the spleens of Toxoplasma-infected and X-irradiated (400 rads) mice had strong suppressor activity in primary anti-sheep erythrocyte antibody responses of normal mouse spleen cells in vitro. These data suggest that themore » activation of irradiation-resistant and plastic-adherent suppressor cells causes the suppression of both T and B cells in Toxoplasma-infected mice.« less

  5. Effects of Blue Light Emitting Diode Irradiation On the Proliferation, Apoptosis and Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Yuan, Ye; Yan, Gege; Gong, Rui; Zhang, Lai; Liu, Tianyi; Feng, Chao; Du, Weijie; Wang, Ying; Yang, Fan; Li, Yuan; Guo, Shuyuan; Ding, Fengzhi; Ma, Wenya; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Cai, Benzhi; Yang, Lei

    2017-01-01

    Blue light emitting diodes (LEDs) have been proven to affect the growth of several types of cells. The effects of blue LEDs have not been tested on bone marrow-derived mesenchymal stem cells (BMSCs), which are important for cell-based therapy in various medical fields. Therefore, the aim of this study was to determine the effects of blue LED on the proliferation, apoptosis and osteogenic differentiation of BMSCs. BMSCs were irradiated with a blue LED light at 470 nm for 1 min, 5 min, 10 min, 30 min and 60 min or not irradiated. Cell proliferation was measured by performing cell counting and EdU staining assays. Cell apoptosis was detected by TUNEL staining. Osteogenic differentiation was evaluated by ALP and ARS staining. DCFH-DA staining and γ-H2A.X immunostaining were used to measure intracellular levels of ROS production and DNA damage. Both cell counting and EdU staining assays showed that cell proliferation of BMSCs was significantly reduced upon blue LED irradiation. Furthermore, treatment of BMSCs with LED irradiation was followed by a remarkable increase in apoptosis, indicating that blue LED light induced toxic effects on BMSCs. Likewise, BMSC osteogenic differentiation was inhibited after exposure to blue LED irradiation. Further, blue LED irradiation was followed by the accumulation of ROS production and DNA damage. Taken together, our study demonstrated that blue LED light inhibited cell proliferation, inhibited osteogenic differentiation, and induced apoptosis in BMSCs, which are associated with increased ROS production and DNA damage. These findings may provide important insights for the application of LEDs in future BMSC-based therapies. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2

    PubMed Central

    Dong, Li-Hua; Jiang, Yi-Yao; Liu, Yong-Jun; Cui, Shuang; Xia, Cheng-Cheng; Qu, Chao; Jiang, Xin; Qu, Ya-Qin; Chang, Peng-Yu; Liu, Feng

    2015-01-01

    Radiation-induced pulmonary fibrosis is a common disease and has a poor prognosis owing to the progressive breakdown of gas exchange regions in the lung. Recently, a novel strategy of administering mesenchymal stem cells for pulmonary fibrosis has achieved high therapeutic efficacy. In the present study, we attempted to use human adipose tissue-derived mesenchymal stem cells to prevent disease in Sprague-Dawley rats that received semi-thoracic irradiation (15 Gy). To investigate the specific roles of mesenchymal stem cells in ameliorating radiation-induced pulmonary fibrosis, we treated control groups of irradiated rats with human skin fibroblasts or phosphate-buffered saline. After mesenchymal stem cells were infused, host secretions of hepatocyte growth factor (HGF) and prostaglandin E2 (PGE2) were elevated compared with those of the controls. In contrast, tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta1 (TGF-β1) levels were decreased after infusion of mesenchymal stem cells. Consequently, the architecture of the irradiated lungs was preserved without marked activation of fibroblasts or collagen deposition within the injured sites. Moreover, mesenchymal stem cells were able to prevent the irradiated type II alveolar epithelial cells from undergoing epithelial-mesenchymal transition. Collectively, these data confirmed that mesenchymal stem cells have the potential to limit pulmonary fibrosis after exposure to ionising irradiation. PMID:25736907

  7. Immobilization technique for enhanced production of the immunosuppressant mycophenolic acid by ultraviolet and gamma-irradiated Penicillium roqueforti.

    PubMed

    Ismaiel, A A; Ahmed, A S; El-Sayed, E R

    2015-07-01

    Different entrapment matrices were screened to immobilize two strains of Penicillium roqueforti (AG101 and LG109) for more effective production of mycophenolic acid (MPA). Further improvement in the MPA productivity from immobilization of spores and mycelia was adopted by UV and gamma irradiation. Penicillium roqueforti strains were immobilized in different entrapping carriers and used for MPA production in shake flask cultures. Maximum MPA production was achieved on using an alginate concentration of 3·0% (w/v) and a mycelial fresh weight of 10% (w/v). MPA produced by alginate-immobilized spores and mycelia was almost double in comparison to the free system. The MPA-producing ability of immobilized AG101 and LG109 strain was significantly enhanced by mutagenesis through irradiation by UV (254 nm) for 120 and 90 min, respectively and gamma rays at 0·75 KGy. The feasibility of MPA production in a semi-continuous form by immobilized cells as affected by irradiation was adopted. MPA production by immobilized spores and mycelia was more intensified by UV and gamma irradiation. Moreover, the immobilized cell culture was superior to free-cell culture. These findings indicate the future possibility to reduce the cost of producing fermentation-based drugs. © 2015 The Society for Applied Microbiology.

  8. Grafting of neural stem and progenitor cells to the hippocampus of young, irradiated mice causes gliosis and disrupts the granule cell layer

    PubMed Central

    Sato, Y; Shinjyo, N; Sato, M; Osato, K; Zhu, C; Pekna, M; Kuhn, H G; Blomgren, K

    2013-01-01

    Ionizing radiation persistently reduces the pool of neural stem and progenitor cells (NSPCs) in the dentate gyrus (DG) of the hippocampus, which may explain some of the learning deficits observed in patients treated with radiotherapy, particularly pediatric patients. A single dose of 8 Gy irradiation (IR) was administered to the brains of postnatal day 14 (P14) C57BL/6 mice and 1.0 × 105 bromodeoxyuridine-labeled, syngeneic NSPCs were injected into the hippocampus 1 day, 1 week or 6 weeks after IR. Cell survival and phenotype were evaluated 5 weeks after grafting. When grafted 1 day post-IR, survival and neuronal differentiation of the transplanted NSPCs were lower in irradiated brains, whereas the survival and cell fate of grafted cells were not significantly different between irradiated and control brains when transplantation was performed 1 or 6 weeks after IR. A young recipient brain favored neuronal development of grafted cells, whereas the older recipient brains displayed an increasing number of cells developing into astrocytes or unidentified cells. Injection of NSPCs, but not vehicle, induced astrogliosis and reduced thickness of the dorsal blade of the GCL after 5 months. In summary, we demonstrate that age and interval between IR and grafting can affect survival and differentiation of grafted NSPCs. The observed long-term gliosis and degeneration warrant caution in the context of NSPC grafting for therapeutical purposes. PMID:23598403

  9. Structure of the replication fork in ultraviolet light-irradiated human cells.

    PubMed Central

    Cordeiro-Stone, M; Schumacher, R I; Meneghini, R

    1979-01-01

    The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork. PMID:233582

  10. Structure of the replication fork in ultraviolet light-irradiated human cells.

    PubMed

    Cordeiro-Stone, M; Schumacher, R I; Meneghini, R

    1979-08-01

    The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork.

  11. Evaluation of various procedures transposing global tilted irradiance to horizontal surface irradiance

    NASA Astrophysics Data System (ADS)

    Housmans, Caroline; Bertrand, Cédric

    2017-02-01

    Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane. The inverse process, i.e. the conversion from tilted to horizontal is investigated here based upon seven months of in-plane global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle (Longitude 4.35° E, Latitude 50.79° N). Up to three pyranometers mounted on inclined planes of different tilts and orientations were involved in the inverse transposition process. Our results indicate that (1) the tilt to horizontal irradiance conversion is improved when measurements from more than one tilted pyranometer are considered (i.e. by using a multi-pyranometer approach) and (2) the improvement from using an isotropic model to anisotropic models in the inverse transposition problem is not significant.

  12. Reactive oxygen species formation and bystander effects in gradient irradiation on human breast cancer cells.

    PubMed

    Zhang, Dongqing; Zhou, Tingyang; He, Feng; Rong, Yi; Lee, Shin Hee; Wu, Shiyong; Zuo, Li

    2016-07-05

    Ionizing radiation (IR) in cancer radiotherapy can induce damage to neighboring cells via non-targeted effects by irradiated cells. These so-called bystander effects remain an area of interest as it may provide enhanced efficacy in killing carcinomas with minimal radiation. It is well known that reactive oxygen species (ROS) are ubiquitous among most biological activities. However, the role of ROS in bystander effects has not been thoroughly elucidated. We hypothesized that gradient irradiation (GI) has enhanced therapeutic effects via the ROS-mediated bystander pathways as compared to uniform irradiation (UI). We evaluated ROS generation, viability, and apoptosis in breast cancer cells (MCF-7) exposed to UI (5 Gy) or GI (8-2 Gy) in radiation fields at 2, 24 and 48 h after IR. We found that extracellular ROS release induced by GI was higher than that by UI at both 24 h (p < 0.001) and 48 h (p < 0.001). More apoptosis and less viability were observed in GI when compared to UI at either 24 h or 48 h after irradiation. The mean effective doses (ED) of GI were ~130% (24 h) and ~48% (48 h) higher than that of UI, respectively. Our results suggest that GI is superior to UI regarding redox mechanisms, ED, and toxic dosage to surrounding tissues.

  13. Production of radionuclides in artificial meteorites irradiated isotropically with 600 MeV protons

    NASA Technical Reports Server (NTRS)

    Michel, R.; Dragovitsch, P.; Englert, P.; Herpers, U.

    1986-01-01

    The understanding of the production of cosmogenic nuclides in small meteorites (R is less than 40 cm) still is not satisfactory. The existing models for the calculation of depth dependent production rates do not distinguish between the different types of nucleons reacting in a meteorite. They rather use general depth dependent particle fluxes to which cross sections have to be adjusted to fit the measured radionuclide concentrations. Some of these models can not even be extended to zero meteorite sizes without logical contradictions. Therefore, a series of three thick target irradiations was started at the 600 MeV proton beam of the CERN isochronuous cyclotron in order to study the interactions of small stony meteorites with galactic protons. The homogeneous 4 pi irradiation technique used provides a realistic meteorite model which allows a direct comparison of the measured depth profiles with those in real meteorites. Moreover, by the simultaneous measurement of thin target production cross sections one can differentiate between the contributions of primary and secondary nucleons over the entire volume of the artificial meteorite.

  14. Radiosensitivity of Prostate Cancer Cell Lines for Irradiation from Beta Particle-emitting Radionuclide ¹⁷⁷Lu Compared to Alpha Particles and Gamma Rays.

    PubMed

    Elgqvist, Jörgen; Timmermand, Oskar Vilhelmsson; Larsson, Erik; Strand, Sven-Erik

    2016-01-01

    The purpose of the present study was to investigate the radiosensitivity of the prostate cancer cell lines LNCaP, DU145, and PC3 when irradiated with beta particles emitted from (177)Lu, and to compare the effect with irradiation using alpha particles or gamma rays. Cells were irradiated with beta particles emitted from (177)Lu, alpha particles from (241)Am, or gamma rays from (137)Cs. A non-specific polyclonal antibody was labeled with (177)Lu and used to irradiate cells in suspension with beta particles. A previously described in-house developed alpha-particle irradiator based on a (241)Am source was used to irradiate cells with alpha particles. External gamma-ray irradiation was achieved using a standard (137)Cs irradiator. Cells were irradiated to absorbed doses equal to 0, 0.5, 1, 2, 4, 6, 8, or 10 Gy. The absorbed doses were calculated as mean absorbed doses. For evaluation of cell survival, the tetrazolium-based WST-1 assay was used. After irradiation, WST-1 was added to the cell solutions, incubated, and then measured for level of absorbance at 450 nm, indicating the live and viable cells. LNCaP, DU145, and PC3 cell lines all had similar patterns of survival for the different radiation types. No significant difference in surviving fractions were observed between cells treated with beta-particle and gamma-ray irradiation, represented for example by the surviving fraction values (mean±SD) at 2, 6, and 10 Gy (SF2, SF6, and SF10) for DU145 after beta-particle irradiation: 0.700±0.090, 0.186±0.050 and 0.056±0.010, respectively. A strong radiosensitivity to alpha particles was observed, with SF2 values of 0.048±0.008, 0.018±0.006 and 0.015±0.005 for LNCaP, DU145, and PC3, respectively. The surviving fractions after irradiation using beta particles or gamma rays did not differ significantly at the absorbed dose levels and dose rates used. Irradiation using alpha particles led to a high level of cell killing. The results show that the beta-particle emitter

  15. Depletion of Securin Induces Senescence After Irradiation and Enhances Radiosensitivity in Human Cancer Cells Regardless of Functional p53 Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Wenshu; Yu Yichu; Lee Yijang

    2010-06-01

    Purpose: Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. Methods and Materials: Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin genemore » knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. Results: Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. Conclusions: Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.« less

  16. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Mayumi; Imadome, Kaori; Shoji, Yoshimi

    2015-09-01

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2more » major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells.« less

  17. Efficiency of generation of optical centers in KS-4V and KU-1 quartz glasses at neutron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Islamov, A. Kh.; Salikhbaev, U. S.; Ibragimova, E. M.; Nuritdinov, I.; Fayzullaev, B. S.; Vukolov, K. Yu.; Orlovskiy, I.

    2013-11-01

    Pure quartz glasses of KS-4V and KU-1 types are candidates for optical plasma diagnostic system in ITER. The purpose of experiment was to study the efficiency of defect production in these glasses under irradiation with 60Со γ-quanta (5.7 Gy/s) dose range of 102-107 Gy and the fission reactor neutrons in the fluency range of 1020-1023 n/m2 and gammas simulating the plasma influence. In KU-1 (1000 ppm OH) the accumulation kinetics of E‧-(5.75 eV) and NBO-(1.9 eV) centers at γ-doses⩾5×105 Gy and neutron fluencies <1021 n/m2 is faster, than that in KS-4V glasses (<0.1 ppm OH) that is caused by rupture of hydrogen bonds. At fluencies >1021 n/m2 the NBO accumulation kinetics is slower in KU-1 than in KS-4B, because highly mobile hydrogen atoms access to the generated NBO centers. In KS-4V irradiated to γ-doses102-5 × 103 Gy a new unstable absorption band at 1.8 eV was found, which is caused by the glass synthesis conditions and alkali metal impurities. The transparency at 3.5-6.2 eV at fluencies 1020-5 × 1021 n/m2 is higher in KS-4V than KU-1. However at fluencies >1021 n/m2 in KS-4V the photoluminescence band at 2.7 eV is more intensive and distorts a diagnosed signal. The transparency in 3.5-1.2 eV at fluencies >1021 n/m2 is higher in KU-1 than KS-4V.

  18. Malignant transformation of guinea pig cells after exposure to ultraviolet-irradiated guinea pig cytomegalovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isom, H.C.; Mummaw, J.; Kreider, J.W.

    1983-04-30

    Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virusmore » 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells.« less

  19. Oligodendrocyte progenitor cell (OPC) transplantation is unlikely to offer a means of preventing X-irradiation induced damage in the CNS.

    PubMed

    Chari, Divya M; Gilson, Jennifer M; Franklin, Robin J M; Blakemore, William F

    2006-03-01

    Oligodendrocyte lineage cells [oligodendrocytes and their parent cells, the oligodendrocyte progenitor cells (OPCs)] are depleted by X-irradiation and progenitor cell transplantation has been proposed as a therapeutic strategy to counteract radiation induced myelopathy. Previous studies have demonstrated that oligodendrocyte progenitor cell (OPC) depletion is a prerequisite for establishing transplanted OPCs in normal tissue. One can therefore predict that the extent and timing of OPC depletion and regeneration following X-irradiation will be crucial factors in determining the feasibility of this therapeutic approach. To address this issue, we have examined the time course of OPC depletion and regeneration following a range of X-irradiation doses (5 to 40 Gy), and its relationship to establishing transplanted OPCs in X-irradiated tissue. Doses above 10 Gy resulted in rapid death of OPCs. With doses up to 20 Gy, surviving X-irradiated OPCs were capable of robust regeneration, restoring normal densities within 6 weeks. Transplanted OPCs could only be established in tissue that had been exposed to > or =20 Gy. Since 20 Gy is close to the ED50 for radiation necrosis, our findings demonstrate the limitation of OPC replacement strategies.

  20. Mitomycin C-treated or irradiated concanavalin A-activated T cells augment the activation of cytotoxic T cells in vivo.

    PubMed

    Moyers, C; Pottmeyer-Gerber, C; Gerber, M; Buszello, H; Dröge, W

    1984-10-01

    The activation of cytotoxic T lymphocytes (CTL) in vivo after immunization of normal or cyclophosphamide-treated mice with allogeneic cells was strongly augmented by the administration of mitomycin C-treated or irradiated concanavalin A-activated spleen cells (Con A-spl). This effect of the Con A-spl was abrogated by treatment with Anti-Thy 1 antibody plus complement, and was therefore presumably mediated by activated "helper" T cells. (The term "helper" cell is only operationally defined in this context and indicates that the augmenting irradiation resistant T cells are obviously not CTL precursor cells). These observations indicated (i) that even the cytotoxic response against allogeneic stimulator cells suffers in vivo from insufficient "helper" T cell activity, and (ii) that the injection of Con A-spl may serve as a simple procedure to apply this "helper" activity in vivo. This procedure was at least as effective as the repeated injection of interleukin 2 (IL-2)-containing cell supernatants with up to four 30-unit doses of IL-2 per mouse. IL-2-containing cell supernatants were found to mediate similar effects only if injected into the footpads but not intravenously. This was in line with the reported observation that IL-2 has an extremely short half-life in vivo. The injection of Con A-spl was also found to augment the proliferative response in the regional lymph nodes.