Sample records for vacancy point defects

  1. System-size convergence of point defect properties: The case of the silicon vacancy

    NASA Astrophysics Data System (ADS)

    Corsetti, Fabiano; Mostofi, Arash A.

    2011-07-01

    We present a comprehensive study of the vacancy in bulk silicon in all its charge states from 2+ to 2-, using a supercell approach within plane-wave density-functional theory, and systematically quantify the various contributions to the well-known finite size errors associated with calculating formation energies and stable charge state transition levels of isolated defects with periodic boundary conditions. Furthermore, we find that transition levels converge faster with respect to supercell size when only the Γ-point is sampled in the Brillouin zone, as opposed to a dense k-point sampling. This arises from the fact that defect level at the Γ-point quickly converges to a fixed value which correctly describes the bonding at the defect center. Our calculated transition levels with 1000-atom supercells and Γ-point only sampling are in good agreement with available experimental results. We also demonstrate two simple and accurate approaches for calculating the valence band offsets that are required for computing formation energies of charged defects, one based on a potential averaging scheme and the other using maximally-localized Wannier functions (MLWFs). Finally, we show that MLWFs provide a clear description of the nature of the electronic bonding at the defect center that verifies the canonical Watkins model.

  2. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uedono, Akira; Yoshihara, Nakaaki; Mizushima, Yoriko

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements ofmore » dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.« less

  3. Defect states of complexes involving a vacancy on the boron site in boronitrene

    NASA Astrophysics Data System (ADS)

    Ngwenya, T. B.; Ukpong, A. M.; Chetty, N.

    2011-12-01

    First principles calculations have been performed to investigate the ground state properties of freestanding monolayer hexagonal boronitrene (h-BN). We have considered monolayers that contain native point defects and their complexes, which form when the point defects bind with the boron vacancy on the nearest-neighbor position. The changes in the electronic structure are analyzed to show the extent of localization of the defect-induced midgap states. The variations in formation energies suggest that defective h-BN monolayers that contain carbon substitutional impurities are the most stable structures, irrespective of the changes in growth conditions. The high energies of formation of the boron vacancy complexes suggest that they are less stable, and their creation by ion bombardment would require high-energy ions compared to point defects. Using the relative positions of the derived midgap levels for the double vacancy complex, it is shown that the quasi-donor-acceptor pair interpretation of optical transitions is consistent with stimulated transitions between electron and hole states in boronitrene.

  4. Native point defects in GaSb

    NASA Astrophysics Data System (ADS)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.

    2014-10-01

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.

  5. Native point defects in GaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.

    2014-10-14

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude.more » We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.« less

  6. On the ab initio calculation of vibrational formation entropy of point defect: the case of the silicon vacancy

    NASA Astrophysics Data System (ADS)

    Seeberger, Pia; Vidal, Julien

    2017-08-01

    Formation entropy of point defects is one of the last crucial elements required to fully describe the temperature dependence of point defect formation. However, while many attempts have been made to compute them for very complicated systems, very few works have been carried out such as to assess the different effects of finite size effects and precision on such quantity. Large discrepancies can be found in the literature for a system as primitive as the silicon vacancy. In this work, we have proposed a systematic study of formation entropy for silicon vacancy in its 3 stable charge states: neutral, +2 and -2 for supercells with size not below 432 atoms. Rationalization of the formation entropy is presented, highlighting importance of finite size error and the difficulty to compute such quantities due to high numerical requirement. It is proposed that the direct calculation of formation entropy of VSi using first principles methods will be plagued by very high computational workload (or large numerical errors) and finite size dependent results.

  7. Characterization of point defects in monolayer arsenene

    NASA Astrophysics Data System (ADS)

    Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence

    2018-06-01

    Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.

  8. Vacancy defect and defect cluster energetics in ion-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Dong, Yufeng; Tuomisto, F.; Svensson, B. G.; Kuznetsov, A. Yu.; Brillson, Leonard J.

    2010-02-01

    We have used depth-resolved cathodoluminescence, positron annihilation, and surface photovoltage spectroscopies to determine the energy levels of Zn vacancies and vacancy clusters in bulk ZnO crystals. Doppler broadening-measured transformation of Zn vacancies to vacancy clusters with annealing shifts defect energies significantly lower in the ZnO band gap. Zn and corresponding O vacancy-related depth distributions provide a consistent explanation of depth-dependent resistivity and carrier-concentration changes induced by ion implantation.

  9. Point defects in hexagonal germanium carbide monolayer: A first-principles calculation

    NASA Astrophysics Data System (ADS)

    Ersan, Fatih; Gökçe, Aytaç Gürhan; Aktürk, Ethem

    2016-12-01

    On the basis of first-principles plane-wave calculations, we investigated the electronic and magnetic properties of various point defects including single Ge and C vacancies, Ge + C divacancy, Ge↔C antisites and the Stone-Wales (SW) defects in a GeC monolayer. We found that various periodic vacancy defects in GeC single layer give rise to crucial effects on the electronic and magnetic properties. The band gaps of GeC monolayer vary significantly from 0.308 eV to 1.738 eV due to the presence of antisites and Stone-Wales defects. While nonmagnetic ground state of semiconducting GeC turns into metal by introducing a carbon vacancy, it becomes half-metal by a single Ge vacancy with high magnetization (4 μB) value per supercell. All the vacancy types have zero net magnetic moments, except single Ge vacancy.

  10. Studies of Point Defects and Defect Interactions in Metals Using Perturbed Gamma Gamma Angular Correlations

    NASA Astrophysics Data System (ADS)

    Shropshire, Steven Leslie

    Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of

  11. Vacancy charged defects in two-dimensional GaN

    NASA Astrophysics Data System (ADS)

    González, Roberto; López-Pérez, William; González-García, Álvaro; Moreno-Armenta, María G.; González-Hernández, Rafael

    2018-03-01

    In this paper, we have studied the structural and electronic properties of vacancy charged defects in the graphene phase (honeycomb type) of gallium nitride (g-GaN) by using first-principle calculations within the framework of the Density Functional Theory. It is found that the vacancies introduce defect levels in the band gap, and these generate a total magnetization in the g-GaN system. The formation energy with different charge states for the vacancies of gallium and nitrogen were calculated, obtaining higher energies than the GaN wurtzite phase (w-GaN). Furthermore, nitrogen vacancies were found to be more stable than gallium vacancies in a whole range of electronic chemical potential. Finally, gallium and nitrogen vacancies produce a nonzero magnetic moment in g-GaN, making it a potential candidate for future spintronics applications.

  12. Effect of vacancy defects on generalized stacking fault energy of fcc metals.

    PubMed

    Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A

    2014-03-19

    Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.

  13. The stability of vacancy-like defects in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Joly, Jean-Francois; Mousseau, Normand

    2013-03-01

    The contribution of vacancy-like defects to the relaxation of amorphous silicon (a-Si) has been a matter of debate for a long time. Due to their disordered nature, there is a large number local environments in which such a defect can exists. Previous numerical studies the vacancy in a-Si have been limited to small systems and very short timescales. Here we use kinectic ART (k-ART), an off-lattice kinetic Monte-Carlo simulation method with on-the-fly catalog building to study the time evolution of 1000 different single vacancy configurations in a well-relaxed a-Si model. Our results show that most of the vacancies are annihlated quickly. In fact, while 16% of the 1000 isolated vacancies survive for more than 1 ns of simulated time, 0.043% remain after 1 ms and only 6 of them survive longer than 0.1 second. Diffusion of the full vacancy is only seen in 19% of the configurations and diffusion usually leads directly to the annihilation of the defect. The actual annihilation event, in which one of the defective atoms fills the vacancy, is usually similar in all the configurations but local bonding environment heavily influence its activation barrier and relaxation energy.

  14. Point Defects in Quenched and Mechanically-Milled Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Sinha, Praveen

    Investigations were made of structural and thermal point defects in the highly-ordered B2 compound PdIn and deformation-induced defects in PdIn and NiAl. The defects were detected through the quadrupole interactions they induce at nearby ^{111}In/Cd probe atoms using the technique of perturbed gamma-gamma angular correlations (PAC). Measurements on annealed PdIn on both sides of stoichiometry show structural defects that are the Pd vacancies on the Pd-poor side of the stoichiometry and Pd antisite atoms on the Pd-rich side. Signals were attributed to various defect configurations near the In/Cd probes. In addition to the first-shell Pd vacancy and second-shell Pd antisite atom configurations previously observed by Hahn and Muller, we observed two Pd-divacancy configurations in the first shell, a fourth-shell Pd vacancy, a second-shell In vacancy and the combination of a first -shell Pd vacancy and fourth-shell Pd vacancy. Vacancies on both the Pd and In sublattices were detected after quenching. Fractions of probe atoms having each type of neighboring vacancy defect were observed to increase monotonically with quenching temperature over the range 825-1500 K. For compositions very close to 50.15 at.% Pd, nearly equal site fractions were observed for Pd and In vacancies, indicating that the Schottky vacancy-pair defect is the thermal defect at high temperature. The formation enthalpy of the Schottky defect was determined from measurements of the Pd-vacancy site fraction to be 1.30(18) eV from analysis of quenching data in the range 825-1200 K, using the law of mass action and assuming a random distribution. Above 1200 K, the Pd-vacancy concentration was observed to be saturated at a value of 1.3(2) atomic percent. For more Pd-rich compositions, evidence was also obtained for a defect reaction in which a Pd antisite atom and Pd vacancy react to form an In vacancy, thereby increasing the In vacancy concentration and decreasing the Pd vacancy concentration. Analysis of

  15. Lithium-ion drifting: Application to the study of point defects in floating-zone silicon

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Wong, Y. K.; Zulehner, W.

    1997-01-01

    The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.

  16. Effect of point defects on the electronic density states of SnC nanosheets: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Majidi, Soleyman; Achour, Amine; Rai, D. P.; Nayebi, Payman; Solaymani, Shahram; Beryani Nezafat, Negin; Elahi, Seyed Mohammad

    In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone-Wales (SW) defects in SnC nanosheets by using density-functional theory (DFT). We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV.

  17. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less

  18. NO-sensing performance of vacancy defective monolayer MoS2 predicted by density function theory

    NASA Astrophysics Data System (ADS)

    Li, Feifei; Shi, Changmin

    2018-03-01

    Using density functional theory (DFT), we predict the NO-sensing performance of monolayer MoS2 (MoS2-MLs) with and without MoS3-vacancy/S-vacancy defects. Our theoretical results demonstrate that MoS3- and S-vacancy defective MoS2-MLs show stronger chemisorption and greater electron transfer effects than pure MoS2-MLs. The charge transfer analysis showed pure and defective MoS2-MLs all act as donors. Both MoS3-vacancy and S-vacancy defects induce dramatic changes of electronic properties of MoS2-MLs, which have direct relationship with gas sensing performance. In addition, S-vacancy defect leads to more electrons transfer to NO molecule than MoS3-vacancy defect. The H2O molecule urges more electrons transfer from MoS3- or S-vacancy defective MoS2-MLs to NO molecule. We believe that this calculation results will provide some information for future experiment.

  19. Migration of defect clusters and xenon-vacancy clusters in uranium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Gao, Fei; Deng, Huiqiu

    2014-07-01

    The possible transition states, minimum energy paths and migration mechanisms of defect clusters and xenon-vacancy defect clusters in uranium dioxide have been investigated using the dimer and the nudged elastic-band methods. The nearby O atom can easily hop into the oxygen vacancy position by overcoming a small energy barrier, which is much lower than that for the migration of a uranium vacancy. A simulation for a vacancy cluster consisting of two oxygen vacancies reveals that the energy barrier of the divacancy migration tends to decrease with increasing the separation distance of divacancy. For an oxygen interstitial, the migration barrier formore » the hopping mechanism is almost three times larger than that for the exchange mechanism. Xe moving between two interstitial sites is unlikely a dominant migration mechanism considering the higher energy barrier. A net migration process of a Xe-vacancy pair containing an oxygen vacancy and a xenon interstitial is identified by the NEB method. We expect the oxygen vacancy-assisted migration mechanism to possibly lead to a long distance migration of the Xe interstitials in UO2. The migration of defect clusters involving Xe substitution indicates that Xe atom migrating away from the uranium vacancy site is difficult.« less

  20. Generation and characterization of point defects in SrTiO3 and Y3Al5O12

    NASA Astrophysics Data System (ADS)

    Selim, F. A.; Winarski, D.; Varney, C. R.; Tarun, M. C.; Ji, Jianfeng; McCluskey, M. D.

    Positron annihilation lifetime spectroscopy (PALS) was applied to characterize point defects in single crystals of Y3Al5O12 and SrTiO3 after populating different types of defects by relevant thermal treatments. In SrTiO3, PALS measurements identified Sr vacancy, Ti vacancy, vacancy complexes of Ti-O (vacancy) and hydrogen complex defects. In Y3Al5O12 single crystals the measurements showed the presence of Al-vacancy, (Al-O) vacancy and Al-vacancy passivated by hydrogen. These defects are shown to play the major role in defining the electronic and optical properties of these complex oxides.

  1. Vacancy-oxygen defects in p-type Si1-xGex

    NASA Astrophysics Data System (ADS)

    Sgourou, E. N.; Londos, C. A.; Chroneos, A.

    2014-10-01

    Oxygen-vacancy defects and, in particular, the VO pairs (known as A-centers) are common defects in silicon (Si) with a deleterious impact upon its properties. Although oxygen-vacancy defects have been extensively studied in Si there is far less information about their properties in p-type doped silicon germanium (Si1-xGex). Here, we use Fourier transform infrared spectroscopy to determine the production and evolution of oxygen-vacancy defects in p-type Si1-xGex. It was determined that the increase of Ge content affects the production and the annealing behavior of the VO defect as well as its conversion to the VO2 defect. In particular, both the VO production and the VO annealing temperature are reduced with the increase of Ge. The conversion ratio [VO2]/[VO] also decreases with the increase of x, although the ratios [VO3]/[VO2] and [VO4]/[VO3] show a tendency to increase for larger Ge contents. The results are discussed in view of recent experimental and theoretical studies in Si and Si1-xGex.

  2. Vacancy-type defects in TiO2/SiO2/SiC dielectric stacks

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.; Burrows, C. P.; Mahapatra, R.; Wright, N. G.

    2007-07-01

    Open-volume (vacancy-type) point defects have been observed in ˜80-nm-thick titanium dioxide films grown on silicon dioxide/4H silicon carbide substrates as stacks with high dielectric constant for power device applications, using variable-energy positron annihilation spectroscopy. The concentration of vacancies decreases as the titanium dioxide growth temperature is increased in the range from 700to1000°C, whereas grain boundaries form in the polycrystalline material at the highest growth temperatures. It is proposed that the optimal electrical performance for films grown at 800°C reflects a balance between decreasing vacancy concentration and increasing grain boundary formation. The concentration of vacancies at the silicon dioxide/silicon carbide interface appears to saturate after 2.5h oxidation at 1150°C. A supplementary result suggests that the quality of the 10-μm-thick deposited silicon carbide epilayer is compromised at depths of about 2μm and beyond, possibly by the migration of impurities and/or other defects from the standard-grade highly doped 4H silicon carbide wafer beneath the epilayer during oxidation.

  3. Influence of vacancy defect on surface feature and adsorption of Cs on GaN(0001) surface.

    PubMed

    Ji, Yanjun; Du, Yujie; Wang, Meishan

    2014-01-01

    The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at B(Ga) site on N vacancy defect surface. The E(ads) of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable.

  4. Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity

    NASA Astrophysics Data System (ADS)

    Pacchioni, Gianfranco

    2000-05-01

    Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.

  5. Influence of Vacancy Defect on Surface Feature and Adsorption of Cs on GaN(0001) Surface

    PubMed Central

    Ji, Yanjun; Du, Yujie; Wang, Meishan

    2014-01-01

    The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at BGa site on N vacancy defect surface. The E ads of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable. PMID:25126599

  6. Point defects in thorium nitride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2016-11-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  7. Estimates of point defect production in α-quartz using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cowen, Benjamin J.; El-Genk, Mohamed S.

    2017-07-01

    Molecular dynamics (MD) simulations are performed to investigate the production of point defects in α-quartz by oxygen and silicon primary knock-on atoms (PKAs) of 0.25-2 keV. The Wigner-Seitz (WS) defect analysis is used to identify the produced vacancies, interstitials, and antisites, and the coordination defect analysis is used to identify the under and over-coordinated oxygen and silicon atoms. The defects at the end of the ballistic phase and the residual defects, after annealing, increase with increased PKA energy, and are statistically the same for the oxygen and silicon PKAs. The WS defect analysis results show that the numbers of the oxygen vacancies and interstitials (VO, Oi) at the end of the ballistic phase is the highest, followed closely by those of the silicon vacancies and interstitials (VSi, Sii). The number of the residual oxygen and silicon vacancies and interstitials are statistically the same. In addition, the under-coordinated OI and SiIII, which are the primary defects during the ballistic phase, have high annealing efficiencies (>89%). The over-coordinated defects of OIII and SiV, which are not nearly as abundant in the ballistic phase, have much lower annealing efficiencies (<63%) that decrease with increased PKA energy.

  8. Point defects in ZnO: an approach from first principles

    PubMed Central

    Oba, Fumiyasu; Choi, Minseok; Togo, Atsushi; Tanaka, Isao

    2011-01-01

    Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree–Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically

  9. Elastic dipoles of point defects from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  10. The evolution of interaction between grain boundary and irradiation-induced point defects: Symmetric tilt GB in tungsten

    NASA Astrophysics Data System (ADS)

    Li, Hong; Qin, Yuan; Yang, Yingying; Yao, Man; Wang, Xudong; Xu, Haixuan; Phillpot, Simon R.

    2018-03-01

    Molecular dynamics method is used and scheme of calculational tests is designed. The atomic evolution view of the interaction between grain boundary (GB) and irradiation-induced point defects is given in six symmetric tilt GB structures of bcc tungsten with the energy of the primary knock-on atom (PKA) EPKA of 3 and 5 keV and the simulated temperature of 300 K. During the collision cascade with GB structure there are synergistic mechanisms to reduce the number of point defects: one is vacancies recombine with interstitials, and another is interstitials diffuse towards the GB with vacancies almost not move. The larger the ratio of the peak defect zone of the cascades overlaps with the GB region, the statistically relative smaller the number of surviving point defects in the grain interior (GI); and when the two almost do not overlap, vacancy-intensive area generally exists nearby GBs, and has a tendency to move toward GB with the increase of EPKA. In contrast, the distribution of interstitials is relatively uniform nearby GBs and is affected by the EPKA far less than the vacancy. The GB has a bias-absorption effect on the interstitials compared with vacancies. It shows that the number of surviving vacancies statistically has increasing trend with the increase of the distance between PKA and GB. While the number of surviving interstitials does not change much, and is less than the number of interstitials in the single crystal at the same conditions. The number of surviving vacancies in the GI is always larger than that of interstitials. The GB local extension after irradiation is observed for which the interstitials absorbed by the GB may be responsible. The designed scheme of calculational tests in the paper is completely applicable to the investigation of the interaction between other types of GBs and irradiation-induced point defects.

  11. A DFT study on the failure mechanism of Al2O3 film by various point defects in solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Hui; Chen, Bao; Jin, Ying; Sun, Dong-Bai

    2018-03-01

    The defects on oxide film surface are very important, and they would occur when the film is peeled or scratched. The periodic DFT calculations have been performed on Al2O3 surface to model the influences of various point-defects. Three kinds of point defect surfaces (vacancy, inversion, substitution) are considered, and the molecular H2O dissociation and the transition state are calculated. The predicted formation energy of O vacancy is 8.30 eV, whereas that corresponding to the formation of Al vacancy is found to be at least a 55% larger. On the vacancy point defect surfaces, upward H2O molecule surfaces prefer to occur chemical reaction, leading the surfaces to be hydroxylated. And then the D-Cl-substitution-Al surface is corroded, which suggests a Cl adsorption induced failure mechanism of the oxide film. At last, the process of H2O dissociation on the OH-substitution-Al surfaces with four or five transition paths are discussed.

  12. A study of vacancy defects related to gray tracks in KTiOPO{sub 4} (KTP) using positron annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Li, Jing; Wang, Jiyang, E-mail: hdjiang@sdu.edu.cn

    For the first time to our knowledge, positron annihilation spectroscopy (PAS) was used to study vacancy defects in KTiOPO{sub 4} (KTP) single crystals. Positron annihilation lifetime spectroscopy combined with dielectric measurements identified the existence of oxygen vacancies and reflected the concentration of vacancy defects in three samples. The vacancy defects in KTP do not consist of monovacancies, but rather vacancy complexes. Doppler broadening indicates that the vacancy defects are distributed uniformly. A relationship is established where a crystal with a low oxygen vacancy concentration and a highly balanced stoichiometry has a higher resistance to gray track formation.

  13. Tight-binding calculation studies of vacancy and adatom defects in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing

    2016-02-19

    Computational studies of complex defects in graphene usually need to deal with a larger number of atoms than the current first-principles methods can handle. We show a recently developed three-center tight-binding potential for carbon is very efficient for large scale atomistic simulations and can accurately describe the structures and energies of various defects in graphene. Using the three-center tight-binding potential, we have systematically studied the stable structures and formation energies of vacancy and embedded-atom defects of various sizes up to 4 vacancies and 4 embedded atoms in graphene. In conclusion, our calculations reveal low-energy defect structures and provide a moremore » comprehensive understanding of the structures and stability of defects in graphene.« less

  14. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-10-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 °C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 °C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 °C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F2 2+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F2 2+ to F+ and this F+ is converted into F centers at 416 nm.

  15. Positron annihilation spectroscopy investigation of vacancy defects in neutron-irradiated 3 C -SiC

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Katoh, Yutai; ...

    2017-03-10

    We described positron annihilation spectroscopy characterization results for neutron-irradiated 3 C -SiC, with a specific focus on explaining the size and character of vacancy clusters as a complement to the current understanding of the neutron irradiation response of 3 C -SiC. Positron annihilation lifetime spectroscopy was used to capture the irradiation temperature and dose dependence of vacancy defects in 3 C -SiC following neutron irradiation from 0.01 to 31 dpa in the temperature range from 380C °to 790C .° The neutral and negatively charged vacancy clusters were identified and quantified. The results suggest that the vacancy defects that were measuredmore » by positron annihilation spectroscopy technique contribute very little to the transient swelling of SiC. Additionally, we used coincidence Doppler broadening measurement to investigate the chemical identity surrounding the positron trapping sites.Finally, we found that silicon vacancy-related defects dominate in the studied materials and the production of the antisite defect C Si may result in an increase in the probability of positron annihilation with silicon core electrons.« less

  16. The annealing mechanism of the radiation-induced vacancy-oxygen defect in silicon

    NASA Astrophysics Data System (ADS)

    Voronkov, V. V.; Falster, R.; Londos, C. A.

    2012-06-01

    Annealing experiments on the VO defect (the A-centre) produced by radiation in silicon—reported long ago—have been re-examined in order to deduce the two most important properties of VO: its diffusivity and the equilibrium constant for VO dissociation into V + O. The loss rate of VO is accounted for by two major reactions. One is the conventional reaction of the trapping of mobile VO by oxygen, thus producing VO2. The other is an annihilation of vacancies, which coexist in an equilibrium ratio with VO, by radiation-produced interstitial point defects. In some cases, a minor reaction, VO + V, should also be taken into account. The emerging minor defects V2O are also highly mobile. They partially dissociate back and partially get trapped by oxygen producing stable V2O2 defects.

  17. First-principles study of point defects in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2014-11-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  18. Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Betsuyaku, K.; Kawasuso, A.

    2008-03-01

    Vacancy defects in ZnO induced by electron irradiation were characterized by the Doppler broadening of annihilation radiation measurements together with the local density approximation calculations. Zinc vacancies (VZn) are responsible for positron trapping in the as-irradiated state. These are annealed out below 200°C . The further annealing at 400°C results in the formation of secondary defects attributed to the complexes composed of zinc vacancies and zinc antisites (VZn-ZnO) .

  19. Dynamics of vacancies in two-dimensional Lennard-Jones crystals

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei; Olvera de La Cruz, Monica

    2015-03-01

    Vacancies represent an important class of crystallographic defects, and their behaviors can be strongly coupled with relevant material properties. We report the rich dynamics of vacancies in two-dimensional Lennard-Jones crystals in several thermodynamic states. Specifically, we numerically observe significantly faster diffusion of the 2-point vacancy with two missing particles in comparison with other types of vacancies; it opens the possibility of doping 2-point vacancies into atomic materials to enhance atomic migration. In addition, the resulting dislocations in the healing of a long vacancy suggest the intimate connection between vacancies and topological defects that may provide an extra dimension in the engineering of defects in extensive crystalline materials for desired properties. We thank the financial support from the U.S. Department of Commerce, National Institute of Standards and Technology, the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research.

  20. Influence of surface vacancy defects on the carburisation of Fe 110 surface by carbon monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane; Mousseau, Normand

    Adsorption and dissociation of gaseous carbon monoxide (CO) on metal surfaces is one of the most frequently occurring processes of carburisation, known as primary initiator of metal dusting corrosion. Among the various factors that can significantly influence the carburisation process are the intrinsic surface defects such as single surface vacancies occurring at high concentrations due to their low formation energy. Intuitively, adsorption and dissociation barriers of CO are expected to be lowered in the vicinity of a surface vacancy, due to the strong attractive interaction between the vacancy and the C atom. Here the adsorption energies and dissociation pathways ofmore » CO on clean and defective Fe 110 surface are explored by means of density functional theory. Interestingly, we find that the O adatom, resulting from the CO dissociation, is unstable in the electron-deficit neighbourhood of the vacancy due to its large electron affinity, and raises the barrier of the carburisation pathway. Still, a full comparative study between the clean surface and the vacancy-defected surface reveals that the complete process of carburisation, starting from adsorption to subsurface diffusion of C, is more favourable in the vicinity of a vacancy defect.« less

  1. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polanco, Carlos A.; Lindsay, Lucas R.

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  2. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE PAGES

    Polanco, Carlos A.; Lindsay, Lucas R.

    2018-01-04

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  3. Ab initio phonon point defect scattering and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos A.; Lindsay, Lucas

    2018-01-01

    We study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitude smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (˜ω0 ) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. This work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.

  4. The Correlation Between Dislocations and Vacancy Defects Using Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Jinbiao; Li, Hui; Zhou, Kai; Wang, Zhu

    2012-07-01

    An analysis program for positron annihilation lifetime spectra is only applicable to isolated defects, but is of no use in the presence of defective correlations. Such limitations have long caused problems for positron researchers in their studies of complicated defective systems. In order to solve this problem, we aim to take a semiconductor material, for example, to achieve a credible average lifetime of single crystal silicon under plastic deformation at different temperatures using positron life time spectroscopy. By establishing reasonable positron trapping models with defective correlations and sorting out four lifetime components with multiple parameters, as well as their respective intensities, information is obtained on the positron trapping centers, such as the positron trapping rates of defects, the density of the dislocation lines and correlation between the dislocation lines, and the vacancy defects, by fitting with the average lifetime with the aid of Matlab software. These results give strong grounds for the existence of dislocation-vacancy correlation in plastically deformed silicon, and lay a theoretical foundation for the analysis of positron lifetime spectra when the positron trapping model involves dislocation-related defects.

  5. Zn-vacancy related defects in ZnO grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ling, F. C. C.; Luo, C. Q.; Wang, Z. L.; Anwand, W.; Wagner, A.

    2017-02-01

    Undoped and Ga-doped ZnO (002) films were grown c-sapphire using the pulsed laser deposition (PLD) method. Znvacancy related defects in the films were studied by different positron annihilation spectroscopy (PAS). These included Doppler broadening spectroscopy (DBS) employing a continuous monenergetic positron beam, and positron lifetime spectroscopy using a pulsed monoenergetic positron beam attached to an electron linear accelerator. Two kinds of Znvacancy related defects namely a monovacancy and a divacancy were identified in the films. In as-grown undoped samples grown with relatively low oxygen pressure P(O2)≤1.3 Pa, monovacancy is the dominant Zn-vacancy related defect. Annealing these samples at 900 oC induced Zn out-diffusion into the substrate and converted the monovacancy to divacancy. For the undoped samples grown with high P(O2)=5 Pa irrespective of the annealing temperature and the as-grown degenerate Ga-doped sample (n=1020 cm-3), divacancy is the dominant Zn-vacancy related defect. The clustering of vacancy will be discussed.

  6. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  7. First-principles investigation of point defect and atomic diffusion in Al2Ca

    NASA Astrophysics Data System (ADS)

    Tian, Xiao; Wang, Jia-Ning; Wang, Ya-Ping; Shi, Xue-Feng; Tang, Bi-Yu

    2017-04-01

    Point defects and atomic diffusion in Al2Ca have been studied from first-principles calculations within density functional framework. After formation energy and relative stability of point defects are investigated, several predominant diffusion processes in Al2Ca are studied, including sublattice one-step mechanism, 3-jump vacancy cycles and antistructure sublattice mechanism. The associated energy profiles are calculated with climbing image nudged elastic band (CI-NEB) method, then the saddle points and activation barriers during atomic diffusion are further determined. The resulted activation barriers show that both Al and Ca can diffuse mainly mediated by neighbor vacancy on their own sublattice. 3-jump cycle mechanism mediated by VCa may make some contribution to the overall Al diffusion. And antistructure (AS) sublattice mechanism can also play an important role in Ca atomic diffusion owing to the moderate activation barrier.

  8. Adsorption Study of a Water Molecule on Vacancy-Defected Nonpolar CdS Surfaces

    PubMed Central

    2017-01-01

    A detailed understanding of the water–semiconductor interface is of major importance for elucidating the molecular interactions at the photocatalyst’s surface. Here, we studied the effect of vacancy defects on the adsorption of a water molecule on the (101̅0) and (112̅0) CdS surfaces, using spin-polarized density functional theory. We observed that the local spin polarization did not persist for most of the cationic vacancies on the surfaces, unlike in bulk, owing to surface reconstructions caused by displaced S atoms. This result suggests that cationic vacancies on these surfaces may not be the leading cause of the experimentally observed magnetism in CdS nanostructures. The surface vacancies are predominantly nonmagnetic except for one case, where a magnetic cationic vacancy is relatively stable due to constraints posed by the (101̅0) surface geometry. At this particular magnetic defect site, we found a very strong interaction with the H2O molecule leading to a case of chemisorption, where the local spin polarization vanishes concurrently. At the same defect site, adsorption of an O2 molecule was also simulated, and the results were found to be consistent with experimental electron paramagnetic resonance findings for powdered CdS. The anion vacancies on these surfaces were always found to be nonmagnetic and did not affect the water adsorption at these surfaces. PMID:28539988

  9. Positron annihilation spectroscopy of vacancy-related defects in CdTe:Cl and CdZnTe:Ge at different stoichiometry deviations

    PubMed Central

    Šedivý, L.; Čížek, J.; Belas, E.; Grill, R.; Melikhova, O.

    2016-01-01

    Positron annihilation spectroscopy (PAS) was used to examine the effect of defined Cd-rich and Te-rich annealing on point defects in Cl-doped CdTe and Ge-doped CdZnTe semi-insulating single crystals. The as-grown crystals contain open-volume defects connected with Cd vacancies . It was found that the Cd vacancies agglomerate into clusters coupled with Cl in CdTe:Cl, and in CdZnTe:Ge they are coupled with Ge donors. While annealing in Cd pressure reduces of the density, subsequent annealing in Te pressure restores . The CdTe:Cl contains negatively-charged shallow traps interpreted as Rydberg states of A-centres and representing the major positron trapping sites at low temperature. Positrons confined in the shallow traps exhibit lifetime, which is shorter than the CdTe bulk lifetime. Interpretation of the PAS data was successfully combined with electrical resistivity, Hall effect measurements and chemical analysis, and allowed us to determine the principal point defect densities. PMID:26860684

  10. Compensating vacancy defects in Sn- and Mg-doped In2O3

    NASA Astrophysics Data System (ADS)

    Korhonen, E.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; Galazka, Z.

    2014-12-01

    MBE-grown Sn- and Mg-doped epitaxial In2O3 thin-film samples with varying doping concentrations have been measured using positron Doppler spectroscopy and compared to a bulk crystal reference. Samples were subjected to oxygen or vacuum annealing and the effect on vacancy type defects was studied. Results indicate that after oxygen annealing the samples are dominated by cation vacancies, the concentration of which changes with the amount of doping. In highly Sn-doped In2O3 , however, these vacancies are not the main compensating acceptor. Vacuum annealing increases the size of vacancies in all samples, possibly by clustering them with oxygen vacancies.

  11. Effects of vacancy defects on the interfacial shear strength of carbon nanotube reinforced polymer composite.

    PubMed

    Chowdhury, Sanjib Chandra; Okabe, Tomonaga; Nishikawa, Masaaki

    2010-02-01

    We investigate the effects of the vacancy defects (i.e., missing atoms) in carbon nanotubes (CNTs) on the interfacial shear strength (ISS) of the CNT-polyethylene composite with the molecular dynamics simulation. In the simulation, the crystalline polyethylene matrix is set up in a hexagonal array with the polymer chains parallel to the CNT axis. Vacancy defects in the CNT are introduced by removing the corresponding atoms from the pristine CNT (i.e., CNT without any defect). Three patterns of vacancy defects with three different sizes are considered. Two types of interfaces, with and without cross-links between the CNT and the matrix are also considered here. Polyethylene chains are used as cross-links between the CNT and the matrix. The Brenner potential is used for the carbon-carbon interaction in the CNT, while the polymer is modeled by a united-atom potential. The nonbonded van der Waals interaction between the CNT and the polymer matrix and within the polymer matrix itself is modeled with the Lennard-Jones potential. To determine the ISS, we conduct the CNT pull-out from the polymer matrix and the ISS has been estimated with the change of total potential energy of the CNT-polymer system. The simulation results reveal that the vacancy defects significantly influence the ISS. Moreover, the simulation clarifies that CNT breakage occurs during the pull-out process for large size vacancy defect which ultimately reduces the reinforcement.

  12. Native point defects in MoS2 and their influences on optical properties by first principles calculations

    NASA Astrophysics Data System (ADS)

    Saha, Ashim Kumar; Yoshiya, Masato

    2018-03-01

    Stability of native point defect species and optical properties are quantitatively examined through first principles calculations in order to identify possible native point defect species in MoS2 and its influences on electronic structures and resultant optical properties. Possible native point defect species are identified as functions of thermodynamic environment and location of Fermi-level in MoS2. It is found that sulphur vacancies can be introduced more easily than other point defect species which will create impurity levels both in bandgap and in valence band. Additionally, antisite Mo and/or Mo vacancies can be created depending on chemical potential of sulphur, both of which will create impurity levels in bandgap and in valence band. Those impurity levels result in pronounced photon absorption in visible light region, though each of these point defects alone has limited impact on the optical properties unless their concentration remained low. Thus, attention must be paid when intentional impurity doping is made to MoS2 to avoid unwanted modification of optical properties of MoS2. Those impurity may enable further exploitation of photovoltaic energy conversion at longer wavelength.

  13. Single-Crystalline Ultrathin Co 3O 4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis

    DOE PAGES

    Cai, Zhao; Bi, Yongmin; Hu, Enyuan; ...

    2017-09-18

    The role of vacancy defects is demonstrated to be positive in various energy-related processes. However, introducing vacancy defects into single-crystalline nanostructures with given facets and studying their defect effect on electrocatalytic properties remains a great challenge. Here this paper deliberately introduces oxygen defects into single-crystalline ultrathin Co 3O 4 nanosheets with O-terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition. As-prepared defect-rich Co 3O 4 nanosheets show a low overpotential of 220 mV with a small Tafel slope of 49.1 mV dec -1 for the oxygen evolution reaction (OER), which is among the best Co-based OERmore » catalysts to date and even more active than the state-of-the-art IrO 2 catalyst. Such vacancy defects are formed by balancing with reducing environments under solvothermal conditions, but are surprisingly stable even after 1000 cycles of scanning under OER working conditions. Density functional theory plus U calculation attributes the enhanced performance to the oxygen vacancies and consequently exposed second-layered Co metal sites, which leads to the lowered OER activation energy of 2.26 eV and improved electrical conductivity. Finally, this mild solvothermal reduction concept opens a new door for the understanding and future designing of advanced defect-based electrocatalysts.« less

  14. Single-Crystalline Ultrathin Co 3O 4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhao; Bi, Yongmin; Hu, Enyuan

    The role of vacancy defects is demonstrated to be positive in various energy-related processes. However, introducing vacancy defects into single-crystalline nanostructures with given facets and studying their defect effect on electrocatalytic properties remains a great challenge. Here this paper deliberately introduces oxygen defects into single-crystalline ultrathin Co 3O 4 nanosheets with O-terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition. As-prepared defect-rich Co 3O 4 nanosheets show a low overpotential of 220 mV with a small Tafel slope of 49.1 mV dec -1 for the oxygen evolution reaction (OER), which is among the best Co-based OERmore » catalysts to date and even more active than the state-of-the-art IrO 2 catalyst. Such vacancy defects are formed by balancing with reducing environments under solvothermal conditions, but are surprisingly stable even after 1000 cycles of scanning under OER working conditions. Density functional theory plus U calculation attributes the enhanced performance to the oxygen vacancies and consequently exposed second-layered Co metal sites, which leads to the lowered OER activation energy of 2.26 eV and improved electrical conductivity. Finally, this mild solvothermal reduction concept opens a new door for the understanding and future designing of advanced defect-based electrocatalysts.« less

  15. Small polarons and point defects in LaFeO3

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.

    The proton-conductive perovskite-type LaFeO3 is a promising negative-electrode material for Ni/metal-hydride (Ni-MH) batteries. It has a discharge capacity up to 530 mAhg-1 at 333 K, which is significantly higher than commercialized AB5-type alloys. To elucidate the underlying mechanism of this performance, we have investigated the structural and electronic properties of bulk LaFeO3, as well as the effect of point defects, using hybrid density functional methods. LaFeO3 is antiferromagnetic in the ground state with a band gap of 3.54 eV. Small hole and electron polarons can form through self- or point-defect-assisted trapping. We find that La vacancies and Sr substitutional on La sites are shallow acceptors with the induced holes trapped as small polarons, while O and Fe vacancies are deep defect centers. Hydrogen interstitials behave like shallow donors, with the donor electrons localized on nearby iron sites as electron polarons. With a large trapping energy, these polarons can act as electron or hole traps and affect the electrical performance of LaFeO3 as the negative electrode for Ni-MH batteries. We acknowledge DOE for financial support.

  16. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the

  17. Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene.

    PubMed

    Zhang, Yajun; Sahoo, Mpk; Wang, Jie

    2016-09-23

    Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.

  18. Migration of Point Defects in the Field of a Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Portnykh, I. A.; Pastukhov, V. I.

    2018-04-01

    The influence of the temperature gradient over the thickness of the cladding of a fuel element of a fast-neutron reactor on the migration of point defects formed in the cladding material due to neutron irradiation has been studied. It has been shown that, under the action of the temperature gradient, the flux of vacancies onto the inner surface of the cladding is higher than the flux of interstitial atoms, which leads to the formation of a specific concentration profile in the cladding with a vacancy-depleted zone near the inner surface. The experimental results on the spatial distribution of pores over the cladding thickness have been presented with which the data on the concentration profiles and vacancy fluxes have been compared.

  19. Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Gurieva, Galina; Valle Rios, Laura Elisa; Franz, Alexandra; Whitfield, Pamela; Schorr, Susan

    2018-04-01

    This work is an experimental study of intrinsic point defects in off-stoichiometric kesterite type CZTSe by means of neutron powder diffraction. We revealed the existence of copper vacancies (VCu), various cation anti site defects (CuZn, ZnCu, ZnSn, SnZn, and CuZn), as well as interstitials (Cui, Zni) in a wide range of off-stoichiometric polycrystalline powder samples synthesized by the solid state reaction. The results show that the point defects present in off-stoichiometric CZTSe agree with the off-stoichiometry type model, assuming certain cation substitutions accounting for charge balance. In addition to the known off-stoichiometry types A-H, new types (I-L) have been introduced. For the very first time, a correlation between the chemical composition of the CZTSe kesterite type phase and the occurring intrinsic point defects is presented. In addition to the off-stoichiometry type specific defects, the Cu/Zn disorder is always present in the CZTSe phase. In Cu-poor/Zn-rich CZTSe, a composition considered as the one that delivers the best photovoltaic performance, mainly copper vacancies, ZnCu and ZnSn anti sites are present. Also, this compositional region shows the lowest degree of Cu/Zn disorder.

  20. Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy.

    PubMed

    González, C; Biel, B; Dappe, Y J

    2016-03-11

    Different S and Mo vacancies as well as their corresponding antisite defects in a free-standing MoS2 monolayer are analysed by means of scanning tunnelling microscopy (STM) simulations. Our theoretical methodology, based on the Keldysh nonequilibrium Green function formalism within the density functional theory (DFT) approach, is applied to simulate STM images for different voltages and tip heights. Combining the geometrical and electronic effects, all features of the different STM images can be explained, providing a valuable guide for future experiments. Our results confirm previous reports on S atom imaging, but also reveal a strong dependence on the applied bias for vacancies and antisite defects that include extra S atoms. By contrast, when additional Mo atoms cover the S vacancies, the MoS2 gap vanishes and a bias-independent bright protrusion is obtained in the STM image. Finally, we show that the inclusion of these point defects promotes the emergence of reactive dangling bonds that may act as efficient adsorption sites for external adsorbates.

  1. Insight into point defects and impurities in titanium from first principles

    NASA Astrophysics Data System (ADS)

    Nayak, Sanjeev K.; Hung, Cain J.; Sharma, Vinit; Alpay, S. Pamir; Dongare, Avinash M.; Brindley, William J.; Hebert, Rainer J.

    2018-03-01

    Titanium alloys find extensive use in the aerospace and biomedical industries due to a unique combination of strength, density, and corrosion resistance. Decades of mostly experimental research has led to a large body of knowledge of the processing-microstructure-properties linkages. But much of the existing understanding of point defects that play a significant role in the mechanical properties of titanium is based on semi-empirical rules. In this work, we present the results of a detailed self-consistent first-principles study that was developed to determine formation energies of intrinsic point defects including vacancies, self-interstitials, and extrinsic point defects, such as, interstitial and substitutional impurities/dopants. We find that most elements, regardless of size, prefer substitutional positions, but highly electronegative elements, such as C, N, O, F, S, and Cl, some of which are common impurities in Ti, occupy interstitial positions.

  2. Polaronic and ionic conduction in NaMnO2: influence of native point defects

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.

    Layered NaMnO2 has promising applications as a cathode material for sodium ion batteries. We will discuss strategies to improve the electrical performance of NaMnO2, including how to optimize the conditions of synthesis and how impurity doping affects the performance. Using hybrid density functional theory, we explored the structural, electronic, and defect properties of bulk NaMnO2. It is antiferromagnetic in the ground state with a band gap of 3.75 eV. Small hole and electron polarons can form in the bulk either through self-trapping or adjacent to point defects. We find that both Na and Mn vacancies are shallow acceptors with the induced holes trapped as small polarons, while O vacancies are deep defect centers. Cation antisites, especially MnNa, are found to have low formation energies. As a result, we expect that MnNa exists in as-grown NaMnO2 in moderate concentrations, rather than forming only at a later stage of the charging process, at which point it causes undesirable structural phase transitions. Both electronic conduction, via polaron hopping, and ionic conduction, through VNa migration, are significantly affected by the presence of point defects. This work was supported by DOE.

  3. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  4. Vacancy Defects as Compensating Centers in Mg-Doped GaN

    NASA Astrophysics Data System (ADS)

    Hautakangas, S.; Oila, J.; Alatalo, M.; Saarinen, K.; Liszkay, L.; Seghier, D.; Gislason, H. P.

    2003-04-01

    We apply positron annihilation spectroscopy to identify VN-MgGa complexes as native defects in Mg-doped GaN. These defects dissociate in postgrowth annealings at 500 800 °C. We conclude that VN-MgGa complexes contribute to the electrical compensation of Mg as well as the activation of p-type conductivity in the annealing. The observation of VN-MgGa complexes confirms that vacancy defects in either the N or Ga sublattice are abundant in GaN at any position of the Fermi level during growth, as predicted previously by theoretical calculations.

  5. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.

    PubMed

    Wang, Weidong; Bai, Liwen; Yang, Chenguang; Fan, Kangqi; Xie, Yong; Li, Minglin

    2018-01-31

    Based on the density functional theory (DFT), the electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS₂ are investigated by using the first-principles method. For the O-doped pure monolayer WS₂, four sizes (2 × 2 × 1, 3 × 3 × 1, 4 × 4 × 1 and 5 × 5 × 1) of supercell are discussed to probe the effects of O doping concentration on the electronic structure. For the 2 × 2 × 1 supercell with 12.5% O doping concentration, the band gap of O-doped pure WS₂ is reduced by 8.9% displaying an indirect band gap. The band gaps in 3 × 3 × 1 and 4 × 4 × 1 supercells are both opened to some extent, respectively, for 5.55% and 3.13% O doping concentrations, while the band gap in 5 × 5 × 1 supercell with 2.0% O doping concentration is quite close to that of the pure monolayer WS₂. Then, two typical point defects, including sulfur single-vacancy (V S ) and sulfur divacancy (V 2S ), are introduced to probe the influences of O doping on the electronic properties of WS₂ monolayers. The observations from DFT calculations show that O doping can broaden the band gap of monolayer WS₂ with V S defect to a certain degree, but weaken the band gap of monolayer WS₂ with V 2S defect. Doping O element into either pure or sulfur vacancy-defect monolayer WS₂ cannot change their band gaps significantly, however, it still can be regarded as a potential method to slightly tune the electronic properties of monolayer WS₂.

  6. Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca3SnO

    NASA Astrophysics Data System (ADS)

    Batool, Javaria; Alay-e-Abbas, Syed Muhammad; Amin, Nasir

    2018-04-01

    The density functional theory based total energy calculations are performed to examine the effect of charge neutral and fully charged intrinsic vacancy defects on the thermodynamic, electronic, and magnetic properties of Ca3SnO antiperovskite. The chemical stability of Ca3SnO is evaluated with respect to binary compounds CaO, CaSn, and Ca2Sn, and the limits of atomic chemical potentials of Ca, Sn, and O atoms for stable synthesis of Ca3SnO are determined within the generalized gradient approximation parametrization scheme. The electronic properties of the pristine and the non-stoichiometric forms of this compound have been explored and the influence of isolated intrinsic vacancy defects (Ca, Sn, and O) on the structural, bonding, and electronic properties of non-stoichiometric Ca3SnO are analyzed. We also predict the possibility of achieving stable ferromagnetism in non-stoichiometric Ca3SnO by means of charge neutral tin vacancies. From the calculated total energies and the valid ranges of atomic chemical potentials, the formation energetics of intrinsic vacancy defects in Ca3SnO are evaluated for various growth conditions. Our results indicate that the fully charged calcium vacancies are thermodynamically stable under the permissible Sn-rich condition of stable synthesis of Ca3SnO, while tin and oxygen vacancies are found to be stable under the extreme Ca-rich condition.

  7. Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uedono, Akira; Malinverni, Marco; Martin, Denis

    Vacancy-type defects in Mg-doped GaN were probed using a monoenergetic positron beam. GaN films with a thickness of 0.5–0.7 μm were grown on GaN/sapphire templates using ammonia-based molecular beam epitaxy and characterized by measuring Doppler broadening spectra. Although no vacancies were detected in samples with a Mg concentration [Mg] below 7 × 10{sup 19 }cm{sup −3}, vacancy-type defects were introduced starting at above [Mg] = 1 × 10{sup 20 }cm{sup −3}. The major defect species was identified as a complex between Ga vacancy (V{sub Ga}) and multiple nitrogen vacancies (V{sub N}s). The introduction of vacancy complexes was found to correlate with a decreasemore » in the net acceptor concentration, suggesting that the defect introduction is closely related to the carrier compensation. We also investigated Mg-doped GaN layers grown using In as the surfactant. The formation of vacancy complexes was suppressed in the subsurface region (≤80 nm). The observed depth distribution of defects was attributed to the thermal instability of the defects, which resulted in the introduction of vacancy complexes during the deposition process.« less

  8. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering

    NASA Astrophysics Data System (ADS)

    Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.

    2018-04-01

    We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.

  9. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects

    NASA Astrophysics Data System (ADS)

    Yuan, Zhipeng; Cui, Hongbao; Guo, Xuefeng

    2017-01-01

    Using the first-principles plane-wave pseudo-potential method based on density functional theory, the effect of vacancy and anti-position defect on the mechanical and thermal properties of B2-NiSc intermetallics were discussed in detail. Several parameters, such as the shear modulus, bulk modulus, modulus of elasticity, C 11-C 11, the Debye temperature and Poisson's ratio, have been calculated to evaluate the effect of vacancy and anti-position defect on the hardness, ductility and thermal properties of B2-NiSc intermetallics. The results show that VNi, ScNi, VSc and NiSc the four point defects all make the crystal hardness decrease and improve plasticity of B2-NiSc intermetallics. The entropy, enthalpy and free energy of VNi, ScNi, VSc and NiSc are monotonously changed as temperature changes. From the perspective of free energy, NiSc is the most stable, while ScNi is the most unstable. Debye temperature of NiSc intermetallics with four different point defects shows VNi, ScNi, VSc and NiSc the four point defects all reduce the stability of B2-NiSc intermetallics. Project supported by the National Natural Science Foundation of China (Nos. 51301063, 51571086) and the Talent Introduction Foundation of Henan Polytechnic University (No. Y-2009).

  10. Molecular dynamics simulations of oxygen vacancy diffusion in SrTiO3.

    PubMed

    Schie, Marcel; Marchewka, Astrid; Müller, Thomas; De Souza, Roger A; Waser, Rainer

    2012-12-05

    A classical force-field model with partial ionic charges was applied to study the behaviour of oxygen vacancies in the perovskite oxide strontium titanate (SrTiO(3)). The dynamical behaviour of these point defects was investigated as a function of temperature and defect concentration by means of molecular dynamics (MD) simulations. The interaction between oxygen vacancies and an extended defect, here a Σ3(111) grain boundary, was also examined by means of MD simulations. Analysis of the vacancy distribution revealed considerable accumulation of vacancies in the envelope of the grain boundary. The possible clustering of oxygen vacancies in bulk SrTiO(3) was studied by means of static lattice calculations within the Mott-Littleton approach. All binary vacancy-vacancy configurations were found to be energetically unfavourable.

  11. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    DOE PAGES

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; ...

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH 3NH 3PbI 3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  12. Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects

    DOE PAGES

    Liu, Ying; Hu, Chongze; Huang, Jingsong; ...

    2015-06-23

    Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the across mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the non-across mode, heat enters or leaves a graphene simultaneously from both sides of its basal plane. Wemore » show that, as the density of vacancy defects in graphene increases from 0 to 8%, the conductance of the interfacial thermal transport in the across mode increases from 160.4 16 to 207.8 11 MW/m2K, while that in the non-across mode increases from 7.2 0.1 to 17.8 0.6 MW/m2K. The molecular mechanisms for these variations of thermal conductance are clarified by using the phonon density of states and structural characteristics of defected graphenes. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene s thermal conductivity always decreases as vacancy defects are introduced.« less

  13. Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P., Jr.; Suzuki, R.; Ishibashi, S.

    2001-09-01

    Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects.

  14. First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material

    NASA Astrophysics Data System (ADS)

    Duan, H.; Dong, Y. Z.; Huang, Y.; Hu, Y. H.; Chen, X. S.

    2016-01-01

    Electronic structures of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material are investigated using first-principles calculations. Si vacancies are too high in energy to play any role in the persistent luminescence of Sr2MgSi2O7 phosphor. Mg vacancies form easier than Sr vacancies as a result of strain relief. Among all the vacancies, O1 vacancies stand out as a likely candidate because they are the most favorable in energy and introduce an empty triply degenerate state just below the CBM and a fully-occupied singlet state at ~1 eV above the VBM, constituting in this case effective hole trap level and electron trap levels, respectively. Mg vacancies are unlikely to explain the persistent luminescence because of its too shallow electron trap level but they may compensate the hole trap associated with O1 vacancies. We yield consistent evidence for the defect physics of these vacancy defects on the basis of the equilibrium properties of Sr2MgSi2O7, total-energy calculations, and electronic structures. The persistent luminescence mechanism of Sr2MgSi2O7:Eu2+, Dy3+ phosphor is also discussed based on our results for O1 vacancies trap center. Our results provide a guide to more refined experiments to control intrinsic traps, whereby probing synthetic strategies toward new improved phosphors.

  15. Study of point- and cluster-defects in radiation-damaged silicon

    NASA Astrophysics Data System (ADS)

    Donegani, Elena M.; Fretwurst, Eckhart; Garutti, Erika; Klanner, Robert; Lindstroem, Gunnar; Pintilie, Ioana; Radu, Roxana; Schwandt, Joern

    2018-08-01

    Non-ionising energy loss of radiation produces point defects and defect clusters in silicon, which result in a significant degradation of sensor performance. In this contribution results from TSC (Thermally Stimulated Current) defect spectroscopy for silicon pad diodes irradiated by electrons to fluences of a few 1014 cm-2 and energies between 3.5 and 27 MeV for isochronal annealing between 80 and 280∘C, are presented. A method based on SRH (Shockley-Read-Hall) statistics is introduced, which assumes that the ionisation energy of the defects in a cluster depends on the fraction of occupied traps. The difference of ionisation energy of an isolated point defect and a fully occupied cluster, ΔEa, is extracted from the TSC data. For the VOi (vacancy-oxygen interstitial) defect ΔEa = 0 is found, which confirms that it is a point defect, and validates the method for point defects. For clusters made of deep acceptors the ΔEa values for different defects are determined after annealing at 80∘C as a function of electron energy, and for the irradiation with 15 MeV electrons as a function of annealing temperature. For the irradiation with 3.5 MeV electrons the value ΔEa = 0 is found, whereas for the electron energies of 6-27 MeV ΔEa > 0. This agrees with the expected threshold of about 5 MeV for cluster formation by electrons. The ΔEa values determined as a function of annealing temperature show that the annealing rate is different for different defects. A naive diffusion model is used to estimate the temperature dependencies of the diffusion of the defects in the clusters.

  16. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2.

    PubMed

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-08

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  17. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  18. Positron annihilation studies of vacancy related defects in ceramic and thin film Pb(Zr,Ti)O3 materials

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Krishnan, A.; Umlor, M. T.; Lynn, K. G.; Warren, W. L.; Dimos, D.; Tuttle, B. A.

    Preliminary positron annihilation studies of ceramic and thin film Pb(Zr,Ti)O3 (PZT) materials have been completed. This paper examines effects of processing conditions on vacancy related defects. Positron lifetime measurements on bulk PLZT plates showed an increase in positron trapping to a defect state with increasing grain size consistent with trapping to lead vacancy related defects formed through lead oxide loss during processing. Variable energy positron beam measurements were completed on bulk PLZT plates, sol-gel PZT thin films, and laser ablated PLZT thin films. Films processed in a reduced oxygen atmosphere were found to give a higher S-parameter, due to an increase in concentration of neutral or negatively charged vacancy type defects, compared with material processed in an oxidizing ambient.

  19. Point defect induced segregation of alloying solutes in α-Fe

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Zhang, Yange; Li, Xiangyan; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.

    2016-10-01

    Segregation of alloying solute toward clusters and precipitates can result in hardening and embrittlement of ferritic and ferritic/martensitic steels in aging nuclear power plants. Thus, it is essential to study the segregation of solute in α-Fe. In this study, the segregation of eight kinds of alloying solutes (Al, Si, P, S, Ga, Ge, As, Se) in defect-free system and at vacancy, divacancy, and self-interstitial atom in α-Fe has been systematically studied by first-principles calculations. We find that it is energetically favorable for multiple solute S or Se atoms to segregate in defect-free system to form solute clusters, whereas it is very difficult for the other solute atoms to form the similar clusters. With the presence of vacancy and divacancy, the segregation of all the solutes are significantly promoted to form vacancy-solute and divacancy-solute clusters. The divacancy-solute cluster is more stable than the vacancy-solute cluster. The most-stable self-interstitial atom 〈110〉 dumbbell is also found to tightly bind with multiple solute atoms. The 〈110〉-S is even more stable than divacancy-S cluster. Meanwhile, the law of mass action is employed to predict the concentration evolution of vacancy-Si, vacancy-P, and vacancy-S clusters versus temperature and vacancy concentration.

  20. Characterization of Point Defects in Lithium Aluminate (LiAlO2) Single Crystals

    DTIC Science & Technology

    2015-09-17

    high-quality neutron detectors since 235U and 239Pu, the two isotopes used to fuel nuclear weapons , both emit neu- trons through spontaneous fission of...dissertation has iden- tified and characterized the major point defects created and induced through x ray and neutron radiation using electron paramagnetic... neutron irradiation is an F+ center; an oxygen vacancy with one trapped electron. This defect has two states, a stable state that survives up to 500 ◦C and

  1. Oxygen-related vacancy-type defects in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Pi, X. D.; Burrows, C. P.; Coleman, P. G.; Gwilliam, R. M.; Sealy, B. J.

    2003-10-01

    Czochralski silicon samples implanted to a dose of 5 × 1015 cm-2 with 0.5 MeV O and to a dose of 1016 cm-2 with 1 MeV Si, respectively, have been studied by positron annihilation spectroscopy. The evolution of divacancies to vacancy (V)-O complexes is out-competed by V-interstitial (I) recombination at 400 and 500 °C in the Si- and O-implanted samples; the higher oxygen concentration makes the latter temperature higher. The defective region shrinks as the annealing temperature increases as interstitials are injected from the end of the implantation range (Rp). VmOn (m> n) are formed in the shallow region most effectively at 700 °C for both Si and O implantation. VxOy (x< y) are produced near Rp by the annealing. At 800 °C, implanted Si ions diffuse and reduce m and implanted O ions diffuse and increase n in VmOn. All oxygen-related vacancy-type defects appear to begin to dissociate at 950 °C, with the probable formation of oxygen clusters. At 1100 °C, oxygen precipitates appear to form just before Rp in O-implanted silicon.

  2. Investigation of point and extended defects in electron irradiated silicon—Dependence on the particle energy

    NASA Astrophysics Data System (ADS)

    Radu, R.; Pintilie, I.; Nistor, L. C.; Fretwurst, E.; Lindstroem, G.; Makarenko, L. F.

    2015-04-01

    This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ˜15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V3). Similar to V3, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the "effective NIEL" using results from molecular dynamics simulations.

  3. Influence of Nb addition on vacancy defects and magnetic properties of the nanocrystalline Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Szwaja, Małgorzata; Gębara, Piotr; Filipecki, Jacek; Pawlik, Katarzyna; Przybył, Anna; Pawlik, Piotr; Wysłocki, Jerzy J.; Filipecka, Katarzyna

    2015-05-01

    In present work, influence of Nb addition on vacancy defects and magnetic properties of nanocrystalline Nd-Fe-B permanent magnets, was investigated. Samples with composition (Nd,Fe,B)100-xNbx (where x=6,7,8) were studied in as-cast state and after annealing. Samples were prepared by arc-melting with high purity of constituent elements under Ar atmosphere. Ribbons were obtained by melt-spinning technique under low pressure of Ar. Ribbon samples in as-cast state had amorphous structure and soft magnetic properties. Positron annihilation lifetime spectroscopy PALS has been applied to detection of positron - trapping voids (vacancy defects). With increase of Nb in alloy increasing of vacancy defects concentration was observed. Heat treatment of the samples was carried out at various temperatures (from 923 K to 1023 K) for 5 min, in order to obtain nanocrystalline structure. The aim of present work was to determine the influence of Nb addition and annealing conditions on the vacancy defects and magnetic properties of the Nd-Fe-B- type alloys in as-cast state and after heat treatment.

  4. Vacancies and Vacancy-Mediated Self Diffusion in Cr 2 O 3 : A First-Principles Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medasani, Bharat; Sushko, Maria L.; Rosso, Kevin M.

    Charged and neutral vacancies and vacancy mediated self diffusion in alpha-Cr2O3 were investigated using first principles density functional theory (DFT) and periodic supercell formalism. The vacancy formation energies of charged defects were calculated using the electrostatic finite-size corrections to account for electrostatic interactions between supercells and the corrections for the bandgap underestimation in DFT. Calculations predict that neutral oxygen (O) vacancies are predominant in chromium (Cr)-rich conditions and Cr vacancies with -2 charge state are the dominant defects in O-rich conditions. The charge transition levels of both O and Cr vacancies are deep within the bandgap indicating the stability ofmore » these defects. Transport calculations indicate that vacancy mediated diffusion along the basal plane has lower energy barriers for both O and Cr ions. The most favorable vacancy mediated self diffusion processes correspond to the diffusion of Cr ion in 3+ charge state and O ion in 2- state, respectively. Our calculations reveal that Cr triple defects comprised of Cr in octahedral interstitial sites with two adjacent Cr vacancies along the c-axis have a lower formation energy compared to that of charged Cr vacancies. The formation of such triple defects facilitate Cr self diffusion along the c-axis.« less

  5. Effect of nickel on point defects diffusion in Fe – Ni alloys

    DOE PAGES

    Anento, Napoleon; Serra, Anna; Osetsky, Yury N.

    2017-05-05

    Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of their good radiation damage tolerance and mechanical properties. Understanding of experimentally observed features such as the effect of Ni content to radiation defects evolution is essential for developing predictive models of radiation. Recently an atomic-scale modelling study has revealed one particular mechanism of Ni effect related to the reduced mobility of clusters of interstitial atoms in Fe-Ni alloys. In this paper we present results of the microsecond-scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, diffusion in Fe-Ni alloys. It is found that the additionmore » of Ni atoms affects diffusion processes: diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is reduced and these effects increase at high Ni concentration and low temperature. As a result, the role of Ni solutes in radiation damage evolution in Fe-Ni alloys is discussed.« less

  6. Modeling of point defects and rare gas incorporation in uranium mono-carbide

    NASA Astrophysics Data System (ADS)

    Chartier, A.; Van Brutzel, L.

    2007-02-01

    An embedded atom method (EAM) potential has been established for uranium mono-carbide. This EAM potential was fitted on structural properties of metallic uranium and uranium mono-carbide. The formation energies of point defects, as well as activation energies for self migration, have been evaluated in order to cross-check the suitability of the potential. Assuming that the carbon vacancies are the main defects in uranium mono-carbide compounds, the migration paths and energies are consistent with experimental data selected by Catlow[C.R.A. Catlow, J. Nucl. Mater. 60 (1976) 151]. The insertion and migration energies for He, Kr and Xe have also been evaluated with available inter-atomic potentials [H.H. Andersen, P. Sigmund, Nucl. Instr. and Meth. B 38 (1965) 238]. Results show that the most stable defect configuration for rare gases is within uranium vacancies. The migration energy of an interstitial Xe is 0.5 eV, in agreement with the experimental value of 0.5 eV [Hj. Matzke, Science of advanced LMFBR fuels, Solid State Physics, Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium, North-Holland, 1986].

  7. Tight-binding molecular-dynamics study of point defects in GaAs

    NASA Astrophysics Data System (ADS)

    Seong, Hyangsuk; Lewis, Laurent J.

    1995-08-01

    Tight-binding molecular-dynamics simulations at 0 K have been performed in order to study the effect of defects (vacancies and antisites) in different states of charge on the electronic and structural properties of GaAs. Relaxations are fully included in the model, and for each defect we calculate the local atomic structure, the volume change upon relaxing, the formation energy (including chemical potential contributions), and the ionization levels. We find Ga vacancies to relax by an amount which is independent of the state of charge, consistent with positron lifetime measurements. Our calculations also predict Ga vacancies to exhibit a negative-U effect, and to assume a triply negative charge state for most values of the electron chemical potential. The relaxation of As vacancies, on the contrary, depends sensitively on the state of charge. The model confirms the two experimentally observed ionization levels for this defect, just below the conduction-band minimum. Likewise, Ga antisites exhibit large relaxations. In fact, in the neutral state, relaxation is so large that it leads to a ``broken-bond'' configuration, in excellent accord with the first-principles calculations of Zhang and Chadi [Phys. Rev. Lett. 64, 1789 (1990)]. This system also exhibits a negative-U effect, for values of the electron chemical potential near midgap. For As antisites, we find only a weak relaxation, independent of the charge. The model predicts the neutral state of the defect to be the ground state for values of the electron chemical potential near and above midgap, which supports the view that the EL2 defect is a neutral As antisite. Upon comparing the formation energies of the various defects we finally find that, for all values of the atomic chemical potentials, antisites are most likely to occur than vacancies.

  8. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms.

    PubMed

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-05

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  9. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    NASA Astrophysics Data System (ADS)

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  10. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    PubMed Central

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials. PMID:28053307

  11. Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors

    NASA Astrophysics Data System (ADS)

    Noh, Hyeon-Kyun; Chang, K. J.; Ryu, Byungki; Lee, Woo-Jin

    2011-09-01

    We perform first-principles density functional calculations to investigate the atomic and electronic properties of various O-vacancy (VO) defects in amorphous indium gallium zinc oxides (a-IGZO). The formation energies of VO have a tendency to increase with increasing number of neighboring Ga atoms, whereas they are generally low in the environment surrounded with In atoms. Thus, adding Ga atoms suppresses the formation of O-deficiency defects, which are considered as the origin of device instability in a-IGZO-based thin film transistors. The conduction band edge state is characterized by the In s orbital and insensitive to disorder, in good agreement with the experimental finding that increasing the In content enhances the carrier density and mobility. In a-IGZO, while most VO defects are deep donors, some of the defects act as shallow donors due to local environments different from those in crystalline oxides. As ionized O vacancies can capture electrons, it is suggested that these defects are responsible for positive shifts of the threshold voltage observed under positive gate bias stress. Under light illumination stress, VO defects can be ionized, becoming VO2+ defects due to the negative-U behavior. When electrons are captured by applying a negative bias voltage, ionized VO2+ defects return to the original neutral charge state. Through molecular dynamics simulations, we find that the initial neutral state is restored by annealing, in good agreement with experiments, although the annealing temperature depends on the local environment. Our calculations show that VO defects play an important role in the instability of a-IGZO-based devices.

  12. Stability of vacancy-type defect clusters in Ni based on first-principles and molecular dynamics simulations

    DOE PAGES

    Zhao, Shijun; Zhang, Yanwen; Weber, William J.

    2017-10-17

    Using first-principles calculations based on density-functional theory, the energetics of different vacancy-type defects, including voids, stacking fault tetrahedra (SFT) and vacancy loops, in Ni are investigated. It is found that voids are more stable than SFT at 0 K, which is also the case after taking into account the volumetric strains. By carrying out ab initio molecular dynamics simulations at temperatures up to 1000 K, direct transformations from vacancy loops and voids into SFT are observed. Our results suggest the importance of temperature effects in determining thermodynamic stability of vacancy clusters in face-centered cubic metals.

  13. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  14. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  15. Influence of point defects on the thermal conductivity in FeSi

    NASA Astrophysics Data System (ADS)

    Stern, Robin; Wang, Tao; Carrete, Jesús; Mingo, Natalio; Madsen, Georg K. H.

    2018-05-01

    The unique transport properties of B20 FeSi have been investigated for decades. The progress in theoretical calculations allows the explanation and prediction of more and more of such properties. In this paper we investigate the lattice thermal conductivity of FeSi. Calculation for pristine FeSi severely overestimates the lattice thermal conductivity compared to experiment. We point out that the defect concentration can be considerably larger than indicated by the Hall coefficient. The defect formation energies are calculated and it is found that a substantial amount of iron vacancies can form at thermal equilibrium. These will lead to an increased phonon scattering. To explain the thermal conductivity of FeSi, we consider phonon-phonon, isotope, and phonon-defect scattering to assess possible scattering mechanisms. The calculated thermal conductivities indicate that phonon-defect scattering is important in order to explain the reported experimental values.

  16. Theoretical study of native point defects in strained-layer superlattice systems

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, S.; Yu, Zhi Gang

    2018-04-01

    We developed a theoretical approach that employs first-principles Hamiltonians, tight-binding Hamiltonians, and Green's function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and InAs-InAs1-xSbx strained layer superlattice (SLS) systems. In InAs and GaSb regions, we considered four types of NPDs—anion vacancy, cation vacancy, anion anti-site, and cation anti-site—as well as isoelectronic substitution at anion sites (Sb at the As site and As at the Sb site). Additionally, we considered three types of defects—the cation at the second anion site, the second anion at the cation site, and second anion vacancy—in the InAs1-xSbx alloy region of the SLS. For a selected few designs, we studied NPDs both in the bulk region and near the interfaces of the SLS. We have considered 12 designs of InAs-GaSb systems and two designs of InAs-InAs0.7Sb0.3 systems lattice-matched to the GaSb substrate. The calculated defect levels not only agreed well with available measurements, but also revealed the connection between mid-gap levels and specific NPDs. We further calculated defect formation energies both in compounds and in all superlattices considered above. Since the absolute value of defect formation energy depends considerably on growth conditions, we evaluated the formation energies in SLS with respect to their value in the corresponding bulk or alloy. The calculated defect formation energies, together with defect energy level results, allow us to identify a few promising SLS designs for high-performing photodetectors.

  17. Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun; Kim, Hag-Soo; Song, Min Woo; Lee, Seunghyun; Lee, Sang Yun

    2017-05-01

    Hexagonal boron nitride (h-BN) is an electrical insulator with a large band gap of 5 eV and a good thermal conductor of which melting point reaches about 3000 °C. Due to these properties, much attention was given to the thermal stability rather than the electrical properties of h-BN experimentally and theoretically. In this study, we report calculations that the electronic structure of monolayer h-BN can be influenced by the presence of a vacancy defect which leads to a geometric deformation in the hexagonal lattice structure. The vacancy was varied from mono- to tri-vacancy in a supercell, and different defective structures under the same vacancy density were considered in the case of an odd number of vacancies. Consequently, all cases of vacancy defects resulted in a geometric distortion in monolayer h-BN, and new energy states were created between valence and conduction band with the Fermi level shift. Notably, B atoms around vacancies attracted one another while repulsion happened between N atoms around vacancies, irrespective of vacancy density. The calculation of formation energy revealed that multi-vacancy including more B-vacancies has much lower formation energy than vacancies with more N-vacancies. This work suggests that multi-vacancy created in monolayer h-BN will have more B-vacancies and that the presence of multi-vacancy can make monolayer h-BN electrically conductive by the new energy states and the Fermi level shift.

  18. Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy.

    PubMed

    Kim, Do-Hyun; Kim, Hag-Soo; Song, Min Woo; Lee, Seunghyun; Lee, Sang Yun

    2017-01-01

    Hexagonal boron nitride (h-BN) is an electrical insulator with a large band gap of 5 eV and a good thermal conductor of which melting point reaches about 3000 °C. Due to these properties, much attention was given to the thermal stability rather than the electrical properties of h-BN experimentally and theoretically. In this study, we report calculations that the electronic structure of monolayer h-BN can be influenced by the presence of a vacancy defect which leads to a geometric deformation in the hexagonal lattice structure. The vacancy was varied from mono- to tri-vacancy in a supercell, and different defective structures under the same vacancy density were considered in the case of an odd number of vacancies. Consequently, all cases of vacancy defects resulted in a geometric distortion in monolayer h-BN, and new energy states were created between valence and conduction band with the Fermi level shift. Notably, B atoms around vacancies attracted one another while repulsion happened between N atoms around vacancies, irrespective of vacancy density. The calculation of formation energy revealed that multi-vacancy including more B-vacancies has much lower formation energy than vacancies with more N-vacancies. This work suggests that multi-vacancy created in monolayer h-BN will have more B-vacancies and that the presence of multi-vacancy can make monolayer h-BN electrically conductive by the new energy states and the Fermi level shift.

  19. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu; Groh, S.

    2014-08-14

    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examinemore » the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in

  20. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Wang, Ke-Fan; Zhang, Yang; Guo, Feng-Li; Weng, Hui-Min; Ye, Bang-Jiao

    2009-05-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies.

  1. Role of pre-existing point defects on primary damage production and amorphization in silicon carbide (β-SiC)

    NASA Astrophysics Data System (ADS)

    Sahoo, Deepak Ranjan; Szlufarska, Izabela; Morgan, Dane; Swaminathan, Narasimhan

    2018-01-01

    Molecular dynamics simulations of displacement cascades were conducted to study the effect of point defects on the primary damage production in β-SiC. Although all types of point defects and Frenkel pairs were considered, Si interstitials and Si Frenkel pairs were unstable and hence excluded from the cascade studies. Si (C) vacancies had the maximum influence, enhancing C (Si) antisites and suppressing C interstitial production, when compared to the sample without any defects. The intracascade recombination mechanisms, in the presence of pre-existing defects, is explored by examining the evolution of point defects during the cascade. To ascertain the role of the unstable Si defects on amorphization, simulations involving explicit displacements of Si atoms were conducted. The dose to amorphization with only Si displacements was much lower than what was observed with only C displacements. The release of elastic energy accumulated due to Si defects, is found to be the amorphizing mechanism.

  2. Vacancy-like defects in nanocrystalline SnO2: influence of the annealing treatment under different atmospheres

    NASA Astrophysics Data System (ADS)

    Macchi, C.; Ponce, M. A.; Desimone, P. M.; Aldao, C. M.; Somoza, A.

    2018-03-01

    The study of electronic and chemical properties of semiconductor oxides is motivated by their several applications. In particular, tin oxide is widely used as a solid state gas sensor material. In this regard, the defect structure has been proposed to be crucial in determining the resulting film conductivity and then its sensitivity. Here, the characteristics of vacancy-like defects in nanocrystalline commercial high-purity tin oxide powders and the influence of the annealing treatment under different atmospheres are presented. Specifically, SnO2 nanopowders were annealed at 330 °C under three different types of atmospheres: inert (vacuum), oxidative (oxygen) and reductive (hydrogen). The obtained experimental results are discussed in terms of the vacancy-like defects detected, shedding light to the basic conduction mechanisms, which are responsible for gas detection.

  3. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  4. Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations

    DOE PAGES

    Zhang, Lipeng; Liu, Bin; Zhuang, Houlong; ...

    2016-04-01

    Point defects and point defect diffusion contribute significantly to the properties of perovskite materials. However, even for the prototypical case of oxygen vacancies in SrTiO 3 (STO), predictions vary widely. Here we present a comprehensive and systematic study of the diffusion barriers for this material. We use density functional theory (DFT) and assess the role of different cell sizes, density functionals, and charge states. Our results show that vacancy-induced octahedral rotations, which are limited by the boundary conditions of the supercell, can significantly affect the computed oxygen vacancy diffusion energy barrier. The diffusion energy barrier of a charged oxygen vacancymore » is lower than that of a neutral one. Unexpectedly, we find that with increasing supercell size, the effects of the oxygen vacancy charge state, the type of DFT exchange and correlation functional on the energy barrier diminish, and the different DFT predictions asymptote to a value in the range of 0.39-0.49 eV. This work provides important insight and guidance that should be considered for investigations of point defect diffusion in other perovskite materials and in oxide superlattices.« less

  5. Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen

    NASA Astrophysics Data System (ADS)

    Nieman, Reed; Das, Anita; Aquino, Adélia J. A.; Amorim, Rodrigo G.; Machado, Francisco B. C.; Lischka, Hans

    2017-01-01

    Graphene is regarded as one of the most promising materials for nanoelectronics applications. Defects play an important role in modulating its electronic properties and also enhance its chemical reactivity. In this work the reactivity of single vacancies (SV) and double vacancies (DV) in reaction with a hydrogen atom Hr is studied. Because of the complicated open shell electronic structures of these defects due to dangling bonds, multireference configuration interaction (MRCI) methods are being used in combination with a previously developed defect model based on pyrene. Comparison of the stability of products derived from Csbnd Hr bond formation with different carbon atoms of the different polyaromatic hydrocarbons is made. In the single vacancy case the most stable structure is the one where the incoming hydrogen is bound to the carbon atom carrying the dangling bond. However, stable Csbnd Hr bonded structures are also observed in the five-membered ring of the single vacancy. In the double vacancy, most stable bonding of the reactant Hr atom is found in the five-membered rings. In total, Csbnd Hr bonds, corresponding to local energy minimum structures, are formed with all carbon atoms in the different defect systems and the pyrene itself. Reaction profiles for the four lowest electronic states show in the case of a single vacancy a complex picture of curve crossings and avoided crossings which will give rise to a complex nonadiabatic reaction dynamics involving several electronic states.

  6. A tungsten-rhenium interatomic potential for point defect studies

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-01

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

  7. Point defects in CdTe xSe 1-x crystals grown from a Te-rich solution for applications in detecting radiation

    DOE PAGES

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  8. The effect of Ga vacancies on the defect and magnetic properties of Mn-doped GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Joongoo; Chang, K. J.; Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and Korea Institute for Advanced Study, Seoul 130-722

    2007-10-15

    We perform first-principles theoretical calculations to investigate the effect of the presence of Ga vacancy on the defect and magnetic properties of Mn-doped GaN. When a Ga vacancy (V{sub Ga}) is introduced to the Mn ions occupying the Ga lattice sites, a charge transfer occurs from the Mn d band to the acceptor levels of V{sub Ga}, and strong Mn-N bonds are formed between the Mn ion and the N atoms in the neighborhood of V{sub Ga}. The charge transfer and chemical bonding effects significantly affect the defect and magnetic properties of Mn-doped GaN. In a Mn-V{sub Ga} complex, whichmore » consists of a Ga vacancy and one Mn ion, the dangling bond orbital of the N atom involved in the Mn-N bond is electrically deactivated, and the remaining dangling bond orbitals of V{sub Ga} lead to the shallowness of the defect level. When a Ga vacancy forms a complex with two Mn ions located at a distance of about 6 A, which corresponds to the percolation length in determining the Curie temperature in diluted Mn-doped GaN, the Mn d band is broadened and the density of states at the Fermi level is reduced due to two strong Mn-N bonds. Although the broadening and depopulation of the Mn d band weaken the ferromagnetic stability between the Mn ions, the ferromagnetism is still maintained because of the lack of antiferromagnetic superexchange interactions at the percolation length.« less

  9. Point-defect energies in the nitrides of aluminum, gallium, and indium

    NASA Astrophysics Data System (ADS)

    Tansley, T. L.; Egan, R. J.

    1992-05-01

    Experimental data on the nature and energetic location of levels associated with native point defects in the group-III metal nitrides are critically reviewed and compared with theoretical estimates. All three show strong evidence of the existence of a triplet of donorlike states associated with the nitrogen vacancy. Ground states are at about 150, 400, and 900 meV from the conduction-band edge in InN, GaN, and AlN, respectively, with their charged derivatives lying closer to the band edge. These values agree with both modified-hydrogenic and deep-level calculations, surprisingly well in view of the inherent approximations in each in this depth range. The InN donor ground state is both optically active and usually occupied, showing a distinctive absorption band which is very well described by quantum-defect analysis. Variation of threshold with electron concentration shows a Moss-Burstein shift commensurate with that observed in band-to-band absorption. In both GaN and AlN, levels have been identified at about 1/4EG and about 3/4EG, which correlate well with predictions for the antisite defects NM and MN, respectively, while similar behavior in InN is at odds with theory. The metal-vacancy defect appears to generate a level somewhat below midgap in AlN and close to the valence-band edge in GaN, but has not been located experimentally in InN, where it is predicted to lie very close to the valence-band edge. A tentative scheme for the participation of two of the native defects in GaN, namely VN and NGa, in the four broad emission bands found in Zn-compensated and undoped GaN is offered.

  10. Density functional theory study of dopant effect on formation energy of intrinsic point defects in germanium crystals

    NASA Astrophysics Data System (ADS)

    Yamaoka, S.; Kobayashi, K.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    During the last decade the use of single crystal germanium (Ge) layers and structures in combination with silicon (Si) substrates has led to a revival of defect research on Ge. Ge is used because of the much higher carrier mobility compared to Si, allowing to design devices operating at much higher frequencies. A major issue for the use of Ge single crystal wafers is the fact that all Czochralski-grown Ge (CZ-Ge) crystals are vacancy-rich and contain vacancy clusters that are much larger than the ones in Si. In contrast to Si, control of intrinsic point defect concentrations has not yet been realized at the same level in Ge crystals due to the lack of experimental data especially on dopant effects. In this study, we have evaluated with density functional theory (DFT) calculations the dopant effect on the formation energy (Ef) of the uncharged vacancy (V) and self-interstitial (I) in Ge and compared the results with those for Si. The dependence of the total thermal equilibrium concentrations of point defects (sum of free V or I and V or I paired with dopant atoms) at melting temperature on the type and concentration of various dopants is obtained. It was found that (1) Ge crystals will be more V-rich by Tl, In, Sb, Sn, As and P doping, (2) Ge crystals will be more I-rich by Ga, C and B doping, (3) Si doping has negligible impact. The dopant impact on Ef of V and I in Ge has a narrower range and is smaller than that in Si. The obtained results are useful to control grown-in V and I concentrations, and will perhaps also allow to develop defect-free ;perfect; Ge crystals.

  11. Phonons in quantum solids with defects. [lattice vacancies and interstitials in solid helium and metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Jacobi, N.; Zmuidzinas, J. S.

    1974-01-01

    A formalism was developed for temperature-dependent, self-consistent phonons in quantum solids with defects. Lattice vacancies and interstitials in solid helium and metallic hydrogen, as well as electronic excitations in solid helium, were treated as defects that modify properties of these systems. The information to be gained from the modified phonon spectrum is discussed.

  12. Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction

    DOE PAGES

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less

  13. Identification of nickel-vacancy defects by combining experimental and ab initio simulated photocurrent spectra

    NASA Astrophysics Data System (ADS)

    Londero, E.; Bourgeois, E.; Nesladek, M.; Gali, A.

    2018-06-01

    There is a continuous search for solid state spin qubits operating at room temperature with excitation in the infrared communication bandwidth. Recently, we have introduced the photoelectric detection of magnetic resonance (PDMR) to read the electron spin state of nitrogen-vacancy (NV) centers in diamond, a technique which is promising for applications in quantum information technology. By measuring the photoionization spectra on a diamond crystal, we found two ionization thresholds of unknown origin. On the same sample we also observed absorption and photoluminescence signatures that were identified in the literature as Ni-associated defects. We performed ab initio calculations of the photoionization cross section of the nickel split-vacancy complex (NiV) and N-related defects in their relevant charge states and fitted the concentration of these defects to the measured photocurrent spectrum, which led to a surprising match between experimental and calculated spectra. This study enabled us to identify the two unknown ionization thresholds with the two acceptor levels of NiV. Because the excitation of NiV is in the infrared, the photocurrent detected from the paramagnetic NiV color centers is a promising way towards the design of electrically readout qubits.

  14. Positron annihilation study of vacancy-type defects in fast-neutron-irradiated MgO·nAl2O3

    NASA Astrophysics Data System (ADS)

    Rahman, Abu Zayed Mohammad Saliqur; Li, Zhuoxin; Cao, Xingzhong; Wang, Baoyi; Wei, Long; Xu, Qiu; Atobe, Kozo

    2014-09-01

    The positron lifetimes of fast-neutron-irradiated MgO·nAl2O3 single crystals were measured to investigate the formation of cation vacancies. Al monovacancy was possibly observed in samples irradiated by fast neutrons at ultra-low temperatures. Additionally, vacancy-oxygen complex centers were possibly observed in samples irradiated at higher temperatures and fast neutron fluences. Coincidence Doppler broadening (CDB) spectra were measured to obtain information regarding the vicinity of vacancy-type defects. A peak at approximately 11 × 10-3 m0c was observed, which may be due to the presence of oxygen atoms in the neighborhood of the vacancies.

  15. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    DOE PAGES

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...

    2015-06-16

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less

  16. A tungsten-rhenium interatomic potential for point defect studies

    DOE PAGES

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-28

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  17. A tungsten-rhenium interatomic potential for point defect studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  18. Vacancy-hydrogen complexes in ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.

    2014-10-01

    We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.

  19. Direct observation of Sr vacancies in SrTiO 3 by quantitative scanning transmission electron microscopy

    DOE PAGES

    Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh; ...

    2016-12-22

    Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less

  20. Direct observation of Sr vacancies in SrTiO 3 by quantitative scanning transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh

    Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less

  1. Stiffness and strength of oxygen-functionalized graphene with vacancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zandiatashbar, A.; Ban, E.; Picu, R. C., E-mail: picuc@rpi.edu

    2014-11-14

    The 2D elastic modulus (E{sup 2D}) and strength (σ{sup 2D}) of defective graphene sheets containing vacancies, epoxide, and hydroxyl functional groups are evaluated at 300 K by atomistic simulations. The fraction of vacancies is controlled in the range 0% to 5%, while the density of functional groups corresponds to O:C ratios in the range 0% to 25%. In-plane modulus and strength diagrams as functions of vacancy and functional group densities are generated using models with a single type of defect and with combinations of two types of defects (vacancies and functional groups). It is observed that in models containing only vacancies,more » the rate at which strength decreases with increasing the concentration of defects is largest, followed by models containing only epoxide groups and those with only hydroxyl groups. The effect on modulus of vacancies and epoxides present alone in the model is similar, and much stronger than that of hydroxyl groups. When the concentration of defects is large, the combined effect of the functional groups and vacancies cannot be obtained as the superposition of individual effects of the two types of defects. The elastic modulus deteriorates faster (slower) than predicted by superposition in systems containing vacancies and hydroxyl groups (vacancies and epoxide groups)« less

  2. Synchrotron VUV-UV and positron lifetime spectroscopy study of vacancy-type defects in reactor neutron-irradiated MgO.nAl2O3 (n = 2)

    NASA Astrophysics Data System (ADS)

    Rahman, Abu Zayed Mohammad Saliqur; Cao, Xingzhong; Wang, Baoyi; Evslin, Jarah; Xu, Qiu; Atobe, Kozo

    2016-12-01

    We investigated neutron-irradiation-induced point defects in spinel single crystals using a synchrotron VUV-UV source and positron lifetime spectroscopy. Photoexcitation (PE) spectra near 230 nm and their corresponding photoluminescence (PL) spectra at 475 nm were attributed to F-centers. With increasing irradiation temperature and fluence, PE efficiency and PL intensity decreased dramatically. Positron lifetimes (PLT) of neutron-irradiated and non-irradiated samples were measured to identify the cation vacancies. A PLT measurement of 250 ps was obtained in a neutron-irradiated (20 K) sample which is tentatively attributed to an aluminum monovacancy. Decreasing PLT with higher irradiation indicates the formation of oxygen-vacancy complex centers.

  3. Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon

    2016-03-01

    The magnetic properties of the undoped CuAlO2 thin films with different compositions are examined. In order to understand this phenomenon and to determine the correlation between the magnetic and electrical properties and point defects, the X-ray photoelectron spectroscopy and Hall effect measurements are performed. Combining with Hall effect, X-ray photoelectron spectroscopy and alternating gradient magnetometer measurements, a direct link between the hole concentration, magnetism, copper vacancy (VCu), oxygen vacancy, and interstitial oxygen (Oi) is established. It is shown that an increase in the number of acceptors (VCu and Oi) leads to an increase in the hole concentration. Based on theoretical and experimental investigations, the authors confirmed that both acceptors (VCu and Oi) in CuAlO2 could induce the ferromagnetic behavior at room temperature.

  4. Magnesium Vacancy Segregation and Fast Pipe Diffusion for the ½<110>{110} Edge Dislocation in MgO

    NASA Astrophysics Data System (ADS)

    Walker, A. M.; Zhang, F.; Wright, K.; Gale, J. D.

    2009-12-01

    The movement of point defects in minerals plays a key role in determining their rheological properties, both by permitting diffusional creep and by allowing recovery by dislocation climb. Point defect diffusion can also control the kinetics of phase transitions and grain growth, and can determine the rate of chemical equilibration between phases. Because of this, and the difficulties associated with experimental studies of diffusion, the simulation of point defect formation and migration has been a subject of considerable interest in computational mineral physics. So far, studies have concentrated on point defects moving through otherwise perfect crystals. In this work we examine the behavior of magnesium vacancies close to the core of an edge dislocation in MgO and find that the dislocation dramatically changes the behavior of the point defect. An atomic scale model of the ½<110>{110} edge dislocation in MgO was constructed by applying the anisotropic linear elastic displacement field to the crystal structure and subsequently minimizing the energy of the crystal close to the dislocation core using a parameterized potential model. This process yielded the structure of an isolated edge dislocation in an otherwise perfect crystal. The energy cost associated with introducing magnesium vacancies around the dislocation was then mapped and compared to the formation energy of an isolated magnesium vacancy in bulk MgO. We find that the formation energy of magnesium vacancies around the dislocation mirrors the elastic strain field. Above the dislocation line σxx and σyy are negative and the strain field is compressional. Atoms are squeezed together to make room for the extra half plane effectively increasing the pressure in this region. Below the dislocation line σxx and σyy are positive and the strain field is dilatational. Planes of atoms are pulled apart to avoid a discontinuity across the glide plane and the effective pressure is decreased. In the region with a

  5. Effect of point defects on the amorphization of metallic alloys during ion implantation. [NiTi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedraza, D.F.; Mansur, L.K.

    1985-01-01

    A theoretical model of radiation-induced amorphization of ordered intermetallic compounds is developed. The mechanism is proposed to be the buildup of lattice defects to very high concentrations, which destabilizes the crystalline structure. Because simple point defects do not normally reach such levels during irradiation, a new defect complex containing a vacancy and an interstitial is hypothesized. Crucial properties of the complex are that the interstitial sees a local chemical environment similar to that of an atom in the ordered lattice, that the formation of the complex prevents mutual recombination and that the complex is immobile. The evolution of a disordermore » based on complexes is not accompanied by like point defect aggregation. The latter leads to the development of a sink microstructure in alloys that do not become amorphous. For electron irradiation, the complexes form by diffusional encounters. For ion irradiation, complexes are also formed directly in cascades. The possibility of direct amorphization in cascades is also included. Calculations for the compound NiTi show reasonable agreement with measured amorphization kinetics.« less

  6. Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben

    2016-04-11

    The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350–400 nm tall and ∼90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.

  7. Characterization of oxygen defects in diamond by means of density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Thiering, Gergő; Gali, Adam

    2016-09-01

    Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.

  8. Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Nabatame, Toshihide; Egger, Werner; Koschine, Tönjes; Hugenschmidt, Christoph; Dickmann, Marcel; Sumiya, Masatomo; Ishibashi, Shoji

    2018-04-01

    Defects in the Al2O3(25 nm)/GaN structure were probed by using monoenergetic positron beams. Al2O3 films were deposited on GaN by atomic layer deposition at 300 °C. Temperature treatment above 800 °C leads to the introduction of vacancy-type defects in GaN due to outdiffusion of atoms from GaN into Al2O3. The width of the damaged region was determined to be 40-50 nm from the Al2O3/GaN interface, and some of the vacancies were identified to act as electron trapping centers. In the Al2O3 film before and after annealing treatment at 300-900 °C, open spaces with three different sizes were found to coexist. The density of medium-sized open spaces started to decrease above 800 °C, which was associated with the interaction between GaN and Al2O3. Effects of the electron trapping/detrapping processes of interface states on the flat band voltage and the defects in GaN were also discussed.

  9. On the interplay of point defects and Cd in non-polar ZnCdO films

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Reurings, F.; Tuomisto, F.; Plazaola, F.; García, J. A.; Kuznetsov, A. Yu.; Egger, W.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2013-01-01

    Non-polar ZnCdO films, grown over m- and r-sapphire with a Cd concentration ranging between 0.8% and 5%, have been studied by means of slow positron annihilation spectroscopy (PAS) combined with chemical depth profiling by secondary ion mass spectroscopy and Rutherford back-scattering. Vacancy clusters and Zn vacancies with concentrations up to 1017 cm-3 and 1018 cm-3, respectively, have been measured inside the films. Secondary ion mass spectroscopy results show that most Cd stays inside the ZnCdO film but the diffused atoms can penetrate up to 1.3 μm inside the ZnO buffer. PAS results give an insight to the structure of the meta-stable ZnCdO above the thermodynamical solubility limit of 2%. A correlation between the concentration of vacancy clusters and Cd has been measured. The concentration of Zn vacancies is one order of magnitude larger than in as-grown non-polar ZnO films and the vacancy cluster are, at least partly, created by the aggregation of smaller Zn vacancy related defects. The Zn vacancy related defects and the vacancy clusters accumulate around the Cd atoms as a way to release the strain induced by the substitutional CdZn in the ZnO crystal.

  10. First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.; Song, Hong X.; Jin, K.; Xiang, S. K.; Wu, Q.

    2011-11-01

    Formation Gibbs free energy of point defects and oxygen clusters in uranium dioxide at high-pressure high-temperature conditions are calculated from first principles, using the LSDA+U approach for the electronic structure and the Debye model for the lattice vibrations. The phonon contribution on Frenkel pairs is found to be notable, whereas it is negligible for the Schottky defect. Hydrostatic compression changes the formation energies drastically, making defect concentrations depend more sensitively on pressure. Calculations show that, if no oxygen clusters are considered, uranium vacancy becomes predominant in overstoichiometric UO2 with the aid of the contribution from lattice vibrations, while compression favors oxygen defects and suppresses uranium vacancy greatly. At ambient pressure, however, the experimental observation of predominant oxygen defects in this regime can be reproduced only in a form of cuboctahedral clusters, underlining the importance of defect clustering in UO2+x. Making use of the point defect model, an equation of state for nonstoichiometric oxides is established, which is then applied to describe the shock Hugoniot of UO2+x. Furthermore, the oxidization and compression behavior of uranium monoxide, triuranium octoxide, uranium trioxide, and a series of defective UO2 at 0 K are investigated. The evolution of mechanical properties and electronic structures with an increase of the oxidation degree are analyzed, revealing the transition of the ground state of uranium oxides from metallic to Mott insulator and then to charge-transfer insulator due to the interplay of strongly correlated effects of 5f orbitals and the shift of electrons from uranium to oxygen atoms.

  11. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy.

    PubMed

    Johnson, Jared M; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo

    2017-01-01

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga 2 O 3 and SrTiO 3 , we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra "ripples" at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20-40mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Atomistic simulation of the trapping capability of He-vacancy defects at Ni {\\sum}^{}3\\left(1\\bar{1}2\\right)[110] grain boundary

    NASA Astrophysics Data System (ADS)

    Gong, Hengfeng; Wang, Chengbin; Zhang, Wei; Huai, Ping; Lu, Wei; Zhu, Zhiyuan

    2016-12-01

    He atoms tend to cluster and precipitate into bubbles that prefer to grow in the grain boundaries, resulting in high temperature He embrittlement with significantly degraded material properties. This is a major bottleneck in employing Ni-based alloys for applications such as molten salt reactors (MSRs). This paper focuses on understanding how the local grain boundary structure interacts with He atoms and how the local atomistic environment in the grain boundary influences the binding energy of He defects. Using molecular dynamics simulations, we have investigated the trapping capability of the Ni {\\sum}3≤ft(1 \\bar{1} 2\\right)≤ft[1 1 0\\right] grain boundary to He defects (He N ) and to He-vacancy defects (He N V M ). The two defects in the Ni grain boundary exhibit geometries with high symmetry. The binding energy of an interstitial He atom to He N V M defects is found to be generally larger in pure Ni than that in the grain boundary. We compared the binding energy of He N defects to the Ni vacancy and to the Ni grain boundary, finding that the Ni vacancy possesses a higher trapping strength to He N . We also found that the binding strength of He N to the grain boundary is stronger than that of He N V M to the grain boundary. The He-vacancy ratio in He N V M defects does not significantly affect the binding energy in the grain boundary plane. The current work will provide insight in understanding the experimentally observed He bubble formation in Ni-based alloys and bridge atomic scale events and damage with macroscopic failure.

  13. Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium

    NASA Astrophysics Data System (ADS)

    Daroca, D. Pérez

    2017-02-01

    Research on Generation-IV nuclear reactors has boosted the investigation of thorium as nuclear fuel. By means of first-principles calculations within the framework of density functional theory, structural properties and phonon dispersion curves of Th are obtained. These results agreed very well with previous ones. The stability and formation energies of vacancies, interstitial and divacancies are studied. It is found that vacancies are the energetically preferred defects. The incorporation energies of He, Xe, and Kr atoms in Th defects are analyzed. Self-diffusion, migration paths and activation energies are also calculated.

  14. Probing of O2 vacancy defects and correlated magnetic, electrical and photoresponse properties in indium-tin oxide nanostructures by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamsundar; Dev, Bhupendra Nath

    2018-05-01

    Indium-tin oxide (ITO) 1D nanostructures with tunable morphologies i.e. nanorods, nanocombs and nanowires are grown on c-axis (0 0 0 1) sapphire (Al2O3) substrate in oxygen deficient atmosphere through pulsed laser deposition (PLD) technique and the effect of oxygen vacancies on optical, electrical, magnetic and photoresponse properties is investigated using spectroscopic methods. ITO nanostructures are found to be enriched with significant oxygen vacancy defects as evident from X-ray photoelectron and Raman spectroscopic analysis. Photoluminescence spectra exhibited intense mid-band blue emission at wavelength of region of 400-450 nm due to the electronic transition from conduction band maxima (CBM) to the singly ionized oxygen-vacancy (VO+) defect level within the band-gap. Interestingly, ITO nanostructures exhibited significant room-temperature ferromagnetism (RTFM) and the magnetic moment found proportional to concentration of VO+ defects which indicates VO+ defects are mainly responsible for the observed RTFM in nanostructures. ITO nanowires being enriched with more VO+ defects exhibited strongest RTFM as compared to other morphologies. Current voltage (I-V) characteristics of ITO nanostructures showed an enhancement of current under UV light as compared to dark which indicates such 1D nanostructure can be used as photovoltaic material. Hence, the study shows that there is ample opportunity to tailor the properties of ITOs through proper defect engineering's and such photosensitive ferromagnetic semiconductors might be promising for spintronic and photovoltaic applications.

  15. Effect of uniaxial stress on the electrochemical properties of graphene with point defects

    NASA Astrophysics Data System (ADS)

    Szroeder, Paweł; Sagalianov, Igor Yu.; Radchenko, Taras M.; Tatarenko, Valentyn A.; Prylutskyy, Yuriy I.; Strupiński, Włodzimierz

    2018-06-01

    We report a calculational study of electron states and the resulting electrochemical properties of uniaxially strained graphene with point defects. For this study the reduction of ferricyanide to ferrocyanide serves as a benchmark electrochemical reaction. We find that the heterogeneous electron transfer activity of the perfect graphene electrode rises under uniaxial strain. However, evolution of the cathodic reaction rate depends on the direction of strain. For moderate lattice deformations, the zigzag strain improves electrochemical performance better than the armchair strain. Standard rate constant increases by 50% at the zigzag strain of 10%. Vacancies, covalently bonded moieties, charged adatoms and substitutional impurities in the zigzag strained graphene induce changes in the shape of the curve of the cathodic reaction rate. However, this changes do not translate into the electrocatalytic activity. Vacancies and covalently bonded moieties at concentration of 0.1% do not affect the electrochemical performance. Charged adatoms and substitutional impurities give a slight increase in the standard rate constant by, respectively, 2.2% and 3.4%.

  16. First-principles investigation of CO adsorption on pristine, C-doped and N-vacancy defected hexagonal AlN nanosheets

    NASA Astrophysics Data System (ADS)

    Ouyang, Tianhong; Qian, Zhao; Ahuja, Rajeev; Liu, Xiangfa

    2018-05-01

    The optimized atomic structures, energetics and electronic structures of toxic gas CO adsorption systems on pristine, C-doped and N-vacancy defected h-AlN nanosheets respectively have been investigated using Density functional theory (DFT-D2 method) to explore their potential gas detection or sensing capabilities. It is found that both the C-doping and the N-vacancy defect improve the CO adsorption energies of AlN nanosheet (from pure -3.847 eV to -5.192 eV and -4.959 eV). The absolute value of the system band gap change induced by adsorption of CO can be scaled up to 2.558 eV or 1.296 eV after C-doping or N-vacancy design respectively, which is evidently larger than the value of 0.350 eV for pristine material and will benefit the robustness of electronic signals in potential gas detection. Charge transfer mechanisms between CO and the AlN nanosheet have been presented by the Bader charge and differential charge density analysis to explore the deep origin of the underlying electronic structure changes. This theoretical study is proposed to predict and understand the CO adsorption properties of the pristine and defected h-AlN nanosheets and would help to guide experimentalists to develop better AlN-based two-dimensional materials for efficient gas detection or sensing applications in the future.

  17. N vacancy, self-interstitial diffusion, and Frenkel-pair formation/dissociation in TiN studied by ab-initio and classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sangiovanni, Davide G.; Alling, Björn; Hultman, Lars; Abrikosov, Igor A.

    2015-03-01

    We use ab-initio and classical molecular dynamics (AIMD, CMD) to simulate diffusion of N vacancy and N self-interstitial point-defects in B1 TiN. The physical properties of TiN, important material system for thin film and coatings applications, are largely dictated by concentration and mobility of point defects. We determine N dilute-point-defect diffusion pathways, activation energies, attempt frequencies, and diffusion coefficients as a function of temperature. In addition, MD simulations reveal an unanticipated atomistic process, which controls the spontaneous formation of N-self-interstitial/N-vacancy pairs (Frenkel pairs) in defect-free TiN. This entails that a N lattice atom leaves its bulk position and bonds to a neighboring N lattice atom. In most cases, Frenkel-pair NI and NV recombine within a fraction of ns; 50% of these processes result in the exchange of two nitrogen lattice atoms. Occasionally, however, Frenkel-pair N-interstitial atoms permanently escape from the anion vacancy site, thus producing unpaired NI and NV point defects. The Knut and Alice Wallenberg foundation (Isotope Project, 2011.0094), the Swedish Research Council (VR) Linköping Linnaeus Initiative LiLi-NFM (Grant 2008-6572), and the Swedish Government Strategic Research (Grant MatLiU 2009-00971).

  18. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    NASA Astrophysics Data System (ADS)

    Ivády, Viktor; Szász, Krisztián; Falk, Abram L.; Klimov, Paul V.; Christle, David J.; Janzén, Erik; Abrikosov, Igor A.; Awschalom, David D.; Gali, Adam

    2015-09-01

    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.

  19. A compensating point defect in carbon-doped GaN substrates studied with electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Willoughby, W. R.; Zvanut, M. E.; Paudel, Subash; Iwinska, M.; Sochacki, T.; Bockowski, M.

    2018-04-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to investigate a type of point defect present in 1019 cm-3 carbon-doped GaN substrates grown by hydride vapor phase epitaxy. A broad, isotropic resonance at g ˜ 1.987 was observed at 3.5 K, and the EPR intensity increased with illumination at energies greater than 2.75 eV and decreased with photon energies greater than 0.95 eV. The latter is consistent with a deep level of 0.95 eV above the valence band maximum and implies that the associated defect likely participates in donor compensation. The ionization energy for this defect is close to the predicted value for the (-/0) transition level of CN and transition levels associated with Ga vacancies such as VGa and VGa-ON-2H.

  20. Point defects in the 1 T' and 2 H phases of single-layer MoS2: A comparative first-principles study

    NASA Astrophysics Data System (ADS)

    Pizzochero, Michele; Yazyev, Oleg V.

    2017-12-01

    The metastable 1 T' phase of layered transition metal dichalcogenides has recently attracted considerable interest due to electronic properties, possible topological phases, and catalytic activity. We report a comprehensive theoretical investigation of intrinsic point defects in the 1 T' crystalline phase of single-layer molybdenum disulfide (1 T'-MoS2 ) and provide comparison to the well-studied semiconducting 2 H phase. Based on density functional theory calculations, we explore a large number of configurations of vacancy, adatom, and antisite defects and analyze their atomic structure, thermodynamic stability, and electronic and magnetic properties. The emerging picture suggests that, under thermodynamic equilibrium, 1 T'-MoS2 is more prone to hosting lattice imperfections than the 2 H phase. More specifically, our findings reveal that the S atoms that are closer to the Mo atomic plane are the most reactive sites. Similarly to the 2 H phase, S vacancies and adatoms in 1 T'-MoS2 are very likely to occur while Mo adatoms and antisites induce local magnetic moments. Contrary to the 2 H phase, Mo vacancies in 1 T'-MoS2 are expected to be an abundant defect due to the structural relaxation that plays a major role in lowering the defect formation energy. Overall, our study predicts that the realization of high-quality flakes of 1 T'-MoS2 should be carried out under very careful laboratory conditions but at the same time the facile defects introduction can be exploited to tailor physical and chemical properties of this polymorph.

  1. Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yeohoon; Du, Yingge; Garcia, Juan C.

    2015-02-02

    Using combination of STM, DFT and SIMS, we explored the interplay and relative impact of surface vs. subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO’s) are virtually absent in the vicinity of positively-charged subsurface point-defects. This observation is consistent with DFT calculations of impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 is employed, which is observed to be suppressed around them. DFT results attribute this to a perceived absencemore » of the intrinsic (Ti) (and likely extrinsic) interstitials in the nearest subsurface layer beneath “inhibited” areas. We also postulate that the entire nearest subsurface region could be voided of any charged point-defects, whereas prevalent VO’s are largely responsible for mediation of the redox chemistry at reduced TiO2(110) surface.« less

  2. Defect-induced change of temperature-dependent elastic constants in BCC iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, N.; Setyawan, W.; Zhang, S. H.

    2017-07-01

    The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.

  3. The generation and accumulation of interstitial atoms and vacancies in alloys with L1{sub 2} superstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantyukhova, Olga, E-mail: Pantyukhova@list.ru; Starenchenko, Vladimir, E-mail: star@tsuab.ru; Starenchenko, Svetlana, E-mail: sve-starenchenko@yandex.ru

    2016-01-15

    The dependences of the point defect concentration (interstitial atoms and vacancies) on the deformation degree were calculated for the L1{sub 2} alloys with the high and low antiphase boundaries (APB) energy in terms of the mathematical model of the work and thermal strengthening of the alloys with the L1{sub 2} structure; the concentration of the point defects generated and annihilated in the process of deformation was estimated. It was found that the main part of the point defects generating during plastic deformation annihilates, the residual density of the deformation point defects does not exceed 10{sup −5}.

  4. Nitrogen vacancy complexes in nitrogen irradiated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, A. van; Westerduin, K.T.; Schut, H.

    1996-12-31

    Gas desorption and positron annihilation techniques have been employed to study the evolution of nitrogen associated defects in nitrogen irradiated metals: Fe, Ni, Mo and W. Nitrogen in these metals has a rather high affinity to vacancy type defects. The results obtained for low irradiation dose show that substitutional nitrogen (NV; with V = vacancy) is formed. The nitrogen vacancy complex dissociates at temperatures ranging from 350 K for Ni to 900 K for Mo and 1,100 K for W. At high doses defects are formed which can be characterized as nitrogen saturated vacancy clusters. These defect, as observed bymore » helium probing, disappear during annealing for nickel at 800 K, and for Mo at 1,100 K. The direct observation of the desorbing nitrogen for nickel and molybdenum reveals a very fast desorption transient at the dissociation temperature of the clusters. This is the characteristic desorption transient of a small nitride cluster, e.g., by shrinkage with constant rate. For iron the nitrogen desorption is more complicated because of a general background that continuously rises with temperature. With the positron beam technique depth information was obtained for defects in iron and the defect character could be established with the help of the information provided on annihilation with conduction and core electrons of the defect trapped positrons.« less

  5. New Analysis of Solute Drag in AA5754 by Precise Determination of Point Defect Generation and the Orowan Relation

    NASA Astrophysics Data System (ADS)

    Diak, Brad J.; Penlington, Alex; Saimoto, Shig

    Serrated deformation in Al-Mg alloys creates problems that affect consumer product acceptability. This effect is usually attributed to the Portevin-LeChâtelier effect. In this study the inverse PLC effect due to solute drag on moving dislocations is examined in AA5754. The drag mechanism is dependent on the diffusivity of the solute which is in-turn dependent on the point defect evolution during deformation. Experimental determination of the parabolic James-Barnett drag profile by strain rate change experiments indicates the peak stress is centered at 1.5×10-9m/s, which requires a mechanical formation energy for vacancies of 0.4eV/at. A new slip-based constitutive relation was used to determine the evolution of vacancy volume fraction with deformation with strain, which is greater than the volume fraction of vacancies predicted by the solute drag profile.

  6. Role of vacancy defects in Al doped ZnO thin films for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rotella, H.; Mazel, Y.; Brochen, S.; Valla, A.; Pautrat, A.; Licitra, C.; Rochat, N.; Sabbione, C.; Rodriguez, G.; Nolot, E.

    2017-12-01

    We report on the electrical, optical and photoluminescence properties of industry-ready Al doped ZnO thin films grown by physical vapor deposition, and their evolution after annealing under vacuum. Doping ZnO with Al atoms increases the carrier density but also favors the formation of Zn vacancies, thereby inducing a saturation of the conductivity mechanism at high aluminum content. The electrical and optical properties of these thin layered materials are both improved by annealing process which creates oxygen vacancies that releases charge carriers thus improving the conductivity. This study underlines the effect of the formation of extrinsic and intrinsic defects in Al doped ZnO compound during the fabrication process. The quality and the optoelectronic response of the produced films are increased (up to 1.52 mΩ \\cdotcm and 3.73 eV) and consistent with the industrial device requirements.

  7. Oxygen vacancies: The origin of n -type conductivity in ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong

    2016-06-01

    Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.

  8. Influence of point defects on the near edge structure of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  9. Point Defects and Grain Boundaries in Rotationally Commensurate MoS 2 on Epitaxial Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaolong; Balla, Itamar; Bergeron, Hadallia

    2016-03-28

    With reduced degrees of freedom, structural defects are expected to play a greater role in two-dimensional materials in comparison to their bulk counterparts. In particular, mechanical strength, electronic properties, and chemical reactivity are strongly affected by crystal imperfections in the atomically thin limit. Here, ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) and spectroscopy (STS) are employed to interrogate point and line defects in monolayer MoS2 grown on epitaxial graphene (EG) at the atomic scale. Five types of point defects are observed with the majority species showing apparent structures that are consistent with vacancy and interstitial models. The total defect densitymore » is observed to be lower than MoS2 grown on other substrates and is likely attributed to the van der Waals epitaxy of MoS2 on EG. Grain boundaries (GBs) with 30° and 60° tilt angles resulting from the rotational commensurability of MoS2 on EG are more easily resolved by STM than atomic force microscopy at similar scales due to the enhanced contrast from their distinct electronic states. For example, band gap reduction to ~0.8 and ~0.5 eV is observed with STS for 30° and 60° GBs, respectively. In addition, atomic resolution STM images of these GBs are found to agree well with proposed structure models. This work offers quantitative insight into the structure and properties of common defects in MoS2 and suggests pathways for tailoring the performance of MoS2/graphene heterostructures via defect engineering.« less

  10. Effect of surface oxygen vacancy sites on ethanol synthesis from acetic acid hydrogenation on a defective In2O3(110) surface.

    PubMed

    Lyu, Huisheng; Liu, Jiatao; Chen, Yifei; Li, Guiming; Jiang, Haoxi; Zhang, Minhua

    2018-03-07

    Developing a new type of low-cost and high-efficiency non-noble metal catalyst is beneficial for industrially massive synthesis of alcohols from carboxylic acids which can be obtained from renewable biomass. In this work, the effect of active oxygen vacancies on ethanol synthesis from acetic acid hydrogenation over defective In 2 O 3 (110) surfaces has been studied using periodic density functional theory (DFT) calculations. The relative stabilities of six surface oxygen vacancies from O v1 to O v6 on the In 2 O 3 (110) surface were compared. D1 and D4 surfaces with respective O v1 and O v4 oxygen vacancies were chosen to map out the reaction paths from acetic acid to ethanol. A reaction cycle mechanism between the perfect and defective states of the In 2 O 3 surface was found to catalyze the formation of ethanol from acetic acid hydrogenation. By H 2 reduction the oxygen vacancies on the In 2 O 3 surface play key roles in promoting CH 3 COO* hydrogenation and C-O bond breaking in acetic acid hydrogenation. The acetic acid, in turn, benefits the creation of oxygen vacancies, while the C-O bond breaking of acetic acid refills the oxygen vacancy and, thereby, sustains the catalytic cycle. The In 2 O 3 based catalysts were shown to be advantageous over traditional noble metal catalysts in this paper by theoretical analysis.

  11. Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites

    DOE PAGES

    Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei; ...

    2017-04-25

    Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3

  12. Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei

    Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3

  13. Helium bubbles aggravated defects production in self-irradiated copper

    NASA Astrophysics Data System (ADS)

    Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn

    2017-12-01

    Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.

  14. Optical signatures of deep level defects in Ga2O3

    NASA Astrophysics Data System (ADS)

    Gao, Hantian; Muralidharan, Shreyas; Pronin, Nicholas; Karim, Md Rezaul; White, Susan M.; Asel, Thaddeus; Foster, Geoffrey; Krishnamoorthy, Sriram; Rajan, Siddharth; Cao, Lei R.; Higashiwaki, Masataka; von Wenckstern, Holger; Grundmann, Marius; Zhao, Hongping; Look, David C.; Brillson, Leonard J.

    2018-06-01

    We used depth-resolved cathodoluminescence spectroscopy and surface photovoltage spectroscopy to measure the effects of near-surface plasma processing and neutron irradiation on native point defects in β-Ga2O3. The near-surface sensitivity and depth resolution of these optical techniques enabled us to identify spectral changes associated with removing or creating these defects, leading to identification of one oxygen vacancy-related and two gallium vacancy-related energy levels in the β-Ga2O3 bandgap. The combined near-surface detection and processing of Ga2O3 suggests an avenue for identifying the physical nature and reducing the density of native point defects in this and other semiconductors.

  15. Thermal equilibrium concentrations and effects of negatively charged Ga vacancies in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Tan, T. Y.; You, H.-M.; Gösele, U. M.

    1993-03-01

    We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V {Ga/3-}, has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V {Ga/3-}concentration, C_{V_{_{Ga} }^{3 - } }^{eq} (n), has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the C_{V_{_{Ga} }^{3 - } }^{eq} (n) value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This C_{V_{_{Ga} }^{3 - } }^{eq} (n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V {Ga/3-}has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.

  16. Efficient Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Zhou, Yu; Zhang, Xiaoming; Liu, Fucai; Li, Yan; Li, Ke; Liu, Zheng; Wang, Guanzhong; Gao, Weibo

    2017-06-01

    Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single-photon emission, good photostability, and long spin-coherence time even at room temperature. As compared to diamond, which is widely used for hosting nitrogen-vacancy centers, silicon carbide has an advantage in terms of large-scale, high-quality, and low-cost growth, as well as an advanced fabrication technique in optoelectronics, leading to prospects for large-scale quantum engineering. In this paper, we report an experimental demonstration of the generation of a single-photon-emitter array through ion implantation. VSi defects are generated in predetermined locations with high generation efficiency (approximately 19 % ±4 % ). The single emitter probability reaches approximately 34 % ±4 % when the ion-implantation dose is properly set. This method serves as a critical step in integrating single VSi defect emitters with photonic structures, which, in turn, can improve the emission and collection efficiency of VSi defects when they are used in a spin photonic quantum network. On the other hand, the defects are shallow, and they are generated about 40 nm below the surface which can serve as a critical resource in quantum-sensing applications.

  17. Effects of alloy composition and Si-doping on vacancy defect formation in (InxGa1-x)2O3 thin films

    NASA Astrophysics Data System (ADS)

    Prozheeva, V.; Hölldobler, R.; von Wenckstern, H.; Grundmann, M.; Tuomisto, F.

    2018-03-01

    Various nominally undoped and Si-doped (InxGa1-x)2O3 thin films were grown by pulsed laser deposition in a continuous composition spread mode on c-plane α-sapphire and (100)-oriented MgO substrates. Positron annihilation spectroscopy in the Doppler broadening mode was used as the primary characterisation technique in order to investigate the effect of alloy composition and dopant atoms on the formation of vacancy-type defects. In the undoped samples, we observe a Ga2O3-like trend for low indium concentrations changing to In2O3-like behaviour along with the increase in the indium fraction. Increasing indium concentration is found to suppress defect formation in the undoped samples at [In] > 70 at. %. Si doping leads to positron saturation trapping in VIn-like defects, suggesting a vacancy concentration of at least mid-1018 cm-3 independent of the indium content.

  18. Vacancy clustering and its dissociation process in electroless deposited copper films studied by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Yamashita, Y.; Tsutsui, T.; Dordi, Y.; Li, S.; Oshima, N.; Suzuki, R.

    2012-05-01

    Positron annihilation was used to probe vacancy-type defects in electroless deposited copper films. For as-deposited films, two different types of vacancy-type defects were found to coexist; these were identified as vacancy aggregates (V3-V4) and larger vacancy clusters (˜V10). After annealing at about 200 °C, the defects started to diffuse toward the surface and aggregate. The same tendency has been observed for sulfur only, suggesting the formation of complexes between sulfur and vacancies. The defect concentration near the Cu/barrier-metal interface was high even after annealing above 600 °C, and this was attributed to an accumulation of vacancy-impurity complexes. The observed defect reactions were attributed to suppression of the vacancy diffusion to sinks through the formation of impurity-vacancy complexes. It was shown that electroless plating has a high potential to suppress the formation of voids/hillocks caused by defect migration.

  19. On the validity of the amphoteric-defect model in gallium arsenide and a criterion for Fermi-level pinning by defects

    NASA Astrophysics Data System (ADS)

    Chen, C.-H.; Tan, T. Y.

    1995-10-01

    Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, an amphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancy V {Ga/2-} and the triply positively charged defect complex (ASGa+ V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site and V As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect system V {Ga/2-}/(AsGa+ V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately the E v +0.6 eV level position, which requires that the net free energy of the V Ga/(AsGa+ V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about the E v +1.2 eV level position instead of the needed E v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.

  20. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes

    NASA Astrophysics Data System (ADS)

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C.; Shimoni, Olga; Aharonovich, Igor

    2015-03-01

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07510b

  1. Nitrogen vacancy, self-interstitial diffusion, and Frenkel-pair formation/dissociation in B 1 TiN studied by ab initio and classical molecular dynamics with optimized potentials

    NASA Astrophysics Data System (ADS)

    Sangiovanni, D. G.; Alling, B.; Steneteg, P.; Hultman, L.; Abrikosov, I. A.

    2015-02-01

    We use ab initio and classical molecular dynamics (AIMD and CMD) based on the modified embedded-atom method (MEAM) potential to simulate diffusion of N vacancy and N self-interstitial point defects in B 1 TiN. TiN MEAM parameters are optimized to obtain CMD nitrogen point-defect jump rates in agreement with AIMD predictions, as well as an excellent description of Ti Nx(˜0.7 point-defect diffusion pathways, activation energies, attempt frequencies, and diffusion coefficients as a function of temperature. In addition, the MD simulations presented in this paper reveal an unanticipated atomistic process, which controls the spontaneous formation of N self-interstitial/N vacancy (NI/NV) pairs (Frenkel pairs), in defect-free TiN. This entails that the N lattice atom leaves its bulk position and bonds to a neighboring N lattice atom. In most cases, Frenkel-pair NI and NV recombine within a fraction of ns; ˜50% of these processes result in the exchange of two nitrogen lattice atoms (N - NExc) . Occasionally, however, Frenkel-pair N-interstitial atoms permanently escape from the anion vacancy site, thus producing unpaired NI and NV point defects.

  2. Vacancy effects on the electronic and structural properties pentacene

    NASA Astrophysics Data System (ADS)

    Laraib, Iflah; Janotti, Anderson

    Defects in organic crystals are likely to affect charge transport in organic electronic devices. Vacancies can create lattice distortions and modify electronic states associated with the molecules in its surrounding. Spectroscopy experiments indicate that molecular vacancies trap charge carriers. Experimental characterization of individual defects is challenging and unambiguous. Here we use density functional calculations including van der Waals interactions in a supercell approach to study the single vacancy in pentacene, a prototype organic semiconductor. We determine formation energies, local lattice relaxations, and discuss how vacancies locally distort the lattice and affect the electronic properties of the host organic semiconductor.

  3. Defect stability in thorium monocarbide: An ab initio study

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Ying; Han, Han; Shao, Kuan; Cheng, Cheng; Huai, Ping

    2015-09-01

    The elastic properties and point defects of thorium monocarbide (ThC) have been studied by means of density functional theory based on the projector-augmented-wave method. The calculated electronic and elastic properties of ThC are in good agreement with experimental data and previous theoretical results. Five types of point defects have been considered in our study, including the vacancy defect, interstitial defect, antisite defect, schottky defect, and composition-conserving defect. Among these defects, the carbon vacancy defect has the lowest formation energy of 0.29 eV. The second most stable defect (0.49 eV) is one of composition-conserving defects in which one carbon is removed to another carbon site forming a C2 dimer. In addition, we also discuss several kinds of carbon interstitial defects, and predict that the carbon trimer configuration may be a transition state for a carbon dimer diffusion in ThC. Project supported by the International S&T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant No. 91326105), the National Basic Research Program of China (Grant No. 2010CB934504), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

  4. Temperature-dependent electron paramagnetic resonance detect oxygen vacancy defects and Cr valence of tetragonal Ba(Ti1-xCrx)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu

    2018-03-01

    Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.

  5. Point defect stability in a semicoherent metallic interface

    NASA Astrophysics Data System (ADS)

    González, C.; Iglesias, R.; Demkowicz, M. J.

    2015-02-01

    We present a comprehensive density functional theory (DFT) -based study of different aspects of one vacancy and He impurity atom behavior at semicoherent interfaces between the low-solubility transition metals Cu and Nb. Such interfaces have not been previously modeled using DFT. A thorough analysis of the stability and mobility of the two types of defects at the interfaces and neighboring internal layers has been performed and the results have been compared to the equivalent cases in the pure metallic matrices. The different behavior of fcc and bcc metals on both sides of the interface has been specifically assessed. The modeling effort undertaken is the first attempt to study the stability and defect energetics of noncoherent Cu/Nb interfaces from first principles, in order to assess their potential use in radiation-resistant materials.

  6. Full-potential KKR calculations for vacancies in Al : Screening effect and many-body interactions

    NASA Astrophysics Data System (ADS)

    Hoshino, T.; Asato, M.; Zeller, R.; Dederichs, P. H.

    2004-09-01

    We give ab initio calculations for vacancies in Al . The calculations are based on the generalized-gradient approximation in the density-functional theory and employ the all-electron full-potential Korringa-Kohn-Rostoker Green’s function method for point defects, which guarantees the correct embedding of the cluster of point defects in an otherwise perfect crystal. First, we confirm the recent calculated results of Carling [Phys. Rev. Lett. 85, 3862 (2000)], i.e., repulsion of the first-nearest-neighbor (1NN) divacancy in Al , and elucidate quantitatively the micromechanism of repulsion. Using the calculated results for vacancy formation energies and divacancy binding energies in Na , Mg , Al , and Si of face-centered-cubic, we show that the single vacancy in nearly free-electron systems becomes very stable with increasing free-electron density, due to the screening effect, and that the formation of divacancy destroys the stable electron distribution around the single vacancy, resulting in a repulsion of two vacancies on 1NN sites, so that the 1NN divacancy is unstable. Second, we show that the cluster expansion converges rapidly for the binding energies of vacancy agglomerates in Al . The binding energy of 13 vacancies consisting of a central vacancy and its 12 nearest neighbors, is reproduced within the error of 0.002eV per vacancy, if many-body interaction energies up to the four-body terms are taken into account in the cluster expansion, being compared with the average error (>0.1eV) of the glue models which are very often used to provide interatomic potentials for computer simulations. For the cluster expansion of the binding energies of impurities, we get the same convergence as that obtained for vacancies. Thus, the present cluster-expansion approach for the binding energies of agglomerates of vacancies and impurities in Al may provide accurate data to construct the interaction-parameter model for computer simulations which are strongly requested to study

  7. Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications

    NASA Astrophysics Data System (ADS)

    Suh, Joonki

    thermoelectric materials are thoroughly investigated. Point defects can potentially beat the undesired coupling, often term "thermoelectric Bermuda triangle", among electrical conductivity, thermal conductivity and thermopower. The maximum thermoelectric performance is demonstrated with an intermediate density of defects when they beneficially and multi-functionally act as electron donors, as well as strongly energy-dependent electron and phonon scatterers. Therefore, this is a good example of how fundamental defect physics can be applied for practical devices toward renewable energy technology. Another interesting field of layered nanomaterials is on transition-metal dichalcogenides (TMDs), sensational candidates for 2D semiconductor physics and applications. At the reduced dimensionality of 2D where a far stronger correlation between point defects and charge carriers is expected, it is studied how chalcogen vacancies alter optical properties of monolayer TMDs. A new, sub-bandgap broad emission lines as well as increase in the overall photoluminescence intensity at low temperatures are reported as a result of high quantum efficiency of excitons, i.e., bound electron-hole pairs, localized at defect sites. On electrical transport, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction while typically only one type of doping is stable for a particular TMD. For example, MoS2 is natively n-type, thus the lack of p-type doping hampers the development of charge-splitting p-n junctions of MoS2. To address this issue, we demonstrate stable p-type conduction in MoS2 by substitutional Nb doping up to the degenerate level. Proof-of-concept, van der Waals p-n homo-junctions based on vertically stacked MoS2 layers are also fabricated which enable gate-tuneable current rectification. Various electronic devices fabricated are stable in ambient air even without additional treatment such as capping layer protection, thanks to the substitutionality nature

  8. Effect of 10B isotope and vacancy defects on the phonon modes of two-dimensional hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Sherajul Islam, Md.; Anindya, Khalid N.; Bhuiyan, Ashraful G.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    We report the details of the effects of the 10B isotope and those of B and N vacancies combined with the isotope on the phonon modes of two-dimensional hexagonal boron nitride (h-BN). The phonon density of states and localization problems are solved using the forced vibrational method, which is suitable for an intricate and disordered system. We observe an upward shift of Raman-active E2g-mode optical phonons (32 cm-1) for a 100% 10B isotope, which matches well with the experiment and simple harmonic oscillator model. However, a downward shift of E2g-mode phonons is observed for B or N vacancies and the combination of the isotope and vacancy-type disordered BN. Strong localized eigenmodes are found for all types of defects, and a typical localization length is on the order of ˜7 nm for naturally occurring BN samples. These results are very important for understanding the heat dissipation and electron transport properties of BN-based nanoelectronics.

  9. Production and aging of paramagnetic point defects in P-doped floating zone silicon irradiated with high fluence 27 MeV electrons

    NASA Astrophysics Data System (ADS)

    Joita, A. C.; Nistor, S. V.

    2018-04-01

    Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm-2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.

  10. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments

    DOE PAGES

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...

    2015-08-08

    Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less

  11. Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780 × Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect atmore » a transition energy which occurs at approximately 250 × Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5 Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.« less

  12. Dimensional control of defect dynamics in perovskite oxide superlattices

    NASA Astrophysics Data System (ADS)

    Bredeson, Isaac; Zhang, Lipeng; Kent, P. R. C.; Cooper, Valentino R.; Xu, Haixuan

    2018-03-01

    Point defects play a critical role in the structural, physical, and interfacial properties of perovskite oxide superlattices. However, understanding of the fundamental properties of point defects in superlattices, especially their transport properties, is rather limited. Here, we report predictions of the stability and dynamics of oxygen vacancies in SrTi O3/PbTi O3 oxide superlattices using first-principles calculations in combination with the kinetic Monte Carlo method. By varying the stacking period, i.e., changing of n in n STO /n PTO , we discover a crossover from three-dimensional diffusion to primarily two-dimensional planar diffusion. Such planar diffusion may lead to novel designs of ionic conductors. We show that the dominant vacancy position may vary in the superlattices, depending on the superlattice structure and stacking period, contradicting the common assumption that point defects reside at interfaces. Moreover, we predict a significant increase in room-temperature ionic conductivity for 3STO/3PTO relative to the bulk phases. Considering the variety of cations that can be accommodated in perovskite superlattices and the potential mismatch of spin, charge, and orbitals at the interfaces, this paper identifies a pathway to control defect dynamics for technological applications.

  13. Sensitivity of thermal transport in thorium dioxide to defects

    NASA Astrophysics Data System (ADS)

    Park, Jungkyu; Farfán, Eduardo B.; Mitchell, Katherine; Resnick, Alex; Enriquez, Christian; Yee, Tien

    2018-06-01

    In this research, the reverse non-equilibrium molecular dynamics is employed to investigate the effect of vacancy and substitutional defects on the thermal transport in thorium dioxide (ThO2). Vacancy defects are shown to severely alter the thermal conductivity of ThO2. The thermal conductivity of ThO2 decreases significantly with increasing the defect concentration of oxygen vacancy; the thermal conductivity of ThO2 decreases by 20% when 0.1% oxygen vacancy defects are introduced in the 100 unit cells of ThO2. The effect of thorium vacancy defect on the thermal transport in ThO2 is even more detrimental; ThO2 with 0.1% thorium vacancy defect concentration exhibits a 38.2% reduction in its thermal conductivity and the thermal conductivity becomes only 8.2% of that of the pristine sample when the thorium vacancy defect concentration is increased to 5%. In addition, neutron activation of thorium produces uranium and this uranium substitutional defects in ThO2 are observed to affect the thermal transport in ThO2 marginally when compared to vacancy defects. This indicates that in the thorium fuel cycle, fissile products such as 233U is not likely to alter the thermal transport in ThO2 fuel.

  14. Effects of Vacancy Cluster Defects on Electrical and Thermodynamic Properties of Silicon Crystals

    PubMed Central

    Huang, Pei-Hsing; Lu, Chi-Ming

    2014-01-01

    A first-principle plane-wave pseudopotential method based on the density function theory (DFT) was employed to investigate the effects of vacancy cluster (VC) defects on the band structure and thermoelectric properties of silicon (Si) crystals. Simulation results showed that various VC defects changed the energy band and localized electron density distribution of Si crystals and caused the band gap to decrease with increasing VC size. The results can be ascribed to the formation of a defect level produced by the dangling bonds, floating bonds, or high-strain atoms surrounding the VC defects. The appearance of imaginary frequencies in the phonon spectrum of defective Si crystals indicates that the defect-region structure is dynamically unstable and demonstrates phase changes. The phonon dispersion relation and phonon density of state were also investigated using density functional perturbation theory. The obtained Debye temperature (θ D) for a perfect Si crystal had a minimum value of 448 K at T = 42 K and a maximum value of 671 K at the high-temperature limit, which is consistent with the experimental results reported by Flubacher. Moreover, the Debye temperature decreased with increases in the VC size. VC defects had minimal effects on the heat capacity (C v) value when temperatures were below 150 K. As the temperature was higher than 150 K, the heat capacity gradually increased with increasing temperature until it achieved a constant value of 11.8 cal/cell·K. The heat capacity significantly decreased as the VC size increased. For a 2 × 2 × 2 superlattice Si crystal containing a hexagonal ring VC (HRVC10), the heat capacity decreased by approximately 17%. PMID:24526923

  15. Recombination driven vacancy motion - a mechanism of memristive switching in oxides

    NASA Astrophysics Data System (ADS)

    Shen, Xiao; Puzyrev, Yevgeniy S.; Pantelides, Sokrates T.

    2014-03-01

    Wide-band gap oxides with high O deficiencies are attractive memristive materials for applications. However, the details of the defect dynamics remain elusive, especially regarding what drives the defect motion to form the conducting state. While the external field is often cited as the driving force, we report an investigation of memristive switching in polycrystalline ZnO and propose a new mechanism. Using results from density functional theory calculations, we show that the motion of O vacancies during switching to the conductive state is not driven by the electric field, but by recombination of carriers at these vacancies, which transfers energy to the defects and greatly enhances their diffusion. Such mechanism originates from the large structural change of O vacancies upon capturing electrons. In addition, contrary to the hypothesis that memristive switching in polycrystalline materials is facilitated by the defect motion along the grain boundary (GB), we show in our system the vacancies move perpendicular to the GB, attaching and detaching from it during the switching process. We call it recombination driven vacancy breathing. This work is supported by NSF Grant DMR-1207241 and NSF XSEDE grant DMR-130121.

  16. Oxygen vacancy defect engineering using atomic layer deposited HfAlOx in multi-layered gate stack

    NASA Astrophysics Data System (ADS)

    Bhuyian, M. N.; Sengupta, R.; Vurikiti, P.; Misra, D.

    2016-05-01

    This work evaluates the defects in high quality atomic layer deposited (ALD) HfAlOx with extremely low Al (<3% Al/(Al + Hf)) incorporation in the Hf based high-k dielectrics. The defect activation energy estimated by the high temperature current voltage measurement shows that the charged oxygen vacancies, V+/V2+, are the primary source of defects in these dielectrics. When Al is added in HfO2, the V+ type defects with a defect activation energy of Ea ˜ 0.2 eV modify to V2+ type to Ea ˜ 0.1 eV with reference to the Si conduction band. When devices were stressed in the gate injection mode for 1000 s, more V+ type defects are generated and Ea reverts back to ˜0.2 eV. Since Al has a less number of valence electrons than do Hf, the change in the co-ordination number due to Al incorporation seems to contribute to the defect level modifications. Additionally, the stress induced leakage current behavior observed at 20 °C and at 125 °C demonstrates that the addition of Al in HfO2 contributed to suppressed trap generation process. This further supports the defect engineering model as reduced flat-band voltage shifts were observed at 20 °C and at 125 °C.

  17. First principles study of intrinsic defects in hexagonal tungsten carbide

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying

    2010-11-01

    The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.

  18. Switching electrochromic performance improvement enabled by highly developed mesopores and oxygen vacancy defects of Fe-doped WO3 films

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Ryul; Kim, Kue-Ho; Ahn, Hyo-Jin

    2018-09-01

    In recent years, owing to the capability to reversibly adjust transparency, reflection, and color by the low electric field, electrochromic devices (ECDs) have received an extensive attention for their potential use in optoelectronic applications. However, considering that the performances of the ECDs, including coloration efficiency (CE, <30.0 cm2/C) and switching speed (>10.0 s), are still low for an effective applied use, critical efforts are needed to push the development of a unique nanostructure film to improve electrochromic (EC) performances. Specifically, as the large-scale applications (e.g. refrigerators, vehicles, and airplanes) of the ECDs have been recently developed, the study for improving switching speed is urgently needed for commercialization of the devices. In this context, the present study reports a novel nanostructure film of Fe-doped WO3 films with highly developed mesopores and oxygen vacancy defects, fabricated using the Fe agent and the camphene-assisted sol-gel method. Fe-doped WO3 films with highly developed mesopores and oxygen vacancy defects show remarkable EC performances with both fast switching speed (2.8 s for the coloration speed and 0.3 s for the bleaching speed) and high CE (71.1 cm2/C). These two aspects contribute to the synergistic effects of optimized Fe doping and camphene on the films and have outstanding values as compared to previously reported results of WO3-based materials. Specifically, the fast switching speed is attributed to the shortened Li+ diffusion pathway of the highly developed mesopores; and the other is the improved electrical conductivity of the highly increased oxygen vacancy defects. In addition, the high CE value is due to an efficient charge transport as the result of a more effective electroactive contact of the morphology with highly developed mesopores, resulting in a large transmittance modulation with a small intercalated charge density.

  19. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Honggyu; Meng, Yifei; Kwon, Ji-Hwan

    Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. Themore » ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.« less

  20. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain

    DOE PAGES

    Kim, Honggyu; Meng, Yifei; Kwon, Ji-Hwan; ...

    2018-01-01

    Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. Themore » ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.« less

  1. Contributions of oxygen vacancies and titanium interstitials to band-gap states of reduced titania

    NASA Astrophysics Data System (ADS)

    Li, Jingfeng; Lazzari, Rémi; Chenot, Stéphane; Jupille, Jacques

    2018-01-01

    The spectroscopic fingerprints of the point defects of titanium dioxide remain highly controversial. Seemingly indisputable experiments lead to conflicting conclusions in which oxygen vacancies and titanium interstitials are alternately referred to as the primary origin of the Ti 3 d band-gap states. We report on experiments performed by electron energy loss spectroscopy whose key is the direct annealing of only the very surface of rutile TiO2(110 ) crystals and the simultaneous measurement of its temperature via the Bose-Einstein loss/gain ratio. By surface preparations involving reactions with oxygen and water vapor, in particular, under electron irradiation, vacancy- and interstitial-related band-gap states are singled out. Off-specular measurements reveal that both types of defects contribute to a unique charge distribution that peaks in subsurface layers with a common dispersive behavior.

  2. Molecular dynamics study of vacancy-like defects in a model glass : static behaviour

    NASA Astrophysics Data System (ADS)

    Delaye, J. M.; Limoge, Y.

    1993-10-01

    The possibility of defining vacancy-like defects in a Lennard-Jones glass is searched for in a systematic manner. Considering different relaxation levels of the same system, as well as different external pressures, we use a Molecular Dynamics simulation method, to study at constant volume or external pressure, the relaxation of a “piece” of glass, after the sudden removal of an atom. Three typical kinds of behaviour can be observed: the persistence of the empty volume left by the missing atom, its migration by clearly identifiable atomic jumps and the dissipation “on the spot”. A careful analysis of the probabilities of these three kinds of behaviour shows that a meaningful definition of vacancy-like defects can be given in a Lennard-Jones glass. Dans cet article, nous nous penchons de façon systématique sur la possibilité de définir des défauts de type lacunaire dans un verre de Lennard-Jones, à différents niveaux de relaxation et de pression, par une méthode de simulation numérique en dynamique moléculaire à volume ou à pression constants. Le défaut est créé en supprimant un atome et en suivant la réponse du système. Nous observons trois comportements typiques : la persistance sur place du “trou” laissé par l'atome supprimé, sa migration par des sauts atomiques clairement identifiés et enfin sa dissipation sur place. Une analyse détaillée de ces trois comportements montre qu'il est possible dans un verre de Lennard-Jones de définir des défauts de type lacunaire.

  3. Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure

    NASA Astrophysics Data System (ADS)

    Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.

    2018-04-01

    Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.

  4. Ab initio simulations of the structure, energetics and mobility of radiation-induced point defects in bcc Nb

    NASA Astrophysics Data System (ADS)

    Cerdeira, M. A.; Palacios, S. L.; González, C.; Fernández-Pello, D.; Iglesias, R.

    2016-09-01

    The formation, binding and migration energetics of helium clusters inside a niobium crystal have been analysed via ab initio simulations. The effect of placing several He atoms within an n-vacancy previously formed or as interstitials inside the initial perfect bulk matrix has been studied. DFT-based results show that He atoms prefer to aggregate forming small clusters at n-vacancy sites rather than at interstitial positions in the perfect crystal. The minimum formation energy is found when NHe is equal to the number of vacancies, n. It follows that vacancies act as almost perfect traps for He atoms, as is well known for other metals. The migration barriers of He atoms inside vacancies increase considerably when compared to what happens for vacancies alone. A secondary consequence is that the full set of energies obtained will be highly relevant as an input for new approaches to KMC simulations of defects in Nb.

  5. In vacancies in InN grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Reurings, Floris; Tuomisto, Filip; Gallinat, Chad S.; Koblmüller, Gregor; Speck, James S.

    2010-12-01

    The authors have applied positron annihilation spectroscopy to study the effect of different growth conditions on vacancy formation in In- and N-polar InN grown by plasma-assisted molecular beam epitaxy. The results suggest that the structural quality of the material and limited diffusion of surface adatoms during growth dictate the In vacancy formation in low electron-density undoped epitaxial InN, while growth conditions and thermodynamics have a less important role, contrary to what is observed in, e.g., GaN. Furthermore, the results imply that in high quality InN, the electron mobility is likely limited not by ionized point defect scattering, but rather by threading dislocations.

  6. Defect engineering of the electronic transport through cuprous oxide interlayers

    NASA Astrophysics Data System (ADS)

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo

    2016-06-01

    The electronic transport through Au-(Cu2O)n-Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  7. A catalyst-free achieving of N-doped carbon nanotubes: The healing of single-vacancy defects by NO molecule

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Saeidi, Nasibeh

    2018-01-01

    Density functional theory calculations are performed to study the healing mechanism of single-vacancy defects in zigzag (n,0) CNTs by NO molecule (n = 6,8,10). The results indicate that the healing process proceeds through a two-step mechanism. First, NO molecule adsorbs over the defective site. Then, the extra oxygen atom (Oads) is eliminated by three different ways: (i) NO + Oads → NO2, (ii) CO + Oads → CO2, or (iii) SO2 + Oads → SO3. The dependency of the healing process on the tube diameter is studied in detail. The results of this work suggest a novel approach to achieve N-doped CNTs.

  8. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics

    DOE PAGES

    Chen, Zhiwei; Ge, Binghui; Li, Wen; ...

    2017-01-04

    To minimize the lattice thermal conductivity in thermoelectrics, strategies typically focus on the scattering of low-frequency phonons by interfaces and high-frequency phonons by point defects. In addition, scattering of mid-frequency phonons by dense dislocations, localized at the grain boundaries, has been shown to reduce the lattice thermal conductivity and improve the thermoelectric performance. Here we propose a vacancy engineering strategy to create dense dislocations in the grains. In Pb 1$-$xSb 2x/3Se solid solutions, cation vacancies are intentionally introduced, where after thermal annealing the vacancies can annihilate through a number of mechanisms creating the desired dislocations homogeneously distributed within the grains.more » This leads to a lattice thermal conductivity as low as 0.4Wm -1 K -1 and a high thermoelectric figure of merit, which can be explained by a dislocation scattering model. As a result, the vacancy engineering strategy used here should be equally applicable for solid solution thermoelectrics and provides a strategy for improving zT.« less

  9. The role of healed N-vacancy defective BC2N sheet and nanotube by NO molecule in oxidation of NO and CO gas molecules

    NASA Astrophysics Data System (ADS)

    Nematollahi, Parisa; Esrafili, Mehdi D.; Neyts, Erik C.

    2018-06-01

    In this study, the healing of N-vacancy boron carbonitride nanosheet (NV-BC2NNS) and nanotube (NV-BC2NNT) by NO molecule is studied by means of density functional theory calculations. Two different N-vacancies are considered in each of these structures in which the vacancy site is surrounded by either three B-atoms (NB) or by two B- and one C-atom (NBC). By means of the healed BC2NNS and BC2NNT as a support, the removal of two toxic gas molecules (NO and CO) are applicable. It should be noted that the obtained energy barriers of both healing and oxidizing processes are significantly lower than those of graphene, carbon nanotubes or boron nitride nanostructures. Also, at the end of the oxidation process, the pure BC2NNS or BC2NNT is obtained without any additional defects. Therefore, by using this method, we can considerably purify the defective BC2NNS/BC2NNT. Moreover, according to the thermochemistry calculations we can further confirm that the healing process of the NV-BC2NNS and NV-BC2NNT by NO are feasible at room temperature. So, we can claim that this study could be very helpful in both purifying the defective BC2NNS/BC2NNT while in the same effort removing toxic NO and CO gases.

  10. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes.

    PubMed

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor

    2015-03-21

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.

  11. Identifying and counting point defects in carbon nanotubes.

    PubMed

    Fan, Yuwei; Goldsmith, Brett R; Collins, Philip G

    2005-12-01

    The prevailing conception of carbon nanotubes and particularly single-walled carbon nanotubes (SWNTs) continues to be one of perfectly crystalline wires. Here, we demonstrate a selective electrochemical method that labels point defects and makes them easily visible for quantitative analysis. High-quality SWNTs are confirmed to contain one defect per 4 microm on average, with a distribution weighted towards areas of SWNT curvature. Although this defect density compares favourably to high-quality, silicon single-crystals, the presence of a single defect can have tremendous electronic effects in one-dimensional conductors such as SWNTs. We demonstrate a one-to-one correspondence between chemically active point defects and sites of local electronic sensitivity in SWNT circuits, confirming the expectation that individual defects may be critical to understanding and controlling variability, noise and chemical sensitivity in SWNT electronic devices. By varying the SWNT synthesis technique, we further show that the defect spacing can be varied over orders of magnitude. The ability to detect and analyse point defects, especially at very low concentrations, indicates the promise of this technique for quantitative process analysis, especially in nanoelectronics development.

  12. Adsorption and Photodesorption of CO from Charged Point Defects on TiO 2 (110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Rentao; Dahal, Arjun; Wang, Zhi-Tao

    Adsorption and photodesorption of weakly-bound carbon monoxide, CO, from reduced and hydroxylated rutile TiO2(110) (r- and h- TiO2(110)) at sub-monolayer coverages is studied with atomically-resolved scanning tunneling microscopy (STM) along with ensemble-averaged temperature-programmed desorption (TPD) and angle-resolved photon-stimulated desorption (PSD) at low temperatures ( 50 K). STM data weighted by the concentration of each kind of adsorption sites on r-TiO2(110) give an adsorption probability which is the highest for the bridging oxygen vacancies (VO) and very low for the Ti5c sites closest to VO. Occupancy of the remaining Ti5c sites with CO is significant, but smaller than for VO. Themore » probability distribution for the different adsorption sites corresponds to a very small difference in CO adsorption energies: < 0.02 eV. We also find that UV irradiation stimulates both diffusion and desorption of CO at low temperature. CO photodesorbs primarily from the vacancies with a bi-modal angular distribution. In addition to a major, normal to the surface component, there is a broader cosine component indicating scattering from the surface which likely also leads to photo-stimulated diffusion. Hydroxylation of VO’s does not significantly change the CO PSD yield and angular distribution, indicating that not atomic but rather electronic surface defects are involved in the site-specific PSD process. We suggest that photodesorption can be initiated by recombination of photo-generated holes with excess unpaired electrons localized near the surface point-defect (either VO or bridging hydroxyl), leading to the surface atoms rearrangement and ejection of the weakly-bound CO molecules.« less

  13. Probing vacancy-type free-volume defects in Li2B4O7 single crystal by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shpotyuk, O.; Adamiv, V.; Teslyuk, I.; Ingram, A.; Demchenko, P.

    2018-01-01

    Vacancy-type free-volume defects in lithium tetraborate Li2B4O7 single crystal, grown by the Czochralski technique, are probed with positron annihilation spectroscopy in the lifetime measuring mode. The experimental positron lifetime spectrum is reconstructed within the three-component fitting, involving channels of positron and positronium Ps trapping, as well as within the two-component fitting with a positronium-compensating source input. Structural configurations of the most efficient positron traps are considered using the crystallographic specificity of lithium tetraborate with the main accent on cation-type vacancies. Possible channels of positron trapping are visualized using the electronic structure calculations with density functional theory at the basis of structural parameters proper to Li2B4O7. Spatially-extended positron-trapping complexes involving singly-ionized lithium vacancies, with character lifetime close to 0.32 ns, are responsible for positron trapping in the nominally undoped lithium tetraborate Li2B4O7 crystal.

  14. Modeling of the gate-controlled Kondo effect at carbon point defects in graphene

    NASA Astrophysics Data System (ADS)

    May, Daniel; Lo, Po-Wei; Deltenre, Kira; Henke, Anika; Mao, Jinhai; Jiang, Yuhang; Li, Guohong; Andrei, Eva Y.; Guo, Guang-Yu; Anders, Frithjof B.

    2018-04-01

    We study the magnetic properties in the vicinity of a single carbon defect in a monolayer of graphene. We include the unbound σ orbital and the vacancy-induced bound π state in an effective two-orbital single-impurity model. The local magnetic moments are stabilized by the Coulomb interaction as well as a significant ferromagnetic Hund's rule coupling between the orbitals predicted by a density functional theory calculation. A hybridization between the orbitals and the Dirac fermions is generated by the curvature of the graphene sheet in the vicinity of the vacancy. We present results for the local spectral function calculated using Wilson's numerical renormalization group approach for a realistic graphene band structure and find three different regimes depending on the filling, the controlling chemical potential, and the hybridization strength. These different regions are characterized by different magnetic properties. The calculated spectral functions qualitatively agree with recent scanning tunneling spectra on graphene vacancies.

  15. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons

    PubMed Central

    Tongay, Sefaattin; Suh, Joonki; Ataca, Can; Fan, Wen; Luce, Alexander; Kang, Jeong Seuk; Liu, Jonathan; Ko, Changhyun; Raghunathanan, Rajamani; Zhou, Jian; Ogletree, Frank; Li, Jingbo; Grossman, Jeffrey C.; Wu, Junqiao

    2013-01-01

    Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering. PMID:24029823

  16. Method for enhancement of useful luminescence from vacancy defects in refractory oxides for tunable lasers

    DOEpatents

    Chen, Yok

    1990-01-01

    Refractory oxide crystals suitable for use in tunable lasers and a method for preparing the same are provided. The crystals are characterized by high quantum efficiency, high thermal stability, good crystal transparency, and a high percentage of useful luminescence. The method for preparation of the crystals involves removing substantially all the hydrogen, thermochemically reducing the crystal's oxygen content to produce oxygen (anion) vacancy defects, and subsequently irradiating the crystal with electrons to inactivate trace H.sup.- ions so that an increased amount of short lived F.sup.+ luminescence is produced when the crystal is optically excited.

  17. The evolution of vacancy-type defects in silicon-on-insulator structures studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.; Nash, D.; Edwardson, C. J.; Knights, A. P.; Gwilliam, R. M.

    2011-07-01

    Variable-energy positron annihilation spectroscopy (VEPAS) has been applied to the study of the formation and evolution of vacancy-type defect structures in silicon (Si) and the 1.5 μm thick Si top layer of silicon-on-insulator (SOI) samples. The samples were implanted with 2 MeV Si ions at fluences between 1013 and 1015 cm-2, and probed in the as-implanted state and after annealing for 30 min at temperatures between 350 and 800 °C. In the case of SOI the ions were implanted such that their profile was predominantly in the insulating buried oxide layer, and thus their ability to combine with vacancies in the top Si layer, and that of other interstitials beyond the buried oxide, was effectively negated. No measurable differences in the positron response to the evolution of small clusters of n vacancies (Vn, n ˜ 3) in the top Si layer of the Si and SOI samples were observed after annealing up to 500 °C; at higher temperatures, however, this response persisted in the SOI samples as that in Si decreased toward zero. At 700 and 800 °C the damage in Si was below detectable levels, but the VEPAS response in the top Si layer in the SOI was consistent with the development of nanovoids.

  18. Study on the intrinsic defects in tin oxide with first-principles method

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin

    2018-04-01

    First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.

  19. Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Zhang, Y. D.; Yang, D. S.; Nghia, N. X.; Thanh, T. D.; Yu, S. C.

    2013-02-01

    Though ZnO is known as a diamagnetic material, recent studies have revealed that its nanostructures can be ferromagnetic (FM). The FM origin has been ascribed to intrinsic defects. This work shines light on an alternate method based on mechanical milling to induce defect-related ferromagnetism in ZnO nanoparticles (NPs) from initial diamagnetic ZnO powders. Our idea is motivated by the fact that mechanical milling introduces more defects to a ground material. We point out that the FM order increases with increasing the density of defects in ZnO NPs. The experimental results obtained from analyzing X-ray absorption, electron spin resonance, and Raman scattering spectra demonstrate that the ferromagnetism in ZnO NPs is due to intrinsic defects mainly related to oxygen and zinc vacancies. Among these, zinc vacancies play a decisive role in introducing a high FM order in ZnO NPs.

  20. Novel near-infrared emission from crystal defects in MoS2 multilayer flakes.

    PubMed

    Fabbri, F; Rotunno, E; Cinquanta, E; Campi, D; Bonnini, E; Kaplan, D; Lazzarini, L; Bernasconi, M; Ferrari, C; Longo, M; Nicotra, G; Molle, A; Swaminathan, V; Salviati, G

    2016-10-04

    The structural defects in two-dimensional transition metal dichalcogenides, including point defects, dislocations and grain boundaries, are scarcely considered regarding their potential to manipulate the electrical and optical properties of this class of materials, notwithstanding the significant advances already made. Indeed, impurities and vacancies may influence the exciton population, create disorder-induced localization, as well as modify the electrical behaviour of the material. Here we report on the experimental evidence, confirmed by ab initio calculations, that sulfur vacancies give rise to a novel near-infrared emission peak around 0.75 eV in exfoliated MoS 2 flakes. In addition, we demonstrate an excess of sulfur vacancies at the flake's edges by means of cathodoluminescence mapping, aberration-corrected transmission electron microscopy imaging and electron energy loss analyses. Moreover, we show that ripplocations, extended line defects peculiar to this material, broaden and redshift the MoS 2 indirect bandgap emission.

  1. Novel near-infrared emission from crystal defects in MoS2 multilayer flakes

    NASA Astrophysics Data System (ADS)

    Fabbri, F.; Rotunno, E.; Cinquanta, E.; Campi, D.; Bonnini, E.; Kaplan, D.; Lazzarini, L.; Bernasconi, M.; Ferrari, C.; Longo, M.; Nicotra, G.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-10-01

    The structural defects in two-dimensional transition metal dichalcogenides, including point defects, dislocations and grain boundaries, are scarcely considered regarding their potential to manipulate the electrical and optical properties of this class of materials, notwithstanding the significant advances already made. Indeed, impurities and vacancies may influence the exciton population, create disorder-induced localization, as well as modify the electrical behaviour of the material. Here we report on the experimental evidence, confirmed by ab initio calculations, that sulfur vacancies give rise to a novel near-infrared emission peak around 0.75 eV in exfoliated MoS2 flakes. In addition, we demonstrate an excess of sulfur vacancies at the flake's edges by means of cathodoluminescence mapping, aberration-corrected transmission electron microscopy imaging and electron energy loss analyses. Moreover, we show that ripplocations, extended line defects peculiar to this material, broaden and redshift the MoS2 indirect bandgap emission.

  2. Helium interaction with vacancy-type defects created in silicon carbide single crystal

    NASA Astrophysics Data System (ADS)

    Linez, F.; Gilabert, E.; Debelle, A.; Desgardin, P.; Barthe, M.-F.

    2013-05-01

    Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H-SiC single crystals have been implanted with 50 keV-He ions at 2 × 1014 and 1015 cm-2 and successively annealed at various temperatures from 150 to 1400 °C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400 °C for both fluences, (2) at 850 °C for the low fluence and 950 °C for the high one, (3) at 950 °C for the low fluence and 1050 °C for the high one and (4) at 1300 °C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.

  3. Oxygen vacancies dependent phase transition of Y2O3 films

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Zhang, Kan; Huang, Hao; Wen, Mao; Li, Quan; Zhang, Wei; Hu, Chaoquan; Zheng, Weitao

    2017-07-01

    Y2O3 films have great application potential in high-temperature metal matrix composite and nuclear engineering, used as interface diffusion and reaction barrier coating owing to their excellent thermal and chemical stability, high melting point and extremely negative Gibbs formation energy, and thus their structural and mechanical properties at elevated temperature are especially important. Oxygen vacancies exist commonly in yttrium oxide (Y2O3) thin films and act strongly on the phase structure and properties, but oxygen vacancies dependent phase transition at elevated temperature has not been well explored yet. Y2O3 thin films with different oxygen vacancy concentrations have been achieved by reactive sputtering through varying substrate temperature (Ts), in which oxygen vacancies increase monotonously with increasing Ts. For as-deposited Y2O3 films, oxygen vacancies present at high Ts can promote the nucleation of monoclinic phase, meanwhile, high Ts can induce the instability of monoclinic phase. Thus their competition results in forming mixed phases of cubic and monoclinic at high Ts. During vacuum annealing at 1000 °C, a critical oxygen vacancy concentration is observed, below which phase transition from monoclinic to cubic takes place, and above which phase transfer from monoclinic to the oxygen defective phase (ICDD file no. 39-1063), accompanying by stress reversal from compressive to tensile and maintenance of high hardness.

  4. Physicochemical characterization of point defects in fluorine doped tin oxide films

    NASA Astrophysics Data System (ADS)

    Akkad, Fikry El; Joseph, Sudeep

    2012-07-01

    The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (FO) in presence of high concentration of oxygen vacancies (VO) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the VO concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the FO concentration and a decrease in both n and VO concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO2 matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine FO and tin vacancy VSn defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a VSn through the migration of SnSn host atom to the fluoride phase is approximately 0.45 eV.

  5. Acceptor Type Vacancy Complexes In As-Grown ZnO

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Zuñiga-Pérez, J.

    2010-11-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (˜3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, LiZn and NaZn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  6. Behaviors of transmutation elements Re and Os and their effects on energetics and clustering of vacancy and self-interstitial atoms in W

    NASA Astrophysics Data System (ADS)

    Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong

    2017-04-01

    We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.

  7. The defect chemistry of UO2 ± x from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.

    2018-06-01

    Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.

  8. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    DOE PAGES

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; ...

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO 2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO 2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect tomore » the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.« less

  9. Novel near-infrared emission from crystal defects in MoS2 multilayer flakes

    PubMed Central

    Fabbri, F.; Rotunno, E.; Cinquanta, E.; Campi, D.; Bonnini, E.; Kaplan, D.; Lazzarini, L.; Bernasconi, M.; Ferrari, C.; Longo, M.; Nicotra, G.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-01-01

    The structural defects in two-dimensional transition metal dichalcogenides, including point defects, dislocations and grain boundaries, are scarcely considered regarding their potential to manipulate the electrical and optical properties of this class of materials, notwithstanding the significant advances already made. Indeed, impurities and vacancies may influence the exciton population, create disorder-induced localization, as well as modify the electrical behaviour of the material. Here we report on the experimental evidence, confirmed by ab initio calculations, that sulfur vacancies give rise to a novel near-infrared emission peak around 0.75 eV in exfoliated MoS2 flakes. In addition, we demonstrate an excess of sulfur vacancies at the flake's edges by means of cathodoluminescence mapping, aberration-corrected transmission electron microscopy imaging and electron energy loss analyses. Moreover, we show that ripplocations, extended line defects peculiar to this material, broaden and redshift the MoS2 indirect bandgap emission. PMID:27698425

  10. Nonlinear effects in defect production by atomic and molecular ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, C., E-mail: david@igcar.gov.in; Dholakia, Manan; Chandra, Sharat

    This report deals with studies concerning vacancy related defects created in silicon due to implantation of 200 keV per atom aluminium and its molecular ions up to a plurality of 4. The depth profiles of vacancy defects in samples in their as implanted condition are carried out by Doppler broadening spectroscopy using low energy positron beams. In contrast to studies in the literature reporting a progressive increase in damage with plurality, implantation of aluminium atomic and molecular ions up to Al{sub 3}, resulted in production of similar concentration of vacancy defects. However, a drastic increase in vacancy defects is observed duemore » to Al{sub 4} implantation. The observed behavioural trend with respect to plurality has even translated to the number of vacancies locked in vacancy clusters, as determined through gold labelling experiments. The impact of aluminium atomic and molecular ions simulated using MD showed a monotonic increase in production of vacancy defects for cluster sizes up to 4. The trend in damage production with plurality has been explained on the basis of a defect evolution scheme in which for medium defect concentrations, there is a saturation of the as-implanted damage and an increase for higher defect concentrations.« less

  11. Strain-Engineered Oxygen Vacancies in CaMnO3 Thin Films.

    PubMed

    Chandrasena, Ravini U; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario U; Wijesekara, Kanishka D; Golalikhani, Maryam; Davidson, Bruce A; Arenholz, Elke; Kobayashi, Keisuke; Kobata, Masaaki; de Groot, Frank M F; Aschauer, Ulrich; Spaldin, Nicola A; Xi, Xiaoxing; Gray, Alexander X

    2017-02-08

    We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO 3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO 3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core-hole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of complex transition-metal oxides via strain-induced oxygen-vacancy formation and ordering.

  12. Quasiparticle and hybrid density functional methods in defect studies: An application to the nitrogen vacancy in GaN

    NASA Astrophysics Data System (ADS)

    Lewis, D. K.; Matsubara, M.; Bellotti, E.; Sharifzadeh, S.

    2017-12-01

    Defects in semiconductors can play a vital role in the performance of electronic devices, with native defects often dominating the electronic properties of the semiconductor. Understanding the relationship between structural defects and electronic function will be central to the design of new high-performance materials. In particular, it is necessary to quantitatively understand the energy and lifetime of electronic states associated with the defect. Here, we apply first-principles density functional theory (DFT) and many-body perturbation theory within the GW approximation to understand the nature and energy of the defect states associated with a charged nitrogen vacancy on the electronic properties of gallium nitride (GaN), as a model of a well-studied and important wide gap semiconductor grown with defects. We systematically investigate the sources of error associated with the GW approximation and the role of the underlying atomic structure on the predicted defect state energies. Additionally, analysis of the computed electronic density of states (DOS) reveals that there is one occupied defect state 0.2 eV below the valence band maximum and three unoccupied defect states at energy of 0.2-0.4 eV above the conduction band minimum, suggesting that this defect in the +1 charge state will not behave as a carrier trap. Furthermore, we compare the character and energy of the defect state obtained from GW and DFT using the HSE approximate density functional and find excellent agreement. This systematic study provides a more complete understanding of how to obtain quantitative defect energy states in bulk semiconductors.

  13. Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide

    NASA Astrophysics Data System (ADS)

    Protik, Nakib Haider; Carrete, Jesús; Katcho, Nebil A.; Mingo, Natalio; Broido, David

    2016-07-01

    Using a first principles theoretical approach, we show that vacancies give anomalously strong suppression of the lattice thermal conductivity κ of cubic Boron arsenide (BAs), which has recently been predicted to have an exceptionally high κ . This effect is tied to the unusually large phonon lifetimes in BAs and results in a stronger reduction in the BAs κ than occurs in diamond. The large changes in bonding around vacancies cannot be accurately captured using standard perturbative methods and are instead treated here using an ab initio Green function approach. As and B vacancies are found to have similar effects on κ . In contrast, we show that commonly used mass disorder models for vacancies fail for large mass ratio compounds such as BAs, incorrectly predicting much stronger (weaker) phonon scattering when the vacancy is on the heavy (light) atom site. The quantitative treatment given here contributes to fundamental understanding of the effect of point defects on thermal transport in solids and provides guidance to synthesis efforts to grow high quality BAs.

  14. Large bandgap narrowing in rutile TiO2 aimed towards visible light applications and its correlation with vacancy-type defects history and transformation

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Gayathri, P. K.; Siva Gummaluri, Venkata; Nambissan, P. M. G.; Vijayan, C.

    2018-01-01

    Extension of photoactivity of TiO2 to the visible region is achievable via effective control over the intrinsic defects such as oxygen and Ti vacancies, which has several applications in visible photocatalysis and sensing. We present here the first observation of an apparent bandgap narrowing and bandgap tuning effect due to vacancy cluster transformation in rutile TiO2 structures to 1.84 eV from the bulk bandgap of 3 eV. A gradual transformation of divacancies (V Ti-O) to tri vacancies ({{V}Ti-O-T{{i-}}} ) achieved through a controlled solvothermal scheme appears to result in an apparent narrowing bandgap and tunability, as supported by positron annihilation lifetime and electron paramagnetic resonance spectroscopy measurements. Visible photocatalytic activity of the samples is demonstrated in terms of photodegradation of rhodamine B dye molecules.

  15. Electrical compensation by Ga vacancies in Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Korhonen, E.; Tuomisto, F.; Gogova, D.; Wagner, G.; Baldini, M.; Galazka, Z.; Schewski, R.; Albrecht, M.

    2015-06-01

    The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga2O3 thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga2O3 thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In2O3, where recent results show that n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as Oi.

  16. Defect kinetics and resistance to amorphization in zirconium carbide

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2015-02-01

    To better understand the radiation response of zirconium carbide (ZrC), and in particular its excellent resistance to amorphization, we have used density functional theory methods to study the kinetics of point defects in ZrC. The migration barriers and recombination barriers of the simple point defects are calculated using the ab initio molecular dynamics simulation and the nudged elastic band method. These barriers are used to estimate C and Zr interstitial and vacancy diffusion and Frenkel pair recombination rates. A significant barrier for C Frenkel pair recombination is found but it is shown that a large concentration of C vacancies reduces this barrier dramatically, allowing facile healing of radiation damage. The mechanisms underlying high resistance to amorphization of ZrC were analyzed from the perspectives of structural, thermodynamic, chemical and kinetic properties. This study provides insights into the amorphization resistance of ZrC as well as a foundation for understanding general radiation damage in this material.

  17. The critical role of point defects in improving the specific capacitance of δ-MnO 2 nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Peng; Metz, Peter; Hey, Trevyn

    3D porous nanostructures built from 2D δ-MnO 2 nanosheets are an environmentally friendly and industrially scalable class of supercapacitor electrode material. While both the electrochemistry and defects of this material have been studied, the role of defects in improving the energy storage density of these materials has not been addressed. In this work, δ-MnO 2 nanosheet assemblies with 150 m 2 g -1 specific surface area are prepared by exfoliation of crystalline K xMnO 2 and subsequent reassembly. Equilibration at different pH introduces intentional Mn vacancies into the nanosheets, increasing pseudocapacitance to over 300 F g -1, reducing charge transfermore » resistance as low as 3 Ω, and providing a 50% improvement in cycling stability. X-ray absorption spectroscopy and high-energy X-ray scattering demonstrate a correlation between the defect content and the improved electrochemical performance. The results show that Mn vacancies provide ion intercalation sites which concurrently improve specific capacitance, charge transfer resistance and cycling stability.« less

  18. Point defect weakened thermal contraction in monolayer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Xian-Hu; Department of Physics, University of Science and Technology of China, Hefei; USTC-CityU Joint Advanced Research Centre, Suzhou 215123

    We investigate the thermal expansion behaviors of monolayer graphene and three configurations of graphene with point defects, namely the replacement of one carbon atom with a boron or nitrogen atom, or of two neighboring carbon atoms by boron-nitrogen atoms, based on calculations using first-principles density functional theory. It is found that the thermal contraction of monolayer graphene is significantly decreased by point defects. Moreover, the corresponding temperature for negative linear thermal expansion coefficient with the maximum absolute value is reduced. The cause is determined to be point defects that enhance the mechanical strength of graphene and then reduce the amplitudemore » and phonon frequency of the out-of-plane acoustic vibration mode. Such defect weakening of graphene thermal contraction will be useful in nanotechnology to diminish the mismatching or strain between the graphene and its substrate.« less

  19. Influence of point defects and impurities on the dynamical stability of δ-plutonium

    NASA Astrophysics Data System (ADS)

    Dorado, B.; Bieder, J.; Torrent, M.

    2017-06-01

    We use first-principles calculations to provide direct evidence of the effect of aluminum, gallium, iron and uranium on the dynamical stability of δ-plutonium. We first show that the δ phase is dynamically unstable at low temperature, as seen in experiments, and that this stability directly depends on the plutonium 5f orbital occupancies. Then, we demonstrate that both aluminum and gallium stabilize the δ phase, contrary to iron. As for uranium, which is created during self-irradiation and whose effect on plutonium has yet to be understood, we show that it leaves a few unstable vibrational modes and that higher concentrations lead to an almost complete stabilization. Finally, we provide an attempt at a consistent analysis of the experimental Pu-Ga phonon density of states. We show that the presence of gallium can reproduce only partially the experimental measurements, and we investigate how point defects, such as interstitials and vacancies, affect the calculated phonon density of states.

  20. Influence of point defects and impurities on the dynamical stability of δ-plutonium.

    PubMed

    Dorado, B; Bieder, J; Torrent, M

    2017-06-21

    We use first-principles calculations to provide direct evidence of the effect of aluminum, gallium, iron and uranium on the dynamical stability of δ-plutonium. We first show that the δ phase is dynamically unstable at low temperature, as seen in experiments, and that this stability directly depends on the plutonium 5f orbital occupancies. Then, we demonstrate that both aluminum and gallium stabilize the δ phase, contrary to iron. As for uranium, which is created during self-irradiation and whose effect on plutonium has yet to be understood, we show that it leaves a few unstable vibrational modes and that higher concentrations lead to an almost complete stabilization. Finally, we provide an attempt at a consistent analysis of the experimental Pu-Ga phonon density of states. We show that the presence of gallium can reproduce only partially the experimental measurements, and we investigate how point defects, such as interstitials and vacancies, affect the calculated phonon density of states.

  1. Impact of vacancies on electronic properties of black phosphorus probed by STM

    NASA Astrophysics Data System (ADS)

    Riffle, J. V.; Flynn, C.; St. Laurent, B.; Ayotte, C. A.; Caputo, C. A.; Hollen, S. M.

    2018-01-01

    Black phosphorus (BP) is receiving significant attention because of its direct 0.4-1.5 eV layer-dependent bandgap and high mobility. Because BP devices rely on exfoliation from bulk crystals, there is a need to understand the native impurities and defects in the source material. In particular, samples are typically p-doped, but the source of the doping is not well understood. Here, we use scanning tunneling microscopy and spectroscopy to compare the atomic defects of BP samples from two commercial sources. Even though the sources produced crystals with an order of magnitude difference in impurity atoms, we observed a similar defect density and level of p-doping. We attribute these defects to phosphorus vacancies and provide evidence that they are the source of p-doping. We also compare these native defects to those induced by air exposure and show that they are distinct and likely more important for the control of electronic structure. These results indicate that impurities in BP play a minor role compared to vacancies, which are prevalent in commercially available materials, and call for better control of vacancy defects.

  2. Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Brusa, Roberto S.; Karwasz, Grzegorz P.; Tiengo, Nadia; Zecca, Antonio; Corni, Federico; Tonini, Rita; Ottaviani, Gianpiero

    2000-04-01

    The depth profile of open volume defects has been measured in Si implanted with He at an energy of 20 keV, by means of a slow-positron beam and the Doppler broadening technique. The evolution of defect distributions has been studied as a function of isochronal annealing in two series of samples implanted at the fluence of 5×1015 and 2×1016 He cm-2. A fitting procedure has been applied to the experimental data to extract a positron parameter characterizing each open volume defect. The defects have been identified by comparing this parameter with recent theoretical calculations. In as-implanted samples the major part of vacancies and divacancies produced by implantation is passivated by the presence of He. The mean depth of defects as seen by the positron annihilation technique is about five times less than the helium projected range. During the successive isochronal annealing the number of positron traps decreases, then increases and finally, at the highest annealing temperatures, disappears only in the samples implanted at the lowest fluence. A minimum of open volume defects is reached at the annealing temperature of 250 °C in both series. The increase of open volume defects at temperatures higher than 250 °C is due to the appearance of vacancy clusters of increasing size, with a mean depth distribution that moves towards the He projected range. The appearance of vacancy clusters is strictly related to the out diffusion of He. In the samples implanted at 5×1015 cm-2 the vacancy clusters are mainly four vacancy agglomerates stabilized by He related defects. They disappear starting from an annealing temperature of 700 °C. In the samples implanted at 2×1016 cm-2 and annealed at 850-900 °C the vacancy clusters disappear and only a distribution of cavities centered around the He projected range remains. The role of vacancies in the formation of He clusters, which evolve in bubble and then in cavities, is discussed.

  3. Effect of symmetrical and asymmetrical tilt grain boundaries on radiation-induced defects in zirconium

    NASA Astrophysics Data System (ADS)

    Singh, Divya; Parashar, Avinash

    2018-07-01

    In this article, molecular-dynamics-based simulations were used to study the effect of grain boundaries (GBs) on the formation and spatial distribution of radiation-induced point defects. In order to perform this study, two sets of symmetrical and asymmetrical tilt grain boundaries were constructed along [0 0 0 1] and [0   ‑1 1 0] as the tilt axis, respectively. Vacancy, interstitial and Frenkel pair formation energies were estimated as a function of the distance from the GB core for both symmetrical as well as asymmetrical tilt GBs. The trend obtained between GB energies and point defect formation energies helps explain the biased absorption of interstitials over vacancies in most cases, as well as the equal absorption of both kinds of point defects in a few of them. It has already been reported from the experimental work that [0 0 0 1] GB structures closely resemble the polycrystalline texture of hcp materials, which motivates us to study the effect of irradiation on these GBs.

  4. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Buckeridge, J.; Catlow, C. R. A.; Farrow, M. R.; Logsdail, A. J.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Woodley, S. M.; Sokol, A. A.; Walsh, A.

    2018-05-01

    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3 ,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3 , but also in SnO2 and ZnO.

  5. Formation of vacancy-impurity complexes in heavily Zn-doped InP

    NASA Astrophysics Data System (ADS)

    Slotte, J.; Saarinen, K.; Salmi, A.; Simula, S.; Aavikko, R.; Hautojärvi, P.

    2003-03-01

    Positron annihilation spectroscopy has been applied to observe the spontaneous formation of vacancy-type defects by annealing of heavily Zn-doped InP at 500 700 K. The defect is identified as the VP-Zn pair by detecting the annihilation of positrons with core electrons. We conclude that the defect is formed through a diffusion process; a phosphorus vacancy migrates until trapped by a Zn impurity and forms a negatively charged VP-Zn pair. The kinetics of the diffusion process is investigated by measuring the average positron lifetime as a function of annealing time and by fitting a diffusion model to the experimental results. We deduce a migration energy of 1.8±0.2 eV for the phosphorus vacancy. Our results explain both the presence of native VP-Zn pairs in Zn-doped InP and their disappearance in post-growth annealings.

  6. An empirical potential for simulating vacancy clusters in tungsten.

    PubMed

    Mason, D R; Nguyen-Manh, D; Becquart, C S

    2017-12-20

    We present an empirical interatomic potential for tungsten, particularly well suited for simulations of vacancy-type defects. We compare energies and structures of vacancy clusters generated with the empirical potential with an extensive new database of values computed using density functional theory, and show that the new potential predicts low-energy defect structures and formation energies with high accuracy. A significant difference to other popular embedded-atom empirical potentials for tungsten is the correct prediction of surface energies. Interstitial properties and short-range pairwise behaviour remain similar to the Ackford-Thetford potential on which it is based, making this potential well-suited to simulations of microstructural evolution following irradiation damage cascades. Using atomistic kinetic Monte Carlo simulations, we predict vacancy cluster dissociation in the range 1100-1300 K, the temperature range generally associated with stage IV recovery.

  7. Using positron 2D-ACAR as a probe of point defects in GaAs: The As vacancy as a case study

    NASA Astrophysics Data System (ADS)

    Ambigapathy, R.; Corbel, C.; Hautojärvi, P.; Manuel, A. A.; Saarinen, K.

    1996-06-01

    Two-Dimensional Angular Correlation of positron Annihilation Radiation (2D-ACAR) experiments have been performed on n-type GaAs. By combining these results with those from positron lifetime experiments, the momentum distribution of the arsenic vacancy in its neutral ( V {aAs/0}) and negative ( V {As/-}) charge states have been extracted. These distributions were all normalized to the respective positron lifetime that characterizes them. The first thing to be noticed is that the momentum distributions of the vacancies, as seen by the positron, are fairly isotropic and structureless. The distribution for V {As/0} is more peaked than that of V {As/-} while the latter is more intense in the large momentum regions of the spectra. From this, it can be inferred that VA. has a smaller open volume than V {As/0} A closer look at the momentum distribution of the vacancies reveals that they are not entirely isotropic, but, in fact, have a bulk-like component. Finally, the experimental results for bulk GaAs and V {As/-} compare well in a qualitative manner with the momentum distributions that result from an ab-initio molecular dynamics calculation.

  8. Role of point defects and HfO2/TiN interface stoichiometry on effective work function modulation in ultra-scaled complementary metal-oxide-semiconductor devices

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Sathiyanarayanan, Rajesh; Kwon, Unoh; Narayanan, Vijay; Murali, K. V. R. M.

    2013-07-01

    We investigate the physical properties of a portion of the gate stack of an ultra-scaled complementary metal-oxide-semiconductor (CMOS) device. The effects of point defects, such as oxygen vacancy, oxygen, and aluminum interstitials at the HfO2/TiN interface, on the effective work function of TiN are explored using density functional theory. We compute the diffusion barriers of such point defects in the bulk TiN and across the HfO2/TiN interface. Diffusion of these point defects across the HfO2/TiN interface occurs during the device integration process. This results in variation of the effective work function and hence in the threshold voltage variation in the devices. Further, we simulate the effects of varying the HfO2/TiN interface stoichiometry on the effective work function modulation in these extremely-scaled CMOS devices. Our results show that the interface rich in nitrogen gives higher effective work function, whereas the interface rich in titanium gives lower effective work function, compared to a stoichiometric HfO2/TiN interface. This theoretical prediction is confirmed by the experiment, demonstrating over 700 meV modulation in the effective work function.

  9. Point defects in Cd(Zn)Te and TlBr: Theory

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-09-01

    The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.

  10. Effect of structural defects on electronic and magnetic properties of ZrS2 monolayer

    NASA Astrophysics Data System (ADS)

    Wang, Haiyang; Zhao, Xu; Gao, Yonghui; Wang, Tianxing; Wei, Shuyi

    2018-04-01

    We aimed at ten configurations of vacancy defects and used the first-principles methods based on density functional theory to research electronic and magnetic properties of ZrS2 monolayer. Results show that the system of two-zirconium vacancy (V2zr) and one Zr atom + one S atom vacancy (V1Zr+1S) can induce to total spin magnetic moment of 0.245μB and 0.196μB, respectively. In addition, three and six S atoms vacancy can induce corresponding system to manifest spin magnetic moment of 0.728μB and 3.311μB, respectively. In S atom vacancy defects, vacancy defects can transform the system from semiconductor to metal, several of the Zr atoms and adjacent S atoms display antiferromagnetism coupling in three apart S atom vacancy defects. Vacancy defects can make the intrisic monolayer ZrS2 transform semiconductor into metal. These results are important for the achievement of spin devices based on ZrS2 semiconductor.

  11. Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.

    2015-03-01

    We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.

  12. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-07-01

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  13. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  14. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE PAGES

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...

    2017-10-10

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  15. Strain effects on oxygen vacancy energetics in KTaO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen

    Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less

  16. Strain effects on oxygen vacancy energetics in KTaO 3

    DOE PAGES

    Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen; ...

    2017-02-07

    Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less

  17. Oxygen vacancy defect engineering using atomic layer deposited HfAlO{sub x} in multi-layered gate stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyian, M. N., E-mail: mnb3@njit.edu; Misra, D.; Sengupta, R.

    2016-05-02

    This work evaluates the defects in high quality atomic layer deposited (ALD) HfAlO{sub x} with extremely low Al (<3% Al/(Al + Hf)) incorporation in the Hf based high-k dielectrics. The defect activation energy estimated by the high temperature current voltage measurement shows that the charged oxygen vacancies, V{sup +}/V{sup 2+}, are the primary source of defects in these dielectrics. When Al is added in HfO{sub 2}, the V{sup +} type defects with a defect activation energy of E{sub a} ∼ 0.2 eV modify to V{sup 2+} type to E{sub a} ∼ 0.1 eV with reference to the Si conduction band. When devices were stressedmore » in the gate injection mode for 1000 s, more V{sup +} type defects are generated and E{sub a} reverts back to ∼0.2 eV. Since Al has a less number of valence electrons than do Hf, the change in the co-ordination number due to Al incorporation seems to contribute to the defect level modifications. Additionally, the stress induced leakage current behavior observed at 20 °C and at 125 °C demonstrates that the addition of Al in HfO{sub 2} contributed to suppressed trap generation process. This further supports the defect engineering model as reduced flat-band voltage shifts were observed at 20 °C and at 125 °C.« less

  18. Passivating the sulfur vacancy in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Lu, Haichang; Kummel, Andrew; Robertson, John

    2018-06-01

    Various methods to passivate the sulfur vacancy in 2D MoS2 are modeled using density functional theory (DFT) to understand the passivation mechanism at an atomic scale. First, the organic super acid, bis(trifluoromethane)sulfonimide (TFSI) is a strong protonating agent, and it is experimentally found to greatly increase the photoluminescence efficiency. DFT simulations find that the effectiveness of passivation depends critically on the charge state and number of hydrogens donated by TFSI since this determines the symmetry of the defect complex. A symmetrical complex is formed by three hydrogen atoms bonding to the defect in a -1 charge state, and this gives no bandgap states and a Fermi level in the midgap. However, a charge state of +1 gives a lower symmetry complex with one state in the gap. One or two hydrogens also give complexes with gap states. Second, passivation by O2 can provide partial passivation by forming a bridge bond across the S vacancy, but it leaves a defect state in the lower bandgap. On the other hand, substitutional additions do not shift the vacancy states out of the gap.

  19. Effect of vacancies on the mechanical properties of phosphorene nanotubes.

    PubMed

    Sorkin, V; Zhang, Y W

    2018-06-08

    Using density functional tight-binding method, we studied the mechanical properties, deformation and failure of armchair (AC) and zigzag (ZZ) phosphorene nanotubes (PNTs) with monovacancies and divacancies subjected to uniaxial tensile strain. We found that divacancies in AC PNTs and monovacancies in ZZ PNTs possess the lowest vacancy formation energy, which decreases with the tube diameter in AC PNTs and increases in ZZ PNTs. The Young's modulus is reduced, while the radial and thickness Poisson's ratios are increased by hosted vacancies. In defective AC PNTs, deformation involves fracture of the intra-pucker bonds and formation of the new inter-pucker bonds at a critical strain, and the most stretched bonds around the vacancy rupture first, triggering a sequence of the structural transformations terminated by the ultimate failure. The critical strain of AC PNTs is reduced significantly by hosted vacancies, whereas their effect on the critical stress is relatively weaker. Defective ZZ PNTs fail in a brittle-like manner once the most stretched bonds around a vacancy rupture, and vacancies are able to significantly reduce the failure strain but only moderately reduce the failure stress of ZZ PNTs. The understandings revealed here on the mechanical properties and the deformation and failure mechanisms of PNTs provide useful guidelines for their design and fabrication as building blocks in nanodevices.

  20. Effect of vacancies on the mechanical properties of phosphorene nanotubes

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Zhang, Y. W.

    2018-06-01

    Using density functional tight-binding method, we studied the mechanical properties, deformation and failure of armchair (AC) and zigzag (ZZ) phosphorene nanotubes (PNTs) with monovacancies and divacancies subjected to uniaxial tensile strain. We found that divacancies in AC PNTs and monovacancies in ZZ PNTs possess the lowest vacancy formation energy, which decreases with the tube diameter in AC PNTs and increases in ZZ PNTs. The Young’s modulus is reduced, while the radial and thickness Poisson’s ratios are increased by hosted vacancies. In defective AC PNTs, deformation involves fracture of the intra-pucker bonds and formation of the new inter-pucker bonds at a critical strain, and the most stretched bonds around the vacancy rupture first, triggering a sequence of the structural transformations terminated by the ultimate failure. The critical strain of AC PNTs is reduced significantly by hosted vacancies, whereas their effect on the critical stress is relatively weaker. Defective ZZ PNTs fail in a brittle-like manner once the most stretched bonds around a vacancy rupture, and vacancies are able to significantly reduce the failure strain but only moderately reduce the failure stress of ZZ PNTs. The understandings revealed here on the mechanical properties and the deformation and failure mechanisms of PNTs provide useful guidelines for their design and fabrication as building blocks in nanodevices.

  1. Interconversion of intrinsic defects in SrTi O3(001 )

    NASA Astrophysics Data System (ADS)

    Chambers, S. A.; Du, Y.; Zhu, Z.; Wang, J.; Wahila, M. J.; Piper, L. F. J.; Prakash, A.; Yue, J.; Jalan, B.; Spurgeon, S. R.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Sushko, P. V.

    2018-06-01

    Photoemission features associated with states deep in the band gap of n -SrTi O3(001 ) are found to be ubiquitous in bulk crystals and epitaxial films. These features are present even when there is little signal near the Fermi level. Analysis reveals that these states are deep-level traps associated with defects. The commonly investigated defects—O vacancies, Sr vacancies, and aliovalent impurity cations on the Ti sites—cannot account for these features. Rather, ab initio modeling points to these states resulting from interstitial oxygen and its interaction with donor electrons.

  2. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    PubMed

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  3. Vacancy and curvature effects on the phonon properties of single wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hossain Howlader, Ashraful; Sherajul Islam, Md.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    Single wall carbon nanotube (SWCNT) is considered as an ideal candidate for next-generation nanoelectronics owing to its unusual properties. Here we have performed an in-depth theoretical analysis of the effect of vacancy defects and curvature on the phonon properties of (10,0) and (10,10) SWCNTs using the forced vibrational method. We report that Raman active E2g mode softens towards the low-frequency region with increasing vacancies and curvature in both types of CNTs. Vacancy induces some new peaks at low-frequency region of the phonon density of states. Phonon localization properties are also manifested. Our calculated mode pattern and localization length show that optical phonon at Raman D-band frequency is strongly localized in vacancy defected and large curved CNTs. Our findings will be helpful in explaining the thermal conductivity, specific heat capacity, and Raman spectra in vacancy type disordered CNTs, as well as electron transport properties of CNT-based nanoelectronic devices.

  4. Effect of point defects and disorder on structural phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toulouse, J.

    1997-06-01

    Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods tomore » study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.« less

  5. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er2O3.

    PubMed

    Huang, Bolong

    2016-05-11

    We investigated the mechanism of the intrinsic persistent luminescence of Er2O3 in the A-type lattice based on first-principles calculations. We found that the native point defects were engaged in mutual subtle interactions in the form of chemical reactions between different charge states. The release of energy related to lattice distortion facilitates the conversion of energy for electrons to be transported between the valence band and the trap levels or even between the deep trap levels so as to generate persistent luminescence. The defect transitions that take place along the zero-phonon line release energy to enable optical transitions, with the exact amount of negative effective correlation energy determined by the lattice distortions. Our calculations on the thermodynamic transition levels confirm that both the visible and NIR experimentally observed intrinsic persistent luminescence (phosphor or afterglow) are related to the thermodynamic transition levels of oxygen-related defects, and the thermodynamic transition levels within different charge states for these defects are independent of the chemical potentials of the given species. Lattice distortion defects such as anion Frenkel (a-Fr) pair defects play an important role in transporting O-related defects between different lattice sites. To obtain red persistent luminescence that matches the biological therapeutic window, it is suggested to increase the electron transition levels between high-coordinated O vacancies and related metastable a-Fr defects; a close-packed core-shell structure is required to quench low-coordinated O-related defects so as to reduce the green band luminescence. We further established a conversed chain reaction (CCR) model to interpret the energy conversion process of persistent luminescence in terms of the inter-reactions of native point defects between different charge states. It is advantageous to use the study of defect levels combined with formation energies to suggest limits

  6. Cation vacancies and electrical compensation in Sb-doped thin-film SnO2 and ZnO

    NASA Astrophysics Data System (ADS)

    Korhonen, E.; Prozheeva, V.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; White, M. E.; Galazka, Z.; Liu, H.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-02-01

    We present positron annihilation results on Sb-doped SnO2 and ZnO thin films. The vacancy types and the effect of vacancies on the electrical properties of these intrinsically n-type transparent semiconducting oxides are studied. We find that in both materials low and moderate Sb-doping leads to formation of vacancy clusters of variable sizes. However, at high doping levels cation vacancy defects dominate the positron annihilation signal. These defects, when at sufficient concentrations, can efficiently compensate the n-type doping produced by Sb. This is the case in ZnO, but in SnO2 the concentrations appear too low to cause significant compensation.

  7. Thermodynamics of impurity-enhanced vacancy formation in metals

    NASA Astrophysics Data System (ADS)

    Bukonte, Laura; Ahlgren, Tommy; Heinola, Kalle

    2017-01-01

    Hydrogen induced vacancy formation in metals and metal alloys has been of great interest during the past couple of decades. The main reason for this phenomenon, often referred to as the superabundant vacancy formation, is the lowering of vacancy formation energy due to the trapping of hydrogen. By means of thermodynamics, we study the equilibrium vacancy formation in fcc metals (Pd, Ni, Co, and Fe) in correlation with the H amounts. The results of this study are compared and found to be in good agreement with experiments. For the accurate description of the total energy of the metal-hydrogen system, we take into account the binding energies of each trapped impurity, the vibrational entropy of defects, and the thermodynamics of divacancy formation. We demonstrate the effect of vacancy formation energy, the hydrogen binding, and the divacancy binding energy on the total equilibrium vacancy concentration. We show that the divacancy fraction gives the major contribution to the total vacancy fraction at high H fractions and cannot be neglected when studying superabundant vacancies. Our results lead to a novel conclusion that at high hydrogen fractions, superabundant vacancy formation takes place regardless of the binding energy between vacancies and hydrogen. We also propose the reason of superabundant vacancy formation mainly in the fcc phase. The equations obtained within this work can be used for any metal-impurity system, if the impurity occupies an interstitial site in the lattice.

  8. A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping, -CH3 group, and single vacancy

    NASA Astrophysics Data System (ADS)

    Si, Chao; Li, Liang; Lu, Gui; Cao, Bing-Yang; Wang, Xiao-Dong; Fan, Zhen; Feng, Zhi-Hai

    2018-04-01

    Graphene has received great attention due to its fascinating thermal properties. The inevitable defects in graphene, such as single vacancy, doping, and functional group, greatly affect the thermal conductivity. The sole effect of these defects on the thermal conductivity has been widely studied, while the mechanisms of the coupling effects are still open. We studied the combined effect of defects with N-doping, the -CH3 group, and single vacancy on the thermal conductivity of multi-layer graphene at various temperatures using equilibrium molecular dynamics with the Green-Kubo theory. The Taguchi orthogonal algorithm is used to evaluate the sensitivity of N-doping, the -CH3 group, and single vacancy. Sole factor analysis shows that the effect of single vacancy on thermal conductivity is always the strongest at 300 K, 700 K, and 1500 K. However, for the graphene with three defects, the single vacancy defect only plays a significant role in the thermal conductivity modification at 300 K and 700 K, while the -CH3 group dominates the thermal conductivity reduction at 1500 K. The phonon dispersion is calculated using a spectral energy density approach to explain such a temperature dependence. The combined effect of the three defects further decreases the thermal conductivity compared to any sole defect at both 300 K and 700 K. The weaker single vacancy effect is due to the stronger Umklapp scattering at 1500 K, at which the combined effect seriously covers almost all the energy gaps in the phonon dispersion relation, significantly reducing the phonon lifetimes. Therefore, the temperature dependence only appears on the multi-layer graphene with combined defects.

  9. First-Principles Study of Defects in GaN

    DTIC Science & Technology

    2009-07-29

    This means both Mg and Be are not suitable p-type dopants in AlN. c) We have calculated the Ga Frenkel pairs (interstitial Ga and gallium vacancy... gallium vacancy complexes) in GaN. We studied both the stability of the pair at different separations and the barriers for the pair to form/disintegrate...high in energy than vacancy defects, especially for covalent materials. However, in ionic materials the charged interstitial defects can have low

  10. Oxygen Migration and Local Structural Changes with Schottky Defects in Pure Zirconium Oxide Crystals

    NASA Astrophysics Data System (ADS)

    Terada, Yayoi; Mohri, Tetsuo

    2018-05-01

    By employing the Buckingham potential, we performed classical molecular-dynamics computer simulations at constant pressure and temperature for a pure ZrO2 crystal without any vacancies and for a pure ZrO2 crystal containing zirconium vacancies and oxygen vacancies. We examined the positions of atoms and vacancies in the steady state, and we investigated the migration behavior of atoms and the local structure of vacancies of the pure ZrO2 crystal. We found that Schottky defects (aggregates consisting of one zirconium vacancy with an effective charge of -4 and two oxygen vacancies each with an effective charge of +2 to maintain charge neutrality) are the main defects formed in the steady state in cubic ZrO2, and that oxygen migration occurs through a mechanism involving vacancies on the oxygen sublattice near such defects. We also found that several oxygen atoms near each defect are displaced far from the sublattice site and induce oxygen migration.

  11. Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simimol, A.; Department of Physics, National Institute of Technology Calicut, Calicut 673601; Anappara, Aji A.

    We report the growth of un-doped and cobalt doped ZnO nanostructures fabricated on FTO coated glass substrates using electrodeposition method. A detailed study on the effects of dopant concentration on morphology, structural, optical, and magnetic properties of the ZnO nanostructures has been carried out systematically by varying the Co concentration (c.{sub Co}) from 0.01 to 1 mM. For c.{sub Co }≤ 0.2 mM, h-wurtzite phase with no secondary phases of Co were present in the ZnO nanostructures. For c.{sub Co} ≤ 0.2 mM, the photoluminescence spectra exhibited a decrease in the intensity of ultraviolet emission as well as band-gap narrowing with an increase in dopantmore » concentration. All the doped samples displayed a broad emission in the visible range and its intensity increased with an increase in Co concentration. It was found that the defect centers such as oxygen vacancies and zinc interstitials were the source of the visible emission. The X-ray photoelectron spectroscopy studies revealed, Co was primarily in the divalent state, replacing the Zn ion inside the tetrahedral crystal site of ZnO without forming any cluster or secondary phases of Co. The un-doped ZnO nanorods exhibited diamagnetic behavior and it remained up to a c.{sub Co} of 0.05 mM, while for c.{sub Co }> 0.05 mM, the ZnO nanostructures exhibited ferromagnetic behavior at room temperature. The coercivity increased to 695 G for 0.2 mM Co-doped sample and then it decreased for c.{sub Co }> 0.2 mM. Our results illustrate that up to a threshold concentration of 0.2 mM, the strong ferromagnetism is due to the oxygen vacancy defects centers, which exist in the Co-doped ZnO nanostructures. The origin of strong ferromagnetism at room temperature in Co-doped ZnO nanostructures is attributed to the s-d exchange interaction between the localized spin moments resulting from the oxygen vacancies and d electrons of Co{sup 2+} ions. Our findings provide a new insight for

  12. Effective scheme to determine accurate defect formation energies and charge transition levels of point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Yao, Cang Lang; Li, Jian Chen; Gao, Wang; Tkatchenko, Alexandre; Jiang, Qing

    2017-12-01

    We propose an effective method to accurately determine the defect formation energy Ef and charge transition level ɛ of the point defects using exclusively cohesive energy Ecoh and the fundamental band gap Eg of pristine host materials. We find that Ef of the point defects can be effectively separated into geometric and electronic contributions with a functional form: Ef=χ Ecoh+λ Eg , where χ and λ are dictated by the geometric and electronic factors of the point defects (χ and λ are defect dependent). Such a linear combination of Ecoh and Eg reproduces Ef with an accuracy better than 5% for electronic structure methods ranging from hybrid density-functional theory (DFT) to many-body random-phase approximation (RPA) and experiments. Accordingly, ɛ is also determined by Ecoh/Eg and the defect geometric/electronic factors. The identified correlation is rather general for monovacancies and interstitials, which holds in a wide variety of semiconductors covering Si, Ge, phosphorenes, ZnO, GaAs, and InP, and enables one to obtain reliable values of Ef and ɛ of the point defects for RPA and experiments based on semilocal DFT calculations.

  13. A Computational Framework for Automation of Point Defect Calculations

    NASA Astrophysics Data System (ADS)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; Lany, Stephan; Stevanovic, Vladan; National Renewable Energy Laboratory, Golden, Colorado 80401 Collaboration

    A complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory has been developed. The framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. The package provides the capability to compute widely accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3as test examples, we demonstrate the package capabilities and validate the methodology. We believe that a robust automated tool like this will enable the materials by design community to assess the impact of point defects on materials performance. National Renewable Energy Laboratory, Golden, Colorado 80401.

  14. Defect Structure of Beta NiAl Using the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Amador, Carlos; Ferrante, John; Noebe, Ronald D.

    1996-01-01

    The semiempirical BFS method for alloys is generalized by replacing experimental input with first-principles results thus allowing for the study of complex systems. In order to examine trends and behavior of a system in the vicinity of a given point of the phase diagram a search procedure based on a sampling of selected configurations is employed. This new approach is applied to the study of the beta phase of the Ni-Al system, which exists over a range of composition from 45-60 at.% Ni. This methodology results in a straightforward and economical way of reproducing and understanding the basic features of this system. At the stoichiometric composition, NiAl should exist in a perfectly ordered B2 structure. Ni-rich alloys are characterized by antisite point defects (with Ni atoms in the Al sites) with a decrease in lattice parameters. On the Al-rich side of stoichiometry there is a steep decrease in lattice parameter and density with increasing Al content. The presence of vacancies in Ni sites would explain such behavior. Recent X-ray diffraction experiments suggest a richer structure: the evidence, while strongly favoring the presence of vacancies in Ni sites, also suggests the possibility of some vacancies in Al sites in a 3:1 ratio. Moreover, local ordering of vacant sites may be preferred over a random distribution of individual point defects.

  15. Probing the effects of defects on ferroelectricity in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Lin

    Ferroelectric materials have been intensively studied due to their interesting properties such as piezoelectricity, ferroelectricity including spontaneous polarization, remnant polarization, hysteresis loop, and etc. In this study, effects of defects, thickness, and temperature on ferroelectric stability, hysteresis loop, and phase transition in ferroelectric thin films have been investigated using molecular dynamics simulations with first-principles effective Hamiltonian. Various types of defects are considered including oxygen vacancy, hydrogen contamination, and dead layer. We first study the effects of oxygen vacancy on ferroelectricity in PbTiO3 (PTO) thin films. An oxygen vacancy has been modeled as a +2q charged point defect which generates local strain and electrostatic fields. Atomic displacements induced by an oxygen vacancy were obtained by first-principles calculations and the corresponding strain field was fitted with elastic continuum model of a point defect. The obtained local strain and electrostatic fields are the inputs to the molecular dynamics (MD) simulations. We limited the oxygen vacancies in the interfacial layers between the film and electrodes. Oxygen vacancies reduce the spontaneous polarization and significantly increase the critical thickness below which the spontaneous polarization disappears. With the presence of oxygen vacancy only at one interface layer, PTO film exhibits asymmetric hysteresis loop which is consistent with experimental observations about the imprint effect. In the heating-up and cooling-down processes, oxygen vacancies weaken the phase transitions, but contribute tension along the thickness direction at high temperature. First-principles calculations are performed to determine the possible position, formation energy, and mobility of the interstitial hydrogen atom, and the calculated results are used as inputs to MD simulations in a large system. The hydrogen atom is able to move within one unit cell with small

  16. Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles.

    PubMed

    Das, Tridip; Nicholas, Jason D; Sheldon, Brian W; Qi, Yue

    2018-06-06

    Accurate characterization of chemical strain is required to study a broad range of chemical-mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO2-δ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO2-δ. The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce3+ and two become Ce4+) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce3+-O bonds elongate, one of the Ce3+-O bond shorten, and all seven of the Ce4+-O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO2-δ. Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.

  17. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation

  18. Quantum computing with defects.

    PubMed

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  19. Thermoluminescence and lattice defects in LiF

    NASA Technical Reports Server (NTRS)

    Stoebe, T. G.; Watanabe, S.

    1975-01-01

    The principal effect of thermal and optical treatments in an ionic solid is to alter the lattice defect equilibrium, including the concentration and arrangement of ion vacancies, impurities, impurity-vacancy associates, and assorted electrons and holes which may be associated with such defects. This paper examines the relationship between these defects and thermoluminescence in the case of lithium fluoride at and above room temperature. The discussion focuses on lattice defect equilibrium, thermoluminescent trapping centers, the relationship between recombination and luminescence, the supralinearity and sensitization of the dosimetry grade of LiF and activation energy parameters.

  20. Defects, optical absorption and electron mobility in indium and gallium nitrides

    NASA Astrophysics Data System (ADS)

    Tansley, T. L.; Egan, R. J.

    1993-04-01

    We review the experimental evidence for the origin and location of the four native point defects in the wide gap semiconducting indium and gallium nitrides and compare then with experimental predictions. The donor triplets associated with nitrogen vacancies and the deep compensating centres ascribed to the antisite substitutional defects appear to have the greatest effect on macroscopic properties, apparently including the four luminescent bands in GaN. Calculated mobilities in InN and GaN depend principally on ionised impurity and polar-mode phonon scattering. We reconcile these results with experimental data and point out the consequences for improvements in material growth.

  1. Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and

  2. Line and point defects in nonlinear anisotropic solids

    NASA Astrophysics Data System (ADS)

    Golgoon, Ashkan; Yavari, Arash

    2018-06-01

    In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with distributed line and point defects. In particular, we determine the stress fields of (i) a parallel cylindrically symmetric distribution of screw dislocations in infinite orthotropic and monoclinic media, (ii) a cylindrically symmetric distribution of parallel wedge disclinations in an infinite orthotropic medium, (iii) a distribution of edge dislocations in an orthotropic medium, and (iv) a spherically symmetric distribution of point defects in a transversely isotropic spherical ball.

  3. Proton-irradiation induced defects in modified 310S steels characterized with positron annihilation spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Shen, Zhenyu; Tang, Rui; Jin, Suoxue; Song, Yaoxiang; Long, Yunxiang; Wei, Yaxia; Zhou, Xiong; Chen, Cheng; Guo, Liping

    2018-07-01

    An effective method to improve the irradiation resistance of austenitic stainless steels is adding oversized solutes into steels. In this work, the irradiation resistances of two type of modified 310S steels, in one of which Zr was added and in another Nb, Ta, and W were added, were investigated by proton irradiations at 563 K. Irradiation induced vacancy-type defects was characterized with positron annihilation spectroscopy (PAS), while dislocation loops and bubbles whose size are greater than 1 nm are characterized with transmission electron microscopy (TEM). It is found that the relative S parameter ΔS/S extracted from PAS is more effective than S parameter in evaluating the quantity of vacancy-type defects. It was revealed from ΔS/S that more vacancy-type defects produced in (Nb, Ta, W)-added steels than that in Zr-added steels, and this trend became more obvious with the dose increasing. S-W curves reveal that proton irradiation induced two kinds of vacancy-type defects, i.e. vacancy clusters and proton-vacancy clusters. TEM observation shows that the density of small bubbles induced by proton in (Nb, Ta, W)-added steels is much higher than that in Zr-added steels. Both 1/3 <1 1 1> and 1/2 <1 1 0> dislocation loops were observed with TEM in all of the specimens. The mean size and number density of dislocation loops in (Nb, Ta, W)-added steels are slightly larger than that in Zr-added steels, and increased with increasing irradiation dose. Both PAS and TEM observations shows that irradiation damage in Zr-added steels is less serious than that (Nb, Ta, W)-added steels, and the possible mechanisms are discussed through the enhancement of point defect recombination by oversized solute atoms.

  4. On the passive and semiconducting behavior of severely deformed pure titanium in Ringer's physiological solution at 37°C: A trial of the point defect model.

    PubMed

    Ansari, Ghazaleh; Fattah-Alhosseini, Arash

    2017-06-01

    The effects of sever plastic deformation through multi-pass accumulative roll bonding on the passive and semiconducting behavior of pure titanium is evaluated in Ringer's physiological solution at 37°C in the present paper. Produced results by polarization plots and electrochemical impedance spectroscopy measurements revealed a significant advance in the passive response of the nano-grained sample compared to that of the annealed pure titanium. Also, Mott-Schottky test results of the nano-grained pure titanium represented a lower donor density and reduced flat-band potential in the formed passive film in comparison with the annealed sample. Moreover, based on the Mott-Schottky analysis in conjunction with the point defect model, it was suggested that with increase in formation potential, the calculated donor density of both annealed and nano-grained samples decreases exponentially and the thickness of the passive film linearly increases. These observations were consistent with the point defect model predictions, considering that the point defects within the passive film are metal interstitials, oxygen vacancies, or both. From the viewpoint of passive and semiconducting behavior, nano-grained pure titanium appeared to be more suitable for implant applications in simulate human body environment compared to annealed pure titanium. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Slow relaxation of cascade-induced defects in Fe

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-02-17

    On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less

  6. The effect of sputter temperature on vacancy island behavior on Ni(111) measured by photoemission of adsorbed xenon

    NASA Astrophysics Data System (ADS)

    Malafsky, Geoffrey P.

    1994-04-01

    The temperature dependence of vacancy coalescence on an ion bombarded Ni(111) surface is measured by photoemission of adsorbed xenon (PAX). The Ni(111) crystal is sputtered by a low fluence (0.06 ML incident ions) Ar + ion beam with incident kinetic energies of 500-3000 eV. The Xe coverage decreases rapidly with increasing temperature between 88 and 375 K with little additional change from 375 to 775 K. The PAX spectra are acquired with a Xe chamber pressure of 8 × 10 -10 Torr and at a temperature of 88 K. Under these conditions, the Xe is selectively adsorbed at defect sites which would make the Xe coverage proportional to the surface defect density on simple defect structures but the large size of the Xe atom relative to the Ni atom prevents the direct relationship of Xe coverage to the defect density when complex and varying defect structures are present. The decrease in Xe coverage is not attributed to the loss of defect sites by adatom-vacancy recombination but the changing vacancy island shape and size with temperature which alters the ratio of adsorbed Xe atoms to surface vacancy sites. This ratio decreases with increasing temperature as the vacancy islands progress from small and irregularly shaped islands to larger and hexagonally shaped islands. This transition is seen in Monte Carlo simulations of the kinetically driven atomic diffusion on the sputtered surface.

  7. Defect dynamics in Li substituted nanocrystalline ZnO: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nambissan, P. M. G.; Thapa, S.; Mandal, K.

    2014-12-01

    Very recently, vacancy-type defects have been found to play a major role in stabilizing d0 ferromagnetism in various low dimensional ZnO systems. In this context, the evolution of vacancy-type defects within the ZnO nanocrystals due to the doping of ZnO by alkali metal lithium (Li) is investigated using X-ray photoelectron (XPS), photoluminescence (PL) and positron annihilation spectroscopy (PAS). Li-doping is found to have significant effects in modifying the vacancy-type defects, especially the Zn vacancy (VZn) defects within the ZnO lattice. XPS measurement indicated that initially the Li1+ ions substitute at Zn2+ sites, but when Li concentration exceeds 7 at%, excess Li starts to move through the interstitial sites. The increase in positron lifetime components and the lineshape S-parameter obtained from coincident Doppler broadening spectra with Li-doping indicated an enhancement of VZn defect concentration within the doped ZnO lattice. The vacancy type defects, initially of the predominant configuration VZn+O+Zn got reduced to neutral ZnO divacancies due to the partial recombination by the doped Li1+ ions but, when the doping concentration exceeded 7 at% and Li1+ ions started migrating to the interstitials, positron diffusion is partly impeded and this results in reduced probability of annihilation. PL spectra have shown intense green and yellow-orange emission due to the stabilization of a large number of VZn defects and Li substitutional (LiZn) defects respectively. Hence Li can be a very useful dopant in stabilizing and modifying significant amount of Zn vacancy-defects which can play a useful role in determining the material behavior.

  8. Off-stoichiometric defect clustering in irradiated oxides

    NASA Astrophysics Data System (ADS)

    Khalil, Sarah; Allen, Todd; EL-Azab, Anter

    2017-04-01

    A cluster dynamics model describing the formation of vacancy and interstitial clusters in irradiated oxides has been developed. The model, which tracks the composition of the oxide matrix and the defect clusters, was applied to the early stage formation of voids and dislocation loops in UO2, and the effects of irradiation temperature and dose rate on the evolution of their densities and composition was investigated. The results show that Frenkel defects dominate the nucleation process in irradiated UO2. The results also show that oxygen vacancies drive vacancy clustering while the migration energy of uranium vacancies is a rate-limiting factor for the nucleation and growth of voids. In a stoichiometric UO2 under irradiation, off-stoichiometric vacancy clusters exist with a higher concentration of hyper-stoichiometric clusters. Similarly, off-stoichiometric interstitial clusters form with a higher concentration of hyper-stoichiometric clusters. The UO2 matrix was found to be hyper-stoichiometric due to the accumulation of uranium vacancies.

  9. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide

    PubMed Central

    Carozo, Victor; Wang, Yuanxi; Fujisawa, Kazunori; Carvalho, Bruno R.; McCreary, Amber; Feng, Simin; Lin, Zhong; Zhou, Chanjing; Perea-López, Néstor; Elías, Ana Laura; Kabius, Bernd; Crespi, Vincent H.; Terrones, Mauricio

    2017-01-01

    Defects play a significant role in tailoring the optical properties of two-dimensional materials. Optical signatures of defect-bound excitons are important tools to probe defective regions and thus interrogate the optical quality of as-grown semiconducting monolayer materials. We have performed a systematic study of defect-bound excitons using photoluminescence (PL) spectroscopy combined with atomically resolved scanning electron microscopy and first-principles calculations. Spatially resolved PL spectroscopy at low temperatures revealed bound excitons that were present only on the edges of monolayer tungsten disulfide and not in the interior. Optical pumping of the bound excitons was sublinear, confirming their bound nature. Atomic-resolution images reveal that the areal density of monosulfur vacancies is much larger near the edges (0.92 ± 0.45 nm−2) than in the interior (0.33 ± 0.11 nm−2). Temperature-dependent PL measurements found a thermal activation energy of ~36 meV; surprisingly, this is much smaller than the bound-exciton binding energy of ~300 meV. We show that this apparent inconsistency is related to a thermal dissociation of the bound exciton that liberates the neutral excitons from negatively charged point defects. First-principles calculations confirm that sulfur monovacancies introduce midgap states that host optical transitions with finite matrix elements, with emission energies ranging from 200 to 400 meV below the neutral-exciton emission line. These results demonstrate that bound-exciton emission induced by monosulfur vacancies is concentrated near the edges of as-grown monolayer tungsten disulfide. PMID:28508048

  10. Intrinsic Defect Ferromagnetism: The case of Hafnium Oxide

    NASA Astrophysics Data System (ADS)

    Das Pemmaraju, Chaitanya

    2005-03-01

    In view of the recent experimental reports of intrinsic ferromagnetism in Hafnium Oxide (HfO2) thin film systems ootnotetextM. Venkatesan, C. B. Fitzgerald, J. M. D. Coey Nature 430, 630 (2004) Brief Communications, we carried out first principles investigations to look for magnetic structure in HfO2 possibly brought about by the presence of small concentrations of intrinsic point defects. Ab initio electronic structure calculations using Density Functional Theory (DFT) show that isolated cation vacancy sites in HfO2 lead to the formation of high spin defect states which couple ferromagnetically to each other. Interestingly, these high spin states are observed in the low symmetry monoclinic and tetragonal phases while the highly symmetric cubic flourite phase exhibits a non-magnetic ground state. Detailed studies of the electronic structure of cation vacancies in the three crystalline phases of Hafnia show that symmetry leading to orbitally degenerate defect levels is not a pre-requsite for ferromagnetism and that the interplay between Kinetic, Coulomb and Exchange energy together with favourable coupling to the Crystalline environment can lead to high spin ferromagnetic ground states even in extreme low symmetry systems like monoclinic HfO2. These findings open up a much wider class of systems to the possibility of intrinsic defect ferromagnetism.

  11. Defect identification in semiconductors with positron annihilation: experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  12. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    NASA Astrophysics Data System (ADS)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  13. Surface Charge-Transfer Doping of Graphene Nanoflakes Containing Double-Vacancy (5-8-5) and Stone-Wales (55-77) Defects through Molecular Adsorption.

    PubMed

    Shakourian-Fard, Mehdi; Jamshidi, Zahra; Kamath, Ganesh

    2016-10-18

    The adsorption of six electron donor-acceptor (D/A) organic molecules on various sizes of graphene nanoflakes (GNFs) containing two common defects, double-vacancy (5-8-5) and Stone-Wales (55-77), are investigated by means of ab initio DFT [M06-2X(-D3)/cc-pVDZ]. Different D/A molecules adsorb on a defect graphene (DG) surface with binding energies (ΔE b ) of about -12 to -28 kcal mol -1 . The ΔE b values for adsorption of molecules on the Stone-Wales GNF surface are higher than those on the double vacancy GNF surface. Moreover, binding energies increase by about 10 % with an increase in surface size. The nature of cooperative weak interactions is analyzed based on quantum theory of atoms in molecules, noncovalent interactions plot, and natural bond order analyses, and the dominant interaction is compared for different molecules. Electron density population analysis is used to explain the n- and p-type character of defect graphene nanoflakes (DGNFs) and also the change in electronic properties and reactivity parameters of DGNFs upon adsorption of different molecules and with increasing DGNF size. Results indicate that the HOMO-LUMO energy gap (E g ) of DGNFs decreases upon adsorption of molecules. However, by increasing the size of DGNFs, the E g and chemical hardness of all complexes decrease and the electrophilicity index increases. Furthermore, the values of the chemical potential of acceptor-DGNF complexes decrease with increasing size, whereas those of donor-DGNF complexes increase. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.

    PubMed

    Xu, Lanqing; Wei, Ning; Zheng, Yongping

    2013-12-20

    Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone-Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp-sp(2) bonding network and an sp-sp(2)-sp(3) bonding network are observed in vacancy-defected and Stone-Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending-saturating-improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp-sp(2) and sp-sp(2)-sp(3) rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone-Wales defects account for their distinctive rules of the evolution of the fracture strain.

  15. Suppression of vacancy cluster growth in concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...

    2016-12-13

    Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less

  16. Vacancies in MgO at ultrahigh pressure: About mantle rheology of super-Earths

    NASA Astrophysics Data System (ADS)

    Ritterbex, Sebastian; Harada, Takafumi; Tsuchiya, Taku

    2018-05-01

    First-principles calculations are performed to investigate vacancy formation and migration in the B2 phase of MgO. Defect energetics suggest the importance of intrinsic non-interacting vacancy pairs, even though the extrinsic vacancy concentration might govern atomic diffusion in the B2 phase of MgO. The enthalpies of ionic vacancy migration are generally found to decrease across the B1-B2 phase transition around a pressure of 500 GPa. It is shown that this enthalpy change induces a substantial increase in the rate of vacancy diffusion in MgO of almost four orders of magnitude (∼104) when the B1 phase transforms into the B2 phase with increasing pressure. If plastic deformation is controlled by vacancy diffusion, mantle viscosity is expected to decrease in relation to this enhanced diffusion rate in MgO across the B1-B2 transition in the interior of Earth-like large exoplanets. Our results of atomic relaxations near the defects suggest that diffusion controlled creep viscosity may generally decrease across high-pressure phase transitions with increasing coordination number. Plastic flow and resulting mantle convection in the interior of these super-Earths may be therefore less sluggish than previously thought.

  17. Defect interactions with stepped CeO₂/SrTiO₃ interfaces: implications for radiation damage evolution and fast ion conduction.

    PubMed

    Dholabhai, Pratik P; Aguiar, Jeffery A; Misra, Amit; Uberuaga, Blas P

    2014-05-21

    Due to reduced dimensions and increased interfacial content, nanocomposite oxides offer improved functionalities in a wide variety of advanced technological applications, including their potential use as radiation tolerant materials. To better understand the role of interface structures in influencing the radiation damage tolerance of oxides, we have conducted atomistic calculations to elucidate the behavior of radiation-induced point defects (vacancies and interstitials) at interface steps in a model CeO2/SrTiO3 system. We find that atomic-scale steps at the interface have substantial influence on the defect behavior, which ultimately dictate the material performance in hostile irradiation environments. Distinctive steps react dissimilarly to cation and anion defects, effectively becoming biased sinks for different types of defects. Steps also attract cation interstitials, leaving behind an excess of immobile vacancies. Further, defects introduce significant structural and chemical distortions primarily at the steps. These two factors are plausible origins for the enhanced amorphization at steps seen in our recent experiments. The present work indicates that comprehensive examination of the interaction of radiation-induced point defects with the atomic-scale topology and defect structure of heterointerfaces is essential to evaluate the radiation tolerance of nanocomposites. Finally, our results have implications for other applications, such as fast ion conduction.

  18. The thermal expansion of gold: point defect concentrations and pre-melting in a face-centred cubic metal.

    PubMed

    Pamato, Martha G; Wood, Ian G; Dobson, David P; Hunt, Simon A; Vočadlo, Lidunka

    2018-04-01

    On the basis of ab initio computer simulations, pre-melting phenomena have been suggested to occur in the elastic properties of hexagonal close-packed iron under the conditions of the Earth's inner core just before melting. The extent to which these pre-melting effects might also occur in the physical properties of face-centred cubic metals has been investigated here under more experimentally accessible conditions for gold, allowing for comparison with future computer simulations of this material. The thermal expansion of gold has been determined by X-ray powder diffraction from 40 K up to the melting point (1337 K). For the entire temperature range investigated, the unit-cell volume can be represented in the following way: a second-order Grüneisen approximation to the zero-pressure volumetric equation of state, with the internal energy calculated via a Debye model, is used to represent the thermal expansion of the 'perfect crystal'. Gold shows a nonlinear increase in thermal expansion that departs from this Grüneisen-Debye model prior to melting, which is probably a result of the generation of point defects over a large range of temperatures, beginning at T / T m > 0.75 (a similar homologous T to where softening has been observed in the elastic moduli of Au). Therefore, the thermodynamic theory of point defects was used to include the additional volume of the vacancies at high temperatures ('real crystal'), resulting in the following fitted parameters: Q = ( V 0 K 0 )/γ = 4.04 (1) × 10 -18  J, V 0 = 67.1671 (3) Å 3 , b = ( K 0 ' - 1)/2 = 3.84 (9), θ D = 182 (2) K, ( v f /Ω)exp( s f / k B ) = 1.8 (23) and h f = 0.9 (2) eV, where V 0 is the unit-cell volume at 0 K, K 0 and K 0 ' are the isothermal incompressibility and its first derivative with respect to pressure (evaluated at zero pressure), γ is a Grüneisen parameter, θ D is the Debye temperature, v f , h f and s f are the vacancy formation volume, enthalpy and entropy

  19. Energetics of charged metal clusters containing vacancies

    NASA Astrophysics Data System (ADS)

    Pogosov, Valentin V.; Reva, Vitalii I.

    2018-01-01

    We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.

  20. Density Functional Calculations of Native Defects in CH 3 NH 3 PbI 3 : Effects of Spin–Orbit Coupling and Self-Interaction Error

    DOE PAGES

    Du, Mao-Hua

    2015-04-02

    We know that native point defects play an important role in carrier transport properties of CH3NH3PbI3. However, the nature of many important defects remains controversial due partly to the conflicting results reported by recent density functional theory (DFT) calculations. In this Letter, we show that self-interaction error and the neglect of spin–orbit coupling (SOC) in many previous DFT calculations resulted in incorrect positions of valence and conduction band edges, although their difference, which is the band gap, is in good agreement with the experimental value. Moreover, this problem has led to incorrect predictions of defect-level positions. Hybrid density functional calculations,more » which partially correct the self-interaction error and include the SOC, show that, among native point defects (including vacancies, interstitials, and antisites), only the iodine vacancy and its complexes induce deep electron and hole trapping levels inside of the band gap, acting as nonradiative recombination centers.« less

  1. Defect characterization in Mg-doped GaN studied using a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Ishibashi, S.; Tenjinbayashi, K.; Tsutsui, T.; Nakahara, K.; Takamizu, D.; Chichibu, S. F.

    2012-01-01

    Vacancy-type defects in Mg-doped GaN grown by metalorganic vapor phase epitaxy were probed using a monoenergetic positron beam. For a sample fabricated with a high H2-flow rate, before post-growth annealing the major defect species detected by positrons was identified as vacancy-clusters. Evidence suggested that other donor-type defects such as nitrogen vacancies also existed. The defects increased the Fermi level position, and enhanced the diffusion of positrons toward the surface. The annihilation of positrons at the top surface was suppressed by Mg-doping. This was attributed to the introduction of a subsurface layer (<6 nm) with a low defect concentration, where the Fermi level position was considered to decrease due to partial activation of Mg. For samples after annealing, the trapping of positrons by residual vacancy-type defects was observed, and the sample crystal quality was found to depend on that before annealing.

  2. Point Defects in Oxides: Tailoring Materials Through Defect Engineering

    NASA Astrophysics Data System (ADS)

    Tuller, Harry L.; Bishop, Sean R.

    2011-08-01

    Optimization of electrical, optical, mechanical, and other properties of many advanced, functional materials today relies on precise control of point defects. This article illustrates the progress that has been made in elucidating the often complex equilibria exhibited by many materials by examining two recently well-characterized model systems, TlBr for radiation detection and PrxCe1-xO2-δ, of potential interest in solid-oxide fuel cells. The interplay between material composition, electrical conductivity, and mechanical properties (electrochemomechanics) is discussed, and implications in these relations, for example, enhancing electrical properties through large mechanical strains, are described. The impact of space charge and strain fields at interfaces, particularly important in nanostructure materials, is also emphasized. Key experimental techniques useful in characterizing bulk and surface defects are summarized and reviewed.

  3. Vacancy-impurity centers in diamond: prospects for synthesis and applications

    NASA Astrophysics Data System (ADS)

    Ekimov, E. A.; Kondrin, M. V.

    2017-06-01

    The bright luminescence of impurity-vacancy complexes, combined with high chemical and radiation resistance, makes diamond an attractive platform for the production of single-photon emitters and luminescent biomarkers for applications in nanoelectronics and medicine. Two representatives of this kind of defects in diamond, silicon-vacancy (SiV) and germanium-vacancy (GeV) centers, are discussed in this review; their similarities and differences are demonstrated in terms of the more thoroughly studied nitrogen-vacancy (NV) complexes. The recent discovery of GeV luminescent centers opens a unique opportunity for the controlled synthesis of single-photon emitters in nanodiamonds. We demonstrate prospects for the high-pressure high-temperature (HPHT) technique to create single-photon emitters, not only as an auxiliary to chemical vapor deposition (CVD) and ion-implantation methods but also as a primary synthesis tool for producing color centers in nanodiamonds. Besides practical applications, comparative studies of these two complexes, which belong to the same structural class of defects, have a fundamental importance for deeper understanding of shelving levels, the electronic structure, and optical properties of these centers. In conclusion, we discuss several open problems regarding the structure, charge state, and practical application of these centers, which still require a solution.

  4. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics

    PubMed Central

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-01-01

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width. PMID:28796167

  5. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics.

    PubMed

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-08-10

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  6. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.

    2017-01-01

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10-0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.

  7. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    DOE PAGES

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; ...

    2017-01-06

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less

  8. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less

  9. Direct correlation and strong reduction of native point defects and microwave dielectric loss in air-annealed (Ba,Sr)TiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Z. Q.; Podpirka, A.; Kirchoefer, S. W.

    2015-05-04

    We report on the native defect and microwave properties of 1 μm thick Ba{sub 0.50}Sr{sub 0.50}TiO{sub 3} (BST) films grown on MgO (100) substrates by molecular beam epitaxy (MBE). Depth-resolved cathodoluminescence spectroscopy (DRCLS) showed high densities of native point defects in as-deposited BST films, causing strong subgap emission between 2.0 eV and 3.0 eV due to mixed cation V{sub C} and oxygen Vo vacancies. Post growth air anneals reduce these defects with 2.2, 2.65, and 3.0 eV V{sub O} and 2.4 eV V{sub C} intensities decreasing with increasing anneal temperature and by nearly two orders of magnitude after 950 °C annealing. These low-defect annealed BSTmore » films exhibited high quality microwave properties, including room temperature interdigitated capacitor tunability of 13% under an electric bias of 40 V and tan δ of 0.002 at 10 GHz and 40 V bias. The results provide a feasible route to grow high quality BST films by MBE through post-air annealing guided by DRCLS.« less

  10. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.

    PubMed

    Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun

    2016-05-25

    We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.

  11. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Zhi-Quan; Pan, Rui-Kun; Wang, Shao-Jie

    2013-02-01

    SnO2 nanopowders were pressed into pellets and annealed in air from 100 to 1400°C. Both XRD and Raman spectroscopy confirm that all annealed samples were single phase with a tetragonal rutile structure. Annealing induces an increase in the SnO2 grain size from 30 to 83 nm. Positron annihilation measurements reveal vacancy defects in the grain boundary region, and the interfacial defects remain stable after annealing below 400°C, then they are gradually recovered with increasing annealing temperature up to 1200°C. Room temperature ferromagnetism was observed for SnO2 nanocrystals annealed below 1200°C, and the magnetization decreases continuously with increasing annealing temperature. However, the ferromagnetism disappears at 1200°C annealing. This shows good coincidence with the recovery of interfacial defects in the nanocrystals, suggesting that the ferromagnetism is probably induced by vacancy defects in the interface region.

  12. Microstructure evolution characteristics induced by oxygen vacancy generation in anatase TiO2 based resistive switching devices

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Gao, Bin; Huang, Peng; Kang, Jinfeng

    2017-03-01

    In this work, first principle calculations are employed to study the microstructure characteristics of the anatase TiO2 resistive switching material associated with the generation of oxygen vacancy (V o) based nanofilaments during the switching process. The calculations indicate that both the magnéli phase Ti4O7 and V o-defect phase of anatase TiO2 may be formed with the generation of oxygen vacancies during the forming and SET processes. Based on the calculations, a new physical insight is proposed to clarify the microstructure evolution characteristics of the anatase TiO2 resistive switching material and the correlation with resistive switching behaviors. During the forming or SET process, the anatase TiO2 is first excited to a transition state with the generation of oxygen vacancies, then fully relaxes to a stable V o-defect state. This V o-defect state may either recover to the original state with the recombination of the oxygen vacancies, which causes the reversible resistive switching behavior, or further transform to a much more stable state—the magnéli phase Ti4O7, through a phase transition process with the generation of many more oxygen vacancies. The phase transition from V o- defective anatase phase to magnéli phase Ti4O7 causes the failure of the resistive switching due to the significantly reduced possibility of the reversible phase transition from the magnéli phase to the anatase phase, compared with the possibility of the recombination from the V o-defective anatase.

  13. Defect engineering of the oxygen-vacancy clusters formation in electron irradiated silicon by isovalent doping: An infrared perspective

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Sgourou, E. N.; Chroneos, A.

    2012-12-01

    Infrared spectroscopy was used to study the production and evolution of oxygen-vacancy (VOn for n = 1, 2, 3 and VmO for m = 1, 2, 3) clusters, in electron-irradiated Czochralski silicon (Cz-Si) samples, doped with isovalent dopants. It was determined that the production of the VO pair is enhanced in Ge-doped Si but is suppressed in Sn and Pb-doped Si. The phenomenon is discussed in terms of the competition between isovalent dopants and oxygen atoms in capturing vacancies in the course of irradiation. In the case of Ge, only transient GeV pairs form, leading finally to an increase of the VO production. Conversely, for Sn and Pb the corresponding pairs with vacancies are stable, having an opposite impact on the formation of VO pairs. Regarding V2O and V3O clusters, our measurements indicate that Ge doping enhances their formation, although Sn and Pb dopants suppress it. Similar arguments as those for the VO pair could be put forward, based on the effect of isovalent impurities on the availability of vacancies. Additionally, it was found that the conversion ratio of VO to VO2 decreases as the covalent radius of the isovalent dopant increases. These results are discussed in terms of the local strains introduced by the isovalent dopants in the Si lattice. These local strains affect the balance of the intrinsic defects created as a result of irradiation, as well as the balance between the two main reactions (VO + Oi → VO2 and VO + SiI → Oi) participating in the VO annealing, leading finally to a decrease of the VO2 production. The larger the covalent radius of the isovalent dopant (rGe < rSn < rPb), the larger the introduced strains in the lattice and then the less the VO2 formation in accordance with our experimental results. Interestingly, an opposite trend was observed for the conversion ratio of VO2 to VO3. The phenomenon is attributed to the enhanced diffusivity of oxygen impurity as a result of the presence of isovalent dopants, leading to an enhanced formation

  14. Semiconductor color-center structure and excitation spectra: Equation-of-motion coupled-cluster description of vacancy and transition-metal defect photoluminescence

    NASA Astrophysics Data System (ADS)

    Lutz, Jesse J.; Duan, Xiaofeng F.; Burggraf, Larry W.

    2018-03-01

    Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substituted chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement for all cases considered.

  15. Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study.

    PubMed

    Mehralian, Fahimeh; Tadi Beni, Yaghoub; Kiani, Yaser

    2017-05-01

    Current study is concentrated on the extraordinary properties of defective carbon nanotubes (CNTs). The role of vacancy defects in thermal buckling response of precompressed CNTs is explored via molecular dynamics (MD) simulations. Defective CNTs are initially compressed at a certain ratio of their critical buckling strain and then undergo a uniform temperature rise. Comprehensive study is implemented on both armchair and zigzag CNTs with different vacancy defects including monovacancy, symmetric bivacancy and asymmetric bivacancy. The results reveal that defects have a pronounced impact on the buckling behavior of CNTs; interestingly, defective CNTs under compressive pre-load show higher resistance to thermal buckling than pristine ones. In the following, the buckling response of defective CNTs is shown to be dependent on the vacancy defects, location of defects and chirality. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos G.; Capaz, Rodrigo B.

    2015-08-01

    Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.

  17. Electronic and Structural Properties of Vacancies and Hydrogen Adsorbates on Trilayer Graphene

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos; Capaz, Rodrigo

    2015-03-01

    Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external electrical field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.

  18. Investigation of intrinsic defect magnetic properties in wurtzite ZnO materials

    NASA Astrophysics Data System (ADS)

    Fedorov, A. S.; Visotin, M. A.; Kholtobina, A. S.; Kuzubov, A. A.; Mikhaleva, N. S.; Hsu, Hua Shu

    2017-10-01

    Theoretical and experimental investigations of the ferromagnetism induced by intrinsic defects inside wurtzite zinc oxide structures are performed using magnetic field-dependent circular dichroism (MCD-H), direct magnetization measurement (M-H) by superconducting quantum interference device (SQUID) as well as by generalized gradient density functional theory (GGA-DFT). To investigate localized magnetic moments of bulk material intrinsic defects - vacancies, interstitial atoms and Frenkel defects, various-size periodic supercells are calculated. It is shown that oxygen interstitial atoms (Oi) or zinc vacancies (Znv) generate magnetic moments of 1,98 и 1,26 μB respectively, however, the magnitudes are significantly reduced when the distance between defects increases. At the same time, the magnetic moments of oxygen Frenkel defects are large ( 1.5-1.8 μB) and do not depend on the distance between the defects. It is shown that the origin of the induced ferromagnetism in bulk ZnO is the extra spin density on the oxygen atoms nearest to the defect. Also dependence of the magnetization of ZnO (10 1 ̅ 0) and (0001) thin films on the positions of Oi and Znv in subsurface layers were investigated and it is shown that the magnetic moments of both defects are significantly different from the values inside bulk material. In order to check theoretical results regarding the defect induced ferromagnetism in ZnO, two thin films doped by carbon (C) and having Zn interstitials and oxygen vacancies were prepared and annealed in vacuum and air, respectively. According to the MCD-H and M-H measurements, the film, which was annealed in air, exhibits a ferromagnetic behavior, while the other does not. One can assume annealing of ZnO in vacuum should create oxygen vacancies or Zn interstitial atoms. At that annealing of the second C:ZnO film in air leads to essential magnetization, probably by annihilation of oxygen vacancies, formation of interstitial oxygen atoms or zinc vacancies

  19. Strain control of oxygen vacancies in epitaxial strontium cobaltite films

    DOE PAGES

    Jeen, Hyoung Jeen; Choi, Woo Seok; Reboredo, Fernando A.; ...

    2016-01-25

    In this study, the ability to manipulate oxygen anion defects rather than metal cations in complex oxides can facilitate creating new functionalities critical for emerging energy and device technologies. However, the difficulty in activating oxygen at reduced temperatures hinders the deliberate control of important defects, oxygen vacancies. Here, strontium cobaltite (SrCoO x) is used to demonstrate that epitaxial strain is a powerful tool for manipulating the oxygen vacancy concentration even under highly oxidizing environments and at annealing temperatures as low as 300 °C. By applying a small biaxial tensile strain (2%), the oxygen activation energy barrier decreases by ≈30%, resultingmore » in a tunable oxygen deficient steady-state under conditions that would normally fully oxidize unstrained cobaltite. These strain-induced changes in oxygen stoichiometry drive the cobaltite from a ferromagnetic metal towards an antiferromagnetic insulator. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful for effectively designing oxides materials with a specific oxygen stoichiometry.« less

  20. Investigation of hydrogen interaction with defects in zirconia

    NASA Astrophysics Data System (ADS)

    Melikhova, O.; Kuriplach, J.; Čížek, J.; Procházka, I.; Brauer, G.; Anwand, W.

    2010-04-01

    Defect studies of a ZrO2 + 9 mol. % Y2O3 single crystal were performed in this work using a high resolution positron lifetime spectroscopy combined with slow positron implantation spectroscopy. In order to elucidate the nature of positron trapping sites observed experimentally, the structural relaxations of several types of vacancy-like defects in zirconia were performed and positron characteristics for them were calculated. Relaxed atomic configurations of studied defects were obtained by means of ab initio pseudopotential method within the supercell approach. Theoretical calculations indicated that neither oxygen vacancies nor their neutral complexes with substitute yttrium atoms are capable of positron trapping. On the other hand, zirconium vacancies are deep positron traps and are most probably responsible for the saturated positron trapping observed in yttria stabilized zirconia single crystals. However, the calculated positron lifetime for zirconium vacancy is apparently longer than the experimental value corresponding to a single-component spectrum measured for the cubic ZrO2 + 9 mol. % Y2O3 single crystal. It was demonstrated that this effect can be explained by hydrogen trapped in zirconium vacancies. On the basis of structure relaxations, we found that zirconium vacancy - hydrogen complexes represent deep positron traps with the calculated lifetime close to the experimental one. In zirconium vacancy - hydrogen complexes the hydrogen atom forms an O-H bond with one of the nearest neighbour oxygen atoms. The calculated bond length is close to 1 Å.

  1. Nanocarbon: Defect Architectures and Properties

    NASA Astrophysics Data System (ADS)

    Vuong, Amanda

    The allotropes of carbon make its solid phases amongst the most diverse of any element. It can occur naturally as graphite and diamond, which have very different properties that make them suitable for a wide range of technological and commercial purposes. Recent developments in synthetic carbon include Highly Oriented Pyrolytic Graphite (HOPG) and nano-carbons, such as fullerenes, nanotubes and graphene. The main industrial application of bulk graphite is as an electrode material in steel production, but in purified nuclear graphite form, it is also used as a moderator in Advanced Gas-cooled Reactors across the United Kingdom. Both graphene and graphite are damaged over time when subjected to bombardment by electrons, neutrons or ions, and these have a wide range of effects on their physical and electrical properties, depending on the radiation flux and temperature. This research focuses on intrinsic defects in graphene and dimensional change in nuclear graphite. The method used here is computational chemistry, which complements physical experiments. Techniques used comprise of density functional theory (DFT) and molecular dynamics (MD), which are discussed in chapter 2 and chapter 3, respectively. The succeeding chapters describe the results of simulations performed to model defects in graphene and graphite. Chapter 4 presents the results of ab initio DFT calculations performed to investigate vacancy complexes that are formed in AA stacked bilayer graphene. In AB stacking, carbon atoms surrounding the lattice vacancies can form interlayer structures with sp2 bonding that are lower in energy compared to in-plane reconstructions. From the investigation of AA stacking, sp2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp2 bonded wormhole between the layers. Also, a new class of mezzanine structure characterised by sp3 interlayer bonding, resembling a prismatic vacancy loop has also been identified. The mezzanine, which is a

  2. Role of Defects on Regioselectivity of Nano Pristine Graphene.

    PubMed

    Kudur Jayaprakash, Gururaj; Casillas, Norberto; Astudillo-Sánchez, Pablo D; Flores-Moreno, Roberto

    2016-11-17

    Here analytical Fukui functions based on density functional theory are applied to investigate the redox reactivity of pristine and defected graphene lattices. A carbon H-terminated graphene structure (with 96 carbon atoms) and a graphene defected surface with Stone-Wales rearrangement and double vacancy defects are used as models. Pristine sp 2 -hybridized, hexagonal arranged carbon atoms exhibit a symmetric reactivity. In contrast, common carbon atoms at reconstructed polygons in Stone-Wales and double vacancy graphene display large reactivity variations. The improved reactivity and the regioselectivity at defected graphene is correlated to structural changes that caused carbon-carbon bond length variations at defected zones.

  3. Influence of Dopants in ZnO Films on Defects

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  4. Surface-induced magnetism of the solids with impurities and vacancies

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.; Glinchuk, M. D.; Blinc, R.

    2011-04-01

    Using the quantum-mechanical approach combined with the image charge method we calculated the lowest energy levels of the impurities and neutral vacancies with two electrons or holes located in the vicinity of flat surface of different solids. Unexpectedly we obtained that the magnetic triplet state is the ground state of the impurities and neutral vacancies in the vicinity of surface, while the nonmagnetic singlet is the ground state in the bulk, for e.g. He atom, Li+, Be++ ions, etc. The energy difference between the lowest triplet and singlet states strongly depends on the electron (hole) effective mass μ, dielectric permittivity of the solid ε2 and the distance from the surface z0. For z0=0 and defect charge ∣Z∣=2 the energy difference is more than several hundreds of Kelvins at μ=(0.5-1)me and ε2=2-10, more than several tens of Kelvins at μ=(0.1-0.2)me and ε2=5-10, and not more than several Kelvins at μ<0.1me and ε2>15 (me is the mass of a free electron). Pair interaction of the identical surface defects (two doubly charged impurities or vacancies with two electrons or holes) reveals the ferromagnetic spin state with the maximal exchange energy at the definite distance between the defects (∼5-25 nm). We estimated the critical concentration of surface defects and transition temperature of ferromagnetic long-range order appearance in the framework of percolation and mean field theories, and RKKY approach for semiconductors like ZnO. We obtained that the nonmagnetic singlet state is the lowest one for a molecule with two electrons formed by a pair of identical surface impurities (like surface hydrogen), while its next state with deep enough negative energy minimum is the magnetic triplet. The metastable magnetic triplet state appeared for such molecule at the surface indicates the possibility of metastable ortho-states of the hydrogen-like molecules, while they are absent in the bulk of material. The two series of spectral lines are expected due to

  5. Point Defect Distributions in ZnSe Crystals: Effects of Gravity Vector Orientation During Physical Vapor Transport Growth

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.

    1999-01-01

    ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.

  6. A computational framework for automation of point defect calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  7. A computational framework for automation of point defect calculations

    DOE PAGES

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; ...

    2017-01-13

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  8. Gallium vacancies and the growth stoichiometry of GaN studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Saarinen, K.; Seppälä, P.; Oila, J.; Hautojärvi, P.; Corbel, C.; Briot, O.; Aulombard, R. L.

    1998-11-01

    We have applied positron spectroscopy to study the formation of vacancy defects in undoped n-type metal organic chemical vapor deposition grown GaN, where the stoichiometry was varied. Ga vacancies are found in all samples. Their concentration increases from 1016 to 1019cm-3 when the V/III molar ratio increases from 1000 to 10 000. In nitrogen rich conditions Ga lattice sites are thus left empty and Ga vacancies are abundantly formed. The creation of Ga vacancies is accompanied by the decrease of free electron concentration from 1020 to 1016cm-3, demonstrating their role as compensating centers.

  9. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  10. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE PAGES

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan; ...

    2017-12-28

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  11. Quantum corrections to conductivity in graphene with vacancies

    NASA Astrophysics Data System (ADS)

    Araujo, E. N. D.; Brant, J. C.; Archanjo, B. S.; Medeiros-Ribeiro, G.; Alves, E. S.

    2018-06-01

    In this work, different regions of a graphene device were exposed to a 30 keV helium ion beam creating a series of alternating strips of vacancy-type defects and pristine graphene. From magnetoconductance measurements as function of temperature, density of carriers and density of strips we show that the electron-electron interaction is important to explain the logarithmic quantum corrections to the Drude conductivity in graphene with vacancies. It is known that vacancies in graphene behave as local magnetic moments that interact with the conduction electrons and leads to a logarithmic correction to the conductance through the Kondo effect. However, our work shows that it is necessary to account for the non-homogeneity of the sample to avoid misinterpretations about the Kondo physics due the difficulties in separating the electron-electron interaction from the Kondo effect.

  12. On-Demand Generation of Neutral and Negatively Charged Silicon-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Dhomkar, Siddharth; Zangara, Pablo R.; Henshaw, Jacob; Meriles, Carlos A.

    2018-03-01

    Point defects in wide-band-gap semiconductors are emerging as versatile resources for nanoscale sensing and quantum information science, but our understanding of the photoionization dynamics is presently incomplete. Here, we use two-color confocal microscopy to investigate the dynamics of charge in type 1b diamond hosting nitrogen-vacancy (NV) and silicon-vacancy (SiV) centers. By examining the nonlocal fluorescence patterns emerging from local laser excitation, we show that, in the simultaneous presence of photogenerated electrons and holes, SiV (NV) centers selectively transform into the negative (neutral) charge state. Unlike NVs, 532 nm illumination ionizes SiV- via a single-photon process, thus hinting at a comparatively shallower ground state. In particular, slower ionization rates at longer wavelengths suggest the latter lies approximately ˜1.9 eV below the conduction band minimum. Building on the above observations, we demonstrate on-demand SiV and NV charge initialization over large areas via green laser illumination of variable intensity.

  13. Oxygen vacancy-induced ferromagnetism in un-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Wang, Weipeng; Liu, Can; Hu, Yang; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-02-01

    ZnO films became ferromagnetic when defects were introduced by thermal-annealing in flowing argon. This ferromagnetism, as shown by the photoluminescence measurement and positron annihilation analysis, was induced by the singly occupied oxygen vacancy with a saturated magnetization dependent positively on the amount of this vacancy. This study clarified the origin of the ferromagnetism of un-doped ZnO thin films and provides possibly an alternative way to prepare ferromagnetic ZnO films.

  14. Effect of Ga doping and point defect on magnetism of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Zhao, Chunwang; Jia, Xiaofang; Qu, Lingfeng

    2017-02-01

    The combined influence mechanism of Ga doping and Zn vacancy or O vacancy on magnetism of ZnO is studied using the first-principle calculation. The coexistence of Ga doping and Zn vacancy can achieve a Curie temperature higher than room temperature and the Ga doped ZnO system is a p-type diluted degenerate semiconductor with metalized ferromagnetism. The magnetism of the doping system of Ga doping and Zn vacancy is mainly contributed by double-exchange interaction through the holes of Zn vacancy taking carrier as medium. However, the system of Ga doping and O vacancy is non-magnetic. In the coexistence of Ga doping and Zn vacancy or O vacancy, a close relative distance between doping and vacancy will reduce the formation energy of the doping system but increase the easiness of doping and vacancy, as well as enhance the stability of the doping system.

  15. Extended and Point Defects in Diamond Studied with the Aid of Various Forms of Microscopy.

    PubMed

    Steeds; Charles; Gilmore; Butler

    2000-07-01

    It is shown that star disclinations can be a significant source of stress in chemical vapor deposited (CVD) diamond. This purely geometrical origin contrasts with other sources of stress that have been proposed previously. The effectiveness is demonstrated of the use of electron irradiation using a transmission electron microscope (TEM) to displace atoms from their equilibrium sites to investigate intrinsic defects and impurities in CVD diamond. After irradiation, the samples are studied by low temperature photoluminescence microscopy using UV or blue laser illumination. Results are given that are interpreted as arising from isolated <100> split self-interstitials and positively charged single vacancies. Negatively charged single vacancies can also be revealed by this technique. Nitrogen and boron impurities may also be studied similarly. In addition, a newly developed liquid gallium source scanned ion beam mass spectrometry (SIMS) instrument has been used to map out the B distribution in B doped CVD diamond specimens. The results are supported by micro-Raman spectroscopy.

  16. Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anoop Krishnan, N. M., E-mail: anoopnm@civil.iisc.ernet.in; Ghosh, Debraj

    2014-07-28

    The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation ofmore » failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure.« less

  17. Infrared defect dynamics—Nitrogen-vacancy complexes in float zone grown silicon introduced by electron irradiation

    NASA Astrophysics Data System (ADS)

    Inoue, Naohisa; Kawamura, Yuichi

    2018-05-01

    The interaction of nitrogen and intrinsic point defects, vacancy (V) and self-interstitial (I), was examined by infrared absorption spectroscopy on the electron irradiated and post-annealed nitrogen doped float zone (FZ) silicon crystal. Various absorption lines were observed, at 551 cm-1 in as-grown samples, at 726 and 778 cm-1 in as-irradiated samples (Ir group), at 689 cm-1 after post-annealing at 400 °C and above (400 °C group), at 762 and 951 cm-1 after annealing at 600 °C (600 °C group), and at 714 cm-1 up to 800 °C (800 °C group). By irradiation, a part of N2 was changed into the Ir group. VN2 is the candidate for the origin of the Ir group. By the post annealing at 400 and 600 °C, a part of N2 and the Ir group were changed into the 400 °C group, to less extent at 600 °C. V2N2 is the candidate for the origin of the 400 °C group. By annealing at 600 °C, most of the Ir group turned into 400 °C and 600 °C groups. By annealing at 800 °C, N2 recovered almost completely, and most other complexes were not observed. Recently, lifetime degradation has been observed in the nitrogen doped FZ Si annealed at between 450 and 800 °C. The N-V interaction in the same temperature range revealed here will help to understand the lifetime degradation mechanism. The behavior of the 689 cm-1 line corresponded well to the lifetime degradation.

  18. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3 : A positron annihilation lifetime spectroscopy study

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Singh, S.; Mackie, R. A.; Morozov, M.; McGuire, S.; Damjanovic, D.

    2007-10-01

    Positron annihilation lifetime spectroscopy measurements identify A - and B -site cation vacancies in ferroelectric perovskite oxides (ABO3) . Crystal PbTiO3 and ceramic lead zirconium titanate (PZT) were studied and gave consistent values for the lifetime resulting from positron localization at lead vacancies VPb . Positron trapping to B -site vacancies was inferred in PZT. Temperature dependent studies showed that the defect specific trapping rate was higher for VB compared to VPb , consistent with the larger negative charge. Doping PZT with Fe increased the fraction positron trapping to VB compared to VPb -type defects.

  19. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi

    2017-02-01

    The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.

  20. Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide.

    PubMed

    Yarali, Milad; Brahmi, Hatem; Yan, Zhequan; Li, Xufan; Xie, Lixin; Chen, Shuo; Kumar, Satish; Yoon, Mina; Xiao, Kai; Mavrokefalos, Anastassios

    2018-02-07

    It is well understood that defect engineering can give rise to exotic electronic properties in transition-metal dichalcogenides, but to this date, there is no detailed study to illustrate how defects can be engineered to tailor their thermal properties. Here, through combined experimental and theoretical approaches based on the first-principles density functional theory and Boltzmann transport equations, we have explored the effect of lattice vacancies and substitutional tungsten (W) doping on the thermal transport of the suspended molybdenum diselenide (MoSe 2 ) monolayers grown by chemical vapor deposition (CVD). The results show that even though the isoelectronic substitution of the W atoms for Mo atoms in CVD-grown Mo 0.82 W 018 Se 2 monolayers reduces the Se vacancy concentration by 50% compared to that found in the MoSe 2 monolayers, the thermal conductivity remains intact in a wide temperature range. On the other hand, Se vacancies have a detrimental effect for both samples and more so in the Mo 0.82 W 018 Se 2 monolayers, which results in thermal conductivity reduction up to 72% for a vacancy concentration of 4%. This is because the mass of the W atom is larger than that of the Mo atom, and missing a Se atom at a vacancy site results in a larger mass difference and therefore kinetic energy and potential energy difference. Furthermore, the monotonically increasing thermal conductivity with temperature for both systems at low temperatures indicates the importance of boundary scattering over defects and phonon-phonon scattering at these temperatures.

  1. Dynamics and Structure of Point Defects in Forsterite: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Churakov, S.; Khisina, N.; Urusov, V.; Wirth, R.

    2001-12-01

    OH-bearing fluid inclusions in Fo92 forsterite samples from peridotite nodule 9206 (Udachnaja kimberlite pipe)[1] were documented recently based on TEM and IR studies. The Fourier transform of diffraction pattern from the inclusions exhibited a pattern, which is interpreted as ordered planar (2H)xMg defects. In this study the structure and dynamics of protons associated with Mg(1), Mg(2) vacancies and interstitial polyhedrons ordered in a (100) plane corresponding to double unite cell periodicity of the forsterite lattice has been investigated by ab initio quantum mechanic calculations. Static structure optimizations and ab-initio molecular dynamics (MD) simulations have been performed using the CPMD density functional code[2]. The calculations were accomplished with the BLYP-functional utilizing the generalized gradient approximation. Non-local Goedecker-type pseudopotentials[3] have been applied to account for core electrons. Valence electron orbitals were approximated by plane wave expansion up to 70 Ry energy cutoff. The energy of static structures was sampled on 2x2x2 Monkhorst-Pack mesh[4]. During the structure relaxation parameters of an orthorhombic 2x1x2 supercell contaning 116 atoms corresponding to Mg28Si16O64H8 hydrous olivine was fixed at experimental values of a=9.524Å b=10.225Å and c=11.988Å relative to the Pbnm space group. Series of NVT-MD calculations were performed at 1000 K on 2x1x1 supercell with 58 atoms using four chain Nose thermostat. Randomly disturbed optimized structures were used as initial configuration for MD runs. The 1ps system equilibration is followed by trajectory production over 5 ps interval. A point energy sampling was applied in all MD calculations. A series of geometry optimizations, starting with various initial position of protons in Mg(1), Mg(2) and interstitial sites were carried out to obtain a structure with the lowest lattice energy. It was found that structures with protons completely located within the M1

  2. Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms

    NASA Astrophysics Data System (ADS)

    Wu, Bi-Ru; Yang, Chih-Kai

    2012-03-01

    We investigate the electronic structure of graphane with hydrogen vacancies, which are supposed to occur in the process of hydrogenation of graphene. A variety of configurations is considered and defect states are derived by density functional calculation. We find that a continuous chain-like distribution of hydrogen vacancies will result in conduction of linear dispersion, much like the transport on a superhighway cutting through the jungle of hydrogen. The same conduction also occurs for chain-like vacancies in an otherwise fully fluorine-adsorbed graphene. These results should be very useful in the design of graphene-based electronic circuits.

  3. Crystal defect studies using x-ray diffuse scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less

  4. Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires

    NASA Astrophysics Data System (ADS)

    Gali, Pradeep; Kuo, Fang-Ling; Shepherd, Nigel; Philipose, U.

    2012-01-01

    We report on the effect of oxygen vacancies on the defect-related emission and the electronic properties of In2O3 nanowires. The nanowires were synthesized by vapor phase transport and had diameters ranging from 80-100 nm and lengths over 10-20 μm, with a growth direction of [0 0 1]. The as-grown nanowires connected in an FET type of configuration show n-type conductivity, which is ascribed to the presence of intrinsic defects like oxygen vacancies in the nanowire. The resistivity, transconductance, field effect mobility and carrier concentration of the In2O3 nanowires were determined to be 1.82 × 10-2 Ω cm, 11.2 nS, 119 cm2 V-1 s-1 and 4.89 × 1017 cm-3, respectively. The presence of oxygen vacancies was also confirmed by photoluminescence measurements, which show a strong UV emission peak at 3.18 eV and defect peaks in the visible region at 2.85 eV, 2.66 eV and 2.5 eV. We present a technique of post-growth annealing in O2 environment and passivation with (NH4)2S to reduce the defect-induced emission.

  5. Defect Characterization in Semiconductors with Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    Positron annihilation spectroscopy is an experimental technique that allows the selective detection of vacancy defects in semiconductors, providing a means to both identify and quantify them. This chapter gives an introduction to the principles of the positron annihilation techniques and then discusses the physics of some interesting observations on vacancy defects related to growth and doping of semiconductors. Illustrative examples are selected from studies performed in silicon, III-nitrides, and ZnO.

  6. Segregation and trapping of oxygen vacancies near the SrTiO 3Σ3 (112) [110] tilt grain boundary

    DOE PAGES

    Liu, Bin; Cooper, Valentino R.; Zhang, Yanwen; ...

    2015-03-21

    In nanocrystalline materials, structural discontinuities at grain boundaries (GBs) and the segregation of point defects to these GBs play a key role in defining the structural stability of a material, as well as its macroscopic electrical/mechanical properties. In this study, the segregation of oxygen vacancies near the Σ3 (1 1 2) [¯110] tilt GB in SrTiO 3 is explored using density functional theory. We find that oxygen vacancies segregate toward the GB, preferring to reside within the next nearest-neighbor layer. This oxygen vacancy segregation is found to be crucial for stabilizing this tilt GB. Furthermore, we find that the migrationmore » barriers of oxygen vacancies diffusing toward the first nearest-neighbor layer of the GB are low, while those away from this layer are very high. Furthermore, the segregation and trapping of the oxygen vacancies in the first nearest-neighbor layer of GBs are attributed to the large local distortions, which can now accommodate the preferred sixfold coordination of Ti. These results suggest that the electronic, transport, and capacitive properties of SrTiO 3 can be engineered through the control of GB structure and grain size or layer thickness.« less

  7. Elementary defects in graphane

    NASA Astrophysics Data System (ADS)

    Podlivaev, A. I.; Openov, L. A.

    2017-07-01

    The main zero-dimensional defects in graphane, a completely hydrogenated single-layer graphene, having the chair-type conformation have been numerically simulated. The hydrogen and carbon-hydrogen vacancies, Stone-Wales defect, and "transmutation defect" resulting from the simultaneous hoppings of two hydrogen atoms between the neighboring carbon atoms have been considered. The energies of formations of these defects have been calculated and their effect on the electronic structure, phonon spectra, and Young modulus has been studied.

  8. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe 2-x Crystals

    DOE PAGES

    Mahjouri-Samani, Masoud; Liang, Liangbo; Oyedele, Akinola; ...

    2016-01-01

    Defect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. In this paper, we demonstrate the growth of MoSe 2–x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to ~20%, that exhibit a remarkable transition in electrical transport propertiesmore » from n- to p-type character with increasing Se vacancy concentration. A new defect-activated phonon band at ~250 cm -1 appears, and the A 1g Raman characteristic mode at 240 cm -1 softens toward ~230 cm -1 which serves as a fingerprint of vacancy concentration in the crystals. We show that post-selenization using pulsed laser evaporated Se atoms can repair Se-vacant sites to nearly recover the properties of the pristine crystals. Finally, first-principles calculations reveal the underlying mechanisms for the corresponding vacancy-induced electrical and optical transitions.« less

  9. DFT calculations of graphene monolayer in presence of Fe dopant and vacancy

    NASA Astrophysics Data System (ADS)

    Ostovari, Fatemeh; Hasanpoori, Marziyeh; Abbasnejad, Mohaddeseh; Salehi, Mohammad Ali

    2018-07-01

    In the present work, the effects of Fe doping and vacancies on the electronic, magnetic and optical properties of graphene are studied by density functional theory based calculations. The conductive behavior is revealed for the various defected graphene by means of electronic density of states. However, defected structures show different magnetic and optical properties compared to those of pure one. The ferromagnetic phase is the most probable phase by substituting Fe atoms and vacancies at AA sublattice of graphene. The optical properties of impure graphene differ from pure graphene under illumination with parallel polarization of electric field, whereas for perpendicular polarization it remains unchanged. In presence of defect and under parallel polarization of light, the static dielectric constant rises strongly and the maximum peak of Im ε(ω) shows red shift relative to pure graphene. Moreover, the maximum absorption peak gets broaden in the visible to infrared region at the same condition and the magnitude and related energy of peaks shift to higher value in the EELS spectra. Furthermore, the results show that the maximum values of refractive index and reflectivity spectra increase rapidly and represent the red and blue shifts; respectively. Generally; substituting the C atom with Fe has more effect on magnetic and optical properties relative to the C vacancies.

  10. Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion

    NASA Astrophysics Data System (ADS)

    Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe

    2012-05-01

    A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.

  11. Luminescence properties of defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael A.; Morkoç, Hadis

    2005-03-01

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of

  12. Positron annihilation study of the vacancy clusters in ODS Fe-14Cr alloys

    NASA Astrophysics Data System (ADS)

    Domínguez-Reyes, R.; Auger, M. A.; Monge, M. A.; Pareja, R.

    2017-04-01

    Oxide dispersion strengthened Fe14Cr and Fe14CrWTi alloys produced by mechanical alloying and hot isostatic pressing were subjected to isochronal annealing up to 1400 °C, and the evolution and thermal stability of the vacancy-type defects were investigated by positron annihilation spectroscopy (PAS). The results were compared to those from a non-oxide dispersion strengthened Fe14Cr alloy produced by following the same powder metallurgy route. The long lifetime component of the PAS revealed the existence of tridimensional vacancy clusters, or nanovoids, in all these alloys. Two recovery stages are found in the oxide dispersion strengthened alloys irrespective of the starting conditions of the samples. The first one starting at T > 750 °C is attributed to thermal shrinkage of large vacancy clusters, or voids. A strong increase in the intensity of the long lifetime after annealing at temperatures in the 800-1050 °C range indicates the development of new vacancy clusters. These defects appear to be unstable above 1050 °C, but some of them remain at temperatures as high as 1400 °C, at least for 90 min.

  13. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    NASA Astrophysics Data System (ADS)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  14. New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials.

    PubMed

    Zhu, Tiejun; Hu, Lipeng; Zhao, Xinbing; He, Jian

    2016-07-01

    Defects and defect engineering are at the core of many regimes of material research, including the field of thermoelectric study. The 60-year history of V 2 VI 3 thermoelectric materials is a prime example of how a class of semiconductor material, considered mature several times, can be rejuvenated by better understanding and manipulation of defects. This review aims to provide a systematic account of the underexplored intrinsic point defects in V 2 VI 3 compounds, with regard to (i) their formation and control, and (ii) their interplay with other types of defects towards higher thermoelectric performance. We herein present a convincing case that intrinsic point defects can be actively controlled by extrinsic doping and also via compositional, mechanical, and thermal control at various stages of material synthesis. An up-to-date understanding of intrinsic point defects in V 2 VI 3 compounds is summarized in a (χ, r)-model and applied to elucidating the donor-like effect. These new insights not only enable more innovative defect engineering in other thermoelectric materials but also, in a broad context, contribute to rational defect design in advanced functional materials at large.

  15. Trade-off between quantum capacitance and thermodynamic stability of defected graphene: an implication for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Srivastava, Anurag; SanthiBhushan, Boddepalli

    2018-03-01

    Defects are inevitable most of the times either at the synthesis, handling or processing stage of graphene, causes significant deviation of properties. The present work discusses the influence of vacancy defects on the quantum capacitance as well as thermodynamic stability of graphene, and the nitrogen doping pattern needs to be followed to attain a trade-off between these two. Density Functional Theory (DFT) calculations have been performed to analyze various vacancy defects and different possible nitrogen doping patterns at the vacancy site of graphene, with an implication for supercapacitor electrodes. The results signify that vacancy defect improves the quantum capacitance of graphene at the cost of thermodynamic stability, while the nitrogen functionalization at the vacancy improves thermodynamic stability and quantum capacitance both. It has been observed that functionalizing all the dangling carbons at the defect site with nitrogen is the key to attain high thermodynamic stability as well as quantum capacitance. Furthermore, the results signify the suitability of these functionalized graphenes for anode electrode of high energy density asymmetric supercapacitors.

  16. Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys

    NASA Astrophysics Data System (ADS)

    Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi

    2011-10-01

    The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.

  17. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  18. Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Zilan; Su, Shichen; Ling, Francis Chi-Chung; Anwand, W.; Wagner, A.

    2014-07-01

    Undoped ZnO films are grown by pulsed laser deposition on c-plane sapphire with different oxygen pressures. Thermal evolutions of defects in the ZnO films are studied by secondary ion mass spectroscopy (SIMS), Raman spectroscopy, and positron annihilation spectroscopy (PAS), and with the electrical properties characterized by the room temperature Hall measurement. Oxygen deficient defect related Raman lines 560 cm-1 and 584 cm-1 are identified and their origins are discussed. Thermal annealing induces extensive Zn out-diffusion at the ZnO/sapphire interface and leaves out Zn-vacancy in the ZnO film. Two types of Zn-vacancy related defects with different microstructures are identified in the films. One of them dominates in the samples grown without oxygen. Annealing the sample grown without oxygen or growing the samples in oxygen would favor the Zn-vacancy with another microstructure, and this Zn-vacancy defect persists after 1100 °C annealing.

  19. Zinc Vacancy Formation and its Effect on the Conductivity of ZnO

    NASA Astrophysics Data System (ADS)

    Khan, Enamul; Weber, Marc; Langford, Steve; Dickinson, Tom

    2010-03-01

    Exposing single crystal ZnO to 193-nm ArF excimer laser radiation can produce metallic zinc nanoparticles along the surface. The particle production mechanism appears to involve interstitial-vacancy pair formation in the near-surface bulk. Conductivity measurements made with one probe inside the laser spot and the other outside show evidence for rectifying behavior. Positron annihilation spectroscopy confirms the presence of Zn vacancies. We suggest that Zn vacancies are a possible source of p-type behavior in irradiated ZnO. Quadrupole mass spectroscopy shows that both oxygen and zinc are emitted during irradiation. Electron-hole pair production has previously been invoked to account for particle desorption from ZnO during UV illumination. Our results suggest that preexisting and laser-generated defects play a critical role in particle desorption and Zn vacancy formation.

  20. Diffusion and aggregation of subsurface radiation defects in lithium fluoride nanocrystals

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Stupak, A. P.; Runets, L. P.

    2015-09-01

    Lithium fluoride nanocrystals were irradiated by gamma rays at a temperature below the temperature corresponding to the mobility of anion vacancies. The kinetics of the aggregation of radiation-induced defects in subsurface layers of nanocrystals during annealing after irradiation was elucidated. The processes that could be used to determine the activation energy of the diffusion of anion vacancies were revealed. The value of this energy in subsurface layers was obtained. For subsurface layers, the concentrations ratio of vacancies and defects consisting of one vacancy and two electrons was found. The factors responsible for the differences in the values of the activation energies and concentration ratios in subsurface layers and in the bulk of the crystals were discussed.

  1. Insight into the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response in chemically grown ZnO/Al2O3 films

    NASA Astrophysics Data System (ADS)

    Agrawal, Arpana; Saroj, Rajendra K.; Dar, Tanveer A.; Baraskar, Priyanka; Sen, Pratima; Dhar, Subhabrata

    2017-11-01

    We report the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response of ZnO films grown on a sapphire substrate at various oxygen flow rates using the chemical vapor deposition technique. The nonlinear refraction response was investigated in the off-resonant regime using a CW He-Ne laser source to examine the role of the intermediate bandgap states. It has been observed that the structural defects strongly influence the optical nonlinearity in the off-resonant regime. Nonlinearity has been found to improve as the oxygen flow rate is lowered from 2 sccm to 0.3 sccm. From photoluminescence studies, we observe that the enhanced defect density of the electronic defect levels due to the increased concentration of structural defects (with the decrease in the oxygen flow rate) is responsible for this improved optical nonlinearity along with the thermal effect. This suggests that defect engineering is an effective way to tailor the nonlinearity of ZnO films and their utility for optoelectronic device applications.

  2. Magnetic properties of Mn-doped GaN with defects: ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Salmani, E.; Benyoussef, A.; Ez-Zahraouy, H.; H. Saidi, E.

    2011-08-01

    According to first-principles density functional calculations, we have investigated the magnetic properties of Mn-doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.

  3. Migration mechanisms and diffusion barriers of vacancies in Ga2O3

    NASA Astrophysics Data System (ADS)

    Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico

    2017-06-01

    We employ the nudged elastic band and the dimer methods within the standard density functional theory (DFT) formalism to study the migration of the oxygen and gallium vacancies in the monoclinic structure of β -Ga2O3 . We identify all the first nearest neighbor paths and calculate the migration barriers for the diffusion of the oxygen and gallium vacancies. We also identify the metastable sites of the gallium vacancies which are critical for the diffusion of the gallium atoms. The migration barriers for the diffusion of the gallium vacancies are lower than the migration barriers for oxygen vacancies by 1 eV on average, suggesting that the gallium vacancies are mobile at lower temperatures. Using the calculated migration barriers we estimate the annealing temperature of these defects within the harmonic transition state theory formalism, finding excellent agreement with the observed experimental annealing temperatures. Finally, we suggest the existence of percolation paths which enable the migration of the species without utilizing all the migration paths of the crystal.

  4. Mesoscale modeling of vacancy-mediated Si segregation near an edge dislocation in Ni under irradiation

    NASA Astrophysics Data System (ADS)

    Li, Zebo; Trinkle, Dallas R.

    2017-04-01

    We use a continuum method informed by transport coefficients computed using self-consistent mean field theory to model vacancy-mediated diffusion of substitutional Si solutes in FCC Ni near an a/2 [1 1 ¯0 ] (111 ) edge dislocation. We perform two sequential simulations: first under equilibrium boundary conditions and then under irradiation. The strain field around the dislocation induces heterogeneity and anisotropy in the defect transport properties and determines the steady-state vacancy and Si distributions. At equilibrium both vacancies and Si solutes diffuse to form Cottrell atmospheres with vacancies accumulating in the compressive region above the dislocation core while Si segregates to the tensile region below the core. Irradiation raises the bulk vacancy concentration, driving vacancies to flow into the dislocation core. The out-of-equilibrium vacancy fluxes drag Si atoms towards the core, causing segregation to the compressive region, despite Si being an oversized solute in Ni.

  5. Electronic characterization of defects in narrow gap semiconductors

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1993-01-01

    The study of point defects in semiconductors has a long and honorable history. In particular, the detailed understanding of shallow defects in common semiconductors traces back to the classic work of Kohn and Luttinger. However, the study of defects in narrow gap semiconductors represents a much less clear story. Here, both shallow defects (caused by long range potentials) and deep defects (from short range potentials) are far from being completely understood. In this study, all results are calculational and our focus is on the chemical trend of deep levels in narrow gap semiconductors. We study substitutional (including antisite), interstitial and ideal vacancy defects. For substitutional and interstitial impurities, the efects of relaxation are included. For materials like Hg(1-x)Cd(x)Te, we study how the deep levels vary with x, of particular interest is what substitutional and interstitial atoms yield energy levels in the gap i.e. actually produce deep ionized levels. Also, since the main technique utilized is Green's functions, we include some summary of that method.

  6. Oxygen vacancy effect on dielectric and hysteretic properties of zigzag ferroelectric iron dioxide nanoribbon

    NASA Astrophysics Data System (ADS)

    Zriouel, S.; Taychour, B.; Yahyaoui, F. El; Drissi, L. B.

    2017-07-01

    Zigzag FeO2 nanoribbon defected by the removal of oxygen atoms is simulated using Monte Carlo simulations. All possible arrangements of positions and number of oxygen vacancy are investigated. Temperature dependence of polarization, dielectric susceptibility, internal energy, specific heat and dielectric hysteresis loops are all studied. Results show the presence of second order phase transition and Q - type behavior. Dielectric properties dependence on ribbon's edge, positions and number of oxygen vacancy are discussed in detail. Moreover, single and square hysteresis loops are observed whatever the number of oxygen vacancy in the system.

  7. Combined Molecular and Spin Dynamics Simulation of Lattice Vacancies in BCC Iron

    NASA Astrophysics Data System (ADS)

    Mudrick, Mark; Perera, Dilina; Eisenbach, Markus; Landau, David P.

    Using an atomistic model that treats translational and spin degrees of freedom equally, combined molecular and spin dynamics simulations have been performed to study dynamic properties of BCC iron at varying levels of defect impurity. Atomic interactions are described by an empirical many-body potential, and spin interactions with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Equations of motion are solved numerically using the second-order Suzuki-Trotter decomposition for the time evolution operator. We analyze the spatial and temporal correlation functions for atomic displacements and magnetic order to obtain the effect of vacancy defects on the phonon and magnon excitations. We show that vacancy clusters in the material cause splitting of the characteristic transverse spin-wave excitations, indicating the production of additional excitation modes. Additionally, we investigate the coupling of the atomic and magnetic modes. These modes become more distinct with increasing vacancy cluster size. This material is based upon work supported by the U.S. Department of Energy Office of Science Graduate Student Research (SCGSR) program.

  8. First-principles study of Ga-vacancy induced magnetism in β-Ga2O3.

    PubMed

    Yang, Ya; Zhang, Jihua; Hu, Shunbo; Wu, Yabei; Zhang, Jincang; Ren, Wei; Cao, Shixun

    2017-11-01

    First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga 2 O 3 in the presence of cation vacancies. We investigated two kinds of Ga vacancies at different symmetry sites and the consequent structural distortion and defect states. We found that both the six-fold coordinated octahedral site and the four-fold coordinated tetrahedral site vacancies can lead to a spin polarized ground state. Furthermore, the calculation identified a relationship between the spin polarization and the charge states of the vacancies, which might be explained by a molecular orbital model consisting of uncompensated O 2- 2p dangling bonds. The calculations for the two vacancy systems also indicated a potential long-range ferromagnetic order which is beneficial for spintronics application.

  9. Optical transitions of the silicon vacancy in 6H-SiC studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Arpiainen, S.; Saarinen, K.; Hautojärvi, P.; Henry, L.; Barthe, M.-F.; Corbel, C.

    2002-08-01

    Positron annihilation spectroscopy has been applied to identify Si and C vacancies as irradiation-induced defects in 6H-SiC. Si vacancies are shown to have ionization levels at EC-0.6 eV and EC-1.1 eV below the conduction-band edge EC by detecting changes of positron trapping under monochromatic illumination. These levels are attributed to (2-/1-) and (1-/0) ionizations of the isolated Si vacancy. In as-grown n-type 6H-SiC, a native defect complex involving VSi is shown to have an ionization level slightly closer to conduction band at roughly EC-0.3 eV. These results are used further to present microscopic interpretations to effects seen in optical-absorption spectra and to electrical levels observed previously by deep-level transient spectroscopy.

  10. Spatial distribution of defect luminescence in GaN nanowires.

    PubMed

    Li, Qiming; Wang, George T

    2010-05-12

    The spatial distribution of defect-related and band-edge luminescence from GaN nanowires grown by metal-organic chemical vapor deposition was studied by spatially resolved cathodoluminescence imaging and spectroscopy. A surface layer exhibiting strong yellow luminescence (YL) near 566 nm in the nanowires was revealed, compared to weak YL in the bulk. In contrast, other defect-related luminescence near 428 nm (blue luminescence) and 734 nm (red luminescence), in addition to band-edge luminescence (BEL) at 366 nm, were observed in the bulk of the nanowires but were largely absent at the surface. As the nanowire width approaches a critical dimension, the surface YL layer completely quenches the BEL. The surface YL is attributed to the diffusion and piling up of mobile point defects, likely isolated gallium vacancies, at the surface during growth.

  11. Intrinsic defects and spectral characteristics of SrZrO3 perovskite

    NASA Astrophysics Data System (ADS)

    Li, Zhenzhang; Duan, He; Jin, Yahong; Zhang, Shaoan; Lv, Yang; Xu, Qinfang; Hu, Yihua

    2018-04-01

    First-principles calculations and experiment analysis were performed to study the internal relation between seven types of intrinsic defects and the persistent luminescence in SrZrO3 host material. The calculation shows that rich zirconium defects have the low energy cost and thus are easy to form. Zr vacancies are too high energy to play any role in defect which is related luminescence phenomenon of SrZrO3 phosphor. However, oxygen vacancies stand out as a likely candidate, because it can yield two carrier reservoirs: a fully-occupied singlet electron's reservoir which lies above the valence band maximum, and an empty triply degenerate hole's reservoir which is just below the conduction band minimum. Sr vacancies are not directly relevant to the persistent luminescence due to its too shallow electron trap level. The characteristics of these defects are fully explained by the equilibrium properties of SrZrO3. An experimental study of the thermoluminescence glow for these defects is conducted and the calculation is consistent with the experimental results. A mechanism of the persistent luminescence for SrZrO3:Pr3+, Eu3+ is explained according to oxygen vacancies trap center. Findings of this study may serve as theoretical references for controlling intrinsic traps by more refined experiments.

  12. Atomic adsorption on graphene with a single vacancy: systematic DFT study through the periodic table of elements

    NASA Astrophysics Data System (ADS)

    Pašti, Igor A.; Jovanović, Aleksandar; Dobrota, Ana S.; Mentus, Slavko V.; Johansson, Börje; Skorodumova, Natalia V.

    Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1 to 6 of the Periodic Table of Elements (PTE), excluding lanthanides. The calculations have been performed using PBE, long-range dispersion interaction-corrected PBE (PBE+D2 and PBE+D3) and non-local vdW-DF2 functional. We find that most elements strongly bind to the vacancy, except for the elements of groups 11 and 12, and noble gases, for which the contribution of dispersion interaction to bonding is most significant. The strength of the interaction with the vacancy correlates with the cohesive energy of the elements in their stable phases: the higher the cohesive energy is the stronger bonding to the vacancy can be expected. As most atoms can be trapped at the SV site we have calculated the potentials of dissolution and found that in most cases the metals adsorbed at the vacancy are more "noble" than they are in their corresponding stable phases.

  13. Atomic adsorption on graphene with a single vacancy: systematic DFT study through the periodic table of elements.

    PubMed

    Pašti, Igor A; Jovanović, Aleksandar; Dobrota, Ana S; Mentus, Slavko V; Johansson, Börje; Skorodumova, Natalia V

    2018-01-03

    Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1-6 of the periodic table of elements (PTE), excluding lanthanides. The calculations have been performed using the PBE, long-range dispersion interaction-corrected PBE (PBE+D2 and PBE+D3) and non-local vdW-DF2 functionals. We find that most elements strongly bind to the vacancy, except for the elements of groups 11 and 12, and noble gases, for which the contribution of dispersion interaction to bonding is most significant. The strength of the interaction with the vacancy correlates with the cohesive energy of the elements in their stable phases: the higher the cohesive energy is, the stronger bonding to the vacancy can be expected. As most atoms can be trapped at the SV site we have calculated the potentials of dissolution and found that in most cases the metals adsorbed at the vacancy are more "noble" than they are in their corresponding stable phases.

  14. Modeling a distribution of point defects as misfitting inclusions in stressed solids

    NASA Astrophysics Data System (ADS)

    Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D.

    2014-05-01

    The chemical equilibrium distribution of point defects modeled as non-overlapping, spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic solid is derived. The compressive self-stress inside existing inclusions must be excluded from the stress dependence of the equilibrium concentration of the point defects, because it does no work when a new inclusion is introduced. On the other hand, a tensile image stress field must be included to satisfy the boundary conditions in a finite solid. Through the image stress, existing inclusions promote the introduction of additional inclusions. This is contrary to the prevailing approach in the literature in which the equilibrium point defect concentration depends on a homogenized stress field that includes the compressive self-stress. The shear stress field generated by the equilibrium distribution of such inclusions is proved to be proportional to the pre-existing stress field in the solid, provided that the magnitude of the latter is small, so that a solid containing an equilibrium concentration of point defects can be described by a set of effective elastic constants in the small-stress limit.

  15. Gold fillings unravel the vacancy role in the phase transition of GeTe

    NASA Astrophysics Data System (ADS)

    Feng, Jinlong; Xu, Meng; Wang, Xiaojie; Lin, Qi; Cheng, Xiaomin; Xu, Ming; Tong, Hao; Miao, Xiangshui

    2018-02-01

    Phase change memory (PCM) is an important candidate for future memory devices. The crystalline phase of PCM materials contains abundant intrinsic vacancies, which plays an important role in the rapid phase transition upon memory switching. However, few experimental efforts have been invested to study these invisible entities. In this work, Au dopants are alloyed into the crystalline GeTe to fill the intrinsic Ge vacancies so that the role of these vacancies in the amorphization of GeTe can be indirectly studied. As a result, the reduction of Ge vacancies induced by Au dopants hampers the amorphization of GeTe as the activation energy of this process becomes higher. This is because the vacancy-interrupted lattice can be "repaired" by Au dopants with the recovery of bond connectivity. Our results demonstrate the importance of vacancies in the phase transition of chalcogenides, and we employ the percolation theory to explain the impact of these intrinsic defects on this vacancy-ridden crystal quantitatively. Specifically, the threshold of amorphization increases with the decrease in vacancies. The understanding of the vacancy effect sheds light on the long-standing puzzle of the mechanism of ultra-fast phase transition in PCMs. It also paves the way for designing low-power-consumption electronic devices by reducing the threshold of amorphization in chalcogenides.

  16. Tunneling-thermally activated vacancy diffusion mechanism in quantum crystals

    NASA Astrophysics Data System (ADS)

    Natsik, V. D.; Smirnov, S. N.

    2017-10-01

    We consider a quasiparticle model of a vacancy in a quantum crystal, with metastable quantum states localized at the lattice sites in potential wells of the crystal field. It is assumed that the quantum dynamics of such vacancies can be described in the semi-classical approximation, where its spectrum consists of a broad band with several split-off levels. The diffusive movement of the vacancy in the crystal volume is reduced to a sequence of tunneling and thermally activated hops between the lattice cites. The temperature dependence of the vacancy diffusion coefficient shows a monotonic decrease during cooling with a sharp transition from an exponential dependence that is characteristic of a high-temperature thermally activated diffusion, to a non-thermal tunneling process in the region of extremely low temperatures. Similar trends have been recently observed in an experimental study of mass-transfer in the 4He and 3He crystals [V. A. Zhuchkov et al., Low Temp. Phys. 41, 169 (2015); Low Temp. Phys. 42, 1075 (2016)]. This mechanism of vacancy diffusion and its analysis complement the concept of a diffusional flow of a defection-quasiparticle quantum gas with a band energy spectrum proposed by Andreev and Lifshitz [JETP 29, 1107 (1969)] and Andreev [Sov. Phys. Usp. 19, 137 (1976)].

  17. Precise measurement of charged defects in III-V compounds (supplement 2)

    NASA Technical Reports Server (NTRS)

    Soest, J. F.

    1973-01-01

    Experimental methods and related theory which will permit the measurement of low concentrations of vacancies and other defects in III-V compound semiconductors are discussed. Once the nature of these defects has been determined, this information can be incorporated into a transport theory for devices constructed from these materials, and experiments conducted to test the theory. The vacancies and other defects in the III-V compounds are detected by measurement of the nuclear magnetic resonance (NMR) line width. Most of the III-V compounds have at least one isotope with a nuclear quadrupole moment. In a crystal with a cubic crystal field (characteristic of most III-V compounds) there is no quadrupole splitting of the Zeeman resonance line. However, a defect removes the cubic symmetry locally and causes splitting which result in a change of the NMR width. This change can be used to detect the presence of vacancies.

  18. Role of defects in ferromagnetism in Zn1-xCoxO : A hybrid density-functional study

    NASA Astrophysics Data System (ADS)

    Patterson, C. H.

    2006-10-01

    Experimental studies of Zn1-xCoxO as thin films or nanocrystals have found ferromagnetism and Curie temperatures above room temperature and that p - or n -type doping of Zn1-xCoxO can change its magnetic state. Bulk Zn1-xCoxO with a low defect density and x in the range used in experimental thin-film studies exhibits ferromagnetism only at very low temperatures. Therefore defects in thin-film samples or nanocrystals may play an important role in promoting magnetic interactions between Co ions in Zn1-xCoxO . The mechanism of exchange coupling induced by defect states is considered and compared to a model for ferromagnetism in dilute magnetic semiconductors [T. Dietl , Science 287, 1019 (2000)]. The electronic structures of Co substituted for Zn in ZnO, Zn, and O vacancies, substituted N, and interstitial Zn in ZnO were calculated using the B3LYP hybrid density functional in a supercell. The B3LYP functional predicts a band gap of 3.34eV for bulk ZnO, close to the experimental value of 3.47eV . Occupied minority-spin Co 3d levels are at the top of the valence band and unoccupied levels lie above the conduction-band minimum. Majority-spin Co 3d levels hybridize strongly with bulk ZnO states. The neutral O vacancy defect level is predicted to lie deep in the band gap, and interstitial Zn is predicted to be a deep donor. The Zn vacancy is a deep acceptor, and the acceptor level for substituted N is at midgap. The possibility that p - or n -type dopants promote exchange coupling of Co ions was investigated by computing the total energies of magnetic states of ZnO supercells containing two Co ions and an oxygen vacancy, substituted N, or interstitial Zn in various charge states. The neutral N defect and the singly positively charged O vacancy are the only defects which strongly promote ferromagnetic exchange coupling of Co ions at intermediate range. Total energy calculations on supercells containing two O vacancies and one Zn vacancy clearly show that pairs of singly

  19. Influence of oxygen vacancy on the electronic structure of CaCu3Ti4O12 and its deep-level vacancy trap states by first-principle calculation

    NASA Astrophysics Data System (ADS)

    Xiao, H. B.; Yang, C. P.; Huang, C.; Xu, L. F.; Shi, D. W.; Marchenkov, V. V.; Medvedeva, I. V.; Bärner, K.

    2012-03-01

    The electronic structure, formation energy, and transition energy levels of intrinsic defects have been studied using the density-functional method within the generalized gradient approximation for neutral and charged oxygen vacancy in CaCu3Ti4O12 (CCTO). It is found that oxygen vacancies with different charge states can be formed in CCTO under both oxygen-rich and poor conditions for nonequilibrium and higher-energy sintering processes; especially, a lower formation energy is obtained for poor oxygen environment. The charge transition level (0/1+) of the oxygen vacancy in CCTO is located at 0.53 eV below the conduction-band edge. The (1+/2+) transition occurs at 1.06 eV below the conduction-band edge. Oxygen vacancies of Vo1+ and Vo2+ are positive stable charge states in most gap regions and can act as a moderately deep donor for Vo1+ and a borderline deep for Vo2+, respectively. The polarization and dielectric constant are considerably enhanced by oxygen vacancy dipoles, due to the off-center Ti and Cu ions in CCTO.

  20. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    NASA Astrophysics Data System (ADS)

    Siegert, K. S.; Lange, F. R. L.; Sittner, E. R.; Volker, H.; Schlockermann, C.; Siegrist, T.; Wuttig, M.

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  1. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    PubMed

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  2. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten

    PubMed Central

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-01-01

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from −2.61 eV to −0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors. PMID:27874047

  3. Localized versus itinerant states created by multiple oxygen vacancies in SrTiO3

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Shen, Juan; Valentí, Roser

    2015-02-01

    Oxygen vacancies in strontium titanate surfaces (SrTiO3) have been linked to the presence of a two-dimensional electron gas with unique behavior. We perform a detailed density functional theory study of the lattice and electronic structure of SrTiO3 slabs with multiple oxygen vacancies, with a main focus on two vacancies near a titanium dioxide terminated SrTiO3 surface. We conclude based on total energies that the two vacancies preferably inhabit the first two layers, i.e. they cluster vertically, while in the direction parallel to the surface, the vacancies show a weak tendency towards equal spacing. Analysis of the nonmagnetic electronic structure indicates that oxygen defects in the surface TiO2 layer lead to population of Ti {{t}2g} states and thus itinerancy of the electrons donated by the oxygen vacancy. In contrast, electrons from subsurface oxygen vacancies populate Ti eg states and remain localized on the two Ti ions neighboring the vacancy. We find that both the formation of a bound oxygen-vacancy state composed of hybridized Ti 3eg and 4p states neighboring the oxygen vacancy as well as the elastic deformation after extracting oxygen contribute to the stabilization of the in-gap state.

  4. Synergistic effect of temperature and point defect on the mechanical properties of single layer and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Debroy, Sanghamitra; Pavan Kumar, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2017-10-01

    The present study reports a comprehensive molecular dynamics simulation of the effect of a) temperature (300-1073 K at intervals of every 100 K) and b) point defect on the mechanical behaviour of single (armchair and zigzag direction) and bilayer layer graphene (AA and AB stacking). Adaptive intermolecular reactive bond order (AIREBO) potential function was used to describe the many-body short-range interatomic interactions for the single layer graphene sheet. Moreover, Lennard Jones model was considered for bilayer graphene to incorporate the van der Waals interactions among the interlayers of graphene. The effect of temperature on the strain energy of single layer and bilayer graphene was studied in order to understand the difference in mechanical behaviour of the two systems. The strength of the pristine single layer graphene was found to be higher as compared to bilayer AA stacked graphene at all temperatures. It was observed at 1073 K and in the presence of vacancy defect the strength for single layer armchair sheet falls by 30% and for bilayer armchair sheet by 33% as compared to the pristine sheets at 300 K. The AB stacked graphene sheet was found to have a two-step rupture process. The strength of pristine AB sheet was found to decrease by 22% on increase of temperature from 300 K to 1073 K.

  5. A first principles calculation and statistical mechanics modeling of defects in Al-H system

    NASA Astrophysics Data System (ADS)

    Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming

    2007-03-01

    The behavior of defects and hydrogen in Al was investigated by first principles calculations and statistical mechanics modeling. The formation energy of different defects in Al+H system such as Al vacancy, H in institution and multiple H in Al vacancy were calculated by first principles method. Defect concentration in thermodynamical equilibrium was studied by total free energy calculation including configuration entropy and defect-defect interaction from low concentration limit to hydride limit. In our grand canonical ensemble model, hydrogen chemical potential under different environment plays an important role in determing the defect concentration and properties in Al-H system.

  6. Imaging atomic-level random walk of a point defect in graphene

    NASA Astrophysics Data System (ADS)

    Kotakoski, Jani; Mangler, Clemens; Meyer, Jannik C.

    2014-05-01

    Deviations from the perfect atomic arrangements in crystals play an important role in affecting their properties. Similarly, diffusion of such deviations is behind many microstructural changes in solids. However, observation of point defect diffusion is hindered both by the difficulties related to direct imaging of non-periodic structures and by the timescales involved in the diffusion process. Here, instead of imaging thermal diffusion, we stimulate and follow the migration of a divacancy through graphene lattice using a scanning transmission electron microscope operated at 60 kV. The beam-activated process happens on a timescale that allows us to capture a significant part of the structural transformations and trajectory of the defect. The low voltage combined with ultra-high vacuum conditions ensure that the defect remains stable over long image sequences, which allows us for the first time to directly follow the diffusion of a point defect in a crystalline material.

  7. Understanding the presence of vacancy clusters in ZnO from a kinetic perspective

    NASA Astrophysics Data System (ADS)

    Bang, Junhyeok; Kim, Youg-Sung; Park, C. H.; Gao, F.; Zhang, S. B.

    2014-06-01

    Vacancy clusters have been observed in ZnO by positron-annihilation spectroscopy (PAS), but detailed mechanisms are unclear. This is because the clustering happens in non-equilibrium conditions, for which theoretical method has not been well established. Combining first-principles calculation and kinetic Monte Carlo simulation, we determine the roles of non-equilibrium kinetics on the vacancies clustering. We find that clustering starts with the formation of Zn and O vacancy pairs (VZn - Vo), which further grow by attracting additional mono-vacancies. At this stage, vacancy diffusivity becomes crucial: due to the larger diffusivity of VZn compared to VO, more VZn-abundant clusters are formed than VO-abundant clusters. The large dissociation energy barriers, e.g., over 2.5 eV for (VZn - Vo), suggest that, once formed, it is difficult for the clusters to dissociate. By promoting mono-vacancy diffusion, thermal annealing will increase the size of the clusters. As the PAS is insensitive to VO donor defects, our results suggest an interpretation of the experimental data that could not have been made without the in-depth calculations.

  8. Low-temperature irradiation-induced defects in germanium: In situ analysis

    NASA Astrophysics Data System (ADS)

    Mesli, A.; Dobaczewski, L.; Nielsen, K. Bonde; Kolkovsky, Vl.; Petersen, M. Christian; Larsen, A. Nylandsted

    2008-10-01

    The electronic properties of defects resulting from electron irradiation of germanium at low temperatures have been investigated. The recent success in preparing n+p junctions on germanium has opened a new opportunity to address fundamental questions regarding point defects and their related energy levels by allowing an access to the lower half of the band gap. In this work we apply various space-charge capacitance-transient spectroscopy techniques connected on line with the electron-beam facility. In n -type germanium we identify a level at about 0.14 eV below the conduction band whose properties resemble in many respects those of a defect assigned previously to the close vacancy-interstitial or Frenkel pair. This pair seems to annihilate over a small barrier at about 70 K, and its stability is particularly sensitive to the irradiation temperature and energy. We also observe two coupled levels at 0.08 and 0.24 eV below the conduction band stable up to 160 K. Recent independent theoretical work has predicted the existence of the single and double donor of the germanium interstitial with energy levels matching exactly these two values. Given these identifications hold, they mark a major difference with silicon where both the Frenkel pair and self-interstitial have never been caught. In p -type germanium, two levels were found. The shallower one, located at about 0.14 eV above the valence band, is tentatively assigned to the vacancy. It exhibits a field-driven instability at about 80 K making its analysis quite difficult. The application of a reverse bias, required by the space-charge spectroscopy, leads to a strong drift process sweeping this defect out of the observation area without necessarily provoking its annealing. Unlike silicon, in which the vacancy has four charge states, only one vacancy-related level seems to exist in germanium and this level is very likely a double acceptor. Finally, a very peculiar observation is made on a hole midgap trap, which, in

  9. Large thermal conductivity reduction induced by La/O vacancies in the thermoelectric LaCoO3 system.

    PubMed

    Wang, Yang; Li, Fang; Xu, Luxiang; Sui, Yu; Wang, Xianjie; Su, Wenhui; Liu, Xiaoyang

    2011-05-16

    A series of compact La/O-vacant La(1-x)CoO(3-y) compounds were prepared by a cold high-pressure procedure, and their thermoelectric (TE) properties were investigated. Compared with the ion-substituted hole-type LaCoO(3) systems (e.g., La(1-x)Sr(x)CoO(3)), the thermal conduction of La(1-x)CoO(3-y) is noticeably reduced by the La/O vacancies, whereas the electric transport is less influenced, which results in an efficient ZT enhancement. We demonstrate that the large thermal conductivity reduction originates from the strong point-defect scattering, and La(1-x)CoO(3-y) can be rationalized as a partially filled solid solution: La(1-x)◻(x)CoO(3-y)◻(y), where ◻ denotes a vacancy. Such intrinsic thermal conductivity suppression provides an effective pathway for the design of better TE materials.

  10. Defective boron nitride nanotubes: mechanical properties, electronic structures and failure behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Ding, Ning; Zhao, Xian; Wu, Chi-Man Lawrence

    2018-03-01

    Due to their excellent physical and chemical characteristics, boron nitride nanotubes (BNNTs) are regarded as a complementary addition to carbon nanotubes. Pioneer studies have demonstrated that defects in carbon nanotubes are considered tools for tuning the physical properties of these materials. In the present work, investigation on the mechanical and electronic properties of pristine and defective BNNTs was performed using the density functional theory method. The analysis on the intrinsic strength, stiffness, and failure critical strain of different types of BNNTs was conducted systematically. The computing results showed that the intrinsic strength of BNNTs decreased linearly with the increased Stone-Wales (SW) defect density around the axis. The SW defect density along the axis played a minor role on the changing of mechanical properties of BNNTs. The BNNT with a B vacancy expressed higher intrinsic strength than that of the N vacancy model. The final failure of the pristine BNNTs was due to the fracture of the Type1 bonds under the mechanical strain. Defects like SW or vacancy are served as the initial break site of BNNTs. Applying strain or creating defects are both effective methods for reducing the band gap of BNNTs.

  11. Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies

    NASA Astrophysics Data System (ADS)

    Winarski, D. J.; Anwand, W.; Wagner, A.; Saadatkia, P.; Selim, F. A.; Allen, M.; Wenner, B.; Leedy, K.; Allen, J.; Tetlak, S.; Look, D. C.

    2016-09-01

    Undoped and Ga- and Al- doped ZnO films were synthesized using sol-gel and spin coating methods and characterized by X-ray diffraction, high-resolution scanning electron microscopy (SEM), optical spectroscopy and Hall-effect measurements. SEM measurements reveal an average grain size of 20 nm and distinct individual layer structure. Measurable conductivity was not detected in the unprocessed films; however, annealing in hydrogen or zinc environment induced significant conductivity (˜10-2 Ω .cm) in most films. Positron annihilation spectroscopy measurements provided strong evidence that the significant enhancement in conductivity was due to hydrogen passivation of Zn vacancy related defects or elimination of Zn vacancies by Zn interstitials which suppress their role as deep acceptors. Hydrogen passivation of cation vacancies is shown to play an important role in tuning the electrical conductivity of ZnO, similar to its role in passivation of defects at the Si/SiO2 interface that has been essential for the successful development of complementary metal-oxide-semiconductor (CMOS) devices. By comparison with hydrogen effect on other oxides, we suggest that hydrogen may play a universal role in oxides passivating cation vacancies and modifying their electronic properties.

  12. Influence of defects and doping on phonon transport properties of monolayer MoSe2

    NASA Astrophysics Data System (ADS)

    Yan, Zhequan; Yoon, Mina; Kumar, Satish

    2018-07-01

    The doping of monolayer MoSe2 by tungsten (W) can suppress the Se vacancy concentration, but how doping and resulting change in defect concentration can tune its thermal properties is not understood yet. We use first-principles density functional theory (DFT) along with the phonon Boltzmann transport equation (BTE) to study the phonon transport properties of pristine MoSe2 and W doped MoSe2 with and without the presence of Se vacancies. We found that for samples without Se vacancy, the W doping could enhance the thermal transport of monolayer MoSe2 due to reduced three-phonon scattering phase space. For example, we observed that the 16.7% W doping increases the thermal conductivity of the monolayer MoSe2 with 2% Se vacancy by 80% if all vacancies can be suppressed by W-doping. However, the W doping in the defective MoSe2 amplifies the influence of the phonon scattering caused by the Se vacancies, which results in a further decrease in thermal conductivity of monolayer MoSe2 with defects. This is found to be related with higher phonon density of states of Mo0.83W0.17Se2 and larger mass difference between W and Se atoms compared to Mo and Se atoms. This study deciphers the effect of defects and doping on the thermal conductivity of monolayer MoSe2, which helps us understand the mechanism of defect-induced phonon transport, and provides insights into enhancing the heat dissipation in MoSe2-based electronic devices.

  13. Photoluminescence as a tool for characterizing point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael

    2012-02-01

    Photoluminescence is one of the most powerful tools used to study optically-active point defects in semiconductors, especially in wide-bandgap materials. Gallium nitride (GaN) and zinc oxide (ZnO) have attracted considerable attention in the last two decades due to their prospects in optoelectronics applications, including blue and ultraviolet light-emitting devices. However, in spite of many years of extensive studies and a great number of publications on photoluminescence from GaN and ZnO, only a few defect-related luminescence bands are reliably identified. Among them are the Zn-related blue band in GaN, Cu-related green band and Li-related orange band in ZnO. Numerous suggestions for the identification of other luminescence bands, such as the yellow band in GaN, or green and yellow bands in ZnO, do not stand up under scrutiny. In these conditions, it is important to classify the defect-related luminescence bands and find their unique characteristics. In this presentation, we will review the origin of the major luminescence bands in GaN and ZnO. Through simulations of the temperature and excitation intensity dependences of photoluminescence and by employing phenomenological models we are able to obtain important characteristics of point defects such as carrier capture cross-sections for defects, concentrations of defects, and their charge states. These models are also used to find the absolute internal quantum efficiency of photoluminescence and obtain information about nonradiative defects. Results from photoluminescence measurements will be compared with results of the first-principle calculations, as well as with the experimental data obtained by other techniques such as positron annihilation spectroscopy, deep-level transient spectroscopy, and secondary ion mass spectrometry.

  14. Atomistic models of vacancy-mediated diffusion in silicon

    NASA Astrophysics Data System (ADS)

    Dunham, Scott T.; Wu, Can Dong

    1995-08-01

    Vacancy-mediated diffusion of dopants in silicon is investigated using Monte Carlo simulations of hopping diffusion, as well as analytic approximations based on atomistic considerations. Dopant/vacancy interaction potentials are assumed to extend out to third-nearest neighbor distances, as required for pair diffusion theories. Analysis focusing on the third-nearest neighbor sites as bridging configurations for uncorrelated hops leads to an improved analytic model for vacancy-mediated dopant diffusion. The Monte Carlo simulations of vacancy motion on a doped silicon lattice verify the analytic results for moderate doping levels. For very high doping (≳2×1020 cm-3) the simulations show a very rapid increase in pair diffusivity due to interactions of vacancies with more than one dopant atom. This behavior has previously been observed experimentally for group IV and V atoms in silicon [Nylandsted Larsen et al., J. Appl. Phys. 73, 691 (1993)], and the simulations predict both the point of onset and doping dependence of the experimentally observed diffusivity enhancement.

  15. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression.

    PubMed

    Ranjbartoreh, A R; Su, D; Wang, G

    2012-06-01

    Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.

  16. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; ...

    2018-01-01

    Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less

  17. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm

    Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less

  18. Formation of VP-Zn complexes in bulk InP(Zn) by migration of P vacancies from the (110) surface

    NASA Astrophysics Data System (ADS)

    Slotte, J.; Saarinen, K.; Ebert, Ph.

    2006-05-01

    We apply a combination of positron annihilation spectroscopy and scanning tunneling microscopy to show that thermally generated P vacancies diffuse from the InP surface toward the bulk. The defect observed in the bulk can be identified as a complex consisting of a P vacancy and a Zn impurity. We infer that this pair is formed when the diffusing positive P vacancy is trapped at the Zn dopant. A rough estimate for the migration energy of the P vacancy results in a value of 1.3eV .

  19. Current understanding of point defects and diffusion processes in silicon

    NASA Technical Reports Server (NTRS)

    Tan, T. Y.; Goesele, U.

    1985-01-01

    The effects of oxidation of Si which established that vacancies (V) and Si self interstitials (I) coexist in Si at high temperatures under thermal equilibrium and oxidizing conditions are discussed. Some essential points associated with Au diffusion in Si are then discussed. Analysis of Au diffusion results allowed a determination of the I component and an estimate of the V component of the Si self diffusion coefficient. A discussion of theories on high concentration P diffusion into Si is then presented. Although presently there still is no theory that is completely satisfactory, significant progresses are recently made in treating some essential aspects of this subject.

  20. Lubrication of dislocation glide in MgO by hydrous defects

    NASA Astrophysics Data System (ADS)

    Skelton, Richard; Walker, Andrew M.

    2018-02-01

    Water-related defects, principally in the form of protonated cation vacancies, are potentially able to weaken minerals under high-stress or low-temperature conditions by reducing the Peierls stress required to initiate dislocation glide. In this study, we use the Peierls-Nabarro (PN) model to determine the effect of protonated Mg vacancies on the 1/2<110>{110} and 1/2<110>{100} slip systems in MgO. This PN model is parameterized using generalized stacking fault energies calculated using plane-wave density functional theory, with and without protonated Mg vacancies present at the glide plane. It found that these defects increase dislocation core widths and reduce the Peierls stress over the entire pressure range 0-125 GPa. Furthermore, 1/2<110>{110} slip is found to be more sensitive to the presence of protonated vacancies which increases in the pressure at which {100} becomes the easy glide plane for 1/2<110> screw dislocations. These results demonstrate, for a simple mineral system, that water-related defects can alter the deformation behavior of minerals in the glide-creep regime by reducing the stress required to move dislocations by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth's lower mantle, so the differential sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the interpretation of the seismic anisotropy in this region.

  1. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  2. Vacancies and holes in bulk and at 180° domain walls in lead titanate

    NASA Astrophysics Data System (ADS)

    Paillard, Charles; Geneste, Grégory; Bellaiche, Laurent; Dkhil, Brahim

    2017-12-01

    Domain walls (DWs) in ferroic materials exhibit a plethora of unexpected properties that are different from the adjacent ferroic domains. Still, the intrinsic/extrinsic origin of these properties remains an open question. Here, density functional theory calculations are used to investigate the interaction between vacancies and 180° DWs in the prototypical ferroelectric PbTiO3, with a special emphasis on cationic vacancies and released holes. All vacancies are more easily formed within the DW than in the domains. This is interpreted, using a phenomenological model, as the partial compensation of an extra-tensile stress when the defect is created inside the DW. Oxygen vacancies are found to be always fully ionized, independently of the thermodynamic conditions, while cationic vacancies can be either neutral or partially ionized (oxygen-rich conditions), or fully ionized (oxygen-poor conditions). Therefore, in oxidizing conditions, holes are induced by neutral and partially ionized Pb vacancies. In the bulk PbTiO3, these holes are more stable as delocalized rather than small polarons, but at DWs, the two forms are found to be possible.

  3. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    DOE PAGES

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; ...

    2018-02-13

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less

  4. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    NASA Astrophysics Data System (ADS)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; Yu, Guodong; Canning, Andrew; Haranczyk, Maciej; Asta, Mark; Hautier, Geoffroy

    2018-05-01

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.

  5. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory DFT), have found widespread use in the calculation of point defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT)more » to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less

  6. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less

  7. Nitrotyrosine adsorption on defective graphene: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2015-06-01

    We have applied density functional theory to study adsorption of nitrotyrosine on perfect and defective graphene sheets. The graphene sheets with Stone-Wales (SW) defect, pentagon-nonagon (5-9) single vacancy, and pentagon-octagon-pentagon (5-8-5) double vacancy were considered. The calculations of adsorption energy showed that nitrotyrosine presents a more strong interaction with defective graphene rather than with perfect graphene sheet. The order of interaction strength is: SW>5-9>5-8-5>perfect graphene. It is found that the electronic properties of perfect and defective graphene are sensitive to the presence of nitrotyrosine. Hence, graphene sheets can be considered as a good sensor for detection of nitrotyrosine molecule which is observed in connection with several human disorders, such as Parkinson's and Alzheimer's disease.

  8. Defects in N/Ge coimplanted GaN studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshitaka; Kachi, Tetsu

    2002-01-01

    We have applied positron annihilation spectroscopy to study the depth distributions and species of defects in N-, Ge-, and N/Ge-implanted GaN at dosages of 1×1015 cm-2. For all the implanted samples, Ga vacancies introduced by ion-implantation are found to diffuse into much deeper regions of the GaN layers during the implantation and to change into some other vacancy-type defects by the annealing at 1300 °C. In particular, markedly different defects turn out to be newly created in the electrically activated regions for both the Ge- and N/Ge-implanted samples after annealing, indicating that these new defects are probably associated with the presence of the implanted Ge dopant atoms.

  9. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3

    PubMed Central

    Dong, Linpeng; Jia, Renxu; Xin, Bin; Peng, Bo; Zhang, Yuming

    2017-01-01

    The structural, electronic, and optical properties of β-Ga2O3 with oxygen vacancies are studied by employing first-principles calculations based on density function theory. Based on the defects formation energies, we conclude the oxygen vacancies are most stable in their fully charge states. The electronic structures and optical properties of β-Ga2O3 are calculated by Generalized Gradient Approximation + U formalisms with the Hubbard U parameters set 7.0 eV and 8.5 eV for Ga and O ions, respectively. The calculated bandgap is 4.92 eV, which is consistent with the experimental value. The static real dielectric constants of the defective structures are increased compared with the intrinsic one, which is attributed to the level caused by the Ga-4s states in the bandgap. Extra peaks are introduced in the absorption spectra, which are related to Ga-4s and O-2p states. Experimentally, β-Ga2O3 films are deposited under different O2 volume percentage with ratio-frequency magnetron sputtering method. The measured results indicate that oxygen vacancies can induce extra emission peaks in the photoluminescence spectrum, the location of these peaks are close to the calculated results. Extra O2 can increase the formation energies of oxygen vacancies and thus reduce oxygen vacancies in β-Ga2O3. PMID:28065936

  10. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3.

    PubMed

    Dong, Linpeng; Jia, Renxu; Xin, Bin; Peng, Bo; Zhang, Yuming

    2017-01-09

    The structural, electronic, and optical properties of β-Ga 2 O 3 with oxygen vacancies are studied by employing first-principles calculations based on density function theory. Based on the defects formation energies, we conclude the oxygen vacancies are most stable in their fully charge states. The electronic structures and optical properties of β-Ga 2 O 3 are calculated by Generalized Gradient Approximation + U formalisms with the Hubbard U parameters set 7.0 eV and 8.5 eV for Ga and O ions, respectively. The calculated bandgap is 4.92 eV, which is consistent with the experimental value. The static real dielectric constants of the defective structures are increased compared with the intrinsic one, which is attributed to the level caused by the Ga-4s states in the bandgap. Extra peaks are introduced in the absorption spectra, which are related to Ga-4s and O-2p states. Experimentally, β-Ga 2 O 3 films are deposited under different O 2 volume percentage with ratio-frequency magnetron sputtering method. The measured results indicate that oxygen vacancies can induce extra emission peaks in the photoluminescence spectrum, the location of these peaks are close to the calculated results. Extra O 2 can increase the formation energies of oxygen vacancies and thus reduce oxygen vacancies in β-Ga 2 O 3 .

  11. Simulation of defects in fusion plasma first wall materials

    NASA Astrophysics Data System (ADS)

    T, Troev; N, Nankov; T, Yoshiie

    2014-06-01

    Numerical calculations of radiation damages in beryllium, alpha-iron and tungsten irradiated by fusion neutrons were performed using molecular dynamics (MD) simulations. The displacement cascades efficiency has been calculated using the Norgett-Robinson-Torrens (NRT) formula, the universal pair-potential of Ziegler-Biersack-Littmark (ZBL) and the EAM inter-atomic potential. The pair potential overestimates the defects production by a factor of 2. The ZBL pair potential results and the EAM are comparable at higher primary knock-on atom (PKA) energies (E > 100 keV). We found that the most common types of defects are single vacancies, di-vacancies, interstitials and small number of interstitial clusters. On the bases of calculated results, the behavior of vacancies, empty nano-voids and nano-voids with hydrogen and helium were discussed.

  12. Thermal equilibrium concentration of intrinsic point defects in heavily doped silicon crystals - Theoretical study of formation energy and formation entropy in area of influence of dopant atoms-

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Yamaoka, S.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    It is well known that p-type, neutral and n-type dopants affect the intrinsic point defect (vacancy V and self-interstitial I) behavior in single crystal Si. By the interaction with V and/or I, (1) growing Si crystals become more V- or I-rich, (2) oxygen precipitation is enhanced or retarded, and (3) dopant diffusion is enhanced or retarded, depending on the type and concentration of dopant atoms. Since these interactions affect a wide range of Si properties ranging from as-grown crystal quality to LSI performance, numerical simulations are used to predict and to control the behavior of both dopant atoms and intrinsic point defects. In most cases, the thermal equilibrium concentrations of dopant-point defect pairs are evaluated using the mass action law by taking only the binding energy of closest pair to each other into account. The impacts of dopant atoms on the formation of V and I more distant than 1st neighbor and on the change of formation entropy are usually neglected. In this study, we have evaluated the thermal equilibrium concentrations of intrinsic point defects in heavily doped Si crystals. Density functional theory (DFT) calculations were performed to obtain the formation energy (Ef) of the uncharged V and I at all sites in a 64-atom supercell around a substitutional p-type (B, Ga, In, and Tl), neutral (C, Ge, and Sn) and n-type (P, As, and Sb) dopant atom. The formation (vibration) entropies (Sf) of free I, V and I, V at 1st neighboring site from B, C, Sn, P and As atoms were also calculated with the linear response method. The dependences of the thermal equilibrium concentrations of trapped and total intrinsic point defects (sum of free I or V and I or V trapped with dopant atoms) on the concentrations of B, C, Sn, P and As in Si were obtained. Furthermore, the present evaluations well explain the experimental results of the so-called ;Voronkov criterion; in B and C doped Si, and also the observed dopant dependent void sizes in P and As doped Si

  13. Positron annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Chen, Z. Q.; Wang, D. D.; Qi, N.; Gong, J.; Cao, C. Y.; Tang, Z.

    2010-01-01

    High purity ZnO nanopowders were pressed into pellets and annealed in air between 100 and 1200 °C. The crystal quality and grain size of the ZnO nanocrystals were investigated by x-ray diffraction 2θ scans. Annealing induces an increase in the grain size from 25 to 165 nm with temperature increasing from 400 to 1200 °C. Scanning electron microscopy and high-resolution transmission electron microscopy observations also confirm the grain growth during annealing. Positron annihilation measurements reveal vacancy defects including Zn vacancies, vacancy clusters, and voids in the grain boundary region. The voids show an easy recovery after annealing at 100-700 °C. However, Zn vacancies and vacancy clusters observed by positrons remain unchanged after annealing at temperatures below 500 °C and begin to recover at higher temperatures. After annealing at temperatures higher than 1000 °C, no positron trapping by the interfacial defects can be observed. Raman spectroscopy studies confirm the recovery of lattice disorder after annealing. Hysteresis loops are observed for the 100 and 400 °C annealed samples, which indicate ferromagnetism in ZnO nanocrystals. However, the ferromagnetism disappears after annealing above 700 °C, suggesting that it might originate from the surface defects such as Zn vacancies.

  14. Defect production in nonlinear quench across a quantum critical point.

    PubMed

    Sen, Diptiman; Sengupta, K; Mondal, Shreyoshi

    2008-07-04

    We show that the defect density n, for a slow nonlinear power-law quench with a rate tau(-1) and an exponent alpha>0, which takes the system through a critical point characterized by correlation length and dynamical critical exponents nu and z, scales as n approximately tau(-alphanud/(alphaznu+1)) [n approximately (alphag((alpha-1)/alpha)/tau)(nud/(znu+1))] if the quench takes the system across the critical point at time t=0 [t=t(0) not = 0], where g is a nonuniversal constant and d is the system dimension. These scaling laws constitute the first theoretical results for defect production in nonlinear quenches across quantum critical points and reproduce their well-known counterpart for a linear quench (alpha=1) as a special case. We supplement our results with numerical studies of well-known models and suggest experiments to test our theory.

  15. Oxygen vacancy chain and conductive filament formation in hafnia

    NASA Astrophysics Data System (ADS)

    Xue, Kan-Hao; Miao, Xiang-Shui

    2018-04-01

    The stability and aggregation mechanisms of oxygen vacancy chains are studied for hafnia using self-energy corrected density functional theory. While oxygen vacancies tend not to align along the c-axis of monoclinic HfO2, oxygen vacancy chains along a-axis and b-axis are energetically favorable, with cohesive energies of 0.05 eV and 0.03 eV per vacancy, respectively. Nevertheless, with an increase of the cross section area, intensive oxygen vacancy chains become much more stable in hafnia, which yields phase separation into Hf-clusters and HfO2. Compared with disperse single vacancy chains, intensive oxygen vacancy chains made of 4, 6, and 8 single vacancy chains are energetically more favorable by 0.17, 0.20, and 0.30 eV per oxygen vacancy, respectively. On the other hand, while a single oxygen vacancy chain exhibits a tiny electronic energy gap of around 0.5 eV, metallic conduction emerges for the intensive vacancy chain made of 8 single vacancy chains, which possesses a filament cross section area of ˜0.4 nm2. This sets a lower area limit for Hf-cluster filaments from metallic conduction point of view, but in real hafnia resistive RAM devices the cross section area of the filaments can generally be much larger (>5 nm2) for the sake of energy minimization. Our work sets up a bridge between oxygen vacancy ordering and phase separation in hafnia, and shows a clear trend of filament stabilization with larger dimensions. The results could explain the threshold switching phenomenon in hafnia when a small AFM tip was used as the top electrode, as well as the undesired multimode operation in resistive RAM cells with 3 nm-thick hafnia.

  16. Fast Xe-129 relaxation in solid xenon near its melting point: Cross-over from Raman scattering of phonons to vacancy diffusion.

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Patton, B.; Raman, K.; Happer, W.

    2002-03-01

    NMR measurements of longitudinal relaxation times T1 in pure solid xenon were carried out using both natural-abundance and isotopically-enriched samples of hyperpolarized ^129Xe. At temperatures below 120 K and fields above 500 Gauss, the relaxation rate 1/T1 is field- and abundance-independent, consistent with the model of ^129Xe spin-flip Raman scattering of phonons(R. J. Fitzgerald et al.), Phys. Rev. B 59, 8795 (1999).. Above 120 K, vacancies invade the xenon lattice(P. R. Granfors et al.) Phys. Rev. B 24, 4753 (1981)., and a dramatic cross-over to the nuclear dipole-dipole relaxation due to the diffusion of vacancies is observed. As a result, the measured relaxation times of xenon near its melting point strongly depend on field and somewhat on ^129Xe abundance, and can be as short as several seconds, leading to potential difficulties in cryogenic applications of hyperpolarized ^129Xe. The data are analyzed using the theory of nuclear relaxation due to spin diffusion in cubic crystals(C. A. Sholl, J. Phys. C 21), 319 (1988)., and some estimates of the vacancy density and jump rates are discussed.

  17. Impact of hydrogen and oxygen defects on the lattice parameter of chemical vapor deposited zinc sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Wolf, Walter; Wimmer, Erich

    2013-01-09

    The lattice parameter of cubic chemical vapor deposited (CVD) ZnS with measured oxygen concentrations < 0.6 at.% and hydrogen impurities of < 0.015 at.% have been measured and found to vary between -0.10% and +0.09% relative to the reference lattice parameter (5.4093 Å) of oxygen-free cubic ZnS as reported in the literature. Defects other than substitutional O must be invoked to explain these observed volume changes. The structure and thermodynamic stability of a wide range of native and impurity induced defects in ZnS have been determined by Ab initio calculations. Lattice contraction is caused by S-vacancies, substitutional O on Smore » sites, Zn vacancies, H in S vacancies, peroxy defects, and dissociated water in S-vacancies. The lattice is expanded by interstitial H, H in Zn vacancies, dihydroxy defects, interstitial oxygen, Zn and [ZnHn] complexes (n=1,…,4), interstitial Zn, and S2 dumbbells. Oxygen, though present, likely forms substitutional defects for sulfur resulting in lattice contraction rather than as interstitial oxygen resulting in lattice expansion. It is concluded based on measurement and calculations that excess zinc atoms either at anti-sites (i.e. Zn atoms on S-sites) or possibly as interstitial Zn are responsible for the relative increase of the lattice parameter of commercially produced CVD ZnS.« less

  18. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    DOE PAGES

    Gul, R.; Roy, U. N.; James, R. B.

    2017-03-15

    In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less

  19. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, R.; Roy, U. N.; James, R. B.

    In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less

  20. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.

    PubMed

    Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A

    2018-06-13

    Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.

  1. High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies

    NASA Astrophysics Data System (ADS)

    Lindström, A.; Mirbt, S.; Sanyal, B.; Klintenberg, M.

    2016-01-01

    In this paper, we focus on the high resistivity of intentionally undoped CdTe, where the most prevalent defects are Cd vacancies and Te antisites. Our calculated formation energies lead to the conclusion that the Fermi energy of undoped CdTe is at midgap due to carrier compensation of Te antisites and Cd vacancies, which explains the experimentally observed high resistivity. We use density functional theory with the hybrid functional of Heyd, Scuseria and Ernzerhof (HSE06) and show that the proper description of the native defects in general fails using the local density approximation (LDA) instead of HSE06. We conclude that LDA is insufficient to understand the high resistivity of undoped CdTe. We calculate the neutral and double acceptor state of the Te antisite to be intrinsic DX-centers.

  2. Enhancement of deuterium retention in damaged tungsten by plasma-induced defect clustering

    NASA Astrophysics Data System (ADS)

    Jin, Younggil; Roh, Ki-Baek; Sheen, Mi-Hyang; Kim, Nam-Kyun; Song, Jaemin; Kim, Young-Woon; Kim, Gon-Ho

    2017-12-01

    The enhancement of deuterium retention was investigated for tungsten in the presence of both 2.8 MeV self-ion induced cascade damage and fuel hydrogen isotope plasma. Vacancy clustering in cascade damaged polycrystalline tungsten occurred due to deuterium irradiation and was observed near the grain boundary by using all-step transmission electron microscopy analysis. Analysis of the highest desorption temperature peak using thermal desorption spectroscopy supports reasonable evidence of defect clustering in the damaged polycrystalline tungsten. The defect clustering was neither observed on the damaged polycrystalline tungsten without deuterium irradiation nor on the damaged single-crystalline tungsten with deuterium irradiation. This result implies the synergetic role of deuterium and grain boundary on defect clustering. This study proposes a path for the defect transform from point defect to defect cluster, by the agglomeration between irradiated deuterium and cascade damage-induced defect. This agglomeration may induce more severe damage on the tungsten divertor at which the high fuel hydrogen ions, fast neutrons, and self-ions are irradiated simultaneously and it would increase the in-vessel tritium inventory.

  3. Nature of native defects in ZnO.

    PubMed

    Selim, F A; Weber, M H; Solodovnikov, D; Lynn, K G

    2007-08-24

    This study revealed the nature of native defects and their roles in ZnO through positron annihilation and optical transmission measurements. It showed oxygen vacancies are the origin for the shift in the optical absorption band that causes the red or orange coloration. It also revealed experimental evidence that the donor nature of oxygen vacancy is approximately 0.7 eV. In addition, this work showed the Zn interstitial was not the donor in the as-grown ZnO and supported recent calculations that predicted hydrogen in an oxygen vacancy forms multicenter bonds and acts as a shallow donor.

  4. Interplay of dopant, defects and electronic structure in driving ferromagnetism in Co-doped oxides: TiO(2), CeO(2) and ZnO.

    PubMed

    Ali, Bakhtyar; Shah, Lubna R; Ni, C; Xiao, J Q; Shah, S Ismat

    2009-11-11

    A comprehensive study of the defects and impurity (Co)-driven ferromagnetism is undertaken in the oxide semiconductors: TiO(2), ZnO and CeO(2). The effect of magnetic (Co(2+)) and non-magnetic (Cu(2+)) impurities in conjunction with defects, such as oxygen vacancies (V(o)), have been thoroughly investigated. Analyses of the x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) data reveal the incorporation of cobalt in the lattice, with no signature of cobalt segregation. It is shown that oxygen vacancies are necessary for the ferromagnetic coupling in the Co-doped oxides mentioned above. The possible exchange mechanisms responsible for the ferromagnetism are discussed in light of the energy levels of dopants in the host oxides. In addition, Co and Cu co-doped TiO(2) samples are studied in order to understand the role of point defects in establishing room temperature ferromagnetism. The parameters calculated from the bound magnetic polaron (BMP) and Jorgensen's optical electronegativity models offer a satisfactory explanation of the defect-driven ferromagnetism in the doped/co-doped samples.

  5. Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrabova, M. A., E-mail: Mehrabova@mail.ru; Madatov, R. S.

    2011-08-15

    The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smallermore » than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.« less

  6. Magnetic properties of point defects in proton irradiated diamond

    NASA Astrophysics Data System (ADS)

    Makgato, T. N.; Sideras-Haddad, E.; Ramos, M. A.; García-Hernández, M.; Climent-Font, A.; Zucchiatti, A.; Muñoz-Martin, A.; Shrivastava, S.; Erasmus, R.

    2016-09-01

    We investigate the magnetic properties of ultra-pure type-IIa diamond following irradiation with proton beams of ≈1-2 MeV energy. SQUID magnetometry indicate the formation of Curie type paramagnetism according to the Curie law. Raman and Photoluminescence spectroscopy measurements show that the primary structural features created by proton irradiation are the centers: GR1, ND1, TR12 and 3H. The Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulations together with SQUID observations show a strong correlation between vacancy production, proton fluence and the paramagnetic factor. At an average surface vacancy spacing of ≈1-1.6 nm and bulk (peak) vacancy spacing of ≈0.3-0.5 nm Curie paramagnetism is induced by formation of ND1 centres with an effective magnetic moment μeff~(0.1-0.2)μB. No evidence of long range magnetic ordering is observed in the temperature range 4.2-300 K.

  7. Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li 3 N structure

    DOE PAGES

    Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; ...

    2016-01-07

    A stable ground state structure with cubic symmetry of Li 3N (c-Li 3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li 3N is the ground state structure for a wide range of temperature. The c-Li 3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li 3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of nativemore » point defects in c-Li 3N, including lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li 3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li 3N phase which occurs via a vacancy mechanism.« less

  8. Anomalous Dirac point transport due to extended defects in bilayer graphene.

    PubMed

    Shallcross, Sam; Sharma, Sangeeta; Weber, Heiko B

    2017-08-24

    Charge transport at the Dirac point in bilayer graphene exhibits two dramatically different transport states, insulating and metallic, that occur in apparently otherwise indistinguishable experimental samples. We demonstrate that the existence of these two transport states has its origin in an interplay between evanescent modes, that dominate charge transport near the Dirac point, and disordered configurations of extended defects in the form of partial dislocations. In a large ensemble of bilayer systems with randomly positioned partial dislocations, the distribution of conductivities is found to be strongly peaked at both the insulating and metallic limits. We argue that this distribution form, that occurs only at the Dirac point, lies at the heart of the observation of both metallic and insulating states in bilayer graphene.In seemingly indistinguishable bilayer graphene samples, two distinct transport regimes, insulating and metallic, have been identified experimentally. Here, the authors demonstrate that these two states originate from the interplay between extended defects and evanescent modes at the Dirac point.

  9. Excess-Si related defect centers in buried SiO2 thin films

    NASA Astrophysics Data System (ADS)

    Warren, W. L.; Fleetwood, D. M.; Shaneyfelt, M. R.; Schwank, J. R.; Winokur, P. S.; Devine, R. A. B.

    1993-06-01

    Using electron paramagnetic resonance (EPR) and capacitance-voltage measurements we have investigated the role of excess-silicon related defect centers as charge traps in separation by the implantation of oxygen materials. Three types of EPR-active centers were investigated: oxygen vacancy Eγ' centers (O3≡Si• +Si≡O3), delocalized Eδ' centers, and D centers (Si3≡Si•). It was found that all of these paramagnetic centers are created by selective hole injection, and are reasonably ascribed as positively charged when paramagnetic. These results provide the first experimental evidence for (1) the charge state of the Eδ' center, and (2) that the D center is an electrically active point defect in these materials.

  10. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys.

    PubMed

    Lu, Chenyang; Jin, Ke; Béland, Laurent K; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M; Stoller, Roger E; Wang, Lumin

    2016-02-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.

  11. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    PubMed Central

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; Wang, Lumin

    2016-01-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance. PMID:26829570

  12. First-principles calculations of optical transitions at native defects and impurities in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, John L.; Varley, Joel B.; Janotti, Anderson; Van de Walle, Chris G.

    2018-02-01

    Optical spectroscopy is a powerful approach for detecting defects and impurities in ZnO, an important electronic material. However, knowledge of how common optical signals are linked with defects and impurities is still limited. The Cu-related green luminescence is among the best understood luminescence signals, but theoretical descriptions of Cu-related optical processes have not agreed with experiment. Regarding native defects, assigning observed lines to specific defects has proven very difficult. Using first-principles calculations, we calculate the properties of native defects and impurities in ZnO and their associated optical signals. Oxygen vacancies are predicted to give luminescence peaks lower than 1 eV; while related zinc dangling bonds can lead to luminescence near 2.4 eV. Zinc vacancies lead to luminescence peaks below 2 eV, as do the related oxygen dangling bonds. However, when complexed with hydrogen impurities, zinc vacancies can cause higher-energy transitions, up to 2.3 eV. We also find that the Cu-related green luminescence is related to a (+/0) deep donor transition level.

  13. Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate

    NASA Astrophysics Data System (ADS)

    Kojima, Kazunobu; Takashima, Shinya; Edo, Masaharu; Ueno, Katsunori; Shimizu, Mitsuaki; Takahashi, Tokio; Ishibashi, Shoji; Uedono, Akira; Chichibu, Shigefusa F.

    2017-06-01

    The photoluminescences of ion-implanted (I/I) and epitaxial Mg-doped GaN (GaN:Mg) are compared. The intensities and lifetimes of the near-band-edge and ultraviolet luminescences associated with a MgGa acceptor of I/I GaN:Mg were significantly lower and shorter than those of the epilayers, respectively. Simultaneously, the green luminescence (GL) became dominant. These emissions were quenched far below room temperature. The results indicate the generation of point defects common to GL and nonradiative recombination centers (NRCs) by I/I. Taking the results of positron annihilation measurement into account, N vacancies are the prime candidate to emit GL and create NRCs with Ga vacancies, (VGa) m (VN) n , as well as to inhibit p-type conductivity.

  14. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    PubMed Central

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  15. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  16. Gadolinium substitution induced defect restructuring in multiferroic BiFeO3: case study by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.

    2013-12-01

    Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.

  17. Vacancy defects and optoelectrical properties for fluorine tin oxide thin films with various SnF2 contents

    NASA Astrophysics Data System (ADS)

    Zhou, Yawei; Xu, Wenwu; Li, Jingjing; Yin, Chongshan; Liu, Yong; Zhao, Bin; Chen, Zhiquan; He, Chunqing; Mao, Wenfeng; Ito, Kenji

    2018-01-01

    Fluorine doped tin oxide (FTO) thin films were deposited on glass substrates by e-beam evaporation. Much higher carrier concentration, broader optical band gap, and average transmittance over 80% were obtained with SnF2 doped SnO2 thin films. Positron annihilation results showed that there are two kinds of vacancy clusters with different sizes existing in the annealed FTO thin films, and the concentration of the larger vacancy clusters of VSnO in the thin films increases with increasing SnF2 contents. Meanwhile, photoluminescence spectra results indicated that the better electrical and optical properties of the FTO thin films are attributed to FO substitutions and oxygen vacancies with higher concentration, which are supported by positron annihilation Doppler broadening results and confirmed by X-ray photoelectron spectroscopy. The results showed that widening of the optical band gap of the FTO thin films strongly depends on the carrier concentration, which is interpreted for the Burstein-Moss effect and is associated with the formation of FO and oxygen vacancies with increasing SnF2 content.

  18. a Positron 2D-ACAR Study of the Silicon-Dioxide Interface and the Point Defects in the Semi-Insulating Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Peng, Jianping

    The SiO_2-Si system has been the subject of extensive study for several decades. Particular interest has been paid to the interface between Si single crystal and the amorphous SiO_2 which determines the properties and performances of devices. This is significant because of the importance of Si technology in the semiconductor industry. The development of the high-intensity slow positron beam at Brookhaven National Laboratory make it possible to study this system for the first time using the positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) technique. 2D-ACAR is a well established and is a non-destructive microscopic probe for studying the electronic structure of materials, and for doing the depth-resolved measurements. Some unique information was obtained from the measurements performed on the SiO_2-Si system: Positronium (Ps) atoms formation and trapping in microvoids in both oxide and interface regions; and positron annihilation at vacancy-like defects in the interface region which can be attributed to the famous Pb centers. The discovery of the microvoids in the interface region may have some impact on the fabrication of the next generation electronic devices. Using the conventional 2D-ACAR setup with a ^{22}Na as positron source, we also studied the native arsenic (As) vacancy in the semi -insulating gallium-arsenide (SI-GaAs), coupled with in situ infrared light illumination. The defect spectrum was obtained by comparing the spectrum taken without photo -illumination to the spectrum taken with photo-illumination. The photo-illumination excited electrons from valence band to the defect level so that positrons can become localized in the defects. The two experiments may represent a new direction of the application of positron 2D-ACAR technique on the solid state physics and materials sciences.

  19. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).

    PubMed

    Pan, Yun-xiang; Liu, Chang-jun; Mei, Donghai; Ge, Qingfeng

    2010-04-20

    The effects of hydration and oxygen vacancy on CO(2) adsorption on the beta-Ga(2)O(3)(100) surface have been studied using density functional theory slab calculations. Adsorbed CO(2) is activated on the dry perfect beta-Ga(2)O(3)(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect beta-Ga(2)O(3)(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect beta-Ga(2)O(3)(100) surface. Adsorption of CO(2) on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slightly repulsive interaction when H(2)O and CO(2) are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the coadsorbed H(2)O to a bicarbonate species, making the CO(2) adsorption exothermic, with an adsorption energy of -0.13 eV. The effect of defects on CO(2) adsorption and activation has been examined by creating an oxygen vacancy on the dry beta-Ga(2)O(3)(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O(2) molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO(2). In the most stable CO(2) adsorption configuration on the dry defective beta-Ga(2)O(3)(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO(2) occupies the oxygen vacancy site, and the CO(2) adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is spontaneous, with a reaction energy of -0.62 eV. These results indicate that, when water and CO(2) are present in the adsorption system simultaneously, water will compete with CO(2) for the oxygen vacancy sites and impact CO(2) adsorption and conversion negatively.

  20. Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Nagy, Roland; Widmann, Matthias; Niethammer, Matthias; Dasari, Durga B. R.; Gerhardt, Ilja; Soykal, Öney O.; Radulaski, Marina; Ohshima, Takeshi; Vučković, Jelena; Son, Nguyen Tien; Ivanov, Ivan G.; Economou, Sophia E.; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg

    2018-03-01

    Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3 /2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.

  1. Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Qi

    Transition metal oxides (TMOs) constitute a large group of materials that exhibit a wide range of optical, electrical, electrochemical, dielectric and catalytic properties, and thus making them highly regarded as promising materials for a variety of applications in next generation electronic, optoelectronic, catalytic, photonic, energy storage and energy conversion devices. Some of the unique properties of TMOs are their strong electron-electron correlations that exists between the valence electrons of narrow d- or f-shells and their ability to exist in variety of oxidation states. This gives TMOs an enormous range of fascinating electronic and other physical properties. Many of these remarkable properties of TMOs arises from the complex surface charge transfer processes at the oxide surface/electrochemical redox species interface and non-stoichiometry due to the presence of lattice vacancies that may cause significant perturbation to the electronic structure of the material. Stoichiometry, oxidation state of the metal center and lattice vacancy defects all play important roles in affecting the physical properties, electronic structures, device behavior and other functional properties of TMOs. However, the underlying relationships between them is not clearly known. For instance, the exchange of electrons between adsorbates and defects can lead to the passivation of existing defect states or formation of new defects, both of which affect defect equilibria, and consequently, functional properties. In depth understanding of the role of lattice defects on the electrical, catalytic and optical properties of TMOs is central to further expansion of the technological applications of TMO based devices. The focus of this work is to elucidate the interactions of vacancy defects with various electrochemical adsorbates in TMOs. The ability to directly probe the interactions of vacancy defects with gas and liquid phase species under in-operando conditions is highly desirable to

  2. Contributions from gallium vacancies and carbon-related defects to the ``yellow luminescence'' in GaN

    NASA Astrophysics Data System (ADS)

    Armitage, R.; Hong, William; Yang, Qing; Feick, H.; Gebauer, J.; Weber, E. R.; Hautakangas, S.; Saarinen, K.

    2003-05-01

    Carbon-doped GaN layers grown by molecular-beam epitaxy are studied with photoluminescence and positron annihilation spectroscopy. Semi-insulating layers doped with >1018 cm-3 carbon show a strong luminescence band centered at ˜2.2 eV (yellow luminescence). The absolute intensity of the 2.2 eV band is compared with the gallium vacancy concentration determined by positron annihilation spectroscopy. The results indicate that a high concentration of gallium vacancies is not necessary for yellow luminescence and that there is in fact a causal relationship between carbon and the 2.2 eV band. Markedly different deep-level ionization energies are found for the high-temperature quenching of the 2.2 eV photoluminescence in carbon-doped and reference samples. We propose that while the model of Neugebauer and Van de Walle [Appl. Phys. Lett. 69, 503 (1996)] applies for GaN of low carbon concentration, a different yellow luminescence mechanism is involved when the interstitial carbon concentration is comparable to or exceeds the gallium vacancy concentration.

  3. Correlation between ferromagnetism and defects in MgO nanocrystals studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Wang, D. D.; Chen, Z. Q.; Li, C. Y.; Li, X. F.; Cao, C. Y.; Tang, Z.

    2012-07-01

    High purity MgO nanopowders were pressed into pellets and annealed in air from 100 to 1400 °C. Variation of the microstructures was investigated by X-ray diffraction and positron annihilation spectroscopy. Annealing induces an increase in the MgO grain size from 27 to 60 nm with temperature increasing up to 1400 °C. Positron annihilation measurements reveal vacancy defects including Mg vacancies, vacancy clusters, microvoids and large pores in the grain boundary region. Rapid recovery of Mg monovacancies and vacancy clusters was observed after annealing above 1200 °C. Room temperature ferromagnetism was observed for MgO nanocrystals annealed at 100, 700, and 1000 °C. However, after 1400 °C annealing, MgO nanocrystals turn into diamagnetic. Our results suggest that the room temperature ferromagnetism in MgO nanocrystals might originate from the interfacial defects.

  4. Graphene defects induced by ion beam

    NASA Astrophysics Data System (ADS)

    Gawlik, Grzegorz; Ciepielewski, Paweł; Baranowski, Jacek; Jagielski, Jacek

    2017-10-01

    The CVD graphene deposited on the glass substrate was bombarded by molecular carbon ions C3+ C6+ hydrocarbon ions C3H4+ and atomic ions He+, C+, N+, Ar+, Kr+ Yb+. Size and density of ion induced defects were estimated from evolution of relative intensities of Raman lines D (∼1350 1/cm), G (∼1600 1/cm), and D‧ (∼1620 1/cm) with ion fluence. The efficiency of defect generation by atomic ions depend on ion mass and energy similarly as vacancy generation directly by ion predicted by SRIM simulations. However, efficiency of defect generation in graphene by molecular carbon ions is essentially higher than summarized efficiency of similar group of separate atomic carbon ions of the same energy that each carbon ion in a cluster. The evolution of the D/D‧ ratio of Raman lines intensities with ion fluence was observed. This effect may indicate evolution of defect nature from sp3-like at low fluence to a vacancy-like at high fluence. Observed ion graphene interactions suggest that the molecular ion interacts with graphene as single integrated object and should not be considered as a group of atomic ions with partial energy.

  5. Oxygen vacancy induced by La and Fe into ZnO nanoparticles to modify ferromagnetic ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep Chand, E-mail: kuldeep0309@yahoo.co.in; Kotnala, R.K., E-mail: rkkotnala@gmail.com

    We reported long-range ferromagnetic interactions in La doped Zn{sub 0.95}Fe{sub 0.05}O nanoparticles that mediated through lattice defects or vacancies. Zn{sub 0.92}Fe{sub 0.05}La{sub 0.03}O (ZFLaO53) nanoparticles were synthesized by a sol–gel process. X-ray fluorescence spectrum of ZFLaO53 detects the weight percentage of Zn, Fe, La and O. X-ray diffraction shows the hexagonal Wurtzite ZnO phase. The Rietveld refinement has been used to calculate the lattice parameters and the position of Zn, Fe, La and O atoms in the Wurtzite unit cell. The average size of ZFLaO53 nanoparticles is 99 nm. The agglomeration type product due to OH ions with La resultsmore » into ZnO nanoparticles than nanorods that found in pure ZnO and Zn{sub 0.95}Fe{sub 0.05}O sample. The effect of doping concentration to induce Wurtzite ZnO structure and lattice defects has been analyzed by Raman active vibrational modes. Photoluminescence spectra show an abnormal emission in both UV and visible region, and a blue shift at near band edge is formed with doping. The room temperature magnetic measurement result into weak ferromagnetism but pure ZnO is diamagnetic. However, the temperature dependent magnetic measurement using zero-field and field cooling at dc magnetizing field 500 Oe induces long-range ferromagnetic ordering. It results into antiferromagnetic Neel temperature of ZFLaO53 at around 42 K. The magnetic hysteresis is also measured at 200, 100, 50 and 10 K measurement that indicate enhancement in ferromagnetism at low temperature. Overall, the La doping into Zn{sub 0.95}Fe{sub 0.05}O results into enhanced antiferromagnetic interaction as well as lattice defects/vacancies. The role of the oxygen vacancy as the dominant defects in doped ZnO must form Bound magnetic polarons has been described. - Graphical abstract: The long-range ferromagnetic order in Zn{sub 0.92}Fe{sub 0.05}La{sub 0.03}O nanoparticles at low temperature measurements involves oxygen vacancy as the medium of magnetic

  6. Impurity-defect complexes in non-implanted aluminum

    NASA Astrophysics Data System (ADS)

    Pedersen, F. T.; Grann, H.; Weyer, G.

    1986-02-01

    The formation of impurity-defect complexes in ion-implanted aluminum has been studied in the temperature interval 100 400K. Radioactive119In isotopes have been implanted. Mössbauer spectra have been measured for the 24 keV γ-radiation emitted after the decay to119Sn. The spectra could be analysed satisfactorily with two lines, one of which is known to be due to substitutional Sn. A second line, which has a higher isomer shift and lower Debye temperature, is tentatively assigned to vacancy-associated Sn, formed by trapping of thermally mobile (multi-)vacancies. Comparison to similar DPAC experiments suggests that cubic Sn-V4 complexes are formed. Some indication (˜15%) for an athermal formation of impurity defects below 175K is obtained.

  7. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less

  8. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies

    NASA Astrophysics Data System (ADS)

    Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia

    2017-12-01

    The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.

  9. Some challenging points in the identification of defects in floating-zone n-type silicon irradiated with 8 and 15 MeV protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emtsev, V. V., E-mail: emtsev@mail.ioffe.ru; Abrosimov, N. V.; Kozlovskii, V. V.

    2016-10-15

    Electrical properties of defects formed in n-Si(FZ) following 8 and 15 MeV proton irradiation are investigated by Hall effect measurements over the wide temperature range of T ≈ 25 to 300 K. Close attention is paid to the damaging factor of proton irradiation, leaving aside passivation effects by hydrogen. The concept of defect production and annealing processes being accepted in the literature so far needs to be reconsidered. Contrary to expectations the dominant impurity-related defects produced by MeV protons turn out to be electrically neutral in n-type material. Surprisingly, radiation acceptors appear to play a minor role. Annealing studies ofmore » irradiated samples of such complex defects as a divacancy tied to a phosphorus atom and a vacancy tied to two phosphorus atoms. The latter defect features high thermal stability. Identification of the dominant neutral donors, however, remains unclear and will require further, more detailed, studies. The electric properties of the material after proton irradiation can be completely restored at T = 800°C.« less

  10. The effects of cation–anion clustering on defect migration in MgAl 2O 4

    DOE PAGES

    Zamora, Richard J.; Voter, Arthur F.; Perez, Danny; ...

    2016-06-28

    Magnesium aluminate spinel (MgAl 2O 4), like many other ceramic materials, offers a range of technological applications, from nuclear reactor materials to military body armor. For many of these applications, it is critical to understand both the formation and evolution of lattice defects throughout the lifetime of the material. We use the Speculatively Parallel Temperature Accelerated Dynamics (SpecTAD) method to investigate the effects of di-vacancy and di-interstitial formation on the mobility of the component defects. From long-time trajectories of the state-to-state dynamics, we characterize the migration pathways of defect clusters, and calculate their self-diffusion constants across a range of temperatures.more » We find that the clustering of Al and O vacancies drastically reduces the mobility of both defects, while the clustering of Mg and O vacancies completely immobilizes them. For interstitials, we find that the clustering of Mg and O defects greatly reduces O interstitial mobility, but has only a weak effect on Mg. Lastly, these findings illuminate important new details regarding defect kinetics relevant to the application of MgAl 2O 4 in extreme environments.« less

  11. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    DOE PAGES

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states maymore » be harnessed for the realization of qubits. As a result, the strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.« less

  12. Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory

    NASA Astrophysics Data System (ADS)

    Ghorbani, Elaheh; Albe, Karsten

    2018-03-01

    We have employed first principles total energy calculations in the framework of density functional theory, with plane wave basis sets and screened exchange hybrid functionals to study the incorporation of intrinsic defects in bulk β-In2S3. The results are obtained for In-rich and S-rich experimental growth conditions. The charge transition level is discussed for all native defects, including VIn, VS, Ini, Si, SIn, and InS, and a comparison between the theoretically calculated charge transition levels and the available experimental findings is presented. The results imply that β-In2S3 shows n-type conductivity under both In-rich and S-rich growth conditions. The indium antiisite (InS), the indium interstitial (Ini), and the sulfur vacancy ( VS ' ) are found to be the leading sources of sample's n-type conductivity. When going from the In-rich to the S-rich condition, the conductivity of the material decreases; however, the type of conductivity remains unchanged.

  13. Defects and oxidation of group-III monochalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  14. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    DOE PAGES

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; ...

    2016-02-01

    We report that energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters farmore » exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.« less

  15. Simulations of defect spin qubits in piezoelectric semiconductors

    NASA Astrophysics Data System (ADS)

    Seo, Hosung

    In recent years, remarkable advances have been reported in the development of defect spin qubits in semiconductors for solid-state quantum information science and quantum metrology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in piezoelectric wide-gap semiconductors for potential applications in mechanical hybrid quantum systems. In particular, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. Our study indicates that developing spin qubits in complex crystals with multiple types of atom is a promising route to realize strongly coherent hybrid quantum systems. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory. This work was supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.

  16. Large-size TlBr single crystal growth and defect study

    NASA Astrophysics Data System (ADS)

    Zhang, Mingzhi; Zheng, Zhiping; Chen, Zheng; Zhang, Sen; Luo, Wei; Fu, Qiuyun

    2018-04-01

    Thallium bromide (TlBr) is an attractive semiconductor material for fabrication of radiation detectors due to its high photon stopping power originating from its high atomic number, wide band gap and high resistivity. In this paper the vertical Bridgman method was used for crystal growth and TlBr single crystals with diameter of 15 mm were grown. X-ray diffraction (XRD) was used to identify phase and orientation. Electron backscatter diffraction (EBSD) was used to investigate crystal microstructure and crystallographic orientation. The optical and electric performance of the crystal was characterized by infrared (IR) transmittance spectra and I-V measurement. The types of point defects in the crystals were investigated by thermally stimulated current (TSC) spectra and positron annihilation spectroscopy (PAS). Four types of defects, with ionization energy of each defect fitting as follows: 0.1308, 0.1540, 0.3822 and 0.538 eV, were confirmed from the TSC result. The PAS result showed that there were Tl vacancies in the crystal.

  17. First-principles study of defect formation in a photovoltaic semiconductor Cu2ZnGeSe4

    NASA Astrophysics Data System (ADS)

    Nishihara, Hironori; Maeda, Tsuyoshi; Wada, Takahiro

    2018-02-01

    The formation energies of neutral Cu, Zn, Ge, and Se vacancies in kesterite-type Cu2ZnGeSe4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in Cu-(Zn1/2Ge1/2)-Se and Cu3Se2-ZnSe-GeSe2 pseudoternary phase diagrams for Cu2ZnGeSe4. The results were compared with those for Cu2ZnSnSe4, Cu2ZnGeS4, and Cu2ZnSnS4 calculated using the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2ZnGeSe4 under the Cu-poor condition as in the above compounds and CuInSe2, suggesting that Cu2ZnGeSe4 is also a preferable p-type absorber material for thin-film solar cells. The formation energies of possible antisite defects, such as CuZn and CuGe, and of possible complex defects, such as CuZn+ZnCu, were also calculated and compared within the above materials. The antisite defect of CuZn, which has the smallest formation energy within the possible defects, is concluded to be the most hardly formed in Cu2ZnGeSe4 among the compounds.

  18. Influence of native defects on structural and electronic properties of magnesium silicide

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Iida, Tsutomu; Nishio, Keishi; Kogo, Yasuo; Takarabe, Kenji; Hamada, Noriaki

    2017-05-01

    The narrow-gap semiconductor magnesium silicide (Mg2Si) is a promising candidate for mid-temperature (500-800 K) thermoelectric applications. Mg2Si exhibits intrinsic n-type conductivity because of its interstitial Mg defects and is generally doped with n-type dopants; however, the synthesis of p-type Mg2Si has proven difficult. In the present study, we examined several types of defects, such as vacancies and the insertion of constituent atoms (Mg and Si) into crystals, to elucidate their stability in Mg2Si and their influence on its electronic states. A first-principles calculation has revealed that the insertion of Mg into a cell is the most stable and causes n-type conductivity in terms of formation energy. In contrast, the vacancy of Mg produces hole doping although its formation energy per conventional unit cell is approximately 0.07 eV higher than that of the insertion of Mg, at their concentration of 1.04 at. %. Furthermore, the insertion and vacancy of Si atoms generate electrons with higher formation energies compared to the Mg-related defects. As these defects alter the carrier concentration, they can compensate for intentional doping because of the added impurity atoms.

  19. Effects of intrinsic and extrinsic point defects on epitaxial single crystal copper-indium(1-x)-gallium(x)-diselenide

    NASA Astrophysics Data System (ADS)

    Schroeder, David James

    From the results presented here a number of conclusions regarding the effects of point defects on the properties of epitaxial single crystal CuInsb{1-x}Gasb{x}Sesb2 (CIGS) may be drawn. These conclusions may be divided into three categories: the effects of point defects on Ga diffusion and diffusivity, the influence of impurities and alloying elements on doping and mobility, and the effects of impurities on minority carrier recombination kinetics. The diffusivity of Ga into CIGS during growth was found to be strongly dependent of the Cu/In ratio of the growing layer. Diffusivity ranged from a minimum of 2.7×10sp{-13}\\ cmsp2/s at Cu/In = 0.94 to 5 × 10sp{-11} cmsp2/s at Cu/In = 1.41 and 7×10sp{-12} cmsp2/s at Cu/In = 0.43. The diffusion occurred by a vacancy mechanism with Ga, apparently, diffusing through either Cu or In vacancies. The sharp change in diffusivity with changing Cu/In ratio helps to explain the difficulty in maintaining a desired Ga profile in polycrystalline CIGS device absorber layers. Increasing Ga content was found to increase both acceptor and donor density. The decrease in Jsbsc found in Ga-containing polycrystalline devices, is likely caused by a large increase in acceptor density, which may cause less inversion of the surface of the p-type CIGS making the junction more sensitive to surface states. The effect of adding Na by diffusion from either NaOH or Nasp2Se was to reduce the donor density. These results help to explain results in polycrystalline CIGS devices where Na increased hole concentrations, Vsboc, and device efficiency. Unlike Ga and Na, Cr and Se were not found to have any strong effect when added in concentrations ≤10sp{19} cmsp{-3} using ion implantation. The lack of an effect of Se on doping conclusively determines that Na has an effect beyond simply introducing either O or Se into the bulk of the CIGS. While both implanted Se and Cr created large numbers of donors and acceptors before being annealed, both caused a

  20. A defect model for UO2+x based on electrical conductivity and deviation from stoichiometry measurements

    NASA Astrophysics Data System (ADS)

    Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume

    2017-10-01

    Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.

  1. One-point functions in defect CFT and integrability

    NASA Astrophysics Data System (ADS)

    de Leeuw, Marius; Kristjansen, Charlotte; Zarembo, Konstantin

    2015-08-01

    We calculate planar tree level one-point functions of non-protected operators in the defect conformal field theory dual to the D3-D5 brane system with k units of the world volume flux. Working in the operator basis of Bethe eigenstates of the Heisenberg XXX 1/2 spin chain we express the one-point functions as overlaps of these eigenstates with a matrix product state. For k = 2 we obtain a closed expression of determinant form for any number of excitations, and in the case of half-filling we find a relation with the Néel state. In addition, we present a number of results for the limiting case k → ∞.

  2. Strong spin-orbit splitting and magnetism of point defect states in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Li, Wun-Fan; Fang, Changming; van Huis, Marijn A.

    2016-11-01

    The spin-orbit coupling (SOC) effect has been known to be profound in monolayer pristine transition metal dichalcogenides (TMDs). Here we show that point defects, which are omnipresent in the TMD membranes, exhibit even stronger SOC effects and change the physics of the host materials drastically. In this article we chose the representative monolayer WS2 slabs from the TMD family together with seven typical types of point defects including monovacancies, interstitials, and antisites. We calculated the formation energies of these defects, and studied the effect of spin-orbit coupling (SOC) on the corresponding defect states. We found that the S monovacancy (VS) and S interstitial (adatom) have the lowest formation energies. In the case of VS and both of the WS and WS 2 antisites, the defect states exhibit strong splitting up to 296 meV when SOC is considered. Depending on the relative position of the defect state with respect to the conduction band minimum (CBM), the hybrid functional HSE will either increase the splitting by up to 60 meV (far from CBM), or decrease the splitting by up to 57 meV (close to CBM). Furthermore, we found that both the WS and WS 2 antisites possess a magnetic moment of 2 μB localized at the antisite W atom and the neighboring W atoms. The dependence of SOC on the orientation of the magnetic moment for the WS and WS 2 antisites is discussed. All these findings provide insights in the defect behavior under SOC and point to possibilities for spintronics applications for TMDs.

  3. Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides

    NASA Astrophysics Data System (ADS)

    Lemonde, M.-A.; Meesala, S.; Sipahigil, A.; Schuetz, M. J. A.; Lukin, M. D.; Loncar, M.; Rabl, P.

    2018-05-01

    We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.

  4. Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides.

    PubMed

    Lemonde, M-A; Meesala, S; Sipahigil, A; Schuetz, M J A; Lukin, M D; Loncar, M; Rabl, P

    2018-05-25

    We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.

  5. Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries.

    PubMed

    Liang, Zhicong; Fan, Xiaofeng; Zheng, Weitao; Singh, David J

    2017-05-24

    Layered carbon is a likely anode material for Na-ion batteries (NIBs). Graphitic carbon has a low capacity of approximately 35 (mA h)/g due to the formation of NaC 64 . Using first-principles methods including van der Waals interactions, we analyze the adsorption of Na ions and clusters on graphene in the context of anodes. The interaction between Na ions and graphene is found to be weak. Small Na clusters are not stable on the surface of pristine graphene in the electrochemical environment of NIBs. However, we find that Na ions and clusters can be stored effectively on defected graphene that has double vacancies. In addition, the adsorption energy of small Na clusters near a double vacancy is found to decrease with increasing cluster size. With high concentrations of vacancies the capacity of Na on defective graphene is found to be as much as 10-30 times higher than that of graphitic carbon.

  6. Self healing of defected graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianhui; Shi, Tuwan; Cai, Tuocheng

    For electronics applications, defects in graphene are usually undesirable because of their ability to scatter charge carriers, thereby reduce the carrier mobility. It would be extremely useful if the damage can be repaired. In this work, we employ Raman spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy, and electrical measurements to study defects in graphene introduced by argon plasma bombardment. We have found that majority of these defects can be cured by a simple thermal annealing process. The self-healing is attributed to recombination of mobile carbon adatoms with vacancies. With increasing level of plasma induced damage, the self-healing becomes less effective.

  7. Mesoporous Ga-TiO₂: Role of Oxygen Vacancies for the Photocatalytic Degradation Under Visible Light.

    PubMed

    Myilsamy, M; Mahalakshmi, M; Subha, N; Murugesan, V

    2018-02-01

    Gallium doped mesoporous TiO2 with different weight percentages were synthesized by sol-gel method using Pluronic P123 as the structure directing template. The physico-chemical properties of all the synthesized catalysts were determined by XRD, TEM, SEM-EDAX, N2 adsorption-desorption studies, XPS, UV-vis DRS, FT-IR and photoluminescence spectroscopy. 1.0 wt% Ga-TiO2 exhibited the highest photocatalytic efficiency among all the synthesized materials under visible light due to the high surface area, reduced band gap and suppressed electron-hole recombination. Ga3+ ions substitutions for Ti4+ ions in TiO2 lattice created oxygen vacancies in TiO2 lattice, which created a defect energy level below the conduction band of TiO2 and hence the band gap was reduced. The oxygen vacancy defects was playing significant role to improve the adsorption of oxygen molecules, hydroxide ions and cationic rhodamine B (RhB) on TiO2 surface in an aqueous medium. The lifetime of the charge carriers was also enhanced by trapping the photogenerated electrons in oxygen vacancies and transferring them to the adsorbed O2 to produce superoxide anion radicals (O-. 2 ). The photo-induced holes at valence band reduced the adsorbed OH- ions and produced a large number of .OH radicals, which subsequently degraded the RhB. Hence oxygen vacancies created by gallium doping on TiO2 enhanced the photocatalytic efficiency for the degradation of RhB under visible light.

  8. Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Nitesh; Sanyal, D.; Sundaresan, A.

    2009-08-01

    Positron annihilation spectroscopy has been used to explore the nature of defects and to estimate the defect concentrations in ferromagnetic MgO nanoparticles. Our experimental results show that Mg vacancies or Mg vacancy concentration are present approximately at the concentration of 3.4 × 10 16 cm -3 in the nano-crystalline MgO which is twice the value that obtained for bulk sample. This is in correlation with the decrease of the intensity of blue luminescence and the saturation magnetic moment with increasing particle size. These results clearly demonstrate that the origin of magnetic moment and thus the ferromagnetism in MgO nanoparticles is due to Mg related vacancies at the surface of the particles.

  9. Defect studies in copper-based p-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  10. Doping and vacancy effects of graphyne on SO2 adsorption.

    PubMed

    Kim, Sunkyung; Lee, Jin Yong

    2017-05-01

    The adsorption of sulfur dioxide (SO 2 ) on pristine and modified graphyne (including boron- or nitrogen- doping and introducing a single carbon atom defect) was investigated by density functional theory calculations. The structural, electronic, and magnetic properties of graphyne were changed according to the dopant atom site of doping and vacancy. SO 2 adsorption was obviously affected by modification of graphyne. SO 2 weakly interacted with pristine and nitrogen-doped graphynes. Boron doping at the sp-hybridized carbon site and introducing a single carbon atom vacancy in graphyne brought about a dramatic enhancement in SO 2 adsorption. The strongly chemisorbed SO 2 at these active sites caused deformation of the graphyne structure and electron redistribution, which induced changes in the conductivity and magnetism of graphynes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    PubMed

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  12. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT)

    PubMed Central

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-01-01

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT. PMID:28774067

  13. Identification of dopant-induced point defects and their effect on the performance of CZT detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gul, Rubi; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; Didic, Václav; Egarievwe, Stephen U.; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.

    2016-09-01

    In our prior research we investigated room-temperature radiation detectors (CZT, CMT, CdMgTe, CTS, among other compound semiconductors) for point defects related to different dopants and impurities. In this talk we will report on our most recent research on newly grown CZT crystals doped with In, In+Al, In+Ni, and In+Sn. The main focus will be on the study of dopant-induced point defects using deep-level current transient spectroscopy (i-DLTS). In addition the performance, ? product, gamma-ray spectral response and internal electric field of the detectors were measured and correlated with the dopant-induced point defects and their concentrations. Characterization of the detectors was carried out using i-DLTS for the point defects, Pockels effect for the internal electric-field distribution, and γ-ray spectroscopy for the spectral properties.

  14. Creation of deep blue light emitting nitrogen-vacancy center in nanosized diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himics, L., E-mail: himics.laszlo@wigner.mta.hu; Tóth, S.; Veres, M.

    2014-03-03

    This paper reports on the formation of complex defect centers related to the N3 center in nanosized diamond by employing plasma immersion and focused ion beam implantation methods. He{sup +} ion implantation into nanosized diamond “layer” was performed with the aim of creating carbon atom vacancies in the diamond structure, followed by the introduction of molecular N{sub 2}{sup +} ion and heat treatment in vacuum at 750 °C to initiate vacancy diffusion. To decrease the sp{sup 2} carbon content of nanosized diamond formed during the implantation processes, a further heat treatment at 450 °C in flowing air atmosphere was used. The modificationmore » of the bonding properties after each step of defect creation was monitored by Raman scattering measurements. The fluorescence measurements of implanted and annealed nanosized diamond showed the appearance of an intensive and narrow emission band with fine structures at 2.98 eV, 2.83 eV, and 2.71 eV photon energies.« less

  15. A Study of the Vacancy-Impurity Interaction in Dilute Nickel Alloys by Core Electron Annihilation

    NASA Astrophysics Data System (ADS)

    Arbuzov, V. L.; Danilov, S. E.; Druzhkov, A. P.

    1997-08-01

    It is shown that the angular correlation of annihilation radiation can be used to identify vacancy-impurity complexes in dilute alloys. Annihilation of trapped positrons with core electrons bears information about the chemical environment of a vacancy defect. The method is especially effective for d-matrices doped with sp-impurities since annihilation parameters of positrons with d- and sp-shell electrons differ considerably. The potentialities of the method of core-electron annihilation of positrons are demonstrated taking electron-irradiated dilute Ni-P and Ni-Si alloys as an example. It is shown that the interaction between the vacancies, which migrate at the III stage of annealing, and P atoms in Ni-P causes a considerable change in the annihilation parameters of positrons with core electrons compared to pure Ni. In Ni-Si alloys the annihilation parameters of trapped positrons with core electrons do not differ from those in Ni. This fact is an evidence that Si atoms do not interact with vacancies in Ni.

  16. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    NASA Astrophysics Data System (ADS)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  17. Point Defects and p -Type Doping in ScN from First Principles

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu

    2018-03-01

    Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.

  18. Changing vacancy balance in ZnO by tuning synthesis between zinc/oxygen lean conditions

    NASA Astrophysics Data System (ADS)

    Venkatachalapathy, Vishnukanthan; Galeckas, Augustinas; Zubiaga, Asier; Tuomisto, Filip; Kuznetsov, Andrej Yu.

    2010-08-01

    The nature of intrinsic defects in ZnO films grown by metal organic vapor phase epitaxy was studied by positron annihilation and photoluminescence spectroscopy techniques. The supply of Zn and O during the film synthesis was varied by applying different growth temperatures (325-485 °C), affecting decomposition of the metal organic precursors. The microscopic identification of vacancy complexes was derived from a systematic variation in the defect balance in accordance with Zn/O supply trends.

  19. Annihilating vacancies via dynamic reflection and emission of interstitials in nano-crystal tungsten

    NASA Astrophysics Data System (ADS)

    Li, Xiangyan; Duan, Guohua; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.; Liang, Yunfeng; Chen, Jun-Ling; Luo, G.-N.

    2017-11-01

    Radiation damage not only seriously degrades the mechanical properties of tungsten (W) but also enhances hydrogen retention in the material. Introducing a large amount of defect sinks, e.g. grain boundaries (GBs) is an effective method for improving radiation-resistance of W. However, the mechanism by which the vacancies are dynamically annihilated at long timescale in nano-crystal W is still not clear. The dynamic picture for eliminating vacancies with single interstitials and small interstitial-clusters has been investigated by combining molecular dynamics, molecular statics and object Kinetic Monte Carlo methods. On one hand, the annihilation of bulk vacancies was enhanced due to the reflection of an interstitial-cluster of parallel ≤ft< 1 1 1 \\right> crowdions by the GB. The interstitial-cluster was observed to be reflected back into the grain interior when approaching a locally dense GB region. Near this region, the energy landscape for the interstitial was featured by a shoulder, different to the decreasing energy landscape of the interstitial near a locally loose region as indicative of the sink role of the GB. The bulk vacancy on the reflection path was annihilated. On the other hand, the dynamic interstitial emission efficiently anneals bulk vacancies. The single interstitial trapped at the GB firstly moved along the GB quickly and clustered to be the di-interstitial therein, reducing its mobility to a value comparable to that that for bulk vacancy diffusion. Then, the bulk vacancy was recombined via the coupled motion of the di-interstitial along the GB, the diffusion of the vacancy towards the GB and the accompanying interstitial emission. These results suggest that GBs play an efficient role in improving radiation-tolerance of nano-crystal W via reflecting highly-mobile interstitials and interstitial-clusters into the bulk and annihilating bulk vacancies, and via complex coupling of in-boundary interstitial diffusion, clustering of the interstitial

  20. Concentration of point defects in 4H-SiC characterized by a magnetic measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, B.; Jia, R. X., E-mail: rxjia@mail.xidian.edu.cn; Wang, Y. T.

    A magnetic method is presented to characterize the concentration of point defects in silicon carbide. In this method, the concentration of common charged point defects, which is related to the density of paramagnetic centers, is determined by fitting the paramagnetic component of the specimen to the Brillouin function. Several parameters in the Brillouin function can be measured such as: the g-factor can be obtained from electron spin resonance spectroscopy, and the magnetic moment of paramagnetic centers can be obtained from positron lifetime spectroscopy combined with a first-principles calculation. To evaluate the characterization method, silicon carbide specimens with different concentrations ofmore » point defects are prepared with aluminum ion implantation. The fitting results of the densities of paramagnetic centers for the implanted doses of 1 × 10{sup 14} cm{sup −2}, 1 × 10{sup 15} cm{sup −2} and 1 × 10{sup 16} cm{sup −2} are 6.52 × 10{sup 14}/g, 1.14 × 10{sup 15}/g and 9.45 × 10{sup 14}/g, respectively. The same trends are also observed for the S-parameters in the Doppler broadening spectra. It is shown that this method is an accurate and convenient way to obtain the concentration of point defects in 4H-SiC.« less

  1. Fermi Level Control of Point Defects During Growth of Mg-Doped GaN

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary; Hoffmann, Marc; Tweedie, James; Kirste, Ronny; Callsen, Gordon; Bryan, Isaac; Rice, Anthony; Bobea, Milena; Mita, Seiji; Xie, Jinqiao; Sitar, Zlatko; Collazo, Ramón

    2013-05-01

    In this study, Fermi level control of point defects during metalorganic chemical vapor deposition (MOCVD) of Mg-doped GaN has been demonstrated by above-bandgap illumination. Resistivity and photoluminescence (PL) measurements are used to investigate the Mg dopant activation of samples with Mg concentration of 2 × 1019 cm-3 grown with and without exposure to ultraviolet (UV) illumination. Samples grown under UV illumination have five orders of magnitude lower resistivity values compared with typical unannealed GaN:Mg samples. The PL spectra of samples grown with UV exposure are similar to the spectra of those grown without UV exposure that were subsequently annealed, indicating a different incorporation of compensating defects during growth. Based on PL and resistivity measurements we show that Fermi level control of point defects during growth of III-nitrides is feasible.

  2. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    NASA Astrophysics Data System (ADS)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  3. FIBER OPTICS: Role of point defects in the photosensitivity of hydrogen-loaded phosphosilicate glass

    NASA Astrophysics Data System (ADS)

    Larionov, Yu V.

    2010-08-01

    It is shown that point defect modifications in hydrogen-loaded phosphosilicate glass (PSG) do not play a central role in determining its photosensitivity. Photochemical reactions that involve a two-step point defect modification and pre-exposure effect are incapable of accounting for photoinduced refractive index changes. It seems likely that a key role in UV-induced refractive index modifications is played by structural changes in the PSG network. Experimental data are presented that demonstrate intricate network rearrangement dynamics during UV exposure of PSG.

  4. On the Enthalpy and Entropy of Point Defect Formation in Crystals

    NASA Astrophysics Data System (ADS)

    Kobelev, N. P.; Khonik, V. A.

    2018-03-01

    A standard way to determine the formation enthalpy H and entropy S of point defect formation in crystals consists in the application of the Arrhenius equation for the defect concentration. In this work, we show that a formal use of this method actually gives the effective (apparent) values of these quantities, which appear to be significantly overestimated. The underlying physical reason lies in temperature-dependent formation enthalpy of the defects, which is controlled by temperature dependence of the elastic moduli. We present an evaluation of the "true" H- and S-values for aluminum, which are derived on the basis of experimental data by taking into account temperature dependence of the formation enthalpy related to temperature dependence of the elastic moduli. The knowledge of the "true" activation parameters is needed for a correct calculation of the defect concentration constituting thus an issue of major importance for different fundamental and application issues of condensed matter physics and chemistry.

  5. Influence of Si wafer thinning processes on (sub)surface defects

    NASA Astrophysics Data System (ADS)

    Inoue, Fumihiro; Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric; Uedono, Akira

    2017-05-01

    Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5-2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in between grinding and dry etch it is possible to significantly reduce not only the roughness, but also the remaining vacancies at the subsurface. The surface of grinding + CMP + dry etching gives an equivalent mono vacancy result as to that of grinding + CMP. This combination of thinning processes allows development of extremely thin 3D integration devices with minimal roughness and vacancy surface.

  6. Influence of processing conditions on point defects and luminescence centers in ZnO

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Kitai, A. H.; Mascher, P.

    1993-12-01

    Positron lifetime spectroscopy and cathodoluminescence were employed to study luminescence centers in ZnO. The samples were high-purity polycrystalline ceramics sintered at temperatures ranging from 800 to 1400 C for 2 to 40 h. Scanning electron microscopy shows that as annealing temperatures and/or times increase, the average grain size increases and can reach 30 micron for samples sintered at 1200 C. At the same time, the positron bulk lifetime approaches theoretically estimated single-crystal values, while the integrated luminescence intensity increase significantly. A further increase of the sintering temperature beyond 1200 C results in a decrease in the luminescence intensity, in good agreement with the only weak luminescence observed in single-crystalline material. The positron lifetime spectra clearly show the existence of the dominant vacancy-type defect, most likely a complex involving V(sub Zn), or the divacancy, V(sub Zn)V(sub O), independent of sample thermal history. The concentration of this center steadily decreases with increasing sintering temperatures. It is concluded that the yellow luminescence centers are related to charged zinc vacancies trapped in the grain boundary regions. We propose that the observed broadness of the spectra likely originates from the modification of the electronic configuration of the luminescence centers due to their complex environment. A direct connection between the positron and the luminescence results could not be established; instead, they appear to reflect two relatively independent aspects of the samples. It could be shown, however, that positron annihilation measurements can be used effectively to monitor the evolution of the microstructure of the samples, in good agreement with scanning electron micrographs.

  7. Oxygen defect induced photoluminescence of HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Ni, Jie; Zhou, Qin; Li, Zhengcao; Zhang, Zhengjun

    2008-07-01

    Amorphous HfO2 films prepared by e-beam deposition exhibited room-temperature photoluminescence (PL) in the visible range, i.e., at ˜620 and 700nm, due to oxygen vacancies involved during deposition. This PL can be enhanced by two orders in intensity by crystallizing the amorphous films in flowing argon, where a large amount of oxygen vacancies were introduced, and can be diminished by removal of the oxygen vacancies by annealing HfO2 films in oxygen. This study could help understand the defect-property relationship and provides ways to tune the PL property of HfO2 films.

  8. Annealing temperature effects on the magnetic properties and induced defects in C/N/O implanted MgO

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2013-02-01

    Virgin MgO single crystals were implanted with 70 keV C/N/O ions at room temperature to a dose of 2 × 1017/cm2. After implantation the samples showed room temperature hysteresis in magnetization loops. The annealing effects on the magnetic properties and induced defects of these samples were determined by vibrating sample magnetometer and positron annihilation spectroscopy, respectively. The experimental results indicate that ferromagnetism can be introduced to MgO single crystals by doping with C, N or introduction of Mg related vacancy defects. However, the Mg vacancies coexistence with C or N ions in the C-/N-implanted samples may play a negative role in magnetic performance in these MgO samples. The rapid increase of magnetic moment in O-implanted sample is attributed to the formation of new type of vacancy defects.

  9. Quantitative Observation of Threshold Defect Behavior in Memristive Devices with Operando X-ray Microscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huajun; Dong, Yongqi; Cherukara, Matthew J.

    Memristive devices are an emerging technology that enables both rich interdisciplinary science and novel device functionalities, such as nonvolatile memories and nanoionics-based synaptic electronics. Recent work has shown that the reproducibility and variability of the devices depend sensitively on the defect structures created during electroforming as well as their continued evolution under dynamic electric fields. However, a fundamental principle guiding the material design of defect structures is still lacking due to the difficulty in understanding dynamic defect behavior under different resistance states. Here, we unravel the existence of threshold behavior by studying model, single-crystal devices: resistive switching requires that themore » pristine oxygen vacancy concentration reside near a critical value. Theoretical calculations show that the threshold oxygen vacancy concentration lies at the boundary for both electronic and atomic phase transitions. Through operando, multimodal X-ray imaging, we show that field tuning of the local oxygen vacancy concentration below or above the threshold value is responsible for switching between different electrical states. These results provide a general strategy for designing functional defect structures around threshold concentrations to create dynamic, field-controlled phases for memristive devices.« less

  10. Temporal patterning of the potential induced by localized corrosion of iron passivity in acid media. Growth and breakdown of the oxide film described in terms of a point defect model.

    PubMed

    Sazou, Dimitra; Pavlidou, Maria; Pagitsas, Michael

    2009-10-21

    This work analyses the nature of temporal patterning of the anodic potential induced by chlorides during polarization of iron under current-controlled conditions in acid solutions. It is shown that potential oscillations emerged as a result of the local chloride attack of a thin oxide layer, which covers the iron surface in its passive state. The mechanism by which both the local oxide breakdown and the subsequent localized active dissolution (pitting) occur is explained by considering a point defect model (PDM) developed to describe the oxide growth and breakdown. According to the PDM, chlorides occupy oxygen vacancies resulting in the inhibition of oxide growth and autocatalytic generation of cation vacancies that destabilize the oxide layer. Simultaneous transformation of the outer surface of the inner oxide layer to non-adherent ferrous chloride or oxo-chloride species leads to a further thinning of the oxide layer and its lifting-on from the iron surface. The process repeats again yielding sustained oscillations of the anodic potential. Analysis of the oscillatory response obtained under current-controlled conditions as a function of either the current or the time allows the suggestion of a set of alternate diagnostic criteria, which might be used to characterize localized corrosion of iron in acid solutions.

  11. Defect formation in LaGa(Mg,Ni)O3-δ : A statistical thermodynamic analysis validated by mixed conductivity and magnetic susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Naumovich, E. N.; Kharton, V. V.; Yaremchenko, A. A.; Patrakeev, M. V.; Kellerman, D. G.; Logvinovich, D. I.; Kozhevnikov, V. L.

    2006-08-01

    A statistical thermodynamic approach to analyze defect thermodynamics in strongly nonideal solid solutions was proposed and validated by a case study focused on the oxygen intercalation processes in mixed-conducting LaGa0.65Mg0.15Ni0.20O3-δ perovskite. The oxygen nonstoichiometry of Ni-doped lanthanum gallate, measured by coulometric titration and thermogravimetric analysis at 923-1223K in the oxygen partial pressure range 5×10-5to0.9atm , indicates the coexistence of Ni2+ , Ni3+ , and Ni4+ oxidation states. The formation of tetravalent nickel was also confirmed by the magnetic susceptibility data at 77-600K , and by the analysis of p -type electronic conductivity and Seebeck coefficient as function of the oxygen pressure at 1023-1223K . The oxygen thermodynamics and the partial ionic and hole conductivities are strongly affected by the point-defect interactions, primarily the Coulombic repulsion between oxygen vacancies and/or electron holes and the vacancy association with Mg2+ cations. These factors can be analyzed by introducing the defect interaction energy in the concentration-dependent part of defect chemical potentials expressed by the discrete Fermi-Dirac distribution, and taking into account the probabilities of local configurations calculated via binomial distributions.

  12. Acousto-defect interaction in irradiated and non-irradiated silicon n+-p structures

    NASA Astrophysics Data System (ADS)

    Olikh, O. Ya.; Gorb, A. M.; Chupryna, R. G.; Pristay-Fenenkov, O. V.

    2018-04-01

    The influence of ultrasound on current-voltage characteristics of non-irradiated silicon n+-p structures as well as silicon structures exposed to reactor neutrons or 60Co gamma radiation has been investigated experimentally. It has been found that the ultrasound loading of the n+-p structure leads to the reversible change of shunt resistance, carrier lifetime, and ideality factor. Specifically, considerable acoustically induced alteration of the ideality factor and the space charge region lifetime was observed in the irradiated samples. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations. It has been shown that divacancies and vacancy-interstitial oxygen pairs are effectively modified by ultrasound in contrast to interstitial carbon-interstitial oxygen complexes.

  13. Effect of dynamics on the elastic softening of vacancies in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Koun; Ishisada, Jun

    2014-02-21

    Recently, elastic softening at temperatures below 20 K has been observed in nondoped floating zone silicon. From the experimental analysis, it has been suggested that this softening is caused by an intrinsic vacancy defect through the Jahn-Teller (JT) effect. We have theoretically studied the relations between softening and the vacancies. The ground state of the JT distortion is stiff. However, by considering atomistic dynamical and anharmonic effects, it is found that low-energy excitations exist in the E-mode distortion and that different polarizations of the E-distortion can be easily interchanged. The calculated energy barriers for the reorientation of JT distortions aremore » consistent with other experiments and calculations. This low-lying mode can be the cause of softening in the elastic responses.« less

  14. Relevance of non-equilibrium defect generation processes to resistive switching in TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelouahed, Samir; McKenna, Keith P., E-mail: keith.mckenna@york.ac.uk

    First principles calculations are employed to identify atomistic pathways for the generation of vacancy-interstitial pair defects in TiO{sub 2}. We find that the formation of both oxygen and titanium defects induces a net dipole moment indicating that their formation can be assisted by an electric field. We also show that the activation barrier to formation of an oxygen vacancy defect can be reduced by trapping of holes which may be injected by the electrode. The calculated activation energies suggest that generation of titanium defects is more favorable than generation oxygen defects although activation energies in both cases are relatively highmore » (>3.3 eV). These results provide much needed insight into an issue that has been widely debated but for which little definitive experimental information is available.« less

  15. Study of defects in TlBr, InI as potential semiconductor radiation detectors

    NASA Astrophysics Data System (ADS)

    Biswas, Koushik; Du, Mao-Hua

    2011-03-01

    Group III-halides such as TlBr and InI are receiving considerable attention for application in room temperature radiation detector devices. It is however, essential that these detector materials have favorable defect properties which enable good carrier transport when operating under an external bias voltage. We have studied the properties of native defects of InI and Tlbr and several important results emerge: (1) Schottky defects are the dominant low-energy defects in both materials that can potentially pin the Fermi level close to midgap, leading to high resistivity; (2) native defects in TlBr are benign in terms of electron trapping. However, anion-vacancy in InI induces a deep electron trap similar to the F -centers in alkali halides. This can reduce electron mobility-lifetime product in InI; (3) low diffusion barriers of vacancies and ionic conductivity could be responsible for the observed polarization phenomenon in both materials at room temperature. U.S. DOE Office of Nonproliferation Research and Development NA22.

  16. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    DOE PAGES

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-06-14

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancymore » spins, resulting in enhanced coherent rotation of the spin state. Lastly, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ~ 100 ns timescales.« less

  17. Sodium adsorption and diffusion on monolayer black phosphorus with intrinsic defects

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Wang, Zhiguo

    2018-01-01

    Monolayer black phosphorus is a potential anode material for rechargeable ion batteries. In this work, the effects of intrinsic defects including mono-vacancy (MV), di-vacancy, and Stone-Wales (SW) defects on the adsorption and diffusion of sodium on monolayer black phosphorus were investigated using first-principles calculations. The adsorption energies for sodium on monolayer black phosphorus are in the range of -1.80 to -0.56 eV, which is lower than the value of -0.48 eV for sodium adsorbed on pristine monolayer phosphorus. This indicates that these defects can enhance the adsorption of sodium on monolayer black phosphorus. The diffusivity of sodium on monolayer phosphorus with SW and MV defects is 2.35 × 10-4-3.36 × 10-6 cm2/s, and 7.38 × 10-5-1.48 × 10-9 cm2/s, respectively. Although these values are smaller than that of the pristine monolayer phosphorus at 7.38 × 10-5 cm2/s, defects are inevitably introduced during these fabrication processes. These diffusivity values are reasonable for defective monolayer phosphorus used as an effective anode for sodium ion batteries.

  18. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  19. Structural, electronic and optical properties of CO adsorbed on the defective anatase TiO2 (101) surface; a DFT study

    NASA Astrophysics Data System (ADS)

    Rafique, Muhammad; Shuai, Yong; Hassan, Muhammad

    2017-08-01

    This paper illustrates the study of stable structural, electronic and optical properties of carbon mono oxide (CO) molecule adsorbed on pure anatase TiO2 (101) surface and CO molecule adsorbed on defective anatase TiO2 (101) surface containing oxygen (O) atom subsurface vacancy using first-principles study calculations based on density functional theory (DFT) method. A foreign molecule CO was added in the interstitial space of anatase TiO2 (101) surface. It was observed that, adsorption of CO molecule is not favorable on pure anatase TiO2 (101) surface, however adsorption process is improved when subsurface contains O atom vacancy defect. In case of anatase TiO2 (101) surface containing subsurface vacancy, adsorption process is exothermic, resulting in stable structures. The adsorption energies calculated for CO molecules adsorbed at O2c site, at defect site and at Ti5c site of anatase surface containing subsurface O vacancy are 0.16 eV (at O2c), 0.32 eV (at defect site) and 0.43 eV (at Ti5c) site. DOS and PDOS plots are calculated for all the structures. Results indicated that CO molecule adsorption introduces surface states at the Fermi energy level (EF) as shown in partial density of states (PDOS) plots. The dielectric matrix and absorption coefficient (α) for defective anatase TiO2 (101) surface, CO adsorbed at O2c site, at defect site and at Ti5C site of anatase TiO2 (101) surface containing O atom subsurface vacancy has been calculated within the random phase approximation (RPA) using VASP (Vienna ab-initio simulation package) code. It was observed that upon CO adsorption at defective anatase surface, real and imaginary dielectric function peaks were shifted towards lower energy level and a small absorption peak was observed at 1.1 eV energy level which is not present in case of defective anatase (101) surface. CO adsorption produces a red shift in the absorption spectrum of anatase TiO2 (101) surface containing subsurface O atom vacancy.

  20. Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on β-Ga2O3(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yunxiang; Liu, Chang-jun; Mei, Donghai

    The effects of hydration and oxygen vacancy on CO2 adsorption on the β-Ga2O3(100) surface have been studied using density functional theory slab calculations. Adsorbed CO2 is activated on the dry perfect β-Ga2O3(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect β-Ga2O3(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect β-Ga2O3(100) surface. Adsorption of CO2 on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slight repulsive interactionmore » when H2O and CO2 are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the co-adsorbed H2O to a bicarbonate species, making the overall process exothermic with an adsorption energy of -0.13 eV. The effect of defects on CO2 adsorption and activation has been examined by creating an oxygen vacancy on the dry β-Ga2O3(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O2 molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO2. In the most stable CO2 adsorption configuration on the dry defective β-Ga2O3(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO2 occupies the oxygen vacancy site and the CO2 adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is instantaneous with an adsorption energy of -0.62 eV. These results indicate that, when water and CO2 are both present in the adsorption system simultaneously, the water molecule will compete with CO2 for the oxygen vacancy sites and impact CO2 adsorption and conversion negatively. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the computing time

  1. Quasibound states in short SNS junctions with point defects

    NASA Astrophysics Data System (ADS)

    Bespalov, A. A.

    2018-04-01

    Using the Green functions technique, we study the subgap spectrum of short three-dimensional superconductor-normal metal-superconductor junctions containing one or two point impurities in the normal layer. We find that a single nonmagnetic or magnetic defect induces two quasibound Shiba-like states. If the defect is located close to the junction edge, the energies of these states oscillate as functions of the distance between the impurity and the edge. In the case of two nonmagnetic impurities, there are generally four quasibound states (two per spin projection). Their energies oscillate as functions of the distance between the impurities, and reach their asymptotic values when this distance becomes much larger than the Fermi wavelength. The contributions of the impurities to the Josephson current, local density of states, and to the normal-state conductance of the junction are analyzed.

  2. Magnetism of a relaxed single atom vacancy in graphene

    NASA Astrophysics Data System (ADS)

    Wu, Yunyi; Hu, Yonghong; Xue, Li; Sun, Tieyu; Wang, Yu

    2018-04-01

    It has been suggested in literature that defects in graphene (e.g. absorbed atoms and vacancies) may induce magnetizations due to unpaired electrons. The nature of magnetism, i.e. ferromagnetic or anti-ferromagnetic, is dependent on a number of structural factors including locations of magnetic moments and lattice symmetry. In the present work we investigated the influence of a relaxed single atom vacancy in garphnene on magnetization which were obtained under different pinning boundary conditions, aiming to achieve a better understanding of the magnetic behaviors of graphene. Through first principles calculations, we found that major spin polarizations occur on atoms that deviate slightly from their original lattice positions, and pinning boundaries could also affect the relaxed positions of atoms and determine which atom(s) would become the main source(s) of total spin polarizations and magnetic moments. When the pinning boundary condition is free, a special non-magnetic and semi-conductive structure may be obtained, suggesting that magnetization should more readily occur under pinning boundary conditions.

  3. Effects of artificially produced defects on film thickness distribution in sliding EHD point contacts

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Wedeven, L. D.

    1981-01-01

    The effects of artificially produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact were investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, were held stationary at various locations within and in the vicinity of the contact region while the disk was rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.

  4. Impact of isovalent doping on radiation defects in silicon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Sgourou, E. N.; Timerkaeva, D.; Chroneos, A.; Pochet, P.; Emtsev, V. V.

    2013-09-01

    Isovalent doping is an important process for the control of point defects in Si. Here, by means of infrared spectroscopy, we investigated the properties of the two main radiation-induced defects in Czochralski-Si (Cz-Si) the oxygen-vacancy (VO) and the carbon-oxygen (CiOi) centres. In particular, we investigated the effect of isovalent doping on the production, the thermal evolution, and the thermal stability of the VO and the CiOi defects. Additionally, we studied the reactions that participate upon annealing and the defects formed as a result of these reactions. Upon annealing VO is converted to VO2 defect although part of the CiOi is converted to CsO2i complexes. Thus, we studied the conversion ratios [VO2]/[VO] and [CsO2i]/[CiOi] with respect to the isovalent dopant. Additionally, the role of carbon in the above processes was discussed. A delay between the temperature characterizing the onset of the VO decay and the temperature characterizing the VO2 growth as well the further growth of VO2 after the complete disappearance of VO indicate that the VO to VO2 conversion is a complex phenomenon with many reaction processes involved. Differences exhibited between the effects of the various dopants on the properties of the two defects were highlighted. The results are discussed in view of density functional theory calculations involving the interaction of isovalent dopants with intrinsic defects, the oxygen and carbon impurities in Si.

  5. Effects of vacancies on atom displacement threshold energy calculations through Molecular Dynamics Methods in BaTiO3

    NASA Astrophysics Data System (ADS)

    Gonzalez Lazo, Eduardo; Cruz Inclán, Carlos M.; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio

    2017-09-01

    A primary approach for evaluating the influence of point defects like vacancies on atom displacement threshold energies values Td in BaTiO3 is attempted. For this purpose Molecular Dynamics Methods, MD, were applied based on previous Td calculations on an ideal tetragonal crystalline structure. It is an important issue in achieving more realistic simulations of radiation damage effects in BaTiO3 ceramic materials. It also involves irradiated samples under severe radiation damage effects due to high fluency expositions. In addition to the above mentioned atom displacement events supported by a single primary knock-on atom, PKA, a new mechanism was introduced. It corresponds to the simultaneous excitation of two close primary knock-on atoms in BaTiO3, which might take place under a high flux irradiation. Therefore, two different BaTiO3 Td MD calculation trials were accomplished. Firstly, single PKA excitations in a defective BaTiO3 tetragonal crystalline structure, consisting in a 2×2×2 BaTiO3 perovskite like super cell, were considered. It contains vacancies on Ba and O atomic positions under the requirements of electrical charge balance. Alternatively, double PKA excitations in a perfect BaTiO3 tetragonal unit cell were also simulated. On this basis, the corresponding primary knock-on atom (PKA) defect formation probability functions were calculated at principal crystal directions, and compared with the previous one we calculated and reported at an ideal BaTiO3 tetrahedral crystal structure. As a general result, a diminution of Td values arises in present calculations in comparison with those calculated for single PKA excitation in an ideal BaTiO3 crystal structure.

  6. Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism

    DOE PAGES

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...

    2015-12-29

    Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.

  7. Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke

    Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.

  8. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE PAGES

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...

    2015-11-23

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  9. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGES

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  10. Interplay of point defects, biaxial strain, and thermal conductivity in homoepitaxial SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Wiedigen, S.; Kramer, T.; Feuchter, M.; Knorr, I.; Nee, N.; Hoffmann, J.; Kamlah, M.; Volkert, C. A.; Jooss, Ch.

    2012-02-01

    Separating out effects of point defects and lattice strain on thermal conductivity is essential for improvement of thermoelectric properties of SrTiO3. We study relations between defects generated during deposition, induced lattice strain, and their impact on thermal conductivity κ in homoepitaxial SrTiO3 films prepared by ion-beam sputtering. Lowering the deposition temperature gives rise to lattice expansion by enhancement of point defect density which increases the hardness of the films. Due to a fully coherent substrate-film interface, the lattice misfit induces a large biaxial strain. However, we can show that the temperature dependence of κ is mainly sensitive on the defect concentration.

  11. Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light

    PubMed Central

    Wang, Gang; Huang, Baibiao; Li, Zhujie; Lou, Zaizhu; Wang, Zeyan; Dai, Ying; Whangbo, Myung-Hwan

    2015-01-01

    Controlling amount of intrinsic S vacancies was achieved in ZnS spheres which were synthesized by a hydrothermal method using Zn and S powders in concentrated NaOH solution with NaBH4 added as reducing agent. These S vacancies efficiently extend absorption spectra of ZnS to visible region. Their photocatalytic activities for H2 production under visible light were evaluated by gas chromatograph, and the midgap states of ZnS introduced by S vacancies were examined by density functional calculations. Our study reveals that the concentration of S vacancies in the ZnS samples can be controlled by varying the amount of the reducing agent NaBH4 in the synthesis, and the prepared ZnS samples exhibit photocatalytic activity for H2 production under visible-light irradiation without loading noble metal. This photocatalytic activity of ZnS increases steadily with increasing the concentration of S vacancies until the latter reaches an optimum value. Our density functional calculations show that S vacancies generate midgap defect states in ZnS, which lead to visible-light absorption and responded. PMID:25712901

  12. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili

    2018-03-01

    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  13. Indium vacancy induced d0 ferromagnetism in Li-doped In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Cao, Haiming; Xing, Pengfei; Zhou, Wei; Yao, Dongsheng; Wu, Ping

    2018-04-01

    Li-doped In2O3 nanoparticles with room temperature d0 ferromagnetism were prepared by a sol-gel method. X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence were carried out to investigate the effects of Li incorporation on the lattice defects. As the content of Li increases, non-monotonic changes in shifts of XRD peak (2 2 2) and the intensity ratios of indium vacancies related photoluminescence peak (PII) with respect to oxygen vacancies related peak (PI) are observed. Results show that at low doping level (≤2 at.%) Li prefers to occupy In sites, while with further doping the interstitial sites are more favorable for Li. Combined with the consistent non-monotonic change in saturation magnetization, we think that indium vacancies resulting from Li-doping play an important role in inducing d0 ferromagnetism in our Li-doped In2O3 nanoparticles, and the FM coupling is mainly mediated by the LiIn-ONN-VIn-ONN-LiIn chains.

  14. Energetics of intrinsic defects in NiO and the consequences for its resistive random access memory performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, J. A., E-mail: jad95@cam.ac.uk; Guo, Y.; Robertson, J.

    2015-09-21

    Energetics for a variety of intrinsic defects in NiO are calculated using state-of-the-art ab initio hybrid density functional theory calculations. At the O-rich limit, Ni vacancies are the lowest cost defect for all Fermi energies within the gap, in agreement with the well-known p-type behaviour of NiO. However, the ability of the metal electrode in a resistive random access memory metal-oxide-metal setup to shift the oxygen chemical potential towards the O-poor limit results in unusual NiO behaviour and O vacancies dominating at lower Fermi energy levels. Calculated band diagrams show that O vacancies in NiO are positively charged at themore » operating Fermi energy giving it the advantage of not requiring a scavenger metal layer to maximise drift. Ni and O interstitials are generally found to be higher in energy than the respective vacancies suggesting that significant recombination of O vacancies and interstitials does not take place as proposed in some models of switching behaviour.« less

  15. Theoretical study on magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules

    NASA Astrophysics Data System (ADS)

    Ju, Lin; Xu, Tongshuai; Zhang, Yongjia; Sun, Li

    2017-10-01

    The magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules has been studied based on density functional theory. The isolated stoichiometric Alq3 and Gaq3 molecules are non-magnetic. With an H vacancy, both Alq3 and Gaq3 molecules could show magnetism, which are mainly due to the polarization of the C 2p electrons and the magnetic moments are mainly distributed at most nearby C atoms of H vacancies. This is because the unpaired electron on the C atom appears, when the H atom nearby is removed. Six cases of the H vacancy introduced in the Alq3 and Gaq3 molecules are considered, respectively. By comparing the relative defect formation energy, the V H3 vacancy is most likely to appear in the two kinds of molecules. In addition, for the ground state configuration of isolated Alq3 and Gaq3 molecules with two H vacancies, the energy of the ferromagnetic state is lower than that of the antiferromagnetic state, which means that the ferromagnetic state is stable. The ferromagnetic mechanism can be explained by the Heisenberg direct exchange interaction between two the polarized C atoms. Our work opens a new way to synthesize organic magnetic materials and perfects the theory of organic ferromagnetism by introducing the d 0 ferromagnetism.

  16. Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO.

    PubMed

    Tuomisto, F; Ranki, V; Saarinen, K; Look, D C

    2003-11-14

    We have used positron annihilation spectroscopy to determine the nature and the concentrations of the open volume defects in as-grown and electron irradiated (E(el)=2 MeV, fluence 6 x 10(17) cm(-2)) ZnO samples. The Zn vacancies are identified at concentrations of [V(Zn)] approximately 2 x 10(15) cm(-3) in the as-grown material and [V(Zn)] approximately 2 x 10(16) cm(-3) in the irradiated ZnO. These concentrations are in very good agreement with the total acceptor density determined by temperature dependent Hall experiments. Thus, the Zn vacancies are dominant acceptors in both as-grown and irradiated ZnO.

  17. Probing defects in chemically synthesized ZnO nanostrucures by positron annihilation and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S. K.; Ghosh, Manoranjan; Das, D.; Raychaudhuri, A. K.

    2010-09-01

    The present article describes the size induced changes in the structural arrangement of intrinsic defects present in chemically synthesized ZnO nanoparticles of various sizes. Routine x-ray diffraction and transmission electron microscopy have been performed to determine the shapes and sizes of the nanocrystalline ZnO samples. Detailed studies using positron annihilation spectroscopy reveals the presence of zinc vacancy. Whereas analysis of photoluminescence results predict the signature of charged oxygen vacancies. The size induced changes in positron parameters as well as the photoluminescence properties, has shown contrasting or nonmonotonous trends as size varies from 4 to 85 nm. Small spherical particles below a critical size (˜23 nm) receive more positive surface charge due to the higher occupancy of the doubly charge oxygen vacancy as compared to the bigger nanostructures where singly charged oxygen vacancy predominates. This electronic alteration has been seen to trigger yet another interesting phenomenon, described as positron confinement inside nanoparticles. Finally, based on all the results, a model of the structural arrangement of the intrinsic defects in the present samples has been reconciled.

  18. Computational study of the absorption spectrum of defected ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Michos, F. I.; Sigalas, M. M.

    2018-04-01

    Energy levels and absorption spectra of defected ZnS nanoparticles (NPs) were calculated with Density Functional Theory (DFT) and Time Dependent DFT. Several types of defects were examined such as vacancies and substitutions. NPs with S vacancies were found to have their absorption spectra moved to lower energies well inside the visible spectrum with significantly high oscillator strength. Also, NPs with substitution of S atoms with Cl, Br, or I showed significant absorption. In general, this type of defect moves the absorption spectra in lower energies, thus bringing the absorption edge into the visible spectrum, while the unperturbed NPs have absorption edges in the UV region. In addition, ZnS NPs are made from more abundant and less toxic elements than the more commonly used CdSe NPs. For that reason, they may find significant applications in solar cells and other photonic applications, as well as in biosensing applications as biomarkers.

  19. Positron annihilation spectroscopic characterization of defects in wide band gap oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Luitel, Homnath; Gogurla, N.; Sanyal, D.

    2017-03-01

    Annealing effect of granular ZnO has been studied by Doppler broadened electron positron annihilated γ-ray (0.511 MeV) line shape measurement. Ratio curve analysis shows that granular ZnO samples contain both Zn and O vacancies. Such defects exist as agglomerates of several vacancies and start to recover above 400 °C annealing. It has also been observed that due to annealing temperature difference of 125 °C (from 325 °C to 450 °C), huge change occurs in low temperature photoluminescence (PL) of ZnO. Significant reduction of free to bound (FB) transition ~3.315 eV is observed for increasing the annealing temperature. It has been conjectured that ~3.315 eV PL in ZnO is related to particular decoration (unknown) of both Zn and O vacancies. The methodology of revealing defect-property correlation as employed here can also be applied to other types of semiconductors.

  20. Concentration and Mobility of Electrically-Conducting Defects in Olivine

    NASA Astrophysics Data System (ADS)

    Constable, S.; Roberts, J.; Duba, A.

    2002-12-01

    We have collected measurements of electrical conductivity and thermopower as a function of temperature and oxygen fugacity (f O2) on a sample of San Quintin dunite (95% olivine), and measurements of electrical conductivity equilibration after changes in f O2 on Mt.Porndon lherzolite (65% olivine). Both data sets have been analysed using nonlinear parameter inversion of mathematical models relating conductivity, thermopower, and diffusion kinetics to temperature, f O2, time, and defect concentration and mobility. From the dunite thermopower/conductivity data we are able to estimate the concentration and mobilities of electrically conducting defects. Our model allows electrons, small polarons (Fe+++ on Fe++ sites), and magnesium vacancies (V'' Mg) to contribute to conduction, but only polarons and V'' Mg are required by our data. Polarons dominate conduction below 1300°~C; at this temperature conduction, is equal for the two defects at all f O2 tested. Thermopower measurements allow us to estimate defect concentration independently from mobility, and so we can back out polaron mobility as 12.2x 10-6 exp(-1.05~eV/kT) m2V-1s-1 and magnesium vacancy mobility as 2.72x 10-6 exp(-1.09~eV/kT) m2V-1s-1. Electrical conductivity of the lherzolite, measured as a function of time after changes in the oxygen fugacity of the surrounding CO2/CO atmosphere, is used to infer the diffusivity of the point defects associated with the oxidation reactions. An observed f O2 dependence in the time constants associated with equilibration implies two species of fixed diffusivity, each with f O2-dependent concentrations. Although the rate-limiting step may not necessarily be associated with conducting defects, when time constants are converted to mobilities, the magnitudes and activation energies agree extremely well with the model presented above for the dunite, after one free parameter (effective grain size) is fit at a plausible 1.6~mm diameter. Not only does this study represent one of