2004-01-09
KENNEDY SPACE CENTER, FLA. -- Endeavour settles into place inside the Vehicle Assembly Building (VAB) where it has been moved for temporary storage. It left the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
2004-01-09
KENNEDY SPACE CENTER, FLA. -- Endeavour rolls into the Vehicle Assembly Building (VAB) for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
2004-01-09
KENNEDY SPACE CENTER, FLA. -- Endeavour is towed in front of the Vehicle Assembly Building (VAB) where it is going for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis nears the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits transport from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2004-01-09
KENNEDY SPACE CENTER, FLA. -- After Endeavour’s rollout from inside the Orbiter Processing Facility, the transporter (foreground) prepares to tow it to the Vehicle Assembly Building for temporary transfer. A protective cover surrounds the nose of Endeavour. The move to the VAB allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis moves into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is turned into position outside the Orbiter Processing Facility (OPF) for its tow to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - Workers back the Space Shuttle orbiter Atlantis out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is moved into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - Workers prepare to tow the Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is moments away from a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - Workers monitor the Space Shuttle orbiter Atlantis as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB) high bay 4. It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - Workers walk with Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB) high bay 4. The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis backs out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis arrives in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is almost in position in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is reflected in a rain puddle as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Endeavour rolls into the Vehicle Assembly Building (VAB) for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Endeavour rolls into the Vehicle Assembly Building (VAB) for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Endeavour settles into place inside the Vehicle Assembly Building (VAB) where it has been moved for temporary storage. It left the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Endeavour is towed in front of the Vehicle Assembly Building (VAB) where it is going for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Endeavour is towed in front of the Vehicle Assembly Building (VAB) where it is going for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis nears the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis awaits transport from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- After Endeavours rollout from inside the Orbiter Processing Facility, the transporter (foreground) prepares to tow it to the Vehicle Assembly Building for temporary transfer. A protective cover surrounds the nose of Endeavour. The move to the VAB allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is moved into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB) high bay 4. It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is turned into position outside the Orbiter Processing Facility (OPF) for its tow to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Workers monitor the Space Shuttle orbiter Atlantis as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Workers back the Space Shuttle orbiter Atlantis out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is reflected in a rain puddle as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is almost in position in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis approaches high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis awaits a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis backs out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis moves into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Workers prepare to tow the Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis arrives in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Workers walk with Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB) high bay 4. The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is moments away from a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.
2004-01-09
KENNEDY SPACE CENTER, FLA. -- Endeavour backs out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
2003-12-16
KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-16
KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis rolls into the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-16
KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis is back inside the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-16
KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed away from the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-16
KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis rolls toward the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-16
KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-16
KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis rolls out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-16
KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
2004-01-09
KENNEDY SPACE CENTER, FLA. -- Endeavour begins rolling out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
2004-01-09
KENNEDY SPACE CENTER, FLA. -- Endeavour is towed toward the Vehicle Assembly Building for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
2004-01-09
KENNEDY SPACE CENTER, FLA. -- Endeavour is ready to be rolled out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
2003-12-16
KENNEDY SPACE CENTER, FLA. - Workers accompany the orbiter Atlantis as it is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
1999-09-20
The Butler Building at Kennedy Space Center is nearly demolished, with the help of the crane in the background. The building, which is near the Orbiter Processing Facility (right), is being demolished in order to extend the crawlerway leading to the high bay of the Vehicle Assembly Building (VAB), part of KSC's Safe Haven project. The goal of Safe Haven is to strengthen readiness for Florida's hurricane season by expanding the VAB's storage capacity. Construction includes outfitting the VAB with a third stacking area, in high bay 2, that will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad into the safety of the VAB if severe weather threatens. The VAB can withstand winds up to 125 mph
1999-09-20
The walls of the Butler Building at Kennedy Space Center come tumbling down, with the help of the crane in the background. The building, which is near the Orbiter Processing Facility, is being demolished in order to extend the crawlerway leading to the high bay of the Vehicle Assembly Building (VAB), part of KSC's Safe Haven project. The goal of Safe Haven is to strengthen readiness for Florida's hurricane season by expanding the VAB's storage capacity. Construction includes outfitting the VAB with a third stacking area, in high bay 2, that will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad into the safety of the VAB if severe weather threatens. The VAB can withstand winds up to 125 mph
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The orbiter Atlantis rolls into the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The orbiter Atlantis rolls toward the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Endeavour backs out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Endeavour begins rolling out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The orbiter Atlantis is back inside the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The orbiter Atlantis is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The orbiter Atlantis rolls out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed away from the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Endeavour is ready to be rolled out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Endeavour is towed toward the Vehicle Assembly Building for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Workers accompany the orbiter Atlantis as it is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.
Further evidence for a deficit in switching attention in schizophrenia.
Smith, G L; Large, M M; Kavanagh, D J; Karayanidis, F; Barrett, N A; Michie, P T; O'Sullivan, B T
1998-08-01
In this study, sustained, selective, divided, and switching attention, and reloading of working memory were investigated in schizophrenia by using a newly developed Visual Attention Battery (VAB). Twenty-four outpatients with schizophrenia and 24 control participants were studied using the VAB. Performance on VAB components was correlated with performance of standard tests. Patients with schizophrenia were significantly impaired on VAB tasks that required switching of attention and reloading of working memory but had normal performance on tasks involving sustained attention or attention to multiple stimulus features. Switching attention and reloading of working memory were highly correlated with Trails (B-A) score for patients. The decline in performance on the switching-attention task in patients with schizophrenia met criteria for a differential deficit in switching attention. Future research should examine the neurophysiological basis of the switching deficit and its sensitivity and specificity to schizophrenia.
View of VAB from Mobile Launcher
2017-03-13
A view of the north side of the Vehicle Assembly Building (VAB) from the top of the mobile launcher tower at NASA's Kennedy Space Center in Florida. Inside the VAB, 10 levels of platforms, 20 platform halves altogether, have been installed in High Bay 3. The platforms will surround NASA's Space Launch System (SLS) rocket and the Orion spacecraft and allow access during processing for missions, including the first uncrewed flight test of Orion atop the SLS rocket in 2018. Crawler-transporter 2 will carry the rocket and spacecraft atop the mobile launcher to Launch Pad 39B for Exploration Mission 1. The Ground Systems Development and Operations Program, with support from the center's Engineering Directorate, is overseeing upgrades and modifications to the VAB and the mobile launcher.
2000-06-01
KENNEDY SPACE CENTER, FLA. -- A crawler-transporter with mobile launcher platform on top tests the buried portion of the Apollo-era crawlerway leading to the Vehicle Assembly Building (VAB) high bay 2 on the southwest side. The road was restored as part of KSC’s Safe Haven project. High bay 2 provides a third stacking area. The primary goal of the Safe Haven construction project was to strengthen readiness for hurricane season by expanding the VAB’s storage capacity. The new area, in high bay 2, will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad if severe weather threatens. Potential rollouts of the Space Shuttle to the launch pad from high bay 2 will involve making a turn around the north side of the VAB in contrast to the straight rollouts from high bays 1 and 3, on the east side of the VAB facing the launch pads
2000-06-01
KENNEDY SPACE CENTER, FLA. -- A crawler-transporter with mobile launcher platform on top tests the buried portion of the Apollo-era crawlerway leading to the Vehicle Assembly Building (VAB) high bay 2 on the southwest side. The road was restored as part of KSC’s Safe Haven project. High bay 2 provides a third stacking area. The primary goal of the Safe Haven construction project was to strengthen readiness for hurricane season by expanding the VAB’s storage capacity. The new area, in high bay 2, will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad if severe weather threatens. Potential rollouts of the Space Shuttle to the launch pad from high bay 2 will involve making a turn around the north side of the VAB in contrast to the straight rollouts from high bays 1 and 3, on the east side of the VAB facing the launch pads
Heywang-Köbrunner, Sylvia H; Sinnatamby, Ruchi; Lebeau, Annette; Lebrecht, Antje; Britton, Peter D; Schreer, Ingrid
2009-11-01
Quality assurance of MR-guided vacuum-assisted breast biopsy (VAB). A consensus was achieved based on the existing literature and experience of an interdisciplinary group comprising European specialists in breast imaging and VAB. Full imaging work-up must be completed according to existing standards before an indication for MR-guided VAB is established. The procedure should be reserved for lesions demonstrable by MRI alone. Acquisition of >24 cores (11-Gauge) should be routinely attempted, with the intention of sufficiently removing small lesions for accurate diagnosis. Following biopsy the patient should be re-imaged to demonstrate the biopsy site and its proximity to the lesion and hence the likely accuracy of the sampling. All patients should be discussed in a regular interdisciplinary conference and a documented consensus reached regarding patient management. Regular audit and review of all MR-guided VAB results and subsequent follow-up are recommended. This consensus includes protocols for the indication, performance parameters, interdisciplinary interpretation therapeutic recommendation, documentation and follow-up of MR-guided VAB. It does not replace official recommendations for percutaneous biopsy.
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Standing inside a protective tent around the external tank of Space Shuttle Discovery in the Vehicle Assembly Building (VAB), United Space Alliance technician Don Pataky repairs divots caused by hail storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-18
KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building (VAB), United Space Alliance technician Robert Williams sands the repaired areas near the top of Space Shuttle Discovery's external tank. Repairs were required for damage caused by hail during recent storms. Because access to all of the damaged areas was not possible at the pad, the Shuttle was rolled back from Pad 39B to the VAB. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
2002-07-25
KENNEDY SPACE CENTER, FLA. -- In Vehicle Assembly Building (VAB) high bay 4, installation of a Payload Bay Door Drying Enclosure is in progress. The enclosure will keep moisture from being absorbed into the graphite epoxy used on the payload bay doors of the Shuttle orbiters with the assistance of mini-Portable Purge Units (PPUs). Once in operation, the enclosure will allow NASA the option to store an orbiter in the VAB bay up to 180 days in a "standby-to-stack" mode.
2002-07-25
KENNEDY SPACE CENTER, FLA. -- In Vehicle Assembly Building (VAB) high bay 4, installation of a Payload Bay Door Drying Enclosure is in progress. The enclosure will keep moisture from being absorbed into the graphite epoxy used on the payload bay doors of the Shuttle orbiters with the assistance of mini-Portable Purge Units (PPUs). Once in operation, the enclosure will allow NASA the option to store an orbiter in the VAB bay up to 180 days in a "standby-to-stack" mode.
2002-07-26
KENNEDY SPACE CENTER, FLA. -- -- In Vehicle Assembly Building (VAB) high bay 4, installation of a Payload Bay Door Drying Enclosure is in progress. The enclosure will keep moisture from being absorbed into the graphite epoxy used on the payload bay doors of the Shuttle orbiters with the assistance of mini-Portable Purge Units (PPUs). Once in operation, the enclosure will allow NASA the option to store an orbiter in the VAB bay up to 180 days in a "standby-to-stack" mode.
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Inside High Bay 1 of the Vehicle Assembly Building (VAB) Mike Sestile, with United Space Alliance, draws circles around divots in the foam insulation on the top of the external tank of Space Shuttle Discovery. About 150 divots were caused by hail during recent storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad as early as May 20 for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Inside High Bay 1 of the Vehicle Assembly Building (VAB), John Blue, with United Space Alliance, points to one of the divots in the foam insulation on the external tank of Space Shuttle Discovery. About 150 divots were caused by hail during recent storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad as early as May 20 for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- Inside High Bay 1 of the Vehicle Assembly Building (VAB) John Blue, with United Space Alliance, and Jorge Rivera, with NASA, look at the dings in the foam insulation on the external tank of Space Shuttle Discovery. About 150 dings were caused by hail during recent storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad as early as May 20 for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
2004-03-26
CAPE CANAVERAL, Fla. -- This aerial photo shows the expanse of the Launch Complex 39 Area, bordered on the east by the Atlantic Ocean and cloud-filled sky. At center right, towering above the surrounding sites, is the Vehicle Assembly Building. To the left, or north, is the Orbiter Processing Facility’s Bay 3. On the western side are OPF Bays 1 and 2. In the lower right corner is the Operations Support Building. The two-lane crawlerway stretches from the VAB toward the coast, site of Launch Pad 39A, closest, and Launch Pad 39B, far left. Between the VAB and the ocean sprawl the Banana Creek and the Banana River. The turn basin, at right, allows delivery of external tanks that are offloaded close to and transported to the VAB. Photo credit: NASA
2011-08-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, operators begin to move space shuttle Endeavour, its nose encased in protective plastic where its forward reaction control system (FRCS) once resided, from Orbiter Processing Facility-1 (OPF-1) to the Vehicle Assembly Building (VAB). Endeavour is switching places with shuttle Discovery which temporarily has been stored in the VAB. Both shuttles will stop briefly outside OPF-3 for a "nose-to-nose" photo opportunity. Discovery then will be rolled into OPF-1 and Endeavour into the VAB. In OPF-1, Discovery will undergo further preparations for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. Endeavour will be stored in the VAB until October when it will be moved into OPF-2 for further work to get it ready for public display at the California Science Center in Los Angeles. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
2011-08-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Endeavour, its nose encased in protective plastic where its forward reaction control system (FRCS) once resided, backs out of Orbiter Processing Facility-1 (OPF-1) for its move to the Vehicle Assembly Building (VAB). Endeavour is switching places with shuttle Discovery which temporarily has been stored in the VAB. Both shuttles will stop briefly outside OPF-3 for a "nose-to-nose" photo opportunity. Discovery then will be rolled into OPF-1 and Endeavour into the VAB. In OPF-1, Discovery will undergo further preparations for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. Endeavour will be stored in the VAB until October when it will be moved into OPF-2 for further work to get it ready for public display at the California Science Center in Los Angeles. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
STS-79 Rolls over from OPF to VAB
NASA Technical Reports Server (NTRS)
1996-01-01
A vantage point high atop the Vehicle Assembly Building (VAB) shrinks the size and scale of the orbiter Atlantis as it is rolled from the Orbiter Processing Facility to the VAB. During the five working days it spends inside the huge building, Atlantis will be mated to the external tank/twin solid rocket booster assembly, and then rolled out to Launch Pad 39A. Here, the SPACEHAB Double Module will be installed in the orbiter's payload bay and final launch preparations will get underway. Atlantis is scheduled for liftoff on Mission STS-79 , the fourth docking with the Russian Space Station Mir, scheduled for July 31.
2004-09-30
KENNEDY SPACE CENTER, FLA. - A closeup of the Vehicle Assembly Building shows one of the scaffolds being used to allow workers to cover the holes with corrugated steel so the facility can be returned to performing operational activities. Xenon lights on the ground provide the illumination. The VAB lost 820 panels from the south wall during Frances, and 25 additional panels during Hurricane Jeanne. The VAB stands 525 feet tall. Central Florida, including Kennedy Space Center, was battered by four hurricanes between Aug. 13 and Sept. 26.
2004-09-30
KENNEDY SPACE CENTER, FLA. - The south wall of the Vehicle Assembly Building is bathed in light at night to allow workers on a scaffold to cover the holes with corrugated steel so the facility can be returned to performing operational activities. Xenon lights on the ground provide the illumination. The VAB lost 820 panels from the south wall during Frances, and 25 additional panels during Hurricane Jeanne. The VAB stands 525 feet tall. Central Florida, including Kennedy Space Center, was battered by four hurricanes between Aug. 13 and Sept. 26.
2004-09-30
KENNEDY SPACE CENTER, FLA. - Xenon lights on the ground near the Vehicle Assembly Building bathe the south wall in light, allowing workers on scaffolds (center and upper right near the NASA logo) to cover the holes with corrugated steel so the facility can be returned to performing operational activities. The VAB lost 820 panels from the south wall during Frances, and 25 additional panels during Hurricane Jeanne. The VAB stands 525 feet tall. Central Florida, including Kennedy Space Center, was battered by four hurricanes between Aug. 13 and Sept. 26.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Xenon lights on the ground near the Vehicle Assembly Building bathe the south wall in light, allowing workers on scaffolds (center and upper right near the NASA logo) to cover the holes with corrugated steel so the facility can be returned to performing operational activities. The VAB lost 820 panels from the south wall during Frances, and 25 additional panels during Hurricane Jeanne. The VAB stands 525 feet tall. Central Florida, including Kennedy Space Center, was battered by four hurricanes between Aug. 13 and Sept. 26.
1999-05-16
KENNEDY SPACE CENTER, FLA. -- A crawler transporter moves Space Shuttle Discovery, with its external tank and solid rocket boosters, from Pad 39B back to the Vehicle Assembly Building (VAB) at left to repair damage to the external tank's foam insulation caused by hail. The external tank-solid rocket booster stack for mission STS-93, which was moved out of High Bay 1 to make room for Discovery, can be seen in the background between Discovery and the VAB. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
1999-05-16
KENNEDY SPACE CENTER, FLA. -- A crawler transporter moves Space Shuttle Discovery, hidden by its external tank and solid rocket boosters, from Pad 39B back to the Vehicle Assembly Building (VAB) for repair of damage to the external tank foam insulation caused by hail. The external tank/solid rocket booster stack for mission STS-93 was moved out of High Bay 1 to make room for Discovery and can be seen on the horizon between Discovery and the VAB. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.
1977-01-01
An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.
The American flag on the VAB is being repainted
NASA Technical Reports Server (NTRS)
1998-01-01
Painters are suspended on platforms from the top of the 525-foot- high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag. The flag spans an area 209 feet by 110 feet and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. In addition to the flag, the Bicentennial Emblem on the other side of the VAB doors is being replaced by the NASA logo, honoring NASA's 40th anniversary (in October). The logo covers an area 110 feet by 132 feet. Work is expected to be completed in mid-September.
Repainting of the VAB continues
NASA Technical Reports Server (NTRS)
1998-01-01
Painters are suspended on platforms from the top of the 525-foot- high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag and NASA logo. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet, and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The previous Bicentennial Emblem on the right side of the VAB doors is being replaced by the NASA logo, honoring NASA's 40th anniversary (in October). The logo will cover an area 110 feet by 132 feet, or about 12,300 square feet. The painting platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. Work is expected to be completed in mid-September.
The American flag on the VAB is being repainted
NASA Technical Reports Server (NTRS)
1998-01-01
Painters are suspended on platforms from the top of the 525-foot- high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag and NASA logo. The flag spans an area 209 feet by 110 feet and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The previous Bicentennial Emblem on the other side of the VAB doors is being replaced by the NASA logo, honoring NASA's 40th anniversary (in October). The logo covers an area 110 feet by 132 feet. The painting platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. Work is expected to be completed in mid-September.
Cabana Multi-User Spaceport Tour of KSC
2017-02-17
Members of the news media view the 10 levels of new work platforms in High Bay 3 inside the Vehicle Assembly Building (VAB) during a tour of NASA's Kennedy Space Center in Florida with Center Director Bob Cabana. The final platform, A north, was recently installed. The platforms will surround the Space Launch System and Orion spacecraft on the mobile launcher during processing to prepare for the first test flight. The Ground Systems Development and Operations Program is overseeing upgrades to the VAB, including installation of the new work platforms.
2016-08-05
A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying the second section of the first half of the C-level work platforms, C South, for the agency’s Space Launch System (SLS) rocket. The platform will be offloaded in the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.
2016-08-04
A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying a section of the first half of the C-level work platforms, C south, for the agency’s Space Launch System (SLS) rocket. The platform will be delivered to the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.
2004-09-30
KENNEDY SPACE CENTER, FLA. - The south wall of the Vehicle Assembly Building is bathed in light at night to allow workers on a scaffold (at left) to cover the holes with corrugated steel so the facility can be returned to performing operational activities. Xenon lights on the ground provide the illumination. The VAB lost 820 panels from the south wall during Frances, and 25 additional panels during Hurricane Jeanne. The VAB stands 525 feet tall. Central Florida, including Kennedy Space Center, was battered by four hurricanes between Aug. 13 and Sept. 26.
2011-08-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Endeavour, its nose encased in protective plastic where its forward reaction control system (FRCS) once resided, is towed out of Orbiter Processing Facility-1 (OPF-1) for its move to the Vehicle Assembly Building (VAB). Endeavour is switching places with shuttle Discovery which temporarily has been stored in the VAB. Both shuttles will stop briefly outside OPF-3 for a "nose-to-nose" photo opportunity. Discovery then will be rolled into OPF-1 and Endeavour into the VAB. In OPF-1, Discovery will undergo further preparations for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. Endeavour will be stored in the VAB until October when it will be moved into OPF-2 for further work to get it ready for public display at the California Science Center in Los Angeles. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
2004-03-26
CAPE CANAVERAL, Fla. -- This aerial photo shows the expanse of the Launch Complex 39 Area, bordered on the east by the Atlantic Ocean and cloud-filled sky. At center right, towering above the surrounding sites, is the Vehicle Assembly Building. To the left, or north, is the Orbiter Processing Facility’s Bay 3. On the western side are OPF Bays 1 and 2. South, near the roadway, is the Operations Support Building. The two-lane crawlerway stretches from the VAB toward the coast, site of Launch Pad 39A, closest, and Launch Pad 39B, far left. Between the VAB and the ocean sprawl the Banana Creek and the Banana River. The turn basin, at right, allows delivery of external tanks that are offloaded close to and transported to the VAB. At the western end of the Turn Basin sits the press mound, home of the NASA KSC News Center. Photo credit: NASA
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Dwarfing the accompanying vehicles, Space Shuttle Discovery, resting on the Mobile Launcher Platform atop the Crawler/Transporter, heads along the crawlerway to the Vehicle Assembly Building (VAB). Discovery is rolling back from Launch Pad 39B (in the background). Once inside the VAB, Discovery will be demated from its External Tank and lifted into the transfer aisle. On or about June 7, Discovery will be lifted and attached to its new tank and Solid Rocket Boosters, which are already in the VAB. Only the 15th rollback in Space Shuttle Program history, the 4.2-mile journey allows additional modifications to be made to the External Tank prior to a safe Return to Flight. Discovery is expected to be rolled back to the launch pad in mid-June for Return to Flight mission STS-114. The launch window extends from July 13 to July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Space Shuttle Discovery, resting on the Mobile Launcher Platform, turns the corner on the crawlerway as it rolls back from Launch Pad 39B to the Vehicle Assembly Building (VAB) at NASAs Kennedy Space Center. Once inside the VAB, it will be demated from its External Tank and lifted into the transfer aisle. On or about June 7, Discovery will be attached to its new tank and Solid Rocket Boosters, which are already in the VAB. Only the 15th rollback in Space Shuttle Program history, the 4.2-mile journey allows additional modifications to be made to the External Tank prior to a safe Return to Flight. Discovery is expected to be rolled back to the launch pad in mid-June for Return to Flight mission STS-114. The launch window extends from July 13 to July 31. [Photo courtesy of Scott Andrews
2016-08-04
A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying a section of the first half of the C-level work platforms, C South, for the agency’s Space Launch System (SLS) rocket. The platform is being lifted and transferred onto support stands in the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.
STS-103 Discovery rolls over to VAB
NASA Technical Reports Server (NTRS)
1999-01-01
The orbiter Discovery sits inside the Vehicle Assembly Building (VAB) after its rollover from the Orbiter Processing Facility (OPF) bay rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.
2016-10-19
A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-10-19
A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the south wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-10-19
A heavy-lift crane lowers the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, for installation on the south side of High Bay 3 in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Cabana Multi-User Spaceport Tour of KSC
2017-02-17
Kennedy Space Center Director Bob Cabana speaks to members of the news media on the balcony of Operations Support Building II describing the site's transition from a primarily government-only facility to a premier, multi-user spaceport. In the background is the Vehicle Assembly Building (VAB). Modifications were recently completed in the VAB where new work platforms were installed to support processing of NASA's Space Launch System rocket designed to send the Orion spacecraft on missions beyond low-Earth orbit.
NASA Technical Reports Server (NTRS)
Stover, Steven; Diebler, Corey; Frazier, Wayne
2006-01-01
The NASA KSC VAB was built to process Apollo launchers in the 1960's, and later adapted to process Space Shuttles. The VAB has served as a place to assemble solid rocket motors (5RM) and mate them to the vehicle's external fuel tank and Orbiter before rollout to the launch pad. As Space Shuttle is phased out, and new launchers are developed, the VAB may again be adapted to process these new launchers. Current launch vehicle designs call for continued and perhaps increased use of SRM segments; hence, the safe separation distances are in the process of being re-calculated. Cognizant NASA personnel and the solid rocket contractor have revisited the above VAB QD considerations and suggest that it may be revised to allow a greater number of motor segments within the VAB. This revision assumes that an inadvertent ignition of one SRM stack in its High Bay need not cause immediate and complete involvement of boosters that are part of a vehicle in adjacent High Bay. To support this assumption, NASA and contractor personnel proposed a strawman test approach for obtaining subscale data that may be used to develop phenomenological insight and to develop confidence in an analysis model for later use on full-scale situations. A team of subject matter experts in safety and siting of propellants and explosives were assembled to review the subscale test approach and provide options to NASA. Upon deliberations regarding the various options, the team arrived at some preliminary recommendations for NASA.
2016-12-16
Construction workers wearing safety harnesses and tethered lines assist with the installation of the second half of the B-level work platforms, B north, for NASA’s Space Launch System (SLS) rocket, high up in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. They are securing the large bolts that hold the platform securely in place on the north side of High Bay 3. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lowers the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, into High Bay 3 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. In view below are several of the previously installed levels of platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-12-16
A construction worker solders a section of steel during the installation of the second half of the B-level work platforms, B north, for NASA's Space Launch System (SLS) rocket, in High Bay 3 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Construction workers will secure the large bolts that hold the platform in place on the north wall. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Cabana Multi-User Spaceport Tour of KSC
2017-02-17
Nancy Bray, director of Spaceport Integration and Services at NASA's Kennedy Space Center, speaks to members of the news media on the balcony of Operations Support Building II describing the site's transition from a primarily government-only facility to a premier, multi-user spaceport. In the background is the Vehicle Assembly Building (VAB). Modifications were recently completed in the VAB where new work platforms were installed to support processing of NASA's Space Launch System rocket designed to send the Orion spacecraft on missions beyond low-Earth orbit.
Cabana Multi-User Spaceport Tour of KSC
2017-02-17
Tom Engler, director of Center Planning and Development at NASA's Kennedy Space Center, speaks to members of the news media on the balcony of Operations Support Building II describing the site's transition from a primarily government-only facility to a premier, multi-user spaceport. In the background is the Vehicle Assembly Building (VAB). Modifications were recently completed in the VAB where new work platforms were installed to support processing of NASA's Space Launch System rocket designed to send the Orion spacecraft on missions beyond low-Earth orbit.
1998-09-28
The orbiter Atlantis, being towed from the Shuttle Landing Facility toward the Vehicle Assembly Building (VAB) , intersects the morning sun's rays. In the background, to the right of the VAB, are the Orbiter Processing Facility 1 and 2. Atlantis spent 10 months in Palmdale, CA, undergoing extensive inspections and modifications in the orbiter processing facility there. The modifications included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. Atlantis will undergo preparations at KSC in Orbiter Processing Facility 2 for its planned flight in June 1999
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-10-19
A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Large Tandemloc bars have been attached to the platform to keep it level during lifting and installation. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
1999-11-04
KENNEDY SPACE CENTER, FLA. -- The orbiter Discovery sits inside the Vehicle Assembly Building (VAB) after its rollover from the Orbiter Processing Facility (OPF) bay 1. In the VAB, Discovery will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
Analysis of a Hypergolic Propellant Explosion During Processing of Launch Vehicles in the VAB
NASA Technical Reports Server (NTRS)
Chrostowski, Jon D.; Gan Wenshui; Campbell, Michael D.
2010-01-01
NASA is developing launch vehicles to support missions to Low Earth Orbit (LEO), the moon and deep space. Whether manned or unmanned, the vehicle components will likely be integrated in the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC) and typically include a fueled spacecraft (SC) that sits on top of one or more stages. The processing of a fueled SC involves hazardous operations when it is brought into the VAB Transfer Aisle and lifted a significant height for mating with lower stages. Accidents resulting from these hazardous operations could impact unrelated personnel working in buildings adjacent to the VAB. Safe separation distances based on the DOD Explosives Standards Quantity-Distance (Q-D) approach result in large IBD arcs. This paper presents site-specific air blast and fragmentation hazard analyses for comparison with the Q-D arcs as well as consequence and risk analyses to provide added information for the decision maker. A new physics-based fragmentation model is presented that includes: a) the development of a primary fragment list (which defines the fragment characteristics) associated with a hypergolic propellant explosion, b) a description of a 3D fragment bounce model, c) the results of probabilistic Monte-Carlo simulations (that include uncertainties in the fragment characteristics) to determine: i) the hazardous fragment density distance, ii) the expected number of wall/roof impacts and penetrations to over 40 buildings adjacent to the VAB, and iii) the risk to building occupants.
2011-08-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttles Discovery and Endeavour, their noses encased in protective plastic where their forward reaction control systems (FRCS) once resided, pause outside Orbiter Processing Facility-3 (OPF-3) for a unique photo opportunity. Discovery, which temporarily was being stored in the Vehicle Assembly Building (VAB), is switching places with Endeavour, which has been undergoing decommissioning in OPF-1. Discovery then will be rolled into OPF-1 and Endeavour into the VAB. In OPF-1, Discovery will undergo further preparations for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. Endeavour will be stored in the VAB until October when it will be moved into OPF-2 for further work to get it ready for public display at the California Science Center in Los Angeles. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
Yoshizawa, Masato; O'Quin, Kelly E; Jeffery, William R
2013-07-11
Vibration attraction behavior (VAB) is the swimming of fish toward an oscillating object, a behavior that is likely adaptive because it increases foraging efficiency in darkness. VAB is seen in a small proportion of Astyanax surface-dwelling populations (surface fish) but is pronounced in cave-dwelling populations (cavefish). In a recent study, we identified two quantitative trait loci for VAB on Astyanax linkage groups 2 and 17. We also demonstrated that a small population of superficial neuromast sensors located within the eye orbit (EO SN) facilitate VAB, and two quantitative trait loci (QTL) were identified for EO SN that were congruent with those for VAB. Finally, we showed that both VAB and EO SN are negatively correlated with eye size, and that two (of several) QTL for eye size overlap VAB and EO SN QTLs. From these results, we concluded that the adaptive evolution of VAB and EO SN has contributed to the indirect loss of eyes in cavefish, either as a result of pleiotropy or tight physical linkage of the mutations underlying these traits. In a subsequent commentary, Borowsky argues that there is poor experimental support for our conclusions. Specifically, Borowsky states that: (1) linkage groups (LGs) 2 and 17 harbor QTL for many traits and, therefore, no evidence exists for an exclusive interaction among the overlapping VAB, EO SN and eye size QTL; (2) some of the QTL we identified are too broad (>20 cM) to support the hypothesis of correlated evolution due to pleiotropy or hitchhiking; and (3) VAB is unnecessary to explain the indirect evolution of eye-loss since the negative polarity of numerous eye QTL is consistent with direct selection against eyes. Borowsky further argues that (4) it is difficult to envision an evolutionary scenario whereby VAB and EO SN drive eye loss, since the eyes must first be reduced in order to increase the number of EO SN and, therefore, VAB. In this response, we explain why the evidence of one trait influencing eye reduction is stronger for VAB than other traits, and provide further support for a scenario whereby elaboration of VAB in surface fish may precede complete eye-loss.
2014-07-23
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building, or VAB, at NASA’s Kennedy Space Center in Florida, construction workers are hanging protective cloths around a work level near High Bay 3. Modifications are underway in the VAB to prepare High Bay 3 for a new platform system. The modifications are part of a centerwide refurbishment initiative under the Ground Systems Development and Operations Program. High bay 3 is being refurbished to accommodate NASA’s Space Launch System and a variety of other spacecraft. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html. Photo credit: NASA/Dimitri Gerondidakis
2014-07-23
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building, or VAB, at NASA’s Kennedy Space Center in Florida, protective cloths are being placed around a work level near High Bay 3. Modifications are underway in the VAB to prepare High Bay 3 for a new platform system. The modifications are part of a centerwide refurbishment initiative under the Ground Systems Development and Operations Program. High bay 3 is being refurbished to accommodate NASA’s Space Launch System and a variety of other spacecraft. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html. Photo credit: NASA/Dimitri Gerondidakis
SLS Booster Engine Service Platforms Delivery
2017-07-31
One of two new work platforms for NASA's Space Launch System booster engines is secured on dunnage inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
2016-08-05
The second section of the first half of the C-level work platforms, C South, for NASA’s Space Launch System (SLS) rocket was offloaded from a heavy transport truck in a staging area on the west side of the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.
Atlantis returns to VAB after beginning rollout to the pad
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Scattered clouds cast shadows as Space Shuttle Atlantis crawls back inside the Vehicle Assembly Building high bay 1. After earlier starting its trek to Launch Pad 39B, Atlantis was returned to the VAB due to lightning in the area. To the left of the VAB is the Launch Control Center. The four-story building houses the firing rooms that are used to conduct Space Shuttle launches. Leading away from the VAB, in the foreground, is the crawlerway, the 130-foot-wide road specially constructed to transport the Shuttle, mobile launcher platform and crawler-transporter with a combined weight of about 17 million pounds. Space Shuttle Atlantis is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.
VAB Platform K(2) Lift & Install into Highbay 3
2016-03-07
A 250-ton crane is used to lower the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket into High Bay 3 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.
2003-05-20
KENNEDY SPACE CENTER, FLA. - The external tank in the Vehicle Assembly Building (VAB) is destacked from the solid rocket boosters. The tank and SRBs were configured for Atlantis and mission STS-114. The tank will remain in the VAB.
STS-103 Discovery rolls over to VAB
NASA Technical Reports Server (NTRS)
1999-01-01
After making a turn in front of the Orbiter Processing Facility (OPF) bay 1, the orbiter Discovery begins moving along the tow-way to the Vehicle Assembly Building as KSC workers watch. At the VAB, Discovery will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.
Maxwell, Anthony J; Morris, Julie; Lim, Yit Y; Harake, MD Janick; Whiteside, Sigrid
2016-01-01
Objective: To compare the accuracy of 11-G vacuum-assisted biopsy (VAB) with 14-G core needle biopsy (CNB) to diagnose mammographic microcalcification (MM) and effect on surgical outcomes. Methods: Following ethical approval, VAB and CNB (control) were compared in a randomized prospective study for first-line diagnosis of MM and subsequent surgical outcomes in two breast-screening units. Participants gave written informed consent. Exclusions included comorbidity precluding surgery, prior ipsilateral breast cancer and lesions >40 mm requiring mastectomy as first surgical procedure. The final pathological diagnosis was compared with the initial biopsy result. Quality-of-life (QOL) questionnaires were administered at baseline, 2, 6 and 12 months. 110 participants were required to show a 25% improvement in diagnosis with VAB compared with CNB (90% power). Results: Eligibility was assessed for 787 cases; 129 females recalled from the National Health Service breast screening programme were randomized. Diagnostic accuracy of VAB was 86% and that of CNB was 84%. Using VAB, 2/14 (14.3%) cases upgraded from ductal carcinoma in situ to invasion at surgery and 3/19 (15.8%) using CNB. Following VAB 7/16 (44%) cases required repeat surgery vs 7/24 (29%) after CNB. Both groups recorded significant worsening of functional QOL measures and increased breast pain at follow-up. Conclusion: VAB and CNB were equally accurate at diagnosing MM, and no significant differences in surgical outcomes were observed. Advances in knowledge: The first randomized controlled study of VAB for diagnosis of microcalcification using digital mammography showed no difference in diagnostic accuracy of VAB and CNB, or in the proportion of participants needing repeat non-operative biopsy or second therapeutic operation to treat malignancy. PMID:26654214
VIEW OF HB1 (VAB HIGH BAY) WITH MOBILE LAUNCHER PLATFORM ...
VIEW OF HB-1 (VAB HIGH BAY) WITH MOBILE LAUNCHER PLATFORM (VEHICLE ACCESS PLATFORMS ARE VISIBLE IN THE CENTER), FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Workers in the VAB move sling into place to lift Columbia to mobile launcher
NASA Technical Reports Server (NTRS)
1982-01-01
Workers in the Vehicle Assembly Building (VAB) move a specially-built sling into place to lift Orbiter Columbia from the transfer aisle to the mobile launcher platform (27015); Columbia is lifted from the floor of the VAB transfer aisle (27016).
Borowsky, Richard
2013-07-11
The forces driving the evolutionary loss or simplification of traits such as vision and pigmentation in cave animals are still debated. Three alternative hypotheses are direct selection against the trait, genetic drift, and indirect selection due to antagonistic pleiotropy. Recent work establishes that Astyanax cavefish exhibit vibration attraction behavior (VAB), a presumed behavioral adaptation to finding food in the dark not exhibited by surface fish. Genetic analysis revealed two regions in the genome with quantitative trait loci (QTL) for both VAB and eye size. These observations were interpreted as genetic evidence that selection for VAB indirectly drove eye regression through antagonistic pleiotropy and, further, that this is a general mechanism to account for regressive evolution. These conclusions are unsupported by the data; the analysis fails to establish pleiotropy and ignores the numerous other QTL that map to, and potentially interact, in the same regions. It is likely that all three forces drive evolutionary change. We will be able to distinguish among them in individual cases only when we have identified the causative alleles and characterized their effects.
NASA Technical Reports Server (NTRS)
Youngquist, Robert c.; Ihlefeld, Curtis M.; Lane, John E.; Starr, Stanley O.
2013-01-01
The Vehicle Assembly Building (VAB) was constructed in the mid-1960s to house the Saturn V moon rocket while it was being assembled. Designed to withstand hurricanes and tropical storms, the V AB has a foundation consisting of 30,000 cubic yards of concrete strengthened by 4,225 steel rods driven 160 feet into limestone bedrock. The goal of the VAB Sway Investigation, which began collecting data in April 201 0 and ended in November 2012, was to quantify the displacement or sway of the VAB as a function of wind loading.
1998-08-11
Painters are suspended on platforms from the top of the 525-foot-high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag. The flag spans an area 209 feet by 110 feet and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. In addition to the flag, the Bicentennial Emblem on the other side of the VAB doors is being replaced by the NASA logo, honoring NASA’s 40th anniversary (in October). The logo covers an area 110 feet by 132 feet. Work is expected to be completed in mid-September
1998-08-11
Painters are suspended on platforms from the top of the 525-foot-high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag and NASA logo. The flag spans an area 209 feet by 110 feet and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The previous Bicentennial Emblem on the other side of the VAB doors is being replaced by the NASA logo, honoring NASA’s 40th anniversary (in October). The logo covers an area 110 feet by 132 feet. The painting platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. Work is expected to be completed in mid-September
VAB Platform K(2) Lift & Install into Highbay 3
2016-03-07
Preparations are underway to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket up from High Bay 4 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be lifted up and over the transfer aisle and then lowered into High Bay 3 for installation. It will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.
VAB Platform K(2) Lift & Install into Highbay 3
2016-03-07
A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket high above the transfer aisle inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being lifted up for transfer into High Bay 3 for installation. The platform will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.
VAB Platform K(2) Lift & Install into Highbay 3
2016-03-07
A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket up from High Bay 4 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be lifted up and over the transfer aisle and then lowered into High Bay 3 for installation. It will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.
VAB Platform K(2) Lift & Install into Highbay 3
2016-03-07
A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket up from High Bay 4 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being lifted up and over the transfer aisle and will be lowered into High Bay 3 for installation. It will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At NASAs Kennedy Space Center, Space Shuttle Discovery, resting on the Mobile Launcher Platform, rolls into high bay 1 of the Vehicle Assembly Building (VAB). The Shuttle is being rolled back from Launch Pad 39B. It will be demated from its External Tank and lifted into the transfer aisle. On or about June 7, Discovery will be attached to its new tank and Solid Rocket Boosters, which are already in the VAB. Only the 15th rollback in Space Shuttle Program history, the 4.2- mile journey allows additional modifications to be made to the External Tank prior to a safe Return to Flight. Discovery is expected to be rolled back to the launch pad in mid-June for Return to Flight mission STS-114. The launch window extends from July 13 to July 31. [Photo courtesy of Scott Andrews
Preibsch, Heike; Baur, Astrid; Wietek, Beate M; Krämer, Bernhard; Staebler, Annette; Claussen, Claus D; Siegmann-Luz, Katja C
2015-09-01
Published national and international guidelines and consensus meetings on the use of vacuum-assisted biopsy (VAB) give different recommendations regarding the required numbers of tissue specimens depending on needle size and imaging method. To evaluate the weights of specimens obtained with different VAB needles to facilitate the translation of the required number of specimens between different breast biopsy systems and needle sizes, respectively. Five different VAB systems and seven different needle sizes were used: Mammotome® (11-gauge (G), 8-G), Vacora® (10-G), ATEC Sapphire™ (9-G), 8-G Mammotome® Revolve™, and EnCor Enspire® (10-G, 7-G). We took 24 (11-G) or 20 (7-10-G) tissue cores from a turkey breast phantom. The mean weight of a single tissue core was calculated for each needle size. A matrix, which allows the translation of the required number of tissue cores for different needle sizes, was generated. Results were compared to the true cumulative tissue weights of consecutively harvested tissue cores. The mean tissue weights obtained with the 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G needles were 0.084 g / 0.142 g / 0.221 g / 0.121 g / 0.192 g / 0.334 g / 0.363 g, respectively. The calculated required numbers of VAB tissue cores for each needle size build the matrix. For example, the minimum calculated number of required cores according to the current German S3 guideline is 20 / 12 / 8 / 14 / 9 / 5 / 5 for needles of 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G size. These numbers agree with the true cumulative tissue weights. The presented matrix facilitates the translation of the required number of VAB specimens between different needle sizes and thereby eases the implementation of current guidelines and consensus recommendations into clinical practice. © The Foundation Acta Radiologica 2014.
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, is seen during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, is seen during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, is seen during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, is seen in the distance during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, is seen in the distance during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
1998-09-21
KENNEDY SPACE CENTER, FLA. -- Looking eastward, the Vehicle Assembly Building (VAB) in the Launch Complex 39 area can be seen with its new coat of paint, along with newly painted American flag and NASA logo. The improved look was finished in time to honor NASA's 40th anniversary on Oct. 1. In order to do the job, workers were suspended on platforms from the top of the 525-foot-high VAB. One of the world's largest buildings by volume, the VAB is the last stop for the Shuttle before rollout to the launch pad. Integration and stacking of the complete Space Shuttle vehicle (orbiter, two solid rocket boosters and the external tank) takes place in High Bays 1 or 3. Stretching from the side of the VAB, on the right, is the crawlerway, used to transport the Space Shuttle to the launch pad. Beyond the VAB is Banana Creek
Structures of closed and open states of a voltage-gated sodium channel
Lenaeus, Michael J.; Gamal El-Din, Tamer M.; Ramanadane, Karthik; Pomès, Régis; Zheng, Ning; Catterall, William A.
2017-01-01
Bacterial voltage-gated sodium channels (BacNavs) serve as models of their vertebrate counterparts. BacNavs contain conserved voltage-sensing and pore-forming domains, but they are homotetramers of four identical subunits, rather than pseudotetramers of four homologous domains. Here, we present structures of two NaVAb mutants that capture tightly closed and open states at a resolution of 2.8–3.2 Å. Introduction of two humanizing mutations in the S6 segment (NaVAb/FY: T206F and V213Y) generates a persistently closed form of the activation gate in which the intracellular ends of the four S6 segments are drawn tightly together to block ion permeation completely. This construct also revealed the complete structure of the four-helix bundle that forms the C-terminal domain. In contrast, truncation of the C-terminal 40 residues in NavAb/1–226 captures the activation gate in an open conformation, revealing the open state of a BacNav with intact voltage sensors. Comparing these structures illustrates the full range of motion of the activation gate, from closed with its orifice fully occluded to open with an orifice of ∼10 Å. Molecular dynamics and free-energy simulations confirm designation of NaVAb/1–226 as an open state that allows permeation of hydrated Na+, and these results also support a hydrophobic gating mechanism for control of ion permeation. These two structures allow completion of a closed–open–inactivated conformational cycle in a single voltage-gated sodium channel and give insight into the structural basis for state-dependent binding of sodium channel-blocking drugs. PMID:28348242
Photocopy of drawing. VAB HB2 & 4 ET HOLDING CELLS, ...
Photocopy of drawing. VAB HB-2 & 4 ET HOLDING CELLS, UPGRADE TO CHECKOUT CELLS. NASA John F. Kennedy Space Center, Florida. File Number 79K33180, Reynolds, Smith & Hill, February 1991. GENERAL ARRANGEMENT, PLAN & ELEVATIONS. Sheet 4 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VAB HB2 & 4 ET HOLDING CELLS, ...
Photocopy of drawing. VAB HB-2 & 4 ET HOLDING CELLS, UPGRADE TO CHECKOUT CELLS. NASA John F. Kennedy Space Center, Florida. File Number 79K33180, Reynolds, Smith & Hill, February 1991. HINGED PANEL EQUIPMENT SCHEDULE. Sheet 28 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Total cost comparison of 2 biopsy methods for nonpalpable breast lesions.
Bodai, B I; Boyd, B; Brown, L; Wadley, H; Zannis, V J; Holzman, M
2001-05-01
To identify, quantify, and compare total facility costs for 2 breast biopsy methods: vacuum-assisted biopsy (VAB) and needle-wire-localized open surgical biopsy (OSB). A time-and-motion study was done to identify unit resources used in both procedures. Costs were imputed from published literature to value resources. A comparison of the total (fixed and variable) costs of the 2 procedures was done. A convenience sample of 2 high-volume breast biopsy (both VAB and OSB) facilities was identified. A third facility (OSB only) and 8 other sites (VAB only) were used to capture variation. Staff interviews, patient medical records, and billing data were used to check observed data. One hundred and sixty-seven uncomplicated procedures (71 OSBs, 96 VABs) were observed. Available demographic and clinical data were analyzed to assess selection bias, and sensitivity analyses were done on the main assumptions. The total facility costs of the VAB procedure were lower than the costs of the OSB procedure. The overall cost advantage for using VAB ranges from $314 to $843 per procedure depending on the facility type. Variable cost comparison indicated little difference between the 2 procedures. The largest fixed cost difference was $763. Facilities must consider the cost of new technology, especially when the new technology is as effective as the present technology. The seemingly high cost of equipment might negatively influence a decision to adopt VAB, but when total facility costs were analyzed, the new technology was less costly.
Photocopy of drawing. VAB HB2 & 4 ET HOLDING CELLS, ...
Photocopy of drawing. VAB HB-2 & 4 ET HOLDING CELLS, UPGRADE TO CHECKOUT CELLS. NASA John F. Kennedy Space Center, Florida. File Number 79K33180, Reynolds, Smith & Hill, February 1991. H.B.-2, PLANS AT LEVELS 4,5,&6. Sheet 7 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VAB HB2 & 4 ET HOLDING CELLS, ...
Photocopy of drawing. VAB HB-2 & 4 ET HOLDING CELLS, UPGRADE TO CHECKOUT CELLS. NASA John F. Kennedy Space Center, Florida. File Number 79K33180, Reynolds, Smith & Hill, February 1991. H.B.-2, PLANS AT LEVELS 1,2,&3. Sheet 6 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VAB HB2 & 4 ET HOLDING CELLS, ...
Photocopy of drawing. VAB HB-2 & 4 ET HOLDING CELLS, UPGRADE TO CHECKOUT CELLS. NASA John F. Kennedy Space Center, Florida. File Number 79K33180, Reynolds, Smith & Hill, February 1991. H.B.-2, PLANS AT LEVELS 7,8,&9. Sheet 8 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
The orbiter Atlantis heads toward the open door of the Vehicle Assembly Building (VAB) on the north side. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
Ultrasound-guided cable-free 13-gauge vacuum-assisted biopsy of non-mass breast lesions
Seo, Jiwoon; Jang, Mijung; Yun, Bo La; Lee, Soo Hyun; Kim, Eun-Kyu; Kang, Eunyoung; Park, So Yeon; Moon, Woo Kyung; Choi, Hye Young; Kim, Bohyoung
2017-01-01
Purpose To compare the outcomes of ultrasound-guided core biopsy for non-mass breast lesions by the novel 13-gauge cable-free vacuum-assisted biopsy (VAB) and by the conventional 14-gauge semi-automated core needle biopsy (CCNB). Materials and methods Our institutional review board approved this prospective study, and all patients provided written informed consent. Among 1840 ultrasound-guided percutaneous biopsies performed from August 2013 to December 2014, 145 non-mass breast lesions with suspicious microcalcifications on mammography or corresponding magnetic resonance imaging finding were subjected to 13-gauge VAB or 14-gauge CCNB. We evaluated the technical success rates, average specimen numbers, and tissue sampling time. We also compared the results of percutaneous biopsy and final surgical pathologic diagnosis to analyze the rates of diagnostic upgrade or downgrade. Results Ultrasound-guided VAB successfully targeted and sampled all lesions, whereas CCNB failed to demonstrate calcification in four (10.3%) breast lesions with microcalcification on specimen mammography. The mean sampling time were 238.6 and 170.6 seconds for VAB and CCNB, respectively. No major complications were observed with either method. Ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH) lesions were more frequently upgraded after CCNB (8/23 and 3/5, respectively) than after VAB (2/26 and 0/4, respectively P = 0.028). Conclusion Non-mass breast lesions were successfully and accurately biopsied using cable-free VAB. The underestimation rate of ultrasound-detected non-mass lesion was significantly lower with VAB than with CCNB. Trial registration CRiS KCT0002267. PMID:28628656
Chest wall mechanics in sustained microgravity
NASA Technical Reports Server (NTRS)
Wantier, M.; Estenne, M.; Verbanck, S.; Prisk, G. K.; Paiva, M.; West, J. B. (Principal Investigator)
1998-01-01
We assessed the effects of sustained weightlessness on chest wall mechanics in five astronauts who were studied before, during, and after the 10-day Spacelab D-2 mission (n = 3) and the 180-day Euromir-95 mission (n = 2). We measured flow and pressure at the mouth and rib cage and abdominal volumes during resting breathing and during a relaxation maneuver from midinspiratory capacity to functional residual capacity. Microgravity produced marked and consistent changes (Delta) in the contribution of the abdomen to tidal volume [DeltaVab/(DeltaVab + DeltaVrc), where Vab is abdominal volume and Vrc is rib cage volume], which increased from 30.7 +/- 3. 5 (SE)% at 1 G head-to-foot acceleration to 58.3 +/- 5.7% at 0 G head-to-foot acceleration (P < 0.005). Values of DeltaVab/(DeltaVab + DeltaVrc) did not change significantly during the 180 days of the Euromir mission, but in the two subjects DeltaVab/(DeltaVab + DeltaVrc) was greater on postflight day 1 than on subsequent postflight days or preflight. In the two subjects who produced satisfactory relaxation maneuvers, the slope of the Konno-Mead plot decreased in microgravity; this decrease was entirely accounted for by an increase in abdominal compliance because rib cage compliance did not change. These alterations are similar to those previously reported during short periods of weightlessness inside aircrafts flying parabolic trajectories. They are also qualitatively similar to those observed on going from upright to supine posture; however, in contrast to microgravity, such postural change reduces rib cage compliance.
1998-08-13
KENNEDY SPACE CENTER, FLA. -- Painters are suspended on platforms from the top of the 525-foot-high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag and NASA logo. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet, and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The previous Bicentennial Emblem on the right side of the VAB doors is being replaced by the NASA logo, honoring NASA’s 40th anniversary (in October). The logo will cover an area 110 feet by 132 feet, or about 12,300 square feet. The painting platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. Work is expected to be completed in mid-September
Saturn V Vehicle for the Apollo 4 Mission in the Vehicle Assembly Building
NASA Technical Reports Server (NTRS)
1967-01-01
This photograph depicts the Saturn V vehicle (SA-501) for the Apollo 4 mission in the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC). After the completion of the assembly operation, the work platform was retracted and the vehicle was readied to rollout from the VAB to the launch pad. The Apollo 4 mission was the first launch of the Saturn V launch vehicle. Objectives of the unmanned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield. The Apollo 4 was launched on November 9, 1967 from KSC.
NASA Technical Reports Server (NTRS)
Cragg, Clinton H.; Bowman, Howard; Wilson, John E.
2011-01-01
The NASA Engineering and Safety Center (NESC) was requested to provide computational modeling to support the establishment of a safe separation distance surrounding the Kennedy Space Center (KSC) Vehicle Assembly Building (VAB). The two major objectives of the study were 1) establish a methodology based on thermal flux to determine safe separation distances from the Kennedy Space Center's (KSC's) Vehicle Assembly Building (VAB) with large numbers of solid propellant boosters containing hazard division 1.3 classification propellants, in case of inadvertent ignition; and 2) apply this methodology to the consideration of housing eight 5-segment solid propellant boosters in the VAB. The results of the study are contained in this report.
Huang, Xu Chen; Hu, Xu Hua; Wang, Xiao Ran; Zhou, Chao Xi; Wang, Fei Fei; Yang, Shan; Wang, Gui Ying
2018-03-16
Core needle biopsy (CNB) and vacuum-assisted biopsy (VAB) are both popularly used breast percutaneous biopsies. Both of them have become reliable alternatives to open surgical biopsy (OSB) for breast microcalcification (BM). It is controversial that which biopsy method is more accurate and safer for BM. Hence, we conducted this meta-analysis to compare the diagnostic performance between CNB and VAB for BM, aiming to find out the better method. Articles according with including and excluding criteria were collected from the databases, PubMed, Embase, and the Cochrane Library. Preset outcomes were abstracted and pooled to find out the potential advantages in CNB or VAB. Seven studies were identified and entered final meta-analysis from initially found 138 studies. The rate of ductal carcinoma in situ (DCIS) underestimation was significantly lower in VAB than CNB group [risk ratio (RR) = 1.83, 95% confidence interval (CI) 1.40 to 2.40, p < 0.001]. The microcalcification retrieval rate was significantly higher in VAB than CNB group (RR = 0.89, 95% CI 0.81 to 0.98, p = 0.02), while CNB owned a significantly lower complication rate than VAB (RR = 0.18, 95% CI 0.03 to 0.93, p = 0.04). The atypical ductal hyperplasia (ADH) underestimation rates were not compared for the limited number of studies reporting this outcome. Compared with CNB, VAB shows better diagnostic performance in DCIS underestimation rate and microcalcification retrieval rate. However, CNB shows a significantly lower complication rate. More studies are needed to verify these findings.
Functional Outcome Trajectories after Out-of Hospital Pediatric Cardiac Arrest
Silverstein, Faye S; Slomine, Beth; Christensen, James; Holubkov, Richard; Page, Kent; Dean, J. Michael; Moler, Frank
2016-01-01
Objective To analyze functional performance measures collected prospectively during the conduct of a clinical trial that enrolled children (up to age 18 years), resuscitated after out-of-hospital cardiac arrest, who were at high risk for poor outcomes. Design Children with Glasgow Motor Scales <5, within 6 hours of resuscitation, were enrolled in a clinical trial that compared two targeted temperature management interventions (THAPCA-OH, NCT00878644). The primary outcome, 12-month survival with Vineland Adaptive Behavior Scales, second edition (VABS-II) score ≥70, did not differ between groups. Setting 38 North American pediatric ICU’s. Participants 295 children were enrolled; 270/295 had baseline VABS-II scores ≥70; 87/270 survived one year. Interventions Targeted temperatures were 33.0°C and 36.8°C for hypothermia and normothermia groups. Measurements and Main Results Baseline measures included VABS-II, Pediatric Cerebral Performance Category(PCPC), and Pediatric Overall Performance Category (POPC). PCPC and POPC were rescored at hospital discharges; all three were scored at 3 and 12 months. In survivors with baseline VABS-II scores ≥70, we evaluated relationships of hospital discharge PCPC with 3 and 12 month scores, and between 3 and 12 month VABS-II scores. Hospital discharge PCPC scores strongly predicted 3 and 12 month PCPC (r=0.82,0.79; p<0.0001) and VABS-II scores (r=−0.81,−0.77; p<0.0001) Three month VABS-II scores strongly predicted 12 month performance (r=0.95, p<0.0001). Hypothermia treatment did not alter these relationships. Conclusions In comatose children, with Glasgow Motor Scales <5 in the initial hours after out-of-hospital cardiac arrest resuscitation, function scores at hospital discharge and at 3 months predicted 12-month performance well in the majority of survivors. PMID:27509385
An external tank is moved from a barge in the turn basin to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
A newly arrived external tank is transported from the turn basin to the Vehicle Assembly Building (VAB), seen behind the tank. External tanks are built by the NASA Michoud Assembly Facility in New Orleans and transported by barge to Cape Canaveral and then up the Banana River to the turn basin in the Launch Complex 39 Area. In the VAB, the tank will await stacking for a future Shuttle mission.
An external tank is moved from a barge in the turn basin to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
A newly arrived external tank heads from the turn basin toward the Vehicle Assembly Building (VAB), seen behind the tank. External tanks are built by the NASA Michoud Assembly Facility in New Orleans and transported by barge to Cape Canaveral and then up the Banana River to the turn basin in the Launch Complex 39 Area. In the VAB, the tank will await stacking for a future Shuttle mission.
Yoshizawa, Masato; Gorčiki, Špela; Soares, Daphne; Jeffery, William R.
2010-01-01
Summary How cave animals adapt to life in darkness is a poorly understood aspect of evolutionary biology [1]. Here we identify a behavioral shift and its morphological basis in Astyanax mexicanus, a teleost with a sighted surface dwelling form (surface fish) and various blind cave dwelling forms (cavefish) [2–4]. Vibration attraction behavior (VAB) is the ability of fish to swim toward the source of a water disturbance in darkness. VAB was typically seen in cavefish, rarely in surface fish, and advantageous for feeding success in the dark. The potential for showing VAB has a genetic component and is linked to the mechanosensory function of the lateral line. VAB was evoked by vibration stimuli peaking at 35 Hz, blocked by lateral line inhibitors, appeared after developmental increases in superficial neuromast (SN) number and size [5–7], and was significantly reduced by bilateral ablation of SN. We conclude that VAB and SN enhancement co-evolved to compensate for loss of vision and help blind cavefish find food in darkness. PMID:20705469
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
The orbiter Atlantis is moved aboard an orbiter transporter from the Orbiter Processing Facility (OPF) bay 3 over to the Vehicle Assembly Building (VAB). In the background (right) are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1, secured on a transporter, arrives at the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on a transporter and ready for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being loaded onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a crane lowers the Orion heat shield from Exploration Flight Test-1 onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1, secured on a transporter, departs the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being prepared for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
KSC employees accompany the orbiter Atlantis as it is moved aboard an orbiter transporter to the Vehicle Assembly Building (VAB). In the background are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
Viewed from an upper level in the Vehicle Assembly Building (VAB), the orbiter Atlantis waits in the transfer aisle after its move from the Orbiter Processing Facility. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
2012-09-05
CAPE CANAVERAL, Fla. – Operations Support Building II, or OSBII, left, and the Vehicle Assembly Building, or VAB, are seen in the distance during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
2012-10-19
CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lifted in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-10-19
CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lowered onto a transporter in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2003-09-15
KENNEDY SPACE CENTER, FLA. - Flatbed trucks carrying some of the debris of Space Shuttle Columbia approach the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.
2003-09-15
KENNEDY SPACE CENTER, FLA. - Pieces of Columbia debris are offloaded from a flatbed truck in the transfer aisle of the Vehicle Assembly Building (VAB). The debris is being moved from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.
Aerial photo shows Launch Complex 39 Area
NASA Technical Reports Server (NTRS)
2000-01-01
This aerial photo shows the areas recently opened as part of KSC's Safe Haven project. The curved road in the center is the newly restored crawlerway leading around the Vehicle Assembly Building (VAB) and Orbiter Processing Facility 3 (OPF-3) into the VAB high bay 2 (open on the lower right), where a mobile launcher platform/crawler-transporter currently sits. The Safe Haven project will enable the storage of orbiters during severe weather. OPF1 and OPF-2 are at the lower right. The crawlerway also extends from the east side of the VAB out to the two launch pads. Launch Pad 39A is visible to the left of the crawlerway. In the distance is the Atlantic Ocean. To the right of the VAB is the turn basin, into which ships tow the barge for offloading new external tanks from Louisiana.
Repainting of the VAB continues
NASA Technical Reports Server (NTRS)
1998-01-01
The American flag is being repainted on the side of the Vehicle Assembly Building (VAB). The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the flag, the NASA logo, also known as the 'meatball,' is being painted on the VAB. When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September.
Repainting of the VAB continues
NASA Technical Reports Server (NTRS)
1998-01-01
Painters are dwarfed by the six-foot stars in the blue field of the American flag they are repainting on the side of the Vehicle Assembly Building (VAB). The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the flag, the NASA logo, also known as the 'meatball,' is being painted on the VAB. When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September.
Repainting of the VAB continues
NASA Technical Reports Server (NTRS)
1998-01-01
The NASA logo, also known as the 'meatball,' is painted on the side of the Vehicle Assembly Building (VAB). When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525- foot-high VAB, are using rollers and brushes to do the painting. In addition to the logo, the American flag is also being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid- September.
2003-09-15
KENNEDY SPACE CENTER, FLA. - A worker moves some of the Columbia debris to its storage site in the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.
2003-09-15
KENNEDY SPACE CENTER, FLA. - Workers move some of the Columbia debris to its storage site in the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, prepares to back into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, backs into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield move from LASF to VAB for Ground Test Article Integration
2017-04-26
The heat shield for Exploration Flight Test-1 is transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations to be integrated with the Ground Test Article to be utilized for future Underway Recovery Testing. After transport from the Launch Abort System Facility (LASF) to the Vehicle Assembly Building (VAB), the heat shield is lifted off of the transport truck and placed onto foam pads (dunnage) for inspection in Highbay 2 of the VAB.
2003-09-15
KENNEDY SPACE CENTER, FLA. - Pieces of debris of Space Shuttle Columbia are offloaded from a flatbed truck in the transfer aisle of the Vehicle Assembly Building (VAB). The debris is being moved from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.
STS-98 Atlantis rolls to the VAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis (right) inches its way at 1 mph atop the crawler-transporter back to the Vehicle Assembly Building from Launch Pad 39A (upper left). A panorama view from the top of the VAB shows the proximity of the pad to the Atlantic Ocean (background) plus the 3.4-mile crawlerway leading from the pad to the VAB. The water areas on both sides of the crawlerway are part of the Banana River. In the VAB workers will conduct inspections, make continuity checks and conduct X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s external system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. The launch has been rescheduled no earlier than Feb. 6.
Aerial photo shows Launch Complex 39 Area
NASA Technical Reports Server (NTRS)
2000-01-01
This aerial photo captures many of the facilities involved in Space Shuttle launches. At center is the Vehicle Assembly Building (VAB). The curved road on the near side is the newly restored crawlerway leading into the VAB high bay 2, where a mobile launcher platform/crawler-transporter currently sits. The road restoration and high bay 2 are part of KSC's Safe Haven project, enabling the storage of orbiters during severe weather. The road circles around the Orbiter Processing Facility 3 (OPF-3) at left center. OPF1 and OPF-2 are just below the curving road. The crawlerway also extends from the east side of the VAB out to the two launch pads, only one visible to the left of the VAB. In the distance is the Atlantic Ocean. To the right of the far crawlerway is the turn basin, into which ships tow the barge for offloading new external tanks from Louisiana.
The STS-93 external tank and booster stack sits at the Mobile Launcher Platform park site
NASA Technical Reports Server (NTRS)
1999-01-01
The STS-93 stack of solid rocket boosters and external tank sits at the Mobile Launcher Platform park site waiting for lightning shield wires to be installed on the Vehicle Assembly Building (VAB) in the background. The stack is being temporarily stored outside the VAB while Space Shuttle Discovery undergoes repair to hail damage in High Bay 1. Discovery was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The STS-93 stack will be moved under the wires at the VAB for protection until Discovery returns to the pad, later this week. The scheduled date for launch of mission STS-96 is no earlier than May 27. STS-93 is targeted for launch on July 22, carrying the Chandra X-ray Observatory.
2012-08-06
CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-08-06
CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. To the left is the aerodynamic shell that will cover the capsule during launch. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-08-06
CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, training takes place atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training on a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
[Observational medicine in 19th century Iran].
Ebrahimnejad, H
1998-01-01
The ravages wrought by epidemics in Iran as of 1821 acted as a stimulus to medical thought while the awakening of political consciousness mobilized efforts to fight contagious diseases. The combination "epidemics-politics-medicine" made nineteenth-century Persia turn to European science for help. Thus western medicine was introduced into Persia. If this introduction has been perceived by political means and epidemiological justification, the theoretical and epistemological process involved has been almost completely overlooked or misinterpreted. It is generally considered that the imported medicine swept away the local one, but this is not altogether true. It was the internal evolution of traditional medicine which paved the way for anatomoclinical medicine. This evolution comes accross clearly in the works of Shirâzi and Sâveji between 1831 and 1862, years in which epidemics struck frequently and violently. While Europeans in Iran such as Dr. Polak qualified heyzeh (a kind of severe diarrhea) a "sporadic cholera" or "autumn cholera", Shirâzi wrote three treatises to show that heyzeh was not cholera but an ordinary kind of diarrhea caused by generalized malnourishment. Shirâzi was also an innovator in the theoretical and terminological fields, doing away with the notion of vabâ which meant a putrid atmosphere. Vabâ became a physiological anomaly which took on epidemic proportions in an impure atmosphere. The modern definition of vabâ meaning cholera was therefore elaborated thanks to Shirâzi.
Exploring the Solid Rocket Boosters and Properties of Matter
NASA Technical Reports Server (NTRS)
Moffett, Amy
2007-01-01
I worked for the United Space Alliance, LLC (USA) with the Solid Rocket Booster (SRB) Materials and Process engineers (M&P). I was assigned a project in which I needed to research and collect chemical and physical properties information, material safety data sheets (MSDS), and other product information from the vendor's websites and existing "inhouse" files for a select group of materials used in building and refurbishing the SRBs. This information was then compiled in a report that summarized the information collected. My work site was at the Kennedy Space Center (KSC). This allowed for many opportunities to visit and tour sites operated by NASA, by USA, and by the Air Force. This included the vehicle assembly building (VAB), orbital processing facilities (OPF), the crawler with the mobile launch pad (MLP), and the SRB assembly and refurbishment facility (ARF), to name a few. In addition, the launch, of STS- 117 took place within the first week of employment allowing a day by day following of that mission including post flight operations for the SRBs. Two Delta II rockets were also launched during these 7 weeks. The sights were incredible and the operations witnessed were amazing. I learned so many things I never knew about the entire program and the shuttle itself. The entire experience, especially my work with the SRB materials, inspired my plan for implementation into the classroom.
Booster Engine Service Platforms Delivered to VAB
2018-04-17
A new service platform for NASA's Space Launch System booster engines is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA, John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA, John F. Kennedy Space Center, Florida. Drawing 79K05424, Seelye Stevenson Value & Knecht, March, 1975. SITE WORK, GENERAL AREA PLAN. Sheet 8 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Kotovich, D; Guedalia, J S B; Hoffmann, C; Sze, G; Eisenkraft, A; Yaniv, G
2017-07-01
Cytomegalovirus is the leading intrauterine infection. Fetal MR imaging is an accepted tool for fetal brain evaluation, yet it still lacks the ability to accurately predict the extent of the neurodevelopmental impairment, especially in fetal MR imaging scans with unremarkable findings. Our hypothesis was that intrauterine cytomegalovirus infection causes diffusional changes in fetal brains and that those changes may correlate with the severity of neurodevelopmental deficiencies. A retrospective analysis was performed on 90 fetal MR imaging scans of cytomegalovirus-infected fetuses with unremarkable results and compared with a matched gestational age control group of 68 fetal head MR imaging scans. ADC values were measured and averaged in the frontal, parietal, occipital, and temporal lobes; basal ganglia; thalamus; and pons. For neurocognitive assessment, the Vineland Adaptive Behavior Scales, Second Edition (VABS-II) was used on 58 children in the cytomegalovirus-infected group. ADC values were reduced for the cytomegalovirus-infected fetuses in most brain areas studied. The VABS-II showed no trend for the major domains or the composite score of the VABS-II for the cytomegalovirus-infected children compared with the healthy population distribution. Some subdomains showed an association between ADC values and VABS-II scores. Cytomegalovirus infection causes diffuse reduction in ADC values in the fetal brain even in unremarkable fetal MR imaging scans. Cytomegalovirus-infected children with unremarkable fetal MR imaging scans do not deviate from the healthy population in the VABS-II neurocognitive assessment. ADC values were not correlated with VABS-II scores. However, the lack of clinical findings, as seen in most cytomegalovirus-infected fetuses, does not eliminate the possibility of future neurodevelopmental pathology. © 2017 by American Journal of Neuroradiology.
Repainting of the VAB continues
NASA Technical Reports Server (NTRS)
1998-01-01
The worker on the lower left applies the red paint to the chevron while the worker on the right fills in the blue field to the NASA logo they are painting on the Vehicle Assembly Building (VAB). When finished, the logo, also known as the 'meatball,' will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. In addition to the logo, the American flag is being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September.
Fernandes, Vânia Filipa Lima; Macaspac, Christian; Lu, Louise; Yoshizawa, Masato
2018-05-18
Many animal species exhibit laterality in sensation and behavioral responses, namely, the preference for using either the left or right side of the sensory system. For example, some fish use their left eye when observing social stimuli, whereas they use their right eye to observe novel objects. However, it is largely unknown whether such laterality in sensory-behavior coupling evolves during rapid adaptation processes. Here, in the Mexican tetra, Astyanax mexicanus, we investigate the laterality in the relationship between an evolved adaptive behavior, vibration attraction behavior (VAB), and its main sensors, mechanosensory neuromasts. A. mexicanus has a surface-dwelling form and cave-dwelling forms (cavefish), whereby a surface fish ancestor colonized the new environment of a cave, eventually evolving cave-type morphologies such as increased numbers of neuromasts at the cranium. These neuromasts are known to regulate VAB, and it is known that, in teleosts, the budding (increasing) process of neuromasts is accompanied with dermal bone formation. This bone formation is largely regulated by endothelin signaling. To assess the evolutionary relationship between bone formation, neuromast budding, and VAB, we treated 1-3 month old juvenile fish with endothelin receptor antagonists. This treatment significantly increased cranial neuromasts in both surface and cavefish, and the effect was significantly more pronounced in cavefish. Antagonist treatment also increased the size of dermal bones in cavefish, but neuromast enhancement was observed earlier than dermal bone formation, suggesting that endothelin signaling may independently regulate neuromast development and bone formation. In addition, although we did not detect a major change in VAB level under this antagonist treatment, cavefish did show a positive correlation of VAB with the number of neuromasts on their left side but not their right. This laterality in correlation was observed when VAB emerged during cavefish development, but it was not seen in surface fish under any conditions tested, suggesting this laterality emerged through an evolutionary process. Above all, cavefish showed higher developmental plasticity in neuromast number and bone formation, and they showed an asymmetric correlation between the number of left-right neuromasts and VAB. Published by Elsevier Inc.
STS-79 Atlantis rolls back to the VAB at sunrise
NASA Technical Reports Server (NTRS)
1996-01-01
As the sun begins to rise in the early-morning sky, the Space Shuttle Atlantis slowly travels on the Crawlerway toward the Vehicle Assembly Building (VAB) after its departure from Launch Pad 39A. This marks the second rollback for Atlantis since July because of hurricane threats. Atlantis, which is targeted for liftoff later this month on the STS-79 Shuttle mission, is returning to the VAB because of the threat from Hurricane Fran. The threat of Hurricane Bertha forced the rollback of Atlantis in July. Atlantis currently is scheduled for launch on the fourth Shuttle-Mir docking mission around mid-September.
Ab initio quantum chemical study of electron transfer in carboranes
NASA Astrophysics Data System (ADS)
Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.
2005-05-01
The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.
Booster Engine Service Platforms Delivered to VAB
2018-04-17
A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, has arrived at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be stored in the VAB and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.
Booster Engine Service Platforms Delivered to VAB
2018-04-17
A new service platform for NASA's Space Launch System booster engines has been offloaded from a flatbed truck and is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
32 CFR 728.52 - Veterans Administration beneficiaries (VAB).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Veterans Administration beneficiaries (VAB). 728.52 Section 728.52 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL MEDICAL AND DENTAL CARE FOR ELIGIBLE PERSONS AT NAVY MEDICAL DEPARTMENT FACILITIES Beneficiaries of Other...
32 CFR 728.52 - Veterans Administration beneficiaries (VAB).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Veterans Administration beneficiaries (VAB). 728.52 Section 728.52 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL MEDICAL AND DENTAL CARE FOR ELIGIBLE PERSONS AT NAVY MEDICAL DEPARTMENT FACILITIES Beneficiaries of Other...
32 CFR 728.52 - Veterans Administration beneficiaries (VAB).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Veterans Administration beneficiaries (VAB). 728.52 Section 728.52 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL MEDICAL AND DENTAL CARE FOR ELIGIBLE PERSONS AT NAVY MEDICAL DEPARTMENT FACILITIES Beneficiaries of Other...
Advanced Low NO Sub X Combustors for Supersonic High-Altitude Aircraft Gas Turbines
NASA Technical Reports Server (NTRS)
Roberts, P. B.; White, D. J.; Shekleton, J. R.
1975-01-01
A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NO sub x, of three advanced aircraft combustor concepts at a simulated, high altitude cruise condition. The three combustor designs, all members of the lean reaction, premixed family, are the Jet Induced Circulation (JIC) combustor, the Vortex Air Blast (VAB) combustor, and a catalytic combustor. They were rig tested in the form of reverse flow can combustors in the 0.127 m. (5.0 in.) size range. Various configuration modifications were applied to each of the initial JIC and VAB combustor model designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NO sub x level of 1.1 gm NO2/kg fuel with essentially 100% combustion efficiency at the simulated cruise combustor condition of 50.7 N/sq cm (5 atm), 833 K (1500 R) inlet pressure and temperature respectively and 1778 K (3200 R) outlet temperature on Jet-A1 fuel. Early tests on the catalytic combustor were unsuccessful due to a catalyst deposition problem and were discontinued in favor of the JIC and VAB tests. In addition emissions data were obtained on the JIC and VAB combustors at low combustor inlet pressure and temperatures that indicate the potential performance at engine off-design conditions.
2006-05-12
KENNEDY SPACE CENTER, FLA. - The orbiter Discovery, on top of an orbiter transporter, heads toward NASA's Vehicle Assembly Building (VAB) after leaving the Orbiter Processing Facility. The rollover to the VAB marks the start of the journey to the launch pad and, ultimately, launch. Once inside the VAB, Discovery will be raised to vertical and lifted up and over into high bay 3 for stacking with its redesigned external tank and twin solid rocket boosters. The rollout of Space Shuttle Discovery to Launch Pad 39B is expected in approximately a week. Launch of Discovery on mission STS-121 is scheduled to take place in a window extending July 1 to July 19. Photo credit: NASA/Jim Grossmann
2006-05-12
KENNEDY SPACE CENTER, FLA. - The orbiter Discovery, on top of an orbiter transporter, rolls into NASA's Vehicle Assembly Building (VAB) after leaving the Orbiter Processing Facility. The rollover to the VAB marks the start of the journey to the launch pad and, ultimately, launch. Once inside the VAB, Discovery will be raised to vertical and lifted up and over into high bay 3 for stacking with its redesigned external tank and twin solid rocket boosters. The rollout of Space Shuttle Discovery to Launch Pad 39B is expected in approximately a week. Launch of Discovery on mission STS-121 is scheduled to take place in a window extending July 1 to July 19. Photo credit: NASA/Jim Grossmann
Booster Engine Service Platforms Delivered to VAB
2018-04-17
A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, is on its way to the Vehicle Assembly Building (VAB), in view in the distance, at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be delivered to the VAB, where it will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.
Apollo spacecraft Command/Service Module and Lunar Module 3 arrive at VAB
1968-12-03
Apollo Spacecraft 104 Command/Service Module and Lunar Module 3 arrive at the Vehicle Assembly Building (VAB) for mating atop the Saturn 504 launch vehicle. The Saturn 504 stack is out of view. The Saturn V first (S-IC) stage in left background is scheduled for a later flight.
Georgia Tech Vertical Lift Research Center of Excellence
2017-12-14
Technical Project Summaries Task 1.1 (GT-1): Next Generation VABS for More Realistic Modeling of Composite Blades ...Methodology for the Prediction of Rotor Blade Ice Formation and Shedding ..................................................................... 20...software disclosures and technology transfer efforts. Task 1.1 (GT-1): Next Generation VABS for More Realistic Modeling of Composite Blades PIs
APOLLO 4 SATURN V LAUNCH VEHICLE MATING INSIDE VEHICLE ASSEMBLY BUILDING [VAB
NASA Technical Reports Server (NTRS)
1967-01-01
The S II stage of the Apollo/Saturn 501 launch vehicle is being mated to the first stage at the Vehicle Assembly Building [VAB] in preparation for the National Aeronautics and Space Administration's first Saturn V mission. The mission will be unmanned and is scheduled early this year.
2012-10-19
CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lowered onto a transporter in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Visible in the background on the left is the space shuttle Atlantis being readied for its move to the Kennedy Space Center Visitor Complex. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-10-19
CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lifted in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Visible in the background on the left is the space shuttle Atlantis being readied for its move to the Kennedy Space Center Visitor Complex. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-10-19
CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lowered onto a transporter in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Visible in the background on the left is the space shuttle Atlantis being readied for its move to the Kennedy Space Center Visitor Complex. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-08-06
CAPE CANAVERAL, Fla. – Mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System. In the background is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
David, N; Labbe-Devilliers, C; Moreau, D; Loussouarn, D; Campion, L
2006-11-01
FEA lesions group two histological types: columnar cell hyperplasia with atypia (CCHA) and columnar cell change with atypia (CCA). The increasing use of VAB has resulted in increased detection of isolated FEA lesions. The aim of this study was to define the best management possible for these patients: which cases may not need excision? From our database of 780 VABs carried out from 2000 to 2004, 59 patients with FEA were diagnosed. Cases in which no surgery was performed or all features were not available were excluded, thus excluding 19 cases. Forty patients with FEA were included. We reviewed clinical and mammographic characteristics, histological biopsy, and the corresponding surgically excised tissue features. VAB yielded 25 cases of CCHA and 15 cases of CCA. Surgery revealed seven ductal carcinoma cases (four invasive, three in situ); nine benign lesions, and 24 with atypia (19 FEA and six atypical ductal hyperplasia). We found two features related to the risk of cancer: the presence and the size of hyperplasia. All carcinomas were found within the CCHA lesions. No cancer was yielded when size was less than 10 mm within CCA lesions and lesions that were totally removed. We recommend surgical excision when CCHA greater than 10 mm is found on the VAB or it is incompletely removed. CCA lesions or CCHA less than 10 mm or totally removed may obviate systematic surgery.
Conserved gene regulatory module specifies lateral neural borders across bilaterians
Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua
2017-01-01
The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans. Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2 in C. elegans. Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster, and Ciona intestinalis. We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis. These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians. PMID:28716930
Conserved gene regulatory module specifies lateral neural borders across bilaterians.
Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua; Liu, Xiao
2017-08-01
The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module ( Msx/vab-15 , Pax3/7/pax-3 , and Zic/ref-2 ) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref- 2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans , Drosophila melanogaster , and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1 , which functions synergistically with Msx/vab- 15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.
Netson, Kelli L.; Conklin, Heather M.; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E.
2013-01-01
Purpose Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity-modulated radiation therapy. The median age was 8.05 years (3.21 years –17.64 years) and 8.09 years (2.20 years–19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at pre-irradiation baseline, 6 months after treatment, and annually through 5 years. A total of 588 evaluations were completed during the follow-up period. Results Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (p < .05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and pre-irradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r = .34; p = .01) in children with craniopharyngioma. Children with LGG performed below population norms (p < .05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (p < .05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions There was relative sparing of post-irradiation functional outcomes over time in this sample. Baseline differences in functional abilities prior to the initiation of irradiation suggested that other factors influence functional outcomes above and beyond the effects of irradiation. PMID:23245284
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netson, Kelli L.; Conklin, Heather M.; Wu, Shengjie
2013-04-01
Purpose: Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent-living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials: Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity modulated radiation therapy. The median age was 8.05 years (3.21-17.64 years) and 8.09 years (2.20-19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotientmore » (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at preirradiation baseline, 6 months after treatment, and annually through 5 years. Five hundred eighty-eight evaluations were completed during the follow-up period. Results: Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (P<.05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and preirradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r=0.34; P=.01) in children with craniopharyngioma. Children with LGG performed below population norms (P<.05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (P<.05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions: There was relative sparing of postirradiation functional outcomes over time in this sample. Baseline differences in functional abilities before the initiation of irradiation suggested that other factors influence functional outcomes above and beyond the effects of irradiation.« less
A System for Measuring the Sway of the Vehicle Assembly Building
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Starr, Stanley; Lane, John; Simmons, Stephen; Ihlefeld, Curtis
2013-01-01
A system was developed to measure the sway of the Vehicle Assembly Building (VAB) at Kennedy Space Center. This system was installed in the VAB and gathered more than one total year of data. The building movement was correlated with measurements provided by three wind towers in order to determine the maximum deflection of the building during high-wind events. The VAB owners were in the process of obtaining new platforms for use in assembling very tall rockets when analysis of the VAB showed that a high wind could move the building sufficiently that an upper platform might impact a rocket. The problem arises because safety requires a relatively small gap between the platform and the rocket, while a large enough gap is needed to ensure that stacking tolerances prevent contact between the rocket and the platform. This only leaves an inch or two (approximately 2 to 5 cm) of total clearance, so when the analysis showed that more than a couple of inches of motion could occur in a high wind, there was a potential for damaging the rocket. The KSC Applied Physics Laboratory was asked to install a system in the VAB that could measure the motion of the building in high winds to determine the actual building sway. The motion of the VAB roof under wind load was measured optically, and under analysis, it was determined that a relatively large-aperture optical system would be required to reduce diffraction effects to less than a small fraction of an inch (approximately mm) at a distance of 500 ft (˜150 m). A 10-in. (approximately 250 mm) telescope was placed on the floor of the building, looking at the ceiling. On the ceiling, a flat plate with three white LEDs was mounted in an "L" shape, such that the telescope was essentially looking at three stars. Software was written to track the motion of these three points using an image processing system. This provided a better than 1/10-in. (approximately 2.5-mm) 2D measurement faster than once a second. Data was downloaded once a month for comparison with the wind tower data. The system was fully operational and provided enough data to show that the VAB will only move 1 in. (approximately 2.5 cm) at the ceiling under 70-knot winds. Adjustable platforms are not required.
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM E, ROOF PLAN, ARCHITECTURAL. Sheet 22 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM D, 2ND FLOOR PLAN, ARCHITECTURAL. Sheet 38 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM D, MAIN FLOOR PLAN, ARCHITECTURAL. Sheet 39 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM E, MAIN FLOOR PLAN, ARCHITECTURAL. Sheet 23 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM D, ROOF PLAN, ARCHITECTURAL. Sheet 36 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM D, 3RD FLOOR PLAN, ARCHITECTURAL. Sheet 37 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM B, MAIN FLOOR PLAN, ARCHITECTURAL. Sheet 30 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM C, 2ND FLOOR PLAN, ARCHITECTURAL. Sheet 15 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM C, ROOF PLAN, ARCHITECTURAL. Sheet 14 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM B, ROOF PLAN, ARCHITECTURAL. Sheet 28 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM C, MAIN FLOOR PLAN, ARCHITECTURAL. Sheet 16 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...
Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM B, 2ND FLOOR PLAN, ARCHITECTURAL. Sheet 29 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
NASA Astrophysics Data System (ADS)
Pati, Ranjit; Karna, Shashi P.
2002-01-01
The dependence of electron transfer (ET) coupling element, VAB, on the length of rigid-rod-like systems consisting of bicyclo[1.1.1]pentane (BCP), cubane (CUB), and bicyclo[2.2.2]octane (BCO) monomers, has been investigated with the use of ab initio Hartree-Fock (HF) method employing Marcus-Hush two-state (TS) model. The value of VAB decreases exponentially with increase in the number of the cage units of the σ-bonded molecules. The calculated decay constant, β, shows good agreement with previously reported data. For molecular length⩾15 Å, the value of VAB becomes negligibly small, suggesting complete suppression of the through bond direct tunneling contribution to ET process.
STS-35 Columbia, OV-102, rolls back to KSC VAB after hydrogen leak discovered
1990-06-12
S90-42289 ( 3 July 1990) --- Kennedy Space Center (KSC) workers watch as Columbia, Orbiter Vehicle (OV) 102, along with its external tank (ET) and two solid rocket boosters (SRBs) atop the giant crawler transporter, rolls back to KSC's Vehicle Assembly Building (VAB). The rollback was caused by a hydrogen leak that stopped the STS-35 countdown during ET fueling, 05-29-90. Once in the VAB, OV-102 and its stack will be demated, and OV-102, with its Astronomy Laboratory 1 (ASTRO-1) payload aboard, will be moved to the Orbiter Processing Facility (OPF) to await return to KSC Launch Complex (LC) Pad 39A. View provided by KSC with alternate number KSC-90PC-901.
Yan, Dong
2016-01-01
Gap junctions are present in both vertebrates and invertebrates from nematodes to mammals. Although the importance of gap junctions has been documented in many biological processes, the molecular mechanisms underlying gap junction dynamics remain unclear. Here, using the C. elegans PLM neurons as a model, we show that UNC-44/ankyrin acts upstream of UNC-33/CRMP in regulation of a potential kinesin VAB-8 to control gap junction dynamics, and loss-of-function in the UNC-44/UNC-33/VAB-8 pathway suppresses the turnover of gap junction channels. Therefore, we first show a signal pathway including ankyrin, CRMP, and kinesin in regulating gap junctions. PMID:27015090
Center Planning and Development: Multi-User Spaceport Initiatives
NASA Technical Reports Server (NTRS)
Kennedy, Christopher John
2015-01-01
The Vehicle Assembly building at NASAs Kennedy Space Center has been used since 1966 to vertically assemble every launch vehicle, since the Apollo Program, launched from Launch Complex 39 (LC-39). After the cancellation of the Constellation Program in 2010 and the retirement of the Space Shuttle Program in 2011, the VAB faced an uncertain future. As the Space Launch System (SLS) gained a foothold as the future of American spaceflight to deep space, NASA was only using a portion of the VABs initial potential. With three high bays connected to the Crawler Way transportation system, the potential exists for up to three rockets to be simultaneously processed for launch. The Kennedy Space Center (KSC) Master plan, supported by the Center Planning and Development (CPD) Directorate, is guiding Kennedy toward a 21st century multi-user spaceport. This concept will maintain Kennedy as the United States premier gateway to space and provide multi-user operations through partnerships with the commercial aerospace industry. Commercial aerospace companies, now tasked with transporting cargo and, in the future, astronauts to the International Space Station (ISS) via the Commercial Resupply Service (CRS) and Commercial Crew Program (CCP), are a rapidly growing industry with increasing capabilities to make launch operations more economical for both private companies and the government. Commercial operations to Low Earth Orbit allow the government to focus on travel to farther destinations through the SLS Program. With LC-39B designated as a multi-use launch pad, companies seeking to use it will require an integration facility to assemble, integrate, and test their launch vehicle. An Announcement for Proposals (AFP) was released in June, beginning the process of finding a non-NASA user for High Bay 2 (HB2) and the Mobile Launcher Platforms (MLPs). An Industry Day, a business meeting and tour for interested companies and organizations, was also arranged to identify and answer any additional questions posed by potential proposers. After amending the AFP and posting additional material for potential users to consider, proposals are being accepted until July 31, at which point they will be evaluated to determine the proposer which best meets the objectives of the government. By identifying VAB HB2 as available and seeking proposals from the commercial sector for VAB HB2 and MLP use, Center Planning and Development is ensuring Kennedy Space Centers relevance in the evolving launch industry of the 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netson, Kelli L.; Conklin, Heather M.; Wu Shengjie
2012-09-01
Purpose: Conformal and intensity modulated radiation therapies have the potential to preserve cognitive outcomes in children with ependymoma; however, functional behavior remains uninvestigated. This longitudinal investigation prospectively examined intelligence quotient (IQ) and adaptive functioning during the first 5 years after irradiation in children diagnosed with ependymoma. Methods and Materials: The study cohort consisted of 123 children with intracranial ependymoma. Mean age at irradiation was 4.60 years (95% confidence interval [CI], 3.85-5.35). Serial neurocognitive evaluations, including an age-appropriate IQ measure and the Vineland Adaptive Behavior Scales (VABS), were completed before irradiation, 6 months after treatment, and annually for 5 years. Amore » total of 579 neurocognitive evaluations were included in these analyses. Results: Baseline IQ and VABS were below normative means (P<.05), although within the average range. Linear mixed models revealed stable IQ and VABS across the follow-up period, except for the VABS Communication Index, which declined significantly (P=.015). Annual change in IQ (-.04 points) did not correlate with annual change in VABS (-.90 to +.44 points). Clinical factors associated with poorer baseline performance (P<.05) included preirradiation chemotherapy, cerebrospinal fluid shunt placement, number and extent of surgical resections, and younger age at treatment. No clinical factors significantly affected the rate of change in scores. Conclusions: Conformal and intensity modulated radiation therapies provided relative sparing of functional outcomes including IQ and adaptive behaviors, even in very young children. Communication skills remained vulnerable and should be the target of preventive and rehabilitative interventions.« less
ERIC Educational Resources Information Center
Childers, John S.; And Others
Preliminary findings are presented from a study of the performance of 99 institutionalized retarded children on the Vineland Adaptive Behavior Scale (VABS), a revised form of the Vineland Social Maturity Scale (VSMS). No significant sex or race differences were revealed on test performances. Mental age was found to correlate with VABS scores with…
VAB Temperature and Humidity Study
NASA Technical Reports Server (NTRS)
Lane, John E.; Youngquist, Robert C.; Muktarian, Edward; Nurge, Mark A.
2014-01-01
In 2012, 17 data loggers were placed in the VAB to measure temperature and humidity at 10-minute intervals over a one-year period. In 2013, the data loggers were replaced with an upgraded model and slight adjustments to their locations were made to reduce direct solar heating effects. The data acquired by the data loggers was compared to temperature data provided by three wind towers located around the building. It was found that the VAB acts as a large thermal filter, delaying and reducing the thermal oscillations occurring outside of the building. This filtering is typically more pronounced at higher locations in the building, probably because these locations have less thermal connection with the outside. We surmise that the lower elevations respond more to outside temperature variations because of air flow through the doors. Temperatures inside the VAB rarely exceed outdoor temperatures, only doing so when measurements are made directly on a surface with connection to the outside (such as a door or wall) or when solar radiation falls directly on the sensor. A thermal model is presented to yield approximate filter response times for various locations in the building. Appendix A contains historical thermal and humidity data from 1994 to 2009.
STS-33 Discovery, OV-103, in KSC Vehicle Assembly Bldg after ET/SRB mating
1989-10-25
S89-49412 (25 Oct 1989) --- Preparations are underway to rollout the Space Shuttle orbiter Discovery from the Vehicle Assembly Building (VAB) to Pad 39B, as KSC employees work toward the mid-November launch of STS-33, a Department of Defense Devoted mission. Poor weather has thus far hampered attempts to roll out the Discovery and the next attempt is scheduled for midnight tomorrow.
Engineering Management Board Tour VAB
2017-03-22
Members of NASA’s Engineering Management Board tour of the Vehicle Assembly Building at Kennedy Space Center in Florida. The platforms in High Bay 3, including the one on which the board members are standing, were designed to surround and provide access to NASA’s Space Launch System and Orion spacecraft. The Engineering Management Board toured integral areas of Kennedy to help the agencywide group reach its goal of unifying engineering work across NASA.
Repainting of the VAB continues
NASA Technical Reports Server (NTRS)
1998-01-01
The Vehicle Assembly Building (VAB) gets a facelift with the repainting of the American flag and replacing of the bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid- September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the 'meatball,' will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VAB SHOWS OPEN PARACHUTE
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB WITH PARACHUTE HOISTED HIGH
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB PRIOR TO ATTACHING PRESSURE VESSEL
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
Brennan, Sandra B; Corben, Adriana; Liberman, Laura; Dershaw, D David; Brogi, Edi; Van Zee, Kimberly J; Morris, Elizabeth
2012-10-01
The objective of our study was to determine the frequency of cancer at surgery in breast lesions yielding papilloma at MRI-guided 9-gauge vacuum-assisted biopsy (VAB) and to determine whether any features are associated with cancer upgrade. For this study, 1487 MRI-guided vacuum-assisted biopsies performed from January 2004 to March 2011 were reviewed. Lesions yielding papilloma were identified and classified as papilloma with or without atypia. Surgical findings were reviewed to determine the cancer rate. Statistical analysis was performed and 95% CIs were calculated. Papilloma was identified in 75 of the 1487 MRI-guided vacuum-assisted biopsies (5%). These 75 papillomas occurred in 73 women with a median age of 49 years (age range, 27-70 years). Of the 75 papillomas, 25 (33%) had atypia and 50 (67%) did not on core needle biopsy. Subsequent surgery of 67 of the 75 papillomas (89%) yielded ductal carcinoma in situ (DCIS) in four (6%; 95% CI, 2-15%). Surgery yielded DCIS in two of 23 papillomas with atypia (9%; 95% CI, 1-28%) at MRI-guided VAB and in two of 44 papillomas without atypia (5%; 95% CI, 0.4-16%) at MRI-guided VAB; these cancer rates did not differ significantly (p=0.6). Postmenopausal status (p=0.04) and histologic size of less than 0.2 cm (p=0.04) had a significant association with the cancer upgrade rate. Papilloma with or without atypia was found in 5% of patients who underwent MRI-guided VAB during the study period. Surgery revealed cancer in 6%. DCIS was found at surgery in 9% of lesions yielding papilloma with atypia versus 5% of lesions yielding papilloma without atypia. For lesions yielding papilloma with or without atypia at MRI-guided VAB, surgical excision is warranted.
de Bildt, A; Sytema, S; Kraijer, D; Sparrow, S; Minderaa, R
2005-09-01
The interrelationship between adaptive functioning, behaviour problems and level of special education was studied in 186 children with IQs ranging from 61 to 70. The objective was to increase the insight into the contribution of adaptive functioning and general and autistic behaviour problems to the level of education in children with intellectual disability (ID). Children from two levels of special education in the Netherlands were compared with respect to adaptive functioning [Vineland Adaptive Behavior Scales (VABS)], general behaviour problems [Child Behavior Checklist (CBCL)] and autistic behaviour problems [Autism Behavior Checklist (ABC)]. The effect of behaviour problems on adaptive functioning, and the causal relationships between behaviour problems, adaptive functioning and level of education were investigated. Children in schools for mild learning problems had higher VABS scores, and lower CBCL and ABC scores. The ABC had a significant effect on the total age equivalent of the VABS in schools for severe learning problems, the CBCL in schools for mild learning problems. A direct effect of the ABC and CBCL total scores on the VABS age equivalent was found, together with a direct effect of the VABS age equivalent on level of education and therefore an indirect effect of ABC and CBCL on level of education. In the children with the highest level of mild ID, adaptive functioning seems to be the most important factor that directly influences the level of education that a child attends. Autistic and general behaviour problems directly influence the level of adaptive functioning. Especially, autistic problems seem to have such a restrictive effect on the level of adaptive functioning that children do not reach the level of education that would be expected based on IQ. Clinical implications are discussed.
1999-05-16
KENNEDY SPACE CENTER, FLA. -- On a beautiful Florida morning, a crawler transporter moves Space Shuttle Discovery (right, nearly hidden behind its external tank and solid rocket boosters) from Pad 39B back to the Vehicle Assembly Building (VAB) at left to repair damage to the external tank's foam insulation caused by hail. The external tank-solid rocket booster stack for mission STS-93 was moved out of High Bay 1, which awaits Discovery's arrival with its door open. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment
2016-10-19
Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, construction workers assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-10-19
Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, has been installed on the south side of the high bay. In view below are several levels of previously installed platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Engineering Management Board Tour VAB
2017-03-22
Members of NASA’s Engineering Management Board visit the Vehicle Assembly Building’s High Bay 3 at Kennedy Space Center in Florida. The platforms in High Bay 3, including the one on which the board members are standing, were designed to surround and provide access to NASA’s Space Launch System and Orion spacecraft. The Engineering Management Board toured integral areas of Kennedy to help the agencywide group reach its goal of unifying engineering work across NASA.
Aerial photo shows Launch Complex 39 Area
NASA Technical Reports Server (NTRS)
2000-01-01
This aerial photo captures many of the facilities involved in Space Shuttle launches. At center is the Vehicle Assembly Building (VAB), with the Launch Control Center at its right. The curved road on the left in the photo is the newly restored crawlerway leading into the VAB high bay 2, where a mobile launcher platform/crawler-transporter sits. The road restoration and high bay 2 are part of KSC's Safe Haven project, enabling the storage of orbiters during severe weather. The crawlerway also extends from the east side out to the two launch pads, one visible close to the road on the left and one to the left of the VAB. In the distance is the Atlantic Ocean. To the right of the crawlerway is the turn basin, into which ships tow the barge for offloading new external tanks from Louisiana.
Repainting of the VAB nearly finished
NASA Technical Reports Server (NTRS)
1998-01-01
This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the Bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the 'meatball,' measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls.
Repainting of the VAB nearly finished
NASA Technical Reports Server (NTRS)
1998-01-01
This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the 'meatball,' measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls.
1998-08-28
KENNEDY SPACE CENTER, FLA. -- The American flag is being repainted on the side of the Vehicle Assembly Building (VAB). The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the flag, the NASA logo, also known as the "meatball," is being painted on the VAB. When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September
2012-08-06
CAPE CANAVERAL, Fla. – Mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground are the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-08-06
CAPE CANAVERAL, Fla. – Seen from overhead, mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2012-08-06
CAPE CANAVERAL, Fla. – Seen from overhead, mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis
2003-09-15
KENNEDY SPACE CENTER, FLA. - A flatbed truck carrying pieces of debris of Space Shuttle Columbia arrives outside the Vehicle Assembly Building (VAB). The debris is being transferred from the Columbia Debris Hangar to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.
2003-07-23
CAPE CANAVERAL, Fla. -- This view shows much of the Launch Complex 39 Area looking north. At center is the 525-foot-tall Vehicle Assembly Building. Other buildings surrounding it are counter clockwise from left the Orbiter Processing Facility, Multi-Function Facility, Operations Support Building and Launch Control Center, next to the VAB. The crawlerway leads from the VAB toward the launch pads. In the background are the waters of the Banana Creek. Photo credit: NASA
2000-11-21
KENNEDY SPACE CENTER, FLA. -- A newly arrived external tank is transported from the turn basin to the Vehicle Assembly Building (VAB), seen behind the tank. External tanks are built by the NASA Michoud Assembly Facility in New Orleans and transported by barge to Cape Canaveral and then up the Banana River to the turn basin in the Launch Complex 39 Area. In the VAB, the tank will await stacking for a future Shuttle mission
2003-07-23
KENNEDY SPACE CENTER, FLA. – This view shows much of the Launch Complex 39 Area looking north. At center is the 525-foot-tall Vehicle Assembly Building. Other buildings surrounding it are (counter clockwise from left) the Orbiter Processing Facility, Multi-Function Facility, Operations Support Building and Launch Control Center (next to VAB). The crawlerway leads from the VAB toward the launch pads. In the background are the waters of the Banana Creek.
2000-11-21
KENNEDY SPACE CENTER, FLA. -- A newly arrived external tank heads from the turn basin toward the Vehicle Assembly Building (VAB), seen behind the tank. External tanks are built by the NASA Michoud Assembly Facility in New Orleans and transported by barge to Cape Canaveral and then up the Banana River to the turn basin in the Launch Complex 39 Area. In the VAB, the tank will await stacking for a future Shuttle mission
2000-11-21
KENNEDY SPACE CENTER, FLA. -- A newly arrived external tank heads from the turn basin toward the Vehicle Assembly Building (VAB), seen behind the tank. External tanks are built by the NASA Michoud Assembly Facility in New Orleans and transported by barge to Cape Canaveral and then up the Banana River to the turn basin in the Launch Complex 39 Area. In the VAB, the tank will await stacking for a future Shuttle mission
KSC VAB Aeroacoustic Hazard Assessment
2010-07-01
a Mobile Launch Platform (MLP). Several platform levels are used to perform processing operations and will too be reused and/or modified. Each HB is...I/V Flight Vehicles and the VAB The shell is made up of hundreds of aluminum “punch-out” panels which are designed to fail above approximately 100...into several slices which are converted to monopole sources (see figure below). Figure 3: Plume conversion into acoustic sources [2] The
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Vehicle Assembly Building (VAB), overhead cranes move above the orbiter Atlantis in order to lift it to vertical. When vertical, the orbiter will be placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
Probabilistic Survivability Versus Time Modeling
NASA Technical Reports Server (NTRS)
Joyner, James J., Sr.
2015-01-01
This technical paper documents Kennedy Space Centers Independent Assessment team work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer (CSO) and GSDO management during key programmatic reviews. The assessments provided the GSDO Program with an analysis of how egress time affects the likelihood of astronaut and worker survival during an emergency. For each assessment, the team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedys Vehicle Assembly Building (VAB).Based on the composite survivability versus time graphs from the first two assessments, there was a soft knee in the Figure of Merit graphs at eight minutes (ten minutes after egress ordered). Thus, the graphs illustrated to the decision makers that the final emergency egress design selected should have the capability of transporting the flight crew from the top of LC 39B to a safe location in eight minutes or less. Results for the third assessment were dominated by hazards that were classified as instantaneous in nature (e.g. stacking mishaps) and therefore had no effect on survivability vs time to egress the VAB. VAB emergency scenarios that degraded over time (e.g. fire) produced survivability vs time graphs that were line with aerospace industry norms.
Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2016-01-01
Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.
1998-08-28
KENNEDY SPACE CENTER, FLA. -- The NASA logo, also known as the "meatball," is painted on the side of the Vehicle Assembly Building (VAB). When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the logo, the American flag is also being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September
1998-08-28
KENNEDY SPACE CENTER, FLA. -- Painters are dwarfed by the six-foot stars in the blue field of the American flag they are repainting on the side of the Vehicle Assembly Building (VAB). The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the flag, the NASA logo, also known as the "meatball," is being painted on the VAB. When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September
Engineering Management Board Tour VAB
2017-03-22
The view members of NASA’s Engineering Management Board had in looking up the Vehicle Assembly Building’s High Bay 3 at Kennedy Space Center in Florida. The platforms in High Bay 3, including the one on which the board members are standing, were designed to surround and provide access to NASA’s Space Launch System and Orion spacecraft. The Engineering Management Board toured integral areas of Kennedy to help the agencywide group reach its goal of unifying engineering work across NASA.
Engineering Management Board Tour VAB
2017-03-22
Members of NASA’s Engineering Management Board pause for a group photo during a tour of the Vehicle Assembly Building at Kennedy Space Center in Florida. The platforms in High Bay 3, including the one on which the board members are standing, were designed to surround and provide access to NASA’s Space Launch System and Orion spacecraft. The Engineering Management Board toured integral areas of Kennedy to help the agencywide group reach its goal of unifying engineering work across NASA.
Zhai, Hao-Ran; Yang, Xue-Ning; Nie, Qiang; Liao, Ri-Qiang; Dong, Song; Li, Wei; Jiang, Ben-Yuan; Yang, Jin-Ji; Zhou, Qing; Tu, Hai-Yan; Zhang, Xu-Chao; Wu, Yi-Long; Zhong, Wen-Zhao
2017-06-27
Right upper lobectomy (RUL) for lung cancer with different dissecting orders involves the most variable anatomical structures, but no studies have analyzed its effects on postoperative recovery. This study compared the conventional surgical approach, VAB (dissecting pulmonary vessels first, followed by the bronchus), and the alternative surgical approach, aBVA (dissecting the posterior ascending arterial branch first, followed by the bronchus and vessels) on improving surgical feasibility and postoperative recovery for lung cancer patients. According to the surgical approach, consecutive lung cancer patients undergoing RUL were grouped into aBVA and VAB cohorts. Their clinical, pathologic, and perioperative characteristics were collected to compare perioperative outcomes. Three hundred one patients were selected (109 in the aBVA cohort and 192 in the VAB cohort). The mean operation time was shorter in the aBVA cohort than in the VAB cohort (164 vs. 221 min, P < 0.001), and less blood loss occurred in the aBVA cohort (92 vs. 141 mL, P < 0.001). The rate of conversion to thoracotomy was lower in the aBVA cohort than in the VAB cohort (0% vs. 11.5%, P < 0.001). The mean duration of postoperative chest drainage was shorter in the aBVA cohort than in the VAB cohort (3.6 vs. 4.5 days, P = 0.001). The rates of postoperative complications were comparable (P = 0.629). The median overall survival was not arrived in both cohorts (P > 0.05). The median disease-free survival was comparable for all patients in the two cohorts (not arrived vs. 41.97 months) and for patients with disease recurrences (13.25 vs. 9.44 months) (both P > 0.05). The recurrence models in two cohorts were also comparable for patients with local recurrences (6.4% vs. 7.8%), distant metastases (10.1% vs. 8.3%), and both (1.8% vs. 1.6%) (all P > 0.05). Dissecting the right upper bronchus before turning over the lobe repeatedly and dissecting veins via the aBVA approach during RUL would promote surgical feasibility and achieve comparable postoperative recovery for lung cancer patients.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Engineering Management Board tour Vehicle Assembly Building (VAB)
2017-03-22
All the heads of engineering from across the country come together at KSC for a bi-annual face to face meeting to discuss roles, progress and capabilities. The two day meeting helps to ensure a unified focus in all engineering endevours, especially those that involve intercenter collaboration such as upcoming launch of SLS and Orion. The group toured level 1 and 28 of highbay 3 of the VAB on Wednesday, March 22 to look over the newly installed platforms.
2003-11-17
KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
2003-11-17
KENNEDY SPACE CENTER, FLA. - The crawler transporter has slowly moved the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
2003-11-17
KENNEDY SPACE CENTER, FLA. - The crawler transporter is slowly moving the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
2003-11-17
KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
2016-10-19
Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a construction worker assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Orbiter processing facility service platform failure and redesign
NASA Technical Reports Server (NTRS)
Harris, Jesse L.
1988-01-01
In a high bay of the Orbiter Processing Facility (OPF) at the Kennedy Space Center, technicians were preparing the space shuttle orbiter Discovery for rollout to the Vehicle Assembly Building (VAB). A service platform, commonly referred to as an OPF Bucket, was being retracted when it suddenly fell, striking a technician and impacting Discovery's payload bay door. A critical component in the OPF Bucket hoist system had failed, allowing the platform to fall. The incident was thoroughly investigated by both NASA and Lockheed, revealing many design deficiencies within the system. The deficiencies and the design changes made to correct them are reviewed.
STS-28 Columbia, OV-102, ET/SRB mating preparations at KSC VAB
1989-07-03
S89-39624 (3 July 1989) --- Following rollover from the Orbiter Processing Facility, the orbiter Columbia is prepared for mating with the ET/SRB stack in the Vehicle Assembly Building transfer aisle as work continues toward an early August launch of Space Shuttle Mission STS-28. STS-28 is a Department of Defense dedicated mission. Crew members for the mission are: Commander Brewster H. Shaw, Pilot Richard N. Richards, and Mission Specialists Mark N. Brown, James C. Adamson, and David C. Leestma.
2004-10-04
KENNEDY SPACE CENTER, FLA. - The Vehicle Assembly Building at KSC sports a patchwork façade after the holes created by recent hurricanes were covered with corrugated steel. The VAB lost 820 panels from the south wall during Hurricane Frances, and 25 additional panels pulled off the east wall by Hurricane Jeanne. Employees of Met-Con, a subcontractor in Cocoa, Fla., worked night and day on scaffolds hung from the 525-foot-high roof to close the holes and enable the facility to return to normal operations.
STS-79 Atlantis approaches the VAB (view from inside VAB)
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Atlantis begins its move into the Vehicle Assembly Building for shelter from the effects of Hurricane Fran. Atlantis is completing its rollback from Launch Pad 39A, where it was undergoing preparations for Mission STS-79. This marks the second rollback for Atlantis since July because of hurricane threats. The threat of Hurricane Bertha forced the rollback of Atlantis in July. Atlantis currently is scheduled for launch on the fourth Shuttle-Mir docking mission around mid-September.
2001-06-20
CAPE CANAVERAL, Fla. – An aerial view of Launch Complex 39 shows the south and west sides of the Vehicle Assembly Building. The curved roadway heading to the VAB leads to high bay 2, the Safe Haven facility constructed in 2000. Beyond it is the Orbiter Processing Facility, bays 1 and 2. The OPF bay 3 is farther still, closer to the VAB. Farther in the background are the waters of the Banana Creek in the Merritt Island National Wildlife Refuge. Photo credit: NASA
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker monitors the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane is attached to the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers help prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker helps prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
2016-03-23
NASA’s upgraded crawler-transporter 2 (CT-2) begins its trek from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.
2016-03-23
NASA’s upgraded crawler-transporter 2 (CT-2) has exited the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida for its trek along the crawlerway to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.
2016-03-23
NASA’s upgraded crawler-transporter 2 (CT-2) travels along the crawlerway from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida on its trek to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.
Ground level view of Apollo 14 space vehicle leaving VAB for launch pad
1970-11-09
S70-54121 (9 Nov. 1970) --- A ground level view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle leaving the Vehicle Assembly Building (VAB). The Saturn V stack and its mobile launch tower, atop a huge crawler-transporter, were rolled out to Pad A. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.
1997-06-04
The Space Shuttle Orbiter Columbia is reflected in a nearby pond as it rolls over to the Vehicle Assembly Building (VAB) June 4 from Orbiter Processing Facility (OPF) 1 atop its transporter in preparation for the STS-94 mission. Once inside the VAB, Columbia will be hoisted to be mated with its solid rocket boosters and external tank. Columbia was moved to the OPF April 8 after the completion of the STS-83 mission. KSC payloads processing employees then began work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the orbiter’s payload bay for the STS-94 mission. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for possible quick relaunch turnaround times for future payloads. The MSL-1 module will fly again with the full complement of STS-83 experiments after that mission was cut short due to indications of a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
STS-103 Discovery rolls over to VAB
NASA Technical Reports Server (NTRS)
1999-01-01
The orbiter Discovery rolls along the tow-way to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.
C. elegans and mutants with chronic nicotine exposure as a novel model of cancer phenotype.
Kanteti, Rajani; Dhanasingh, Immanuel; El-Hashani, Essam; Riehm, Jacob J; Stricker, Thomas; Nagy, Stanislav; Zaborin, Alexander; Zaborina, Olga; Biron, David; Alverdy, John C; Im, Hae Kyung; Siddiqui, Shahid; Padilla, Pamela A; Salgia, Ravi
2016-01-01
We previously investigated MET and its oncogenic mutants relevant to lung cancer in C. elegans. The inactive orthlogues of the receptor tyrosine kinase Eph and MET, namely vab-1 and RB2088 respectively, the temperature sensitive constitutively active form of KRAS, SD551 (let-60; GA89) and the inactive c-CBL equivalent mutants in sli-1 (PS2728, PS1258, and MT13032) when subjected to chronic exposure of nicotine resulted in a significant loss in egg-laying capacity and fertility. While the vab-1 mutant revealed increased circular motion in response to nicotine, the other mutant strains failed to show any effect. Overall locomotion speed increased with increasing nicotine concentration in all tested mutant strains except in the vab-1 mutants. Moreover, chronic nicotine exposure, in general, upregulated kinases and phosphatases. Taken together, these studies provide evidence in support of C. elegans as initial in vivo model to study nicotine and its effects on oncogenic mutations identified in humans.
1998-08-28
KENNEDY SPACE CENTER, FLA. -- The worker on the lower left applies the red paint to the chevron while the worker on the right fills in the blue field to the NASA logo they are painting on the Vehicle Assembly Building (VAB). When finished, the logo, also known as the "meatball," will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. In addition to the logo, the American flag is being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September
1998-08-28
KENNEDY SPACE CENTER, FLA. -- The worker on the lower left applies the red paint to the chevron while the worker on the right fills in the blue field to the NASA logo they are painting on the Vehicle Assembly Building (VAB). When finished, the logo, also known as the "meatball," will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. In addition to the logo, the American flag is being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, and NASA's new mobile launcher, or ML, are seen in the distance during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The 355-foot-tall ML structure, which took about two years to construct, will be modified by NASA’s Ground Systems Development and Operations, or GSDO, Program to support NASA’s Space Launch System, the heavy-lift rocket that will launch astronauts into deep space on future exploration missions. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, and NASA's new mobile launcher, or ML, are seen during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The 355-foot-tall ML structure, which took about two years to construct, will be modified by NASA’s Ground Systems Development and Operations, or GSDO, Program to support NASA’s Space Launch System, the heavy-lift rocket that will launch astronauts into deep space on future exploration missions. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, and NASA's new mobile launcher, or ML, are seen in the distance during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The 355-foot-tall ML structure, which took about two years to construct, will be modified by NASA’s Ground Systems Development and Operations, or GSDO, Program to support NASA’s Space Launch System, the heavy-lift rocket that will launch astronauts into deep space on future exploration missions. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, and NASA's new mobile launcher, or ML, are seen during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The 355-foot-tall ML structure, which took about two years to construct, will be modified by NASA’s Ground Systems Development and Operations, or GSDO, Program to support NASA’s Space Launch System, the heavy-lift rocket that will launch astronauts into deep space on future exploration missions. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
2012-09-05
CAPE CANAVERAL, Fla. – The Vehicle Assembly Building, or VAB, and NASA's new mobile launcher, or ML, are seen in the distance during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The 355-foot-tall ML structure, which took about two years to construct, will be modified by NASA’s Ground Systems Development and Operations, or GSDO, Program to support NASA’s Space Launch System, the heavy-lift rocket that will launch astronauts into deep space on future exploration missions. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA
Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad
2015-05-01
Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels. © 2015 Wiley Publishing Asia Pty Ltd.
2003-11-21
KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch away from the Vehicle Assembly Building (VAB) in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
Caudle, Susan E.; Katzenstein, Jennifer M.; Oghalai, John S.; Lin, Jerry; Caudle, Donald D.
2013-01-01
Methodologically, longitudinal assessment of cognitive development in young children has proven difficult because few measures span infancy through school age. This matter is further complicated when the child presents with a sensory deficit such as hearing loss. Few measures are validated in this population, and children who are evaluated for cochlear implantation are often reevaluated annually. The authors sought to evaluate the predictive validity of subscales of the Mullen Scales of Early Learning (MSEL) on Leiter International Performance Scales–Revised (LIPS-R) Full-Scale IQ scores. To further elucidate the relationship of these two measures, comparisons were also made with the Vineland Adaptive Behavior Scale–Second Edition (VABS), which provides a measure of adaptive functioning across the life span. Participants included 35 children (14 female, 21 male) who were evaluated both as part of the precandidacy process for cochlear implantation using the MSEL and VABS and following implantation with the LIPS-R and VABS. Hierarchical linear regression revealed that the MSEL Visual Reception subdomain score significantly predicted 52% of the variance in LIPS-R Full-Scale IQ scores at follow-up, F(1, 34) = 35.80, p < .0001, R2 = .52, β = .72. This result suggests that the Visual Reception subscale offers predictive validity of later LIPS-R Full-Scale IQ scores. The VABS was also significantly correlated with cognitive variables at each time point. PMID:22353228
Caudle, Susan E; Katzenstein, Jennifer M; Oghalai, John S; Lin, Jerry; Caudle, Donald D
2014-02-01
Methodologically, longitudinal assessment of cognitive development in young children has proven difficult because few measures span infancy through school age. This matter is further complicated when the child presents with a sensory deficit such as hearing loss. Few measures are validated in this population, and children who are evaluated for cochlear implantation are often reevaluated annually. The authors sought to evaluate the predictive validity of subscales of the Mullen Scales of Early Learning (MSEL) on Leiter International Performance Scales-Revised (LIPS-R) Full-Scale IQ scores. To further elucidate the relationship of these two measures, comparisons were also made with the Vineland Adaptive Behavior Scale-Second Edition (VABS), which provides a measure of adaptive functioning across the life span. Participants included 35 children (14 female, 21 male) who were evaluated both as part of the precandidacy process for cochlear implantation using the MSEL and VABS and following implantation with the LIPS-R and VABS. Hierarchical linear regression revealed that the MSEL Visual Reception subdomain score significantly predicted 52% of the variance in LIPS-R Full-Scale IQ scores at follow-up, F(1, 34) = 35.80, p < .0001, R (2) = .52, β = .72. This result suggests that the Visual Reception subscale offers predictive validity of later LIPS-R Full-Scale IQ scores. The VABS was also significantly correlated with cognitive variables at each time point.
2001-06-20
KENNEDY SPACE CENTER, Fla. -- An aerial view of Launch Complex 39 shows the south and west sides of the Vehicle Assembly Building. The curved roadway heading to the VAB leads to the high bay 2, the Safe Haven facility constructed in 2000. The white building in the foreground is the Processing Control Center. Beyond it is the Orbiter Processing Facility, bays 1 and 2. The OPF bay 3 is farther still, closer to the VAB. Farther in the background are the waters of Banana Creek in the Merritt Island National Wildlife Refuge
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane lifts the Orion heat shield from Exploration Flight Test-1 up off its transporter. It will be lowered onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Jim Grossmann
2009-12-14
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, dense fog moving ashore from the Atlantic Ocean engulfs the Vehicle Assembly Building on an atypical December afternoon. It is the second time in one day that fog has obscured the top of the 525-foot-tall processing facility, known as the VAB. Space Shuttle Endeavour currently is in the VAB's High Bay 1 where it is being attached to its external fuel tank and solid rocket boosters in preparation for its targeted launch in early February 2010. Photo credit: NASA/Jack Pfaller
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Ben Cooper
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Ben Cooper
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Jim Grossmann
2016-03-23
Technicians walk alongside NASA’s upgraded crawler-transporter 2 (CT-2) as it continues the trek on the crawlerway from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.
2016-03-23
Technicians walk alongside NASA’s upgraded crawler-transporter 2 (CT-2) as it continues the trek along the crawlerway from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.
2016-03-23
A truck sprays water in front of NASA’s upgraded crawler-transporter 2 (CT-2) to control dust as it begins the trek from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.
View of the Apollo 10 space vehicle at Pad B, ready for launch
NASA Technical Reports Server (NTRS)
1969-01-01
Ground-level view at sunset of the Apollo 10 (Spacecraft 106/Lunar Module 4/Saturn 505) space vehicle at Pad B, Launch Complex 39, Kennedy Space Center. The Apollo 10 stack had just been positioned after being rolled out from the Vehicle Assemble Building (VAB) (34318); View of the Apollo 10 space vehicle (through palm trees and across water) on the way from the VAB to Pad B, Launch Complex 39. The Saturn V and its mobile launch tower are atop a crawler-transporter (34319).
STS-83 Columbia Rollout to PAD-39A (fish eye view in VAB)
NASA Technical Reports Server (NTRS)
1997-01-01
The Space Shuttle Orbiter Columbia begins its rollout from the Vehicle Assembly Building (VAB) to Launch Pad 39A in preparation for the STS-83 mission. The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is the primary payload on this 16-day space flight. The MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the seven-member flight crew conducts combustion, protein crystal growth and materials processing experiments.
2002-01-01
On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the U.S. flag on the southwest side of the Vehicle Assembly Building. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo is also being painted. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary.
Schiaffino, Simone; Gristina, Licia; Villa, Alessandro; Tosto, Simona; Monetti, Francesco; Carli, Franca; Calabrese, Massimo
2018-01-01
To determine the malignancy rate (defined in this study as stability or absence of malignancy developed on close imaging follow-up post-biopsy) of conservative management in patients with a vacuum-assisted breast biopsy (VAB) diagnosis of flat epithelial atypia (FEA), performed on single group of microcalcifications, completely removed during procedure. This is a retrospective, monocentric, observational study, approved by IRB. Inclusion criteria were: VAB performed on a single group of microcalcifications; the absence of residual calcifications post-VAB; diagnosis of isolated FEA as the most advanced proliferative lesion; radiological follow-up at least of 12 months. The personal history of breast cancer or other high-risk lesions was an exclusion criteria. The patients enrolled were conservatively managed, without surgical excision, through close follow-up: the first two mammographies performed with an interval of 6 months after biopsy, followed by annual mammographic and clinical checks. 48 consecutive patients were enrolled in the study, all females, with age range of 39-76 years (mean 53,3 years) and radiological follow-up range of 13-75 months (mean 41.5 months). All the lesions were classified as BI-RADS 4b. The diameter range of the group of calcifications was 3-10 mm (mean 5, 6 mm). In each patient, 7 to 15 samples (mean 11) were obtained. Among all the patients, there was only one case (2%) of new microcalcifications, developed in the same breast, 26 months after and 8 mm from the site of previous VAB, and interpreted as ADH at surgical excision. All the checks of the other patients were negative. Even with a limited follow-up, we found a malignancy rate lower than 2%, through a defined population. Further studies with bigger number of patients and extended follow-up are needed to reinforce this hypothesis. Advances in knowledge: Surgical excision may not be necessary in patients with VAB diagnosis of isolated FEA, without residual microcalcifications post-procedure and considered concordant with the mammographic presentation, considering the low rate of malignancy at subsequent follow-ups.
Tug fleet and ground operations schedules and controls. Volume 3: Program cost estimates
NASA Technical Reports Server (NTRS)
1975-01-01
Cost data for the tug DDT&E and operations phases are presented. Option 6 is the recommended option selected from seven options considered and was used as the basis for ground processing estimates. Option 6 provides for processing the tug in a factory clean environment in the low bay area of VAB with subsequent cleaning to visibly clean. The basis and results of the trade study to select Option 6 processing plan is included. Cost estimating methodology, a work breakdown structure, and a dictionary of WBS definitions is also provided.
STS-95 Discovery undergoes vertical lift in the VAB
NASA Technical Reports Server (NTRS)
1998-01-01
In the Vehicle Assembly Building, the orbiter Discovery is fully vertical, after being lifted into position for mating with the external tank. The orbiter displays the recently painted NASA logo, termed the 'meatball,' on its left, or port, wing. The logo also has been painted on both sides of the aft fuselage. Discovery (OV-103), the first of the orbiters to be launched with the new art work, is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.
STS-95 Discovery in the VAB as launch preparations continue
NASA Technical Reports Server (NTRS)
1998-01-01
United Space Alliance Forward Shop workers stand near the orbiter Discovery in the Vehicle Assembly Building . The orbiter is being prepared for mating with the external tank. Discovery displays the recently painted NASA logo, termed the 'meatball,' on its left, or port, wing. The logo also has been painted on both sides of the aft fuselage. Discovery (OV-103), the first of the orbiters to be launched with the new art work, is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.
2003-11-21
KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, crawl out of the Vehicle Assembly Building (VAB) in support of the second engineering analysis vibration test on the crawler and MLP. In the background is another MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
2003-11-17
KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. On either side of the boosters on the horizon can be seen the two launch pads. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
1997-06-04
While KSC workers in the Launch Complex 39 Area watch, The Space Shuttle Orbiter Columbia rolls over to the Vehicle Assembly Building (VAB) June 4 from Orbiter Processing Facility (OPF)1 atop its transporter in preparation for the STS-94 mission. Once inside the VAB, Columbia will be hoisted to be mated with its solid rocket boosters and external tank. Columbia was moved to the OPF April 8 after the completion of the STS-83 mission. KSC payloads processing employees then began work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the orbiter’s payload bay for the STS-94 mission. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for possible quick relaunch turnaround times for future payloads. The MSL-1 module will fly again with the full complement of STS-83 experiments after that mission was cut short due to indications of a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
SACD's Support of the Hyper-X Program
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Martin, John G.
2006-01-01
NASA s highly successful Hyper-X program demonstrated numerous hypersonic air-breathing vehicle related technologies including scramjet performance, advanced materials and hot structures, GN&C, and integrated vehicle performance resulting in, for the first time ever, acceleration of a vehicle powered by a scramjet engine. The Systems Analysis and Concepts Directorate (SACD) at NASA s Langley Research Center played a major role in the integrated team providing critical support, analysis, and leadership to the Hyper-X Program throughout the program s entire life and were key to its ultimate success. Engineers in SACD s Vehicle Analysis Branch (VAB) were involved in all stages and aspects of the program, from conceptual design prior to contract award, through preliminary design and hardware development, and in to, during, and after each of the three flights. Working closely with other engineers at Langley and Dryden, as well as industry partners, roughly 20 members of SACD were involved throughout the evolution of the Hyper-X program in nearly all disciplines, including lead roles in several areas. Engineers from VAB led the aerodynamic database development, the propulsion database development, and the stage separation analysis and database development effort. Others played major roles in structures, aerothermal, GN&C, trajectory analysis and flight simulation, as well as providing CFD support for aerodynamic, propulsion, and aerothermal analysis.
VAB Platform K(2) Lift & Install into Highbay 3
2016-03-07
Work is underway to secure the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket in High Bay 3 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being secured into position on tower E, about 86 feet above the floor. The K work platforms will provide access to NASA's Space Launch System (SLS) core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.
KSC VAB Aeroacoustic Hazard Assessment
NASA Technical Reports Server (NTRS)
Oliveira, Justin M.; Yedo, Sabrina; Campbell, Michael D.; Atkinson, Joseph P.
2010-01-01
NASA Kennedy Space Center (KSC) carried out an analysis of the effects of aeroacoustics produced by stationary solid rocket motors in processing areas at KSC. In the current paper, attention is directed toward the acoustic effects of a motor burning within the Vehicle Assembly Building (VAB). The analysis was carried out with support from ASRC Aerospace who modeled transmission effects into surrounding facilities. Calculations were done using semi-analytical models for both aeroacoustics and transmission. From the results it was concluded that acoustic hazards in proximity to the source of ignition and plume can be severe; acoustic hazards in the far-field are significantly lower.
Atlantis begins rolling back to the VAB
NASA Technical Reports Server (NTRS)
2001-01-01
Perched atop its Mobile Launcher Platform, Space Shuttle Atlantis moves back to the Vehicle Assembly Building, via the crawler- transporter underneath, along the crawlerway. The water in the background is part of the Banana River. Atlantis' return to the VAB was determined by Shuttle managers so that inspections, continuity checks and X-ray analysis can be conducted on the 36 solid rocket booster cables located inside each booster's system tunnel. An extensive evaluation of NASA's SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. The launch has been rescheduled no earlier than Feb. 6.
2004-03-26
CAPE CANAVERAL, Fla. -- This aerial photo shows the expanse of the Launch Complex 39 Area, bordered at the top by the Atlantic and a cloud-filled sky. At center right, towering above the surrounding sites, is the Vehicle Assembly Building. To the left is the Orbiter Processing Facility's Bay 3. In the foreground are OPF Bays 1 and 2. The two-lane crawlerway stretches from the VAB toward the coast, site of Launch Pad 39A, closest, and Launch Pad 39B, far left. Between the VAB and the ocean sprawl the Banana Creek and the Banana River. Photo credit: NASA
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines nears the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the VAB, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs up inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs in to the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
2002-01-01
On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the NASA logo on the southeast side of the Vehicle Assembly Building. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The U.S. flag is also being repainted. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On a scaffold barely visible along the south wall of the Vehicle Assembly Building near the NASA logo, workers are covering the holes with corrugated steel so the facility can be returned to performing operational activities. The VAB lost 820 panels from the south wall during the storm, and 25 additional panels pulled off the east wall by Hurricane Jeanne. Another scaffold is suspended near the top of the east wall (right side) for repairs. The VAB stands 525 feet tall. Central Florida, including Kennedy Space Center, has been battered by four hurricanes between Aug. 13 and Sept. 26.
2003-11-17
KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. In the distance, at left, is Launch Pad 39A. The water on the right of the crawlerway is the Banana River. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
2003-11-17
KENNEDY SPACE CENTER, FLA. - Viewed across the turn basin in the Launch Complex 39 Area, the crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB). The journey is in support of engineering analysis vibration tests on the crawler and MLP. The water on the right of the crawlerway is the Banana River. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
Crawler Transporter 2 (CT-2) Trek from Pad 39B to VAB
2017-03-21
Crawler-transport 2 (CT-2) moves slowly along the crawlerway on its way back to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The crawler took a trip to the pad A/B split to test upgrades recently completed that will allow the giant vehicle to handle the load of the agency's Space Launch System rocket and Orion spacecraft atop the mobile launcher. The Ground Systems Development and Operations Program oversaw upgrades to the 50-year-old CT-2. New generators, gear assemblies, jacking, equalizing and leveling (JEL) hydraulic cylinders, roller bearings and brakes were installed, and other components were upgraded to prepare for Exploration Mission 1.
Crawler Transporter 2 (CT-2) Trek from Pad 39B to VAB
2017-03-21
Crawler-transporter 2 (CT-2) moves slowly along the crawlerway on its way back to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The crawler took a trip to the Pad A/B split to test upgrades recently completed that will allow the giant vehicle to handle the load of the agency's Space Launch System rocket and Orion spacecraft atop the mobile launcher. The Ground Systems Development and Operations Program oversaw upgrades to the 50-year-old CT-2. New generators, gear assemblies, jacking, equalizing and leveling (JEL) hydraulic cylinders, roller bearings and brakes were installed, and other components were upgraded to prepare for Exploration Mission 1.
Crawler Transporter 2 (CT-2) Trek from Pad 39B to VAB
2017-03-21
Crawler-transporter 2 (CT-2) moves slowly along the crawlerway toward the Vehicle Assembly Building (in the background) at NASA's Kennedy Space Center in Florida. The crawler took a trip to the Pad A/B split to test upgrades recently completed that will allow the giant vehicle to handle the load of the agency's Space Launch System rocket and Orion spacecraft atop the mobile launcher. The Ground Systems Development and Operations Program oversaw upgrades to the 50-year-old CT-2. New generators, gear assemblies, jacking, equalizing and leveling (JEL) hydraulic cylinders, roller bearings and brakes were installed, and other components were upgraded to prepare for Exploration Mission 1.
STS-103 Discovery rolls over to VAB
NASA Technical Reports Server (NTRS)
1999-01-01
In this aerial view, the orbiter Discovery is out of the Orbiter Processing Facility (OPF) bay 1 and rolling back before onto the tow-way for its rollover to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters before its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.
1999-11-04
KENNEDY SPACE CENTER, FLA. -- Orbiter Discovery is rolled over to the Vehicle Assembly Building from the Orbiter Processing Facility bay 1. In the VAB it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
2016-08-30
A section of the second half of the C-level platforms, C North, for NASA’s Space Launch System (SLS) rocket, arrives at the agency’s Kennedy Space Center in Florida. The platform was offloaded from a heavy lift transport truck and secured in a staging area in the west parking lot of the Vehicle Assembly Building (VAB). The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.
2012-01-20
CAPE CANAVERAL, Fla. -- Protective plastic flanks the nose of space shuttle Atlantis for its move from Orbiter Processing Facility-2 to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Atlantis will be stored temporarily in the VAB while transition and retirement processing resumes on shuttle Endeavour in the processing hangar. Endeavour is being prepared for public display at the California Science Center in Los Angeles. A groundbreaking was held Jan. 18 for Atlantis' future home -- a 65,000-square-foot exhibit in Shuttle Plaza at the Kennedy Space Center Visitor Complex. For additional information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
Miller, Michael A; Ruest, Paul J; Kosinski, Mary; Hanks, Steven K; Greenstein, David
2003-01-15
During sexual reproduction in most animals, oocytes arrest in meiotic prophase and resume meiosis (meiotic maturation) in response to sperm or somatic cell signals. Despite progress in delineating mitogen-activated protein kinase (MAPK) and CDK/cyclin activation pathways involved in meiotic maturation, it is less clear how these pathways are regulated at the cell surface. The Caenorhabditis elegans major sperm protein (MSP) signals oocytes, which are arrested in meiotic prophase, to resume meiosis and ovulate. We used DNA microarray data and an in situ binding assay to identify the VAB-1 Eph receptor protein-tyrosine kinase as an MSP receptor. We show that VAB-1 and a somatic gonadal sheath cell-dependent pathway, defined by the CEH-18 POU-class homeoprotein, negatively regulate meiotic maturation and MAPK activation. MSP antagonizes these inhibitory signaling circuits, in part by binding VAB-1 on oocytes and sheath cells. Our results define a sperm-sensing control mechanism that inhibits oocyte maturation, MAPK activation, and ovulation when sperm are unavailable for fertilization. MSP-domain proteins are found in diverse animal taxa, where they may regulate contact-dependent Eph receptor signaling pathways.
Parallel Quantum Circuit in a Tunnel Junction
NASA Astrophysics Data System (ADS)
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).
Parallel Quantum Circuit in a Tunnel Junction
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-01-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N). PMID:27453262
Parallel Quantum Circuit in a Tunnel Junction.
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-25
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).
Rageth, Christoph J; O'Flynn, Elizabeth Am; Comstock, Christopher; Kurtz, Claudia; Kubik, Rahel; Madjar, Helmut; Lepori, Domenico; Kampmann, Gert; Mundinger, Alexander; Baege, Astrid; Decker, Thomas; Hosch, Stefanie; Tausch, Christoph; Delaloye, Jean-François; Morris, Elisabeth; Varga, Zsuzsanna
2016-09-01
The purpose of this study is to obtain a consensus for the therapy of B3 lesions. The first International Consensus Conference on lesions of uncertain malignant potential in the breast (B3 lesions) including atypical ductal hyperplasia (ADH), flat epithelial atypia (FEA), classical lobular neoplasia (LN), papillary lesions (PL), benign phyllodes tumors (PT), and radial scars (RS) took place in January 2016 in Zurich, Switzerland organized by the International Breast Ultrasound School and the Swiss Minimally Invasive Breast Biopsy group-a subgroup of the Swiss Society of Senology. Consensus recommendations for the management and follow-up surveillance of these B3 lesions were developed and areas of research priorities were identified. The consensus recommendation for FEA, LN, PL, and RS diagnosed on core needle biopsy or vacuum-assisted biopsy (VAB) is to therapeutically excise the lesion seen on imaging by VAB and no longer by open surgery, with follow-up surveillance imaging for 5 years. The consensus recommendation for ADH and PT is, with some exceptions, therapeutic first-line open surgical excision. Minimally invasive management of selected B3 lesions with therapeutic VAB is acceptable as an alternative to first-line surgical excision.
STS-95 Discovery undergoes vertical lift in the VAB
NASA Technical Reports Server (NTRS)
1998-01-01
In the Vehicle Assembly Building, the orbiter Discovery (viewed from behind the Space Shuttle Main Engines) is raised to a vertical position in order to be mated with the external tank. The orbiter displays the recently painted NASA logo, termed the 'meatball,' on its left, or port, wing. The logo also has been painted on both sides of the aft fuselage. Discovery (OV-103), the first of the orbiters to be launched with the new art work, is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.
STS-95 Discovery undergoes vertical lift in the VAB
NASA Technical Reports Server (NTRS)
1998-01-01
In the Vehicle Assembly Building, the orbiter Discovery (viewed from behind the Space Shuttle Main Engines, port side) is raised to a vertical position in order to be mated with the external tank. The orbiter displays the recently painted NASA logo, termed the 'meatball,' on its left, or port, wing. The logo also has been painted on both sides of the aft fuselage. Discovery (OV- 103), the first of the orbiters to be launched with the new art work, is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.
STS-95 Discovery undergoes vertical lift in the VAB
NASA Technical Reports Server (NTRS)
1998-01-01
In the Vehicle Assembly Building, the orbiter Discovery (viewed from below the Space Shuttle Main Engines, starboard side) is raised to a vertical position in order to be mated with the external tank. The orbiter displays the recently painted NASA logo, termed the 'meatball,' on the aft fuselage. The logo also has been painted on the left, or port, wing. Discovery (OV-103), the first of the orbiters to be launched with the new art work, is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.
Variational asymptotic modeling of composite dimensionally reducible structures
NASA Astrophysics Data System (ADS)
Yu, Wenbin
A general framework to construct accurate reduced models for composite dimensionally reducible structures (beams, plates and shells) was formulated based on two theoretical foundations: decomposition of the rotation tensor and the variational asymptotic method. Two engineering software systems, Variational Asymptotic Beam Sectional Analysis (VABS, new version) and Variational Asymptotic Plate and Shell Analysis (VAPAS), were developed. Several restrictions found in previous work on beam modeling were removed in the present effort. A general formulation of Timoshenko-like cross-sectional analysis was developed, through which the shear center coordinates and a consistent Vlasov model can be obtained. Recovery relations are given to recover the asymptotic approximations for the three-dimensional field variables. A new version of VABS has been developed, which is a much improved program in comparison to the old one. Numerous examples are given for validation. A Reissner-like model being as asymptotically correct as possible was obtained for composite plates and shells. After formulating the three-dimensional elasticity problem in intrinsic form, the variational asymptotic method was used to systematically reduce the dimensionality of the problem by taking advantage of the smallness of the thickness. The through-the-thickness analysis is solved by a one-dimensional finite element method to provide the stiffnesses as input for the two-dimensional nonlinear plate or shell analysis as well as recovery relations to approximately express the three-dimensional results. The known fact that there exists more than one theory that is asymptotically correct to a given order is adopted to cast the refined energy into a Reissner-like form. A two-dimensional nonlinear shell theory consistent with the present modeling process was developed. The engineering computer code VAPAS was developed and inserted into DYMORE to provide an efficient and accurate analysis of composite plates and shells. Numerical results are compared with the exact solutions, and the excellent agreement proves that one can use VAPAS to analyze composite plates and shells efficiently and accurately. In conclusion, rigorous modeling approaches were developed for composite beams, plates and shells within a general framework. No such consistent and general treatment is found in the literature. The associated computer programs VABS and VAPAS are envisioned to have many applications in industry.
2009-10-24
CAPE CANAVERAL, Fla. – External tank 134 is towed toward the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Pegasus barge, carrying the fuel tank, arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. Next, the tank will be transported into the VAB where it will be stored until needed. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – External tank 134 emerges from the Pegasus barge docked in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. The fuel tank next will be transported into the VAB where it will be stored until needed. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2011-05-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, an adult osprey guards its young in a nest built on a platform in the Press Site parking lot. In the background is the 12,300-square-foot NASA logo painted on the side of the Vehicle Assembly Building (VAB). The VAB and Press Site are located at the Turn Basin in Launch Complex 39, making it an ideal osprey nesting place. The Merritt Island National Wildlife Refuge overlaps with Kennedy Space Center property and provides a habitat for many types of wildlife, including the osprey, and 330 species of birds. For information on the refuge, visit http://www.fws.gov/merrittisland/Index.html. Photo credit: NASA/Jack Pfaller
1998-03-16
KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Columbia was transferred from Orbiter Processing Facility Bay 3 today to the Vehicle Assembly Building (VAB), where it will be mated to its external tank and solid rocket boosters. Here it is shown in the transfer aisle of the VAB. Columbia is being prepared for the STS-90 mission, carrying the Neurolab payload. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The mission is a joint venture of six space agencies and seven U.S. research agencies. Investigator teams from nine countries will conduct 31 studies in the microgravity environment of space. The launch is targeted for April 16 at 2:19 p.m. EDT
1998-03-16
KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Columbia was transferred from Orbiter Processing Facility Bay 3 today to the Vehicle Assembly Building (VAB), where it will be mated to its external tank and solid rocket boosters. Here it is shown on its way to the VAB. Columbia is being prepared for the STS-90 mission, carrying the Neurolab payload. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The mission is a joint venture of six space agencies and seven U.S. research agencies. Investigator teams from nine countries will conduct 31 studies in the microgravity environment of space. The launch is targeted for April 16 at 2:19 p.m. EDT
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is positioned between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is positioned between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is being lowered between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
Workers painting the Flag and Meatball on the VAB
2007-01-03
Elevated platforms are seen hanging on the side of Kennedy Space Center's Vehicle Assembly Building in a view looking across from the turn basin. To the right is the large external tank barge. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet.
2014-07-23
CAPE CANAVERAL, Fla. – Steel structures surround High Bay 3 inside the Vehicle Assembly Building, or VAB, at NASA’s Kennedy Space Center in Florida. In view, high above, is the 175-ton crane. Banners note the heights of the Saturn V, Space Launch System, or SLS, and shuttle on the steel structure. Modifications are underway in the VAB to prepare High Bay 3 for a new platform system. The modifications are part of a centerwide refurbishment initiative under the Ground Systems Development and Operations Program. High bay 3 is being refurbished to accommodate NASA’s Space Launch System and a variety of other spacecraft. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html. Photo credit: NASA/Dimitri Gerondidakis
Crawler Transporter 2 (CT-2) Trek from Pad 39B to VAB
2017-03-21
A full view of crawler-transporter 2 (CT-2) as it moves slowly along the crawlerway on its way back to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The crawler took a trip to the Pad A/B split to test upgrades recently completed that will allow the giant vehicle to handle the load of the agency's Space Launch System rocket and Orion spacecraft atop the mobile launcher. The Ground Systems Development and Operations Program oversaw upgrades to the 50-year-old CT-2. New generators, gear assemblies, jacking, equalizing and leveling (JEL) hydraulic cylinders, roller bearings and brakes were installed, and other components were upgraded to prepare for Exploration Mission 1.
Donepezil for treatment of cognitive dysfunction in children with Down syndrome aged 10-17.
Kishnani, Priya S; Heller, James H; Spiridigliozzi, Gail A; Lott, Ira; Escobar, Luis; Richardson, Sharon; Zhang, Richard; McRae, Thomas
2010-12-01
The objective of this 10-week, randomized, double-blind, placebo-controlled multicenter study was to assess the efficacy and safety of donepezil for the treatment of cognitive dysfunction exhibited by children with Down syndrome (DS). Intervention comprised donepezil (2.5-10 mg/day) in children (aged 10-17 years) with DS of mild-to-moderate severity. The primary measures were the Vineland-II Adaptive Behavior Scales (VABS-II) Parent/Caregiver Rating Form (PCRF) the sum of nine subdomain standardized scores and standard safety measures. Secondary measures included the VABS-II/PCRF scores on the following domains and their respective individual subdomains: Communication (receptive, expressive, and written); Daily Living Skills (personal, domestic, and community); Socialization (interpersonal relationships, play and leisure time, and coping skills), and scores on the Test of Verbal Expression and Reasoning, a subject-performance-based measure of expressive language. At baseline, 129 participants were assigned treatment with donepezil or placebo. During the double-blind phase, VABS II/PCRF sum of the nine subdomain standardized scores, called v-scores, improved significantly from baseline in both groups (P < 0.0001), with no significant between-group differences. This trial failed to demonstrate any benefit for donepezil versus placebo in children and adolescents with DS, although donepezil appeared to be well tolerated. © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Krimigis, S. M.
2014-12-01
On May 1, 1958 in the Great Hall of the US National Academy of Sciences, James A. Van Allen, having instrumented Explorer-1 and follow-on satellites with radiation detectors, announced the discovery of intense radiation at high altitudes above Earth. The press dubbed the doughnut-shaped structures "Van Allen Belts" (VAB). Soon thereafter, the search began for VAB at nearby planets. Mariner 2 flew by Venus in 1962 at a distance of 41,000 km, but no radiation was detected. The Mariner 4 mission to Mars did not observe planet-associated increase in radiation, but scaling arguments with Earth's magnetosphere yielded an upper limit to the ratio of magnetic moments of MM/ME < 0.001 (Van Allen et al, 1965). Similarly, the Mariner 5 flyby closer to Venus resulted in a ratio of magnetic moments < 0.001 (Van Allen et al, 1967), dealing a blow to the expectation that all planetary bodies must possess significant VAB. The flyby of Mercury in 1974 by Mariner 10 revealed a weak magnetic field, but the presence of durably trapped higher energy particles remained controversial until MESSENGER in 2011.The first flybys of Jupiter by Pioneers 10, 11 in 1973 and 1974, respectively, measured a plethora of energetic particles in Jupiter's magnetosphere and established the fact that their intensities were rotationally modulated. Later flybys of Jupiter and Saturn by the two Voyagers in 1979 and 1981 revealed that those magnetospheres possessed their own internal plasma source(s) and radiation belts. Subsequent discoveries of Van Allen belts at Uranus and Neptune by Voyager 2 demonstrated that VAB are the rule rather than the exception in planetary environments. We now know from the Voyagers and through Energetic Neutral Atom images from Cassini and IBEX that an immense energetic particle population surrounds the heliosphere itself. Thus, the reconnaissance of radiation belts of our solar system has been completed, some 56 years after the discovery of the Van Allen Belts at Earth.
Tilmont Pittala, Elodie; Saint-Georges-Chaumet, Yann; Favrot, Claire; Tanet, Antoine; Cohen, David; Saint-Georges, Catherine
2018-05-12
The outcomes of psycho-educational interventions for Autism Spectrum Disorders (ASDs) comorbid with severe to moderate intellectual disability (ID) are insufficiently documented. In this prospective study, we examined a developmental individual, interactive and intensive approach, called the '3i method', which is based on play therapy. Twenty DSM-IV-TR ASD subjects (mean chronological age 63.8 ± 37.8 months; mean developmental age 19.5 ± 6.6 months) were included and followed the 3i method for 24 months. Developmental and behavioural skills were assessed at baseline and after 24 months using the VABS, PEP-R and Nadel Imitation scale. Autism severity was evaluated using the Child Autism Rating Scale (CARS) and the Autism Diagnostic Interview (ADI-R). After 2 years of the 3i method, our 3 primary outcome variables significantly increased (VABS developmental age of socialization increased by 83%, age of communication by 34%, and Nadel Imitation score by 53%). Almost all VABS and PEP-R domains significantly improved. Additionally, increases in the VABS socialization score were positively correlated with the total number of treatment hours and CARS score; all ADI-R areas significantly decreased; and diagnoses had changed in 47.5% of the subjects (37% for PDD-NOS and even 10.5% for ID without PDD). Children who followed the 3i method for 2 years had significantly improved behavioural and developmental skills and showed a clear decrease in autism severity. These results suggest that the 3i method may be useful for autistic children by improving their daily interactions with their social environment. was retrospectively registered on May 20th, 2014 by the French Agency for drug and health (ANSM) under number ID-RCB 2014-A00542-45, reference: B148558-31.
2007-03-04
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, atop the mobile launcher platform, rolls toward the Vehicle Assembly Building. In the VAB, the shuttle will be examined for hail damage. A severe thunderstorm with golf ball-sized hail caused divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April. Photo credit: NASA/Amanda Diller
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. KSC videographer Glenn Benson and photographer Kenny Allen photograph damage incurred on the south wall of the Vehicle Assembly Building (VAB) that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.
2004-09-14
KENNEDY SPACE CENTER, FLA. - KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building (VAB) that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.
2004-09-14
KENNEDY SPACE CENTER, FLA. - KSC videographer Glenn Benson and photographer Kenny Allen photograph damage incurred on the south wall of the Vehicle Assembly Building (VAB) that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. KSC videographer Glenn Benson adjusts a high definition camera being used to photograph the south wall of the Vehicle Assembly Building (VAB) that sustained damage from Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. The VAB lost 820, 4- x 16-foot panels or more than 52,000 square feet of its surface. There was damage to the roof as well.
2009-10-24
CAPE CANAVERAL, Fla. – NASA's Liberty Star, one of NASA's a solid rocket booster retrieval ships, moves through the locks at Port Canaveral. The ship towed the Pegasus barge, carrying external tank 134, from NASA's Michoud Assembly Facility near New Orleans. A tugboat will bring the barge through the Banana River to its destination in the turn basin near Kennedy Space Center's Vehicle Assembly Building, or VAB, where the tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – Tugboats safely deliver the Pegasus barge, carrying external tank 134, to the dock in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – Tugboats safely deliver the Pegasus barge, carrying external tank 134, to the dock in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – External tank 134 is towed toward the open door of the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Pegasus barge, carrying the fuel tank, arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. Next, the tank will be transported into the VAB where it will be stored until needed. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – A worker tows external tank 134 off the Pegasus barge docked in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After the fuel tank is offloaded, it will be transported into the VAB where it will be stored until needed. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – Tugboats safely deliver the Pegasus barge, carrying external tank 134, to the dock in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – Workers prepare to offload external tank 134 from the Pegasus barge docked in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – External tank 134 is towed toward the looming 525-foot-tall Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Pegasus barge, carrying the fuel tank, arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. Next, the tank will be transported into the VAB where it will be stored until needed. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2011-02-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media photograph space shuttle Endeavour's move, or "rollover," to the Vehicle Assembly Building (VAB) from Orbiter Processing Facility-2. In the VAB, Endeavour will be lifted into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final and upcoming STS-134 mission. Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, spare parts, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA
2011-02-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Endeavour approaches the Vehicle Assembly Building, or VAB, on its move from Orbiter Processing Facility-2 where it was processed for its final mission, STS-134. In the VAB, Endeavour will be lifted into a high bay where it will be joined to its external fuel tank and solid rocket boosters. Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2011-02-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Endeavour approaches the Vehicle Assembly Building, or VAB, on its move from Orbiter Processing Facility-2 where it was processed for its final mission, STS-134. In the VAB, Endeavour will be lifted into a high bay where it will be joined to its external fuel tank and solid rocket boosters. Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2008-12-03
CAPE CANAVERAL, Fla. -- An alligator basks in the sun on the bank of the Banana River near NASA's Kennedy Space Center in Florida. It is witness to the passage of the Pegasus barge through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus, carrying external tank 130, arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After the Pegasus docks, the fuel tank will be offloaded and transported to the VAB. External tank 130 is the one designated for space shuttle Endeavour on the STS-127 mission targeted for launch on May 15. Photo credit: NASA/Troy Cryder
2008-12-03
CAPE CANAVERAL, Fla. -- An alligator basks in the sun on the bank of the Banana River near NASA's Kennedy Space Center in Florida. It is witness to the passage of the Pegasus barge through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus, carrying external tank 130, arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After the Pegasus docks, the fuel tank will be offloaded and transported to the VAB. External tank 130 is the one designated for space shuttle Endeavour on the STS-127 mission targeted for launch on May 15. Photo credit: NASA/Troy Cryder
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank for space shuttle Atlantis' STS-135 mission, ET-138, is prepared for transfer from its test cell to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lifted from its test cell for transfer to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is transferred to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank for space shuttle Atlantis' STS-135 mission, ET-138, is prepared for transfer from its test cell to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is positioned between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lifted from its test cell for transfer to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is transferred to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers guide external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers guide external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
Workers painting the Flag and Meatball on the VAB
2007-01-03
Elevated platforms are seen hanging in front of the NASA Logo on the side of Kennedy Space Center's Vehicle Assembly Building. Also in view on the east side of the building are platforms on the facility's large vertical doors. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet.
1999-11-04
KENNEDY SPACE CENTER, FLA. -- After making a turn in front of the Orbiter Processing Facility (OPF) bay 1, the orbiter Discovery begins moving along the tow-way to the Vehicle Assembly Building as KSC workers watch. At the VAB, Discovery will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
NASA Technical Reports Server (NTRS)
2000-01-01
A bundle of flexible pipes arcing toward the Vehicle Assembly Building (left) and Operations Support Building (right) presents an artistic design to travelers on nearby Kennedy Parkway and Saturn Causeway.
Crawler Transporter 2 (CT-2) Trek from Pad 39B to VAB
2017-03-21
Crawler-transporter 2 (CT-2) moves slowly along the crawlerway on its way back to the Vehicle Assembly Building (in view in the background) at NASA's Kennedy Space Center in Florida. Water sprayed by a truck in front to reduce dust creates a small rainbow. The crawler took a trip to the Pad A/B split to test upgrades recently completed that will allow the giant vehicle to handle the load of the agency's Space Launch System rocket and Orion spacecraft atop the mobile launcher. The Ground Systems Development and Operations Program oversaw upgrades to the 50-year-old CT-2. New generators, gear assemblies, jacking, equalizing and leveling (JEL) hydraulic cylinders, roller bearings and brakes were installed, and other components were upgraded to prepare for Exploration Mission 1.
Mishra, S; Chawla, D; Agarwal, R; Deorari, A K; Paul, V K; Bhutani, V K
2009-12-01
We determined usefulness of transcutaneous bilirubinometry to decrease the need for blood sampling to assay serum total bilirubin (STB) in the management of jaundiced healthy Indian neonates. Newborns, > or =35 weeks' gestation, with clinical evidence of jaundice were enrolled in an institutional approved randomized clinical trial. The severity of hyperbilirubinaemia was determined by two non-invasive methods: i) protocol-based visual assessment of bilirubin (VaB) and ii) transcutaneous bilirubin (TcB) determination (BiliCheck). By a random allocation, either method was used to decide the need for blood sampling, which was defined to be present if assessed STB by allocated method exceeded 80% of hour-specific threshold values for phototherapy (2004 AAP Guidelines). A total of 617 neonates were randomized to either TcB (n = 314) or VaB (n = 303) groups with comparable gestation, birth weight and postnatal age. Need for blood sampling to assay STB was 34% lower (95% CI: 10% to 51%) in the TcB group compared with VaB group (17.5% vs 26.4% assessments; risk difference: -8.9%, 95% CI: -2.4% to -15.4%; p = 0.008). Routine use of transcutaneous bilirubinometry compared with systematic visual assessment of bilirubin significantly reduced the need for blood sampling to assay STB in jaundiced term and late-preterm neonates. (ClinicalTrials.gov number, NCT00653874).
2010-09-28
CAPE CANAVERAL, Fla. -- This overhead view shows the Space Shuttle Program's last external fuel tank, ET-122, as it is being transported to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea, carried in the Pegasus Barge, from NASA's Michoud Assembly Facility in New Orleans. Once inside the VAB, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch Feb. 2011. STS-134 currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kevin O'Connell
2009-10-24
CAPE CANAVERAL, Fla. – At Port Canaveral, a tugboat relieves the Liberty Star for the move of the Pegasus barge, carrying external tank 134, through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by the solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – At Port Canaveral, a tugboat begins to push the Pegasus barge, carrying external tank 134, through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – At Port Canaveral, a tugboat begins to move the Pegasus barge, carrying external tank 134, through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2003-09-15
KENNEDY SPACE CENTER, FLA. - A flatbed truck carrying pieces of Columbia debris arrives in the transfer aisle of the Vehicle Assembly Building. The debris is being transferred to the VAB for permanent storage. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds.
2011-02-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media gather outside of Orbiter Processing Facility-2 to photograph space shuttle Endeavour's move, or "rollover," to the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final and upcoming STS-134 mission. Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, spare parts, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA
2011-02-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-134 Pilot Gregory H. Johnson and Mission Specialist Roberto Vittori with the European Space Agency accompany space shuttle Endeavour's move, or "rollover," to the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final and upcoming STS-134 mission. Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, spare parts, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA
2011-02-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Endeavour approaches the Vehicle Assembly Building, or VAB, on its move from Orbiter Processing Facility-2 where it was processed for its final and upcoming STS-134 mission. In the VAB, Endeavour will be lifted into a high bay where it will be joined to its external fuel tank and solid rocket boosters. Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, spare parts, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2011-02-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media gather outside of Orbiter Processing Facility-2 to photograph space shuttle Endeavour's move, or "rollover," to the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final and upcoming STS-134 mission. Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, spare parts, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA
2011-02-28
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is secured to a transporter for its move, or "rollover" from Orbiter Processing Facility-2 to the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134. Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
Space Shuttle Atlantis rolls back to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
Photographed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis creeps along the crawlerway for the 3.4-mile trek to Launch Pad 39A (upper left). In the background is the Atlantic Ocean; on either side is water from the Banana Creek (left) and Banana River (right). The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA's SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST.
2011-04-25
CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lifted from its test cell for transfer to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
The SSMEPF opens with a ribbon-cutting ceremony
NASA Technical Reports Server (NTRS)
1998-01-01
Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) gather to talk inside the facility following the ceremony. From left, they are Robert B. Sieck, director of Shuttle Processing; KSC Center Director Roy D. Bridges Jr.; U.S. Congressman Dave Weldon; John Plowden, vice president of Rocketdyne; and Donald R. McMonagle, manager of Launch Integration. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.
View of Apollo 15 space vehicle on way from VAB to Pad A, Launch Complex 39
1971-05-11
S71-33781 (11 May 1971) --- High angle view showing the Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A, Launch Complex 39, Kennedy Space Center (KSC). The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. Apollo 15 is scheduled as the fourth manned lunar landing mission by the National Aeronautics and Space Administration (NASA). The crew men will be astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. While astronauts Scott and Irwin descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.
STS-51 preparation: ACTS, ORFEUS, Discovery in VAB
NASA Technical Reports Server (NTRS)
1993-01-01
In NASA's building AM on Cape Canaveral Air Force Station, STS-51 mission specialist Carl Walz (right) and Deutsche Aerospace technician Gregor Dawidowitsch check over the scientific instruments mounted on the Shuttle Pallet Satellite (SPAS) carrier (38573); The Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) and SPAS is readied for hoisting into a test cell at the Vertical Processing Facility (VPF) (38574); Mating of the Advanced Communications Technology Satellite (ACTS) with the Transfer Orbit Stage (TOS) booster is under way in the Payload Hazardous Servicing Facility (PHSF) (38575); The mated ACTS and TOS are ready to be moved from the PHSF to the Vertical Processsing Facility (VPF) (38576); The orbiter Discovery is rolled into the Vehicle Assembly Building (VAB) for mating with the external tank and twin solid rocket boosters (38577-8).
1998-08-31
This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the Bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the 'meatball,' measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls.
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- finds shelter in the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- winds its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- awaits entry into the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
An Engineering Look at Space Shuttle and ISS Operations
NASA Technical Reports Server (NTRS)
Hernandez, Jose M.
2004-01-01
This slide presentation, in Spanish, is an overview of NASA's Space Shuttle operations and preparations for serving the International Space Station. There is information and or views of the shuttle's design, the propulsion system, the external tanks, the foam insulation, the reusable solid rocket motors, the vehicle assembly building (VAB), the mobile launcher platform being moved from the VAB to the launch pad. There is a presentation of some of the current issues with the space shuttle: cracks in the LH2 flow lines, corrosion and pitting, the thermal protection system, and inspection of the thermal protection system while in orbit. The shuttle system has served for more than 20 years, it is still a challenge to re-certify the vehicles for flight. Materials and material science remain as chief concerns for the shuttle,
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VEHICLE ASSEMBLY BUILDING
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
2007-03-04
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, atop the mobile launcher platform, rolls into the Vehicle Assembly Building after leaving Launch Pad 39A. In the VAB, the shuttle will be examined for hail damage. A severe thunderstorm with golf ball-sized hail caused divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April. Photo credit: NASA/Amanda Diller
Yoshizawa, Masato; Yamamoto, Yoshiyuki; O'Quin, Kelly E; Jeffery, William R
2012-12-27
How and why animals lose eyesight during adaptation to the dark and food-limited cave environment has puzzled biologists since the time of Darwin. More recently, several different adaptive hypotheses have been proposed to explain eye degeneration based on studies in the teleost Astyanax mexicanus, which consists of blind cave-dwelling (cavefish) and sighted surface-dwelling (surface fish) forms. One of these hypotheses is that eye regression is the result of indirect selection for constructive characters that are negatively linked to eye development through the pleiotropic effects of Sonic Hedgehog (SHH) signaling. However, subsequent genetic analyses suggested that other mechanisms also contribute to eye regression in Astyanax cavefish. Here, we introduce a new approach to this problem by investigating the phenotypic and genetic relationships between a suite of non-visual constructive traits and eye regression. Using quantitative genetic analysis of crosses between surface fish, the Pachón cavefish population and their hybrid progeny, we show that the adaptive vibration attraction behavior (VAB) and its sensory receptors, superficial neuromasts (SN) specifically found within the cavefish eye orbit (EO), are genetically correlated with reduced eye size. The quantitative trait loci (QTL) for these three traits form two clusters of congruent or overlapping QTL on Astyanax linkage groups (LG) 2 and 17, but not at the shh locus on LG 13. Ablation of EO SN in cavefish demonstrated a major role for these sensory receptors in VAB expression. Furthermore, experimental induction of eye regression in surface fish via shh overexpression showed that the absence of eyes was insufficient to promote the appearance of VAB or EO SN. We conclude that natural selection for the enhancement of VAB and EO SN indirectly promotes eye regression in the Pachón cavefish population through an antagonistic relationship involving genetic linkage or pleiotropy among the genetic factors underlying these traits. This study demonstrates a trade-off between the evolution of a non-visual sensory system and eye regression during the adaptive evolution of Astyanax to the cave environment.
Therapeutic hypothermia after out-of-hospital cardiac arrest in children.
Moler, Frank W; Silverstein, Faye S; Holubkov, Richard; Slomine, Beth S; Christensen, James R; Nadkarni, Vinay M; Meert, Kathleen L; Clark, Amy E; Browning, Brittan; Pemberton, Victoria L; Page, Kent; Shankaran, Seetha; Hutchison, Jamie S; Newth, Christopher J L; Bennett, Kimberly S; Berger, John T; Topjian, Alexis; Pineda, Jose A; Koch, Joshua D; Schleien, Charles L; Dalton, Heidi J; Ofori-Amanfo, George; Goodman, Denise M; Fink, Ericka L; McQuillen, Patrick; Zimmerman, Jerry J; Thomas, Neal J; van der Jagt, Elise W; Porter, Melissa B; Meyer, Michael T; Harrison, Rick; Pham, Nga; Schwarz, Adam J; Nowak, Jeffrey E; Alten, Jeffrey; Wheeler, Derek S; Bhalala, Utpal S; Lidsky, Karen; Lloyd, Eric; Mathur, Mudit; Shah, Samir; Wu, Theodore; Theodorou, Andreas A; Sanders, Ronald C; Dean, J Michael
2015-05-14
Therapeutic hypothermia is recommended for comatose adults after witnessed out-of-hospital cardiac arrest, but data about this intervention in children are limited. We conducted this trial of two targeted temperature interventions at 38 children's hospitals involving children who remained unconscious after out-of-hospital cardiac arrest. Within 6 hours after the return of circulation, comatose patients who were older than 2 days and younger than 18 years of age were randomly assigned to therapeutic hypothermia (target temperature, 33.0°C) or therapeutic normothermia (target temperature, 36.8°C). The primary efficacy outcome, survival at 12 months after cardiac arrest with a Vineland Adaptive Behavior Scales, second edition (VABS-II), score of 70 or higher (on a scale from 20 to 160, with higher scores indicating better function), was evaluated among patients with a VABS-II score of at least 70 before cardiac arrest. A total of 295 patients underwent randomization. Among the 260 patients with data that could be evaluated and who had a VABS-II score of at least 70 before cardiac arrest, there was no significant difference in the primary outcome between the hypothermia group and the normothermia group (20% vs. 12%; relative likelihood, 1.54; 95% confidence interval [CI], 0.86 to 2.76; P=0.14). Among all the patients with data that could be evaluated, the change in the VABS-II score from baseline to 12 months was not significantly different (P=0.13) and 1-year survival was similar (38% in the hypothermia group vs. 29% in the normothermia group; relative likelihood, 1.29; 95% CI, 0.93 to 1.79; P=0.13). The groups had similar incidences of infection and serious arrhythmias, as well as similar use of blood products and 28-day mortality. In comatose children who survived out-of-hospital cardiac arrest, therapeutic hypothermia, as compared with therapeutic normothermia, did not confer a significant benefit in survival with a good functional outcome at 1 year. (Funded by the National Heart, Lung, and Blood Institute and others; THAPCA-OH ClinicalTrials.gov number, NCT00878644.).
1998-07-06
James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998
2009-10-24
CAPE CANAVERAL, Fla. – A bright sun and blue sky herald the passage of the Pegasus barge, carrying external tank 134, through Port Canaveral. The tugboat will move the barge through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – A tugboat moves the Pegasus barge, carrying external tank 134, through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Space Shuttle Atlantis awaits launch on Launch Pad 39A in the background. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – The Pegasus barge, carrying external tank 134, passes through a bridge into the river near Port Canaveral. The tugboat will move the barge through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Viewed across the turn basin in the Launch Complex 39 Area, the crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB). The journey is in support of engineering analysis vibration tests on the crawler and MLP. The water on the right of the crawlerway is the Banana River. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. In the distance, at left, is Launch Pad 39A. The water on the right of the crawlerway is the Banana River. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
Aerial view of Launch Complex 39
NASA Technical Reports Server (NTRS)
1998-01-01
In this aerial view looking south can be seen Launch Complex (LC) 39 area, where assembly, checkout and launch of the Space Shuttle Orbiter and its External Tank and twin Solid Rocket Boosters take place. Central to the complex is the tallest building at the center, the Vehicle Assembly Building (VAB). To the immediate left, from top to bottom, are the Orbiter Processing Facility (OPF) High Bay 3 and new engine shop (north side), OPF Modular Office Building, Thermal Protection System Facility, and a crawler-transporter (to its left). In front of the VAB are OPF 1 and OPF 2. At right is the Processing Control Center. West of OPF 3 is the Mobile Launch Platform. In the upper left corner is Launch Pad B; at the far right is the turn basin, with the Press Site located just below it to the right.
The SSMEPF opens with a ribbon-cutting ceremony
NASA Technical Reports Server (NTRS)
1998-01-01
James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.
View of Apollo 15 space vehicle leaving VAB to Pad A, Launch Complex 39
1971-05-11
S71-33786 (11 May 1971) --- The 363-feet tall Apollo (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle which leaves the Vehicle Assembly Building (VAB) to Pad A, Launch Complex 39, Kennedy Space Center (KSC). The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. Apollo 15 is scheduled as the fourth manned lunar landing mission by the National Aeronautics and Space Administration (NASA) and is scheduled to lift off on July 26, 1971. The crew men will be astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. While astronaut Scott and Irwin will descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.
1998-08-28
KENNEDY SPACE CENTER, FLA. -- The Vehicle Assembly Building (VAB) gets a facelift with the repainting of the American flag and replacing of the bicentennial emblem with the NASA logo. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls
1998-08-31
KENNEDY SPACE CENTER, FLA. -- This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls
1998-08-31
KENNEDY SPACE CENTER, FLA. -- This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the Bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery ventures out in public seemingly "undressed" -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors. The shuttle is rolling from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2, in the background. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past Orbiter Processing Facility-3, or OPF-3, at right, on its way from OPF-2 to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery, as it is seldom seen in public -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its way to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- is welcomed into the Vehicle Assembly Building, or VAB, after its roll from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its move to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley
Yatake, Hidetoshi; Sawai, Yuka; Nishi, Toshio; Nakano, Yoshiaki; Nishimae, Ayaka; Katsuda, Toshizo; Yabunaka, Koichi; Takeda, Yoshihiro; Inaji, Hideo
2017-07-01
The objective of the study was to compare direct measurement with a conventional method for evaluation of clip placement in stereotactic vacuum-assisted breast biopsy (ST-VAB) and to evaluate the accuracy of clip placement using the direct method. Accuracy of clip placement was assessed by measuring the distance from a residual calcification of a targeted calcification clustered to a clip on a mammogram after ST-VAB. Distances in the craniocaudal (CC) and mediolateral oblique (MLO) views were measured in 28 subjects with mammograms recorded twice or more after ST-VAB. The difference in the distance between the first and second measurements was defined as the reproducibility and was compared with that from a conventional method using a mask system with overlap of transparent film on the mammogram. The 3D clip-to-calcification distance was measured using the direct method in 71 subjects. The reproducibility of the direct method was higher than that of the conventional method in CC and MLO views (P = 0.002, P < 0.001). The median 3D clip-to-calcification distance was 2.8 mm, with an interquartile range of 2.0-4.8 mm and a range of 1.1-36.3 mm. The direct method used in this study was more accurate than the conventional method, and gave a median 3D distance of 2.8 mm between the calcification and clip.
Shevell, Michael; Majnemer, Annette; Platt, Robert W; Webster, Richard; Birnbaum, Rena
2005-10-01
Preschool children diagnosed with either global developmental delay (GDD) or developmental language impairment (DLI) were reassessed during their early school years with standardized developmental (Battelle Developmental Inventory [BDI]) and functional (Vineland Adaptive Behavior Scale [VABS]) outcome measures. Of an original cohort of 99 children with GDD and 70 children with DLI assessed and diagnosed at a mean age of 3 years 5 months (SD 1.1) and 3 years 7 months (SD 0.7) respectively, 48 children (34 [71%] males) with GDD and 43 children (36 [84%] males) with DLI were reassessed at a mean age of 7 years 4 months (SD 0.9) and 7 years 5 months (SD 0.7) respectively. The overall total mean BDI score for children with GDD was 66.4 (SD 4.3) versus 71.9 (SD 8.2) for children with DLI (p=0.002). On each subdomain of the BDI, except communication, mean scores for the GDD group were significantly lower than for the DLI group (p<0.05). Similarly, the VABS total score for the GDD group was significantly lower than for the DLI group (p<0.001). For each subdomain of the VABS, the GDD group scored significantly lower than the DLI group (p<0.001). The proportion of children falling below meaningful cut-offs on the outcome measures selected was significantly higher for those initially diagnosed with GDD. Preschool diagnosis of either GDD or DLI has later prognostic validity with regard to persisting developmental and functional deficits.
Investigation of a low NOx full-scale annular combustor
NASA Technical Reports Server (NTRS)
1982-01-01
An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.
NASA Technical Reports Server (NTRS)
1994-01-01
Lockheed Space Operations Company workers in the Extended Duration Orbiter (EDO) Facility, located inside the Vehicle Assembly Building (VAB), carefully hoist the Orbiter Docking System (ODS) from its shipping container into a test stand. The ODS was ship
2007-03-04
KENNEDY SPACE CENTER, FLA. -- A worker walks alongside the massive treads of the crawler-transporter that is moving Space Shuttle Atlantis back to the Vehicle Assembly Building, at right. In the VAB, the shuttle will be examined for hail damage. A severe thunderstorm with golf ball-sized hail caused divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April. Photo credit: NASA/Amanda Diller
2007-03-04
KENNEDY SPACE CENTER, FLA. -- As it rolls back to the Vehicle Assembly Building, Space Shuttle Atlantis, atop the mobile launcher platform, is framed in the photo by winter-stripped branches topped by spring blossoms. In the VAB, the shuttle will be examined for hail damage. A severe thunderstorm with golf ball-sized hail caused divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April. Photo credit: NASA/Amanda Diller
2010-09-28
CAPE CANAVERAL, Fla. -- This panoramic image shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, through the Port Canaveral locks on its way to the Turn Basin at NASA's Kennedy Space Center in Florida. Once docked, the tank will be offloaded from the barge and transported to the Vehicle Assembly Building (VAB). The tank traveled 900 miles by sea, carried in the barge, from NASA's Michoud Assembly Facility in New Orleans. Once inside the VAB, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch Feb. 2011. STS-134 currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
NASA Technical Reports Server (NTRS)
2000-01-01
In the early morning, flocks of birds soar over the Banana River, whose waters reflect the Vehicle Assembly Building , bathed in a pink glow from post-dawn light. Next to the VAB, on the left, is the Launch Control Center. The rectangular building closer to the water at left is the Operations Support Building. At right is the Rotation/Processing Facility. The birds are a common sight at KSC since the Center shares a boundary with the Merritt Island National Wildlife Refuge. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.
2004-01-30
KENNEDY SPACE CENTER, FLA. - The red NASA engine hauls its cargo toward Titusville, Fla. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
Longitudinal Trajectories of Aberrant Behavior in Fragile X Syndrome
Hustyi, Kristin M.; Hall, Scott S.; Jo, Booil; Lightbody, Amy A.; Reiss, Allan L.
2016-01-01
The Aberrant Behavior Checklist—Community (ABC-C; Aman, Burrow, & Wolford, 1995) has been increasingly adopted as a primary tool for measuring behavioral change in clinical trials for individuals with fragile X syndrome (FXS). To our knowledge, however, no study has documented the longitudinal trajectory of aberrant behaviors in individuals with FXS using the ABC-C. As part of a larger longitudinal study, we examined scores obtained on the ABC-C subscales for 124 children and adolescents (64 males, 60 females) with FXS who had two or more assessments (average interval between assessments was approximately 4 years). Concomitant changes in age-equivalent scores on the Vineland Adaptive Behavior Scales (VABS) were also examined. As expected for an X-linked genetic disorder, males with FXS obtained significantly higher scores on all subscales of the ABC-C and significantly lower age-equivalent scores on the VABS than females with FXS. In both males and females with FXS, scores on the Irritability/Agitation and Hyperactivity/Noncompliance subscales of the ABC-C decreased significantly with age, with little to no change occurring over time on the Lethargy/Social Withdrawal, Stereotypic Behavior, and Inappropriate Speech subscales. The decrease in scores on the Hyperactivity/Noncompliance domain was significantly greater for males than for females. In both males and females, age-equivalent scores on the VABS increased significantly over this developmental period. These results establish a basis upon which to evaluate long-term outcomes from intervention-based research. However, longitudinal direct observational studies are needed to establish whether the severity of problem behavior actually decreases over time in this population. PMID:25129200
GENERAL VIEW OF VEHICLE ACCESS PLATFORM CNORTH, HB3, FACING NORTHEAST ...
GENERAL VIEW OF VEHICLE ACCESS PLATFORM C-NORTH, HB-3, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
GENERAL VIEW OF VEHICLE ACCESS PLATFORM ENORTH, HB3, FACING NORTH ...
GENERAL VIEW OF VEHICLE ACCESS PLATFORM E-NORTH, HB-3, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
GENERAL VIEW OF VEHICLE ACCESS PLATFORM ENORTH, HB3, FACING NORTHWEST ...
GENERAL VIEW OF VEHICLE ACCESS PLATFORM E-NORTH, HB-3, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
GENERAL VIEW OF VEHICLE ACCESS PLATFORM DNORTH, HB3, FACING NORTHWEST ...
GENERAL VIEW OF VEHICLE ACCESS PLATFORM D-NORTH, HB-3, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
GENERAL VIEW OF NORTH VEHICLE ACCESS PLATFORMS, HB3, FACING NORTHEAST ...
GENERAL VIEW OF NORTH VEHICLE ACCESS PLATFORMS, HB-3, FACING NORTHEAST TOWARDS CEILING - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
GENERAL VIEW OF VEHICLE ACCESS PLATFORM BNORTH, HB3, FACING NORTH ...
GENERAL VIEW OF VEHICLE ACCESS PLATFORM B-NORTH, HB-3, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL