Sample records for vaccaria cdnas encoding

  1. Saponin Biosynthesis in Saponaria vaccaria. cDNAs Encoding β-Amyrin Synthase and a Triterpene Carboxylic Acid Glucosyltransferase1[OA

    PubMed Central

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.

    2007-01-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  2. Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.

    PubMed

    Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao

    2005-01-01

    We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.

  3. Formation of functional asialoglycoprotein receptor after transfection with cDNAs encoding the receptor proteins.

    PubMed Central

    McPhaul, M; Berg, P

    1986-01-01

    The rat asialoglycoprotein receptor (ASGP-R) has been expressed in cultured rat hepatoma cells (HTC cells) after transfection with cloned cDNAs. Fluorescence-activated cell sorting of transfected cells was used to identify the functional cDNA clones and to isolate cells expressing the ASGP-R. Simultaneous or sequential transfections with two cloned cDNAs that encode related but distinctive polypeptide chains were needed to obtain ASGP-R activity; transfection with either cDNA alone failed to produce detectable ASGP-R. The affinity of transduced ASGP-R for asialo orosomucoid is less than that of the native rat ASGP-R, and the number of surface receptors in clones expressing ASGP-R is about one-fifth that found on rat hepatocytes. Images PMID:3466162

  4. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide.

    PubMed Central

    Spindel, E R; Chin, W W; Price, J; Rees, L H; Besser, G M; Habener, J F

    1984-01-01

    We have prepared and cloned cDNAs derived from poly(A)+ RNA from a human pulmonary carcinoid tumor rich in immunoreactivity to gastrin-releasing peptide, a peptide closely related in structure to amphibian bombesin. Mixtures of synthetic oligodeoxyribonucleotides corresponding to amphibian bombesin were used as hybridization probes to screen a cDNA library prepared from the tumor RNA. Sequencing of the recombinant plasmids shows that human gastrin-releasing peptide (hGRP) mRNA encodes a precursor of 148 amino acids containing a typical signal sequence, hGRP consisting of 27 or 28 amino acids, and a carboxyl-terminal extension peptide. hGRP is flanked at its carboxyl terminus by two basic amino acids, following a glycine used for amidation of the carboxyl-terminal methionine. RNA blot analyses of tumor RNA show a major mRNA of 900 bases and a minor mRNA of 850 bases. Blot hybridization analyses using human genomic DNA are consistent with a single hGRP-encoding gene. The presence of two mRNAs encoding the hGRP precursor protein in the face of a single hGRP gene raises the possibility of alternative processing of the single RNA transcript. Images PMID:6207529

  5. Characterization and expression analysis of two cDNAs encoding Xa1 and oxysterol binding proteins in sorghum (Sorghum bicolor)

    USDA-ARS?s Scientific Manuscript database

    Using suppression subtractive hybridization (SSH) and subsequent microarray analysis, expression profiles of sorghum genes responsive to greenbug phloem-feeding were obtained and identified. Among the profiles, two cDNAs designated to MM73 and MM95 were identified to encode Xa1 (Xa1) and oxysterol ...

  6. Cloning of cDNAs encoding amphibian bombesin: evidence for the relationship between bombesin and gastrin-releasing peptide.

    PubMed Central

    Spindel, E R; Gibson, B W; Reeve, J R; Kelly, M

    1990-01-01

    Bombesin is a tetradecapeptide originally isolated from frog skin; its mammalian homologue is the 27-amino acid peptide gastrin-releasing peptide (GRP). cDNAs encoding GRP have been cloned from diverse species, but little is yet known about the amphibian bombesin precursor. Mass spectrometry of HPLC-separated skin exudate from Bombina orientalis was performed to demonstrate the existence of authentic bombesin in the skin of this frog. A cDNA library was prepared from the skin of B. orientalis and mixed oligonucleotide probes were used to isolate cDNAs encoding amphibian bombesin. Sequence analysis revealed that bombesin is encoded in a 119-amino acid prohormone. The carboxyl terminus of bombesin is flanked by two basic amino acids; the amino terminus is not flanked by basic amino acids but is flanked by a chymotryptic-like cleavage site. Northern blot analysis demonstrated similarly sized bombesin mRNAs in frog skin, brain, and stomach. Polymerase chain reaction was used to show that the skin and gut bombesin mRNAs encoded the identical prohormones. Prohormone processing, however, differed between skin and gut. Chromatography showed the presence of only authentic bombesin in skin whereas gut extracts contained two peaks of bombesin immunoreactivity, one consistent in size with bombesin and one closer in size to mammalian GRP. Thus the same bombesin prohormone is processed solely to bombesin in skin but is processed to a peptide similar in size to bombesin and to a peptide similar in size to mammalian GRP in stomach. Images PMID:2263631

  7. Characterization of cDNAs encoding serine proteases and their transcriptional responses to Cry1Ab protoxin in the gut of Ostrinia nubilalis larvae

    USDA-ARS?s Scientific Manuscript database

    Serine proteases, such as trypsin and chymotrypsin, are the primary digestive enzymes in lepidopteran larvae, and are also involved in Bacillus thuringiensis (Bt) protoxin activation and protoxin/toxin degradation. We isolated and sequenced 34 cDNAs putatively encoding trypsins, chymotrypsins and th...

  8. Cloning and molecular characterization of the cDNAs encoding the variable regions of an anti-CD20 monoclonal antibody.

    PubMed

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili

    2017-01-01

    CD20-based targeting of B-cells in hematologic malignancies and autoimmune disorders is associated with outstanding clinical outcomes. Isolation and characterization of VH and VL cDNAs encoding the variable regions of the heavy and light chains of monoclonal antibodies (MAb) is necessary to produce next generation MAbs and their derivatives such as bispecific antibodies (bsAb) and single-chain variable fragments (scFv). This study was aimed at cloning and characterization of the VH and VL cDNAs from a hybridoma cell line producing an anti-CD20 MAb. VH and VL fragments were amplified, cloned and characterized. Furthermore, amino acid sequences of VH, VL and corresponding complementarity-determining regions (CDR) were determined and compared with those of four approved MAbs including Rituximab (RTX), Ibritumomab tiuxetan, Ofatumumab and GA101. The cloned VH and VL cDNAs were found to be functional and follow a consensus pattern. Amino acid sequences corresponding to the VH and VL fragments also indicated noticeable homologies to those of RTX and Ibritumomab. Furthermore, amino acid sequences of the relating CDRs had remarkable similarities to their counterparts in RTX and Ibritumomab. Successful recovery of VH and VL fragments encourages the development of novel CD20 targeting bsAbs, scFvs, antibody conjugates and T-cells armed with chimeric antigen receptors.

  9. Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae.

    PubMed Central

    Colicelli, J; Nicolette, C; Birchmeier, C; Rodgers, L; Riggs, M; Wigler, M

    1991-01-01

    Saccharomyces cerevisiae strains expressing the activated RAS2Val19 gene or lacking both cAMP phosphodiesterase genes, PDE1 and PDE2, have impaired growth control and display an acute sensitivity to heat shock. We have isolated two classes of mammalian cDNAs from yeast expression libraries that suppress the heat shock-sensitive phenotype of RAS2Val19 strain. Members of the first class of cDNAs also suppress the heat shock-sensitive phenotype of pde1- pde2- strains and encode cAMP phosphodiesterases. Members of the second class fail to suppress the phenotype of pde1- pde2- strains and therefore are candidate cDNAs encoding proteins that interact with RAS proteins. We report the nucleotide sequence of three members of this class. Two of these cDNAs share considerable sequence similarity, but none are clearly similar to previously isolated genes. Images PMID:1849280

  10. PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.; Gianfagna, T.

    1998-01-01

    Four ADP-glucose pyrophosphorylase (AGP) cDNAs were cloned from tomato fruit and leaves by the PCR techniques. Three of them (agp S1, agp S2, and agp S3) encode the large subunit of AGP, the fourth one (agp B) encodes the small subunit. The deduced amino acid sequences of the cDNAs show very high identities (96-98%) to the corresponding potato AGP isoforms, although there are major differences in tissue expression profiles. All four tomato AGP transcripts were detected in fruit and leaves; the predominant ones in fruit are agp B and agp S1, whereas in leaves they are agp B and agp S3. Genomic southern analysis suggests that the four AGP transcripts are encoded by distinct genes.

  11. Isolation and characterization of cDNAs encoding wheat 3-hydroxy-3-methylglutaryl coenzyme A reductase.

    PubMed Central

    Aoyagi, K; Beyou, A; Moon, K; Fang, L; Ulrich, T

    1993-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34) is a key enzyme in the isoprenoid biosynthetic pathway. We have isolated partial cDNAs from wheat (Triticum aestivum) using the polymerase chain reaction. Comparison of deduced amino acid sequences of these cDNAs shows that they represent a small family of genes that share a high degree of sequence homology among themselves as well as among genes from other organisms including tomato, Arabidopsis, hamster, human, Drosophila, and yeast. Southern blot analysis reveals the presence of at least four genes. Our results concerning the tissue-specific expression as well as developmental regulation of these HMGR cDNAs highlight the important role of this enzyme in the growth and development of wheat. PMID:8108513

  12. Ovule development: identification of stage-specific and tissue-specific cDNAs.

    PubMed Central

    Nadeau, J A; Zhang, X S; Li, J; O'Neill, S D

    1996-01-01

    A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization. PMID:8742709

  13. Cre-lox Univector acceptor vectors for functional screening in protoplasts: analysis of Arabidopsis donor cDNAs encoding ABSCISIC ACID INSENSITIVE1-Like protein phosphatases

    PubMed Central

    Jia, Fan; Gampala, Srinivas S.L.; Mittal, Amandeep; Luo, Qingjun; Rock, Christopher D.

    2009-01-01

    The 14,200 available full length Arabidopsis thaliana cDNAs in the Universal Plasmid System (UPS) donor vector pUNI51 should be applied broadly and efficiently to leverage a “functional map-space” of homologous plant genes. We have engineered Cre-lox UPS host acceptor vectors (pCR701- 705) with N-terminal epitope tags in frame with the loxH site and downstream from the maize Ubiquitin promoter for use in transient protoplast expression assays and particle bombardment transformation of monocots. As an example of the utility of these vectors, we recombined them with several Arabidopsis cDNAs encoding Ser/Thr protein phosphatase type 2C (PP2Cs) known from genetic studies or predicted by hierarchical clustering meta-analysis to be involved in ABA and stress responses. Our functional results in Zea mays mesophyll protoplasts on ABA-inducible expression effects on the Late Embryogenesis Abundant promoter ProEm:GUS reporter were consistent with predictions and resulted in identification of novel activities of some PP2Cs. Deployment of these vectors can facilitate functional genomics and proteomics and identification of novel gene activities. PMID:19499346

  14. Cloning of cDNAs encoding new peptides of the dermaseptin-family.

    PubMed

    Wechselberger, C

    1998-10-14

    Dermaseptins are a group of basic (lysine-rich) peptides, 27-34 amino acids in length and involved in the defense of frog skin against microbial invasion. By using a degenerated oligonucleotide primer binding to the 5'-untranslated region of previously characterized cDNAs of these peptides, it was possible to identify new members of the dermaseptin family in the South American frogs Agalychnis annae and Pachymedusa dacnicolor. Amino acid alignment and secondary structure prediction reveals, that only five of the deduced peptides can be supposed to be also functional homologs to the known dermaseptins from Phyllomedusa bicolor and Phyllomedusa sauvagei. The remaining six peptides described in this paper have not been isolated and characterized yet.

  15. Molecular cloning of skin peptide precursor-encoding cDNAs from tibial gland secretion of the Giant Monkey Frog, Phyllomedusa bicolor (Hylidae, Anura).

    PubMed

    König, Enrico; Clark, Valerie C; Shaw, Chris; Bininda-Emonds, Olaf R P

    2012-12-01

    The skins of phyllomedusine frogs have long been considered as being tremendously rich sources of bioactive peptides. Previous studies of both peptides and cloning of their precursor encoding cDNAs have relied upon methanolic skin extracts or the dissected skins of recently deceased specimens and have not considered the different glands in isolation. We therefore focused our attention on the tibial gland of the Giant Monkey Frog, Phyllomedusa bicolor and constructed a cDNA library from the skin secretion that was obtained via mechanical stimulation of this macrogland. Using shotgun cloning, four precursors encoding host-defense peptides were identified: two archetypal dermaseptins, a phyllokinin and a phylloseptin that is new for this species but has been recently described from the Waxy Monkey Leaf Frog, Phyllomedusa sauvagii. Our study is the first to report defensive peptides specifically isolated from anuran tibial glands, confirming the hypothesis that these glands also contribute to chemical defense. Moreover, the discovery of novel compounds for this otherwise very well characterized species suggests that this largely neglected gland might possess a different cocktail of secretions from glands elsewhere in the same animal. We will also discuss some evolutionary implications of our findings with respect to the adaptive plasticity of secretory glands. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides.

    PubMed

    Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G

    1990-06-01

    We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the precursors. These peptides were synthesized with a D-alanine in position 2 and their pharmacological properties were tested. Two of them, [Lys7]dermorphin-OH and [Trp4,Asn7]dermorphin-OH, were found to have roughly the same affinity and selectivity for mu-type opioid receptors as dermorphin.

  17. Molecular and Functional Characterization of cDNAs Putatively Encoding Carboxylesterases from the Migratory Locust, Locusta migratoria

    PubMed Central

    Zhang, Jianqin; Li, Daqi; Ge, Pingting; Guo, Yaping; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2014-01-01

    Carboxylesterases (CarEs) belong to a superfamily of metabolic enzymes encoded by a number of genes and are widely distributed in microbes, plants and animals including insects. These enzymes play important roles in detoxification of insecticides and other xenobiotics, degradation of pheromones, regulation of neurodevelopment, and control of animal development. In this study, we characterized a total of 39 full-length cDNAs putatively encoding different CarEs from the migratory locust, Locusta migratoria, one of the most severe insect pests in many regions of the world, and evaluated the role of four CarE genes in insecticide detoxification. Our phylogenetic analysis grouped the 39 CarEs into five different clades including 20 CarEs in clade A, 3 in D, 13 in E, 1 in F and 2 in I. Four CarE genes (LmCesA3, LmCesA20, LmCesD1, LmCesE1), representing three different clades (A, D and E), were selected for further analyses. The transcripts of the four genes were detectable in all the developmental stages and tissues examined. LmCesA3 and LmCesE1 were mainly expressed in the fat bodies and Malpighian tubules, whereas LmCesA20 and LmCesD1 were predominately expressed in the muscles and hemolymph, respectively. The injection of double-stranded RNA (dsRNA) synthesized from each of the four CarE genes followed by the bioassay with each of four insecticides (chlorpyrifos, malathion, carbaryl and deltamethrin) increased the nymphal mortalities by 37.2 and 28.4% in response to malathion after LmCesA20 and LmCesE1 were silenced, respectively. Thus, we proposed that both LmCesA20 and LmCesE1 played an important role in detoxification of malathion in the locust. These results are expected to help researchers reveal the characteristics of diverse CarEs and assess the risk of insecticide resistance conferred by CarEs in the locust and other insect species. PMID:24722667

  18. Riboflavin accumulation and characterization of cDNAs encoding lumazine synthase and riboflavin synthase in bitter melon (Momordica charantia).

    PubMed

    Tuan, Pham Anh; Kim, Jae Kwang; Lee, Sanghyun; Chae, Soo Cheon; Park, Sang Un

    2012-12-05

    Riboflavin (vitamin B2) is the universal precursor of the coenzymes flavin mononucleotide and flavin adenine dinucleotide--cofactors that are essential for the activity of a wide variety of metabolic enzymes in animals, plants, and microbes. Using the RACE PCR approach, cDNAs encoding lumazine synthase (McLS) and riboflavin synthase (McRS), which catalyze the last two steps in the riboflavin biosynthetic pathway, were cloned from bitter melon (Momordica charantia), a popular vegetable crop in Asia. Amino acid sequence alignments indicated that McLS and McRS share high sequence identity with other orthologous genes and carry an N-terminal extension, which is reported to be a plastid-targeting sequence. Organ expression analysis using quantitative real-time RT PCR showed that McLS and McRS were constitutively expressed in M. charantia, with the strongest expression levels observed during the last stage of fruit ripening (stage 6). This correlated with the highest level of riboflavin content, which was detected during ripening stage 6 by HPLC analysis. McLS and McRS were highly expressed in the young leaves and flowers, whereas roots exhibited the highest accumulation of riboflavin. The cloning and characterization of McLS and McRS from M. charantia may aid the metabolic engineering of vitamin B2 in crops.

  19. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    PubMed

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  20. cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides.

    PubMed Central

    Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G

    1990-01-01

    We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the precursors. These peptides were synthesized with a D-alanine in position 2 and their pharmacological properties were tested. Two of them, [Lys7]dermorphin-OH and [Trp4,Asn7]dermorphin-OH, were found to have roughly the same affinity and selectivity for mu-type opioid receptors as dermorphin. PMID:2352951

  1. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development.

    PubMed

    Zhu, Changfu; Yamamura, Saburo; Nishihara, Masashiro; Koiwa, Hiroyuki; Sandmann, Gerhard

    2003-02-20

    cDNAs encoding lycopene epsilon -cyclase, lycopene beta-cyclase, beta-carotene hydroxylase and zeaxanthin epoxidase were isolated from a Gentiana lutea petal cDNA library. The function of all cDNAs was analyzed by complementation in Escherichia coli. Transcript levels during different stages of flower development of G. lutea were determined and compared to the carotenoid composition. Expression of all genes increased by a factor of up to 2, with the exception of the lycopene epsilon -cyclase gene. The transcript amount of the latter was strongly decreased. These results indicate that during flower development, carotenoid formation is enhanced. Moreover, metabolites are shifted away from the biosynthetic branch to lutein and are channeled into beta-carotene and derivatives.

  2. Large-scale identification and characterization of alternative splicing variants of human gene transcripts using 56 419 completely sequenced and manually annotated full-length cDNAs

    PubMed Central

    Takeda, Jun-ichi; Suzuki, Yutaka; Nakao, Mitsuteru; Barrero, Roberto A.; Koyanagi, Kanako O.; Jin, Lihua; Motono, Chie; Hata, Hiroko; Isogai, Takao; Nagai, Keiichi; Otsuki, Tetsuji; Kuryshev, Vladimir; Shionyu, Masafumi; Yura, Kei; Go, Mitiko; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Wiemann, Stefan; Nomura, Nobuo; Sugano, Sumio; Gojobori, Takashi; Imanishi, Tadashi

    2006-01-01

    We report the first genome-wide identification and characterization of alternative splicing in human gene transcripts based on analysis of the full-length cDNAs. Applying both manual and computational analyses for 56 419 completely sequenced and precisely annotated full-length cDNAs selected for the H-Invitational human transcriptome annotation meetings, we identified 6877 alternative splicing genes with 18 297 different alternative splicing variants. A total of 37 670 exons were involved in these alternative splicing events. The encoded protein sequences were affected in 6005 of the 6877 genes. Notably, alternative splicing affected protein motifs in 3015 genes, subcellular localizations in 2982 genes and transmembrane domains in 1348 genes. We also identified interesting patterns of alternative splicing, in which two distinct genes seemed to be bridged, nested or having overlapping protein coding sequences (CDSs) of different reading frames (multiple CDS). In these cases, completely unrelated proteins are encoded by a single locus. Genome-wide annotations of alternative splicing, relying on full-length cDNAs, should lay firm groundwork for exploring in detail the diversification of protein function, which is mediated by the fast expanding universe of alternative splicing variants. PMID:16914452

  3. Four rice seed cDNA clones belonging to the alpha-amylase/trypsin inhibitor gene family encode potential rice allergens.

    PubMed

    Alvarez, A M; Fukuhara, E; Nakase, M; Adachi, T; Aoki, N; Nakamura, R; Matsuda, T

    1995-07-01

    Four rice seed proteins encoded by cDNAs belonging to the alpha-amylase/trypsin inhibitor gene family were overexpressed as TrpE-fusion proteins in E. coli. The expressed rice proteins were detected by SDS-PAGE as major proteins in bacterial cell lysates. Western blot analyses showed that all the recombinant proteins were immunologically reactive to rabbit polyclonal antibodies and to a mouse monoclonal antibody (25B9) specific for a previously isolated rice allergen of 16 kDa. Some truncated proteins from deletion mutants of the cDNAs retained their reactivity to the specific antibodies. These results suggest that the cDNAs encode potential rice allergens and that some epitopes of the recombinant proteins are still immunoreactive when they are expressed as their fragments.

  4. Characterization and comparison of fatty acyl Delta6 desaturase cDNAs from freshwater and marine teleost fish species.

    PubMed

    Zheng, X; Seiliez, I; Hastings, N; Tocher, D R; Panserat, S; Dickson, C A; Bergot, P; Teale, A J

    2004-10-01

    Fish are the most important dietary source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), that have particularly important roles in human nutrition reflecting their roles in critical physiological processes. The objective of the study described here was to clone, functionally characterize and compare expressed fatty acid desaturase genes involved in the production of EPA and DHA in freshwater and marine teleost fish species. Putative fatty acid desaturase cDNAs were isolated and cloned from common carp (Cyprinus carpio) and turbot (Psetta maximus). The enzymic activities of the products of these cDNAs, together with those of cDNAs previously cloned from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), were determined by heterologous expression in the yeast Saccharomyces cerevisiae. The carp and turbot desaturase cDNAs included open reading frames (ORFs) of 1335 and 1338 base pairs, respectively, specifying proteins of 444 and 445 amino acids. The protein sequences possessed all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and N-terminal cytochrome b(5) domains containing the haem-binding motif, HPGG. Functional expression showed all four fish cDNAs encode basically unifunctional Delta6 fatty acid desaturase enzymes responsible for the first and rate-limiting step in the biosynthesis of HUFA from 18:3n-3 and 18:2n-6. All the fish desaturases were more active towards the n-3 substrate with 59.5%, 31.5%, 23.1% and 7.0% of 18:3n-3 being converted to 18:4n-3 in the case of turbot, trout, sea bream and carp, respectively. The enzymes also showed very low, probably physiologically insignificant, levels of Delta5 desaturase activity, but none of the products showed Delta4 desaturase activity. The cloning and characterization of desaturases from these fish is an important advance, as they are species in which

  5. Vaccatides: Antifungal Glutamine-Rich Hevein-Like Peptides from Vaccaria hispanica

    PubMed Central

    Wong, Ka H.; Tan, Wei Liang; Kini, Shruthi G.; Xiao, Tianshu; Serra, Aida; Sze, Sui Kwan; Tam, James P.

    2017-01-01

    Hevein and hevein-like peptides are disulfide-constrained chitin-binding cysteine-rich peptides. They are divided into three subfamilies, 6C-, 8C-, and 10C-hevein-like peptides, based on the number of cysteine residues. In addition, hevein-like peptides can exist in two forms, short and long. The long C-terminal form found in hevein and 10C-hevein-like peptides contain a C-terminal protein cargo. In contrast, the short form without a protein cargo is found in all three subfamilies. Here, we report the discovery and characterization of two novel glutamine-rich and protein cargo-free 8C-hevein-like peptides, vaccatides vH1 and vH2, from Vaccaria hispanica of the Caryophyllaceae family. Proteomic analyses showed that the vaccatides are 40–41 amino acids in length and contain a chitin-binding domain. NMR determination revealed that vaccatide vH2 displays a highly compact structure with a N-terminal cystine knot and an addition C-terminal disulfide bond. Stability studies showed that this compact structure renders vaccatide vH2 resistant to thermal, chemical and proteolytic degradation. The chitin-binding vH2 was shown to inhibit the mycelium growth of four phyto-pathogenic fungal strains with IC50 values in the micromolar range. Our findings show that vaccatides represent a new family of 8C-hevein-like peptides, which are protein cargo-free and glutamine-rich, characteristics that differentiate them from the prototypic hevein and the 10C-hevein-like peptides. In summary, this study enriches the existing library of hevein-like peptides and provides insight into their molecular diversity in sequence, structure and biosynthesis. Additionally, their highly disulfide-constrained structure could be used as a scaffold for developing metabolically and orally active peptidyl therapeutics. PMID:28680440

  6. Vaccatides: Antifungal Glutamine-Rich Hevein-Like Peptides from Vaccaria hispanica.

    PubMed

    Wong, Ka H; Tan, Wei Liang; Kini, Shruthi G; Xiao, Tianshu; Serra, Aida; Sze, Sui Kwan; Tam, James P

    2017-01-01

    Hevein and hevein-like peptides are disulfide-constrained chitin-binding cysteine-rich peptides. They are divided into three subfamilies, 6C-, 8C-, and 10C-hevein-like peptides, based on the number of cysteine residues. In addition, hevein-like peptides can exist in two forms, short and long. The long C-terminal form found in hevein and 10C-hevein-like peptides contain a C-terminal protein cargo. In contrast, the short form without a protein cargo is found in all three subfamilies. Here, we report the discovery and characterization of two novel glutamine-rich and protein cargo-free 8C-hevein-like peptides, vaccatides vH1 and vH2, from Vaccaria hispanica of the Caryophyllaceae family. Proteomic analyses showed that the vaccatides are 40-41 amino acids in length and contain a chitin-binding domain. NMR determination revealed that vaccatide vH2 displays a highly compact structure with a N-terminal cystine knot and an addition C-terminal disulfide bond. Stability studies showed that this compact structure renders vaccatide vH2 resistant to thermal, chemical and proteolytic degradation. The chitin-binding vH2 was shown to inhibit the mycelium growth of four phyto-pathogenic fungal strains with IC 50 values in the micromolar range. Our findings show that vaccatides represent a new family of 8C-hevein-like peptides, which are protein cargo-free and glutamine-rich, characteristics that differentiate them from the prototypic hevein and the 10C-hevein-like peptides. In summary, this study enriches the existing library of hevein-like peptides and provides insight into their molecular diversity in sequence, structure and biosynthesis. Additionally, their highly disulfide-constrained structure could be used as a scaffold for developing metabolically and orally active peptidyl therapeutics.

  7. Dermatoxin and phylloxin from the waxy monkey frog, Phyllomedusa sauvagei: cloning of precursor cDNAs and structural characterization from lyophilized skin secretion.

    PubMed

    Chen, Tianbao; Walker, Brian; Zhou, Mei; Shaw, Chris

    2005-07-15

    Amphibian skin is a morphologically, biochemically and physiologically complex organ that performs the wide range of functions necessary for amphibian survival. Here we describe the primary structures of representatives of two novel classes of amphibian skin antimicrobials, dermatoxin and phylloxin, from the skin secretion of Phyllomedusa sauvagei, deduced from their respective precursor encoding cDNAs cloned from a lyophilized skin secretion library. A degenerate primer, designed to a highly conserved domain in the 5'-untranslated region of analogous peptide precursor cDNAs from Phyllomedusa bicolor, was employed in a 3'-RACE reaction. Peptides with molecular masses coincident with precursor-deduced mature toxin peptides were identified in LC/MS fractions of skin secretion and primary structures were confirmed by MS/MS fragmentation. This integrated experimental approach can thus rapidly expedite the primary structural characterization of amphibian skin peptides in a manner that circumvents specimen sacrifice whilst preserving robustness of scientific data.

  8. Isolation and characterisation of mRNA encoding the salmon- and chicken-II type gonadotrophin-releasing hormones in the teleost fish Rutilus rutilus (Cyprinidae).

    PubMed

    Penlington, M C; Williams, M A; Sumpter, J P; Rand-Weaver, M; Hoole, D; Arme, C

    1997-12-01

    The complementary DNAs (cDNA) encoding the [Trp7,Leu8]-gonadotrophin-releasing hormone (salmon-type GnRH; sGnRH:GeneBank accession no. u60667) and the [His5,Trp7,Tyr8]-GnRH (chicken-II-type GnRH; cGnRH-II: GeneBank accession no. u60668) precursor in the roach (Rutilus rutilus) were isolated and sequenced following reverse transcription and rapid amplification of cDNA ends (RACE). The sGnRH and cGnRH-II precursor cDNAs consisted of 439 and 628 bp, and included open reading frames of 282 and 255 bp respectively. The structures of the encoded peptides were the same as GnRHs previously identified in other vertebrates. The sGnRH and cGnRH-II precursor cDNAs, including the non-coding regions, had 88.6 and 79.9% identity respectively, to those identified in goldfish (Carassius auratus). However, significant similarity was not observed between the non-coding regions of the GnRH cDNAs of Cyprinidae and other fish. The presumed third exon, encoding partial sGnRH associated peptide (GAP) of roach, demonstrated significant nucleotide and amino acid similarity with the appropriate regions in the goldfish, but not with other species, and this may indicate functional differences of GAP between different families of fish. cGnRH-II precursor cDNAs from roach had relatively high nucleotide similarity across this GnRH variant. Cladistic analysis classified the sGnRH and cGnRH-II precursor cDNAs into three and two groups respectively. However, the divergence between nucleotide sequences within the sGnRH variant was greater than those encoding the cGnRH-II precursors. Consistent with the consensus developed from previous studies, Northern blot analysis demonstrated that expression of sGnRH and cGnRH-II was restricted to the olfactory bulbs and midbrain of roach respectively. This work forms the basis for further study on the mechanisms by which the tapeworm, Ligula intestinalis, interacts with the pituitary-gonadal axis of its fish host.

  9. Twelve actin-encoding cDNAs from the American lobster, Homarus americanus: cloning and tissue expression of eight skeletal muscle, one heart, and three cytoplasmic isoforms.

    PubMed

    Kim, Bo Kwang; Kim, Kyoung Sun; Oh, Chul-Woong; Mykles, Donald L; Lee, Sung Gu; Kim, Hak Jun; Kim, Hyun-Woo

    2009-06-01

    Lobster muscles express a diverse array of myofibrillar protein isoforms. Three fiber types (fast, slow-twitch or S1, and slow-tonic or S2) differ qualitatively and quantitatively in myosin heavy and light chains, troponin-T, -I, and -C, paramyosin, and tropomyosin variants. However, little is known about the diversity of actin isoforms present in crustacean tissues. In this report we characterized cDNAs that encode twelve actin isoforms in the American lobster, Homarus americanus: eight from skeletal muscle (Ha-ActinSK1-8), one from heart (Ha-ActinHT1), and three cytoplasmic type actins from hepatopancreas (Ha-ActinCT1-3). All twelve cDNAs were products of distinct genes, as indicated by differences in the 3'-untranslated regions (UTRs). The open reading frames specified polypeptides 376 or 377 amino acids in length. Although key amino residues are conserved in the lobster actins, variations in nearby sequences may affect actin polymerization and/or interactions with other myofibrillar proteins. Quantitative reverse transcription-polymerase chain reaction showed muscle fiber type- and tissue-specific expression patterns. Ha-Actin-HT1 was expressed exclusively in heart (87% of the total; 12% of the total was Ha-ActinCT1). Ha-ActinCT1 was expressed in all tissues, while CT2 and CT3 were expressed only in hepatopancreas, with Ha-ActinCT2 as the major isoform (93% of the total). Ha-ActinSK1 and SK2 were the major isoforms (88% and 12% of the total, respectively) in the S1 fibers of crusher claw closer muscle. Fast fibers in the cutter claw closer and deep abdominal muscles differed in SK isoforms. Ha-ActinSK3, SK4, and SK5 were the major isoforms in cutter claw closer muscle (12%, 48%, and 37% of the total, respectively). Ha-ActinSK5 and SK8 were the major isoforms in deep abdominal flexor (31% and 65% of the total, respectively) and extensor (46% and 53% of the total, respectively) muscles, with SK6 and SK7 expressed at low levels. These data indicate that fast

  10. Solution Hybrid Selection Capture for the Recovery of Functional Full-Length Eukaryotic cDNAs From Complex Environmental Samples

    PubMed Central

    Bragalini, Claudia; Ribière, Céline; Parisot, Nicolas; Vallon, Laurent; Prudent, Elsa; Peyretaillade, Eric; Girlanda, Mariangela; Peyret, Pierre; Marmeisse, Roland; Luis, Patricia

    2014-01-01

    Eukaryotic microbial communities play key functional roles in soil biology and potentially represent a rich source of natural products including biocatalysts. Culture-independent molecular methods are powerful tools to isolate functional genes from uncultured microorganisms. However, none of the methods used in environmental genomics allow for a rapid isolation of numerous functional genes from eukaryotic microbial communities. We developed an original adaptation of the solution hybrid selection (SHS) for an efficient recovery of functional complementary DNAs (cDNAs) synthesized from soil-extracted polyadenylated mRNAs. This protocol was tested on the Glycoside Hydrolase 11 gene family encoding endo-xylanases for which we designed 35 explorative 31-mers capture probes. SHS was implemented on four soil eukaryotic cDNA pools. After two successive rounds of capture, >90% of the resulting cDNAs were GH11 sequences, of which 70% (38 among 53 sequenced genes) were full length. Between 1.5 and 25% of the cloned captured sequences were expressed in Saccharomyces cerevisiae. Sequencing of polymerase chain reaction-amplified GH11 gene fragments from the captured sequences highlighted hundreds of phylogenetically diverse sequences that were not yet described, in public databases. This protocol offers the possibility of performing exhaustive exploration of eukaryotic gene families within microbial communities thriving in any type of environment. PMID:25281543

  11. Molecular cloning and sequence analysis of full-length growth hormone cDNAs from six important economic fishes.

    PubMed

    Zhang, Jing-Nan; Song, Ping; Hu, Jia-Rui; Mo, Sai-Jun; Peng, Mao-Yu; Zhou, Wei; Zou, Ji-Xing; Hu, Yin-Chang

    2005-01-01

    In this study,the full-length cDNAs of GH (Growth Hormone) gene was isolated from six important economic fishes, Siniperca kneri, Epinephelus coioides, Monopterus albus, Silurus asotus, Misgurnus anguillicaudatus and Carassius auratus gibelio Bloch. It is the first time to clone these GH sequences except E. coioides GH. The lengths of the above cDNAs are as follows: 953 bp, 1 023 bp, 825 bp, 1 082 bp, 1 154 bp and 1 180 bp. Each sequence includes an ORF of about 600 bp which encodes a protein of about 200 amino acid: S. kneri, E. coioides and M. albus GHs of 204 amino acid, S. asotus GH of 200 amino acid, M. anguillicaudatus and C. auratus gibelio GHs of 210 amino acid. Then detailed sequence analysis of the six GHs with many other fish sequences was performed. The six sequences all showed high homology to other sequences, especially to sequences within the same order, and many conserved residues were identified, most localized in five domains. The phylogenetic trees (MP and NJ) of many fish GH ORF sequences (including the new six) with Amia calva as outgroup were generally resolved and largely congruent with the morphology-based tree though some incongruities were observed, suggesting GH ORF should be paid more attention to in teleostean phylogeny.

  12. Cloning of two individual cDNAS encoding 9-cis-epoxycarotenoid dioxygenase from Gentiana lutea, their tissue-specific expression and physiological effect in transgenic tobacco.

    PubMed

    Zhu, Changfu; Kauder, Friedrich; Römer, Susanne; Sandmann, Gerhard

    2007-02-01

    Two 9-cis-epoxycarotenoid dioxygenase (NCED) cDNAs have been cloned from a petal library of Gentiana lutea. Both cDNAs carry a putative transit sequence for chloroplast import and differ mainly in their length and the 5'-flanking regions. GlNCED1 was evolutionary closely related to Arabidopsis thaliana NCED6 whereas GlNCED2 showed highest homology to tomato NCED1 and A. thaliana NCED3. The amounts of GlNCED2 transcript were below Northern detection in G. lutea. In contrast, GlNCED1 was specifically expressed at higher levels in developing flowers when petals start appearing. By genetic engineering of tobacco with coding regions of either gene under a constitutive promoter, their function was further analyzed. Although mRNA of both genes was detectable in the corresponding transgenic plants, a physiological effect was only found for GlNCED1 but not for GlNCED2. In germination experiments of GlNCED1 transgenic lines, delayed radicle formation and cotyledon appearance were observed. However, the transformants exhibited no improved tolerance against desiccation stress. In contrast to other plants with over-expressed NCEDs, prolonged delay of seed germination is the only abscisic-acid-related phenotypic effect in the GlNCED1 transgenic lines.

  13. Cloning of human cDNAs for Apg-1 and Apg-2, members of the Hsp110 family, and chromosomal assignment of their genes.

    PubMed

    Nonoguchi, K; Itoh, K; Xue, J H; Tokuchi, H; Nishiyama, H; Kaneko, Y; Tatsumi, K; Okuno, H; Tomiwa, K; Fujita, J

    1999-09-03

    In mice, the Hsp110/SSE family is composed of the heat shock protein (Hsp)110/105, Apg-1 and Apg-2. In humans, however, only the Hsp110/105 homolog has been identified as a member, and two cDNAs, Hsp70RY and HS24/p52, potentially encoding proteins structurally similar to, but smaller than, mouse Apg-2 have been reported. To clarify the membership of Hsp110 family in humans, we isolated Apg-1 and Apg-2 cDNAs from a human testis cDNA library. The human Apg-1 was 100% and 91.8% identical in length and amino acid (aa) sequence, respectively, to mouse Apg-1. Human Apg-2 was one aa shorter than and 95.5% identical in sequence to mouse Apg-2. In ECV304, human endothelial cells Apg-1 but not Apg-2 transcripts were induced in 2 h by a temperature shift from 32 degrees C to 39 degrees C. As found in mice, the response was stronger than that to a 37-42 degrees C shift. The human Apg-1 and Apg-2 genes were mapped to the chromosomal loci 4q28 and 5q23.3-q31.1, respectively, by fluorescence in-situ hybridization. We isolated cDNA and genomic clones encompassing the region critical for the difference between Apg-2 and HS24/p52. Although the primer sets used were derived from the sequences common to both cDNAs, all cDNA and genomic clones corresponded to Apg-2. Using a similar approach, the relationship between Apg-2 and Hsp70RY was assessed, and no clone corresponding to Hsp70RY was obtained. These results demonstrated that the Hsp110 family consists of at least three members, Apg-1, Apg-2 and Hsp110 in humans as well as in mice. The significance of HS24/p52 and Hsp70RY cDNAs previously reported remains to be determined.

  14. Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    PubMed Central

    Oduru, Sreedhar; Campbell, Janee L; Karri, SriTulasi; Hendry, William J; Khan, Shafiq A; Williams, Simon C

    2003-01-01

    Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish) genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells. PMID:12783626

  15. Molecular characterization of genes encoding inward rectifier potassium (Kir) channels in the bed bug (Cimex lectularius).

    PubMed

    Mamidala, Praveen; Mittapelly, Priyanka; Jones, Susan C; Piermarini, Peter M; Mittapalli, Omprakash

    2013-04-01

    The molecular genetics of inward-rectifier potassium (Kir) channels in insects is poorly understood. To date, Kir channel genes have been characterized only from a few representative dipterans (i.e., fruit flies and mosquitoes). The goal of the present study was to characterize Kir channel cDNAs in a hemipteran, the bed bug (Cimex lectularius). Using our previously reported bed bug transcriptome (RNA-seq), we identified two cDNAs that encode putative Kir channels. One was a full-length cDNA that encodes a protein belonging to the insect 'Kir3' clade, which we designate as 'ClKir3'. The other was a partial cDNA that encodes a protein with similarity to both the insect 'Kir1' and 'Kir2' clades, which we designate as 'ClKir1/2'. Quantitative real-time PCR analysis revealed that ClKir1/2 and ClKir3 exhibited peak expression levels in late-instar nymphs and early-instar nymphs, respectively. Furthermore, ClKir3, but not ClKir1/2, showed tissue-specific expression in Malpighian tubules of adult bed bugs. Lastly, using an improved procedure for delivering double-stranded RNA (dsRNA) to male and female bed bugs (via the cervical membrane) we demonstrate rapid and systemic knockdown of ClKir3 transcripts. In conclusion, we demonstrate that the bed bug possesses at least two genes encoding Kir channels, and that RNAi is possible for at least Kir3, thereby offering a potential approach for elucidating the roles of Kir channel genes in bed bug physiology. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Molecular Cloning and Expression of Three Polygalacturonase cDNAs from the Tarnished Plant Bug, Lygus lineolaris

    PubMed Central

    Allen, Margaret L.; Mertens, Jeffrey A.

    2008-01-01

    Three unique cDNAs encoding putative polygalacturonase enzymes were isolated from the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae). The three nucleotide sequences were dissimilar to one another, but the deduced amino acid sequences were similar to each other and to other polygalacturonases from insects, fungi, plants, and bacteria. Four conserved segments characteristic of polygalacturonases were present, but with some notable semiconservative substitutions. Two of four expected disulfide bridge—forming cysteine pairs were present. All three inferred protein translations included predicted signal sequences of 17 to 20 amino acids. Amplification of genomic DNA identified an intron in one of the genes, Llpg1, in the 5′ untranslated region. Semiquantitative RT-PCR revealed expression in all stages of the insect except the eggs. Expression in adults, male and female, was highly variable, indicating a family of highly inducible and diverse enzymes adapted to the generalist polyphagous nature of this important pest. PMID:20233096

  17. The isolation of cDNAs from OATL1 at Xp11.2 using a 480-kb YAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geraghty, M.T.; Brody, L.C.; Martin, L.S.

    1993-05-01

    Using an ornithine-{delta}-aminotransferase (OAT) cDNA, the authors identified five YACs that cover two nonadjacent OAT-related loci in Xp11.2-p11.3, designated OATL1 (distal) and OATL2 (proximal). Because several retinal degenerative disorders map to this region, they used YAC2 (480 kb), which covers the most distal part of OATL1, as a probe to screen a retinal cDNA library. From 8 {times} 10{sup 4} plaques screened, they isolated 13 clones. Two were OAT cDNAs. The remaining 11 were divided into eight groups by cross-hybridization. Groups 1-4 contain cDNAs that originate from single-copy X-linked genes in YAC2. Each has an open reading frame of >500more » bp and detects one or more transcripts on a Northern blot. The gene for each was sublocalized and ordered in YAC2. The cDNAs in groups 5-8 contained two or more Alu sequences, had no open reading frames, and did not detect transcripts. The cDNAs from groups 1-4 provide expressed sequence tags and identify candidate genes for the genetic disorders that map to this region. 28 refs., 5 figs., 1 tab.« less

  18. Three cDNAs encoding vitellogenin homologs from Antarctic copepod, Tigriopus kingsejongensis: Cloning and transcriptional analysis in different maturation stages, temperatures, and putative reproductive hormones.

    PubMed

    Lee, Soo Rin; Lee, Ji-Hyun; Kim, Ah Ran; Kim, Sanghee; Park, Hyun; Baek, Hea Ja; Kim, Hyun-Woo

    2016-02-01

    Three full-length cDNAs encoding lipoprotein homologs were identified in Tigriopus kingsejongensis, a newly identified copepod from Antarctica. Structural and transcriptional analyses revealed homology with two vitellogenin-like proteins, Tik-Vg1 and Tik-Vg2, which were 1855 and 1795 amino acids in length, respectively, along with a third protein, Tik-MEP, which produced a 1517-residue protein with similarity to a melanin engaging protein (MEP) in insects Phylogenetic analysis showed that Vgs in Maxillopods including two Tik-Vgs belong to the arthropod vitellogenin-like clade, which includes clottable proteins (CPs) in decapod crustaceans and vitellogenins in insects. Tik-MEP clustered together with insect MEPs, which appear to have evolved before the apoB-like and arthropod Vg-like clades. Interestingly, no genes orthologous to those found in the apoB clade were identified in Maxillopoda, suggesting that functions of large lipid transfer proteins (LLTPs) in reproduction and lipid metabolism may be different from those in insect and decapod crustaceans. As suggested by phylogenetic analyses, the two Tik-Vgs belonging to the arthropod Vg-like clade appear to play major roles in oocyte maturation, while Vgs belonging to the apoB clade function primarily in the reproduction of decapod crustaceans. Transcriptional analysis of Tik-Vg expression revealed a 24-fold increase in mature and ovigerous females compared with immature female, whereas expression of Tik-MEP remained low through all reproductive stages. Acute temperature changes did not affect the transcription of Tik-Vg genes, whereas Tik-MEP appeared to be affected by temperature change. Among the three hormones thought to be involved in molting and reproduction in arthropods, only farnesoic acid (FA) induced transcription of the two Tik-Vg genes. Regardless of developmental stage and hormone treatment, Tik-Vg1 and Tik-Vg2 exhibited a strong positive correlation in expression, suggesting that expression of these

  19. Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: Transcriptional induction in response to thermal stress in hemocyte primary culture.

    PubMed

    Farcy, Emilie; Serpentini, Antoine; Fiévet, Bruno; Lebel, Jean-Marc

    2007-04-01

    Heat-shock proteins are a multigene family of proteins whose expression is induced by a variety of stress factors. This work reports the cloning and sequencing of HSP70 and HSP90 cDNAs in the gastropod Haliotis tuberculata. The deduced amino acid sequences of both HSP70 and HSP90 from H. tuberculata shared a high degree of homology with their homologues in other species, including typical eukaryotic HSP70 and HSP90 signature sequences. We examined their transcription expression pattern in abalone hemocytes exposed to thermal stress. Real-time PCR analysis indicated that both HSP70 and HSP90 mRNA were expressed in control animals but rapidly increased after heat-shock.

  20. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    PubMed Central

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome

  1. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    PubMed

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior

  2. Two Closely Related Genes of Arabidopsis Encode Plastidial Cytidinediphosphate Diacylglycerol Synthases Essential for Photoautotrophic Growth1[C

    PubMed Central

    Haselier, André; Akbari, Hana; Weth, Agnes; Baumgartner, Werner; Frentzen, Margrit

    2010-01-01

    Cytidinediphosphate diacylglycerol synthase (CDS) catalyzes the formation of cytidinediphosphate diacylglycerol, an essential precursor of anionic phosphoglycerolipids like phosphatidylglycerol or -inositol. In plant cells, CDS isozymes are located in plastids, mitochondria, and microsomes. Here, we show that these isozymes are encoded by five genes in Arabidopsis (Arabidopsis thaliana). Alternative translation initiation or alternative splicing of CDS2 and CDS4 transcripts can result in up to 10 isoforms. Most of the cDNAs encoding the various plant isoforms were functionally expressed in yeast and rescued the nonviable phenotype of the mutant strain lacking CDS activity. The closely related genes CDS4 and CDS5 were found to encode plastidial isozymes with similar catalytic properties. Inactivation of both genes was required to obtain Arabidopsis mutant lines with a visible phenotype, suggesting that the genes have redundant functions. Analysis of these Arabidopsis mutants provided further independent evidence for the importance of plastidial phosphatidylglycerol for structure and function of thylakoid membranes and, hence, for photoautotrophic growth. PMID:20442275

  3. Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32.

    PubMed

    Tan, Yung-Chie; Wong, Mui-Yun; Ho, Chai-Ling

    2015-11-01

    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Cloning of cDNAs for H1F0, TOP1, CLTA and CDK1 and the effects of cryopreservation on the expression of their mRNA transcripts in yak (Bos grunniens) oocytes.

    PubMed

    Niu, Hui-Ran; Zi, Xiang-Dong; Xiao, Xiao; Xiong, Xian-Rong; Zhong, Jin-Cheng; Li, Jian; Wang, Li; Wang, Yong

    2014-08-01

    We cloned and sequenced four pivotal cDNAs involved in DNA structural maintenance (H1F0 and TOP1) and the cell cycle (CLTA and CDK1) from yak oocytes. In addition, we studied the consequences of freezing-thawing (F/T) processes on the expression of their mRNA transcripts in yak immature and in vitro matured (MII) oocytes. H1F0, TOP1, CLTA and CDK1 cDNAs were cloned from yak oocytes by reverse transcriptase-polymerase chain reaction (RT-PCR) strategy. The expression of their mRNA transcript analyses were performed upon fresh and frozen-thawed immature germinal vesicle (GV) and MII yak oocytes following normalization of transcripts with GAPDH by real-time PCR. The yak H1F0, TOP1, CLTA and CDK1 cDNA sequences were found to consist of CDK1 585, 2539, 740, and 894 bp, respectively. Their coding regions encoded 195, 768, 244, and 298 amino acids, respectively. The homology with that of cattle was very high (95.2%, 98.8%, 93.6%, and 89.5%, respectively nucleotide sequence level, and 94.3%, 98.2%, 87.7%, and 90.9%, respectively at the deduced amino acid level). The overall mRNA expression levels of these four transcripts were reduced by F/T process, albeit at different levels. TOP1 in GV-oocytes, and H1F0 and CDK1 in MII-oocytes of the yak were significantly down-regulated (P<0.05). This is the first isolation and characterization of H1F0, TOP1, CLTA, and CDK1 cDNAs from yak oocytes. The lower fertility and developmental ability of yak oocytes following fertilization after cryopreservation may be explained by the alterations to their gene expression profiles. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'.

    PubMed

    Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping

    2014-09-01

    To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Identification and Analysis of a Gene from Calendula officinalis Encoding a Fatty Acid Conjugase

    PubMed Central

    Qiu, Xiao; Reed, Darwin W.; Hong, Haiping; MacKenzie, Samuel L.; Covello, Patrick S.

    2001-01-01

    Two homologous cDNAs, CoFad2 and CoFac2, were isolated from a Calendula officinalis developing seed by a polymerase chain reaction-based cloning strategy. Both sequences share similarity to FAD2 desaturases and FAD2-related enzymes. In C. officinalis plants CoFad2 was expressed in all tissues tested, whereas CoFac2 expression was specific to developing seeds. Expression of CoFad2 cDNA in yeast (Saccharomyces cerevisiae) indicated it encodes a Δ12 desaturase that introduces a double bond at the 12 position of 16:1(9Z) and 18:1(9Z). Expression of CoFac2 in yeast revealed that the encoded enzyme acts as a fatty acid conjugase converting 18:2(9Z, 12Z) to calendic acid 18:3(8E, 10E, 12Z). The enzyme also has weak activity on the mono-unsaturates 16:1(9Z) and 18:1(9Z) producing compounds with the properties of 8,10 conjugated dienes. PMID:11161042

  7. Molecular characterization of cDNAs for two anionic peroxidases from suspension cultures of sweet potato.

    PubMed

    Kim, K Y; Huh, G H; Lee, H S; Kwon, S Y; Hur, Y; Kwak, S S

    1999-07-01

    Two cDNAs for anionic peroxidase (PODs), swpa2 and swpa3, were isolated from suspension cultures of sweet potato (Ipomoea batatas), and their expression was investigated with a view to understanding the physiological function of PODs in relation to environmental stresses. Swpa2 (whose putative mature protein product would have a pI value of 4.1) and swpa3 (4.3) encode polypeptides of 358 and 349 amino acids, respectively. The genes from which they were derived are predominantly expressed in cultured cells of sweet potato; transcripts of swpa2 were not detected in any tissues of the intact plant, and transcripts of swpa3 were detected at a low level only in the stem tissue. During cell culture, the expression patterns of the two genes differed; the level of swpa2 RNA progressively increased during cell growth, whereas that of swpa3 reached a maximum at the stationary phase and decreased on further culture. The two genes responded differently to stresses such as wounding or chilling of leaves. Swpa2 was strongly induced 48 h after wounding, but swpa3 was not affected by this treatment. The two genes were also highly expressed upon chilling (4 degrees C), but expression was reduced by prior acclimation at 15 degrees C. In addition, both genes were strongly induced immediately after treatment with ozone, and expression had decreased to the basal level 12 h after treatment. The response of these two genes to stresses such as aging, wounding, and chilling are different from those of the POD genes (swpa1 encoding an anionic product and swpn1 a neutral peroxidase) that we described previously. The responses of the two genes were also different from each other. These results suggest that the two new POD genes are involved in overcoming oxidative environmental stress, and each POD gene may be regulated by cell growth and environmental stress in different ways.

  8. Large-Scale Collection and Analysis of Full-Length cDNAs from Brachypodium distachyon and Integration with Pooideae Sequence Resources

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Takahashi, Fuminori; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2013-01-01

    A comprehensive collection of full-length cDNAs is essential for correct structural gene annotation and functional analyses of genes. We constructed a mixed full-length cDNA library from 21 different tissues of Brachypodium distachyon Bd21, and obtained 78,163 high quality expressed sequence tags (ESTs) from both ends of ca. 40,000 clones (including 16,079 contigs). We updated gene structure annotations of Brachypodium genes based on full-length cDNA sequences in comparison with the latest publicly available annotations. About 10,000 non-redundant gene models were supported by full-length cDNAs; ca. 6,000 showed some transcription unit modifications. We also found ca. 580 novel gene models, including 362 newly identified in Bd21. Using the updated transcription start sites, we searched a total of 580 plant cis-motifs in the −3 kb promoter regions and determined a genome-wide Brachypodium promoter architecture. Furthermore, we integrated the Brachypodium full-length cDNAs and updated gene structures with available sequence resources in wheat and barley in a web-accessible database, the RIKEN Brachypodium FL cDNA database. The database represents a “one-stop” information resource for all genomic information in the Pooideae, facilitating functional analysis of genes in this model grass plant and seamless knowledge transfer to the Triticeae crops. PMID:24130698

  9. Molecular cloning, molecular evolution and gene expression of cDNAs encoding thyrotropin-releasing hormone receptor subtypes in a teleost, the sockeye salmon (Oncorhynchus nerka).

    PubMed

    Saito, Yuichi; Mekuchi, Miyuki; Kobayashi, Noriaki; Kimura, Makoto; Aoki, Yasuhiro; Masuda, Tomohiro; Azuma, Teruo; Fukami, Motohiro; Iigo, Masayuki; Yanagisawa, Tadashi

    2011-11-01

    Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a teleost, the sockeye salmon (Oncorhynchus nerka). Four different TRHR cDNAs were cloned and named TRHR1, TRHR2a, TRHR2b and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. Important residues for TRH binding were conserved in deduced amino acid sequences of the three TRHR subtypes except for the TRHR2b. Seven transmembrane domains were predicted for TRHR1, TRHR2a and TRHR3 proteins but only five for TRHR2b which appears to be truncated. In silico database analysis identified putative TRHR sequences including invertebrate TRHR and reptilian, avian and mammalian TRHR3. Phylogenetic analyses predicted the molecular evolution of TRHR in vertebrates: from the common ancestral TRHR (i.e. invertebrate TRHR), the TRHR2 subtype diverged first and then TRHR1 and TRHR3 diverged. Reverse transcription-polymerase chain reaction analyses revealed TRHR1 transcripts in the brain (hypothalamus), retina, pituitary gland and large intestine; TRHR2a in the brain (telencephalon and hypothalamus); and TRHR3 in the brain (olfactory bulbs) and retina. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Isolation and expression analysis of cDNAs that are associated with alternate bearing in Olea europaea L. cv. Ayvalık

    PubMed Central

    2013-01-01

    Background Olive cDNA libraries to isolate candidate genes that can help enlightening the molecular mechanism of periodicity and / or fruit production were constructed and analyzed. For this purpose, cDNA libraries from the leaves of trees in “on year” and in “off year” in July (when fruits start to appear) and in November (harvest time) were constructed. Randomly selected 100 positive clones from each library were analyzed with respect to sequence and size. A fruit-flesh cDNA library was also constructed and characterized to confirm the reliability of each library’s temporal and spatial properties. Results Quantitative real-time RT-PCR (qRT-PCR) analyses of the cDNA libraries confirmed cDNA molecules that are associated with different developmental stages (e. g. “on year” leaves in July, “off year” leaves in July, leaves in November) and fruits. Hence, a number of candidate cDNAs associated with “on year” and “off year” were isolated. Comparison of the detected cDNAs to the current EST database of GenBank along with other non - redundant databases of NCBI revealed homologs of previously described genes along with several unknown cDNAs. Of around 500 screened cDNAs, 48 cDNA elements were obtained after eliminating ribosomal RNA sequences. These independent transcripts were analyzed using BLAST searches (cutoff E-value of 1.0E-5) against the KEGG and GenBank nucleotide databases and 37 putative transcripts corresponding to known gene functions were annotated with gene names and Gene Ontology (GO) terms. Transcripts in the biological process were found to be related with metabolic process (27%), cellular process (23%), response to stimulus (17%), localization process (8.5%), multicellular organismal process (6.25%), developmental process (6.25%) and reproduction (4.2%). Conclusions A putative P450 monooxigenase expressed fivefold more in the “on year” than that of “off year” leaves in July. Two putative dehydrins expressed

  11. Characterization of a cDNA encoding a protein involved in formation of the skeleton during development of the sea urchin Lytechinus pictus.

    PubMed

    Livingston, B T; Shaw, R; Bailey, A; Wilt, F

    1991-12-01

    In order to investigate the role of proteins in the formation of mineralized tissues during development, we have isolated a cDNA that encodes a protein that is a component of the organic matrix of the skeletal spicule of the sea urchin, Lytechinus pictus. The expression of the RNA encoding this protein is regulated over development and is localized to the descendents of the micromere lineage. Comparison of the sequence of this cDNA to homologous cDNAs from other species of urchin reveal that the protein is basic and contains three conserved structural motifs: a signal peptide, a proline-rich region, and an unusual region composed of a series of direct repeats. Studies on the protein encoded by this cDNA confirm the predicted reading frame deduced from the nucleotide sequence and show that the protein is secreted and not glycosylated. Comparison of the amino acid sequence to databases reveal that the repeat domain is similar to proteins that form a unique beta-spiral supersecondary structure.

  12. Gene 2 of the sigma rhabdovirus genome encodes the P protein, and gene 3 encodes a protein related to the reverse transcriptase of retroelements.

    PubMed

    Landès-Devauchelle, C; Bras, F; Dezélée, S; Teninges, D

    1995-11-10

    The nucleotide sequence of the genes 2 and 3 of the Drosophila rhabdovirus sigma was determined from cDNAs to viral genome and poly(A)+ mRNAs. Gene 2 comprises 1032 nucleotides and contains a long ORF encoding a molecular weight 35,208 polypeptide present in infected cells and in virions which migrates in SDS-PAGE as a doublet of M(r) about 60 kDa. The distribution of acidic charges as well as the electrophoretic properties of the protein are characteristic of the rhabdovirus P proteins. Gene 3 comprises 923 nucleotides and contains a long ORF capable of coding a polypeptide of 298 amino acids of MW 33,790. The putative protein (PP3) is similar in size to a minor component of the virions. Computer analysis shows that the sequence of PP3 contains three motifs related to the conserved motifs of reverse transcriptases.

  13. Localization and physical mapping of genes encoding the A+U-rich element RNA-binding protein AUF1 to human chromosomes 4 and X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, B.J.; Long, L.; Pettenati, M.J.

    Messenger RNAs encoding many oncoproteins and cytokines are relatively unstable. Their instability, which ensures appropriate levels and timing of expression, is controlled in part by proteins that bind to A + U-rich instability elements (AREs) present in the 3{prime}-untranslated regions of the mRNAs. cDNAs encoding the AUF1 family of ARE-binding proteins were cloned from human and murine cDNA libraries. In the present study monochromosomal somatic cell hybrids were used to localize two AUF1 loci to human chromosomes 4 and X. In situ hybridization analyses using P1 clones as probes identified the 4q21.1-q21.2 and Xq12 regions as the locations of themore » AUF1 genes. 10 refs., 2 figs.« less

  14. The delta-subunit of murine guanine nucleotide exchange factor eIF-2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end.

    PubMed

    Henderson, R A; Krissansen, G W; Yong, R Y; Leung, E; Watson, J D; Dholakia, J N

    1994-12-02

    Protein synthesis in mammalian cells is regulated at the level of the guanine nucleotide exchange factor, eIF-2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. We have isolated and sequenced cDNA clones encoding the delta-subunit of murine eIF-2B. The cDNA sequence encodes a polypeptide of 544 amino acids with molecular mass of 60 kDa. Antibodies against a synthetic polypeptide of 30 amino acids deduced from the cDNA sequence specifically react with the delta-subunit of mammalian eIF-2B. The cDNA-derived amino acid sequence shows significant homology with the yeast translational regulator Gcd2, supporting the hypothesis that Gcd2 may be the yeast homolog of the delta-subunit of mammalian eIF-2B. Primer extension studies and anchor polymerase chain reaction analysis were performed to determine the 5'-end of the transcript for the delta-subunit of eIF-2B. Results of these experiments demonstrate two different mRNAs for the delta-subunit of eIF-2B in murine cells. The isolation and characterization of two different full-length cDNAs also predicts the presence of two alternate forms of the delta-subunit of eIF-2B in murine cells. These differ at their amino-terminal end but have identical nucleotide sequences coding for amino acids 31-544.

  15. Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.

    PubMed

    Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T

    1996-10-31

    Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.

  16. Interallelic complementation of mutations in propionic acidemia by microinjection of mutant cDNAs into fibroblasts of affected patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loyer, M.; Leclerc, D.; Gravel, R.A.

    1994-09-01

    Propionic acidemia is a rare autosomal recessive disorder resulting from defects of the {alpha} or {beta} subunit of biotin-dependent propionyl-CoA carboxylase (PCC). Mutations are assigned to defects of the PCCA ({alpha} subunit) or PCCB ({beta} subunit) gene through complementation studies after somatic fusion of patient cell lines. About two-thirds of patients with {beta} subunit defects (complementation group pccBC) show interallelic complementation in cell fusion experiments (subgroups pccB and pccC), monitored by the PCC-dependent metabolisms of {sup 14}C-propionate. Most patient cell lines are heteroallelic for two different mutations, leaving ambiguous the identity of the mutation participating in interallelic complementation. To identifymore » the complementing mutations, we have expressed {beta}-subunit cDNAs containing individual mutations by microinjection of the cDNAs in recipient cells from patients with {beta} subunit defects. Correction of the PCC defect was monitored by autoradiography of {sup 14}C-propionate incorporation. In some experiments, cDNAs were co-injected with a plasmid expressing the E. coli lacZ gene as a positive control for successful injection. Two mutations from the pccB subgroup showed complementation when injected into pccC cells; dupKICK140-143 and Pro228Leu. Similarly, two mutations from the pccC subgroup complemented after injection into pccB cells; {Delta}Ile408 and Arg410Trp. No mutation complemented with mutation of the pccBC group which are classified as non-complementing in cell fusion experiments. The results show that the complementing pccB mutations are found in the N-terminal half of the {beta} subunit, while the complementing pccC mutations cluxter at a site in the C-terminal half. The latter site is a candidate for the propionyl-CoA binding site based on sequence identity with a region of transcarboxylase from Propionibacterium shermanii.« less

  17. Characterization of cDNAs encoding the chick retinoic acid receptor gamma 2 and preferential distribution of retinoic acid receptor gamma transcripts during chick skin development.

    PubMed

    Michaille, J J; Blanchet, S; Kanzler, B; Garnier, J M; Dhouailly, D

    1994-12-01

    Retinoic acid receptors alpha, beta and gamma (RAR alpha, beta and gamma) are ligand-inductible transcriptional activators which belong to the steroid/thyroid hormone receptor superfamily. At least two major isoforms (1 and 2) of each RAR arise by differential use of two promoters and alternative splicing. In mouse, the three RAR genes are expressed in stage- and tissue-specific patterns during embryonic development. In order to understand the role of the different RARs in chick, RAR gamma 2 cDNAs were isolated from an 8.5-day (stage 35 of Hamburger and Hamilton) chick embryo skin library. The deduced chick RAR gamma 2 amino acid sequence displays uncommon features such as 21 specific amino acid replacements, 12 of them being clustered in the amino-terminal region (domains A2 and B), and a truncated acidic carboxy-terminal region (F domain). However, the pattern of RAR gamma expression in chick embryo resembles that reported in mouse, particularly in skin where RAR gamma expression occurs in both the dermal and epidermal layers at the beginning of feather formation, and is subsequently restricted to the differentiating epidermal cells. Northern blot analysis suggests that different RAR gamma isoforms could be successively required during chick development.

  18. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  19. Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human brain tissue.

    PubMed

    Brené, S; Lindefors, N; Ehrlich, M; Taubes, T; Horiuchi, A; Kopp, J; Hall, H; Sedvall, G; Greengard, P; Persson, H

    1994-03-01

    In this study we have isolated and sequenced human cDNAs for the phosphoproteins DARPP-32, ARPP-21, and ARPP-16/19, and have compared these sequences to previously characterized bovine and rat cDNAs. In situ hybridization and Northern blot analysis with the human cDNA probes were used to study the expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human postmortem brain tissue. In situ hybridization was performed using horizontal whole hemisphere sections. Five representative levels of the brain ranging from 71 mm to 104 mm ventral to vertex were examined. All three probes showed distinct hybridization patterns in the caudate nucleus, putamen, nucleus accumbens, and the amygdaloid complex. For ARPP-16/19 mRNA, a hybridization signal comparable to the signal in caudate nucleus, putamen, and nucleus accumbens was also detected in the neocortex. ARPP-21 and DARPP-32 mRNA, on the other hand, were present in lower levels in neocortical regions. DARPP-32 mRNA was abundant in the cerebellar cortex at the level of the Purkinje cell layer. High levels of ARPP-16/19 and ARPP-21 mRNA were also found in the cerebellar cortex, where they were confined to deeper layers. The present result demonstrate that mRNAs for the three phosphoproteins are expressed in overlapping, but also distinct, areas of the human brain that in many cases coincide with previously described distribution of the dopamine D1 receptor.

  20. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    PubMed Central

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-01-01

    Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476

  1. Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia).

    PubMed

    Tuan, Pham Anh; Park, Sang Un

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a family of enzymes that catalyze the oxidative cleavage of carotenoids at various chain positions to form a broad spectrum of apocarotenoids, including aromatic substances, pigments and phytohormones. Using the rapid amplification of cDNA ends (RACE) PCR method, we isolated three cDNA-encoding CCDs (McCCD1, McCCD4, and McNCED) from Momordica charantia. Amino acid sequence alignments showed that they share high sequence identity with other orthologous genes. Quantitative real-time RT PCR (reverse transcriptase PCR) analysis revealed that the expression of McCCD1 and McCCD4 was highest in flowers, and lowest in roots and old leaves (O-leaves). During fruit maturation, the two genes displayed differential expression, with McCCD1 peaking at mid-stage maturation while McCCD4 showed the lowest expression at that stage. The mRNA expression level of McNCED, a key enzyme involved in abscisic acid (ABA) biosynthesis, was high during fruit maturation and further increased at the beginning of seed germination. When first-leaf stage plants of M. charantia were exposed to dehydration stress, McNCED mRNA expression was induced primarily in the leaves and, to a lesser extend, in roots and stems. McNCED expression was also induced by high temperature and salinity, while treatment with exogenous ABA led to a decrease. These results should be helpful in determining the substrates and cleavage sites catalyzed by CCD genes in M. charantia, and also in defining the roles of CCDs in growth and development, and in the plant's response to environmental stress. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L.

    PubMed

    Jones, Christopher G; Keeling, Christopher I; Ghisalberti, Emilio L; Barbour, Elizabeth L; Plummer, Julie A; Bohlmann, Jörg

    2008-09-01

    Sandalwood, Santalum album (Santalaceae) is a small hemi-parasitic tropical tree of great economic value. Sandalwood timber contains resins and essential oils, particularly the santalols, santalenes and dozens of other minor sesquiterpenoids. These sesquiterpenoids provide the unique sandalwood fragrance. The research described in this paper set out to identify genes involved in essential oil biosynthesis, particularly terpene synthases (TPS) in S. album, with the long-term aim of better understanding heartwood oil production. Degenerate TPS primers amplified two genomic TPS fragments from S. album, one of which enabled the isolation of two TPS cDNAs, SamonoTPS1 (1731bp) and SasesquiTPS1 (1680bp). Both translated protein sequences shared highest similarity with known TPS from grapevine (Vitis vinifera). Heterologous expression in Escherichia coli produced catalytically active proteins. SamonoTPS1 was identified as a monoterpene synthase which produced a mixture of (+)-alpha-terpineol and (-)-limonene, along with small quantities of linalool, myrcene, (-)-alpha-pinene, (+)-sabinene and geraniol when assayed with geranyl diphosphate. Sesquiterpene synthase SasesquiTPS1 produced the monocyclic sesquiterpene alcohol germacrene D-4-ol and helminthogermacrene, when incubated with farnesyl diphosphate. Also present were alpha-bulnesene, gamma-muurolene, alpha- and beta-selinenes, as well as several other minor bicyclic compounds. Although these sesquiterpenes are present in only minute quantities in the distilled sandalwood oil, the genes and their encoded enzymes described here represent the first TPS isolated and characterised from a member of the Santalaceae plant family and they may enable the future discovery of additional TPS genes in sandalwood.

  3. Characterization and expression of genes encoding three small heat shock proteins in Sesamia inferens (Lepidoptera: Noctuidae).

    PubMed

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2014-12-12

    The pink stem borer, Sesamia inferens (Walker), is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs) encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.

  4. Characterization and Expression of Genes Encoding Three Small Heat Shock Proteins in Sesamia inferens (Lepidoptera: Noctuidae)

    PubMed Central

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2014-01-01

    The pink stem borer, Sesamia inferens (Walker), is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs) encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens. PMID:25514417

  5. Cloning and sequence analysis of a cDNA encoding the alpha-subunit of mouse beta-N-acetylhexosaminidase and comparison with the human enzyme.

    PubMed Central

    Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L

    1992-01-01

    cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046

  6. Characterization of two genes encoding leucine-rich repeat-containing proteins in grass carp Ctenopharyngodon idellus.

    PubMed

    Chang, M X; Nie, P; Xie, H X; Sun, B J; Gao, Q

    2005-01-01

    The cDNAs and genes of two different types of leucine-rich repeat-containing proteins from grass carp (Ctenopharyngodon idellus) were cloned. Homology search revealed that the two genes, designated as GC-GARP and GC-LRG, have 37% and 32% deduced amino-acid sequence similarities with human glycoprotein A repetitions predominant precursor (GARP) and leucine-rich alpha2-glycoprotein (LRG), respectively. The cDNAs of GC-GARP and GC-LRG encoded 664 and 339 amino acid residues, respectively. GC-GARP and GC-LRG contain many distinct structural and/or functional motifs of the leucine-rich repeat (LRR) subfamily, such as multiple conserved 11-residue segments with the consensus sequence LxxLxLxxN/CxL (x can be any amino acid). The genes GC-GARP and GC-LRG consist of two exons, with 4,782 bp and 2,119 bp in total length, respectively. The first exon of each gene contains a small 5'-untranslated region and partial open reading frame. The putative promoter region of GC-GARP was found to contain transcription factor binding sites for GATA-1, IRF4, Oct-1, IRF-7, IRF-1, AP1, GATA-box and NFAT, and the promoter region of GC-LRG for MYC-MAX, MEIS1, ISRE, IK3, HOXA9 and C/EBP alpha. Phylogenetic analysis showed that GC-GARP and mammalian GARPs were clustered into one branch, while GC-LRG and mammalian LRGs were in another branch. The GC-GARP gene was only detected in head kidney, and GC-LRG in the liver, spleen and heart in the copepod (Sinergasilus major)-infected grass carp, indicating the induction of gene expression by the parasite infection. The results obtained in the present study provide insight into the structure of fish LRR genes, and further study should be carried out to understand the importance of LRR proteins in host-pathogen interactions.

  7. The Drosophila gene collection: Identification of putative full-length cDNAs for 70 percent of D. melanogaster genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, Mark; Liao, Guochun; Brokstein, Peter

    2002-08-12

    Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remainingmore » genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.« less

  8. Enzymes that cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravit, Nancy G.; Schmidt, Katherine A.

    The patent application relates to isolated polypeptides that specifically cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides, and to cDNAs encoding the polypeptides. The patent application also relates to nucleic acid constructs, expression vectors and host cells comprising the cDNAs, as well as methods of producing and using the isolated polypeptides for treating pulp and biomass to increase soluble saccharide yield and enrich lignin fractions.

  9. Cloning of stanniocalcin (STC) cDNAs of divergent teleost species: Monomeric STC supports monophyly of the ancient teleosts, the osteoglossomorphs.

    PubMed

    Amemiya, Yutaka; Irwin, David M; Youson, John H

    2006-10-01

    Molecular cloning of teleost stanniocalcin (STC) cDNAs was undertaken in two species of order Osteoglossiformes of subdivision Osteoglossomorpha and one species of each of orders Cypriniformes and Perciformes within the subdivision Euteleostei. The elephantnose (Gnathonemus petersii) and the butterflyfish (Pantadon buchholzi) are basal teleosts in different osteoglossiforme suborders yet their 218 amino acid (aa) mature hormones, from prehormones of 249 and 251aa, respectively, have only 10 cysteine residues. A substitution for cysteine at the intermonomeric disulfide linkage site, implies that their STCs exist as monomeric peptides, as is the case with STC from another osteoglossormorph, arawana [Amemiya, Y., Marra, L.E., Reyhani, N., Youson, J.H., 2002. Stanniocalcin from an ancient teleost: a monomeric form of the hormone and a possible extracorpuscular distribution. Mol. Cell. Endocrinol. 188, 141-150]. The STC cDNA of the generalized teleost and cyprinid, the white sucker (Catostomus commersoni), encodes a prehormone of 249aa with a signal peptide of 31aa and a mature protein of 218aa that possesses 11 cysteine residues. The latter feature is consistent with a previous analysis that white sucker mature STC is a glycosylated, homodimeric peptide [Amemiya, Y., Marra, L.E., Reyhani, N., Youson, J.H., 2002. Stanniocalcin from an ancient teleost: a monomeric form of the hormone and a possible extracorpuscular distribution. Mol. Cell. Endocrinol. 188, 141-150]. An open reading frame of the STC cDNA of the derived teleost and perciforme, the smallmouth bass (Micropterus dolomieui), encodes a prehormone of 255aa with a signal peptide of 33aa and a mature protein of 222aa. The position of the 11 cysteines in smallmouth bass STC suggests that it exists as a homodimeric peptide. A phylogenetic analysis, using the new STC-1 amino acid sequences and those in the gene data base provided strong support for monophyly of the Osteoglossomorpha and indicated, with positioning of

  10. Continuous in vitro evolution of bacteriophage RNA polymerase promoters

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Banerji, A.; Joyce, G. F.

    1994-01-01

    Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.

  11. Genes from the medicinal leech (Hirudo medicinalis) coding for unusual enzymes that specifically cleave endo-epsilon (gamma-Glu)-Lys isopeptide bonds and help to dissolve blood clots.

    PubMed

    Zavalova, L; Lukyanov, S; Baskova, I; Snezhkov, E; Akopov, S; Berezhnoy, S; Bogdanova, E; Barsova, E; Sverdlov, E D

    1996-11-27

    We previously detected in salivary gland secretions of the medicinal leech (Hirudo medicinalis) a novel enzymatic activity, endo-epsilon(gamma-Glu)-Lys isopeptidase, which cleaves isopeptide bonds formed by transglutaminase (Factor XIIIa) between glutamine gamma-carboxamide and the epsilon-amino group of lysine. Such isopeptide bonds, either within or between protein polypeptide chains are formed in many biological processes. However, before we started our work no enzymes were known to be capable of specifically splitting isopeptide bonds in proteins. The isopeptidase activity we detected was specific for isopeptide bonds. The enzyme was termed destabilase. Here we report the first purification of destabilase, part of its amino acid sequence isolation and sequencing of two related cDNAs derived from the gene family that encodes destabilase proteins, and the detection of isopeptidase activity encoded by one of these cDNAs cloned in a baculovirus expression vector. The deduced mature protein products of these cDNAs contain 115 and 116 amino acid residues, including 14 highly conserved Cys residues, and are formed from precursors containing specific leader peptides. No homologous sequences were found in public databases.

  12. Identification of cDNAs encoding viper venom hyaluronidases: cross-generic sequence conservation of full-length and unusually short variant transcripts.

    PubMed

    Harrison, Robert A; Ibison, Frances; Wilbraham, Davina; Wagstaff, Simon C

    2007-05-01

    The immobilisation of prey by snakes is most efficiently achieved by the rapid dissemination of venom from its site of injection into the blood stream. Hyaluronidase is a common component of snake venoms and has been termed the "venom spreading factor". In the absence of nucleotide or protein sequence data to confirm the functional identity of this venom component, we interrogated a venom gland EST database for the saw-scaled viper, Echis ocellatus (Nigeria), using the gene ontology (GO) term "carbohydrate metabolism". A single hyalurononglucosaminadase-activity matching sequence (EOC00242) was found and used to design PCR primers to acquire the full-length cDNA sequence. Although very different from the bee venom and mammalian hyaluronidase sequences, the E. ocellatus sequence retained all the catalytic, positional and structural residues that characterise this class of carbohydrate metabolising hydrolases. An extraordinarily high level of sequence identity (>95%) was observed in analogous venom gland cDNA sequences isolated (by PCR) from another saw-scaled viper species, E. pyramidum leakeyi (Kenya), and from the sahara horned viper, Cerastes cerastes cerastes (Egypt) and the puff adder, Bitis arietans (Nigeria). Smaller amplicons, lacking hyaluronidase catalytic residues because of 768 bp or 855 bp central deletions, appear to encode either truncated peptides without hyaluronidase activity, or are non-translated transcripts because they lack consensus translation initiating motifs.

  13. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    PubMed

    Hitz, Benjamin C; Rowe, Laurence D; Podduturi, Nikhil R; Glick, David I; Baymuradov, Ulugbek K; Malladi, Venkat S; Chan, Esther T; Davidson, Jean M; Gabdank, Idan; Narayana, Aditi K; Onate, Kathrina C; Hilton, Jason; Ho, Marcus C; Lee, Brian T; Miyasato, Stuart R; Dreszer, Timothy R; Sloan, Cricket A; Strattan, J Seth; Tanaka, Forrest Y; Hong, Eurie L; Cherry, J Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.

  14. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata

    PubMed Central

    Podduturi, Nikhil R.; Glick, David I.; Baymuradov, Ulugbek K.; Malladi, Venkat S.; Chan, Esther T.; Davidson, Jean M.; Gabdank, Idan; Narayana, Aditi K.; Onate, Kathrina C.; Hilton, Jason; Ho, Marcus C.; Lee, Brian T.; Miyasato, Stuart R.; Dreszer, Timothy R.; Sloan, Cricket A.; Strattan, J. Seth; Tanaka, Forrest Y.; Hong, Eurie L.; Cherry, J. Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package. PMID:28403240

  15. A human systemic lupus erythematosus-related anti-cardiolipin/single-stranded DNA autoantibody is encoded by a somatically mutated variant of the developmentally restricted 51P1 V[sub H] gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Es, J.H.; Aanstoot, H.; Gmelig-Meyling, F.H.J.

    1992-09-15

    The authors report the Ig H and L chain V region sequences from the cDNAs encoding a monoclonal human IgG anti-cardiolipin/ssDNA autoantibody (R149) derived from a patient with active SLE. Comparison with the germ-line V-gene repertoire of this patient revealed that R149 likely arose as a consequence of an Ag-driven selection process. The Ag-binding portions of the V regions were characterized by a high number of arginine residues, a property that has been associated with anti-dsDNA autoantibodies from lupus-prone mice and patients with SLE. The V[sub H] gene encoding autoantibody R149 was a somatically mutated variant of the 51P1 genemore » segment, which is frequently associated with the restricted fetal B cell repertoire, malignant CD5 B cells, and natural antibodies. These data suggest that in SLE patients a common antigenic stimulus may evoke anti-DNA and anti-cardiolipin autoantibodies and provide further evidence that a small set of developmentally restricted V[sub H] genes can give rise to disease-associated autoantibodies through Ag-selected somatic mutations. 42 refs., 5 figs.« less

  16. The Text Encoding Initiative: Flexible and Extensible Document Encoding.

    ERIC Educational Resources Information Center

    Barnard, David T.; Ide, Nancy M.

    1997-01-01

    The Text Encoding Initiative (TEI), an international collaboration aimed at producing a common encoding scheme for complex texts, examines the requirement for generality versus the requirement to handle specialized text types. Discusses how documents and users tax the limits of fixed schemes requiring flexible extensible encoding to support…

  17. De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis

    DOE PAGES

    Cárdenas-Conejo, Yair; Carballo-Uicab, Víctor; Lieberman, Meric; ...

    2015-10-28

    Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds frommore » B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway. In conclusion, the identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana.« less

  18. De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-Conejo, Yair; Carballo-Uicab, Víctor; Lieberman, Meric

    Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds frommore » B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway. In conclusion, the identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana.« less

  19. Functional endogenous LINE-1 retrotransposons are expressed and mobilized in rat chloroleukemia cells.

    PubMed

    Kirilyuk, Alexander; Tolstonog, Genrich V; Damert, Annette; Held, Ulrike; Hahn, Silvia; Löwer, Roswitha; Buschmann, Christian; Horn, Axel V; Traub, Peter; Schumann, Gerald G

    2008-02-01

    LINE-1 (L1) is a highly successful autonomous non-LTR retrotransposon and a major force shaping mammalian genomes. Although there are about 600 000 L1 copies covering 23% of the rat genome, full-length rat L1s (L1Rn) with intact open reading frames (ORFs) representing functional master copies for retrotransposition have not been identified yet. In conjunction with studies to elucidate the role of L1 retrotransposons in tumorigenesis, we isolated and characterized 10 different cDNAs from transcribed full-length L1Rn elements in rat chloroleukemia (RCL) cells, each encoding intact ORF1 proteins (ORF1p). We identified the first functional L1Rn retrotransposon from this pool of cDNAs, determined its activity in HeLa cells and in the RCL cell line the cDNAs originated from and demonstrate that it is mobilized in the tumor cell line in which it is expressed. Furthermore, we generated monoclonal antibodies directed against L1Rn ORF1 and ORF2-encoded recombinant proteins, analyzed the expression of L1-encoded proteins and found ORF1p predominantly in the nucleus. Our results support the hypothesis that the reported explosive amplification of genomic L1Rn sequences after their transcriptional activation in RCL cells is based on L1 retrotransposition. Therefore, L1 activity might be one cause for genomic instability observed during the progression of leukemia.

  20. [Cloning, sequencing and prokaryotic expression of cDNAs for the antifreeze protein family from the beetle Tenebrio molitor].

    PubMed

    Liu, Zhong-Yuan; Wang, Yun; Lü, Guo-Dong; Wang, Xian-Lei; Zhang, Fu-Chun; Ma, Ji

    2006-12-01

    The partial cDNA sequence coding for the antifreeze proteins in the Tenebrio molitor was obtained by RT-PCR. Sequence analysis revealed nine putative cDNAs with a high degree of homology to Tenebrio molitor antifreeze proteins. The recombinant pGEX-4T-1-tmafp-XJ430 was introduced into E. coli BL21 to induce a GST fusion protein by IPTG. SDS-PAGE of the fusion protein demonstrated that the antifreeze protein migrated at a size of 38 kDa. The immunization was performed by intra-muscular injection of pCDNA3-tmafp-XJ430, and then antiserum was detected by ELISA. The titer of the antibody was 1:2,000. Western blotting analysis showed the antiserum was specific against the antifreeze protein. This finding could lead to further investigation of the properties and function of antifreeze proteins.

  1. Characterization of the gene encoding the polymorphic immunodominant molecule, a neutralizing antigen of Theileria parva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toye, P.G.; Metzelaar, M.J.; Wijngaard, P.L.J.

    1995-08-01

    Theileria parva, a tick-transmitted protozoan parasite related to Plasmodium spp., causes the disease East Coast fever, an acute and usually fatal lymphoproliferative disorder of cattle in Africa. Previous studies using sera from cattle that have survived infection identified a polymorphic immunodominant molecule (PIM) that is expressed by both the infective sporozoite stage of the parasite and the intracellular schizont. Here we show that mAb specific for the PIM Ag can inhibit sporozoite invasion of lymphocytes in vitro. A cDNA clone encoding the PIM Ag of the T. parva (Muguga) stock was obtained by using these mAb in a novel eukaryoticmore » expression cloning system that allows isolation of cDNA encoding cytoplasmic or surface Ags. To establish the molecular basis of the polymorphism of PIM, the cDNA of the PIM Ag from a buffalo-derived T. parva stock was isolated and its sequence was compared with that of the cattle-derived Muguga PIM. The two cDNAs showed considerable identity in both the 5{prime} and 3{prime} regions, but there was substantial sequence divergence in the central regions. Several types of repeated sequences were identified in the variant regions. In the Muguga form of the molecule, there were five tandem repeats of the tetrapeptide, QPEP, that were shown, by transfection of a deleted version of the PIM gene, not to react with several anti-PIM mAbs. By isolating and sequencing the genomic version of the gene, we identified two small introns in the 3{prime} region of the gene. Finally, we showed that polyclonal rat Abs against recombinant PIM neutralize sporozoite infectivity in vitro, suggesting that the PIM Ag should be evaluated for its capacity to immunize cattle against East Coast Fever.« less

  2. A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin.

    PubMed

    Wice, B M; Gordon, J I

    1992-01-01

    The human intestinal epithelium is rapidly and perpetually renewed as the descendants of multipotent stem cells located in crypts undergo proliferation, differentiation, and eventual exfoliation during a very well organized migration along the crypt to villus axis. The mechanisms that establish and maintain this balance between proliferation and differentiation are largely unknown. We have utilized HT-29 cells, derived from a human colon adenocarcinoma, as a model system for identifying gene products that may regulate these processes. Proliferating HT-29 cells cultured in the absence of glucose (e.g., using inosine as the carbon source) have some of the characteristics of undifferentiated but committed crypt epithelial cells while postconfluent cells cultured in the absence of glucose resemble terminally differentiated enterocytes or goblet cells. A cDNA library, constructed from exponentially growing HT-29 cells maintained in inosine-containing media, was sequentially screened with a series of probes depleted of sequences encoding housekeeping functions and enriched for intestine-specific sequences that are expressed in proliferating committed, but not differentiated, epithelial cells. Of 100,000 recombinant phage surveyed, one was found whose cDNA was derived from an apparently gut-specific mRNA. It encodes a 316 residue, 35,463-D protein that is a new member of the annexin/lipocortin family. Other family members have been implicated in regulation of cellular growth and in signal transduction pathways. RNA blot and in situ hybridization studies indicate that the gene encoding this new annexin exhibits region-specific expression along both axes of the human gut: (a) highest levels of mRNA are present in the jejunum with marked and progressive reductions occurring distally; (b) its mRNA appears in crypt-associated epithelial cells and increases in concentration as they exit the crypt. Villus-associated epithelial cells continue to transcribe this gene during their

  3. Dehydration-induced tps gene transcripts from an anhydrobiotic nematode contain novel spliced leaders and encode atypical GT-20 family proteins.

    PubMed

    Goyal, K; Browne, J A; Burnell, A M; Tunnacliffe, A

    2005-06-01

    Accumulation of the non-reducing disaccharide trehalose is associated with desiccation tolerance during anhydrobiosis in a number of invertebrates, but there is little information on trehalose biosynthetic genes in these organisms. We have identified two trehalose-6-phosphate synthase (tps) genes in the anhydrobiotic nematode Aphelenchus avenae and determined full length cDNA sequences for both; for comparison, full length tps cDNAs from the model nematode, Caenorhabditis elegans, have also been obtained. The A. avenae genes encode very similar proteins containing the catalytic domain characteristic of the GT-20 family of glycosyltransferases and are most similar to tps-2 of C. elegans; no evidence was found for a gene in A. avenae corresponding to Ce-tps-1. Analysis of A. avenae tps cDNAs revealed several features of interest, including alternative trans-splicing of spliced leader sequences in Aav-tps-1, and four different, novel SL1-related trans-spliced leaders, which were different to the canonical SL1 sequence found in all other nematodes studied. The latter observation suggests that A. avenae does not comply with the strict evolutionary conservation of SL1 sequences observed in other species. Unusual features were also noted in predicted nematode TPS proteins, which distinguish them from homologues in other higher eukaryotes (plants and insects) and in micro-organisms. Phylogenetic analysis confirmed their membership of the GT-20 glycosyltransferase family, but indicated an accelerated rate of molecular evolution. Furthermore, nematode TPS proteins possess N- and C-terminal domains, which are unrelated to those of other eukaryotes: nematode C-terminal domains, for example, do not contain trehalose-6-phosphate phosphatase-like sequences, as seen in plant and insect homologues. During onset of anhydrobiosis, both tps genes in A. avenae are upregulated, but exposure to cold or increased osmolarity also results in gene induction, although to a lesser extent

  4. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    PubMed Central

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  5. Construction and analysis of cDNA libraries from the antennae of Batocera horsfieldi and expression pattern of putative odorant binding proteins

    USDA-ARS?s Scientific Manuscript database

    In the natural environment, the longhorned beetle, Batocera horsfieldi (Hope) (Coleoptera: Cerambycidae), finds it’s maturation-feeding and host plants by using chemical cues. In this study, we described the identification and characterization of four new cDNAs that encode Minus-C odorant binding pr...

  6. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    PubMed

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  7. Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata.

    PubMed

    Dai, Ling-Peng; Dong, Xin-Jiao; Ma, Hai-Hu

    2012-04-01

    Anthocyanins inducibly synthesized by Cd treatment showed high antioxidant activity and might be involved in internal detoxification mechanisms of Azolla imbricata against Cd toxicity. In order to understand anthocyanin biosynthesis mechanism during Cd stress, the cDNAs encoding chalcone synthase (CHS) and dihydroflavonol reductase (DFR), two key enzymes in the anthocyanin synthesis pathway, were isolated from A. imbricata. Deduced amino acid sequences of the cDNAs showed high homology to the sequences from other plants. Expression of AiDFR, and to a lesser extent AiCHS, was significantly induced in Cd treatment plant in comparison with the control. CHS and DFR enzymatic activities showed similar pattern changes with these genes expression during Cd stress. These results strongly indicate that Cd induced anthocyanin accumulation is probably mediated by up-regulation of structural genes including CHS and DFR, which might further increase the activities of enzymes encoded by these structural genes that control the anthocyanin biosynthetic steps. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system

    PubMed Central

    Bannasch, Detlev; Mehrle, Alexander; Glatting, Karl-Heinz; Pepperkok, Rainer; Poustka, Annemarie; Wiemann, Stefan

    2004-01-01

    We have implemented LIFEdb (http://www.dkfz.de/LIFEdb) to link information regarding novel human full-length cDNAs generated and sequenced by the German cDNA Consortium with functional information on the encoded proteins produced in functional genomics and proteomics approaches. The database also serves as a sample-tracking system to manage the process from cDNA to experimental read-out and data interpretation. A web interface enables the scientific community to explore and visualize features of the annotated cDNAs and ORFs combined with experimental results, and thus helps to unravel new features of proteins with as yet unknown functions. PMID:14681468

  9. Complementary DNA sequencing and identification of mRNAs from the venomous gland of Agkistrodon piscivorus leucostoma.

    PubMed

    Jia, Ying; Cantu, Bruno A; Sánchez, Elda E; Pérez, John C

    2008-06-15

    To advance our knowledge on the snake venom composition and transcripts expressed in venom gland at the molecular level, we constructed a cDNA library from the venom gland of Agkistrodon piscivorus leucostoma for the generation of expressed sequence tags (ESTs) database. From the randomly sequenced 2112 independent clones, we have obtained ESTs for 1309 (62%) cDNAs, which showed significant deduced amino acid sequence similarity (scores >80) to previously characterized proteins in National Center for Biotechnology Information (NCBI) database. Ribosomal proteins make up 47 clones (2%) and the remaining 756 (36%) cDNAs represent either unknown identity or show BLASTX sequence identity scores of <80 with known GenBank accessions. The most highly expressed gene encoding phospholipase A(2) (PLA(2)) accounting for 35% of A. p. leucostoma venom gland cDNAs was identified and further confirmed by crude venom applied to sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis and protein sequencing. A total of 180 representative genes were obtained from the sequence assemblies and deposited to EST database. Clones showing sequence identity to disintegrins, thrombin-like enzymes, hemorrhagic toxins, fibrinogen clotting inhibitors and plasminogen activators were also identified in our EST database. These data can be used to develop a research program that will help us identify genes encoding proteins that are of medical importance or proteins involved in the mechanisms of the toxin venom.

  10. Novel transcripts of the estrogen receptor α gene in channel catfish

    USGS Publications Warehouse

    Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian

    2000-01-01

    Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERα cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERα variants of different sizes. Relative to the catfish ERα (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERα (36 residues longer) and Short-ERα (389 residues shorter). The 5′-end of Long-ERα cDNA is identical to that of Medium-ERα but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERα binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ERα but lower than reported for catfish ERβ. Short-ERα cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERα RNAs that include the size range of the ERα cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERα cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERα antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERα antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERα mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may

  11. Identification and characterization of TCRgamma and TCRdelta chains in channel catfish, Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    Channel catfish, Ictalurus punctatus, T cell receptors (TCR) gamma and delta were identified by mining of expressed sequence tag databases and full length sequences were obtained by 5'-RACE and RT-PCR protocols. cDNAs for each of these TCR chains encode typical variable (V), (diversity; D), joining ...

  12. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE.

    PubMed

    Trinh, Quang M; Jen, Fei-Yang Arthur; Zhou, Ziru; Chu, Kar Ming; Perry, Marc D; Kephart, Ellen T; Contrino, Sergio; Ruzanov, Peter; Stein, Lincoln D

    2013-07-22

    Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around.

  13. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE

    PubMed Central

    2013-01-01

    Background Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. Results In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Conclusions Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around. PMID:23875683

  14. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson

    1997-01-01

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

  15. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1997-10-21

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.

  16. Rescue of a recombinant Machupo virus from cloned cDNAs and in vivo characterization in interferon (αβ/γ) receptor double knockout mice.

    PubMed

    Patterson, Michael; Seregin, Alexey; Huang, Cheng; Kolokoltsova, Olga; Smith, Jennifer; Miller, Milagros; Smith, Jeanon; Yun, Nadezhda; Poussard, Allison; Grant, Ashley; Tigabu, Bersabeh; Walker, Aida; Paessler, Slobodan

    2014-02-01

    Machupo virus (MACV) is the etiological agent of Bolivian hemorrhagic fever (BHF), a reemerging and neglected tropical disease associated with high mortality. The prototypical strain of MACV, Carvallo, was isolated from a human patient in 1963, but minimal in vitro and in vivo characterization has been reported. To this end, we utilized reverse genetics to rescue a pathogenic MACV from cloned cDNAs. The recombinant MACV (rMACV) had in vitro growth properties similar to those of the parental MACV. Both viruses caused similar disease development in alpha/beta and gamma interferon receptor knockout mice, including neurological disease development and high mortality. In addition, we have identified a novel murine model with mortality and neurological disease similar to BHF disease reported in humans and nonhuman primates.

  17. Plasmonic Encoding

    DTIC Science & Technology

    2014-10-06

    The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of thiolated small...counterfeiting purposes. The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of...environments ( like the surface of human hair). 2. Nanoflares In 2007, we first introduced the concept of nanoflares. Nanoflares are a new class of

  18. Molecular characterization of cDNAs encoding G protein alpha and beta subunits and study of their temporal and spatial expression patterns in Nicotiana plumbaginifolia Viv.

    PubMed

    Kaydamov, C; Tewes, A; Adler, K; Manteuffel, R

    2000-04-25

    We have isolated cDNA sequences encoding alpha and beta subunits of potential G proteins from a cDNA library prepared from somatic embryos of Nicotiana plumbaginifolia Viv. at early developmental stages. The predicted NPGPA1 and NPGPB1 gene products are 75-98% identical to the known respective plant alpha and beta subunits. Southern hybridizations indicate that NPGPA1 is probably a single-copy gene, whereas at least two copies of NPGPB1 exist in the N. plumbaginifolia genome. Northern analyses reveal that both NPGPA1 and NPGPB1 mRNA are expressed in all embryogenic stages and plant tissues examined and their expression is obviously regulated by the plant hormone auxin. Immunohistological localization of NPGPalpha1 and NPGPbeta1 preferentially on plasma and endoplasmic reticulum membranes and their immunochemical detection exclusively in microsomal cell fractions implicate membrane association of both proteins. The temporal and spatial expression patterns of NPGPA1 and NPGPB1 show conformity as well as differences. This could account for not only cooperative, but also individual activities of both subunits during embryogenesis and plant development.

  19. Encoding processes during retrieval tasks.

    PubMed

    Buckner, R L; Wheeler, M E; Sheridan, M A

    2001-04-01

    Episodic memory encoding is pervasive across many kinds of task and often arises as a secondary processing effect in tasks that do not require intentional memorization. To illustrate the pervasive nature of information processing that leads to episodic encoding, a form of incidental encoding was explored based on the "Testing" phenomenon: The incidental-encoding task was an episodic memory retrieval task. Behavioral data showed that performing a memory retrieval task was as effective as intentional instructions at promoting episodic encoding. During fMRI imaging, subjects viewed old and new words and indicated whether they remembered them. Relevant to encoding, the fate of the new words was examined using a second, surprise test of recognition after the imaging session. fMRI analysis of those new words that were later remembered revealed greater activity in left frontal regions than those that were later forgotten - the same pattern of results as previously observed for traditional incidental and intentional episodic encoding tasks. This finding may offer a partial explanation for why repeated testing improves memory performance. Furthermore, the observation of correlates of episodic memory encoding during retrieval tasks challenges some interpretations that arise from direct comparisons between "encoding tasks" and "retrieval tasks" in imaging data. Encoding processes and their neural correlates may arise in many tasks, even those nominally labeled as retrieval tasks by the experimenter.

  20. Recent advances on the encoding and selection methods of DNA-encoded chemical library.

    PubMed

    Shi, Bingbing; Zhou, Yu; Huang, Yiran; Zhang, Jianfu; Li, Xiaoyu

    2017-02-01

    DNA-encoded chemical library (DEL) has emerged as a powerful and versatile tool for ligand discovery in chemical biology research and in drug discovery. Encoding and selection methods are two of the most important technological aspects of DEL that can dictate the performance and utilities of DELs. In this digest, we have summarized recent advances on the encoding and selection strategies of DEL and also discussed the latest developments on DNA-encoded dynamic library, a new frontier in DEL research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. N-Consecutive-Phase Encoder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Lee, Ho-Kyoung; Weber, Charles

    1995-01-01

    N-consecutive-phase encoder (NCPE) is conceptual encoder for generating alphabet of N consecutive full-response continuous-phase-modulation (CPM) signals. Enables use of binary preencoder of higher rate than used with simple continuous-phase encoder (CPE). NCPE makes possible to achieve power efficiencies and bandwidth efficiencies greater than conventional trellis coders with continuous-phase frequency-shift keying (CPFSK).

  2. 47 CFR 11.32 - EAS Encoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false EAS Encoder. 11.32 Section 11.32....32 EAS Encoder. (a) EAS Encoders must at a minimum be capable of encoding the EAS protocol described... must additionally provide the following minimum specifications: (1) Encoder programming. Access to...

  3. Molecular Characterization of Tomato 3-Dehydroquinate Dehydratase-Shikimate:NADP Oxidoreductase1

    PubMed Central

    Bischoff, Markus; Schaller, Andreas; Bieri, Fabian; Kessler, Felix; Amrhein, Nikolaus; Schmid, Jürg

    2001-01-01

    Analysis of cDNAs encoding the bifunctional 3-dehydroquinate dehydratase-shikimate:NADP oxidoreductase (DHQase-SORase) from tomato (Lycopersicon esculentum) revealed two classes of cDNAs that differed by 57 bp within the coding regions, but were otherwise identical. Comparison of these cDNA sequences with the sequence of the corresponding single gene unequivocally proved that the primary transcript is differentially spliced, potentially giving rise to two polypeptides that differ by 19 amino acids. Quantitative real-time polymerase chain reaction revealed that the longer transcript constitutes at most 1% to 2% of DHQase-SORase transcripts. Expression of the respective polypeptides in Escherichia coli mutants lacking the DHQase or the SORase activity gave functional complementation only in case of the shorter polypeptide, indicating that skipping of a potential exon is a prerequisite for the production of an enzymatically active protein. The deduced amino acid sequence revealed that the DHQase-SORase is most likely synthesized as a precursor with a very short (13-amino acid) plastid-specific transit peptide. Like other genes encoding enzymes of the prechorismate pathway in tomato, this gene is elicitor-inducible. Tissue-specific expression resembles the patterns obtained for 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 2 and dehydroquinate synthase genes. This work completes our studies of the prechorismate pathway in that cDNAs for all seven enzymes (including isozymes) of the prechorismate pathway from tomato have now been characterized. PMID:11299368

  4. Gaucher disease: Pseudoreversion of a disease mutation`s effects--implications for structure/function and genotype/phenotype correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, E.; Mear, J; Grabowski, G.A.

    1994-09-01

    Numerous mutations ({approximately}45) of the acid {beta}-glucosidase gene have been identified in patients with Gaucher disease. Many of these have been characterized by partial sequencing of cDNAs derived by RT-PCR or PCR of genomic DNA. In addition, genotype/phenotype correlations have been based on screening for known mutations. Thus, only a part of the gene is characterized in any population of affected patients. Several Gaucher disease alleles contain multiple, authentic point mutations that raises concern about conclusions based on only partial genetic characterization. Several wild-type cDNAs for acid {beta}-glucosidase have been sequenced. One contained a cloning artifact encoding R495H. We expressedmore » this cDNA and showed that the R495H enzyme had normal kinetic and stability properties. A disease-associated allele encoding R496H has been found by several groups. The close association and similarities of these two substitutions led us to question the disease casuality of the R496H allele. To evaluate this, we created and/or expressed cDNAs encoding R495, R496 (wild-type), (R495H, R496), (R495, R496H) and (R495H, R496H). The (wild-type) and (R495H, R496) enzymes had indistinguishable properties whereas the (R495, R496H) enzyme was essentially inactive. The introduction of both mutations (R495H, R496H) produced an enzyme whose activity was 25 to 50% of the wild-type. These results indicate that a pseudoreversion to a functional enzyme can occur by introducing a functionally neutral mutation together with a severe mutation. These results have major implications to structure/function and genotype/phenotype correlations in this disease.« less

  5. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  6. [Clinical observation on auricular point magnetotherapy for treatment of senile low back pain].

    PubMed

    Sun, Gui-Ping

    2007-02-01

    To compare the therapeutic effects of auricular point magnetotherapy and auricular point sticking of Vaccaria seed on senile low back pain. Sixty cases, aged 60 or over 60 years with back pain, were randomly divided into 2 groups, a control group and a test group. The control group were treated with auricular sticking of Vaccaria seed with no pressing, and the test group with sticking magnetic bead of 66 gauss each piece with no pressing. Auricular points, Shenmen, Kidney, Bladder, Yaodizhui, Gluteus, Liver and Spleen were selected. Three weeks constituted one course. The effects before, during and after the course were assessed by questionnaire about back pain. Compared with the control group, in the test group the back pain was more effectively improved, including reducing pain and numbness in the back and the legs, decreasing the disorder of physical strength induced by this disease, and improving daily life quality of the patient. Follow-up survey for 2-4 weeks showed the effects still were kept. Auricular magnetotherapy can effectively improve senile back pain.

  7. Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes.

    PubMed Central

    Pérez-Gonzalez, J A; De Graaff, L H; Visser, J; Ramón, D

    1996-01-01

    Two Aspergillus nidulans genes, xlnA and xlnB, encoding the X22 and X24 xylanases from this fungus, respectively, have been cloned and sequenced. Their cDNAs have been expressed in a laboratory Saccharomyces cerevisiae strain under the control of a constitutive yeast promoter, resulting in the construction of recombinant xylanolytic yeast strains. PMID:8787417

  8. fMRI differences in encoding and retrieval of pictures due to encoding strategy in the elderly.

    PubMed

    Mandzia, Jennifer L; Black, Sandra E; McAndrews, Mary Pat; Grady, Cheryl; Graham, Simon

    2004-01-01

    Functional MRI (fMRI) was used to examine the neural correlates of depth of processing during encoding and retrieval of photographs in older normal volunteers (n = 12). Separate scans were run during deep (natural vs. man-made decision) and shallow (color vs. black-and-white decision) encoding and during old/new recognition of pictures initially presented in one of the two encoding conditions. A baseline condition consisting of a scrambled, color photograph was used as a contrast in each scan. Recognition accuracy was greater for the pictures on which semantic decisions were made at encoding, consistent with the expected levels of processing effect. A mixed-effects model was used to compare fMRI differences between conditions (deep-baseline vs. shallow-baseline) in both encoding and retrieval. For encoding, this contrast revealed greater activation associated with deep encoding in several areas, including the left parahippocampal gyrus (PHG), left middle temporal gyrus, and left anterior thalamus. Increased left hippocampal, right dorsolateral, and inferior frontal activations were found for recognition of items that had been presented in the deep relative to the shallow encoding condition. We speculate that the modulation of activity in these regions by the depth of processing manipulation shows that these regions support effective encoding and successful retrieval. A direct comparison between encoding and retrieval revealed greater activation during retrieval in the medial temporal (right hippocampus and bilateral PHG), anterior cingulate, and bilateral prefrontal (inferior and dorsolateral). Most notably, greater right posterior PHG was found during encoding compared to recognition. Focusing on the medial temporal lobe (MTL) region, our results suggest a greater involvement of both anterior MTL and prefrontal regions in retrieval compared to encoding. Copyright 2003 Wiley-Liss, Inc.

  9. Functional domains of the poliovirus receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Satoshi; Ise, Iku; Nomoto, Akio

    1991-05-15

    A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor.more » Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.« less

  10. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

    PubMed

    Landt, Stephen G; Marinov, Georgi K; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E; Bickel, Peter; Brown, James B; Cayting, Philip; Chen, Yiwen; DeSalvo, Gilberto; Epstein, Charles; Fisher-Aylor, Katherine I; Euskirchen, Ghia; Gerstein, Mark; Gertz, Jason; Hartemink, Alexander J; Hoffman, Michael M; Iyer, Vishwanath R; Jung, Youngsook L; Karmakar, Subhradip; Kellis, Manolis; Kharchenko, Peter V; Li, Qunhua; Liu, Tao; Liu, X Shirley; Ma, Lijia; Milosavljevic, Aleksandar; Myers, Richard M; Park, Peter J; Pazin, Michael J; Perry, Marc D; Raha, Debasish; Reddy, Timothy E; Rozowsky, Joel; Shoresh, Noam; Sidow, Arend; Slattery, Matthew; Stamatoyannopoulos, John A; Tolstorukov, Michael Y; White, Kevin P; Xi, Simon; Farnham, Peggy J; Lieb, Jason D; Wold, Barbara J; Snyder, Michael

    2012-09-01

    Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.

  11. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia

    PubMed Central

    Landt, Stephen G.; Marinov, Georgi K.; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E.; Bickel, Peter; Brown, James B.; Cayting, Philip; Chen, Yiwen; DeSalvo, Gilberto; Epstein, Charles; Fisher-Aylor, Katherine I.; Euskirchen, Ghia; Gerstein, Mark; Gertz, Jason; Hartemink, Alexander J.; Hoffman, Michael M.; Iyer, Vishwanath R.; Jung, Youngsook L.; Karmakar, Subhradip; Kellis, Manolis; Kharchenko, Peter V.; Li, Qunhua; Liu, Tao; Liu, X. Shirley; Ma, Lijia; Milosavljevic, Aleksandar; Myers, Richard M.; Park, Peter J.; Pazin, Michael J.; Perry, Marc D.; Raha, Debasish; Reddy, Timothy E.; Rozowsky, Joel; Shoresh, Noam; Sidow, Arend; Slattery, Matthew; Stamatoyannopoulos, John A.; Tolstorukov, Michael Y.; White, Kevin P.; Xi, Simon; Farnham, Peggy J.; Lieb, Jason D.; Wold, Barbara J.; Snyder, Michael

    2012-01-01

    Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals. PMID:22955991

  12. Unconscious relational encoding depends on hippocampus

    PubMed Central

    Duss, Simone B.; Reber, Thomas P.; Hänggi, Jürgen; Schwab, Simon; Wiest, Roland; Müri, René M.; Brugger, Peter; Gutbrod, Klemens

    2014-01-01

    Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23–60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system. PMID:25273998

  13. Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress

    PubMed Central

    Ritchey, Maureen; McCullough, Andrew M.; Ranganath, Charan; Yonelinas, Andrew P.

    2016-01-01

    Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding “tags” for determining the impact of consolidation manipulations on memory. Here, we used fMRI in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. PMID:27774683

  14. Landscape Encodings Enhance Optimization

    PubMed Central

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  15. PNA-encoded chemical libraries.

    PubMed

    Zambaldo, Claudio; Barluenga, Sofia; Winssinger, Nicolas

    2015-06-01

    Peptide nucleic acid (PNA)-encoded chemical libraries along with DNA-encoded libraries have provided a powerful new paradigm for library synthesis and ligand discovery. PNA-encoding stands out for its compatibility with standard solid phase synthesis and the technology has been used to prepare libraries of peptides, heterocycles and glycoconjugates. Different screening formats have now been reported including selection-based and microarray-based methods that have yielded specific ligands against diverse target classes including membrane receptors, lectins and challenging targets such as Hsp70. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics.

    PubMed

    Aoki, Koh; Yano, Kentaro; Suzuki, Ayako; Kawamura, Shingo; Sakurai, Nozomu; Suda, Kunihiro; Kurabayashi, Atsushi; Suzuki, Tatsuya; Tsugane, Taneaki; Watanabe, Manabu; Ooga, Kazuhide; Torii, Maiko; Narita, Takanori; Shin-I, Tadasu; Kohara, Yuji; Yamamoto, Naoki; Takahashi, Hideki; Watanabe, Yuichiro; Egusa, Mayumi; Kodama, Motoichiro; Ichinose, Yuki; Kikuchi, Mari; Fukushima, Sumire; Okabe, Akiko; Arie, Tsutomu; Sato, Yuko; Yazawa, Katsumi; Satoh, Shinobu; Omura, Toshikazu; Ezura, Hiroshi; Shibata, Daisuke

    2010-03-30

    The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional

  17. Video time encoding machines.

    PubMed

    Lazar, Aurel A; Pnevmatikakis, Eftychios A

    2011-03-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value.

  18. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K [Idaho Falls, ID

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  19. Production of Fatty Acid Components of Meadowfoam Oil in Somatic Soybean Embryos

    PubMed Central

    Cahoon, Edgar B.; Marillia, Elizabeth-France; Stecca, Kevin L.; Hall, Sarah E.; Taylor, David C.; Kinney, Anthony J.

    2000-01-01

    The seed oil of meadowfoam (Limnanthes alba) and other Limnanthes spp. is enriched in the unusual fatty acid Δ5-eicosenoic acid (20:1Δ5). This fatty acid has physical and chemical properties that make the seed oil of these plants useful for a number of industrial applications. An expressed sequence tag approach was used to identify cDNAs for enzymes involved in the biosynthesis of 20:1Δ5). By random sequencing of a library prepared from developing Limnanthes douglasii seeds, a class of cDNAs was identified that encode a homolog of acyl-coenzyme A (CoA) desaturases found in animals, fungi, and cyanobacteria. Expression of a cDNA for the L. douglasii acyl-CoA desaturase homolog in somatic soybean (Glycine max) embryos behind a strong seed-specific promoter resulted in the accumulation of Δ5-hexadecenoic acid to amounts of 2% to 3% (w/w) of the total fatty acids of single embryos. Δ5-Octadecenoic acid and 20:1Δ5 also composed <1% (w/w) each of the total fatty acids of these embryos. In addition, cDNAs were identified from the L. douglasii expressed sequence tags that encode a homolog of fatty acid elongase 1 (FAE1), a β-ketoacyl-CoA synthase that catalyzes the initial step of very long-chain fatty acid synthesis. Expression of the L. douglassi FAE1 homolog in somatic soybean embryos was accompanied by the accumulation of C20 and C22 fatty acids, principally as eicosanoic acid, to amounts of 18% (w/w) of the total fatty acids of single embryos. To partially reconstruct the biosynthetic pathway of 20:1Δ5 in transgenic plant tissues, cDNAs for the L. douglasii acyl-CoA desaturase and FAE1 were co-expressed in somatic soybean embryos. In the resulting transgenic embryos, 20:1Δ5 and Δ5-docosenoic acid composed up to 12% of the total fatty acids. PMID:10982439

  20. Production of fatty acid components of meadowfoam oil in somatic soybean embryos.

    PubMed

    Cahoon, E B; Marillia, E F; Stecca, K L; Hall, S E; Taylor, D C; Kinney, A J

    2000-09-01

    The seed oil of meadowfoam (Limnanthes alba) and other Limnanthes spp. is enriched in the unusual fatty acid Delta(5)-eicosenoic acid (20:1Delta(5)). This fatty acid has physical and chemical properties that make the seed oil of these plants useful for a number of industrial applications. An expressed sequence tag approach was used to identify cDNAs for enzymes involved in the biosynthesis of 20:1Delta(5)). By random sequencing of a library prepared from developing Limnanthes douglasii seeds, a class of cDNAs was identified that encode a homolog of acyl-coenzyme A (CoA) desaturases found in animals, fungi, and cyanobacteria. Expression of a cDNA for the L. douglasii acyl-CoA desaturase homolog in somatic soybean (Glycine max) embryos behind a strong seed-specific promoter resulted in the accumulation of Delta(5)-hexadecenoic acid to amounts of 2% to 3% (w/w) of the total fatty acids of single embryos. Delta(5)-Octadecenoic acid and 20:1Delta(5) also composed <1% (w/w) each of the total fatty acids of these embryos. In addition, cDNAs were identified from the L. douglasii expressed sequence tags that encode a homolog of fatty acid elongase 1 (FAE1), a beta-ketoacyl-CoA synthase that catalyzes the initial step of very long-chain fatty acid synthesis. Expression of the L. douglassi FAE1 homolog in somatic soybean embryos was accompanied by the accumulation of C(20) and C(22) fatty acids, principally as eicosanoic acid, to amounts of 18% (w/w) of the total fatty acids of single embryos. To partially reconstruct the biosynthetic pathway of 20:1Delta(5) in transgenic plant tissues, cDNAs for the L. douglasii acyl-CoA desaturase and FAE1 were co-expressed in somatic soybean embryos. In the resulting transgenic embryos, 20:1Delta(5) and Delta(5)-docosenoic acid composed up to 12% of the total fatty acids.

  1. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    PubMed

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  2. A Lepidopteran-Specific Gene Family Encoding Valine-Rich Midgut Proteins

    PubMed Central

    Odman-Naresh, Jothini; Duevel, Margret; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2013-01-01

    Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM), an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps), which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran digestive tract facing

  3. Encoder: A Connectionist Model of How Learning to Visually Encode Fixated Text Images Improves Reading Fluency

    ERIC Educational Resources Information Center

    Martin, Gale L.

    2004-01-01

    This article proposes that visual encoding learning improves reading fluency by widening the span over which letters are recognized from a fixated text image so that fewer fixations are needed to cover a text line. Encoder is a connectionist model that learns to convert images like the fixated text images human readers encode into the…

  4. Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress.

    PubMed

    Kim, Yun-Hee; Yang, Kyoung-Sil; Kim, Cha Young; Ryu, Sun-Hwa; Song, Wan-Keun; Kwon, Suk-Yoon; Lee, Haeng-Soon; Bang, Jae-Wook; Kwak, Sang-Soo

    2008-03-31

    Three peroxidase (POD) cDNAs were isolated from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas) plant via the screening of a cDNA library, and their expressions were assessed to characterize functions of each POD in relation to environmental stress. Three PODs were divided into two groups, designated the basic PODs (swpb4, swpb5) and the anionic PODs (swpa7), on the basis of the pI values of mature proteins. Fluorescence microscope analysis indicated that three PODs are secreted into the extracellular space. RTPCR analysis revealed that POD genes have diverse expression patterns in a variety of plant tissues. Swpb4 was abundantly expressed in stem tissues, whereas the expression levels of swpb5 and swpa7 transcripts were high in fibrous and thick pigmented roots. Swpb4 and swpa7 showed abundant expression levels in suspension cultured cells. Three POD genes responded differently in the leaf and fibrous roots in response to a variety of stresses including dehydration, temperature stress, stress-associated chemicals, and pathogenic bacteria.

  5. Video Time Encoding Machines

    PubMed Central

    Lazar, Aurel A.; Pnevmatikakis, Eftychios A.

    2013-01-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value. PMID:21296708

  6. Spectrally-encoded color imaging

    PubMed Central

    Kang, DongKyun; Yelin, Dvir; Bouma, Brett E.; Tearney, Guillermo J.

    2010-01-01

    Spectrally-encoded endoscopy (SEE) is a technique for ultraminiature endoscopy that encodes each spatial location on the sample with a different wavelength. One limitation of previous incarnations of SEE is that it inherently creates monochromatic images, since the spectral bandwidth is expended in the spatial encoding process. Here we present a spectrally-encoded imaging system that has color imaging capability. The new imaging system utilizes three distinct red, green, and blue spectral bands that are configured to illuminate the grating at different incident angles. By careful selection of the incident angles, the three spectral bands can be made to overlap on the sample. To demonstrate the method, a bench-top system was built, comprising a 2400-lpmm grating illuminated by three 525-μm-diameter beams with three different spectral bands. Each spectral band had a bandwidth of 75 nm, producing 189 resolvable points. A resolution target, color phantoms, and excised swine small intestine were imaged to validate the system's performance. The color SEE system showed qualitatively and quantitatively similar color imaging performance to that of a conventional digital camera. PMID:19688002

  7. Encoders for block-circulant LDPC codes

    NASA Technical Reports Server (NTRS)

    Andrews, Kenneth; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    In this paper, we present two encoding methods for block-circulant LDPC codes. The first is an iterative encoding method based on the erasure decoding algorithm, and the computations required are well organized due to the block-circulant structure of the parity check matrix. The second method uses block-circulant generator matrices, and the encoders are very similar to those for recursive convolutional codes. Some encoders of the second type have been implemented in a small Field Programmable Gate Array (FPGA) and operate at 100 Msymbols/second.

  8. Emotional arousal and memory after deep encoding.

    PubMed

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  9. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  10. Pneumatic binary encoder replaces multiple solenoid system

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Pneumatic binary encoder replaces solenoid system in the pilot stage of a digital actuator. The encoder operates in flip-flop manner to valve gas at either high or low pressures. By rotating the disk in a pinion-to-encoding gear ratio, six to eight adder circuits may be operated from single encoder.

  11. Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities.

    PubMed

    Vouille, V; Amiche, M; Nicolas, P

    1997-09-01

    We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.

  12. Experiments in encoding multilevel images as quadtrees

    NASA Technical Reports Server (NTRS)

    Lansing, Donald L.

    1987-01-01

    Image storage requirements for several encoding methods are investigated and the use of quadtrees with multigray level or multicolor images are explored. The results of encoding a variety of images having up to 256 gray levels using three schemes (full raster, runlength and quadtree) are presented. Although there is considerable literature on the use of quadtrees to store and manipulate binary images, their application to multilevel images is relatively undeveloped. The potential advantage of quadtree encoding is that an entire area with a uniform gray level may be encoded as a unit. A pointerless quadtree encoding scheme is described. Data are presented on the size of the quadtree required to encode selected images and on the relative storage requirements of the three encoding schemes. A segmentation scheme based on the statistical variation of gray levels within a quadtree quadrant is described. This parametric scheme may be used to control the storage required by an encoded image and to preprocess a scene for feature identification. Several sets of black and white and pseudocolor images obtained by varying the segmentation parameter are shown.

  13. Comparison of H.265/HEVC encoders

    NASA Astrophysics Data System (ADS)

    Trochimiuk, Maciej

    2016-09-01

    The H.265/HEVC is the state-of-the-art video compression standard, which allows the bitrate reduction up to 50% compared with its predecessor, H.264/AVC, maintaining equal perceptual video quality. The growth in coding efficiency was achieved by increasing the number of available intra- and inter-frame prediction features and improvements in existing ones, such as entropy encoding and filtering. Nevertheless, to achieve real-time performance of the encoder, simplifications in algorithm are inevitable. Some features and coding modes shall be skipped, to reduce time needed to evaluate modes forwarded to rate-distortion optimisation. Thus, the potential acceleration of the encoding process comes at the expense of coding efficiency. In this paper, a trade-off between video quality and encoding speed of various H.265/HEVC encoders is discussed.

  14. Functional relevance of three proopiomelanocortin (POMC) genes in darkening camouflage, blind-side hypermelanosis, and appetite of Paralichthys olivaceus.

    PubMed

    Kang, Duk-Young; Kim, Hyo-Chan

    2015-01-01

    To determine whether proopiomelanocortin (POMC) genes are involved in darkening color camouflage, blind-side hypermelanosis, and appetite in flatfish, we isolated and cloned three POMC genes from the pituitary of the olive flounder (Paralichthys olivaceus) and compared their amino acid (aa) structures to those of POMC genes from other animals. Next, we examined the relationship of these pituitary POMC genes to camouflage color change, blind-side hypermelanosis, and appetite by quantifying mRNA expression. Olive flounder (of)-POMC1, 2, and 3 cDNAs consisted of 648-bp, 582-bp, and 693-bp open reading frames (ORF) encoding 216 aa, 194 aa, and 231 aa residues, respectively. Structurally, the three of-POMC cDNAs consisted of seven peptides (signal peptide, N-POMC, α-MSH, CLIP, N-β-LPH, β-MSH and β-END [or END-like peptide]) that are similar to those of other fish POMC cDNAs. α-MSH encoded a protein composed of 13 aa and β-MSH encoded a protein composed of 17 aa. The three POMC genes were predominantly expressed in the pituitary gland, but they were also expressed in a variety of tissues, including brain, eye, kidney, heart, testis, and skin. of-POMC2 exhibited the highest expression, while of-POMC3 displayed the lowest expression. The relative levels of of-POMC1 and 3 mRNAs were not influenced by background color and feeding (or fasting), but the relative level of of-POMC2 mRNA significantly increased in response to a dark background and fasting. The relative levels of of-POMC1 and 2 mRNAs were significantly higher in hypermelanic fish; however, we did not determine a direct anorexigenic or orexigenic relationship for the three POMC genes. These results indicate that pituitary POMC genes are related to darkening color change and the differentiation of pigment cells, but they are not directly related to appetite. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The First Step of Gibberellin Biosynthesis in Pumpkin Is Catalyzed by at Least Two Copalyl Diphosphate Synthases Encoded by Differentially Regulated Genes

    PubMed Central

    Smith, Maria W.; Yamaguchi, Shinjiro; Ait-Ali, Tahar; Kamiya, Yuji

    1998-01-01

    The first step in gibberellin biosynthesis is catalyzed by copalyl diphosphate synthase (CPS) and ent-kaurene synthase. We have cloned from pumpkin (Cucurbita maxima L.) two cDNAs, CmCPS1 and CmCPS2, that each encode a CPS. Both recombinant fusion CmCPS proteins were active in vitro. CPS are translocated into plastids and processed by cleavage of transit peptides. For CmCPS1 and CmCPS2, the putative transit peptides cannot exceed the first 99 and 107 amino acids, respectively, because longer N-terminal deletions abolished activity. Levels of both CmCPS transcripts were strictly regulated in an organ-specific and developmental manner. Both transcripts were almost undetectable in leaves and were abundant in petioles. CmCPS1 transcript levels were high in young cotyledons and low in roots. In contrast, CmCPS2 transcripts were undetectable in cotyledons but present at significant levels in roots. In hypocotyls, apices, and petioles, CmCPS1 transcript levels decreased with age much more rapidly than those of CmCPS2. We speculate that CmCPS1 expression is correlated with the early stages of organ development, whereas CmCPS2 expression is correlated with subsequent growth. In contrast, C. maxima ent-kaurene synthase transcripts were detected in every organ at almost constant levels. Thus, ent-kaurene biosynthesis may be regulated through control of CPS expression. PMID:9847116

  16. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  17. Architecture for VLSI design of Reed-Solomon encoders

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1981-01-01

    The logic structure of a universal VLSI chip called the symbol-slice Reed-Solomon (RS) encoder chip is discussed. An RS encoder can be constructed by cascading and properly interconnecting a group of such VLSI chips. As a design example, it is shown that a (255,223) RD encoder requiring around 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical interconnected VLSI RS encoder chips. Besides the size advantage, the VLSI RS encoder also has the potential advantages of requiring less power and having a higher reliability.

  18. Characterization of closely related delta-TIP genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air.

    PubMed

    Sarda, X; Tousch, D; Ferrare, K; Cellier, F; Alcon, C; Dupuis, J M; Casse, F; Lamaze, T

    1999-05-01

    We isolated five sunflower (Helianthus annuus) cDNAs belonging to the TIP (tonoplast intrinsic protein) family. SunRb7 and Sun gammaTIP (partial sequence) are homologous to tobacco TobRb7 and Arabidopsis gamma-TIP, respectively. SunTIP7, 18 and 20 (SunTIPs) are closely related and homologous to Arabidopsis delta-TIP (SunTIP7 and 20 have already been presented in Sarda et al., Plant J. 12 (1997) 1103-1111). As was previously shown for SunTIP7 and 20, expression of SunTIP18 and SunRb7 in Xenopus oocytes caused an increase in osmotic water permeability demonstrating that they are aquaporins. In roots, in situ hybridization revealed that SunTIP7 and 18 mRNAs accumulate in phloem tissues. The expression of TIP-like genes was studied in roots during 24 h water deprivation through exposure to air. During the course of the treatment, each SunTIP gene displayed an individual response: SunTIP7 transcript abundance increased, SunTIP18 decreased whereas that of SunTIP20 was transitorily enhanced. By contrast, SunRb7 and Sun gammaTIP mRNA levels did not fluctuate. Due to the changes in their transcript levels, it is proposed that SUNTIP aquaporins encoded by delta-TIP-like genes play a role in the sunflower response to drought.

  19. Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability.

    PubMed

    Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko; Mang, Yuan; ur Rehman, Shoaib; Buchert, Rebecca; Schaffer, Stefanie; Muhammad, Safia; Bak, Mads; Nöthen, Markus M; Bennett, Eric P; Maeda, Yusuke; Aigner, Michael; Reis, André; Kinoshita, Taroh; Tommerup, Niels; Baig, Shahid Mahmood; Abou Jamra, Rami

    2013-04-04

    PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous families. Rescue experiments with the altered proteins in PGAP2-deficient Chinese hamster ovary cell lines showed less expression of cell-surface GPI-anchored proteins DAF and CD59 than of the wild-type protein, substantiating the pathogenicity of the identified alterations. Furthermore, we observed a full rescue when we used strong promoters before the mutant cDNAs, suggesting a hypomorphic effect of the mutations. We report on alterations in the Golgi-located part of the GPI-anchor-biosynthesis pathway and extend the phenotypic spectrum of the GPI-anchor deficiencies to isolated intellectual disability with elevated ALP. GPI-anchor deficiencies can be interpreted within the concept of a disease family, and we propose that the severity of the phenotype is dependent on the location of the altered protein in the biosynthesis chain. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: encoding transition.

    PubMed

    Luo, Huan; Wang, Yadong; Poeppel, David; Simon, Jonathan Z

    2007-12-01

    Complex natural sounds (e.g., animal vocalizations or speech) can be characterized by specific spectrotemporal patterns the components of which change in both frequency (FM) and amplitude (AM). The neural coding of AM and FM has been widely studied in humans and animals but typically with either pure AM or pure FM stimuli. The neural mechanisms employed to perceptually unify AM and FM acoustic features remain unclear. Using stimuli with simultaneous sinusoidal AM (at rate f(AM) = 37 Hz) and FM (with varying rates f(FM)), magnetoencephalography (MEG) is used to investigate the elicited auditory steady-state response (aSSR) at relevant frequencies (f(AM), f(FM), f(AM) + f(FM)). Previous work demonstrated that for sounds with slower FM dynamics (f(FM) < 5 Hz), the phase of the aSSR at f(AM) tracked the FM; in other words, AM and FM features were co-tracked and co-represented by "phase modulation" encoding. This study explores the neural coding mechanism for stimuli with faster FM dynamics (< or =30 Hz), demonstrating that at faster rates (f(FM) > 5 Hz), there is a transition from pure phase modulation encoding to a single-upper-sideband (SSB) response (at frequency f(AM) + f(FM)) pattern. We propose that this unexpected SSB response can be explained by the additional involvement of subsidiary AM encoding responses simultaneously to, and in quadrature with, the ongoing phase modulation. These results, using MEG to reveal a possible neural encoding of specific acoustic properties, demonstrate more generally that physiological tests of encoding hypotheses can be performed noninvasively on human subjects, complementing invasive, single-unit recordings in animals.

  1. Programmable Pulse-Position-Modulation Encoder

    NASA Technical Reports Server (NTRS)

    Zhu, David; Farr, William

    2006-01-01

    A programmable pulse-position-modulation (PPM) encoder has been designed for use in testing an optical communication link. The encoder includes a programmable state machine and an electronic code book that can be updated to accommodate different PPM coding schemes. The encoder includes a field-programmable gate array (FPGA) that is programmed to step through the stored state machine and code book and that drives a custom high-speed serializer circuit board that is capable of generating subnanosecond pulses. The stored state machine and code book can be updated by means of a simple text interface through the serial port of a personal computer.

  2. Prosodic Encoding in Silent Reading.

    ERIC Educational Resources Information Center

    Wilkenfeld, Deborah

    In silent reading, short-memory tasks, such as semantic and syntactic processing, require a stage of phonetic encoding between visual representation and the actual extraction of meaning, and this encoding includes prosodic as well as segmental features. To test for this suprasegmental coding, an experiment was conducted in which subjects were…

  3. Multicore-based 3D-DWT video encoder

    NASA Astrophysics Data System (ADS)

    Galiano, Vicente; López-Granado, Otoniel; Malumbres, Manuel P.; Migallón, Hector

    2013-12-01

    Three-dimensional wavelet transform (3D-DWT) encoders are good candidates for applications like professional video editing, video surveillance, multi-spectral satellite imaging, etc. where a frame must be reconstructed as quickly as possible. In this paper, we present a new 3D-DWT video encoder based on a fast run-length coding engine. Furthermore, we present several multicore optimizations to speed-up the 3D-DWT computation. An exhaustive evaluation of the proposed encoder (3D-GOP-RL) has been performed, and we have compared the evaluation results with other video encoders in terms of rate/distortion (R/D), coding/decoding delay, and memory consumption. Results show that the proposed encoder obtains good R/D results for high-resolution video sequences with nearly in-place computation using only the memory needed to store a group of pictures. After applying the multicore optimization strategies over the 3D DWT, the proposed encoder is able to compress a full high-definition video sequence in real-time.

  4. Time Course of Grammatical Encoding in Agrammatism

    ERIC Educational Resources Information Center

    Lee, Jiyeon

    2011-01-01

    Producing a sentence involves encoding a preverbal message into a grammatical structure by retrieving lexical items and integrating them into a functional (semantic-to-grammatical) structure. Individuals with agrammatism are impaired in this grammatical encoding process. However, it is unclear what aspect of grammatical encoding is impaired and…

  5. Architecture for VLSI design of Reed-Solomon encoders

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1982-01-01

    A description is given of the logic structure of the universal VLSI symbol-slice Reed-Solomon (RS) encoder chip, from a group of which an RS encoder may be constructed through cascading and proper interconnection. As a design example, it is shown that an RS encoder presently requiring approximately 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical, interconnected VLSI RS encoder chips, offering in addition to greater compactness both a lower power requirement and greater reliability.

  6. Architecture for VLSI design of Reed-Solomon encoders

    NASA Astrophysics Data System (ADS)

    Liu, K. Y.

    1982-02-01

    A description is given of the logic structure of the universal VLSI symbol-slice Reed-Solomon (RS) encoder chip, from a group of which an RS encoder may be constructed through cascading and proper interconnection. As a design example, it is shown that an RS encoder presently requiring approximately 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical, interconnected VLSI RS encoder chips, offering in addition to greater compactness both a lower power requirement and greater reliability.

  7. Effortful Retrieval Reduces Hippocampal Activity and Impairs Incidental Encoding

    PubMed Central

    Reas, Emilie T.; Brewer, James B.

    2014-01-01

    Functional imaging studies frequently report that the hippocampus is engaged by successful episodic memory retrieval. However, considering that concurrent encoding of the background environment occurs during retrieval and influences medial temporal lobe activity, it is plausible that hippocampal encoding functions are reduced with increased attentional engagement during effortful retrieval. Expanding upon evidence that retrieval efforts suppress activity in hippocampal regions implicated in encoding, this study examines the influence of retrieval effort on encoding performance and the interactive effects of encoding and retrieval on hippocampal and neocortical activity. Functional magnetic resonance imaging was conducted while subjects performed a word recognition task with incidental picture encoding. Both lower memory strength and increased search duration were associated with encoding failure and reduced hippocampal and default network activity. Activity in the anterior hippocampus tracked encoding, which was more strongly deactivated when incidental encoding was unsuccessful. These findings highlight potential contributions from background encoding processes to hippocampal activations during neuroimaging studies of episodic memory retrieval. PMID:23378272

  8. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR

  9. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  10. Schematic driven layout of Reed Solomon encoders

    NASA Technical Reports Server (NTRS)

    Arave, Kari; Canaris, John; Miles, Lowell; Whitaker, Sterling

    1992-01-01

    Two Reed Solomon error correcting encoders are presented. Schematic driven layout tools were used to create the encoder layouts. Special consideration had to be given to the architecture and logic to provide scalability of the encoder designs. Knowledge gained from these projects was used to create a more flexible schematic driven layout system.

  11. Molecular characterization and histochemical demonstration of salmon olfactory marker protein in the olfactory epithelium of lacustrine sockeye salmon (Oncorhynchus nerka).

    PubMed

    Kudo, H; Doi, Y; Ueda, H; Kaeriyama, M

    2009-09-01

    Despite the importance of olfactory receptor neurons (ORNs) for homing migration, the expression of olfactory marker protein (OMP) is not well understood in ORNs of Pacific salmon (genus Oncorhynchus). In this study, salmon OMP was characterized in the olfactory epithelia of lacustrine sockeye salmon (O. nerka) by molecular biological and histochemical techniques. Two cDNAs encoding salmon OMP were isolated and sequenced. These cDNAs both contained a coding region encoding 173 amino acid residues, and the molecular mass of the two proteins was calculated to be 19,581.17 and 19,387.11Da, respectively. Both amino acid sequences showed marked homology (90%). The protein and nucleotide sequencing demonstrates the existence of high-level homology between salmon OMPs and those of other teleosts. By in situ hybridization using a digoxigenin-labeled salmon OMP cRNA probe, signals for salmon OMP mRNA were observed preferentially in the perinuclear regions of the ORNs. By immunohistochemistry using a specific antibody to salmon OMP, OMP-immunoreactivities were noted in the cytosol of those neurons. The present study is the first to describe cDNA cloning of OMP in salmon olfactory epithelium, and indicate that OMP is a useful molecular marker for the detection of the ORNs in Pacific salmon.

  12. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues.

    PubMed

    Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A

    1992-06-01

    Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.

  13. Chemical Space of DNA-Encoded Libraries.

    PubMed

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  14. A New Quantum Gray-Scale Image Encoding Scheme

    NASA Astrophysics Data System (ADS)

    Naseri, Mosayeb; Abdolmaleky, Mona; Parandin, Fariborz; Fatahi, Negin; Farouk, Ahmed; Nazari, Reza

    2018-02-01

    In this paper, a new quantum images encoding scheme is proposed. The proposed scheme mainly consists of four different encoding algorithms. The idea behind of the scheme is a binary key generated randomly for each pixel of the original image. Afterwards, the employed encoding algorithm is selected corresponding to the qubit pair of the generated randomized binary key. The security analysis of the proposed scheme proved its enhancement through both randomization of the generated binary image key and altering the gray-scale value of the image pixels using the qubits of randomized binary key. The simulation of the proposed scheme assures that the final encoded image could not be recognized visually. Moreover, the histogram diagram of encoded image is flatter than the original one. The Shannon entropies of the final encoded images are significantly higher than the original one, which indicates that the attacker can not gain any information about the encoded images. Supported by Kermanshah Branch, Islamic Azad University, Kermanshah, IRAN

  15. Eddy current-nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times.

    PubMed

    Aliotta, Eric; Moulin, Kévin; Ennis, Daniel B

    2018-02-01

    To design and evaluate eddy current-nulled convex optimized diffusion encoding (EN-CODE) gradient waveforms for efficient diffusion tensor imaging (DTI) that is free of eddy current-induced image distortions. The EN-CODE framework was used to generate diffusion-encoding waveforms that are eddy current-compensated. The EN-CODE DTI waveform was compared with the existing eddy current-nulled twice refocused spin echo (TRSE) sequence as well as monopolar (MONO) and non-eddy current-compensated CODE in terms of echo time (TE) and image distortions. Comparisons were made in simulations, phantom experiments, and neuro imaging in 10 healthy volunteers. The EN-CODE sequence achieved eddy current compensation with a significantly shorter TE than TRSE (78 versus 96 ms) and a slightly shorter TE than MONO (78 versus 80 ms). Intravoxel signal variance was lower in phantoms with EN-CODE than with MONO (13.6 ± 11.6 versus 37.4 ± 25.8) and not different from TRSE (15.1 ± 11.6), indicating good robustness to eddy current-induced image distortions. Mean fractional anisotropy values in brain edges were also significantly lower with EN-CODE than with MONO (0.16 ± 0.01 versus 0.24 ± 0.02, P < 1 x 10 -5 ) and not different from TRSE (0.16 ± 0.01 versus 0.16 ± 0.01, P = nonsignificant). The EN-CODE sequence eliminated eddy current-induced image distortions in DTI with a TE comparable to MONO and substantially shorter than TRSE. Magn Reson Med 79:663-672, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Negative base encoding in optical linear algebra processors

    NASA Technical Reports Server (NTRS)

    Perlee, C.; Casasent, D.

    1986-01-01

    In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.

  17. A naturally occurring Lgr4 splice variant encodes a soluble antagonist useful for demonstrating the gonadal roles of Lgr4 in mammals.

    PubMed

    Hsu, Pei-Jen; Wu, Fang-Ju; Kudo, Masataka; Hsiao, Chih-Lun; Hsueh, Aaron J W; Luo, Ching-Wei

    2014-01-01

    Leucine-rich repeat containing G protein-coupled receptor 4 (LGR4) promotes the Wnt signaling through interaction with R-spondins or norrin. Using PCR amplification from rat ovarian cDNAs, we identified a naturally occurring Lgr4 splice variant encoding only the ectodomain of Lgr4, which was named Lgr4-ED. Lgr4-ED can be detected as a secreted protein in the extracts from rodent and bovine postnatal gonads, suggesting conservation of Lgr4-ED in mammals. Recombinant Lgr4-ED purified from the conditioned media of transfected 293T cells was found to dose-dependently inhibit the LGR4-mediated Wnt signaling induced by RSPO2 or norrin, suggesting that it is capable of ligand absorption and could have a potential role as an antagonist. Intraperitoneal injection of purified recombinant Lgr4-ED into newborn mice was found to significantly decrease the testicular expression of estrogen receptor alpha and aquaporin 1, which is similar to the phenotype found in Lgr4-null mice. Administration of recombinant Lgr4-ED to superovulated female rats can also decrease the expression of estrogen receptor alpha, aquaporin 1, LH receptor and other key steroidogenic genes as well as bring about the suppression of progesterone production. Thus, these findings suggest that endogenously expressed Lgr4-ED may act as an antagonist molecule and help to fine-tune the R-spondin/norrin-mediated Lgr4-Wnt signaling during gonadal development.

  18. Data Encoding using Periodic Nano-Optical Features

    NASA Astrophysics Data System (ADS)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of

  19. A method for encoding clinical datasets with SNOMED CT.

    PubMed

    Lee, Dennis H; Lau, Francis Y; Quan, Hue

    2010-09-17

    Over the past decade there has been a growing body of literature on how the Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT) can be implemented and used in different clinical settings. Yet, for those charged with incorporating SNOMED CT into their organisation's clinical applications and vocabulary systems, there are few detailed encoding instructions and examples available to show how this can be done and the issues involved. This paper describes a heuristic method that can be used to encode clinical terms in SNOMED CT and an illustration of how it was applied to encode an existing palliative care dataset. The encoding process involves: identifying input data items; cleaning the data items; encoding the cleaned data items; and exporting the encoded terms as output term sets. Four outputs are produced: the SNOMED CT reference set; interface terminology set; SNOMED CT extension set and unencodeable term set. The original palliative care database contained 211 data elements, 145 coded values and 37,248 free text values. We were able to encode ~84% of the terms, another ~8% require further encoding and verification while terms that had a frequency of fewer than five were not encoded (~7%). From the pilot, it would seem our SNOMED CT encoding method has the potential to become a general purpose terminology encoding approach that can be used in different clinical systems.

  20. Role of sleep for encoding of emotional memory.

    PubMed

    Kaida, Kosuke; Niki, Kazuhisa; Born, Jan

    2015-05-01

    Total sleep deprivation (TSD) has been consistently found to impair encoding of information during ensuing wakefulness, probably through suppressing NonREM (non-rapid eye movement) sleep. However, a possible contribution of missing REM sleep to this encoding impairment after TSD has so far not been systematically examined in humans, although such contribution might be suspected in particular for emotional information. Here, in two separate experiments in young healthy men, we compared effects of TSD and of selective REM sleep deprivation (REMD), relative to respective control conditions of undisturbed sleep, on the subsequent encoding of neutral and emotional pictures. The pictures were presented in conjunction with colored frames to also assess related source memory. REMD was achieved by tones presented contingently upon initial signs of REM sleep. Encoding capabilities were examined in the evening (18:00h) after the experimental nights, by a picture recognition test right after encoding. TSD significantly decreased both the rate of correctly recognized pictures and of recalled frames associated with the pictures. The TSD effect was robust and translated into an impaired long term memory formation, as it was likewise observed on a second recognition testing one week after the encoding phase. Contrary to our expectation, REMD did not affect encoding in general, or particularly of emotional pictures. Also, REMD did not affect valence ratings of the encoded pictures. However, like TSD, REMD distinctly impaired vigilance at the time of encoding. Altogether, these findings indicate an importance of NonREM rather than REM sleep for the encoding of information that is independent of the emotionality of the materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Molecular mechanisms for protein-encoded inheritance

    PubMed Central

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  2. 47 CFR 73.4094 - Dolby encoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Dolby encoder. 73.4094 Section 73.4094 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4094 Dolby encoder. See Public Notice dated July 10...

  3. 47 CFR 73.4094 - Dolby encoder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Dolby encoder. 73.4094 Section 73.4094 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4094 Dolby encoder. See Public Notice dated July 10...

  4. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  5. Beyond initial encoding: measures of the post-encoding status of memory traces predict long-term recall during infancy.

    PubMed

    Pathman, Thanujeni; Bauer, Patricia J

    2013-02-01

    The first years of life are witness to rapid changes in long-term recall ability. In the current research we contributed to an explanation of the changes by testing the absolute and relative contributions to long-term recall of encoding and post-encoding processes. Using elicited imitation, we sampled the status of 16-, 20-, and 24-month-old infants' memory representations at various time points after experience of events. In Experiment 1, infants were tested immediately, 1 week after encoding, and again after 1 month. The measure of 1-week trace status was a unique predictor of 1-month delayed recall. In Experiment 2, infants were tested immediately, 15 min, 48 h, and 2 weeks after encoding and again 1 month later. The measures of 15-min and 48-h trace strength contributed unique variance in 1-month delayed recall. The findings highlight the need to consider post-encoding processes in explanations of variability in long-term memory during infancy. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Novel encoding methods for DNA-templated chemical libraries.

    PubMed

    Li, Gang; Zheng, Wenlu; Liu, Ying; Li, Xiaoyu

    2015-06-01

    Among various types of DNA-encoded chemical libraries, DNA-templated library takes advantage of the sequence-specificity of DNA hybridization, enabling not only highly effective DNA-templated chemical reactions, but also high fidelity in library encoding. This brief review summarizes recent advances that have been made on the encoding strategies for DNA-templated libraries, and it also highlights their respective advantages and limitations for the preparation of DNA-encoded libraries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Using XML to encode TMA DES metadata.

    PubMed

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  8. Using XML to encode TMA DES metadata

    PubMed Central

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  9. Encoding Orientation and the Remembering of Schizophrenic Young Adults

    ERIC Educational Resources Information Center

    Koh, Soon D.; Peterson, Rolf A.

    1978-01-01

    This research examines different types of encoding strategies, in addition to semantic and organizational encodings, and their effects on schizophrenics' remembering. Based on Craik and Lockhart (1972), i.e., memory performance is a function of depth of encoding processing, this analysis compares schizophrenics' encoding processing with that of…

  10. Stomach Chitinase from Japanese Sardine Sardinops melanostictus: Purification, Characterization, and Molecular Cloning of Chitinase Isozymes with a Long Linker.

    PubMed

    Kawashima, Satoshi; Ikehata, Hiroki; Tada, Chihiro; Ogino, Tomohiro; Kakizaki, Hiromi; Ikeda, Mana; Fukushima, Hideto; Matsumiya, Masahiro

    2016-01-20

    Fish express two different chitinases, acidic fish chitinase-1 (AFCase-1) and acidic fish chitinase-2 (AFCase-2), in the stomach. AFCase-1 and AFCase-2 have different degradation patterns, as fish efficiently degrade chitin ingested as food. For a comparison with the enzymatic properties and the primary structures of chitinase isozymes obtained previously from the stomach of demersal fish, in this study, we purified chitinase isozymes from the stomach of Japanese sardine Sardinops melanostictus, a surface fish that feeds on plankton, characterized the properties of these isozymes, and cloned the cDNAs encoding chitinases. We also predicted 3D structure models using the primary structures of S. melanostictus stomach chitinases. Two chitinase isozymes, SmeChiA (45 kDa) and SmeChiB (56 kDa), were purified from the stomach of S. melanostictus. Moreover, two cDNAs, SmeChi-1 encoding SmeChiA, and SmeChi-2 encoding SmeChiB were cloned. The linker regions of the deduced amino acid sequences of SmeChi-1 and SmeChi-2 (SmeChi-1 and SmeChi-2) are the longest among the fish stomach chitinases. In the cleavage pattern groups toward short substrates and the phylogenetic tree analysis, SmeChi-1 and SmeChi-2 were classified into AFCase-1 and AFCase-2, respectively. SmeChi-1 and SmeChi-2 had catalytic domains that consisted of a TIM-barrel (β/α)₈-fold structure and a deep substrate-binding cleft. This is the first study showing the 3D structure models of fish stomach chitinases.

  11. Stomach Chitinase from Japanese Sardine Sardinops melanostictus: Purification, Characterization, and Molecular Cloning of Chitinase Isozymes with a Long Linker

    PubMed Central

    Kawashima, Satoshi; Ikehata, Hiroki; Tada, Chihiro; Ogino, Tomohiro; Kakizaki, Hiromi; Ikeda, Mana; Fukushima, Hideto; Matsumiya, Masahiro

    2016-01-01

    Fish express two different chitinases, acidic fish chitinase-1 (AFCase-1) and acidic fish chitinase-2 (AFCase-2), in the stomach. AFCase-1 and AFCase-2 have different degradation patterns, as fish efficiently degrade chitin ingested as food. For a comparison with the enzymatic properties and the primary structures of chitinase isozymes obtained previously from the stomach of demersal fish, in this study, we purified chitinase isozymes from the stomach of Japanese sardine Sardinops melanostictus, a surface fish that feeds on plankton, characterized the properties of these isozymes, and cloned the cDNAs encoding chitinases. We also predicted 3D structure models using the primary structures of S. melanostictus stomach chitinases. Two chitinase isozymes, SmeChiA (45 kDa) and SmeChiB (56 kDa), were purified from the stomach of S. melanostictus. Moreover, two cDNAs, SmeChi-1 encoding SmeChiA, and SmeChi-2 encoding SmeChiB were cloned. The linker regions of the deduced amino acid sequences of SmeChi-1 and SmeChi-2 (SmeChi-1 and SmeChi-2) are the longest among the fish stomach chitinases. In the cleavage pattern groups toward short substrates and the phylogenetic tree analysis, SmeChi-1 and SmeChi-2 were classified into AFCase-1 and AFCase-2, respectively. SmeChi-1 and SmeChi-2 had catalytic domains that consisted of a TIM-barrel (β/α)8–fold structure and a deep substrate-binding cleft. This is the first study showing the 3D structure models of fish stomach chitinases. PMID:26805857

  12. Limnonectins: a new class of antimicrobial peptides from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis).

    PubMed

    Wu, Youjia; Wang, Lei; Zhou, Mei; Ma, Chengbang; Chen, Xiaole; Bai, Bing; Chen, Tianbao; Shaw, Chris

    2011-06-01

    Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating "shotgun" cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog - the Fujian large-headed frog, Limnonectes fujianensis - and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 μM) and are devoid of haemolytic activity at concentrations up to 160 μM. Thus the "shotgun" cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Simultaneously driven linear and nonlinear spatial encoding fields in MRI.

    PubMed

    Gallichan, Daniel; Cocosco, Chris A; Dewdney, Andrew; Schultz, Gerrit; Welz, Anna; Hennig, Jürgen; Zaitsev, Maxim

    2011-03-01

    Spatial encoding in MRI is conventionally achieved by the application of switchable linear encoding fields. The general concept of the recently introduced PatLoc (Parallel Imaging Technique using Localized Gradients) encoding is to use nonlinear fields to achieve spatial encoding. Relaxing the requirement that the encoding fields must be linear may lead to improved gradient performance or reduced peripheral nerve stimulation. In this work, a custom-built insert coil capable of generating two independent quadratic encoding fields was driven with high-performance amplifiers within a clinical MR system. In combination with the three linear encoding fields, the combined hardware is capable of independently manipulating five spatial encoding fields. With the linear z-gradient used for slice-selection, there remain four separate channels to encode a 2D-image. To compare trajectories of such multidimensional encoding, the concept of a local k-space is developed. Through simulations, reconstructions using six gradient-encoding strategies were compared, including Cartesian encoding separately or simultaneously on both PatLoc and linear gradients as well as two versions of a radial-based in/out trajectory. Corresponding experiments confirmed that such multidimensional encoding is practically achievable and demonstrated that the new radial-based trajectory offers the PatLoc property of variable spatial resolution while maintaining finite resolution across the entire field-of-view. Copyright © 2010 Wiley-Liss, Inc.

  14. Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.

    PubMed

    Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki

    2017-08-01

    We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.

  15. A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2011-01-01

    Formal behavioral specifications written early in the system-design process and communicated across all design phases have been shown to increase the efficiency, consistency, and quality of the system under development. To prevent introducing design or verification errors, it is crucial to test specifications for satisfiability. Our focus here is on specifications expressed in linear temporal logic (LTL). We introduce a novel encoding of symbolic transition-based Buchi automata and a novel, "sloppy," transition encoding, both of which result in improved scalability. We also define novel BDD variable orders based on tree decomposition of formula parse trees. We describe and extensively test a new multi-encoding approach utilizing these novel encoding techniques to create 30 encoding variations. We show that our novel encodings translate to significant, sometimes exponential, improvement over the current standard encoding for symbolic LTL satisfiability checking.

  16. Dissociable roles of default-mode regions during episodic encoding.

    PubMed

    Maillet, David; Rajah, M Natasha

    2014-04-01

    We investigated the role of distinct regions of the default-mode network (DMN) during memory encoding with fMRI. Subjects encoded words using either a strategy that emphasized self-referential (pleasantness) processing, or one that emphasized semantic (man-made/natural) processing. During encoding subjects were intermittently presented with thought probes to evaluate if they were concentrated and on-task or exhibiting task-unrelated thoughts (TUT). After the scanning session subjects performed a source retrieval task to determine which of two judgments they performed for each word at encoding. Source retrieval accuracy was higher for words encoded with the pleasantness vs. the man-made/natural task and there was a trend for higher performance for words preceding on-task vs. TUT reports. fMRI results show that left anterior medial PFC and left angular gyrus activity was greater during successful vs. unsuccessful encoding during both encoding tasks. Greater activity in left anterior cingulate and bilateral lateral temporal cortex was related successful vs. unsuccessful encoding only in the pleasantness task. In contrast, posterior cingulate, right anterior cingulate and right temporoparietal junction were activated to a greater extent in unsuccessful vs. successful encoding across tasks. Finally, activation in posterior cingulate and bilateral dorsolateral prefrontal cortex was related to TUT across tasks; moreover, we observed a conjunction in posterior cingulate between encoding failure and TUT. We conclude that DMN regions play dissociable roles during memory formation, and that their association with subsequent memory may depend on the manner in which information is encoded and retrieved. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  17. The Acquisition of Syntactically Encoded Evidentiality

    ERIC Educational Resources Information Center

    Rett, Jessica; Hyams, Nina

    2014-01-01

    This article presents several empirical studies of syntactically encoded evidentiality in English. The first part of our study consists of an adult online experiment that confirms claims in Asudeh & Toivonen (2012) that raised Perception Verb Similatives (PVSs; e.g. "John looks like he is sick") encode direct evidentiality. We then…

  18. Source-constrained retrieval influences the encoding of new information.

    PubMed

    Danckert, Stacey L; MacLeod, Colin M; Fernandes, Myra A

    2011-11-01

    Jacoby, Shimizu, Daniels, and Rhodes (Psychonomic Bulletin & Review, 12, 852-857, 2005) showed that new words presented as foils among a list of old words that had been deeply encoded were themselves subsequently better recognized than new words presented as foils among a list of old words that had been shallowly encoded. In Experiment 1, by substituting a deep-versus-shallow imagery manipulation for the levels-of-processing manipulation, we demonstrated that the effect is robust and that it generalizes, also occurring with a different type of encoding. In Experiment 2, we provided more direct evidence for context-related encoding during tests of deeply encoded words, showing enhanced priming for foils presented among deeply encoded targets when participants made the same deep-encoding judgments on those items as had been made on the targets during study. In Experiment 3, we established that the findings from Experiment 2 are restricted to this specific deep judgment task and are not a general consequence of these foils being associated with deeply encoded items. These findings provide support for the source-constrained retrieval hypothesis of Jacoby, Shimizu, Daniels, and Rhodes: New information can be influenced by how surrounding items are encoded and retrieved, as long as the surrounding items recruit a coherent mode of processing.

  19. Two-layer contractive encodings for learning stable nonlinear features.

    PubMed

    Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven

    2015-04-01

    Unsupervised learning of feature hierarchies is often a good strategy to initialize deep architectures for supervised learning. Most existing deep learning methods build these feature hierarchies layer by layer in a greedy fashion using either auto-encoders or restricted Boltzmann machines. Both yield encoders which compute linear projections of input followed by a smooth thresholding function. In this work, we demonstrate that these encoders fail to find stable features when the required computation is in the exclusive-or class. To overcome this limitation, we propose a two-layer encoder which is less restricted in the type of features it can learn. The proposed encoder is regularized by an extension of previous work on contractive regularization. This proposed two-layer contractive encoder potentially poses a more difficult optimization problem, and we further propose to linearly transform hidden neurons of the encoder to make learning easier. We demonstrate the advantages of the two-layer encoders qualitatively on artificially constructed datasets as well as commonly used benchmark datasets. We also conduct experiments on a semi-supervised learning task and show the benefits of the proposed two-layer encoders trained with the linear transformation of perceptrons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Exploring the influence of encoding format on subsequent memory.

    PubMed

    Turney, Indira C; Dennis, Nancy A; Maillet, David; Rajah, M Natasha

    2017-05-01

    Distinctive encoding is greatly influenced by gist-based processes and has been shown to suffer when highly similar items are presented in close succession. Thus, elucidating the mechanisms underlying how presentation format affects gist processing is essential in determining the factors that influence these encoding processes. The current study utilised multivariate partial least squares (PLS) analysis to identify encoding networks directly associated with retrieval performance in a blocked and intermixed presentation condition. Subsequent memory analysis for successfully encoded items indicated no significant differences between reaction time and retrieval performance and presentation format. Despite no significant behavioural differences, behaviour PLS revealed differences in brain-behaviour correlations and mean condition activity in brain regions associated with gist-based vs. distinctive encoding. Specifically, the intermixed format encouraged more distinctive encoding, showing increased activation of regions associated with strategy use and visual processing (e.g., frontal and visual cortices, respectively). Alternatively, the blocked format exhibited increased gist-based processes, accompanied by increased activity in the right inferior frontal gyrus. Together, results suggest that the sequence that information is presented during encoding affects the degree to which distinctive encoding is engaged. These findings extend our understanding of the Fuzzy Trace Theory and the role of presentation format on encoding processes.

  1. [Spectral diversity among the members of the family of Green Fluorescent Protein in hydroid jellyfish (Cnidaria, Hydrozoa)].

    PubMed

    Ianushevich, Iu G; Shagin, D A; Fradkov, A F; Shakhbazov, K S; Barsova, E V; Gurskaia, N G; Labas, Iu A; Matts, M V; Luk'ianov, k A; Lul'ianov, S A

    2005-01-01

    The cDNAs encoding the genes of new proteins homologous to the well-known Green Fluorescent Protein (GFP) from the hydroid jellyfish Aequorea victoria were cloned. Two green fluorescent proteins from one un-identified anthojellyfish, a yellow fluorescent protein from Phialidium sp., and a nonfluorescent chromoprotein from another unidentified anthojellyfish were characterized. Thus, a broad diversity of GFP-like proteins among the organisms of the class Hydrozoa in both spectral properties and primary structure was shown.

  2. Inkjet Gene Printing: A Novel Approach to Achieve Gene Modified Cells for Tissue Engineering

    DTIC Science & Technology

    2008-12-01

    and pIRES-VEGF-GFP (BD Biosciences, Bedford, MA) encoding the cDNAs of jellyfish Aequorea victoria green fluorescent protein, driven by the...prepared from rat-tail Type I collagen gels using a previously reported protocol(Xu et al. 2005). Briefly, rat- tail Type I collagen (BD Biosciences...aliquots of the mixture were dispersed onto coverslips and cured in an incubator for 3–5 h. Once the gel set, the collagen bio-paper was ready for

  3. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor

    PubMed Central

    Liedtke, Wolfgang; Choe, Yong; Martí-Renom, Marc A.; Bell, Andrea M.; Denis, Charlotte S.; Šali, Andrej; Hudspeth, A. J.; Friedman, Jeffrey M.; Heller, Stefan

    2008-01-01

    SUMMARY The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nevous system, the channel is expressed neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells. PMID:11081638

  4. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  5. Hall effect encoding of brushless dc motors

    NASA Technical Reports Server (NTRS)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  6. Face Encoding and Recognition in the Human Brain

    NASA Astrophysics Data System (ADS)

    Haxby, James V.; Ungerleider, Leslie G.; Horwitz, Barry; Maisog, Jose Ma.; Rapoport, Stanley I.; Grady, Cheryl L.

    1996-01-01

    A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.

  7. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  8. BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.

    1998-01-01

    We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.

  9. Antisense and sense poly(A)-RNAs from the Xenopus laevis pyruvate dehydrogenase gene loci are regulated with message production during embryogenesis.

    PubMed

    Islam, N; Poitras, L; Gagnon, F; Moss, T

    1996-10-17

    The structure and temporal expression of two Xenopus cDNAs encoding the beta subunit of pyruvate dehydrogenase (XPdhE1 beta) have been determined. XPdhE1 beta was 88% homologous to mature human PdhE1 beta, but the putative N-terminal mitochondrial signal peptide was poorly conserved. Zygotic expression of XPdhE1 beta mRNA was detected at neural tube closure and increased until stage 40. RT-PCR cloning identified a short homology to a protein kinase open reading frame within the 3' non-coding sequence of the XPdhE1 beta cDNAs. This homology, which occurred on the antisense cDNA strand, was shown by strand specific RT-PCR to be transcribed in vivo as part of an antisense RNA. Northern analysis showed that this RNA formed part of an abundant and heterogeneous population of antisense and sense poly(A)-RNAs transcribed from the XPdhE1 beta loci and coordinately regulated with message production.

  10. JPEG2000 encoding with perceptual distortion control.

    PubMed

    Liu, Zhen; Karam, Lina J; Watson, Andrew B

    2006-07-01

    In this paper, a new encoding approach is proposed to control the JPEG2000 encoding in order to reach a desired perceptual quality. The new method is based on a vision model that incorporates various masking effects of human visual perception and a perceptual distortion metric that takes spatial and spectral summation of individual quantization errors into account. Compared with the conventional rate-based distortion minimization JPEG2000 encoding, the new method provides a way to generate consistent quality images at a lower bit rate.

  11. Negative affect promotes encoding of and memory for details at the expense of the gist: affect, encoding, and false memories.

    PubMed

    Storbeck, Justin

    2013-01-01

    I investigated whether negative affective states enhance encoding of and memory for item-specific information reducing false memories. Positive, negative, and neutral moods were induced, and participants then completed a Deese-Roediger-McDermott (DRM) false-memory task. List items were presented in unique spatial locations or unique fonts to serve as measures for item-specific encoding. The negative mood conditions had more accurate memories for item-specific information, and they also had fewer false memories. The final experiment used a manipulation that drew attention to distinctive information, which aided learning for DRM words, but also promoted item-specific encoding. For the condition that promoted item-specific encoding, false memories were reduced for positive and neutral mood conditions to a rate similar to that of the negative mood condition. These experiments demonstrated that negative affective cues promote item-specific processing reducing false memories. People in positive and negative moods encode events differently creating different memories for the same event.

  12. High-order multiband encoding in the heart.

    PubMed

    Cunningham, Charles H; Wright, Graham A; Wood, Michael L

    2002-10-01

    Spatial encoding with multiband selective excitation (e.g., Hadamard encoding) has been restricted to a small number of slices because the RF pulse becomes unacceptably long when more than about eight slices are encoded. In this work, techniques to shorten multiband RF pulses, and thus allow larger numbers of slices, are investigated. A method for applying the techniques while retaining the capability of adaptive slice thickness is outlined. A tradeoff between slice thickness and pulse duration is shown. Simulations and experiments with the shortened pulses confirmed that motion-induced excitation profile blurring and phase accrual were reduced. The connection between gradient hardware limitations, slice thickness, and flow sensitivity is shown. Excitation profiles for encoding 32 contiguous slices of 1-mm thickness were measured experimentally, and the artifact resulting from errors in timing of RF pulse relative to gradient was investigated. A multiband technique for imaging 32 contiguous 2-mm slices, with adaptive slice thickness, was developed and demonstrated for coronary artery imaging in healthy subjects. With the ability to image high numbers of contiguous slices, using relatively short (1-2 ms) RF pulses, multiband encoding has been advanced further toward practical application. Copyright 2002 Wiley-Liss, Inc.

  13. Evaluation of color encodings for high dynamic range pixels

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  14. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism.

    PubMed Central

    Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A

    1993-01-01

    A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064

  15. New insights into plant glycoside hydrolase family 32 in Agave species.

    PubMed

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D; Damián Santos, Maura L; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana.

  16. cDNA, deduced polypeptide structure and chromosomal assignment of human pulmonary surfactant proteolipid, SPL(pVal)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.

    1988-01-05

    In hyaline membrane disease of premature infants, lack of surfactant leads to pulmonary atelectasis and respiratory distress. Hydrophobic surfactant proteins of M/sub r/ = 5000-14,000 have been isolated from mammalian surfactants which enhance the rate of spreading and the surface tension lowering properties of phospholipids during dynamic compression. The authors have characterized the amino-terminal amino acid sequence of pulmonary proteolipids from ether/ethanol extracts of bovine, canine, and human surfactant. Two distinct peptides were identified and termed SPL(pVal) and SPL(Phe). An oligonucleotide probe based on the valine-rich amino-terminal amino acid sequence of SPL(pVal) was utilized to isolate cDNA and genomic DNAmore » encoding the human protein, termed surfactant proteolipid SPL(pVal) on the basis of its unique polyvaline domain. The primary structure of a precursor protein of 20,870 daltons, containing the SPL(pVal) peptide, was deduced from the nucleotide sequence of the cDNAs. Hybrid-arrested translation and immunoprecipitation of labeled translation products of human mRNA demonstrated a precursor protein, the active hydrophobic peptide being produced by proteolytic processing. Two classes of cDNAs encoding SPL(pVal) were identified. Human SPL(pVal) mRNA was more abundant in the adult than in fetal lung. The SPL(pVal) gene locus was assigned to chromosome 8.« less

  17. Security enhanced BioEncoding for protecting iris codes

    NASA Astrophysics Data System (ADS)

    Ouda, Osama; Tsumura, Norimichi; Nakaguchi, Toshiya

    2011-06-01

    Improving the security of biometric template protection techniques is a key prerequisite for the widespread deployment of biometric technologies. BioEncoding is a recently proposed template protection scheme, based on the concept of cancelable biometrics, for protecting biometric templates represented as binary strings such as iris codes. The main advantage of BioEncoding over other template protection schemes is that it does not require user-specific keys and/or tokens during verification. Besides, it satisfies all the requirements of the cancelable biometrics construct without deteriorating the matching accuracy. However, although it has been shown that BioEncoding is secure enough against simple brute-force search attacks, the security of BioEncoded templates against more smart attacks, such as record multiplicity attacks, has not been sufficiently investigated. In this paper, a rigorous security analysis of BioEncoding is presented. Firstly, resistance of BioEncoded templates against brute-force attacks is revisited thoroughly. Secondly, we show that although the cancelable transformation employed in BioEncoding might be non-invertible for a single protected template, the original iris code could be inverted by correlating several templates used in different applications but created from the same iris. Accordingly, we propose an important modification to the BioEncoding transformation process in order to hinder attackers from exploiting this type of attacks. The effectiveness of adopting the suggested modification is validated and its impact on the matching accuracy is investigated empirically using CASIA-IrisV3-Interval dataset. Experimental results confirm the efficacy of the proposed approach and show that it preserves the matching accuracy of the unprotected iris recognition system.

  18. Deep and shallow encoding effects on face recognition: an ERP study.

    PubMed

    Marzi, Tessa; Viggiano, Maria Pia

    2010-12-01

    Event related potentials (ERPs) were employed to investigate whether and when brain activity related to face recognition varies according to the processing level undertaken at encoding. Recognition was assessed when preceded by a "shallow" (orientation judgement) or by a "deep" study task (occupation judgement). Moreover, we included a further manipulation by presenting at encoding faces either in the upright or inverted orientation. As expected, deeply encoded faces were recognized more accurately and more quickly with respect to shallowly encoded faces. The ERP showed three main findings: i) as witnessed by more positive-going potentials for deeply encoded faces, at early and later processing stage, face recognition was influenced by the processing strategy adopted during encoding; ii) structural encoding, indexed by the N170, turned out to be "cognitively penetrable" showing repetition priming effects for deeply encoded faces; iii) face inversion, by disrupting configural processing during encoding, influenced memory related processes for deeply encoded faces and impaired the recognition of faces shallowly processed. The present study adds weight to the concept that the depth of processing during memory encoding affects retrieval. We found that successful retrieval following deep encoding involved both familiarity- and recollection-related processes showing from 500 ms a fronto-parietal distribution, whereas shallow encoding affected only earlier processing stages reflecting perceptual priming. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Review of Random Phase Encoding in Volume Holographic Storage

    PubMed Central

    Su, Wei-Chia; Sun, Ching-Cherng

    2012-01-01

    Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  20. [The ENCODE project and functional genomics studies].

    PubMed

    Ding, Nan; Qu, Hongzhu; Fang, Xiangdong

    2014-03-01

    Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.

  1. Two Pathways to Stimulus Encoding in Category Learning?

    PubMed Central

    Davis, Tyler; Love, Bradley C.; Maddox, W. Todd

    2008-01-01

    Category learning theorists tacitly assume that stimuli are encoded by a single pathway. Motivated by theories of object recognition, we evaluate a dual-pathway account of stimulus encoding. The part-based pathway establishes mappings between sensory input and symbols that encode discrete stimulus features, whereas the image-based pathway applies holistic templates to sensory input. Our experiments use rule-plus-exception structures in which one exception item in each category violates a salient regularity and must be distinguished from other items. In Experiment 1, we find that discrete representations are crucial for recognition of exceptions following brief training. Experiments 2 and 3 involve multi-session training regimens designed to encourage either part or image-based encoding. We find that both pathways are able to support exception encoding, but have unique characteristics. We speculate that one advantage of the part-based pathway is the ability to generalize across domains, whereas the image-based pathway provides faster and more effortless recognition. PMID:19460948

  2. Grammatical constraints on phonological encoding in speech production.

    PubMed

    Heller, Jordana R; Goldrick, Matthew

    2014-12-01

    To better understand the influence of grammatical encoding on the retrieval and encoding of phonological word-form information during speech production, we examine how grammatical class constraints influence the activation of phonological neighbors (words phonologically related to the target--e.g., MOON, TWO for target TUNE). Specifically, we compare how neighbors that share a target's grammatical category (here, nouns) influence its planning and retrieval, assessed by picture naming latencies, and phonetic encoding, assessed by word productions in picture names, when grammatical constraints are strong (in sentence contexts) versus weak (bare naming). Within-category (noun) neighbors influenced planning time and phonetic encoding more strongly in sentence contexts. This suggests that grammatical encoding constrains phonological processing; the influence of phonological neighbors is grammatically dependent. Moreover, effects on planning times could not fully account for phonetic effects, suggesting that phonological interaction affects articulation after speech onset. These results support production theories integrating grammatical, phonological, and phonetic processes.

  3. Modular verification of chemical reaction network encodings via serializability analysis

    PubMed Central

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  4. The ENCODE Project at UC Santa Cruz.

    PubMed

    Thomas, Daryl J; Rosenbloom, Kate R; Clawson, Hiram; Hinrichs, Angie S; Trumbower, Heather; Raney, Brian J; Karolchik, Donna; Barber, Galt P; Harte, Rachel A; Hillman-Jackson, Jennifer; Kuhn, Robert M; Rhead, Brooke L; Smith, Kayla E; Thakkapallayil, Archana; Zweig, Ann S; Haussler, David; Kent, W James

    2007-01-01

    The goal of the Encyclopedia Of DNA Elements (ENCODE) Project is to identify all functional elements in the human genome. The pilot phase is for comparison of existing methods and for the development of new methods to rigorously analyze a defined 1% of the human genome sequence. Experimental datasets are focused on the origin of replication, DNase I hypersensitivity, chromatin immunoprecipitation, promoter function, gene structure, pseudogenes, non-protein-coding RNAs, transcribed RNAs, multiple sequence alignment and evolutionarily constrained elements. The ENCODE project at UCSC website (http://genome.ucsc.edu/ENCODE) is the primary portal for the sequence-based data produced as part of the ENCODE project. In the pilot phase of the project, over 30 labs provided experimental results for a total of 56 browser tracks supported by 385 database tables. The site provides researchers with a number of tools that allow them to visualize and analyze the data as well as download data for local analyses. This paper describes the portal to the data, highlights the data that has been made available, and presents the tools that have been developed within the ENCODE project. Access to the data and types of interactive analysis that are possible are illustrated through supplemental examples.

  5. Encoding specificity manipulations do affect retrieval from memory.

    PubMed

    Zeelenberg, René

    2005-05-01

    In a recent article, P.A. Higham (2002) [Strong cues are not necessarily weak: Thomson and Tulving (1970) and the encoding specificity principle revisited. Memory &Cognition, 30, 67-80] proposed a new way to analyze cued recall performance in terms of three separable aspects of memory (retrieval, monitoring, and report bias) by comparing performance under both free-report and forced-report instructions. He used this method to derive estimates of these aspects of memory in an encoding specificity experiment similar to that reported by D.M. Thomson and E. Tulving (1970) [Associative encoding and retrieval: weak and strong cues. Journal of Experimental Psychology, 86, 255-262]. Under forced-report instructions, the encoding specificity manipulation did not affect performance. Higham concluded that the manipulation affected monitoring and report bias, but not retrieval. I argue that this interpretation of the results is problematic because the Thomson and Tulving paradigm is confounded, and show in three experiments using a more appropriate design that encoding specificity manipulations do affect performance in forced-report cued recall. Because in Higham's framework forced-report performance provides a measure of retrieval that is uncontaminated by monitoring and report bias it is concluded that encoding specificity manipulations do affect retrieval from memory.

  6. Eddy current compensated double diffusion encoded (DDE) MRI.

    PubMed

    Mueller, Lars; Wetscherek, Andreas; Kuder, Tristan Anselm; Laun, Frederik Bernd

    2017-01-01

    Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Carboxyl-terminal isoprenylation of ras-related GTP-binding proteins encoded by rac1, rac2, and ralA.

    PubMed

    Kinsella, B T; Erdman, R A; Maltese, W A

    1991-05-25

    Membrane localization of p21ras is dependent upon its posttranslational modification by a 15-carbon farnesyl group. The isoprenoid is linked to a cysteine located within a conserved carboxyl-terminal sequence termed the "CAAX" box (where C is cysteine, A is an aliphatic amino acid, and X is any amino acid). We now show that three GTP-binding proteins encoded by the recently identified rac1, rac2, and ralA genes also undergo isoprenoid modification. cDNAs coding for each protein were transcribed in vitro, and the RNAs were translated in reticulocyte lysates. Incorporation of isoprenoid precursors, [3H]mevalonate or [3H]farnesyl pyrophosphate, indicated that the translation products were modified by isoprenyl groups. A protein recognized by an antibody to rac1 also comigrated with a protein metabolically labeled by a product of [3H] mevalonate in cultured cells. Gel permeation chromatography of radiolabeled hydrocarbons released from the rac1, rac2, and ralA proteins by reaction with Raney nickel catalyst indicated that unlike p21Hras, which was modified by a 15-carbon moiety, the rac and ralA translation products were modified by 20-carbon isoprenyl groups. Site-directed mutagenesis established that the isoprenylated cysteines in the rac1, rac2, and ralA proteins were located in the fourth position from the carboxyl terminus. The three-amino acid extension distal to the cysteine was required for this modification. The isoprenylation of rac1 (CSLL), ralA (CCIL), and the site-directed mutants rac1 (CRLL) and ralA (CSIL), demonstrates that the amino acid adjacent to the cysteine need not be aliphatic. Therefore, proteins with carboxyl-terminal CXXX sequences that depart from the CAAX motif should be considered as potential targets for isoprenoid modification.

  8. Characterization of cDNAs and genomic DNAs for human threonyl- and cysteinyl-tRNA synthetases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruzen, M.E.

    1993-01-01

    Techniques of molecular biology were used to clone, sequence and map two human aminoacyl-tRNA synthetase (aaRS) cDNAs: threonyl-tRNA synthetase (ThrRS) a class II enzyme and cysteinyl-tRNA synthetase (CysRS) a class I enzyme. The predicted protein sequence of human ThrRS is highly homologous to that of lower eukaryotic and prokaryotic ThRSs, particularly in the regions containing the three structural motifs common to all class II synthetases. Signature regions 1 and 2, which characterize the class IIa subgroup (SerRS, ThrRS and HisRS) are highly conserved from bacteria to human. Structural predictions for human ThrRS based on the known structure of the closelymore » related SerRS from E.coli implicate strongly conserved residues in the signature sequences to be important in substrate binding. The amino terminal 100 residues of the deduced amino acid sequence of ThrRS shares structural similarity to SerRS consistent with forming an antiparallel helix implicated in tRNA binding. The 5' untranslated sequence of the human ThrRS gene shares short stretches of common sequence with the gene for hamster HisRS including a binding site for the promoter specific transcription factor sp-1. The deduced amino acid sequence of human CysRS has a high degree of sequence identify to E. coli CysRS. Human CysRS possesses the classic characteristics of a class I synthetase and is most closely related to the MetRS subgroup. The amino terminal half of human CysRS can be modeled as a nucleotide binding fold and shares significant sequence and structural similarity to the other enzymes in this subgroup. The CysRS structural gene (CARS) was mapped to human chromosome 11p15.5 by fluorescent in situ hybridization. CARS is the first aaRS gene to be mapped to chromosome 11. The steady state of both CysRS and ThrRs mRNA were quantitated in several human tissues. Message levels for these enzymes appear to be subjected to differential regulation in different cell types.« less

  9. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the

  10. Beyond Initial Encoding: Measures of the Post-Encoding Status of Memory Traces Predict Long-Term Recall during Infancy

    ERIC Educational Resources Information Center

    Pathman, Thanujeni; Bauer, Patricia J.

    2013-01-01

    The first years of life are witness to rapid changes in long-term recall ability. In the current research we contributed to an explanation of the changes by testing the absolute and relative contributions to long-term recall of encoding and post-encoding processes. Using elicited imitation, we sampled the status of 16-, 20-, and 24-month-old…

  11. Incremental Phonological Encoding during Unscripted Sentence Production

    PubMed Central

    Jaeger, T. Florian; Furth, Katrina; Hilliard, Caitlin

    2012-01-01

    We investigate phonological encoding during unscripted sentence production, focusing on the effect of phonological overlap on phonological encoding. Previous work on this question has almost exclusively employed isolated word production or highly scripted multi-word production. These studies have led to conflicting results: some studies found that phonological overlap between two words facilitates phonological encoding, while others found inhibitory effects. One worry with many of these paradigms is that they involve processes that are not typical to everyday language use, which calls into question to what extent their findings speak to the architectures and mechanisms underlying language production. We present a paradigm to investigate the consequences of phonological overlap between words in a sentence while leaving speakers much of the lexical and structural choices typical in everyday language use. Adult native speakers of English described events in short video clips. We annotated the presence of disfluencies and the speech rate at various points throughout the sentence, as well as the constituent order. We find that phonological overlap has an inhibitory effect on phonological encoding. Specifically, if adjacent content words share their phonological onset (e.g., hand the hammer), they are preceded by production difficulty, as reflected in fluency and speech rate. We also find that this production difficulty affects speakers’ constituent order preferences during grammatical encoding. We discuss our results and previous works to isolate the properties of other paradigms that resulted in facilitatory or inhibitory results. The data from our paradigm also speak to questions about the scope of phonological planning in unscripted speech and as to whether phonological and grammatical encoding interact. PMID:23162515

  12. Dynamical information encoding in neural adaptation.

    PubMed

    Luozheng Li; Wenhao Zhang; Yuanyuan Mi; Dahui Wang; Xiaohan Lin; Si Wu

    2016-08-01

    Adaptation refers to the general phenomenon that a neural system dynamically adjusts its response property according to the statistics of external inputs. In response to a prolonged constant stimulation, neuronal firing rates always first increase dramatically at the onset of the stimulation; and afterwards, they decrease rapidly to a low level close to background activity. This attenuation of neural activity seems to be contradictory to our experience that we can still sense the stimulus after the neural system is adapted. Thus, it prompts a question: where is the stimulus information encoded during the adaptation? Here, we investigate a computational model in which the neural system employs a dynamical encoding strategy during the neural adaptation: at the early stage of the adaptation, the stimulus information is mainly encoded in the strong independent firings; and as time goes on, the information is shifted into the weak but concerted responses of neurons. We find that short-term plasticity, a general feature of synapses, provides a natural mechanism to achieve this goal. Furthermore, we demonstrate that with balanced excitatory and inhibitory inputs, this correlation-based information can be read out efficiently. The implications of this study on our understanding of neural information encoding are discussed.

  13. Encoding attentional states during visuomotor adaptation

    PubMed Central

    Im, Hee Yeon; Bédard, Patrick; Song, Joo-Hyun

    2015-01-01

    We recently showed that visuomotor adaptation acquired under attentional distraction is better recalled under a similar level of distraction compared to no distraction. This paradoxical effect suggests that attentional state (e.g., divided or undivided) is encoded as an internal context during visuomotor learning and should be reinstated for successful recall (Song & Bédard, 2015). To investigate if there is a critical temporal window for encoding attentional state in visuomotor memory, we manipulated whether participants performed the secondary attention-demanding task concurrently in the early or late phase of visuomotor learning. Recall performance was enhanced when the attentional states between recall and the early phase of visuomotor learning were consistent. However, it reverted to untrained levels when tested under the attentional state of the late-phase learning. This suggests that attentional state is primarily encoded during the early phase of learning before motor errors decrease and reach an asymptote. Furthermore, we demonstrate that when divided and undivided attentional states were mixed during visuomotor adaptation, only divided attention was encoded as an internal cue for memory retrieval. Therefore, a single attentional state appears to be primarily integrated with visuomotor memory while motor error reduction is in progress during learning. PMID:26114683

  14. The ENCODE project: implications for psychiatric genetics.

    PubMed

    Kavanagh, D H; Dwyer, S; O'Donovan, M C; Owen, M J

    2013-05-01

    The ENCyclopedia Of DNA Elements (ENCODE) project is a public research consortium that aims to identify all functional elements of the human genome sequence. The project comprised 1640 data sets, from 147 different cell type and the findings were released in a coordinated set of 34 publications across several journals. The ENCODE publications report that 80.4% of the human genome displays some functionality. These data have important implications for interpreting results from large-scale genetics studies. We reviewed some of the key findings from the ENCODE publications and discuss how they can influence or inform further investigations into the genetic factors contributing to neuropsychiatric disorders.

  15. A Major Facilitator Superfamily protein encoded by TcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum.

    PubMed

    Mun, Seulgi; Noh, Mi Young; Osanai-Futahashi, Mizuko; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki

    2014-06-01

    Insect cuticle pigmentation and sclerotization (tanning) are vital physiological processes for insect growth, development and survival. We have previously identified several colorless precursor molecules as well as enzymes involved in their biosynthesis and processing to yield the mature intensely colored body cuticle pigments. A recent study indicated that the Bombyx mori (silkmoth) gene, BmMucK, which encodes a protein orthologous to a Culex pipiens quiquefasciatus (Southern house mosquito) cis,cis, muconate transporter, is a member of the "Major Facilitator Superfamily" (MFS) of transporter proteins and is associated with the appearance of pigmented body segments of naturally occurring body color mutants of B. mori. While RNA interference of the BmMucK gene failed to result in any observable phenotype, RNAi using a dsRNA for an orthologous gene from the red flour beetle, Tribolium castaneum, was reported to result in molting defects and darkening of the cuticle and some body parts, leading to the suggestion that orthologs of MucK genes may differ in their functions among insects. To verify the role and essentiality of the ortholog of this gene in development and body pigmentation function in T. castaneum we obtained cDNAs for the orthologous gene (TcMucK) from RNA isolated from the GA-1 wild-type strain of T. castaneum. The sequence of a 1524 nucleotides-long cDNA for TcMucK which encodes the putatively full-length protein, was assembled from two overlapping RT-PCR fragments and the expression profile of this gene during development was analyzed by real-time PCR. This cDNA encodes a 55.8 kDa protein consisting of 507 amino acid residues and includes 11 putative transmembrane segments. Transcripts of TcMucK were detected throughout all of the developmental stages analyzed. The function of this gene was explored by injection of two different double-stranded RNAs targeting different regions of the TcMucK gene (dsTcMucKs) into young larvae to down

  16. Regulation and Functional Expression of Cinnamate 4-Hydroxylase from Parsley

    PubMed Central

    Koopmann, Edda; Logemann, Elke; Hahlbrock, Klaus

    1999-01-01

    A previously isolated parsley (Petroselinum crispum) cDNA with high sequence similarity to cinnamate 4-hydroxylase (C4H) cDNAs from several plant sources was expressed in yeast (Saccharomyces cerevisiae) containing a plant NADPH:cytochrome P450 oxidoreductase and verified as encoding a functional C4H (CYP73A10). Low genomic complexity and the occurrence of a single type of cDNA suggest the existence of only one C4H gene in parsley. The encoded mRNA and protein, in contrast to those of a functionally related NADPH:cytochrome P450 oxidoreductase, were strictly coregulated with phenylalanine ammonia-lyase mRNA and protein, respectively, as demonstrated by coinduction under various conditions and colocalization in situ in cross-sections from several different parsley tissues. These results support the hypothesis that the genes encoding the core reactions of phenylpropanoid metabolism form a tight regulatory unit. PMID:9880345

  17. Mental reinstatement of encoding context improves episodic remembering.

    PubMed

    Bramão, Inês; Karlsson, Anna; Johansson, Mikael

    2017-09-01

    This study investigates context-dependent memory retrieval. Previous work has shown that physically re-experiencing the encoding context at retrieval improves memory accessibility. The current study examined if mental reconstruction of the original encoding context would yield parallel memory benefits. Participants performed a cued-recall memory task, preceded either by a mental or by a physical context reinstatement task, and we manipulated whether the context reinstated at retrieval overlapped with the context of the target episode. Both behavioral and electrophysiological measures of brain activity showed strong encoding-retrieval (E-R) overlap effects, with facilitated episodic retrieval when the encoding and retrieval contexts overlapped. The electrophysiological E-R overlap effect was more sustained and involved more posterior regions when context was mentally compared with physically reinstated. Additionally, a time-frequency analysis revealed that context reinstatement alone engenders recollection of the target episode. However, while recollection of the target memory is readily prompted by a physical reinstatement, target recollection during mental reinstatement is delayed and depends on the gradual reconstruction of the context. Taken together, our results show facilitated episodic remembering also when mentally reinstating the encoding context; and that such benefits are supported by both shared and partially non-overlapping neural mechanisms when the encoding context is mentally reconstructed as compared with physically presented at the time of retrieval. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Characteristic and intermingled neocortical circuits encode different visual object discriminations.

    PubMed

    Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I

    2017-07-28

    Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Accelerated radial Fourier-velocity encoding using compressed sensing.

    PubMed

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  20. Multiple-stage pure phase encoding with biometric information

    NASA Astrophysics Data System (ADS)

    Chen, Wen

    2018-01-01

    In recent years, many optical systems have been developed for securing information, and optical encryption/encoding has attracted more and more attention due to the marked advantages, such as parallel processing and multiple-dimensional characteristics. In this paper, an optical security method is presented based on pure phase encoding with biometric information. Biometric information (such as fingerprint) is employed as security keys rather than plaintext used in conventional optical security systems, and multiple-stage phase-encoding-based optical systems are designed for generating several phase-only masks with biometric information. Subsequently, the extracted phase-only masks are further used in an optical setup for encoding an input image (i.e., plaintext). Numerical simulations are conducted to illustrate the validity, and the results demonstrate that high flexibility and high security can be achieved.

  1. Nucleotide sequences of Dictyostelium discoideum developmentally regulated cDNAs rich in (AAC) imply proteins that contain clusters of asparagine, glutamine, or threonine.

    PubMed

    Shaw, D R; Richter, H; Giorda, R; Ohmachi, T; Ennis, H L

    1989-09-01

    A Dictyostelium discoideum repetitive element composed of long repeats of the codon (AAC) is found in developmentally regulated transcripts. The concentration of (AAC) sequences is low in mRNA from dormant spores and growing cells and increases markedly during spore germination and multicellular development. The sequence hybridizes to many different sized Dictyostelium DNA restriction fragments indicating that it is scattered throughout the genome. Four cDNA clones isolated contain (AAC) sequences in the deduced coding region. Interestingly, the (AAC)-rich sequences are present in all three reading frames in the deduced proteins, i.e., AAC (asparagine), ACA (threonine) and CAA (glutamine). Three of the clones contain only one of these in-frame so that the individual proteins carry either asparagine, threonine, or glutamine clusters, not mixtures. However, one clone is both glutamine- and asparagine-rich. The (AAC) portion of the transcripts are reiterated 300 times in the haploid genome while the other portions of the cDNAs represent single copy genes, whose sequences show no similarity other than the (AAC) repeats. The repeated sequence is similar to the opa or M sequence found in Drosophila melanogaster notch and homeo box genes and in fly developmentally regulated transcripts. The transcripts are present on polysomes suggesting that they are translated. Although the function of these repeats is unknown, long amino acid repeats are a characteristic feature of extracellular proteins of lower eukaryotes.

  2. Thought probes during prospective memory encoding: Evidence for perfunctory processes.

    PubMed

    Scullin, Michael K; McDaniel, Mark A; Dasse, Michelle N; Lee, Ji Hae; Kurinec, Courtney A; Tami, Claudina; Krueger, Madison L

    2018-01-01

    For nearly 50 years, psychologists have studied prospective memory, or the ability to execute delayed intentions. Yet, there remains a gap in understanding as to whether initial encoding of the intention must be elaborative and strategic, or whether some components of successful encoding can occur in a perfunctory, transient manner. In eight studies (N = 680), we instructed participants to remember to press the Q key if they saw words representing fruits (cue) during an ongoing lexical decision task. They then typed what they were thinking and responded whether they encoded fruits as a general category, as specific exemplars, or hardly thought about it at all. Consistent with the perfunctory view, participants often reported mind wandering (42.9%) and hardly thinking about the prospective memory task (22.5%). Even though participants were given a general category cue, many participants generated specific category exemplars (34.5%). Bayesian analyses of encoding durations indicated that specific exemplars came to mind in a perfunctory manner rather than via strategic, elaborative mechanisms. Few participants correctly guessed the research hypotheses and changing from fruit category cues to initial-letter cues eliminated reports of specific exemplar generation, thereby arguing against demand characteristics in the thought probe procedure. In a final experiment, encoding duration was unrelated to prospective memory performance; however, specific-exemplar encoders outperformed general-category encoders with no ongoing task monitoring costs. Our findings reveal substantial variability in intention encoding, and demonstrate that some components of prospective memory encoding can be done "in passing."

  3. Spatial encoding using the nonlinear field perturbations from magnetic materials.

    PubMed

    Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H

    2014-08-01

    A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.

  4. Virus-encoded microRNAs

    PubMed Central

    Grundhoff, Adam; Sullivan, Christopher S.

    2011-01-01

    microRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category are a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection. PMID:21277611

  5. A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.

    PubMed

    Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S

    2003-06-01

    The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.

  6. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds.

    PubMed

    Kim, Hae Jin; Silva, Jillian E; Iskandarov, Umidjon; Andersson, Mariette; Cahoon, Rebecca E; Mockaitis, Keithanne; Cahoon, Edgar B

    2015-12-01

    Lysophosphatidic acid acyltransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA substrate to produce the phosphatidic acid precursor of polar glycerolipids and triacylglycerols (TAGs). In the case of TAGs, this reaction is typically catalyzed by an LPAT2 from microsomal LPAT class A that has high specificity for C18 fatty acids containing Δ9 unsaturation. Because of this specificity, the occurrence of saturated fatty acids in the TAG sn-2 position is infrequent in seed oils. To identify LPATs with variant substrate specificities, deep transcriptomic mining was performed on seeds of two Cuphea species producing TAGs that are highly enriched in saturated C8 and C10 fatty acids. From these analyses, cDNAs for seven previously unreported LPATs were identified, including cDNAs from Cuphea viscosissima (CvLPAT2) and Cuphea avigera var. pulcherrima (CpuLPAT2a) encoding microsomal, seed-specific class A LPAT2s and a cDNA from C. avigera var. pulcherrima (CpuLPATB) encoding a microsomal, seed-specific LPAT from the bacterial-type class B. The activities of these enzymes were characterized in Camelina sativa by seed-specific co-expression with cDNAs for various Cuphea FatB acyl-acyl carrier protein thioesterases (FatB) that produce a variety of saturated medium-chain fatty acids. CvLPAT2 and CpuLPAT2a expression resulted in accumulation of 10:0 fatty acids in the Camelina sativa TAG sn-2 position, indicating a 10:0 CoA specificity that has not been previously described for plant LPATs. CpuLPATB expression generated TAGs with 14:0 at the sn-2 position, but not 10:0. Identification of these LPATs provides tools for understanding the structural basis of LPAT substrate specificity and for generating altered oil functionalities. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Functional Neuroimaging of Self-Referential Encoding with Age

    PubMed Central

    Gutchess, Angela H.; Kensinger, Elizabeth A.; Schacter, Daniel L.

    2009-01-01

    Aging impacts memory formation and the engagement of frontal and medial temporal regions. However, much of the research to date has focused on the encoding of neutral verbal and visual information. The present fMRI study investigated age differences in a social encoding task while participants made judgments about the self or another person. Although previous studies identified an intact self-reference effect with age, subserved by robust engagement of medial prefrontal cortex (mPFC) by both young and older adults, we identified a number of age differences. In regions including superior mPFC, inferior prefrontal cortex, and anterior and posterior cingulate cortex, young and older adults exhibited reversals in the pattern of activity for self and other conditions. Whereas young primarily evidenced subsequent forgetting effects in the self-reference condition, older adults demonstrated subsequent memory effects in the other-reference condition. These results indicate fundamental differences across the age groups in the engagement of elaborative encoding processes. We suggest that older adults may encode information about the self in a more normative manner, whereas young adults focus on encoding the unique aspects of the self and distinguishing the self from others. PMID:19765600

  8. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.

    PubMed

    Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M

    1991-02-15

    The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.

  9. Complementary-encoding holographic associative memory using a photorefractive crystal

    NASA Astrophysics Data System (ADS)

    Yuan, ShiFu; Wu, Minxian; Yan, Yingbai; Jin, Guofan

    1996-06-01

    We present a holographic implementation of accurate associative memory with only one holographic memory system. In the implementation, the stored and test images are coded by using complementary-encoding method. The recalled complete image is also a coded image that can be decoded with a decoding mask to get an original image or its complement image. The experiment shows that the complementary encoding can efficiently increase the addressing accuracy in a simple way. Instead of the above complementary-encoding method, a scheme that uses complementary area-encoding method is also proposed for the holographic implementation of gray-level image associative memory with accurate addressing.

  10. Thought probes during prospective memory encoding: Evidence for perfunctory processes

    PubMed Central

    McDaniel, Mark A.; Dasse, Michelle N.; Lee, Ji hae; Kurinec, Courtney A.; Tami, Claudina; Krueger, Madison L.

    2018-01-01

    For nearly 50 years, psychologists have studied prospective memory, or the ability to execute delayed intentions. Yet, there remains a gap in understanding as to whether initial encoding of the intention must be elaborative and strategic, or whether some components of successful encoding can occur in a perfunctory, transient manner. In eight studies (N = 680), we instructed participants to remember to press the Q key if they saw words representing fruits (cue) during an ongoing lexical decision task. They then typed what they were thinking and responded whether they encoded fruits as a general category, as specific exemplars, or hardly thought about it at all. Consistent with the perfunctory view, participants often reported mind wandering (42.9%) and hardly thinking about the prospective memory task (22.5%). Even though participants were given a general category cue, many participants generated specific category exemplars (34.5%). Bayesian analyses of encoding durations indicated that specific exemplars came to mind in a perfunctory manner rather than via strategic, elaborative mechanisms. Few participants correctly guessed the research hypotheses and changing from fruit category cues to initial-letter cues eliminated reports of specific exemplar generation, thereby arguing against demand characteristics in the thought probe procedure. In a final experiment, encoding duration was unrelated to prospective memory performance; however, specific-exemplar encoders outperformed general-category encoders with no ongoing task monitoring costs. Our findings reveal substantial variability in intention encoding, and demonstrate that some components of prospective memory encoding can be done “in passing.” PMID:29874277

  11. Semantics-informed geological maps: Conceptual modeling and knowledge encoding

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2018-07-01

    This paper introduces a novel, semantics-informed geologic mapping process, whose application domain is the production of a synthetic geologic map of a large administrative region. A number of approaches concerning the expression of geologic knowledge through UML schemata and ontologies have been around for more than a decade. These approaches have yielded resources that concern specific domains, such as, e.g., lithology. We develop a conceptual model that aims at building a digital encoding of several domains of geologic knowledge, in order to support the interoperability of the sources. We apply the devised terminological base to the classification of the elements of a geologic map of the Italian Western Alps and northern Apennines (Piemonte region). The digitally encoded knowledge base is a merged set of ontologies, called OntoGeonous. The encoding process identifies the objects of the semantic encoding, the geologic units, gathers the relevant information about such objects from authoritative resources, such as GeoSciML (giving priority to the application schemata reported in the INSPIRE Encoding Cookbook), and expresses the statements by means of axioms encoded in the Web Ontology Language (OWL). To support interoperability, OntoGeonous interlinks the general concepts by referring to the upper part level of ontology SWEET (developed by NASA), and imports knowledge that is already encoded in ontological format (e.g., ontology Simple Lithology). Machine-readable knowledge allows for consistency checking and for classification of the geological map data through algorithms of automatic reasoning.

  12. Mollusk genes encoding lysine tRNA (UUU) contain introns.

    PubMed

    Matsuo, M; Abe, Y; Saruta, Y; Okada, N

    1995-11-20

    New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.

  13. Method and system for efficient video compression with low-complexity encoder

    NASA Technical Reports Server (NTRS)

    Chen, Jun (Inventor); He, Dake (Inventor); Sheinin, Vadim (Inventor); Jagmohan, Ashish (Inventor); Lu, Ligang (Inventor)

    2012-01-01

    Disclosed are a method and system for video compression, wherein the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a video decoder, wherein the method for encoding includes the steps of converting a source frame into a space-frequency representation; estimating conditional statistics of at least one vector of space-frequency coefficients; estimating encoding rates based on the said conditional statistics; and applying Slepian-Wolf codes with the said computed encoding rates. The preferred method for decoding includes the steps of; generating a side-information vector of frequency coefficients based on previously decoded source data, encoder statistics, and previous reconstructions of the source frequency vector; and performing Slepian-Wolf decoding of at least one source frequency vector based on the generated side-information, the Slepian-Wolf code bits and the encoder statistics.

  14. Impact of a Computer System and the Encoding Staff Organization on the Encoding Stays and on Health Institution Financial Production in France.

    PubMed

    Sarazin, Marianne; El Merini, Amine; Staccini, Pascal

    2016-01-01

    In France, medicalization of information systems program (PMSI) is an essential tool for the management planning and funding of health. The performance of encoding data inherent to hospital stays has become a major challenge for health institutions. Some studies have highlighted the impact of organizations set up on encoding quality and financial production. The aim of this study is to evaluate a computerized information system and new staff organization impact for treatment of the encoded information.

  15. Expression analysis of β-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions.

    PubMed

    Li, Qian; Li, Ping; Sun, Liang; Wang, Yanping; Ji, Kai; Sun, Yufei; Dai, Shengjie; Chen, Pei; Duan, Chaorui; Leng, Ping

    2012-01-01

    The aim of this study was to obtain new insights into the mechanisms that regulate endogenous abscisic acid (ABA) levels by β-glucosidase genes during the development of watermelons (Citrullus lanatus) and under drought stress conditions. In total, five cDNAs from watermelons were cloned by using reverse transcription-PCR (RT-PCR). They included three cDNAs (ClBG1, ClBG2 and ClBG3) homologous to those that encode β-glucosidase l that hydrolyzes the ABA glucose ester (ABA-GE) to release active ABA, ClNCED4, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, and ClCYP707A1, encoding ABA 8'-hydroxylase. A BLAST homology search revealed that the sequences of cDNAs and the deduced amino acids of these genes showed a high degree of homology to comparable molecules of other plant species. During fruit development and ripening, the expressions of ClBG1, ClNCED4 and ClCYP707A1 were relatively low at an early stage, increased rapidly along with fruit ripening, and reached the highest levels at 27 days after full bloom (DAFB) at the harvest stage. This trend was consistent with the accumulation of ABA. The ClBG2 gene on the other hand was highly expressed at 5 DAFB, and then decreased gradually with fruit development. Unlike ClBG1 and ClBG2, the expression of ClBG3 was low at an early stage; its expression peak occurred at 15 DAFB and then declined to the lowest point. When watermelon seedlings were subjected to drought stress, expressions of ClBG1 and ClCYP707A1 were significantly down-regulated, while expressions of ClBG2 and ClNCED4 were up-regulated in the roots, stems and leaves. The expression of ClBG3 was down-regulated in root tissue, but was up-regulated in stems and leaves. In conclusion, endogenous ABA content was modulated by a dynamic balance between biosynthesis and catabolism regulated by ClNCED4, ClCYP707A1 and ClBGs during development and under drought stress condition. It seems likely that β-glucosidase genes are

  16. Source encoding in multi-parameter full waveform inversion

    NASA Astrophysics Data System (ADS)

    Matharu, Gian; Sacchi, Mauricio D.

    2018-04-01

    Source encoding techniques alleviate the computational burden of sequential-source full waveform inversion (FWI) by considering multiple sources simultaneously rather than independently. The reduced data volume requires fewer forward/adjoint simulations per non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI) have thus far focused on monoparameter acoustic inversion. We extend SEFWI to the multi-parameter case with applications presented for elastic isotropic inversion. Estimating multiple parameters can be challenging as perturbations in different parameters can prompt similar responses in the data. We investigate the relationship between source encoding and parameter trade-off by examining the multi-parameter source-encoded Hessian. Probing of the Hessian demonstrates the convergence of the expected source-encoded Hessian, to that of conventional FWI. The convergence implies that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series of synthetic inversions are conducted to establish the feasibility of source-encoded multi-parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than FWI to achieve a target model error for a range of first-order optimization methods. An inversion for spatially inconsistent P - (α) and S-wave (β) velocity models, corroborates the expectation of comparable parameter trade-off in SEFWI and FWI. The final example demonstrates a shortcoming of SEFWI when confronted with time-windowing in data-driven inversion schemes. The limitation is a consequence of the implicit fixed-spread acquisition assumption in SEFWI. Alternative objective functions, namely the normalized cross-correlation and L1 waveform misfit, do not enable SEFWI to overcome this limitation.

  17. Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein

    PubMed Central

    Zeng, Yong; Loker, Eric S.

    2013-01-01

    Peptidoglycan (PGN) recognition proteins (PGRPs) and gram-negative bacteria binding proteins (GNBPs) play an essential role in Toll/Imd signaling pathways in arthropods. The existence of homologous pathways involving PGRPs and GNBPs in other major invertebrate phyla such as the Mollusca remains unclear. In this paper, we report four full-length PGRP cDNAs and one full-length GNBP cDNA cloned from the snail Biomphalaria glabrata, the intermediate host of the human blood fluke Schistosoma mansoni, designated as BgPGRPs and BgGNBP, respectively. Three transcripts are generated from a long form PGRP gene (BgPGRP-LA) by alternative splicing and one from a short form PGRP gene (BgPGRP-SA). BgGNBP encodes a putative secreted protein. Northern blots demonstrated that expression of BgPGRP-SA and BgGNBP was down-regulated in B. glabrata at 6 h after exposure to three types of microbes. No significant changes in expression were observed in snails at 2 days post-exposure (dpe) to the trematodes Echinostoma paraensei or S. mansoni. However, up-regulation of BgPGRP-SA in M line snails at later time points of infection with E. paraensei (i.e., 12 and 17 dpe) was observed. Our study revealed that exposure to either microbes or trematodes did not alter the expression levels of BgPGRP-LAs, which were consistently low. This study provides new insights into the potential pathogen recognition capabilities of molluscs, indicates that further studies of the Toll/Imd pathways in this phylum are in order, and provides additional ways to judge the importance of this pathway in the evolution of internal defense across the animal phyla. PMID:17805526

  18. Polypeptides having laccase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea.

    PubMed

    Zhu, Changfu; Yamamura, Saburo; Koiwa, Hiroyuki; Nishihara, Masashiro; Sandmann, Gerhard

    2002-02-01

    All cDNAs involved in carotenoid biosynthesis leading to lycopene in yellow petals of Gentiana lutea have been cloned from a cDNA library. They encode a geranylgeranyl pyrophosphate synthase, a phytoene synthase, a phytoene desaturase and a zeta-carotene desaturase. The indicated function of all cDNAs was established by heterologous complementation in Escherichia coli. The amino acid sequences deduced from the cDNAs were between 47.5% and 78.9% identical to those reported for the corresponding enzymes from other higher plants. Southern analysis suggested that the genes for each enzyme probably represent a small multi-gene family. Tissue-specific expression of the genes and expression during flower development was investigated. The expression of the phytoene synthase gene, psy, was enhanced in flowers but transcripts were not detected in stems and leaves by northern blotting. Transcripts of the genes for geranylgeranyl pyrophosphate (ggpps), phytoene desaturase (pds) and zeta-carotene desaturase (zds) were detected in flowers and leaves but not in stems. Analysis of the expression of psy and zds in petals revealed that levels of the transcripts were lowest in young buds and highest in fully open flowers, in parallel with the formation of carotenoids. Obviously, the transcription of these genes control the accumulation of carotenoids during flower development in G. lutea. For pds only a very slight increase of mRNA was found whereas the transcripts of ggpps decreased during flower development.

  20. Synthesis, antimicrobial activity and gene structure of a novel member of the dermaseptin B family.

    PubMed

    Fleury, Y; Vouille, V; Beven, L; Amiche, M; Wróblewski, H; Delfour, A; Nicolas, P

    1998-03-09

    Dermaseptins are a family of cationic (Lys-rich) antimicrobial peptides that are abundant in the skin secretions of the arboreal frogs Phyllomedusa bicolor and P. sauvagii. In vitro, these peptides are microbicidal against a wide variety of microorganisms including Gram-positive and Gram-negative bacteria, yeasts, protozoa and fungi. To date, 6 dermaseptin B mature peptides, 24-34 residues long, 2 dermaseptin B cDNAs and 2 gene sequences have been identified in P. bicolor. To assess dermaseptin related genes further, we screened a P. bicolor genomic library with 32P-labeled cDNAs coding either for prepro-dermaseptins B1 or B2 (adenoregulin). A gene sequence was identified that coded a novel dermaseptin B, termed Drg3, which exhibits 23-42% amino acids identities with other members of the family. Analysis of the cDNAs coding precursors for several opioid and antimicrobial peptides originating from the skin of various amphibian species revealed that the 25-residue preproregion of these preproforms are all encoded by conserved nucleotides encompassed by the first coding exon of the Drg3 gene. Synthetic dermaseptin Drg3 exhibited a bactericidal activity towards several species of mollicutes (wall-less eubacteria), firmicutes (Gram-positive eubacteria), and gracilicutes (Gram-negative eubacteria), with minimal inhibitory concentrations (MICs) ranging from 6.25 to 100 microM. Experiments performed on Acholeplasma laidlawii cells revealed that this peptide is membranotropic and that if efficiently depolarizes the plasma membrane.

  1. Characterization of CENH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species.

    PubMed

    Wang, Guixiang; He, Qunyan; Liu, Fan; Cheng, Zhukuan; Talbert, Paul B; Jin, Weiwei

    2011-08-01

    CENH3 is a centromere-specific histone H3 variant and has been used as a marker to identify active centromeres and DNA sequences associated with functional centromere/kinetochore complexes. In this study, up to four distinct CENH3 (BrCENH3) cDNAs were identified in individuals of each of three diploid species of Brassica. Comparison of the BrCENH3 cDNAs implied three related gene families: BrCENH3-A in Brassica rapa (AA), BrCENH3-B in B. nigra (BB), and BrCENH3-C in B. oleracea (CC). Each family encoded a histone fold domain and N-terminal histone tails that vary in length in all three families. The BrCENH3-B cDNAs have a deletion of two exons relative to BrCENH3-A and BrCENH3-C, consistent with the more ancient divergence of the BB genome. Chromatin immunoprecipitation and immunolabeling tests with anti-BrCENH3 antibodies indicated that both centromeric tandem repeats and the centromere-specific retrotransposons of Brassica are directly associated with BrCENH3 proteins. In three allotetraploid species, we find either co-transcription of the BrCENH3 genes of the ancestral diploid species or gene suppression of the BrCENH3 from one ancestor. Although B genome centromeres are occupied by BrCENH3-B in the ancestral species B. nigra, in allotetraploids both BrCENH3-A and BrCENH3-C proteins appear to assemble at these centromeres.

  2. Discovery of Herpes B Virus-Encoded MicroRNAs▿

    PubMed Central

    Besecker, Michael I.; Harden, Mallory E.; Li, Guanglin; Wang, Xiu-Jie; Griffiths, Anthony

    2009-01-01

    Herpes B virus (BV) naturally infects macaque monkeys and is a close relative of herpes simplex virus. BV can zoonotically infect humans to cause a rapidly ascending encephalitis with ∼80% mortality. Therefore, BV is a serious danger to those who come into contact with these monkeys or their tissues and cells. MicroRNAs are regulators of gene expression, and there have been reports of virus-encoded microRNAs. We hypothesize that BV-encoded microRNAs are important for the regulation of viral and cellular genes. Herein, we report the discovery of three herpes B virus-encoded microRNAs. PMID:19144716

  3. New insights into plant glycoside hydrolase family 32 in Agave species

    PubMed Central

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D.; Damián Santos, Maura L.; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana. PMID:26300895

  4. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  5. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening

    PubMed Central

    Harada, Taro; Torii, Yuka; Morita, Shigeto; Onodera, Reiko; Hara, Yoshinao; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Satoh, Shigeru

    2011-01-01

    Growth of petal cells is a basis for expansion and morphogenesis (outward bending) of petals during opening of carnation flowers (Dianthus caryophyllus L.). Petal growth progressed through elongation in the early stage, expansion with outward bending in the middle stage, and expansion of the whole area in the late stage of flower opening. In the present study, four cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) (DcXTH1–DcXTH4) and three cDNAs encoding expansin (DcEXPA1–DcEXPA3) were cloned from petals of opening carnation flowers and characterized. Real-time reverse transcription-PCR analyses showed that transcript levels of XTH and expansin genes accumulated differently in floral and vegetative tissues of carnation plants with opening flowers, indicating regulated expression of these genes. DcXTH2 and DcXTH3 transcripts were detected in large quantities in petals as compared with other tissues. DcEXPA1 and DcEXPA2 transcripts were markedly accumulated in petals of opening flowers. The action of XTH in growing petal tissues was confirmed by in situ staining of xyloglucan endotransglucosylase (XET) activity using a rhodamine-labelled xyloglucan nonasaccharide as a substrate. Based on the present findings, it is suggested that two XTH genes (DcXTH2 and DcXTH3) and two expansin genes (DcEXPA1 and DcEXPA2) are associated with petal growth and development during carnation flower opening. PMID:20959626

  6. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    PubMed

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  7. Virtual Northern analysis of the human genome.

    PubMed

    Hurowitz, Evan H; Drori, Iddo; Stodden, Victoria C; Donoho, David L; Brown, Patrick O

    2007-05-23

    We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  8. Virtual Northern Analysis of the Human Genome

    PubMed Central

    Hurowitz, Evan H.; Drori, Iddo; Stodden, Victoria C.; Donoho, David L.; Brown, Patrick O.

    2007-01-01

    Background We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. Methodology/Principal Findings We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Conclusions/Significance Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes. PMID:17520019

  9. Hippocampal place cell encoding of sloping terrain.

    PubMed

    Porter, Blake S; Schmidt, Robert; Bilkey, David K

    2018-05-21

    Effective navigation relies on knowledge of one's environment. A challenge to effective navigation is accounting for the time and energy costs of routes. Irregular terrain in ecological environments poses a difficult navigational problem as organisms ought to avoid effortful slopes to minimize travel costs. Route planning and navigation have previously been shown to involve hippocampal place cells and their ability to encode and store information about an organism's environment. However, little is known about how place cells may encode the slope of space and associated energy costs as experiments are traditionally carried out in flat, horizontal environments. We set out to investigate how dorsal-CA1 place cells in rats encode systematic changes to the slope of an environment by tilting a shuttle box from flat to 15° and 25° while minimizing external cue change. Overall, place cell encoding of tilted space was as robust as their encoding of flat ground as measured by traditional place cell metrics such as firing rates, spatial information, coherence, and field size. A large majority of place cells did, however, respond to slope by undergoing partial, complex remapping when the environment was shifted from one tilt angle to another. The propensity for place cells to remap did not, however, depend on the vertical distance the field shifted. Changes in slope also altered the temporal coding of information as measured by the rate of theta phase precession of place cell spikes, which decreased with increasing tilt angles. Together these observations indicate that place cells are sensitive to relatively small changes in terrain slope and that terrain slope may be an important source of information for organizing place cell ensembles. The terrain slope information encoded by place cells could be utilized by efferent regions to determine energetically advantageous routes to goal locations. This article is protected by copyright. All rights reserved. © 2018 Wiley

  10. New Ultra-High Sensitivity, Absolute, Linear, and Rotary Encoders

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1998-01-01

    Several new types of absolute optical encoders of both rotary and linear function are discussed. The means for encoding are complete departures from conventional optical encoders and offer advantages of compact form, immunity to damage-induced dropouts of position information, and about an order of magnitude higher sensitivity over what is commercially available. Rotary versions have sensitivity from 0.02 arcseconds down to 0.003 arcsecond while linear models have sensitivity of 10 nm.

  11. Noise level and MPEG-2 encoder statistics

    NASA Astrophysics Data System (ADS)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  12. Cognitive and Neural Effects of Semantic Encoding Strategy Training in Older Adults

    PubMed Central

    Anderson, B. A.; Barch, D. M.; Jacoby, L. L.

    2012-01-01

    Prior research suggests that older adults are less likely than young adults to use effective learning strategies during intentional encoding. This functional magnetic resonance imaging (fMRI) study investigated whether training older adults to use semantic encoding strategies can increase their self-initiated use of these strategies and improve their recognition memory. The effects of training on older adults' brain activity during intentional encoding were also examined. Training increased older adults' self-initiated semantic encoding strategy use and eliminated pretraining age differences in recognition memory following intentional encoding. Training also increased older adults' brain activity in the medial superior frontal gyrus, right precentral gyrus, and left caudate during intentional encoding. In addition, older adults' training-related changes in recognition memory were strongly correlated with training-related changes in brain activity in prefrontal and left lateral temporal regions associated with semantic processing and self-initiated verbal encoding strategy use in young adults. These neuroimaging results demonstrate that semantic encoding strategy training can alter older adults' brain activity patterns during intentional encoding and suggest that young and older adults may use the same network of brain regions to support self-initiated use of verbal encoding strategies. PMID:21709173

  13. The influence of attention on holistic face encoding.

    PubMed

    Boutet, Isabelle; Gentes-Hawn, Alyson; Chaudhuri, Avi

    2002-07-01

    We examined the influence of attention on the formation of holistic face representations using the composite effect (Perception 16 (1987) 747). In Experiment 1, stimuli composed of a face superimposed on a house were shown during encoding. Subjects delineated either the face or the house, thus manipulating attention away or toward the face. In Experiment 2, an intact face image was presented with letters scrolling from top to bottom. Subjects were asked to either ignore the letters or read them and decipher the words that they formed. Aligned and misaligned composites were shown at testing. Recognition performance was consistently better for misaligned than aligned stimuli, regardless of the allocation of attention during encoding. In Experiment 3, we show that the composite effect can be eliminated by a disruption in holistic processing at the time of encoding. We conclude that holistic encoding is one aspect of face analysis that occurs equally well with or without attention.

  14. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.

    PubMed

    Lau, Hoi-Kwan; Plenio, Martin B

    2016-09-02

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  15. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Plenio, Martin B.

    2016-09-01

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  16. Low-Density Parity-Check Code Design Techniques to Simplify Encoding

    NASA Astrophysics Data System (ADS)

    Perez, J. M.; Andrews, K.

    2007-11-01

    This work describes a method for encoding low-density parity-check (LDPC) codes based on the accumulate-repeat-4-jagged-accumulate (AR4JA) scheme, using the low-density parity-check matrix H instead of the dense generator matrix G. The use of the H matrix to encode allows a significant reduction in memory consumption and provides the encoder design a great flexibility. Also described are new hardware-efficient codes, based on the same kind of protographs, which require less memory storage and area, allowing at the same time a reduction in the encoding delay.

  17. Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds.

    PubMed

    Troncoso-Ponce, M A; Rivoal, J; Venegas-Calerón, M; Dorion, S; Sánchez, R; Cejudo, F J; Garcés, R; Martínez-Force, E

    2012-07-01

    Three cDNAs encoding different phosphoglycerate kinase (PGK, EC 2.7.2.3) isoforms, two cytosolic (HacPGK1 and HacPGK2) and one plastidic (HapPGK), were cloned and characterized from developing sunflower (Helianthus annuus L.) seeds. The expression profiles of these genes showed differences in heterotrophic tissues, such as developing seeds and roots, where HacPGK1 was predominant, while HapPGK was highly expressed in photosynthetic tissues. The cDNAs were expressed in Escherichia coli, and the corresponding proteins purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Despite the high level of identity between sequences, the HacPGK1 isoform showed strong differences in terms of specific activity, temperature stability and pH sensitivity in comparison to HacPGK2 and HapPGK. A polyclonal immune serum was raised against the purified HacPGK1 isoform, which showed cross-immunoreactivity with the other PGK isoforms. This serum allowed the localization of high expression levels of PGK isozymes in embryo tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    NASA Astrophysics Data System (ADS)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-09-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.

  19. Principles of metadata organization at the ENCODE data coordination center

    PubMed Central

    Hong, Eurie L.; Sloan, Cricket A.; Chan, Esther T.; Davidson, Jean M.; Malladi, Venkat S.; Strattan, J. Seth; Hitz, Benjamin C.; Gabdank, Idan; Narayanan, Aditi K.; Ho, Marcus; Lee, Brian T.; Rowe, Laurence D.; Dreszer, Timothy R.; Roe, Greg R.; Podduturi, Nikhil R.; Tanaka, Forrest; Hilton, Jason A.; Cherry, J. Michael

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org PMID:26980513

  20. A novel optical rotary encoder with eccentricity self-detection ability.

    PubMed

    Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2017-11-01

    Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.

  1. A novel optical rotary encoder with eccentricity self-detection ability

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2017-11-01

    Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.

  2. Human Genomic Signatures of Brain Oscillations During Memory Encoding.

    PubMed

    Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve

    2018-05-01

    Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.

  3. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  4. Encoded libraries of chemically modified peptides.

    PubMed

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.

  5. Performance study of large area encoding readout MRPC

    NASA Astrophysics Data System (ADS)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  6. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  7. Security authentication using phase-encoded nanoparticle structures and polarized light.

    PubMed

    Carnicer, Artur; Hassanfiroozi, Amir; Latorre-Carmona, Pedro; Huang, Yi-Pai; Javidi, Bahram

    2015-01-15

    Phase-encoded nanostructures such as quick response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase-encoded QR codes. The system is illuminated using polarized light, and the QR code is encoded using a phase-only random mask. Using classification algorithms, it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase-encoded QR codes using polarimetric signatures.

  8. Identification and tissue distribution of mRNAs encoding salmon-type calcitonins-IV and -V in the rainbow trout.

    PubMed

    Hidaka, Yoshie; Suzuki, Masakazu

    2004-06-01

    Four types of calcitonin are produced in salmonid fish, although their functional diversity is almost unknown. To explore the significance of these isoforms, we have characterized salmon-type calcitonin (sCT) mRNAs in the rainbow trout (Oncorhynchus mykiss), and examined their tissue distribution. In addition to the previously isolated sCT-I cDNAs, two new forms of sCT cDNA were cloned from the ultimobranchial gland, and one of them (sCT-IV cDNA) was predicted to encode an N-terminal peptide of 80 amino acid residues, a putative cleavage site Lys-Arg, sCT-IV, a cleavage and amidation sequence Gly-Lys-Lys-Arg, and a C-terminal peptide of 18 amino acids. The sCT-IV precursor was 78% identical with the rainbow trout sCT-I precursors. The other cloned cDNA encoded a precursor for a novel CT, sCT-V. The sCT-V peptide was different from sCT-IV by only one amino acid residue: Val at position 8 in the latter was replaced by Met. The sCT-V precursor had 80 and 90% identity with the sCT-I and -IV precursors respectively. No cDNA clones were obtained for sCTs-II or -III.Tissue distribution of sCT-I, -IV and -V mRNAs was examined by RT-PCR and specific cleavage with restriction enzymes. An amplified fragment from sCT-I mRNA was detected not only in the ultimobranchial gland, but also in the gills, testis and ovary. RT-PCR analysis coupled to restriction digestion further revealed that sCT-IV mRNA was expressed in both the testis and the ultimobranchial gland. The expression sites of sCT-IV mRNA were localized to the Leydig cells of the testis and to the parenchymal cells of the ultimobranchial gland, by in situ hybridization histochemistry. Although the amino acid sequence of sCT-V peptide was nearly the same as that of sCT-IV, the sCT-V gene showed a much wider pattern of expression: the band amplified by RT-PCR was detected in all the tissues examined except the kidney, gills and blood cells. The sCT-V mRNA was shown to be localized in the parenchymal cells of the

  9. Principles of metadata organization at the ENCODE data coordination center.

    PubMed

    Hong, Eurie L; Sloan, Cricket A; Chan, Esther T; Davidson, Jean M; Malladi, Venkat S; Strattan, J Seth; Hitz, Benjamin C; Gabdank, Idan; Narayanan, Aditi K; Ho, Marcus; Lee, Brian T; Rowe, Laurence D; Dreszer, Timothy R; Roe, Greg R; Podduturi, Nikhil R; Tanaka, Forrest; Hilton, Jason A; Cherry, J Michael

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org. © The Author(s) 2016. Published by Oxford University Press.

  10. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP).

    PubMed

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift-Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent "Bit 0," "Bit 1" and "Bit 2" respectively. Different to common BFSK in digital communication, "Bit 0" and "Bit 1" composited the unique identifier of stimuli in binary bit stream form, while "Bit 2" indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2 n -1 ( n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.

  11. Effect of tobacco craving cues on memory encoding and retrieval in smokers.

    PubMed

    Heishman, Stephen J; Boas, Zachary P; Hager, Marguerite C; Taylor, Richard C; Singleton, Edward G; Moolchan, Eric T

    2006-07-01

    Previous studies have shown that cue-elicited tobacco craving disrupted performance on cognitive tasks; however, no study has examined directly the effect of cue-elicited craving on memory encoding and retrieval. A distinction between encoding and retireval has been reported such that memory is more impaired when attention is divided at encoding than at retrieval. This study tested the hypothesis that active imagery of smoking situations would impair encoding processes, but have little effect on retrieval. Imagery scripts (cigarette craving and neutral content) were presented either before presentation of a word list (encoding trials) or before word recall (retrieval trials). A working memory task at encoding and free recall of words were assessed. Results indicated that active imagery disrupted working memory on encoding trials, but not on retrieval trials. There was a trend toward impaired working memory following craving scripts compared with neutral scripts. These data support the hypothesis that the cognitive underpinnings of encoding and retrieval processes are distinct.

  12. Isolation of cucumber CsARF cDNAs and expression of the corresponding mRNAs during gravity-regulated morphogenesis of cucumber seedlings

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yamasaki, S.; Fujii, N.; Hagen, G.; Guilfoyle, T.; Takahashi, H.

    Cucumber seedlings grown in a horizontal position develop a protuberance called peg on the lower side of the transition zone between the hypocotyl and the root. We have suggested that peg formation on the upper side of the gravistimulated transition zone is suppressed because cucumber seedlings grown in a vertical position or microgravity symmetrically develop two pegs on the transition zone. Plant hormone, auxin, is considered to play a crucial role in the gravity-regulated formation of peg. We have shown that the mRNAs of auxin-inducible genes (CsIAAs) isolated from cucumber accumulate more abundantly in the lower side of the transition zone than in the upper side when peg formation initiates. To reveal the mechanism of transcriptional regulation by auxin for peg formation, we isolated five cDNAs of Auxin Response Factors (ARFs) from cucumber and compared their mRNA accumulation with those of CsIAA1 and CsIAA2. The tissue specificity of mRNA accumulation of CsARF2 was similar to those of CsIAA1 and CsIAA2. The structural character of CsARF2 predicts it is transcriptional activator. These results suggest that CsARF2 may be involved in activation of the transcription of auxin-inducible genes including CsIAA1 for peg formation. Because mRNA accumulation of five CsARFs, including CsARF2, were affected by neither gravity nor auxin, transcriptional activity of CsARF2 may be regulated at post-transcriptional level to induce asymmetric mRNA accumulation of auxin-inducible genes in the transition zone.

  13. Emotion experienced during encoding enhances odor retrieval cue effectiveness.

    PubMed

    Herz, R S

    1997-01-01

    Emotional potentiation may be a key variable in the formation of odor-associated memory. Two experiments were conducted in which a distinctive ambient odor was present or absent during encoding and retrieval sessions and subjects were in an anxious or neutral mood during encoding. Subjects' mood at retrieval was not manipulated. The laboratory mood induction used in Experiment 1 suggested that anxiety might increase the effectiveness of an odor retrieval cue. This trend was confirmed in Experiment 2 by capturing a naturally stressful situation. Subjects who had an ambient odor cue available and were in a preexam state during encoding recalled more words than subjects in any other group. These data are evidence that heightened emotion experienced during encoding with an ambient odor can enhance the effectiveness of an odor as a cue to memory.

  14. Distinctiveness of Encoding and Memory for Learning Tasks.

    ERIC Educational Resources Information Center

    Glover, John A.; And Others

    1982-01-01

    A distinctiveness of encoding hypothesis, as applied to the facilitative effects that higher order objectives have on readers' prose recall, was evaluated in three experiments. Results suggest that distinctiveness of encoding may offer a theoretical basis for the effects of adjunct aids as well as a guide to their construction. (Author/GK)

  15. Twenty-seven nonoverlapping zinc finger cDNAs from human T cells map to nine different chromosomes with apparent clustering.

    PubMed Central

    Huebner, K; Druck, T; Croce, C M; Thiesen, H J

    1991-01-01

    cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells. Images Figure 4 Figure 5 Figure 2 Figure 3 PMID:2014798

  16. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  17. Functional Neuroimaging of Self-Referential Encoding with Age

    ERIC Educational Resources Information Center

    Gutchess, Angela H.; Kensinger, Elizabeth A.; Schacter, Daniel L.

    2010-01-01

    Aging impacts memory formation and the engagement of frontal and medial temporal regions. However, much of the research to date has focused on the encoding of neutral verbal and visual information. The present fMRI study investigated age differences in a social encoding task while participants made judgments about the self or another person.…

  18. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electrophysiological correlates of encoding and retrieving emotional events.

    PubMed

    Koenig, Stefanie; Mecklinger, Axel

    2008-04-01

    This study examined the impact of emotional content on encoding and retrieval processes. Event-related potentials were recorded in a source recognition memory task. During encoding, a posterior positivity for positive and negative pictures (250-450 ms) that presumably reflects attentional capturing of emotionally valenced stimuli was found. Additionally, positive events, which were also rated as less arousing than negative events, gave rise to anterior and posterior slow wave activity as compared with neutral and negative events and also showed enhanced recognition memory. It is assumed that positive low-arousing events enter controlled and elaborated encoding processes that are beneficial for recognition memory performance. The high arousal of negative events may interfere with controlled encoding mechanisms and attenuate item recognition and the quality of remembering. Moreover, topographically distinct late posterior negativities were obtained for the retrieval of the context features location and time that support the view that this component reflects processes in service of reconstructing the study episode by binding together contextual details with an item and that varies with the kind of episodic detail to be retrieved. (Copyright) 2008 APA.

  20. Is the encoding of Reward Prediction Error reliable during development?

    PubMed

    Keren, Hanna; Chen, Gang; Benson, Brenda; Ernst, Monique; Leibenluft, Ellen; Fox, Nathan A; Pine, Daniel S; Stringaris, Argyris

    2018-05-16

    Reward Prediction Errors (RPEs), defined as the difference between the expected and received outcomes, are integral to reinforcement learning models and play an important role in development and psychopathology. In humans, RPE encoding can be estimated using fMRI recordings, however, a basic measurement property of RPE signals, their test-retest reliability across different time scales, remains an open question. In this paper, we examine the 3-month and 3-year reliability of RPE encoding in youth (mean age at baseline = 10.6 ± 0.3 years), a period of developmental transitions in reward processing. We show that RPE encoding is differentially distributed between the positive values being encoded predominantly in the striatum and negative RPEs primarily encoded in the insula. The encoding of negative RPE values is highly reliable in the right insula, across both the long and the short time intervals. Insula reliability for RPE encoding is the most robust finding, while other regions, such as the striatum, are less consistent. Striatal reliability appeared significant as well once covarying for factors, which were possibly confounding the signal to noise ratio. By contrast, task activation during feedback in the striatum is highly reliable across both time intervals. These results demonstrate the valence-dependent differential encoding of RPE signals between the insula and striatum, and the consistency of RPE signals or lack thereof, during childhood and into adolescence. Characterizing the regions where the RPE signal in BOLD fMRI is a reliable marker is key for estimating reward-processing alterations in longitudinal designs, such as developmental or treatment studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    PubMed

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  3. An Information Theoretic Characterisation of Auditory Encoding

    PubMed Central

    Overath, Tobias; Cusack, Rhodri; Kumar, Sukhbinder; von Kriegstein, Katharina; Warren, Jason D; Grube, Manon; Carlyon, Robert P; Griffiths, Timothy D

    2007-01-01

    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content. PMID:17958472

  4. The effects of age on the neural correlates of episodic encoding.

    PubMed

    Grady, C L; McIntosh, A R; Rajah, M N; Beig, S; Craik, F I

    1999-12-01

    Young and old adults underwent positron emission tomographic scans while encoding pictures of objects and words using three encoding strategies: deep processing (a semantic living/nonliving judgement), shallow processing (size judgement) and intentional learning. Picture memory exceeded word memory in both young and old groups, and there was an age-related decrement only in word recognition. During the encoding tasks three brain activity patterns were found that differentiated stimulus type and the different encoding strategies. The stimulus-specific pattern was characterized by greater activity in extrastriate and medial temporal cortices during picture encoding, and greater activity in left prefrontal and temporal cortices during encoding of words. The older adults showed this pattern to a significantly lesser degree. A pattern distinguishing deep processing from intentional learning of words and pictures was identified, characterized mainly by differences in prefrontal cortex, and this pattern also was of significantly lesser magnitude in the old group. A final pattern identified areas with increased activity during deep processing and intentional learning of pictures, including left prefrontal and bilateral medial temporal regions. There was no group difference in this pattern. These results indicate age-related dysfunction in several encoding networks, with sparing of one specifically involved in more elaborate encoding of pictures. These age-related changes appear to affect verbal memory more than picture memory.

  5. JPEG vs. JPEG 2000: an objective comparison of image encoding quality

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Chamik, Matthieu; Winkler, Stefan

    2004-11-01

    This paper describes an objective comparison of the image quality of different encoders. Our approach is based on estimating the visual impact of compression artifacts on perceived quality. We present a tool that measures these artifacts in an image and uses them to compute a prediction of the Mean Opinion Score (MOS) obtained in subjective experiments. We show that the MOS predictions by our proposed tool are a better indicator of perceived image quality than PSNR, especially for highly compressed images. For the encoder comparison, we compress a set of 29 test images with two JPEG encoders (Adobe Photoshop and IrfanView) and three JPEG2000 encoders (JasPer, Kakadu, and IrfanView) at various compression ratios. We compute blockiness, blur, and MOS predictions as well as PSNR of the compressed images. Our results show that the IrfanView JPEG encoder produces consistently better images than the Adobe Photoshop JPEG encoder at the same data rate. The differences between the JPEG2000 encoders in our test are less pronounced; JasPer comes out as the best codec, closely followed by IrfanView and Kakadu. Comparing the JPEG- and JPEG2000-encoding quality of IrfanView, we find that JPEG has a slight edge at low compression ratios, while JPEG2000 is the clear winner at medium and high compression ratios.

  6. The contribution of encoding and retrieval processes to proactive interference.

    PubMed

    Kliegl, Oliver; Pastötter, Bernhard; Bäuml, Karl-Heinz T

    2015-11-01

    Proactive interference (PI) refers to the finding that memory for recently studied (target) material can be impaired by the prior study of other (nontarget) material. Previous accounts of PI differed in whether they attributed PI to impaired retrieval or impaired encoding. Here, we suggest an integrated encoding-retrieval account, which assigns a role for each of the 2 types of processes in buildup of PI. Employing a typical PI task, we examined (a) the role of encoding processes in PI by recording scalp EEG during study of nontarget and target lists, and (b) the role of retrieval processes in PI by measuring recall totals and response latencies in target list recall. In addition, we measured subjects' working memory capacity (WMC). Behaviorally, the PI effect arose in both recall totals and response latencies, indicating PI at the sampling and the recovery stage of recall. Neurally, we found an increase in electrophysiological activities in the theta frequency band (5-8 Hz) from nontarget to target list encoding, indicating an increase in memory load during target list encoding. The results demonstrate that impaired retrieval and impaired encoding can contribute to PI. They also show that WMC affects PI. For both encoding and retrieval processes, PI was reduced in high-WMC subjects, suggesting that these subjects are able to separate target from nontarget information and create stronger focus on the target material. (c) 2015 APA, all rights reserved).

  7. Re-engaging with the past: recapitulation of encoding operations during episodic retrieval

    PubMed Central

    Morcom, Alexa M.

    2014-01-01

    Recollection of events is accompanied by selective reactivation of cortical regions which responded to specific sensory and cognitive dimensions of the original events. This reactivation is thought to reflect the reinstatement of stored memory representations and therefore to reflect memory content, but it may also reveal processes which support both encoding and retrieval. The present study used event-related functional magnetic resonance imaging to investigate whether regions selectively engaged in encoding face and scene context with studied words are also re-engaged when the context is later retrieved. As predicted, encoding face and scene context with visually presented words elicited activity in distinct, context-selective regions. Retrieval of face and scene context also re-engaged some of the regions which had shown successful encoding effects. However, this recapitulation of encoding activity did not show the same context selectivity observed at encoding. Successful retrieval of both face and scene context re-engaged regions which had been associated with encoding of the other type of context, as well as those associated with encoding the same type of context. This recapitulation may reflect retrieval attempts which are not context-selective, but use shared retrieval cues to re-engage encoding operations in service of recollection. PMID:24904386

  8. Automatic Conceptual Encoding of Printed Verbal Material: Assessment of Population Differences.

    ERIC Educational Resources Information Center

    Kee, Daniel W.; And Others

    1984-01-01

    The release from proactive interference task as used to investigate categorical encoding of items. Low socioeconomic status Black and middle socioeconomic status White children were compared. Conceptual encoding differences between these populations were not detected in automatic conceptual encoding but were detected when the free recall method…

  9. Random phase encoding for optical security

    NASA Astrophysics Data System (ADS)

    Wang, RuiKang K.; Watson, Ian A.; Chatwin, Christopher R.

    1996-09-01

    A new optical encoding method for security applications is proposed. The encoded image (encrypted into the security products) is merely a random phase image statistically and randomly generated by a random number generator using a computer, which contains no information from the reference pattern (stored for verification) or the frequency plane filter (a phase-only function for decoding). The phase function in the frequency plane is obtained using a modified phase retrieval algorithm. The proposed method uses two phase-only functions (images) at both the input and frequency planes of the optical processor leading to maximum optical efficiency. Computer simulation shows that the proposed method is robust for optical security applications.

  10. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  11. Encoding and Retrieval Interference in Sentence Comprehension: Evidence from Agreement

    PubMed Central

    Villata, Sandra; Tabor, Whitney; Franck, Julie

    2018-01-01

    Long-distance verb-argument dependencies generally require the integration of a fronted argument when the verb is encountered for sentence interpretation. Under a parsing model that handles long-distance dependencies through a cue-based retrieval mechanism, retrieval is hampered when retrieval cues also resonate with non-target elements (retrieval interference). However, similarity-based interference may also stem from interference arising during the encoding of elements in memory (encoding interference), an effect that is not directly accountable for by a cue-based retrieval mechanism. Although encoding and retrieval interference are clearly distinct at the theoretical level, it is difficult to disentangle the two on empirical grounds, since encoding interference may also manifest at the retrieval region. We report two self-paced reading experiments aimed at teasing apart the role of each component in gender and number subject-verb agreement in Italian and English object relative clauses. In Italian, the verb does not agree in gender with the subject, thus providing no cue for retrieval. In English, although present tense verbs agree in number with the subject, past tense verbs do not, allowing us to test the role of number as a retrieval cue within the same language. Results from both experiments converge, showing similarity-based interference at encoding, and some evidence for an effect at retrieval. After having pointed out the non-negligible role of encoding in sentence comprehension, and noting that Lewis and Vasishth’s (2005) ACT-R model of sentence processing, the most fully developed cue-based retrieval approach to sentence processing does not predict encoding effects, we propose an augmentation of this model that predicts these effects. We then also propose a self-organizing sentence processing model (SOSP), which has the advantage of accounting for retrieval and encoding interference with a single mechanism. PMID:29403414

  12. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)

    PubMed Central

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift–Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent “Bit 0,” “Bit 1” and “Bit 2” respectively. Different to common BFSK in digital communication, “Bit 0” and “Bit 1” composited the unique identifier of stimuli in binary bit stream form, while “Bit 2” indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2n−1 (n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations. PMID:28626393

  13. 47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...

  14. 47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...

  15. Off-axis points encoding/decoding with orbital angular momentum spectrum

    PubMed Central

    Chu, Jiaqi; Chu, Daping; Smithwitck, Quinn

    2017-01-01

    Encoding/decoding off-axis points with discrete orbital angular momentum (OAM) modes is investigated. On-axis Laguerre-Gaussian (LG) beams are expanded into off-axis OAM spectra, with which off-axis points are encoded. The influence of the mode and the displacement of the LG beam on the spread of the OAM spectrum is analysed. The results show that not only the conventional on-axis point, but also off-axis points, can be encoded and decoded with OAM of light. This is confirmed experimentally. The analytical result here provides a solid foundation to use OAM modes to encode two-dimensional high density information for multiplexing and to analyse the effect of mis-alignment in practical OAM applications. PMID:28272543

  16. Research on Optimization of Encoding Algorithm of PDF417 Barcodes

    NASA Astrophysics Data System (ADS)

    Sun, Ming; Fu, Longsheng; Han, Shuqing

    The purpose of this research is to develop software to optimize the data compression of a PDF417 barcode using VC++6.0. According to the different compression mode and the particularities of Chinese, the relevant approaches which optimize the encoding algorithm of data compression such as spillage and the Chinese characters encoding are proposed, a simple approach to compute complex polynomial is introduced. After the whole data compression is finished, the number of the codeword is reduced and then the encoding algorithm is optimized. The developed encoding system of PDF 417 barcodes will be applied in the logistics management of fruits, therefore also will promote the fast development of the two-dimensional bar codes.

  17. The effect of encoding strategy on the neural correlates of memory for faces.

    PubMed

    Bernstein, Lori J; Beig, Sania; Siegenthaler, Amy L; Grady, Cheryl L

    2002-01-01

    Encoding and recognition of unfamiliar faces in young adults were examined using positron emission tomography to determine whether different encoding strategies would lead to encoding/retrieval differences in brain activity. Three types of encoding were compared: a 'deep' task (judging pleasantness/unpleasantness), a 'shallow' task (judging right/left orientation), and an intentional learning task in which subjects were instructed to learn the faces for a subsequent memory test but were not provided with a specific strategy. Memory for all faces was tested with an old/new recognition test. A modest behavioral effect was obtained, with deeply-encoded faces being recognized more accurately than shallowly-encoded or intentionally-learned faces. Regardless of encoding strategy, encoding activated a primarily ventral system including bilateral temporal and fusiform regions and left prefrontal cortices, whereas recognition activated a primarily dorsal set of regions including right prefrontal and parietal areas. Within encoding, the type of strategy produced different brain activity patterns, with deep encoding being characterized by left amygdala and left anterior cingulate activation. There was no effect of encoding strategy on brain activity during the recognition conditions. Posterior fusiform gyrus activation was related to better recognition accuracy in those conditions encouraging perceptual strategies, whereas activity in left frontal and temporal areas correlated with better performance during the 'deep' condition. Results highlight three important aspects of face memory: (1) the effect of encoding strategy was seen only at encoding and not at recognition; (2) left inferior prefrontal cortex was engaged during encoding of faces regardless of strategy; and (3) differential activity in fusiform gyrus was found, suggesting that activity in this area is not only a result of automatic face processing but is modulated by controlled processes.

  18. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  19. Structure and strategy in encoding simplified graphs

    NASA Technical Reports Server (NTRS)

    Schiano, Diane J.; Tversky, Barbara

    1992-01-01

    Tversky and Schiano (1989) found a systematic bias toward the 45-deg line in memory for the slopes of identical lines when embedded in graphs, but not in maps, suggesting the use of a cognitive reference frame specifically for encoding meaningful graphs. The present experiments explore this issue further using the linear configurations alone as stimuli. Experiments 1 and 2 demonstrate that perception and immediate memory for the slope of a test line within orthogonal 'axes' are predictable from purely structural considerations. In Experiments 3 and 4, subjects were instructed to use a diagonal-reference strategy in viewing the stimuli, which were described as 'graphs' only in Experiment 3. Results for both studies showed the diagonal bias previously found only for graphs. This pattern provides converging evidence for the diagonal as a cognitive reference frame in encoding linear graphs, and demonstrates that even in highly simplified displays, strategic factors can produce encoding biases not predictable solely from stimulus structure alone.

  20. Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection

    NASA Astrophysics Data System (ADS)

    Shikha, Swati; Zheng, Xiang; Zhang, Yong

    2018-06-01

    Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex's xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.

  1. Girls Not Boys Show Gender-Connotation Encoding from Print.

    ERIC Educational Resources Information Center

    Perez, Susan M.; Kee, Daniel W.

    2000-01-01

    Investigated possible gender differences in third grade students' encoding of gender-connotation from words using the release from proactive interference method to measure gender-connotation encoding. Students were presented with stimulus word triads in print. Results showed reliable proactive interference buildup and release for…

  2. Multiplexed Sequence Encoding: A Framework for DNA Communication

    PubMed Central

    Zakeri, Bijan; Carr, Peter A.; Lu, Timothy K.

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication—data encoding, data transfer & data extraction—and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system—Multiplexed Sequence Encoding (MuSE)—that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. PMID:27050646

  3. Multiplexed Sequence Encoding: A Framework for DNA Communication.

    PubMed

    Zakeri, Bijan; Carr, Peter A; Lu, Timothy K

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication-data encoding, data transfer & data extraction-and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system-Multiplexed Sequence Encoding (MuSE)-that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA.

  4. Method and apparatus for optical encoding with compressible imaging

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2006-01-01

    The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.

  5. An adaptive DPCM encoder for NTSC composite video signals

    NASA Astrophysics Data System (ADS)

    Cox, N. R.

    An adaptive DPCM algorithm is proposed for encoding digitized National Television Systems Committee (NTSC) color video signals. This algorithm essentially predicts picture contours in the composite signal without resorting to component separation. Preliminary subjective and objective tests performed on an experimental encoder/simulator indicate that high quality color pictures can be encoded at 4.0 bits/pel or 42.95 Mbit/s. This requires the use of a 4/8 bit dual-word-length coder and buffer memory. Such a system might be useful in certain short hop applications if both large-signal and small-signal responses can be preserved.

  6. Efficient Encoding and Rendering of Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Smith, Diann; Shih, Ming-Yun; Shen, Han-Wei

    1998-01-01

    Visualization of time-varying volumetric data sets, which may be obtained from numerical simulations or sensing instruments, provides scientists insights into the detailed dynamics of the phenomenon under study. This paper describes a coherent solution based on quantization, coupled with octree and difference encoding for visualizing time-varying volumetric data. Quantization is used to attain voxel-level compression and may have a significant influence on the performance of the subsequent encoding and visualization steps. Octree encoding is used for spatial domain compression, and difference encoding for temporal domain compression. In essence, neighboring voxels may be fused into macro voxels if they have similar values, and subtrees at consecutive time steps may be merged if they are identical. The software rendering process is tailored according to the tree structures and the volume visualization process. With the tree representation, selective rendering may be performed very efficiently. Additionally, the I/O costs are reduced. With these combined savings, a higher level of user interactivity is achieved. We have studied a variety of time-varying volume datasets, performed encoding based on data statistics, and optimized the rendering calculations wherever possible. Preliminary tests on workstations have shown in many cases tremendous reduction by as high as 90% in both storage space and inter-frame delay.

  7. Neural Correlates of Encoding within- and across-Domain Inter-Item Associations

    ERIC Educational Resources Information Center

    Park, Heekyeong; Rugg, Michael D.

    2011-01-01

    The neural correlates of the encoding of associations between pairs of words, pairs of pictures, and word-picture pairs were compared. The aims were to determine, first, whether the neural correlates of associative encoding vary according to study material and, second, whether encoding of across- versus within-material item pairs is associated…

  8. Spatiotemporal encoding of search strategies by prefrontal neurons.

    PubMed

    Chiang, Feng-Kuei; Wallis, Joni D

    2018-05-08

    Working memory is capacity-limited. In everyday life we rarely notice this limitation, in part because we develop behavioral strategies that help mitigate the capacity limitation. How behavioral strategies are mediated at the neural level is unclear, but a likely locus is lateral prefrontal cortex (LPFC). Neurons in LPFC play a prominent role in working memory and have been shown to encode behavioral strategies. To examine the role of LPFC in overcoming working-memory limitations, we recorded the activity of LPFC neurons in animals trained to perform a serial self-ordered search task. This task measured the ability to prospectively plan the selection of unchosen spatial search targets while retrospectively tracking which targets were previously visited. We found that individual LPFC neurons encoded the spatial location of the current search target but also encoded the spatial location of targets up to several steps away in the search sequence. Neurons were more likely to encode prospective than retrospective targets. When subjects used a behavioral strategy of stereotyped target selection, mitigating the working-memory requirements of the task, not only did the number of selection errors decrease but there was a significant reduction in the strength of spatial encoding in LFPC. These results show that LPFC neurons have spatiotemporal mnemonic fields, in that their firing rates are modulated both by the spatial location of future selection behaviors and the temporal organization of that behavior. Furthermore, the strength of this tuning can be dynamically modulated by the demands of the task.

  9. Cloning and expression analysis of cDNAs for ABA 8'-hydroxylase during sweet cherry fruit maturation and under stress conditions.

    PubMed

    Ren, Jie; Sun, Liang; Wu, Jiefang; Zhao, Shengli; Wang, Canlei; Wang, Yanping; Ji, Kai; Leng, Ping

    2010-11-15

    Abscisic acid (ABA) plays a key role in various aspects of plant growth and development, including adaptation to environmental stress and fruit maturation in sweet cherry fruit. In higher plants, the level of ABA is determined by synthesis and catabolism. In order to gain insight into ABA synthesis and catabolism in sweet cherry fruit during maturation and under stress conditions, four cDNAs of PacCYP707A1 -PacCYP707A4 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, and one cDNA of PacNCED1 for 9-cis-epoxycarotenoid dioxygenase, a key enzyme in the ABA biosynthetic pathway, were isolated from sweet cherry fruit (Prunus avium L.). The timing and pattern of PacNCED1 expression was coincident with that of ABA accumulation, which was correlated to maturation of sweet cherry fruit. All four PacCYP707As were expressed at varying intensities throughout fruit development and appeared to play overlapping roles in ABA catabolism throughout sweet cherry fruit development. The application of ABA enhanced the expression of PacCYP707A1 -PacCYP707A3 as well as PacNCED1, but downregulated the PacCYP707A4 transcript level. Expressions of PacCYP707A1, PacCYP707A3 and PacNCED1 were strongly increased by water stress. No significant differences in PacCYP707A2 and PacCYP707A4 expression were observed between dehydrated and control fruits. The results suggest that endogenous ABA content is modulated by a dynamic balance between biosynthesis and catabolism, which are regulated by PacNCED1 and PacCYP707As transcripts, respectively, during fruit maturation and under stress conditions. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation

    PubMed Central

    Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si

    2018-01-01

    Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural

  11. Encoding, training and retrieval in ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Xu, Hanni; Xia, Yidong; Xu, Bo; Yin, Jiang; Yuan, Guoliang; Liu, Zhiguo

    2016-05-01

    Ferroelectric tunnel junctions (FTJs) are quantum nanostructures that have great potential in the hardware basis for future neuromorphic applications. Among recently proposed possibilities, the artificial cognition has high hopes, where encoding, training, memory solidification and retrieval constitute a whole chain that is inseparable. However, it is yet envisioned but experimentally unconfirmed. The poor retention or short-term store of tunneling electroresistance, in particular the intermediate states, is still a key challenge in FTJs. Here we report the encoding, training and retrieval in BaTiO3 FTJs, emulating the key features of information processing in terms of cognitive neuroscience. This is implemented and exemplified through processing characters. Using training inputs that are validated by the evolution of both barrier profile and domain configuration, accurate recalling of encoded characters in the retrieval stage is demonstrated.

  12. Developmental fMRI study of episodic verbal memory encoding in children.

    PubMed

    Maril, A; Davis, P E; Koo, J J; Reggev, N; Zuckerman, M; Ehrenfeld, L; Mulkern, R V; Waber, D P; Rivkin, M J

    2010-12-07

    Understanding the maturation and organization of cognitive function in the brain is a central objective of both child neurology and developmental cognitive neuroscience. This study focuses on episodic memory encoding of verbal information by children, a cognitive domain not previously studied using fMRI. Children from 7 to 19 years of age were scanned at 1.5-T field strength using event-related fMRI while performing a novel verbal memory encoding paradigm in which words were incidentally encoded. A subsequent memory analysis was performed. SPM2 was utilized for whole brain and region-of-interest analyses of data. Both whole-sample intragroup analyses and intergroup analyses of the sample divided into 2 subgroups by age were conducted. Importantly, behavioral memory performance was equal across the age range of children studied. Encoding-related activation in the left hippocampus and bilateral basal ganglia declined as age increased. In addition, while robust blood oxygen level-dependent signal was found in left prefrontal cortex with task performance, no encoding-related age-modulated prefrontal activation was observed in either hemisphere. These data are consistent with a developmental pattern of verbal memory encoding function in which left hippocampal and bilateral basal ganglionic activations are more robust earlier in childhood but then decline with age. No encoding-related activation was found in prefrontal cortex which may relate to this region's recognized delay in biologic maturation in humans. These data represent the first fMRI demonstration of verbal encoding function in children and are relevant developmentally and clinically.

  13. Decoding and Encoding Facial Expressions in Preschool-Age Children.

    ERIC Educational Resources Information Center

    Zuckerman, Miron; Przewuzman, Sylvia J.

    1979-01-01

    Preschool-age children drew, decoded, and encoded facial expressions depicting five different emotions. Accuracy of drawing, decoding and encoding each of the five emotions was consistent across the three tasks; decoding ability was correlated with drawing ability among female subjects, but neither of these abilities was correlated with encoding…

  14. Semantic Encoding in Children: A New Method of Investigation.

    ERIC Educational Resources Information Center

    Kraut, Alan G.; Smothergill, Daniel W.

    A familiarization procedure was used in two experiments investigating word encoding in second and sixth graders. Previous studies using release from proactive inhibition had indicated that developmental changes on some encoding dimensions occur during this period. It is argued that the dependence of release from proactive inhibition on deliberate…

  15. Dissociable effects of top-down and bottom-up attention during episodic encoding

    PubMed Central

    Uncapher, Melina R.; Hutchinson, J. Benjamin; Wagner, Anthony D.

    2011-01-01

    It is well established that the formation of memories for life’s experiences—episodic memory—is influenced by how we attend to those experiences, yet the neural mechanisms by which attention shapes episodic encoding are still unclear. We investigated how top-down and bottom-up attention contribute to memory encoding of visual objects in humans by manipulating both types of attention during functional magnetic resonance imaging (fMRI) of episodic memory formation. We show that dorsal parietal cortex—specifically, intraparietal sulcus (IPS)—was engaged during top-down attention and was also recruited during the successful formation of episodic memories. By contrast, bottom-up attention engaged ventral parietal cortex—specifically, temporoparietal junction (TPJ)—and was also more active during encoding failure. Functional connectivity analyses revealed further dissociations in how top-down and bottom-up attention influenced encoding: while both IPS and TPJ influenced activity in perceptual cortices thought to represent the information being encoded (fusiform/lateral occipital cortex), they each exerted opposite effects on memory encoding. Specifically, during a preparatory period preceding stimulus presentation, a stronger drive from IPS was associated with a higher likelihood that the subsequently attended stimulus would be encoded. By contrast, during stimulus processing, stronger connectivity with TPJ was associated with a lower likelihood the stimulus would be successfully encoded. These findings suggest that during encoding of visual objects into episodic memory, top-down and bottom-up attention can have opposite influences on perceptual areas that subserve visual object representation, suggesting that one manner in which attention modulates memory is by altering the perceptual processing of to-be-encoded stimuli. PMID:21880922

  16. Dissociative effects of true and false recall as a function of different encoding strategies.

    PubMed

    Goodwin, Kerri A

    2007-01-01

    Goodwin, Meissner, and Ericsson (2001) proposed a path model in which elaborative encoding predicted the likelihood of verbalisation of critical, nonpresented words at encoding, which in turn predicted the likelihood of false recall. The present study tested this model of false recall experimentally with a manipulation of encoding strategy and the implementation of the process-tracing technique of protocol analysis. Findings indicated that elaborative encoding led to more verbalisations of critical items during encoding than rote rehearsal of list items, but false recall rates were reduced under elaboration conditions (Experiment 2). Interestingly, false recall was more likely to occur when items were verbalised during encoding than not verbalised (Experiment 1), and participants tended to reinstate their encoding strategies during recall, particularly after elaborative encoding (Experiment 1). Theoretical implications for the interplay of encoding and retrieval processes of false recall are discussed.

  17. Prefrontal activity and impaired memory encoding strategies in schizophrenia.

    PubMed

    Guimond, Synthia; Hawco, Colin; Lepage, Martin

    2017-08-01

    Schizophrenia patients have significant memory difficulties that have far-reaching implications in their daily life. These impairments are partly attributed to an inability to self-initiate effective memory encoding strategies, but its core neurobiological correlates remain unknown. The current study addresses this critical gap in our knowledge of episodic memory impairments in schizophrenia. Schizophrenia patients (n = 35) and healthy controls (n = 23) underwent a Semantic Encoding Memory Task (SEMT) during an fMRI scan. Brain activity was examined for conditions where participants were a) prompted to use semantic encoding strategies, or b) not prompted but required to self-initiate such strategies. When prompted to use semantic encoding strategies, schizophrenia patients exhibited similar recognition performance and brain activity as healthy controls. However, when required to self-initiate these strategies, patients had significant reduced recognition performance and brain activity in the left dorsolateral prefrontal cortex, as well as in the left temporal gyrus, left superior parietal lobule, and cerebellum. When patients were divided based on performance on the SEMT, the subgroup with more severe deficits in self-initiation also showed greater reduction in left dorsolateral prefrontal activity. These results suggest that impaired self-initiation of elaborative encoding strategies is a driving feature of memory deficits in schizophrenia. We also identified the neural correlates of impaired self-initiation of semantic encoding strategies, in which a failure to activate the left dorsolateral prefrontal cortex plays a key role. These findings provide important new targets in the development of novel treatments aiming to improve memory and ultimately patients' outcome. Copyright © 2017. Published by Elsevier Ltd.

  18. Multi-Level Sequential Pattern Mining Based on Prime Encoding

    NASA Astrophysics Data System (ADS)

    Lianglei, Sun; Yun, Li; Jiang, Yin

    Encoding is not only to express the hierarchical relationship, but also to facilitate the identification of the relationship between different levels, which will directly affect the efficiency of the algorithm in the area of mining the multi-level sequential pattern. In this paper, we prove that one step of division operation can decide the parent-child relationship between different levels by using prime encoding and present PMSM algorithm and CROSS-PMSM algorithm which are based on prime encoding for mining multi-level sequential pattern and cross-level sequential pattern respectively. Experimental results show that the algorithm can effectively extract multi-level and cross-level sequential pattern from the sequence database.

  19. Modeling the Control of Phonological Encoding in Bilingual Speakers

    ERIC Educational Resources Information Center

    Roelofs, Ardi; Verhoef, Kim

    2006-01-01

    Phonological encoding is the process by which speakers retrieve phonemic segments for morphemes from memory and use the segments to assemble phonological representations of words to be spoken. When conversing in one language, bilingual speakers have to resist the temptation of encoding word forms using the phonological rules and representations of…

  20. Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line

    NASA Technical Reports Server (NTRS)

    Chapman, D. L.; Wolgemuth, D. J.

    1992-01-01

    To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.

  1. Olfactory Proteins Mediating Chemical Communication in the Navel Orangeworm Moth, Amyelois transitella

    PubMed Central

    Leal, Walter S.; Ishida, Yuko; Pelletier, Julien; Xu, Wei; Rayo, Josep; Xu, Xianzhong; Ames, James B.

    2009-01-01

    Background The navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae), is the most serious insect pest of almonds and pistachios in California for which environmentally friendly alternative methods of control — like pheromone-based approaches — are highly desirable. Some constituents of the sex pheromone are unstable and could be replaced with parapheromones, which may be designed on the basis of molecular interaction of pheromones and pheromone-detecting olfactory proteins. Methodology By analyzing extracts from olfactory and non-olfactory tissues, we identified putative olfactory proteins, obtained their N-terminal amino acid sequences by Edman degradation, and used degenerate primers to clone the corresponding cDNAs by SMART RACE. Additionally, we used degenerate primers based on conserved sequences of known proteins to fish out other candidate olfactory genes. We expressed the gene encoding a newly identified pheromone-binding protein, which was analyzed by circular dichroism, fluorescence, and nuclear magnetic resonance, and used in a binding assay to assess affinity to pheromone components. Conclusion We have cloned nine cDNAs encoding olfactory proteins from the navel orangeworm, including two pheromone-binding proteins, two general odorant-binding proteins, one chemosensory protein, one glutathione S-transferase, one antennal binding protein X, one sensory neuron membrane protein, and one odorant receptor. Of these, AtraPBP1 is highly enriched in male antennae. Fluorescence, CD and NMR studies suggest a dramatic pH-dependent conformational change, with high affinity to pheromone constituents at neutral pH and no binding at low pH. PMID:19789654

  2. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana.

    PubMed

    Vanhoutte, K J A; Eggen, B J L; Janssen, J J M; Stavenga, D G

    2002-11-01

    The cDNAs of an ultraviolet (UV) and long-wavelength (LW) (green) absorbing rhodopsin of the bush brown Bicyclus anynana were partially identified. The UV sequence, encoding 377 amino acids, is 76-79% identical to the UV sequences of the papilionids Papilio glaucus and Papilio xuthus and the moth Manduca sexta. A dendrogram derived from aligning the amino acid sequences reveals an equidistant position of Bicyclus between Papilio and Manduca. The sequence of the green opsin cDNA fragment, which encodes 242 amino acids, represents six of the seven transmembrane regions. At the amino acid level, this fragment is more than 80% identical to the corresponding LW opsin sequences of Dryas, Heliconius, Papilio (rhodopsin 2) and Manduca. Whereas three LW absorbing rhodopsins were identified in the papilionid butterflies, only one green opsin was found in B. anynana.

  3. Local alignment of two-base encoded DNA sequence

    PubMed Central

    Homer, Nils; Merriman, Barry; Nelson, Stanley F

    2009-01-01

    Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732

  4. A Neural Signature Encoding Decisions under Perceptual Ambiguity

    PubMed Central

    Sun, Sai; Yu, Rongjun

    2017-01-01

    Abstract People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making. PMID:29177189

  5. The neuronal encoding of information in the brain.

    PubMed

    Rolls, Edmund T; Treves, Alessandro

    2011-11-01

    We describe the results of quantitative information theoretic analyses of neural encoding, particularly in the primate visual, olfactory, taste, hippocampal, and orbitofrontal cortex. Most of the information turns out to be encoded by the firing rates of the neurons, that is by the number of spikes in a short time window. This has been shown to be a robust code, for the firing rate representations of different neurons are close to independent for small populations of neurons. Moreover, the information can be read fast from such encoding, in as little as 20 ms. In quantitative information theoretic studies, only a little additional information is available in temporal encoding involving stimulus-dependent synchronization of different neurons, or the timing of spikes within the spike train of a single neuron. Feature binding appears to be solved by feature combination neurons rather than by temporal synchrony. The code is sparse distributed, with the spike firing rate distributions close to exponential or gamma. A feature of the code is that it can be read by neurons that take a synaptically weighted sum of their inputs. This dot product decoding is biologically plausible. Understanding the neural code is fundamental to understanding not only how the cortex represents, but also processes, information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Is junk DNA bunk? A critique of ENCODE.

    PubMed

    Doolittle, W Ford

    2013-04-02

    Do data from the Encyclopedia Of DNA Elements (ENCODE) project render the notion of junk DNA obsolete? Here, I review older arguments for junk grounded in the C-value paradox and propose a thought experiment to challenge ENCODE's ontology. Specifically, what would we expect for the number of functional elements (as ENCODE defines them) in genomes much larger than our own genome? If the number were to stay more or less constant, it would seem sensible to consider the rest of the DNA of larger genomes to be junk or, at least, assign it a different sort of role (structural rather than informational). If, however, the number of functional elements were to rise significantly with C-value then, (i) organisms with genomes larger than our genome are more complex phenotypically than we are, (ii) ENCODE's definition of functional element identifies many sites that would not be considered functional or phenotype-determining by standard uses in biology, or (iii) the same phenotypic functions are often determined in a more diffuse fashion in larger-genomed organisms. Good cases can be made for propositions ii and iii. A larger theoretical framework, embracing informational and structural roles for DNA, neutral as well as adaptive causes of complexity, and selection as a multilevel phenomenon, is needed.

  7. A Neural Signature Encoding Decisions under Perceptual Ambiguity.

    PubMed

    Sun, Sai; Yu, Rongjun; Wang, Shuo

    2017-01-01

    People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making.

  8. Absolute Position Encoders With Vertical Image Binning

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2005-01-01

    Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.

  9. Encoding Effects on First-Graders' Use of Manipulatives

    ERIC Educational Resources Information Center

    Osana, Helena P.; Przednowek, Katarzyna; Cooperman, Allyson; Adrien, Emmanuelle

    2018-01-01

    The effects of prior encodings of manipulatives (red and blue plastic chips) on children's ability to use them as representations of quantity were tested. First graders (N = 73) were assigned to four conditions in which the encoding of plastic chips was experimentally manipulated. All children then participated in an addition activity that relied…

  10. Audiovisual semantic congruency during encoding enhances memory performance.

    PubMed

    Heikkilä, Jenni; Alho, Kimmo; Hyvönen, Heidi; Tiippana, Kaisa

    2015-01-01

    Studies of memory and learning have usually focused on a single sensory modality, although human perception is multisensory in nature. In the present study, we investigated the effects of audiovisual encoding on later unisensory recognition memory performance. The participants were to memorize auditory or visual stimuli (sounds, pictures, spoken words, or written words), each of which co-occurred with either a semantically congruent stimulus, incongruent stimulus, or a neutral (non-semantic noise) stimulus in the other modality during encoding. Subsequent memory performance was overall better when the stimulus to be memorized was initially accompanied by a semantically congruent stimulus in the other modality than when it was accompanied by a neutral stimulus. These results suggest that semantically congruent multisensory experiences enhance encoding of both nonverbal and verbal materials, resulting in an improvement in their later recognition memory.

  11. Quantum Darwinism Requires an Extra-Theoretical Assumption of Encoding Redundancy

    NASA Astrophysics Data System (ADS)

    Fields, Chris

    2010-10-01

    Observers restricted to the observation of pointer states of apparatus cannot conclusively demonstrate that the pointer of an apparatus mathcal{A} registers the state of a system of interest S without perturbing S. Observers cannot, therefore, conclusively demonstrate that the states of a system S are redundantly encoded by pointer states of multiple independent apparatus without destroying the redundancy of encoding. The redundancy of encoding required by quantum Darwinism must, therefore, be assumed from outside the quantum-mechanical formalism and without the possibility of experimental demonstration.

  12. Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houshmand, Monireh; Hosseini-Khayat, Saied

    2011-02-15

    Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation andmore » practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.« less

  13. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings.

    PubMed Central

    Tulving, E; Kapur, S; Craik, F I; Moscovitch, M; Houle, S

    1994-01-01

    Data are reviewed from positron emission tomography studies of encoding and retrieval processes in episodic memory. These data suggest a hemispheric encoding/retrieval asymmetry model of prefrontal involvement in encoding and retrieval of episodic memory. According to this model, the left and right prefrontal lobes are part of an extensive neuronal network that subserves episodic remembering, but the two prefrontal hemispheres play different roles. Left prefrontal cortical regions are differentially more involved in retrieval of information from semantic memory and in simultaneously encoding novel aspects of the retrieved information into episodic memory. Right prefrontal cortical regions, on the other hand, are differentially more involved in episodic memory retrieval. PMID:8134342

  14. Interaction Between Encoding and Retrieval Operations in Cued Recall

    ERIC Educational Resources Information Center

    Fisher, Ronald P.; Craik, Fergus I. M.

    1977-01-01

    Three experiments are described in which the qualitative nature of memorial processing was manipulated at both input (encoding) and output (retrieval). As in earlier research, it was found that retention levels were highest when the same type of information was used as a retrieval cue. Concludes that the notions of encoding specificity and depth…

  15. Encoding Standards for Linguistic Corpora.

    ERIC Educational Resources Information Center

    Ide, Nancy

    The demand for extensive reusability of large language text collections for natural languages processing research requires development of standardized encoding formats. Such formats must be capable of representing different kinds of information across the spectrum of text types and languages, capable of representing different levels of…

  16. Single-Molecule Encoders for Tracking Motor Proteins on DNA

    NASA Astrophysics Data System (ADS)

    Lipman, Everett A.

    2012-02-01

    Devices such as inkjet printers and disk drives track position and velocity using optical encoders, which produce periodic signals precisely synchronized with linear or rotational motion. We have implemented this technique at the nanometer scale by labeling DNA with regularly spaced fluorescent dyes. The resulting molecular encoders can be used in several ways for high-resolution continuous tracking of individual motor proteins. These measurements do not require mechanical coupling to macroscopic instrumentation, are automatically calibrated by the underlying structure of DNA, and depend on signal periodicity rather than absolute level. I will describe the synthesis of single-molecule encoders, data from and modeling of experiments on a helicase and a DNA polymerase, and some ideas for future work.

  17. A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    PubMed Central

    2011-01-01

    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome. PMID:21526222

  18. Experimental measurement-device-independent quantum key distribution with uncharacterized encoding.

    PubMed

    Wang, Chao; Wang, Shuang; Yin, Zhen-Qiang; Chen, Wei; Li, Hong-Wei; Zhang, Chun-Mei; Ding, Yu-Yang; Guo, Guang-Can; Han, Zheng-Fu

    2016-12-01

    Measurement-device-independent quantum key distribution (MDI QKD) is an efficient way to share secrets using untrusted measurement devices. However, the assumption on the characterizations of encoding states is still necessary in this promising protocol, which may lead to unnecessary complexity and potential loopholes in realistic implementations. Here, by using the mismatched-basis statistics, we present the first proof-of-principle experiment of MDI QKD with uncharacterized encoding sources. In this demonstration, the encoded states are only required to be constrained in a two-dimensional Hilbert space, and two distant parties (Alice and Bob) are resistant to state preparation flaws even if they have no idea about the detailed information of their encoding states. The positive final secure key rates of our system exhibit the feasibility of this novel protocol, and demonstrate its value for the application of secure communication with uncharacterized devices.

  19. Integrated source and channel encoded digital communications system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1974-01-01

    Studies on the digital communication system for the direct communication links from ground to space shuttle and the links involving the Tracking and Data Relay Satellite (TDRS). Three main tasks were performed:(1) Channel encoding/decoding parameter optimization for forward and reverse TDRS links,(2)integration of command encoding/decoding and channel encoding/decoding; and (3) modulation coding interface study. The general communication environment is presented to provide the necessary background for the tasks and to provide an understanding of the implications of the results of the studies.

  20. Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device.

    PubMed

    Liang, Jinyang; Gao, Liang; Li, Chiye; Wang, Lihong V

    2014-02-01

    We have developed spatially Fourier-encoded photoacoustic (PA) microscopy using a digital micromirror device. The spatial intensity distribution of laser pulses is Fourier-encoded, and a series of such encoded PA measurements allows one to decode the spatial distribution of optical absorption. The throughput and Fellgett advantages were demonstrated by imaging a chromium target. By using 63 spatial elements, the signal-to-noise ratio in the recovered PA signal was enhanced by ∼4×. The system was used to image two biological targets, a monolayer of red blood cells and melanoma cells.

  1. Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device

    PubMed Central

    Liang, Jinyang; Gao, Liang; Li, Chiye; Wang, Lihong V.

    2014-01-01

    We have developed spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device. The spatial intensity distribution of laser pulses is Fourier-encoded, and a series of such encoded photoacoustic measurements allows one to decode the spatial distribution of optical absorption. The throughput and Fellgett advantages were demonstrated by imaging a chromium target. By using 63 spatial elements, the signal-to-noise ratio in the recovered photoacoustic signal was enhanced by ~4×. The system was used to image two biological targets, a monolayer of red blood cells and melanoma cells. PMID:24487832

  2. Divided attention reduces resistance to distraction at encoding but not retrieval.

    PubMed

    Weeks, Jennifer C; Hasher, Lynn

    2017-08-01

    Older adults show implicit memory for previously seen distraction, an effect attributed to poor attentional control. It is unclear whether this effect results from lack of control over encoding during the distraction task, lack of retrieval constraint during the test task, or both. In the present study, we simulated poor distraction control in young adults using divided attention at encoding, at retrieval, at both times, or not at all. The encoding task was a 1-back task on pictures with distracting superimposed letter strings, some of which were words. The retrieval task was a word fragment completion task testing implicit memory for the distracting words. Attention was divided using an auditory odd digit detection task. Dividing attention at encoding, but not at retrieval, resulted in significant priming for distraction, which suggests that control over encoding processes is a primary determinant of distraction transfer in populations with low inhibitory control (e.g. older adults).

  3. Semantic encoding of relational databases in wireless networks

    NASA Astrophysics Data System (ADS)

    Benjamin, David P.; Walker, Adrian

    2005-03-01

    Semantic Encoding is a new, patented technology that greatly increases the speed of transmission of distributed databases over networks, especially over ad hoc wireless networks, while providing a novel method of data security. It reduces bandwidth consumption and storage requirements, while speeding up query processing, encryption and computation of digital signatures. We describe the application of Semantic Encoding in a wireless setting and provide an example of its operation in which a compression of 290:1 would be achieved.

  4. Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy

    PubMed Central

    Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.

    2015-01-01

    Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst

  5. When encoding yields remembering: insights from event-related neuroimaging.

    PubMed Central

    Wagner, A D; Koutstaal, W; Schacter, D L

    1999-01-01

    To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering. PMID:10466153

  6. Feedback-tuned, noise resilient gates for encoded spin qubits

    NASA Astrophysics Data System (ADS)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  7. Task-selective memory effects for successfully implemented encoding strategies.

    PubMed

    Leshikar, Eric D; Duarte, Audrey; Hertzog, Christopher

    2012-01-01

    Previous behavioral evidence suggests that instructed strategy use benefits associative memory formation in paired associate tasks. Two such effective encoding strategies--visual imagery and sentence generation--facilitate memory through the production of different types of mediators (e.g., mental images and sentences). Neuroimaging evidence suggests that regions of the brain support memory reflecting the mental operations engaged at the time of study. That work, however, has not taken into account self-reported encoding task success (i.e., whether participants successfully generated a mediator). It is unknown, therefore, whether task-selective memory effects specific to each strategy might be found when encoding strategies are successfully implemented. In this experiment, participants studied pairs of abstract nouns under either visual imagery or sentence generation encoding instructions. At the time of study, participants reported their success at generating a mediator. Outside of the scanner, participants further reported the quality of the generated mediator (e.g., images, sentences) for each word pair. We observed task-selective memory effects for visual imagery in the left middle occipital gyrus, the left precuneus, and the lingual gyrus. No such task-selective effects were observed for sentence generation. Intriguingly, activity at the time of study in the left precuneus was modulated by the self-reported quality (vividness) of the generated mental images with greater activity for trials given higher ratings of quality. These data suggest that regions of the brain support memory in accord with the encoding operations engaged at the time of study.

  8. Task-Selective Memory Effects for Successfully Implemented Encoding Strategies

    PubMed Central

    Leshikar, Eric D.; Duarte, Audrey; Hertzog, Christopher

    2012-01-01

    Previous behavioral evidence suggests that instructed strategy use benefits associative memory formation in paired associate tasks. Two such effective encoding strategies–visual imagery and sentence generation–facilitate memory through the production of different types of mediators (e.g., mental images and sentences). Neuroimaging evidence suggests that regions of the brain support memory reflecting the mental operations engaged at the time of study. That work, however, has not taken into account self-reported encoding task success (i.e., whether participants successfully generated a mediator). It is unknown, therefore, whether task-selective memory effects specific to each strategy might be found when encoding strategies are successfully implemented. In this experiment, participants studied pairs of abstract nouns under either visual imagery or sentence generation encoding instructions. At the time of study, participants reported their success at generating a mediator. Outside of the scanner, participants further reported the quality of the generated mediator (e.g., images, sentences) for each word pair. We observed task-selective memory effects for visual imagery in the left middle occipital gyrus, the left precuneus, and the lingual gyrus. No such task-selective effects were observed for sentence generation. Intriguingly, activity at the time of study in the left precuneus was modulated by the self-reported quality (vividness) of the generated mental images with greater activity for trials given higher ratings of quality. These data suggest that regions of the brain support memory in accord with the encoding operations engaged at the time of study. PMID:22693593

  9. Early remodeling of the neocortex upon episodic memory encoding

    PubMed Central

    Bero, Adam W.; Meng, Jia; Cho, Sukhee; Shen, Abra H.; Canter, Rebecca G.; Ericsson, Maria; Tsai, Li-Huei

    2014-01-01

    Understanding the mechanisms by which long-term memories are formed and stored in the brain represents a central aim of neuroscience. Prevailing theory suggests that long-term memory encoding involves early plasticity within hippocampal circuits, whereas reorganization of the neocortex is thought to occur weeks to months later to subserve remote memory storage. Here we report that long-term memory encoding can elicit early transcriptional, structural, and functional remodeling of the neocortex. Parallel studies using genome-wide RNA sequencing, ultrastructural imaging, and whole-cell recording in wild-type mice suggest that contextual fear conditioning initiates a transcriptional program in the medial prefrontal cortex (mPFC) that is accompanied by rapid expansion of the synaptic active zone and postsynaptic density, enhanced dendritic spine plasticity, and increased synaptic efficacy. To address the real-time contribution of the mPFC to long-term memory encoding, we performed temporally precise optogenetic inhibition of excitatory mPFC neurons during contextual fear conditioning. Using this approach, we found that real-time inhibition of the mPFC inhibited activation of the entorhinal–hippocampal circuit and impaired the formation of long-term associative memory. These findings suggest that encoding of long-term episodic memory is associated with early remodeling of neocortical circuits, identify the prefrontal cortex as a critical regulator of encoding-induced hippocampal activation and long-term memory formation, and have important implications for understanding memory processing in healthy and diseased brain states. PMID:25071187

  10. Cloning of the anhidrotic ectodermal dysplasia gene: Identification of cDNAs associated with CpG islands mapped near translocation breakpoint in two female patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, A.K.; Schlessinger, D.; Kere, J.

    1994-09-01

    The gene for the X chromosomal developmental disorder anhidrotic ectodermal dysplasia (EDA) has been mapped to Xq12-q13 by linkage analysis and is expressed in a few females with chromosomal translocations involving band Xq12-q13. A yeast artificial chromosome (YAC) contig (2.0 Mb) spanning two translocation breakpoints has been assembled by sequence-tagged site (STS)-based chromosomal walking. The two translocation breakpoints (X:autosome translocations from the affected female patients) have been mapped less than 60 kb apart within a YAC contig. Unique probes and intragenic STSs (mapped between the two translocations) have been developed and a somatic cell hybrid carrying the translocated X chromosomemore » from the AK patient has been analyzed by isolating unique probes that span the breakpoint. Several STSs made from intragenic sequences have been found to be conserved in mouse, hamster and monkey, but we have detected no mRNAs in a number of tissues tested. However, a probe and STS developed from the DNA spanning the AK breakpoint is conserved in mouse, hamster and monkey, and we have detected expressed sequences in skin cells and cDNA libraries. In addition, unique sequences have been obtained from two CpG islands in the region that maps proximal to the breakpoints. cDNAs containing these sequences are being studied as candidates for the gene affected in the etiology of EDA.« less

  11. Molecular cloning of pepsinogens A and C from adult newt (Cynops pyrrhogaster) stomach.

    PubMed

    Inokuchi, Tomofumi; Ikuzawa, Masayuki; Yamazaki, Shin; Watanabe, Yukari; Shiota, Koushiro; Katoh, Takuma; Kobayashi, Ken-Ichiro

    2013-08-01

    The full-length cDNAs of three pepsinogens (Pgs) were cloned from the stomach of newt, Cynops pyrrhogaster, and nucleotide sequences of the full-length cDNAs were determined. Molecular phylogenetic analysis showed that two Pgs, named PgC1 and PgC2, belong to the pepsinogen C group, and one Pg, named PgA, belongs to the pepsinogen A group. The sequences contain an open reading frame (ORF) encoding 385 amino acid residues for PgC1, 383 amino acid residues for PgC2 and 377 amino acid residues for PgA. In addition, all of the three amino acid sequences conserve some unique characteristics such as six cysteine residues and putative active site two aspartic acid residues. All of the pepsinogen mRNAs were detected in the stomach by RT-PCR but not in other organs. Although a slight difference at the time of the start of expression was seen among the three pepsinogen genes, all of them were expressed in the larval stage after hatching. This is the first report on cloning of pepsinogens from urodele stomach. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah).

    PubMed

    He, Ying-Ying; Lee, Wei-Hui; Zhang, Yun

    2004-09-01

    Thirteen complete and three partial cDNA sequences were cloned from the constructed king cobra (Ophiophagus hannah) venom gland cDNA library. Phylogenetic analysis of nucleotide sequences of king cobra with those from other snake venoms revealed that obtained cDNAs are highly homologous to snake venom alpha-neurotoxins. Alignment of deduced mature peptide sequences of the obtained clones with those of other reported alpha-neurotoxins from the king cobra venom indicates that our obtained 16 clones belong to long-chain neurotoxins (seven), short-chain neurotoxins (seven), weak toxin (one) and variant (one), respectively. Up to now, two out of 16 newly cloned king cobra alpha-neurotoxins have identical amino acid sequences with CM-11 and Oh-6A/6B, which have been characterized from the same venom. Furthermore, five long-chain alpha-neurotoxins and two short-chain alpha-neurotoxins were purified from crude venom and their N-terminal amino acid sequences were determined. The cDNAs encoding the putative precursors of the purified native peptide were also determined based on the N-terminal amino acid sequencing. The purified alpha-neurotoxins showed different lethal activities on mice.

  13. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant

  14. An electrophysiological investigation of memory encoding, depth of processing, and word frequency in humans.

    PubMed

    Guo, Chunyan; Zhu, Ying; Ding, Jinhong; Fan, Silu; Paller, Ken A

    2004-02-12

    Memory encoding can be studied by monitoring brain activity correlated with subsequent remembering. To understand brain potentials associated with encoding, we compared multiple factors known to affect encoding. Depth of processing was manipulated by requiring subjects to detect animal names (deep encoding) or boldface (shallow encoding) in a series of Chinese words. Recognition was more accurate with deep than shallow encoding, and for low- compared to high-frequency words. Potentials were generally more positive for subsequently recognized versus forgotten words; for deep compared to shallow processing; and, for remembered words only, for low- than for high-frequency words. Latency and topographic differences between these potentials suggested that several factors influence the effectiveness of encoding and can be distinguished using these methods, even with Chinese logographic symbols.

  15. Enhanced Right Amygdala Activity in Adolescents during Encoding of Positively-Valenced Pictures

    PubMed Central

    Vasa, Roma A.; Pine, Daniel S.; Thorn, Julia M.; Nelson, Tess E.; Spinelli, Simona; Nelson, Eric; Maheu, Francoise S.; Ernst, Monique; Bruck, Maggie; Mostofsky, Stewart H.

    2010-01-01

    While studies among adults implicate the amygdala and interconnecting brain regions in encoding emotional stimuli, few studies have examined whether developmental changes occur within this emotional-memory network during adolescence. The present study examined whether adolescents and adults differentially engaged the amygdala and hippocampus during successful encoding of emotional pictures, with either positive or negative valence. Eighteen adults and twelve adolescents underwent event-related fMRI while encoding emotional pictures. Approximately 30 minutes later, outside the scanner, subjects were asked to recall the pictures seen during the scan. Age group differences in brain activity in the amygdala and hippocampus during encoding of the pictures that were later successfully and unsuccessfully recalled were separately compared for the positive and negative pictures. Adolescents, relative to adults, demonstrated enhanced activity in the right amygdala during encoding of positive pictures that were later recalled compared to not recalled. There were no age group differences in amygdala or hippocampal activity during successful encoding of negative pictures. The findings of preferential activity within the adolescent right amygdala during successful encoding of positive pictures may have implications for the increased reward and novelty seeking behavior, as well as elevated rates of psychopathology, observed during this distinct developmental period. PMID:21127721

  16. Seismic waveform tomography with shot-encoding using a restarted L-BFGS algorithm.

    PubMed

    Rao, Ying; Wang, Yanghua

    2017-08-17

    In seismic waveform tomography, or full-waveform inversion (FWI), one effective strategy used to reduce the computational cost is shot-encoding, which encodes all shots randomly and sums them into one super shot to significantly reduce the number of wavefield simulations in the inversion. However, this process will induce instability in the iterative inversion regardless of whether it uses a robust limited-memory BFGS (L-BFGS) algorithm. The restarted L-BFGS algorithm proposed here is both stable and efficient. This breakthrough ensures, for the first time, the applicability of advanced FWI methods to three-dimensional seismic field data. In a standard L-BFGS algorithm, if the shot-encoding remains unchanged, it will generate a crosstalk effect between different shots. This crosstalk effect can only be suppressed by employing sufficient randomness in the shot-encoding. Therefore, the implementation of the L-BFGS algorithm is restarted at every segment. Each segment consists of a number of iterations; the first few iterations use an invariant encoding, while the remainder use random re-coding. This restarted L-BFGS algorithm balances the computational efficiency of shot-encoding, the convergence stability of the L-BFGS algorithm, and the inversion quality characteristic of random encoding in FWI.

  17. Error-free holographic frames encryption with CA pixel-permutation encoding algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Xiao, Dan; Wang, Qiong-Hua

    2018-01-01

    The security of video data is necessary in network security transmission hence cryptography is technique to make video data secure and unreadable to unauthorized users. In this paper, we propose a holographic frames encryption technique based on the cellular automata (CA) pixel-permutation encoding algorithm. The concise pixel-permutation algorithm is used to address the drawbacks of the traditional CA encoding methods. The effectiveness of the proposed video encoding method is demonstrated by simulation examples.

  18. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway

    PubMed Central

    Helliwell, Chris A.; Chandler, Peter M.; Poole, Andrew; Dennis, Elizabeth S.; Peacock, W. James

    2001-01-01

    We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase. PMID:11172076

  19. Design and Synthesis of Biaryl DNA-Encoded Libraries.

    PubMed

    Ding, Yun; Franklin, G Joseph; DeLorey, Jennifer L; Centrella, Paolo A; Mataruse, Sibongile; Clark, Matthew A; Skinner, Steven R; Belyanskaya, Svetlana

    2016-10-10

    DNA-encoded library technology (ELT) is a powerful tool for the discovery of new small-molecule ligands to various protein targets. Here we report the design and synthesis of biaryl DNA-encoded libraries based on the scaffold of 5-formyl 3-iodobenzoic acid. Three reactions on DNA template, acylation, Suzuki-Miyaura coupling and reductive amination, were applied in the library synthesis. The three cycle library of 3.5 million diversity has delivered potent hits for phosphoinositide 3-kinase α (PI3Kα).

  20. Method and system for efficiently searching an encoded vector index

    DOEpatents

    Bui, Thuan Quang; Egan, Randy Lynn; Kathmann, Kevin James

    2001-09-04

    Method and system aspects for efficiently searching an encoded vector index are provided. The aspects include the translation of a search query into a candidate bitmap, and the mapping of data from the candidate bitmap into a search result bitmap according to entry values in the encoded vector index. Further, the translation includes the setting of a bit in the candidate bitmap for each entry in a symbol table that corresponds to candidate of the search query. Also included in the mapping is the identification of a bit value in the candidate bitmap pointed to by an entry in an encoded vector.

  1. Age-related effects on perceptual and semantic encoding in memory.

    PubMed

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-07

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Multi-pass encoding of hyperspectral imagery with spectral quality control

    NASA Astrophysics Data System (ADS)

    Wasson, Steven; Walker, William

    2015-05-01

    Multi-pass encoding is a technique employed in the field of video compression that maximizes the quality of an encoded video sequence within the constraints of a specified bit rate. This paper presents research where multi-pass encoding is extended to the field of hyperspectral image compression. Unlike video, which is primarily intended to be viewed by a human observer, hyperspectral imagery is processed by computational algorithms that generally attempt to classify the pixel spectra within the imagery. As such, these algorithms are more sensitive to distortion in the spectral dimension of the image than they are to perceptual distortion in the spatial dimension. The compression algorithm developed for this research, which uses the Karhunen-Loeve transform for spectral decorrelation followed by a modified H.264/Advanced Video Coding (AVC) encoder, maintains a user-specified spectral quality level while maximizing the compression ratio throughout the encoding process. The compression performance may be considered near-lossless in certain scenarios. For qualitative purposes, this paper presents the performance of the compression algorithm for several Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperion datasets using spectral angle as the spectral quality assessment function. Specifically, the compression performance is illustrated in the form of rate-distortion curves that plot spectral angle versus bits per pixel per band (bpppb).

  3. Influence of encoding focus and stereotypes on source monitoring event-related-potentials.

    PubMed

    Leynes, P Andrew; Nagovsky, Irina

    2016-01-01

    Source memory, memory for the origin of a memory, can be influenced by stereotypes and the information of focus during encoding processes. Participants studied words from two different speakers (male or female) using self-focus or other-focus encoding. Source judgments for the speaker׳s voice and Event-Related Potentials (ERPs) were recorded during test. Self-focus encoding increased dependence on stereotype information and the Late Posterior Negativity (LPN). The results link the LPN with an increase in systematic decision processes such as consulting prior knowledge to support an episodic memory judgment. In addition, other-focus encoding increased conditional source judgments and resulted in weaker old/new recognition relative to the self-focus encoding. The putative correlate of recollection (LPC) was absent during this condition and this was taken as evidence that recollection of partial information supported source judgments. Collectively, the results suggest that other-focus encoding changes source monitoring processing by altering the weight of specific memory features. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nucleic acids encoding antifungal polypeptides and uses thereof

    DOEpatents

    Altier, Daniel J.; Ellanskaya, I. A.; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-11-02

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include an amino acid sequence, and variants and fragments thereof, for an antipathogenic polypeptide that was isolated from a fungal fermentation broth. Nucleic acid molecules that encode the antipathogenic polypeptides of the invention, and antipathogenic domains thereof, are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  5. Distinctiveness and encoding effects in online sentence comprehension

    PubMed Central

    Hofmeister, Philip; Vasishth, Shravan

    2014-01-01

    In explicit memory recall and recognition tasks, elaboration and contextual isolation both facilitate memory performance. Here, we investigate these effects in the context of sentence processing: targets for retrieval during online sentence processing of English object relative clause constructions differ in the amount of elaboration associated with the target noun phrase, or the homogeneity of superficial features (text color). Experiment 1 shows that greater elaboration for targets during the encoding phase reduces reading times at retrieval sites, but elaboration of non-targets has considerably weaker effects. Experiment 2 illustrates that processing isolated superficial features of target noun phrases—here, a green word in a sentence with words colored white—does not lead to enhanced memory performance, despite triggering longer encoding times. These results are interpreted in the light of the memory models of Nairne, 1990, 2001, 2006, which state that encoding remnants contribute to the set of retrieval cues that provide the basis for similarity-based interference effects. PMID:25566105

  6. Attention promotes episodic encoding by stabilizing hippocampal representations

    PubMed Central

    Aly, Mariam; Turk-Browne, Nicholas B.

    2016-01-01

    Attention influences what is later remembered, but little is known about how this occurs in the brain. We hypothesized that behavioral goals modulate the attentional state of the hippocampus to prioritize goal-relevant aspects of experience for encoding. Participants viewed rooms with paintings, attending to room layouts or painting styles on different trials during high-resolution functional MRI. We identified template activity patterns in each hippocampal subfield that corresponded to the attentional state induced by each task. Participants then incidentally encoded new rooms with art while attending to the layout or painting style, and memory was subsequently tested. We found that when task-relevant information was better remembered, the hippocampus was more likely to have been in the correct attentional state during encoding. This effect was specific to the hippocampus, and not found in medial temporal lobe cortex, category-selective areas of the visual system, or elsewhere in the brain. These findings provide mechanistic insight into how attention transforms percepts into memories. PMID:26755611

  7. Cerebellar re-encoding of self-generated head movements

    PubMed Central

    Dugué, Guillaume P; Tihy, Matthieu; Gourévitch, Boris; Léna, Clément

    2017-01-01

    Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head movements in the rat caudal cerebellar vermis, an area essential for graviceptive functions. We found that, contrarily to peripheral vestibular inputs, most Purkinje cells exhibited a mixed sensitivity to head rotational and gravitational information and were differentially modulated by active and passive movements. In a subpopulation of cells, this mixed sensitivity underlay a tuning to rotations about an axis defined relative to gravity. Therefore, we show that the caudal vermis hosts a re-encoded, gravitationally polarized representation of self-generated head kinematics in freely moving rats. DOI: http://dx.doi.org/10.7554/eLife.26179.001 PMID:28608779

  8. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    PubMed Central

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  9. Parametric fMRI analysis of visual encoding in the human medial temporal lobe.

    PubMed

    Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P

    1999-01-01

    A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.

  10. Cache directory lookup reader set encoding for partial cache line speculation support

    DOEpatents

    Gara, Alan; Ohmacht, Martin

    2014-10-21

    In a multiprocessor system, with conflict checking implemented in a directory lookup of a shared cache memory, a reader set encoding permits dynamic recordation of read accesses. The reader set encoding includes an indication of a portion of a line read, for instance by indicating boundaries of read accesses. Different encodings may apply to different types of speculative execution.

  11. Key management of the double random-phase-encoding method using public-key encryption

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  12. Toward a Better Compression for DNA Sequences Using Huffman Encoding

    PubMed Central

    Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    2017-01-01

    Abstract Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016). PMID:27960065

  13. Toward a Better Compression for DNA Sequences Using Huffman Encoding.

    PubMed

    Al-Okaily, Anas; Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    2017-04-01

    Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016 ).

  14. A new methodology for vibration error compensation of optical encoders.

    PubMed

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new "ad hoc" methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained.

  15. A New Methodology for Vibration Error Compensation of Optical Encoders

    PubMed Central

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new “ad hoc” methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained. PMID:22666067

  16. Virus-encoded chemokine receptors--putative novel antiviral drug targets.

    PubMed

    Rosenkilde, Mette M

    2005-01-01

    Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines and their receptors to serve a variety of roles in viral life-cycle. This review focuses on the pharmacology of virus-encoded chemokine receptors, yet also the family of virus-encoded chemokines and chemokine-binding proteins will be touched upon. Key properties of the virus-encoded receptors, compared to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies--will be highlighted here together with the potentials of the virus-encoded chemokines and chemokine-binding proteins as novel anti-inflammatory biopharmaceutical strategies.

  17. An Encoding Method for Compressing Geographical Coordinates in 3d Space

    NASA Astrophysics Data System (ADS)

    Qian, C.; Jiang, R.; Li, M.

    2017-09-01

    This paper proposed an encoding method for compressing geographical coordinates in 3D space. By the way of reducing the length of geographical coordinates, it helps to lessen the storage size of geometry information. In addition, the encoding algorithm subdivides the whole space according to octree rules, which enables progressive transmission and loading. Three main steps are included in this method: (1) subdividing the whole 3D geographic space based on octree structure, (2) resampling all the vertices in 3D models, (3) encoding the coordinates of vertices with a combination of Cube Index Code (CIC) and Geometry Code. A series of geographical 3D models were applied to evaluate the encoding method. The results showed that this method reduced the storage size of most test data by 90 % or even more under the condition of a speed of encoding and decoding. In conclusion, this method achieved a remarkable compression rate in vertex bit size with a steerable precision loss. It shall be of positive meaning to the web 3d map storing and transmission.

  18. Cellobiohydrolase variants and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  19. Low-complexity video encoding method for wireless image transmission in capsule endoscope.

    PubMed

    Takizawa, Kenichi; Hamaguchi, Kiyoshi

    2010-01-01

    This paper presents a low-complexity video encoding method applicable for wireless image transmission in capsule endoscopes. This encoding method is based on Wyner-Ziv theory, in which side information available at a transmitter is treated as side information at its receiver. Therefore complex processes in video encoding, such as estimation of the motion vector, are moved to the receiver side, which has a larger-capacity battery. As a result, the encoding process is only to decimate coded original data through channel coding. We provide a performance evaluation for a low-density parity check (LDPC) coding method in the AWGN channel.

  20. Differential encoding of spatial information among retinal on cone bipolar cells

    PubMed Central

    Purgert, Robert J.

    2015-01-01

    The retina is the first stage of visual processing. It encodes elemental features of visual scenes. Distinct cone bipolar cells provide the substrate for this to occur. They encode visual information, such as color and luminance, a principle known as parallel processing. Few studies have directly examined whether different forms of spatial information are processed in parallel among cone bipolar cells. To address this issue, we examined the spatial information encoded by mouse ON cone bipolar cells, the subpopulation excited by increments in illumination. Two types of spatial processing were identified. We found that ON cone bipolar cells with axons ramifying in the central inner plexiform layer were tuned to preferentially encode small stimuli. By contrast, ON cone bipolar cells with axons ramifying in the proximal inner plexiform layer, nearest the ganglion cell layer, were tuned to encode both small and large stimuli. This dichotomy in spatial tuning is attributable to amacrine cells providing stronger inhibition to central ON cone bipolar cells compared with proximal ON cone bipolar cells. Furthermore, background illumination altered this difference in spatial tuning. It became less pronounced in bright light, as amacrine cell-driven inhibition became pervasive among all ON cone bipolar cells. These results suggest that differential amacrine cell input determined the distinct spatial encoding properties among ON cone bipolar cells. These findings enhance the known parallel processing capacity of the retina. PMID:26203104

  1. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening

    PubMed Central

    2017-01-01

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing. PMID:28199790

  2. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening.

    PubMed

    MacConnell, Andrew B; Price, Alexander K; Paegel, Brian M

    2017-03-13

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing.

  3. Similar patterns of neural activity predict memory function during encoding and retrieval.

    PubMed

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Content-Specific Source Encoding in the Human Medial Temporal Lobe

    ERIC Educational Resources Information Center

    Awipi, T.; Davachi, L.

    2008-01-01

    Although the medial temporal lobe (MTL) is known to be essential for episodic encoding, the contributions of individual MTL subregions remain unclear. Data from recognition memory studies have provided evidence that the hippocampus supports relational encoding important for later episodic recollection, whereas the perirhinal cortex has been linked…

  5. Oscillatory encoding of visual stimulus familiarity.

    PubMed

    Kissinger, Samuel T; Pak, Alexandr; Tang, Yu; Masmanidis, Sotiris C; Chubykin, Alexander A

    2018-06-18

    Familiarity of the environment changes the way we perceive and encode incoming information. However, the neural substrates underlying this phenomenon are poorly understood. Here we describe a new form of experience-dependent low frequency oscillations in the primary visual cortex (V1) of awake adult male mice. The oscillations emerged in visually evoked potentials (VEPs) and single-unit activity following repeated visual stimulation. The oscillations were sensitive to the spatial frequency content of a visual stimulus and required the muscarinic acetylcholine receptors (mAChRs) for their induction and expression. Finally, ongoing visually evoked theta (4-6 Hz) oscillations boost the VEP amplitude of incoming visual stimuli if the stimuli are presented at the high excitability phase of the oscillations. Our results demonstrate that an oscillatory code can be used to encode familiarity and serves as a gate for oncoming sensory inputs. Significance Statement. Previous experience can influence the processing of incoming sensory information by the brain and alter perception. However, the mechanistic understanding of how this process takes place is lacking. We have discovered that persistent low frequency oscillations in the primary visual cortex encode information about familiarity and the spatial frequency of the stimulus. These familiarity evoked oscillations influence neuronal responses to the oncoming stimuli in a way that depends on the oscillation phase. Our work demonstrates a new mechanism of visual stimulus feature detection and learning. Copyright © 2018 the authors.

  6. A new allele of flower color gene W1 encoding flavonoid 3'5'-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja.

    PubMed

    Takahashi, Ryoji; Dubouzet, Joseph G; Matsumura, Hisakazu; Yasuda, Kentaro; Iwashina, Tsukasa

    2010-07-28

    Glycine soja is a wild relative of soybean that has purple flowers. No flower color variant of Glycine soja has been found in the natural habitat. B09121, an accession with light purple flowers, was discovered in southern Japan. Genetic analysis revealed that the gene responsible for the light purple flowers was allelic to the W1 locus encoding flavonoid 3'5'-hydroxylase (F3'5'H). The new allele was designated as w1-lp. The dominance relationship of the locus was W1 >w1-lp >w1. One F2 plant and four F3 plants with purple flowers were generated in the cross between B09121 and a Clark near-isogenic line with w1 allele. Flower petals of B09121 contained lower amounts of four major anthocyanins (malvidin 3,5-di-O-glucoside, petunidin 3,5-di-O-glucoside, delphinidin 3,5-di-O-glucoside and delphinidin 3-O-glucoside) common in purple flowers and contained small amounts of the 5'-unsubstituted versions of the above anthocyanins, peonidin 3,5-di-O-glucoside, cyanidin 3,5-di-O-glucoside and cyanidin 3-O-glucoside, suggesting that F3'5'H activity was reduced and flavonoid 3'-hydroxylase activity was increased. F3'5'H cDNAs were cloned from Clark and B09121 by RT-PCR. The cDNA of B09121 had a unique base substitution resulting in the substitution of valine with methionine at amino acid position 210. The base substitution was ascertained by dCAPS analysis. The polymorphism associated with the dCAPS markers co-segregated with flower color in the F2 population. F3 progeny test, and dCAPS and indel analyses suggested that the plants with purple flowers might be due to intragenic recombination and that the 65 bp insertion responsible for gene dysfunction might have been eliminated in such plants. B09121 may be the first example of a flower color variant found in nature. The light purple flower was controlled by a new allele of the W1 locus encoding F3'5'H. The flower petals contained unique anthocyanins not found in soybean and G. soja. B09121 may be a useful tool for studies of

  7. Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding.

    PubMed

    Packard, Pau A; Rodríguez-Fornells, Antoni; Bunzeck, Nico; Nicolás, Berta; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-01-11

    As the stream of experience unfolds, our memory system rapidly transforms current inputs into long-lasting meaningful memories. A putative neural mechanism that strongly influences how input elements are transformed into meaningful memory codes relies on the ability to integrate them with existing structures of knowledge or schemas. However, it is not yet clear whether schema-related integration neural mechanisms occur during online encoding. In the current investigation, we examined the encoding-dependent nature of this phenomenon in humans. We showed that actively integrating words with congruent semantic information provided by a category cue enhances memory for words and increases false recall. The memory effect of such active integration with congruent information was robust, even with an interference task occurring right after each encoding word list. In addition, via electroencephalography, we show in 2 separate studies that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. That the neural signals of successful encoding of congruent and incongruent information followed similarly ∼200 ms later suggests that this earlier neural response contributed to memory formation. We propose that the encoding of events that are congruent with readily available contextual semantics can trigger an accelerated onset of the neural mechanisms, supporting the integration of semantic information with the event input. This faster onset would result in a long-lasting and meaningful memory trace for the event but, at the same time, make it difficult to distinguish it from plausible but never encoded events (i.e., related false memories). Conceptual or schema congruence has a strong influence on long-term memory. However, the question of whether schema-related integration neural mechanisms occur during online encoding has yet to be clarified. We investigated the neural mechanisms reflecting how the active

  8. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  9. Deep Marginalized Sparse Denoising Auto-Encoder for Image Denoising

    NASA Astrophysics Data System (ADS)

    Ma, Hongqiang; Ma, Shiping; Xu, Yuelei; Zhu, Mingming

    2018-01-01

    Stacked Sparse Denoising Auto-Encoder (SSDA) has been successfully applied to image denoising. As a deep network, the SSDA network with powerful data feature learning ability is superior to the traditional image denoising algorithms. However, the algorithm has high computational complexity and slow convergence rate in the training. To address this limitation, we present a method of image denoising based on Deep Marginalized Sparse Denoising Auto-Encoder (DMSDA). The loss function of Sparse Denoising Auto-Encoder is marginalized so that it satisfies both sparseness and marginality. The experimental results show that the proposed algorithm can not only outperform SSDA in the convergence speed and training time, but also has better denoising performance than the current excellent denoising algorithms, including both the subjective and objective evaluation of image denoising.

  10. A complexity-scalable software-based MPEG-2 video encoder.

    PubMed

    Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin

    2004-05-01

    With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.

  11. Encoding techniques for complex information structures in connectionist systems

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1990-01-01

    Two general information encoding techniques called relative position encoding and pattern similarity association are presented. They are claimed to be a convenient basis for the connectionist implementation of complex, short term information processing of the sort needed in common sense reasoning, semantic/pragmatic interpretation of natural language utterances, and other types of high level cognitive processing. The relationships of the techniques to other connectionist information-structuring methods, and also to methods used in computers, are discussed in detail. The rich inter-relationships of these other connectionist and computer methods are also clarified. The particular, simple forms are discussed that the relative position encoding and pattern similarity association techniques take in the author's own connectionist system, called Conposit, in order to clarify some issues and to provide evidence that the techniques are indeed useful in practice.

  12. Asymmetric synthesis using chiral-encoded metal

    NASA Astrophysics Data System (ADS)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  13. Interaction of apicoplast-encoded elongation factor (EF) EF-Tu with nuclear-encoded EF-Ts mediates translation in the Plasmodiumfalciparum plastid.

    PubMed

    Biswas, Subir; Lim, Erin E; Gupta, Ankit; Saqib, Uzma; Mir, Snober S; Siddiqi, Mohammad Imran; Ralph, Stuart A; Habib, Saman

    2011-03-01

    Protein translation in the plastid (apicoplast) of Plasmodium spp. is of immense interest as a target for potential anti-malarial drugs. However, the molecular data on apicoplast translation needed for optimisation and development of novel inhibitors is lacking. We report characterisation of two key translation elongation factors in Plasmodium falciparum, apicoplast-encoded elongation factor PfEF-Tu and nuclear-encoded PfEF-Ts. Recombinant PfEF-Tu hydrolysed GTP and interacted with its presumed nuclear-encoded partner PfEF-Ts. The EF-Tu inhibitor kirromycin affected PfEF-Tu activity in vitro, indicating that apicoplast EF-Tu is indeed the target of this drug. The predicted PfEF-Ts leader sequence targeted GFP to the apicoplast, confirming that PfEF-Ts functions in this organelle. Recombinant PfEF-Ts mediated nucleotide exchange on PfEF-Tu and homology modeling of the PfEF-Tu:PfEF-Ts complex revealed PfEF-Ts-induced structural alterations that would expedite GDP release from PfEF-Tu. Our results establish functional interaction between two apicoplast translation factors encoded by genes residing in different cellular compartments and highlight the significance of their sequence/structural differences from bacterial elongation factors in relation to inhibitor activity. These data provide an experimental system to study the effects of novel inhibitors targeting PfEF-Tu and PfEF-Tu.PfEF-Ts interaction. Our finding that apicoplast EF-Tu possesses chaperone-related disulphide reductase activity also provides a rationale for retention of the tufA gene on the plastid genome. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  14. Voluntary control over prestimulus activity related to encoding

    PubMed Central

    Gruber, Matthias J.; Otten, Leun J.

    2010-01-01

    A new development in our understanding of human long-term memory is that effective memory formation relies on neural activity just before an event. It is unknown whether such prestimulus activity is under voluntary control or a reflection of random fluctuations over time. In the present study, we addressed two issues: (i) whether prestimulus activity is influenced by an individual's motivation to encode, and (ii) at what point in time encoding-related activity emerges. Electrical brain activity was recorded while healthy male and female adults memorized series of words. Each word was preceded by a cue, which indicated the monetary reward that would be received if the following word was later remembered. Memory was tested after a short delay with a five-way recognition task to separate different sources of recognition. Electrical activity elicited by the reward cue predicted later memory of a word. Crucially, however, this was only observed when the incentive to memorize a word was high. Encoding-related activity preceded high reward words that were later recollected. This activity started shortly after cue onset and persisted until word onset. Prestimulus activity thus not only signals cue-related processing, but also an ensuing preparatory state. In contrast, reward-related activity was limited to the time period immediately following the reward cue. These findings indicate that engaging neural activity that benefits the encoding of an upcoming event is under voluntary control, reflecting a strategic preparatory state in anticipation of processing an event. PMID:20660262

  15. DNA-encoded chemistry: enabling the deeper sampling of chemical space.

    PubMed

    Goodnow, Robert A; Dumelin, Christoph E; Keefe, Anthony D

    2017-02-01

    DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.

  16. Facial Encoding of Children with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Volker, Martin A.; Lopata, Christopher; Smith, Donna A.; Thomeer, Marcus L.

    2009-01-01

    Facial encoding of a sample of children with high-functioning autism spectrum disorders (HFASD) was compared to facial encoding of matched typically developing children. Each participant was photographed after being prompted to enact a facial expression for six basic emotions. Raters evaluated (a) the extent to which the photo reflected the…

  17. How Infants Encode Spatial Extent

    ERIC Educational Resources Information Center

    Duffy, Sean; Huttenlocher, Janellen; Levine, Susan; Duffy, Renee

    2005-01-01

    This study explores how infants encode an object's spatial extent. We habituated 6.5-month-old infants to a dowel inside a container and then tested whether they dishabituate to a change in absolute size when the relation between dowel and container is held constant (by altering the size of both container and dowel) and when the relation changes…

  18. Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms

    PubMed Central

    Helms, Lucas; Clune, Jeff

    2017-01-01

    Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding. PMID:28334002

  19. Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms.

    PubMed

    Helms, Lucas; Clune, Jeff

    2017-01-01

    Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding.

  20. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  1. Encoding Specificity in the Recall of Pictures and Words in Children and Adults.

    ERIC Educational Resources Information Center

    Ackerman, Brian P.

    1981-01-01

    Two experiments, using pictorial or verbal stimuli, were designed to test encoding among young children and adults. In both experiments, results indicated progressively smaller encoding specificity effects with increasing age. Comparisons of recall patterns were conducted to ensure that encoding differences accounted for results. (Author/DB)

  2. The Contribution of Encoding and Retrieval Processes to Proactive Interference

    ERIC Educational Resources Information Center

    Kliegl, Oliver; Pastötter, Bernhard; Bäuml, Karl-Heinz T.

    2015-01-01

    Proactive interference (PI) refers to the finding that memory for recently studied (target) material can be impaired by the prior study of other (nontarget) material. Previous accounts of PI differed in whether they attributed PI to impaired retrieval or impaired encoding. Here, we suggest an integrated encoding-retrieval account, which assigns a…

  3. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    PubMed

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  4. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    PubMed

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing.

    PubMed

    Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C; Gao, Wen

    2018-05-01

    The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of a CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of graphics processing unit (GPU). We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation as well as the memory access mechanism are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU for resolving the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which enables to leverage the advantages of GPU platforms harmoniously, and yield significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.

  6. Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing

    NASA Astrophysics Data System (ADS)

    Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C.; Gao, Wen

    2018-05-01

    The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group (MPEG) has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of GPU. We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation and the memory access are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU to resolve the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which has harmoniously leveraged the advantages of GPU platforms, and yielded significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.

  7. Encoding color information for visual tracking: Algorithms and benchmark.

    PubMed

    Liang, Pengpeng; Blasch, Erik; Ling, Haibin

    2015-12-01

    While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on an RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues, including the behavior of various combinations between color model and visual tracker, the degree of difficulty of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation, and benchmark for future work on encoding color in visual tracking.

  8. Optical delay encoding for fast timing and detector signal multiplexing in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford

    2015-08-15

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less

  9. Dynamic encoding of responses and outcomes by neurons in medial prefrontal cortex

    PubMed Central

    Luk, Chung-Hay; Wallis, Jonathan D.

    2009-01-01

    Medial prefrontal cortex (MPFC) and lateral prefrontal cortex (LPFC) both contribute to goal-directed behavior, but their precise role remains unclear. Several lines of evidence suggest that MPFC is more important than LPFC for outcome-guided response selection. To examine this, we trained two subjects to perform a task that required them to monitor the specific outcome associated with a specific response on a trial-by-trial basis. While the subjects performed this task, we recorded the electrical activity of single neurons simultaneously from MPFC and LPFC. There were marked differences in the neuronal properties of these two areas. Neurons encoding the response were present in both areas, but in MPFC, there were also neurons that encoded the outcome. In particular, neurons encoded the subject’s intended response and how preferable the received outcome was. Thus, only in MPFC was all the information necessary to solve the task encoded. In addition, largely separate populations of MPFC neurons encoded the response and the outcome. Neurons encoding the outcome were in the anterior parts of MPFC: posterior to the corpus callosum there was a marked drop in their incidence. Our results suggest differences in the contribution of MPFC and LPFC to action control. MPFC neurons encode the desirability of the outcome produced by a specific response on a trial-by-trial basis. This capability may contribute to several of the functions of MPFC, such as action valuation, error detection and decision-making. PMID:19515921

  10. Neutral Details Associated with Emotional Events are Encoded: Evidence from a Cued Recall Paradigm

    PubMed Central

    Steinmetz, Katherine R. Mickley; Knight, Aubrey G.; Kensinger, Elizabeth A.

    2015-01-01

    Enhanced emotional memory often comes at the cost of memory for surrounding background information. Narrowed-encoding theories suggest that this is due to narrowed attention for emotional information at encoding, leading to impaired encoding of background information. Recent work has suggested that an encoding-based theory may be insufficient. Here, we examined whether cued recall – instead of previously used recognition memory tasks - would reveal evidence that non-emotional information associated with emotional information was effectively encoded. Participants encoded positive, negative, or neutral objects on neutral backgrounds. At retrieval, they were given either the item or the background as a memory cue and were asked to recall the associated scene element. Counter to narrowed-encoding theories, emotional items were more likely than neutral items to trigger recall of the associated background. This finding suggests that there is a memory trace of this contextual information and that emotional cues may facilitate retrieval of this information. PMID:26220708

  11. Neutral details associated with emotional events are encoded: evidence from a cued recall paradigm.

    PubMed

    Mickley Steinmetz, Katherine R; Knight, Aubrey G; Kensinger, Elizabeth A

    2016-11-01

    Enhanced emotional memory often comes at the cost of memory for surrounding background information. Narrowed-encoding theories suggest that this is due to narrowed attention for emotional information at encoding, leading to impaired encoding of background information. Recent work has suggested that an encoding-based theory may be insufficient. Here, we examined whether cued recall-instead of previously used recognition memory tasks-would reveal evidence that non-emotional information associated with emotional information was effectively encoded. Participants encoded positive, negative, or neutral objects on neutral backgrounds. At retrieval, they were given either the item or the background as a memory cue and were asked to recall the associated scene element. Counter to narrowed-encoding theories, emotional items were more likely than neutral items to trigger recall of the associated background. This finding suggests that there is a memory trace of this contextual information and that emotional cues may facilitate retrieval of this information.

  12. Subversion of cytokine networks by virally encoded decoy receptors

    PubMed Central

    Epperson, Megan L.; Lee, Chung A.; Fremont, Daved H.

    2012-01-01

    Summary During the course of evolution, viruses have captured or created a diverse array of open reading frames that encode for proteins that serve to evade and sabotage the host innate and adaptive immune responses, which would otherwise lead to their elimination. These viral genomes are some of the best textbooks of immunology ever written. The established arsenal of immunomodulatory proteins encoded by viruses is large and growing and includes specificities for virtually all known inflammatory pathways and targets. The focus of this review is on herpes and poxvirus-encoded cytokine and chemokine binding proteins that serve to undermine the coordination of host immune surveillance. Structural and mechanistic studies of these decoy receptors have provided a wealth of information, not only about viral pathogenesis but also about the inner workings of cytokine signaling networks. PMID:23046131

  13. Information quality measurement of medical encoding support based on usability.

    PubMed

    Puentes, John; Montagner, Julien; Lecornu, Laurent; Cauvin, Jean-Michel

    2013-12-01

    Medical encoding support systems for diagnoses and medical procedures are an emerging technology that begins to play a key role in billing, reimbursement, and health policies decisions. A significant problem to exploit these systems is how to measure the appropriateness of any automatically generated list of codes, in terms of fitness for use, i.e. their quality. Until now, only information retrieval performance measurements have been applied to estimate the accuracy of codes lists as quality indicator. Such measurements do not give the value of codes lists for practical medical encoding, and cannot be used to globally compare the quality of multiple codes lists. This paper defines and validates a new encoding information quality measure that addresses the problem of measuring medical codes lists quality. It is based on a usability study of how expert coders and physicians apply computer-assisted medical encoding. The proposed measure, named ADN, evaluates codes Accuracy, Dispersion and Noise, and is adapted to the variable length and content of generated codes lists, coping with limitations of previous measures. According to the ADN measure, the information quality of a codes list is fully represented by a single point, within a suitably constrained feature space. Using one scheme, our approach is reliable to measure and compare the information quality of hundreds of codes lists, showing their practical value for medical encoding. Its pertinence is demonstrated by simulation and application to real data corresponding to 502 inpatient stays in four clinic departments. Results are compared to the consensus of three expert coders who also coded this anonymized database of discharge summaries, and to five information retrieval measures. Information quality assessment applying the ADN measure showed the degree of encoding-support system variability from one clinic department to another, providing a global evaluation of quality measurement trends. Copyright © 2013

  14. Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk.

    PubMed

    Lyra, Daniele G; Sousa, Francisca G C; Borges, Maria F; Givisiez, Patrícia E N; Queiroga, Rita C R E; Souza, Evandro L; Gebreyes, Wondwossen A; Oliveira, Celso J B

    2013-02-01

    Although Staphylococcus aureus has been implicated as the main Staphylococcus species causing human food poisoning, recent studies have shown that coagulase-negative Staphylococcus could also harbor enterotoxin-encoding genes. Such organisms are often present in goat milk and are the most important mastitis-causing agents. Therefore, this study aimed to investigate the occurrence of enterotoxin-encoding genes among coagulase-positive (CoPS) and coagulase-negative (CoNS) staphylococci isolated from raw goat milk produced in the semi-arid region of Paraiba, the most important region for goat milk production in Brazil. Enterotoxin-encoding genes were screened in 74 staphylococci isolates (30 CoPS and 44 CoNS) by polymerase chain reaction targeting the genes sea, seb, sec, sed, see, seg, seh, and sei. Enterotoxin-encoding genes were found in nine (12.2%) isolates, and four different genes (sea, sec, seg, and sei) were identified amongst the isolates. The most frequent genes were seg and sei, which were often found simultaneously in 44.5% of the isolates. The gene sec was the most frequent among the classical genes, and sea was found only in one isolate. All CoPS isolates (n=7) harboring enterotoxigenic genes were identified as S. aureus. The two coagulase-negative isolates were S. haemolyticus and S. hominis subsp. hominis and they harbored sei and sec genes, respectively. A higher frequency of enterotoxin-encoding genes was observed amongst CoPS (23.3%) than CoNS (4.5%) isolates (p<0.05), reinforcing the importance of S. aureus as a potential foodborne agent. However, the potential risk posed by CoNS in goat milk should not be ignored because it has a higher occurrence in goat milk and enterotoxin-encoding genes were detected in some isolates.

  15. High data rate Reed-Solomon encoding and decoding using VLSI technology

    NASA Technical Reports Server (NTRS)

    Miller, Warner; Morakis, James

    1987-01-01

    Presented as an implementation of a Reed-Solomon encode and decoder, which is 16-symbol error correcting, each symbol is 8 bits. This Reed-Solomon (RS) code is an efficient error correcting code that the National Aeronautics and Space Administration (NASA) will use in future space communications missions. A Very Large Scale Integration (VLSI) implementation of the encoder and decoder accepts data rates up 80 Mbps. A total of seven chips are needed for the decoder (four of the seven decoding chips are customized using 3-micron Complementary Metal Oxide Semiconduction (CMOS) technology) and one chip is required for the encoder. The decoder operates with the symbol clock being the system clock for the chip set. Approximately 1.65 billion Galois Field (GF) operations per second are achieved with the decoder chip set and 640 MOPS are achieved with the encoder chip.

  16. Parietal neurons encode expected gains in instrumental information

    PubMed Central

    Foley, Nicholas C.; Kelly, Simon P.; Mhatre, Himanshu; Gottlieb, Jacqueline

    2017-01-01

    In natural behavior, animals have access to multiple sources of information, but only a few of these sources are relevant for learning and actions. Beyond choosing an appropriate action, making good decisions entails the ability to choose the relevant information, but fundamental questions remain about the brain’s information sampling policies. Recent studies described the neural correlates of seeking information about a reward, but it remains unknown whether, and how, neurons encode choices of instrumental information, in contexts in which the information guides subsequent actions. Here we show that parietal cortical neurons involved in oculomotor decisions encode, before an information sampling saccade, the reduction in uncertainty that the saccade is expected to bring for a subsequent action. These responses were distinct from the neurons’ visual and saccadic modulations and from signals of expected reward or reward prediction errors. Therefore, even in an instrumental context when information and reward gains are closely correlated, individual cells encode decision variables that are based on informational factors and can guide the active sampling of action-relevant cues. PMID:28373569

  17. Dissociations within human hippocampal subregions during encoding and retrieval of spatial information.

    PubMed

    Suthana, Nanthia; Ekstrom, Arne; Moshirvaziri, Saba; Knowlton, Barbara; Bookheimer, Susan

    2011-07-01

    Although the hippocampus is critical for the formation and retrieval of spatial memories, it is unclear how subregions are differentially involved in these processes. Previous high-resolution functional magnetic resonance imaging (fMRI) studies have shown that CA2, CA3, and dentate gyrus (CA23DG) regions support the encoding of novel associations, whereas the subicular cortices support the retrieval of these learned associations. Whether these subregions are used in humans during encoding and retrieval of spatial information has yet to be explored. Using high-resolution fMRI (1.6 mm × 1.6-mm in-plane), we found that activity within the right CA23DG increased during encoding compared to retrieval. Conversely, right subicular activity increased during retrieval compared to encoding of spatial associations. These results are consistent with the previous studies illustrating dissociations within human hippocampal subregions and further suggest that these regions are similarly involved during the encoding and retrieval of spatial information. Copyright © 2010 Wiley-Liss, Inc.

  18. Prefrontal Engagement during Source Memory Retrieval Depends on the Prior Encoding Task

    PubMed Central

    Kuo, Trudy Y.; Van Petten, Cyma

    2008-01-01

    The prefrontal cortex is strongly engaged by some, but not all, episodic memory tests. Prior work has shown that source recognition tests—those that require memory for conjunctions of studied attributes—yield deficient performance in patients with prefrontal damage and greater prefrontal activity in healthy subjects, as compared to simple recognition tests. Here, we tested the hypothesis that there is no intrinsic relationship between the prefrontal cortex and source memory, but that the prefrontal cortex is engaged by the demand to retrieve weakly encoded relationships. Subjects attempted to remember object/color conjunctions after an encoding task that focused on object identity alone, and an integrative encoding task that encouraged attention to object/color relationships. After the integrative encoding task, the late prefrontal brain electrical activity that typically occurs in source memory tests was eliminated. Earlier brain electrical activity related to successful recognition of the objects was unaffected by the nature of prior encoding. PMID:16839287

  19. DNA-Encoded Dynamic Combinatorial Chemical Libraries.

    PubMed

    Reddavide, Francesco V; Lin, Weilin; Lehnert, Sarah; Zhang, Yixin

    2015-06-26

    Dynamic combinatorial chemistry (DCC) explores the thermodynamic equilibrium of reversible reactions. Its application in the discovery of protein binders is largely limited by difficulties in the analysis of complex reaction mixtures. DNA-encoded chemical library (DECL) technology allows the selection of binders from a mixture of up to billions of different compounds; however, experimental results often show low a signal-to-noise ratio and poor correlation between enrichment factor and binding affinity. Herein we describe the design and application of DNA-encoded dynamic combinatorial chemical libraries (EDCCLs). Our experiments have shown that the EDCCL approach can be used not only to convert monovalent binders into high-affinity bivalent binders, but also to cause remarkably enhanced enrichment of potent bivalent binders by driving their in situ synthesis. We also demonstrate the application of EDCCLs in DNA-templated chemical reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    PubMed

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  1. Characterization and analysis of ribosomal proteins in two marine calanoid copepods

    NASA Astrophysics Data System (ADS)

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Huang, Yousong; Yi, Xiaoyan; Chen, Hongju; Liu, Guangxing; Zhang, Huan

    2016-11-01

    Copepods are among the most abundant and successful metazoans in the marine ecosystem. However, genomic resources related to fundamental cellular processes are still limited in this particular group of crustaceans. Ribosomal proteins are the building blocks of ribosomes, the primary site for protein synthesis. In this study, we characterized and analyzed the cDNAs of cytoplasmic ribosomal proteins (cRPs) of two calanoid copepods, Pseudodiaptomus poplesia and Acartia pacifica. We obtained 79 cRP cDNAs from P. poplesia and 67 from A. pacifica by cDNA library construction/sequencing and rapid amplification of cDNA ends. Analysis of the nucleic acid composition showed that the copepod cRP-encoding genes had higher GC content in the protein-coding regions (CDSs) than in the untranslated regions (UTRs), and single nucleotide repeats (>3 repeats) were common, with "A" repeats being the most frequent, especially in the CDSs. The 3'-UTRs of the cRP genes were significantly longer than the 5'-UTRs. Codon usage analysis showed that the third positions of the codons were dominated by C or G. The deduced amino acid sequences of the cRPs contained high proportions of positively charged residues and had high pI values. This is the first report of a complete set of cRP-encoding genes from copepods. Our results shed light on the characteristics of cRPs in copepods, and provide fundamental data for further studies of protein synthesis in copepods. The copepod cRP information revealed in this study indicates that additional comparisons and analysis should be performed on different taxonomic categories such as orders and families.

  2. Mo-CBP3, an Antifungal Chitin-Binding Protein from Moringa oleifera Seeds, Is a Member of the 2S Albumin Family

    PubMed Central

    Freire, José E. C.; Vasconcelos, Ilka M.; Moreno, Frederico B. M. B.; Batista, Adelina B.; Lobo, Marina D. P.; Pereira, Mirella L.; Lima, João P. M. S.; Almeida, Ricardo V. M.; Sousa, Antônio J. S.; Monteiro-Moreira, Ana C. O.; Oliveira, José T. A.; Grangeiro, Thalles B.

    2015-01-01

    Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin. PMID:25789746

  3. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase.

    PubMed Central

    Brown, S M; Crouch, M L

    1990-01-01

    We have isolated and characterized cDNA clones of a gene family (P2) expressed in Oenothera organensis pollen. This family contains approximately six to eight family members and is expressed at high levels only in pollen. The predicted protein sequence from a near full-length cDNA clone shows that the protein products of these genes are at least 38,000 daltons. We identified the protein encoded by one of the cDNAs in this family by using antibodies to beta-galactosidase/pollen cDNA fusion proteins. Immunoblot analysis using these antibodies identifies a family of proteins of approximately 40 kilodaltons that is present in mature pollen, indicating that these mRNAs are not stored solely for translation after pollen germination. These proteins accumulate late in pollen development and are not detectable in other parts of the plant. Although not present in unpollinated or self-pollinated styles, the 40-kilodalton to 45-kilodalton antigens are detectable in extracts from cross-pollinated styles, suggesting that the proteins are present in pollen tubes growing through the style during pollination. The proteins are also present in pollen tubes growing in vitro. Both nucleotide and amino acid sequences are similar to the published sequences for cDNAs encoding the enzyme polygalacturonase, which suggests that the P2 gene family may function in depolymerizing pectin during pollen development, germination, and tube growth. Cross-hybridizing RNAs and immunoreactive proteins were detected in pollen from a wide variety of plant species, which indicates that the P2 family of polygalacturonase-like genes are conserved and may be expressed in the pollen from many angiosperms. PMID:2152116

  4. VLSI single-chip (255,223) Reed-Solomon encoder with interleaver

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek (Inventor); Deutsch, Leslie J. (Inventor); Truong, Trieu-Kie (Inventor); Reed, Irving S. (Inventor)

    1990-01-01

    The invention relates to a concatenated Reed-Solomon/convolutional encoding system consisting of a Reed-Solomon outer code and a convolutional inner code for downlink telemetry in space missions, and more particularly to a Reed-Solomon encoder with programmable interleaving of the information symbols and code correction symbols to combat error bursts in the Viterbi decoder.

  5. Differential Encoding of Time by Prefrontal and Striatal Network Dynamics.

    PubMed

    Bakhurin, Konstantin I; Goudar, Vishwa; Shobe, Justin L; Claar, Leslie D; Buonomano, Dean V; Masmanidis, Sotiris C

    2017-01-25

    Telling time is fundamental to many forms of learning and behavior, including the anticipation of rewarding events. Although the neural mechanisms underlying timing remain unknown, computational models have proposed that the brain represents time in the dynamics of neural networks. Consistent with this hypothesis, changing patterns of neural activity dynamically in a number of brain areas-including the striatum and cortex-has been shown to encode elapsed time. To date, however, no studies have explicitly quantified and contrasted how well different areas encode time by recording large numbers of units simultaneously from more than one area. Here, we performed large-scale extracellular recordings in the striatum and orbitofrontal cortex of mice that learned the temporal relationship between a stimulus and a reward and reported their response with anticipatory licking. We used a machine-learning algorithm to quantify how well populations of neurons encoded elapsed time from stimulus onset. Both the striatal and cortical networks encoded time, but the striatal network outperformed the orbitofrontal cortex, a finding replicated both in simultaneously and nonsimultaneously recorded corticostriatal datasets. The striatal network was also more reliable in predicting when the animals would lick up to ∼1 s before the actual lick occurred. Our results are consistent with the hypothesis that temporal information is encoded in a widely distributed manner throughout multiple brain areas, but that the striatum may have a privileged role in timing because it has a more accurate "clock" as it integrates information across multiple cortical areas. The neural representation of time is thought to be distributed across multiple functionally specialized brain structures, including the striatum and cortex. However, until now, the neural code for time has not been compared quantitatively between these areas. Here, we performed large-scale recordings in the striatum and orbitofrontal

  6. A MPEG-4 encoder based on TMS320C6416

    NASA Astrophysics Data System (ADS)

    Li, Gui-ju; Liu, Wei-ning

    2013-08-01

    Engineering and products need to achieve real-time video encoding by DSP, but the high computational complexity and huge amount of data requires that system has high data throughput. In this paper, a real-time MPEG-4 video encoder is designed based on TMS320C6416 platform. The kernel is the DSP of TMS320C6416T and FPGA chip f as the organization and management of video data. In order to control the flow of input and output data. Encoded stream is output using the synchronous serial port. The system has the clock frequency of 1GHz and has up to 8000 MIPS speed processing capacity when running at full speed. Due to the low coding efficiency of MPEG-4 video encoder transferred directly to DSP platform, it is needed to improve the program structure, data structures and algorithms combined with TMS320C6416T characteristics. First: Design the image storage architecture by balancing the calculation spending, storage space cost and EDMA read time factors. Open up a more buffer in memory, each buffer cache 16 lines of video data to be encoded, reconstruction image and reference image including search range. By using the variable alignment mode of the DSP, modifying the definition of structure variables and change the look-up table which occupy larger space with a direct calculation array to save memory space. After the program structure optimization, the program code, all variables, buffering buffers and the interpolation image including the search range can be placed in memory. Then, as to the time-consuming process modules and some functions which are called many times, the corresponding modules are written in parallel assembly language of TMS320C6416T which can increase the running speed. Besides, the motion estimation algorithm is improved by using a cross-hexagon search algorithm, The search speed can be increased obviously. Finally, the execution time, signal-to-noise ratio and compression ratio of a real-time image acquisition sequence is given. The experimental

  7. Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.

    PubMed Central

    Wilbrink, Maarten H.; Casabon, Israël; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.

    2012-01-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. PMID:23024343

  8. The Influence of Encoding Strategy on Episodic Memory and Cortical Activity in Schizophrenia

    PubMed Central

    Haut, Kristen; Csernansky, John G.; Barch, Deanna M.

    2005-01-01

    Background: Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Methods: Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Results: Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Conclusions: Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied. PMID:15992522

  9. The influence of encoding strategy on episodic memory and cortical activity in schizophrenia.

    PubMed

    Bonner-Jackson, Aaron; Haut, Kristen; Csernansky, John G; Barch, Deanna M

    2005-07-01

    Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied.

  10. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA.

    PubMed

    Queck, Shu Y; Khan, Burhan A; Wang, Rong; Bach, Thanh-Huy L; Kretschmer, Dorothee; Chen, Liang; Kreiswirth, Barry N; Peschel, Andreas; Deleo, Frank R; Otto, Michael

    2009-07-01

    Bacterial virulence and antibiotic resistance have a significant influence on disease severity and treatment options during bacterial infections. Frequently, the underlying genetic determinants are encoded on mobile genetic elements (MGEs). In the leading human pathogen Staphylococcus aureus, MGEs that contain antibiotic resistance genes commonly do not contain genes for virulence determinants. The phenol-soluble modulins (PSMs) are staphylococcal cytolytic toxins with a crucial role in immune evasion. While all known PSMs are core genome-encoded, we here describe a previously unidentified psm gene, psm-mec, within the staphylococcal methicillin resistance-encoding MGE SCCmec. PSM-mec was strongly expressed in many strains and showed the physico-chemical, pro-inflammatory, and cytolytic characteristics typical of PSMs. Notably, in an S. aureus strain with low production of core genome-encoded PSMs, expression of PSM-mec had a significant impact on immune evasion and disease. In addition to providing high-level resistance to methicillin, acquisition of SCCmec elements encoding PSM-mec by horizontal gene transfer may therefore contribute to staphylococcal virulence by substituting for the lack of expression of core genome-encoded PSMs. Thus, our study reveals a previously unknown role of methicillin resistance clusters in staphylococcal pathogenesis and shows that important virulence and antibiotic resistance determinants may be combined in staphylococcal MGEs.

  11. Semantic attributes are encoded in human electrocorticographic signals during visual object recognition.

    PubMed

    Rupp, Kyle; Roos, Matthew; Milsap, Griffin; Caceres, Carlos; Ratto, Christopher; Chevillet, Mark; Crone, Nathan E; Wolmetz, Michael

    2017-03-01

    Non-invasive neuroimaging studies have shown that semantic category and attribute information are encoded in neural population activity. Electrocorticography (ECoG) offers several advantages over non-invasive approaches, but the degree to which semantic attribute information is encoded in ECoG responses is not known. We recorded ECoG while patients named objects from 12 semantic categories and then trained high-dimensional encoding models to map semantic attributes to spectral-temporal features of the task-related neural responses. Using these semantic attribute encoding models, untrained objects were decoded with accuracies comparable to whole-brain functional Magnetic Resonance Imaging (fMRI), and we observed that high-gamma activity (70-110Hz) at basal occipitotemporal electrodes was associated with specific semantic dimensions (manmade-animate, canonically large-small, and places-tools). Individual patient results were in close agreement with reports from other imaging modalities on the time course and functional organization of semantic processing along the ventral visual pathway during object recognition. The semantic attribute encoding model approach is critical for decoding objects absent from a training set, as well as for studying complex semantic encodings without artificially restricting stimuli to a small number of semantic categories. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The Reed-Solomon encoders: Conventional versus Berlekamp's architecture

    NASA Technical Reports Server (NTRS)

    Perlman, M.; Lee, J. J.

    1982-01-01

    Concatenated coding was adopted for interplanetary space missions. Concatenated coding was employed with a convolutional inner code and a Reed-Solomon (RS) outer code for spacecraft telemetry. Conventional RS encoders are compared with those that incorporate two architectural features which approximately halve the number of multiplications of a set of fixed arguments by any RS codeword symbol. The fixed arguments and the RS symbols are taken from a nonbinary finite field. Each set of multiplications is bit-serially performed and completed during one (bit-serial) symbol shift. All firmware employed by conventional RS encoders is eliminated.

  13. Non-deterministic quantum CNOT gate with double encoding

    NASA Astrophysics Data System (ADS)

    Gueddana, Amor; Attia, Moez; Chatta, Rihab

    2013-09-01

    We define an Asymmetric Partially Polarizing Beam Splitter (APPBS) to be a linear optical component having different reflectivity (transmittance) coefficients, on the upper and the lower arms, for horizontally and vertically Polarized incident photons. Our CNOT model is composed by two APPBSs, one Half Wave Plate (HWP), two Polarizing Beam Splitters (PBSs), a Beam Splitter (BS) and a -phase rotator for specific wavelength. Control qubit operates with dual rail encoding while target qubit is based on polarization encoding. To perform CNOT operation in 4/27 of the cases, input and target incoming photons are injected with different wavelengths.

  14. Development and Synthesis of DNA-Encoded Benzimidazole Library.

    PubMed

    Ding, Yun; Chai, Jing; Centrella, Paolo A; Gondo, Chenaimwoyo; DeLorey, Jennifer L; Clark, Matthew A

    2018-04-25

    Encoded library technology (ELT) is an effective approach to the discovery of novel small-molecule ligands for biological targets. A key factor for the success of the technology is the chemical diversity of the libraries. Here we report the development of DNA-conjugated benzimidazoles. Using 4-fluoro-3-nitrobenzoic acid as a key synthon, we synthesized a 320 million-member DNA-encoded benzimidazole library using Fmoc-protected amino acids, amines and aldehydes as diversity elements. Affinity selection of the library led to the discovery of a novel, potent and specific antagonist of the NK3 receptor.

  15. Nucleic acid compositions and the encoding proteins

    DOEpatents

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  16. Design of a CAN bus interface for photoelectric encoder in the spaceflight camera

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wan, Qiu-hua; She, Rong-hong; Zhao, Chang-hai; Jiang, Yong

    2009-05-01

    In order to make photoelectric encoder usable in a spaceflight camera which adopts CAN bus as the communication method, CAN bus interface of the photoelectric encoder is designed in this paper. CAN bus interface hardware circuit of photoelectric encoder consists of CAN bus controller SJA 1000, CAN bus transceiver TJA1050 and singlechip. CAN bus interface controlling software program is completed in C language. A ten-meter shield twisted pair line is used as the transmission medium in the spaceflight camera, and speed rate is 600kbps.The experiments show that: the photoelectric encoder with CAN bus interface which has the advantages of more reliability, real-time, transfer rate and transfer distance overcomes communication line's shortcomings of classical photoelectric encoder system. The system works well in automatic measuring and controlling system.

  17. Isolated nucleic acids encoding antipathogenic polypeptides and uses thereof

    DOEpatents

    Altier, Daniel J.; Crane, Virginia C.; Ellanskaya, Irina; Ellanskaya, Natalia; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K.; Schepers, Eric J.; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-04-20

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from fungal fermentation broths. Nucleic acids that encode the antipathogenic polypeptides are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  18. Space-time encoding for high frame rate ultrasound imaging.

    PubMed

    Misaridis, Thanassis X; Jensen, Jørgen A

    2002-05-01

    Frame rate in ultrasound imaging can be dramatically increased by using sparse synthetic transmit aperture (STA) beamforming techniques. The two main drawbacks of the method are the low signal-to-noise ratio (SNR) and the motion artifacts, that degrade the image quality. In this paper we propose a spatio-temporal encoding for STA imaging based on simultaneous transmission of two quasi-orthogonal tapered linear FM signals. The excitation signals are an up- and a down-chirp with frequency division and a cross-talk of -55 dB. The received signals are first cross-correlated with the appropriate code, then spatially decoded and finally beamformed for each code, yielding two images per emission. The spatial encoding is a Hadamard encoding previously suggested by Chiao et al. [in: Proceedings of the IEEE Ultrasonics Symposium, 1997, p. 1679]. The Hadamard matrix has half the size of the transmit element groups, due to the orthogonality of the temporal encoded wavefronts. Thus, with this method, the frame rate is doubled compared to previous systems. Another advantage is the utilization of temporal codes which are more robust to attenuation. With the proposed technique it is possible to obtain images dynamically focused in both transmit and receive with only two firings. This reduces the problem of motion artifacts. The method has been tested with extensive simulations using Field II. Resolution and SNR are compared with uncoded STA imaging and conventional phased-array imaging. The range resolution remains the same for coded STA imaging with four emissions and is slightly degraded for STA imaging with two emissions due to the -55 dB cross-talk between the signals. The additional proposed temporal encoding adds more than 15 dB on the SNR gain, yielding a SNR at the same order as in phased-array imaging.

  19. Does long-term object priming depend on the explicit detection of object identity at encoding?

    PubMed Central

    Gomes, Carlos A.; Mayes, Andrew

    2015-01-01

    It is currently unclear whether objects have to be explicitly identified at encoding for reliable behavioral long-term object priming to occur. We conducted two experiments that investigated long-term object and non-object priming using a selective-attention encoding manipulation that reduces explicit object identification. In Experiment 1, participants either counted dots flashed within an object picture (shallow encoding) or engaged in an animacy task (deep encoding) at study, whereas, at test, they performed an object-decision task. Priming, as measured by reaction times (RTs), was observed for both types of encoding, and was of equivalent magnitude. In Experiment 2, non-object priming (faster RTs for studied relative to unstudied non-objects) was also obtained under the same selective-attention encoding manipulation as in Experiment 1, and the magnitude of the priming effect was equivalent between experiments. In contrast, we observed a linear decrement in recognition memory accuracy across conditions (deep encoding of Experiment 1 > shallow encoding Experiment 1 > shallow encoding of Experiment 2), suggesting that priming was not contaminated by explicit memory strategies. We argue that our results are more consistent with the identification/production framework than the perceptual/conceptual distinction, and we conclude that priming of pictures largely ignored at encoding can be subserved by the automatic retrieval of two types of instances: one at the motor level and another at an object-decision level. PMID:25852594

  20. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  1. Typicality as a Dimension of Encoding

    ERIC Educational Resources Information Center

    Keller, Dennis; Kellas, George

    1978-01-01

    The salience of encoding attributes in instances of differing levels of category membership was examined using the release from proactive interference (PI) task with college students. Results are discussed in terms of providing converging evidence for Rosch's (1973,1975) theory of semantic category structure. (Editor/RK)

  2. Iterative deep convolutional encoder-decoder network for medical image segmentation.

    PubMed

    Jung Uk Kim; Hak Gu Kim; Yong Man Ro

    2017-07-01

    In this paper, we propose a novel medical image segmentation using iterative deep learning framework. We have combined an iterative learning approach and an encoder-decoder network to improve segmentation results, which enables to precisely localize the regions of interest (ROIs) including complex shapes or detailed textures of medical images in an iterative manner. The proposed iterative deep convolutional encoder-decoder network consists of two main paths: convolutional encoder path and convolutional decoder path with iterative learning. Experimental results show that the proposed iterative deep learning framework is able to yield excellent medical image segmentation performances for various medical images. The effectiveness of the proposed method has been proved by comparing with other state-of-the-art medical image segmentation methods.

  3. Convolutional encoding of self-dual codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1994-01-01

    There exist almost complete convolutional encodings of self-dual codes, i.e., block codes of rate 1/2 with weights w, w = 0 mod 4. The codes are of length 8m with the convolutional portion of length 8m-2 and the nonsystematic information of length 4m-1. The last two bits are parity checks on the two (4m-1) length parity sequences. The final information bit complements one of the extended parity sequences of length 4m. Solomon and van Tilborg have developed algorithms to generate these for the Quadratic Residue (QR) Codes of lengths 48 and beyond. For these codes and reasonable constraint lengths, there are sequential decodings for both hard and soft decisions. There are also possible Viterbi-type decodings that may be simple, as in a convolutional encoding/decoding of the extended Golay Code. In addition, the previously found constraint length K = 9 for the QR (48, 24;12) Code is lowered here to K = 8.

  4. Efficacy of auriculotherapy for constipation in adults: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Yang, Li-Hua; Duan, Pei-Bei; Du, Shi-Zheng; Sun, Jin-Fang; Mei, Si-Juan; Wang, Xiao-Qing; Zhang, Yuan-Yuan

    2014-08-01

    To assess the clinical evidence of auriculotherapy for constipation treatment and to identify the efficacy of groups using Semen vaccariae or magnetic pellets as taped objects in managing constipation. Databases were searched, including five English-language databases (the Cochrane Library, PubMed, Embase, CINAHL, and AMED) and four Chinese medical databases. Only randomized controlled trials were included in the review process. Critical appraisal was conducted using the Cochrane risk of bias tool. Seventeen randomized, controlled trials (RCTs) met the inclusion criteria, of which 2 had low risk of bias. The primary outcome measures were the improvement rate and total effective rate. A meta-analysis of 15 RCTs showed a moderate, significant effect of auriculotherapy in managing constipation compared with controls (relative risk [RR], 2.06; 95% confidence interval [CI], 1.52- 2.79; p<0.00001). The 15 RCTs also showed a moderate, significant effect of auriculotherapy in relieving constipation (RR, 1.28; 95% CI, 1.13-1.44; p<0.0001). For other symptoms associated with constipation, such as abdominal distension or anorexia, results of the meta-analyses showed no statistical significance. Subgroup analysis revealed that use of S. vaccariae and use of magnetic pellets were both statistically favored over the control in relieving constipation. Current evidence illustrated that auriculotherapy, a relatively safe strategy, is probably beneficial in managing constipation. However, most of the eligible RCTs had a high risk of bias, and all were conducted in China. No definitive conclusion can be made because of cultural and geographic differences. Further rigorous RCTs from around the world are warranted to confirm the effect and safety of auriculotherapy for constipation.

  5. Efficacy of Auriculotherapy for Constipation in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Yang, Li-Hua; Du, Shi-Zheng; Sun, Jin-Fang; Mei, Si-Juan; Wang, Xiao-Qing; Zhang, Yuan-Yuan

    2014-01-01

    Abstract Objectives: To assess the clinical evidence of auriculotherapy for constipation treatment and to identify the efficacy of groups using Semen vaccariae or magnetic pellets as taped objects in managing constipation. Methods: Databases were searched, including five English-language databases (the Cochrane Library, PubMed, Embase, CINAHL, and AMED) and four Chinese medical databases. Only randomized controlled trials were included in the review process. Critical appraisal was conducted using the Cochrane risk of bias tool. Results: Seventeen randomized, controlled trials (RCTs) met the inclusion criteria, of which 2 had low risk of bias. The primary outcome measures were the improvement rate and total effective rate. A meta-analysis of 15 RCTs showed a moderate, significant effect of auriculotherapy in managing constipation compared with controls (relative risk [RR], 2.06; 95% confidence interval [CI], 1.52– 2.79; p<0.00001). The 15 RCTs also showed a moderate, significant effect of auriculotherapy in relieving constipation (RR, 1.28; 95% CI, 1.13–1.44; p<0.0001). For other symptoms associated with constipation, such as abdominal distension or anorexia, results of the meta-analyses showed no statistical significance. Subgroup analysis revealed that use of S. vaccariae and use of magnetic pellets were both statistically favored over the control in relieving constipation. Conclusions: Current evidence illustrated that auriculotherapy, a relatively safe strategy, is probably beneficial in managing constipation. However, most of the eligible RCTs had a high risk of bias, and all were conducted in China. No definitive conclusion can be made because of cultural and geographic differences. Further rigorous RCTs from around the world are warranted to confirm the effect and safety of auriculotherapy for constipation. PMID:25020089

  6. Geranyl diphosphate:4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a ket enzyme in shikonin biosynthesis.

    PubMed

    Yazaki, Kazufumi; Kunihisa, Miyuki; Fujisaki, Takahiro; Sato, Fumihiko

    2002-02-22

    Two cDNAs encoding geranyl diphosphate:4-hy- droxybenzoate 3-geranyltransferase were isolated from Lithospermum erythrorhizon by nested PCR using the conserved amino acid sequences among polyprenyl- transferases for ubiquinone biosynthesis. They were functionally expressed in yeast COQ2 disruptant and showed a strict substrate specificity for geranyl diphosphate as the prenyl donor, in contrast to ubiquinone biosynthetic enzymes, suggesting that they are involved in the biosynthesis of shikonin, a naphthoquinone secondary metabolite. Regulation of their expression by various culture conditions coincided with that of geranyltransferase activity and the secondary metabolites biosynthesized via this enzyme. This is the first established plant prenyltransferase that transfers the prenyl chain to an aromatic substrate.

  7. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    PubMed

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  8. Security of BB84 with weak randomness and imperfect qubit encoding

    NASA Astrophysics Data System (ADS)

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Fang, Xi; Han, Zheng-Fu; Huang, Wei

    2018-03-01

    The main threats for the well-known Bennett-Brassard 1984 (BB84) practical quantum key distribution (QKD) systems are that its encoding is inaccurate and measurement device may be vulnerable to particular attacks. Thus, a general physical model or security proof to tackle these loopholes simultaneously and quantitatively is highly desired. Here we give a framework on the security of BB84 when imperfect qubit encoding and vulnerability of measurement device are both considered. In our analysis, the potential attacks to measurement device are generalized by the recently proposed weak randomness model which assumes the input random numbers are partially biased depending on a hidden variable planted by an eavesdropper. And the inevitable encoding inaccuracy is also introduced here. From a fundamental view, our work reveals the potential information leakage due to encoding inaccuracy and weak randomness input. For applications, our result can be viewed as a useful tool to quantitatively evaluate the security of a practical QKD system.

  9. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

    PubMed Central

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-01-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327

  10. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  11. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  12. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  13. Hippocampal-prefrontal input supports spatial encoding in working memory.

    PubMed

    Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E; Fusi, Stefano; Gogos, Joseph A; Gordon, Joshua A

    2015-06-18

    Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory.

  14. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    PubMed

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Imaging dynamic redox processes with genetically encoded probes.

    PubMed

    Ezeriņa, Daria; Morgan, Bruce; Dick, Tobias P

    2014-08-01

    Redox signalling plays an important role in many aspects of physiology, including that of the cardiovascular system. Perturbed redox regulation has been associated with numerous pathological conditions; nevertheless, the causal relationships between redox changes and pathology often remain unclear. Redox signalling involves the production of specific redox species at specific times in specific locations. However, until recently, the study of these processes has been impeded by a lack of appropriate tools and methodologies that afford the necessary redox species specificity and spatiotemporal resolution. Recently developed genetically encoded fluorescent redox probes now allow dynamic real-time measurements, of defined redox species, with subcellular compartment resolution, in intact living cells. Here we discuss the available genetically encoded redox probes in terms of their sensitivity and specificity and highlight where uncertainties or controversies currently exist. Furthermore, we outline major goals for future probe development and describe how progress in imaging methodologies will improve our ability to employ genetically encoded redox probes in a wide range of situations. This article is part of a special issue entitled "Redox Signalling in the Cardiovascular System." Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Distinct Reward Properties are Encoded via Corticostriatal Interactions

    PubMed Central

    Smith, David V.; Rigney, Anastasia E.; Delgado, Mauricio R.

    2016-01-01

    The striatum serves as a critical brain region for reward processing. Yet, understanding the link between striatum and reward presents a challenge because rewards are composed of multiple properties. Notably, affective properties modulate emotion while informative properties help obtain future rewards. We approached this problem by emphasizing affective and informative reward properties within two independent guessing games. We found that both reward properties evoked activation within the nucleus accumbens, a subregion of the striatum. Striatal responses to informative, but not affective, reward properties predicted subsequent utilization of information for obtaining monetary reward. We hypothesized that activation of the striatum may be necessary but not sufficient to encode distinct reward properties. To investigate this possibility, we examined whether affective and informative reward properties were differentially encoded in corticostriatal interactions. Strikingly, we found that the striatum exhibited dissociable connectivity patterns with the ventrolateral prefrontal cortex, with increasing connectivity for affective reward properties and decreasing connectivity for informative reward properties. Our results demonstrate that affective and informative reward properties are encoded via corticostriatal interactions. These findings highlight how corticostriatal systems contribute to reward processing, potentially advancing models linking striatal activation to behavior. PMID:26831208

  17. Distinct Reward Properties are Encoded via Corticostriatal Interactions.

    PubMed

    Smith, David V; Rigney, Anastasia E; Delgado, Mauricio R

    2016-02-02

    The striatum serves as a critical brain region for reward processing. Yet, understanding the link between striatum and reward presents a challenge because rewards are composed of multiple properties. Notably, affective properties modulate emotion while informative properties help obtain future rewards. We approached this problem by emphasizing affective and informative reward properties within two independent guessing games. We found that both reward properties evoked activation within the nucleus accumbens, a subregion of the striatum. Striatal responses to informative, but not affective, reward properties predicted subsequent utilization of information for obtaining monetary reward. We hypothesized that activation of the striatum may be necessary but not sufficient to encode distinct reward properties. To investigate this possibility, we examined whether affective and informative reward properties were differentially encoded in corticostriatal interactions. Strikingly, we found that the striatum exhibited dissociable connectivity patterns with the ventrolateral prefrontal cortex, with increasing connectivity for affective reward properties and decreasing connectivity for informative reward properties. Our results demonstrate that affective and informative reward properties are encoded via corticostriatal interactions. These findings highlight how corticostriatal systems contribute to reward processing, potentially advancing models linking striatal activation to behavior.

  18. Semantic congruence reverses effects of sleep restriction on associative encoding.

    PubMed

    Alberca-Reina, Esther; Cantero, Jose L; Atienza, Mercedes

    2014-04-01

    Encoding and memory consolidation are influenced by factors such as sleep and congruency of newly learned information with prior knowledge (i.e., schema). However, only a few studies have examined the contribution of sleep to enhancement of schema-dependent memory. Based on previous studies showing that total sleep deprivation specifically impairs hippocampal encoding, and that coherent schemas reduce the hippocampal consolidation period after learning, we predict that sleep loss in the pre-training night will mainly affect schema-unrelated information whereas sleep restriction in the post-training night will have similar effects on schema-related and unrelated information. Here, we tested this hypothesis by presenting participants with face-face associations that could be semantically related or unrelated under different sleep conditions: normal sleep before and after training, and acute sleep restriction either before or after training. Memory was tested one day after training, just after introducing an interference task, and two days later, without any interference. Significant results were evident on the second retesting session. In particular, sleep restriction before training enhanced memory for semantically congruent events in detriment of memory for unrelated events, supporting the specific role of sleep in hippocampal memory encoding. Unexpectedly, sleep restriction after training enhanced memory for both related and unrelated events. Although this finding may suggest a poorer encoding during the interference task, this hypothesis should be specifically tested in future experiments. All together, the present results support a framework in which encoding processes seem to be more vulnerable to sleep loss than consolidation processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Cheating, facilitation and cooperation regulate the effectiveness of phage-encoded exotoxins as antipredator molecules.

    PubMed

    Aijaz, Iqbal; Koudelka, Gerald B

    2018-04-19

    Temperate phage encoded Shiga toxin (Stx) kills the bacterivorous predator, Tetrahymena thermophila, providing Stx + Escherichia coli with a survival advantage over Stx - cells. Although bacterial death accompanies Stx release, since bacteria grow clonally the fitness benefits of predator killing accrue to the kin of the sacrificed organism, meaning Stx-mediated protist killing is a form of self-destructive cooperation. We show here that the fitness benefits of Stx production are not restricted to the kin of the phage-encoding bacteria. Instead, nearby "free loading" bacteria, irrespective of their genotype, also reap the benefit of Stx-mediated predator killing. This finding indicates that the phage-borne Stx exotoxin behaves as a public good. Stx is encoded by a mobile phage. We find that Stx-encoding phage can use susceptible bacteria in the population as surrogates to enhance toxin and phage production. Moreover, our findings also demonstrate that engulfment and concentration of Stx-encoding and susceptible Stx - bacteria in the Tetrahymena phagosome enhances the transfer of Stx-encoding temperate phage from the host to the susceptible bacteria. This transfer increases the population of cooperating bacteria within the community. Since these bacteria now encode Stx, the predation-stimulated increase in phage transfer increases the population of toxin encoding bacteria in the environment. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Hybrid architecture for encoded measurement-based quantum computation

    PubMed Central

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2014-01-01

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication. PMID:24946906

  1. When fear forms memories: threat of shock and brain potentials during encoding and recognition.

    PubMed

    Weymar, Mathias; Bradley, Margaret M; Hamm, Alfons O; Lang, Peter J

    2013-03-01

    The anticipation of highly aversive events is associated with measurable defensive activation, and both animal and human research suggests that stress-inducing contexts can facilitate memory. Here, we investigated whether encoding stimuli in the context of anticipating an aversive shock affects recognition memory. Event-related potentials (ERPs) were measured during a recognition test for words that were encoded in a font color that signaled threat or safety. At encoding, cues signaling threat of shock, compared to safety, prompted enhanced P2 and P3 components. Correct recognition of words encoded in the context of threat, compared to safety, was associated with an enhanced old-new ERP difference (500-700 msec; centro-parietal), and this difference was most reliable for emotional words. Moreover, larger old-new ERP differences when recognizing emotional words encoded in a threatening context were associated with better recognition, compared to words encoded in safety. Taken together, the data indicate enhanced memory for stimuli encoded in a context in which an aversive event is merely anticipated, which could assist in understanding effects of anxiety and stress on memory processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Encoding methods for B1+ mapping in parallel transmit systems at ultra high field

    NASA Astrophysics Data System (ADS)

    Tse, Desmond H. Y.; Poole, Michael S.; Magill, Arthur W.; Felder, Jörg; Brenner, Daniel; Jon Shah, N.

    2014-08-01

    Parallel radiofrequency (RF) transmission, either in the form of RF shimming or pulse design, has been proposed as a solution to the B1+ inhomogeneity problem in ultra high field magnetic resonance imaging. As a prerequisite, accurate B1+ maps from each of the available transmit channels are required. In this work, four different encoding methods for B1+ mapping, namely 1-channel-on, all-channels-on-except-1, all-channels-on-1-inverted and Fourier phase encoding, were evaluated using dual refocusing acquisition mode (DREAM) at 9.4 T. Fourier phase encoding was demonstrated in both phantom and in vivo to be the least susceptible to artefacts caused by destructive RF interference at 9.4 T. Unlike the other two interferometric encoding schemes, Fourier phase encoding showed negligible dependency on the initial RF phase setting and therefore no prior B1+ knowledge is required. Fourier phase encoding also provides a flexible way to increase the number of measurements to increase SNR, and to allow further reduction of artefacts by weighted decoding. These advantages of Fourier phase encoding suggest that it is a good choice for B1+ mapping in parallel transmit systems at ultra high field.

  3. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    PubMed

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  4. Implementation-intention encoding in a prospective memory task enhances spontaneous retrieval of intentions.

    PubMed

    Rummel, Jan; Einstein, Gilles O; Rampey, Hilary

    2012-01-01

    Although forming implementation intentions (Gollwitzer, 1999) has been demonstrated to generally improve prospective memory, the underlying cognitive mechanisms are not completely understood. It has been proposed that implementation-intention encoding encourages spontaneous retrieval (McDaniel & Scullin, 2010). Alternatively one could assume the positive effect of implementation-intention encoding is caused by increased or more efficient monitoring for target cues. To test these alternative explanations and to further investigate the cognitive mechanisms underlying implementation-intention benefits, in two experiments participants formed the intention to respond to specific target cues in a lexical decision task with a special key, but then had to suspend this intention during an intervening word-categorisation task. Response times on trials directly following the occurrence of target cues in the intervening task were significantly slower with implementation-intention encoding than with standard encoding, indicating that spontaneous retrieval was increased (Experiment 1). However, when activation of the target cues was controlled for, similar slowing was found with both standard and implementation-intention encoding (Experiment 2). The results imply that implementation-intention encoding as well as increased target-cue activation foster spontaneous retrieval processes.

  5. 47 CFR 11.32 - EAS Encoder.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... used for audio messages and at least one input port used for data messages. (3) Outputs. The encoder shall have at least one audio output port and at least one data output port. (4) Calibration. EAS... that complies with the following: (i) Tone Frequencies. The audio tones shall have fundamental...

  6. 47 CFR 11.32 - EAS Encoder.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... used for audio messages and at least one input port used for data messages. (3) Outputs. The encoder shall have at least one audio output port and at least one data output port. (4) Calibration. EAS... that complies with the following: (i) Tone Frequencies. The audio tones shall have fundamental...

  7. 47 CFR 11.32 - EAS Encoder.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... used for audio messages and at least one input port used for data messages. (3) Outputs. The encoder shall have at least one audio output port and at least one data output port. (4) Calibration. EAS... that complies with the following: (i) Tone Frequencies. The audio tones shall have fundamental...

  8. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  9. Encoding qubits into oscillators with atomic ensembles and squeezed light

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Baragiola, Ben Q.; Gilchrist, Alexei; Menicucci, Nicolas C.

    2017-05-01

    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum nondemolition interaction.

  10. Processing circuit with asymmetry corrector and convolutional encoder for digital data

    NASA Technical Reports Server (NTRS)

    Pfiffner, Harold J. (Inventor)

    1987-01-01

    A processing circuit is provided for correcting for input parameter variations, such as data and clock signal symmetry, phase offset and jitter, noise and signal amplitude, in incoming data signals. An asymmetry corrector circuit performs the correcting function and furnishes the corrected data signals to a convolutional encoder circuit. The corrector circuit further forms a regenerated clock signal from clock pulses in the incoming data signals and another clock signal at a multiple of the incoming clock signal. These clock signals are furnished to the encoder circuit so that encoded data may be furnished to a modulator at a high data rate for transmission.

  11. Holographically Encoded Volume Phase Masks

    DTIC Science & Technology

    2015-07-13

    Lu et al., “Coherent beam combination of fiber laser arrays via multiplexed volume Bragg gratings,” in Conf. on Lasers and Electro- Optics: Science...combining of fiber lasers using multiplexed volume Bragg gratings,” in Conf. on Lasers and Electro- Optics: Science and Innovations, OSA Technical Digest...satisfying the Bragg condition of the hologram. Moreover, this approach enables the capability to encode and multiplex several phase masks into a single

  12. The Role of Auditory Feedback in the Encoding of Paralinguistic Responses.

    ERIC Educational Resources Information Center

    Plazewski, Joseph G.; Allen, Vernon L.

    Twenty college students participated in an examination of the role of auditory feedback in the encoding of paralinguistic affect by adults. A dependent measure indicating the accuracy of paralinguistic communication of affect was obtained by comparing the level of affect that encoders intended to produce with ratings of vocal intonations from…

  13. Detecting weak position fluctuations from encoder signal using singular spectrum analysis.

    PubMed

    Xu, Xiaoqiang; Zhao, Ming; Lin, Jing

    2017-11-01

    Mechanical fault or defect will cause some weak fluctuations to the position signal. Detection of such fluctuations via encoders can help determine the health condition and performance of the machine, and offer a promising alternative to the vibration-based monitoring scheme. However, besides the interested fluctuations, encoder signal also contains a large trend and some measurement noise. In applications, the trend is normally several orders larger than the concerned fluctuations in magnitude, which makes it difficult to detect the weak fluctuations without signal distortion. In addition, the fluctuations can be complicated and amplitude modulated under non-stationary working condition. To overcome this issue, singular spectrum analysis (SSA) is proposed for detecting weak position fluctuations from encoder signal in this paper. It enables complicated encode signal to be reduced into several interpretable components including a trend, a set of periodic fluctuations and noise. A numerical simulation is given to demonstrate the performance of the method, it shows that SSA outperforms empirical mode decomposition (EMD) in terms of capability and accuracy. Moreover, linear encoder signals from a CNC machine tool are analyzed to determine the magnitudes and sources of fluctuations during feed motion. The proposed method is proven to be feasible and reliable for machinery condition monitoring. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction.

    PubMed

    Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2015-03-01

    PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.

  15. Neural correlates of the encoding of multimodal contextual features

    PubMed Central

    Gottlieb, Lauren J.; Wong, Jenny; de Chastelaine, Marianne; Rugg, Michael D.

    2012-01-01

    Functional magnetic resonance imaging (fMRI) was employed to identify neural regions engaged during the encoding of contextual features belonging to different modalities. Subjects studied objects that were presented to the left or right of fixation. Each object was paired with its name, spoken in either a male or a female voice. The test requirement was to discriminate studied from unstudied pictures and, for each picture judged old, to retrieve its study location and the gender of the voice that spoke its name. Study trials associated with accurate rather than inaccurate location memory demonstrated enhanced activity in the fusiform and parahippocampal cortex and the hippocampus and reduced activity (a negative subsequent memory effect) in the medial occipital cortex. Successful encoding of voice information was associated with enhanced study activity in the right middle superior temporal sulcus and activity reduction in the right superior frontal cortex. These findings support the proposal that encoding of a contextual feature is associated with enhanced activity in regions engaged during its online processing. In addition, they indicate that negative subsequent memory effects can also demonstrate feature-selectivity. Relative to other classes of study trials, trials for which both contextual features were later retrieved demonstrated enhanced activity in the lateral occipital complex and reduced activity in the temporo-parietal junction. These findings suggest that multifeatural encoding was facilitated when the study item was processed efficiently and study processing was not interrupted by redirection of attention toward extraneous events. PMID:23166292

  16. Selective Memories: Infants' Encoding Is Enhanced in Selection via Suppression

    ERIC Educational Resources Information Center

    Markant, Julie; Amso, Dima

    2013-01-01

    The present study examined the hypothesis that inhibitory visual selection mechanisms play a vital role in memory by limiting distractor interference during item encoding. In Experiment 1a we used a modified spatial cueing task in which 9-month-old infants encoded multiple category exemplars in the contexts of an attention orienting mechanism…

  17. ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks

    PubMed Central

    Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel

    2017-01-01

    The “subsequent memory paradigm” is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential “subsequent memory effects” (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding. PMID:28194105

  18. ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks.

    PubMed

    Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel

    2017-01-01

    The "subsequent memory paradigm" is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential "subsequent memory effects" (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding.

  19. Semantic and Phonological Encoding Times in Adults Who Stutter: Brain Electrophysiological Evidence.

    PubMed

    Maxfield, Nathan D

    2017-10-17

    Some psycholinguistic theories of stuttering propose that language production operates along a different time course in adults who stutter (AWS) versus typically fluent adults (TFA). However, behavioral evidence for such a difference has been mixed. Here, the time course of semantic and phonological encoding in picture naming was compared in AWS (n = 16) versus TFA (n = 16) by measuring 2 event-related potential (ERP) components: NoGo N200, an ERP index of response inhibition, and lateralized readiness potential, an ERP index of response preparation. Each trial required a semantic judgment about a picture in addition to a phonemic judgment about the target label of the picture. Judgments were mapped onto a dual-choice (Go-NoGo/left-right) push-button response paradigm. On each trial, ERP activity time-locked to picture onset was recorded at 32 scalp electrodes. NoGo N200 was detected earlier to semantic NoGo trials than to phonemic NoGo trials in both groups, replicating previous evidence that semantic encoding generally precedes phonological encoding in language production. Moreover, N200 onset was earlier to semantic NoGo trials in TFA than in AWS, indicating that semantic information triggering response inhibition became available earlier in TFA versus AWS. In contrast, the time course of N200 activity to phonemic NoGo trials did not differ between groups. Lateralized readiness potential activity was influenced by strategic response preparation and, thus, could not be used to index real-time semantic and phonological encoding. NoGo N200 results point to slowed semantic encoding in AWS versus TFA. Discussion considers possible factors in slowed semantic encoding in AWS and how fluency might be impacted by slowed semantic encoding.

  20. Semantic and Phonological Encoding Times in Adults Who Stutter: Brain Electrophysiological Evidence

    PubMed Central

    2017-01-01

    Purpose Some psycholinguistic theories of stuttering propose that language production operates along a different time course in adults who stutter (AWS) versus typically fluent adults (TFA). However, behavioral evidence for such a difference has been mixed. Here, the time course of semantic and phonological encoding in picture naming was compared in AWS (n = 16) versus TFA (n = 16) by measuring 2 event-related potential (ERP) components: NoGo N200, an ERP index of response inhibition, and lateralized readiness potential, an ERP index of response preparation. Method Each trial required a semantic judgment about a picture in addition to a phonemic judgment about the target label of the picture. Judgments were mapped onto a dual-choice (Go–NoGo/left–right) push-button response paradigm. On each trial, ERP activity time-locked to picture onset was recorded at 32 scalp electrodes. Results NoGo N200 was detected earlier to semantic NoGo trials than to phonemic NoGo trials in both groups, replicating previous evidence that semantic encoding generally precedes phonological encoding in language production. Moreover, N200 onset was earlier to semantic NoGo trials in TFA than in AWS, indicating that semantic information triggering response inhibition became available earlier in TFA versus AWS. In contrast, the time course of N200 activity to phonemic NoGo trials did not differ between groups. Lateralized readiness potential activity was influenced by strategic response preparation and, thus, could not be used to index real-time semantic and phonological encoding. Conclusion NoGo N200 results point to slowed semantic encoding in AWS versus TFA. Discussion considers possible factors in slowed semantic encoding in AWS and how fluency might be impacted by slowed semantic encoding. PMID:28973156

  1. Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.

    PubMed

    Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2018-05-01

    People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.

  2. The Psychological Construct of Encoding Specificity and Its Relationship to Designing Instruction and Tests.

    ERIC Educational Resources Information Center

    Canelos, James; And Others

    The effects of encoding specificity were evaluated for learners: (1) in a typical classroom group learning environment, (2) receiving an audiovisual presentation on an academic subject, and (3) in a group testing environment. Encoding specificity involves the interaction between the encoding phase of memory or the learning context, the stored…

  3. Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety

    PubMed Central

    Fernandes, Myra A.

    2017-01-01

    We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1), participants re-entered the mode of processing (negative or neutral) engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information. PMID:29280957

  4. Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety.

    PubMed

    Lee, Christopher; Fernandes, Myra A

    2017-12-27

    We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1), participants re-entered the mode of processing (negative or neutral) engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information.

  5. Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells

    PubMed Central

    Oesch, Nicholas W.; Diamond, Jeffrey S.

    2011-01-01

    Contrast is computed throughout the nervous system to encode changing inputs efficiently. The retina encodes luminance and contrast over a wide range of visual conditions and so must adapt its responses to maintain sensitivity and avoid saturation. Here we show how one type of adaptation allows individual synapses to compute contrast and encode luminance in biphasic responses to step changes in light levels. Light-evoked depletion of the readily releasable vesicle pool (RRP) at rod bipolar cell (RBC) ribbon synapses in rat retina limits the dynamic range available to encode transient but not sustained responses, thereby allowing the transient and sustained components of release to compute temporal contrast and encode mean light levels, respectively. A release/replenishment model shows that a single, homogeneous pool of synaptic vesicles is sufficient to generate this behavior and reveals that the dominant mechanism shaping the biphasic contrast/luminance response is the partial depletion of the RRP. PMID:22019730

  6. Method and apparatus for ultra-high-sensitivity, incremental and absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1999-01-01

    An absolute optical linear or rotary encoder which encodes the motion of an object (3) with increased resolution and encoding range and decreased sensitivity to damage to the scale includes a scale (5), which moves with the object and is illuminated by a light source (11). The scale carries a pattern (9) which is imaged by a microscope optical system (13) on a CCD array (17) in a camera head (15). The pattern includes both fiducial markings (31) which are identical for each period of the pattern and code areas (33) which include binary codings of numbers identifying the individual periods of the pattern. The image of the pattern formed on the CCD array is analyzed by an image processor (23) to locate the fiducial marking, decode the information encoded in the code area, and thereby determine the position of the object.

  7. Event-related rTMS at encoding affects differently deep and shallow memory traces.

    PubMed

    Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone

    2010-10-15

    The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by

  8. Genetically Encoded Voltage Indicators: Opportunities and Challenges.

    PubMed

    Yang, Helen H; St-Pierre, François

    2016-09-28

    A longstanding goal in neuroscience is to understand how spatiotemporal patterns of neuronal electrical activity underlie brain function, from sensory representations to decision making. An emerging technology for monitoring electrical dynamics, voltage imaging using genetically encoded voltage indicators (GEVIs), couples the power of genetics with the advantages of light. Here, we review the properties that determine indicator performance and applicability, discussing both recent progress and technical limitations. We then consider GEVI applications, highlighting studies that have already deployed GEVIs for biological discovery. We also examine which classes of biological questions GEVIs are primed to address and which ones are beyond their current capabilities. As GEVIs are further developed, we anticipate that they will become more broadly used by the neuroscience community to eavesdrop on brain activity with unprecedented spatiotemporal resolution. Genetically encoded voltage indicators are engineered light-emitting protein sensors that typically report neuronal voltage dynamics as changes in brightness. In this review, we systematically discuss the current state of this emerging method, considering both its advantages and limitations for imaging neural activity. We also present recent applications of this technology and discuss what is feasible now and what we anticipate will become possible with future indicator development. This review will inform neuroscientists of recent progress in the field and help potential users critically evaluate the suitability of genetically encoded voltage indicator imaging to answer their specific biological questions. Copyright © 2016 the authors 0270-6474/16/369977-13$15.00/0.

  9. Genetically Encoded Voltage Indicators: Opportunities and Challenges

    PubMed Central

    Yang, Helen H.

    2016-01-01

    A longstanding goal in neuroscience is to understand how spatiotemporal patterns of neuronal electrical activity underlie brain function, from sensory representations to decision making. An emerging technology for monitoring electrical dynamics, voltage imaging using genetically encoded voltage indicators (GEVIs), couples the power of genetics with the advantages of light. Here, we review the properties that determine indicator performance and applicability, discussing both recent progress and technical limitations. We then consider GEVI applications, highlighting studies that have already deployed GEVIs for biological discovery. We also examine which classes of biological questions GEVIs are primed to address and which ones are beyond their current capabilities. As GEVIs are further developed, we anticipate that they will become more broadly used by the neuroscience community to eavesdrop on brain activity with unprecedented spatiotemporal resolution. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators are engineered light-emitting protein sensors that typically report neuronal voltage dynamics as changes in brightness. In this review, we systematically discuss the current state of this emerging method, considering both its advantages and limitations for imaging neural activity. We also present recent applications of this technology and discuss what is feasible now and what we anticipate will become possible with future indicator development. This review will inform neuroscientists of recent progress in the field and help potential users critically evaluate the suitability of genetically encoded voltage indicator imaging to answer their specific biological questions. PMID:27683896

  10. Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA

    PubMed Central

    Dickinson, Craig D.; Floener, Liliane A.; Lilley, Glenn G.; Nielsen, Niels C.

    1987-01-01

    An in vitro system was developed that results in the self-assembly of subunit precursors into complexes that resemble those found naturally in the endoplasmic reticulum. Subunits of glycinin, the predominant seed protein of soybeans, were synthesized from modified cDNAs using a combination of the SP6 transcription and the rabbit reticulocyte translation systems. Subunits produced from plasmid constructions that encoded either Gy4 or Gy5 gene products, but modified such that their signal sequences were absent, self-assembled into trimers equivalent in size to those precursors found in the endoplasmic reticulum. In contrast, proteins synthesized in vitro from Gy4 constructs failed to self-assemble when the signal sequence was left intact (e.g., preproglycinin) or when the coding sequence was modified to remove 27 amino acids from an internal hydrophobic region, which is highly conserved among the glycinin subunits. Various hybrid subunits were also produced by trading portions of Gy4 and Gy5 cDNAs and all self-assembled in our system. The in vitro assembly system provides an opportunity to study the self-assembly of precursors and to probe for regions important for assembly. It will also be helpful in attempts to engineer beneficial nutritional changes into this important food protein. Images PMID:16593868

  11. Construction of cDNA expression library of watermelon for isolation of ClWRKY1 transcription factors gene involved in resistance to Fusarium wilt.

    PubMed

    Yang, Bing-Yan; Huo, Xiu-Ai; Li, Peng-Fei; Wang, Cui-Xia; Duan, Hui-Jun

    2014-08-01

    Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from watermelon remains limited. Here we report first the construction of a full-length enriched cDNA library from Fusarium wilt stressed watermelon (Citrullus lanatus Thunb.) cultivar PI296341 root tissues using the SMART method. The titer of primary cDNA library and amplified library was 2.21 x 10(6) and 2.0 x 10(10) pfu/ml, respectively and the rate of recombinant was above 85%. The size of insert fragment ranged from 0.3 to 2.0 kb. In this study, we first cloned a gene named ClWRKY1, which was 1981 bp long and encoded a protein consisting of 394 amino acids. It contained two characteristic WRKY domains and two zinc finger motifs. Quantitative real-time PCR showed that ClWRKY1 expression levels reached maximum level at 12 h after inoculation with Fusarium oxysporum f. sp. niveum. The full-length cDNA library of watermelon root tissues is not only essential for the cloning of genes which are known, but also an initial key for the screening and cloning of new genes that might be involved in resistance to Fusarium wilt.

  12. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder.

    PubMed Central

    Deyashiki, Y; Ogasawara, A; Nakayama, T; Nakanishi, M; Miyabe, Y; Sato, K; Hara, A

    1994-01-01

    Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5'-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively. Images Figure 1 PMID:8172617

  13. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).

    PubMed

    Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E

    2005-12-02

    cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.

  14. Cellobiohydrolase variants and polynucleotides encoding the same

    DOEpatents

    Wogulis, Mark

    2014-09-09

    The present invention relates to variants of a parent cellobiohydrolase. The present invention also relates to polynucleotides encoding the cellobiohydrolase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the cellobiohydrolase variants.

  15. Reader set encoding for directory of shared cache memory in multiprocessor system

    DOEpatents

    Ahn, Dnaiel; Ceze, Luis H.; Gara, Alan; Ohmacht, Martin; Xiaotong, Zhuang

    2014-06-10

    In a parallel processing system with speculative execution, conflict checking occurs in a directory lookup of a cache memory that is shared by all processors. In each case, the same physical memory address will map to the same set of that cache, no matter which processor originated that access. The directory includes a dynamic reader set encoding, indicating what speculative threads have read a particular line. This reader set encoding is used in conflict checking. A bitset encoding is used to specify particular threads that have read the line.

  16. Efficient Text Encryption and Hiding with Double-Random Phase-Encoding

    PubMed Central

    Sang, Jun; Ling, Shenggui; Alam, Mohammad S.

    2012-01-01

    In this paper, a double-random phase-encoding technique-based text encryption and hiding method is proposed. First, the secret text is transformed into a 2-dimensional array and the higher bits of the elements in the transformed array are used to store the bit stream of the secret text, while the lower bits are filled with specific values. Then, the transformed array is encoded with double-random phase-encoding technique. Finally, the encoded array is superimposed on an expanded host image to obtain the image embedded with hidden data. The performance of the proposed technique, including the hiding capacity, the recovery accuracy of the secret text, and the quality of the image embedded with hidden data, is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient. By using optical information processing techniques, the proposed method has been found to significantly improve the security of text information transmission, while ensuring hiding capacity at a prescribed level. PMID:23202003

  17. Recollection-Based Retrieval Is Influenced by Contextual Variation at Encoding but Not at Retrieval

    PubMed Central

    Rosenstreich, Eyal; Goshen-Gottstein, Yonatan

    2015-01-01

    In this article, we investigated the effects of variations at encoding and retrieval on recollection. We argue that recollection is more likely to be affected by the processing that information undergoes at encoding than at retrieval. To date, manipulations shown to affect recollection were typically carried out at encoding. Therefore, an open question is whether these same manipulations would also affect recollection when carried out at retrieval, or whether there is an inherent connection between their effects on recollection and the encoding stage. We therefore manipulated, at either encoding or retrieval, fluency of processing (Experiment 1)—typically found not to affect recollection—and the amount of attentional resources available for processing (Experiments 2 and 3)—typically reported to affect recollection. We found that regardless of the type of manipulation, recollection was affected more by manipulations carried out at encoding and was essentially unaffected when these manipulations were carried out at retrieval. These findings suggest an inherent dependency between recollection-based retrieval and the encoding stage. It seems that because recollection is a contextual-based retrieval process, it is determined by the processing information undergoes at encoding—at the time when context is bound with the items—but not at retrieval—when context is only recovered. PMID:26135583

  18. CSP41b, a protein identified via FOX hunting using Eutrema salsugineum cDNAs, improves heat and salinity stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Ariga, Hirotaka; Tanaka, Tomoko; Ono, Hirokazu; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki

    2015-08-14

    Eutrema salsugineum (also known as Thellungiella salsuginea and formerly Thellungiella halophila), a species closely related to Arabidopsis thaliana, shows tolerance not only to salt stress, but also to chilling, freezing, and high temperatures. To identify genes responsible for stress tolerance, we conducted Full-length cDNA Over-eXpressing gene (FOX) hunting among a collection of E. salsugineum cDNAs that were stress-induced according to gene ontology analysis or over-expressed in E. salsugineum compared with A. thaliana. We identified E. salsugineum CSP41b (chloroplast stem-loop-binding protein of 41 kDa; also known as CRB, chloroplast RNA binding; named here as EsCSP41b) as a gene that can confer heat and salinity stress tolerance on A. thaliana. A. thaliana CSP41b is reported to play an important role in the proper functioning of the chloroplast: the atcsp41b mutant is smaller and paler than wild-type plants and shows altered chloroplast morphology and photosynthetic performance. We observed that AtCSP41b-overexpressing transgenic A. thaliana lines also exhibited marked heat tolerance and significant salinity stress tolerance. The EsCSP41b-overexpressing transgenic A. thaliana lines showed significantly higher photosynthesis activity than wild-type plants not only under normal growth conditions but also under heat stress. In wild-type plants, the expression levels of both EsCSP41b and AtCSP41b were significantly reduced under heat or salinity stress. We conclude that maintenance of CSP41b expression under abiotic stresses may alleviate photoinhibition and improve survival under such stresses. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.

    PubMed

    Lim, Meng-Hui; Teoh, Andrew Beng Jin

    2013-02-01

    Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.

  20. Multiple velocity encoding in the phase of an MRI signal

    NASA Astrophysics Data System (ADS)

    Benitez-Read, E. E.

    2017-01-01

    The measurement of fluid velocity by encoding it in the phase of a magnetic resonance imaging (MRI) signal could allow the discrimination of the stationary spins signals from those of moving spins. This results in a wide variety of applications i.e. in medicine, in order to obtain more than angiograms, blood velocity images of veins, arteries and other vessels without having static tissue perturbing the signal of fluid in motion. The work presented in this paper is a theoretical analysis of some novel methods for multiple fluid velocity encoding in the phase of an MRI signal. These methods are based on a tripolar gradient (TPG) and can be an alternative to the conventional methods based on a bipolar gradient (BPG) and could be more suitable for multiple velocity encoding in the phase of an MRI signal.