Sample records for vaccine candidate ama1

  1. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans.

    PubMed

    Sheehy, Susanne H; Duncan, Christopher J A; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian V S; Draper, Simon J

    2012-12-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.

  2. ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans

    PubMed Central

    Sheehy, Susanne H; Duncan, Christopher JA; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian VS; Draper, Simon J

    2012-01-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1—results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets. PMID:23089736

  3. Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1

    PubMed Central

    Dutta, Sheetij; Dlugosz, Lisa S.; Drew, Damien R.; Ge, Xiopeng; Ababacar, Diouf; Rovira, Yazmin I.; Moch, J. Kathleen; Shi, Meng; Long, Carole A.; Foley, Michael; Beeson, James G.; Anders, Robin F.; Miura, Kazutoyo; Haynes, J. David; Batchelor, Adrian H.

    2013-01-01

    Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal

  4. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.

    PubMed

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L; Long, Carole A; Miller, Louis H; Saul, Allan; Mullen, Gregory E D

    2007-05-16

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) to a blood stage vaccine candidate and surface protein 25 (Pfs25) a mosquito stage vaccine candidate, were each independently chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66kD) relatively good immunogen in mice; Pfs25 is a poorly immunogenic protein when presented on alum to mice. Mice were immunized on days 0 and 28 with AMA1- or Pfs25-rEPA conjugates or unconjugated AMA1 or Pfs25, all formulated on Alhydrogel. Remarkably, sera from mice 14 days after the second immunization with Pfs25-rEPA conjugates displayed over a 1000-fold higher antibody titers as compared to unconjugated Pfs25. In contrast, AMA1 conjugated under the same conditions induced only a three-fold increase in antibody titers. When tested for functional activity, antibodies elicited by the AMA1-rEPA inhibited invasion of erythrocytes by blood-stage parasites and antibodies elicited by the Pfs25-rEPA conjugates blocked the development of the sexual stage parasites in the mosquito midgut. These results demonstrate that conjugation to rEPA induces a marked improvement in the antibody titer in mice for the poor immunogen (Pfs25) and for the larger protein (AMA1). These conjugates now need to be tested in humans to determine if mice are predictive of the response in humans.

  5. Safety and Immunogenicity of an AMA-1 Malaria Vaccine in Malian Adults: Results of a Phase 1 Randomized Controlled Trial

    PubMed Central

    Thera, Mahamadou A.; Doumbo, Ogobara K.; Coulibaly, Drissa; Diallo, Dapa A.; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Dicko, Alassane; Sagara, Issaka; Sissoko, Mahamadou S.; Baby, Mounirou; Sissoko, Mady; Diarra, Issa; Niangaly, Amadou; Dolo, Amagana; Daou, Modibo; Diawara, Sory I.; Heppner, D. Gray; Stewart, V. Ann; Angov, Evelina; Bergmann-Leitner, Elke S.; Lanar, David E.; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter L.; Leach, Amanda; Owusu, Alex; Dubois, Marie-Claude; Cohen, Joe; Nixon, Jason N.; Gregson, Aric; Takala, Shannon L.; Lyke, Kirsten E.; Plowe, Christopher V.

    2008-01-01

    Background The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria. Methodology/Principal Findings A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18–55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 µg/AS02A 0.25 mL or FMP2.1 50 µg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively. Conclusion/Significance The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site. Trial Registration ClinicalTrials.gov NCT00308061 PMID:18213374

  6. Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909

    PubMed Central

    Duncan, Christopher J. A.; Sheehy, Susanne H.; Ewer, Katie J.; Douglas, Alexander D.; Collins, Katharine A.; Halstead, Fenella D.; Elias, Sean C.; Lillie, Patrick J.; Rausch, Kelly; Aebig, Joan; Miura, Kazutoyo; Edwards, Nick J.; Poulton, Ian D.; Hunt-Cooke, Angela; Porter, David W.; Thompson, Fiona M.; Rowland, Ros; Draper, Simon J.; Gilbert, Sarah C.; Fay, Michael P.; Long, Carole A.; Zhu, Daming; Wu, Yimin; Martin, Laura B.; Anderson, Charles F.; Lawrie, Alison M.; Hill, Adrian V. S.; Ellis, Ruth D.

    2011-01-01

    Background Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria. Methods In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes. Results A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = −0.93 [95% CI: −1.0, −0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = −0.93 [95% CI: −0.99, −0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5–9], control group median 9 days [range 7–9]). Conclusions Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers. Trial Registration ClinicalTrials.gov [NCT00984763] PMID:21799809

  7. Phase 1/2a Study of the Malaria Vaccine Candidate Apical Membrane Antigen-1 (AMA-1) Administered in Adjuvant System AS01B or AS02A

    DTIC Science & Technology

    2009-04-01

    purified saponin extract from the bark of the South American tree Quillaja saponaria, while AS02A is based on an oil-in-water emulsion with the same amounts... Technology in Health (PATH) Malaria Vaccine Initiative, Bethesda, Maryland, United States of America, 3 Department of Medical Microbiology, Radboud...Additionally, active immunization of rhesus monkeys with P. knowlesi AMA-1 adjuvanted in saponin resulted in some animals demonstrating a delayed

  8. Production, Quality Control, Stability and Pharmacotoxicity of a Malaria Vaccine Comprising Three Highly Similar PfAMA1 Protein Molecules to Overcome Antigenic Variation

    PubMed Central

    Houard, Sophie; Havelange, Nicolas; Drossard, Jürgen; Mertens, Hubert; Croon, Alexander; Kastilan, Robin; Byrne, Richard; van der Werff, Nicole; van der Eijk, Marjolein; Thomas, Alan W.; Kocken, Clemens H. M.; Remarque, Edmond J.

    2016-01-01

    Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading asexual blood stage vaccine candidate for malaria. In preparation for clinical trials, three Diversity Covering (DiCo) PfAMA1 ectodomain proteins, designed to overcome the intrinsic polymorphism that is present in PfAMA1, were produced under Good Manufacturing Practice (GMP) in Pichia pastoris. Using identical methodology, the 3 strains were cultivated in 70-L scale fed-batch fermentations and PfAMA1-DiCos were purified by two chromatography steps, an ultrafiltration/diafiltration procedure and size exclusion chromatography, resulting in highly pure (>95%) PfAMA1-DiCo1, PfAMA1 DiCo2 and PfAMA1 DiCo3, with final yields of 1.8, 1.9 and 1.3 gram, respectively. N-terminal determinations showed that approximately 50% of each of the proteins lost 12 residues from their N-terminus, in accordance with SDS-PAGE (2 main bands) and MS-data. Under reducing conditions a site of limited proteolytic cleavage within a disulphide bonded region became evident. The three proteins quantitatively bound to the mAb 4G2 that recognizes a conformational epitope, suggesting proper folding of the proteins. The lyophilized Drug Product (1:1:1 mixture of PfAMA1-DiCo1, DiCo2, DiCo3) fulfilled all pre-set release criteria (appearance, dissolution rate, identity, purity, protein content, moisture content, sub-visible particles, immuno-potency (after reconstitution with adjuvant), abnormal toxicity, sterility and endotoxin), was stable in accelerated and real-time stability studies at -20°C for over 24 months. When formulated with adjuvants selected for clinical phase I evaluation, the Drug Product did not show adverse effect in a repeated-dose toxicity study in rabbits. The Drug Product has entered a phase Ia/Ib clinical trial. PMID:27695087

  9. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1-DiCo malaria vaccine adjuvanted with GLA-SE or Alhydrogel® in European and African adults: A phase 1a/1b, randomized, double-blind multi-centre trial.

    PubMed

    Sirima, S B; Durier, C; Kara, L; Houard, S; Gansane, A; Loulergue, P; Bahuaud, M; Benhamouda, N; Nebié, I; Faber, B; Remarque, E; Launay, O

    2017-10-27

    Plasmodium falciparum Apical Membrane Antigen 1 Diversity Covering (PfAMA1-DiCo) candidate vaccine is a formulation of three recombinant variants of AMA1 designed to provide broader protection against parasites with varying AMA1 sequences. In this staggered phase Ia/Ib randomized, double blind trial, healthy French adults received AMA1-DiCo with either Alhydrogel® (n=15) or GLA-SE (n=15). Following a safety assessment in French volunteers, GLA-SE was chosen for the phase Ib trial where healthy Burkinabe adults received either AMA1-DiCo/GLA-SE (n=18) or placebo (n=18). AMA1-DiCo (50µg) was administered intramuscularly at baseline, Week 4 and 26. AMAI-DiCo was safe, well tolerated either with Alhydrogel® or GLA-SE. In European volunteers, the ratios of IgG increase from baseline were about 100 fold in Alhydrogel® group and 200-300 fold in GLA-SE group for the three antigens. In African volunteers, immunization resulted in IgG levels exceeding those observed for the European volunteers with a 4-fold increase. DiCo-specific IgG remained higher 26weeks after the third immunization than at baseline in both European and African volunteers. Induced antibodies were reactive against whole parasite derived from different strains. AMA1-DiCo vaccine was safe and immunogenic whatever the adjuvant although GLA-SE appeared more potent than Alhydrogel® at inducing IgG responses. ClinicalTrials.gov NCT02014727; PACTR201402000719423. Copyright © 2017. Published by Elsevier Ltd.

  10. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was

  11. Comparison of Biological Activity of Human Anti-Apical Membrane Antigen-1 Antibodies Induced by Natural Infection and Vaccination

    PubMed Central

    Miura, Kazutoyo; Zhou, Hong; Moretz, Samuel E.; Diouf, Ababacar; Thera, Mahamadou A; Dolo, Amagana; Doumbo, Ogobara; Malkin, Elissa; Diemert, David; Miller, Louis H.; Mullen, Gregory E.D.; Long, Carole A.

    2009-01-01

    Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the U.S. with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active antibodies judged by an in vitro parasite Growth Inhibition Assay (GIA). However, the same vaccine in Malian adults did not increase biological activity although it elevated ELISA titers. As GIA has been used to evaluate the biological activity of antibodies induced by blood-stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific antibodies from both US vaccinees and from non-vaccinated individuals living in a malaria-endemic area of Mali, and performed ELISA and GIA. Both AMA1-specifc antibodies induced by vaccination (US) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians’ IgG which did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 antibodies from US vaccinees; in contrast, US-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both US- and Mali-AMA1-specific antibodies showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific antibody by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of antibodies induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood-stage malaria vaccine. PMID:19050299

  12. Measurement of ex vivo ELISpot interferon-gamma recall responses to Plasmodium falciparum AMA1 and CSP in Ghanaian adults with natural exposure to malaria.

    PubMed

    Ganeshan, Harini; Kusi, Kwadwo A; Anum, Dorothy; Hollingdale, Michael R; Peters, Bjoern; Kim, Yohan; Tetteh, John K A; Ofori, Michael F; Gyan, Ben A; Koram, Kwadwo A; Huang, Jun; Belmonte, Maria; Banania, Jo Glenna; Dodoo, Daniel; Villasante, Eileen; Sedegah, Martha

    2016-02-01

    Malaria eradication requires a concerted approach involving all available control tools, and an effective vaccine would complement these efforts. An effective malaria vaccine should be able to induce protective immune responses in a genetically diverse population. Identification of immunodominant T cell epitopes will assist in determining if candidate vaccines will be immunogenic in malaria-endemic areas. This study therefore investigated whether class I-restricted T cell epitopes of two leading malaria vaccine antigens, Plasmodium falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1), could recall T cell interferon-γ responses from naturally exposed subjects using ex vivo ELISpot assays. Thirty-five subjects aged between 24 and 43 years were recruited from a malaria-endemic urban community of Ghana in 2011, and their peripheral blood mononuclear cells (PBMCs) were tested in ELISpot IFN-γ assays against overlapping 15mer peptide pools spanning the entire CSP and AMA1 antigens, and 9-10mer peptide epitope mixtures that included previously identified and/or predicted human leukocyte antigen (HLA) class 1-restricted epitopes from same two antigens. For CSP, 26 % of subjects responded to at least one of the nine 15mer peptide pools whilst 17 % responded to at least one of the five 9-10mer HLA-restricted epitope mixtures. For AMA1, 63 % of subjects responded to at least one of the 12 AMA1 15mer peptide pools and 51 % responded to at least one of the six 9-10mer HLA-restricted epitope mixtures. Following analysis of data from the two sets of peptide pools, along with bioinformatics predictions of class I-restricted epitopes and the HLA supertypes expressed by a subset of study subjects, peptide pools that may contain epitopes recognized by multiple HLA supertypes were identified. Collectively, these results suggest that natural transmission elicits ELISpot IFN-γ activities to class 1-restricted epitopes that are largely HLA-promiscuous. These

  13. Molecular Basis of Allele-Specific Efficacy of a Blood-Stage Malaria Vaccine: Vaccine Development Implications

    PubMed Central

    Ouattara, Amed; Takala-Harrison, Shannon; Thera, Mahamadou A.; Coulibaly, Drissa; Niangaly, Amadou; Saye, Renion; Tolo, Youssouf; Dutta, Sheetij; Heppner, D. Gray; Soisson, Lorraine; Diggs, Carter L.; Vekemans, Johan; Cohen, Joe; Blackwelder, William C.; Dube, Tina; Laurens, Matthew B.; Doumbo, Ogobara K.; Plowe, Christopher V.

    2013-01-01

    The disappointing efficacy of blood-stage malaria vaccines may be explained in part by allele-specific immune responses that are directed against polymorphic epitopes on blood-stage antigens. FMP2.1/AS02A, a blood-stage candidate vaccine based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, had allele-specific efficacy against clinical malaria in a phase II trial in Malian children. We assessed the cross-protective efficacy of the malaria vaccine and inferred which polymorphic amino acid positions in AMA1 were the targets of protective allele-specific immune responses. FMP2.1/AS02A had the highest efficacy against AMA1 alleles that were identical to the 3D7 vaccine-type allele at 8 highly polymorphic amino acid positions in the cluster 1 loop (c1L) but differed from 3D7 elsewhere in the molecule. Comparison of the incidence of vaccine-type alleles before and after vaccination in the malaria vaccine and control groups and examination of the patterns of allele change at polymorphic positions in consecutive malaria episodes suggest that the highly polymorphic amino acid position 197 in c1L was the most critical determinant of allele-specific efficacy. These results indicate that a multivalent AMA1 vaccine with broad efficacy could include only a limited set of key alleles of this extremely polymorphic antigen. PMID:23204168

  14. Epitope mapping of PfCP-2.9, an asexual blood-stage vaccine candidate of Plasmodium falciparum.

    PubMed

    Li, Changling; Wang, Rui; Wu, Yuan; Zhang, Dongmei; He, Zhicheng; Pan, Weiqing

    2010-04-12

    Apical membrane antigen 1 (AMA-1) and merozoite surface protein 1 (MSP1) of Plasmodium falciparum are two leading blood-stage malaria vaccine candidates. A P. falciparum chimeric protein 2.9 (PfCP-2.9) has been constructed as a vaccine candidate, by fusing AMA-1 domain III (AMA-1 (III)) with a C-terminal 19 kDa fragment of MSP1 (MSP1-19) via a 28-mer peptide hinge. PfCP-2.9 was highly immunogenic in animal studies, and antibodies elicited by the PfCP-2.9 highly inhibited parasite growth in vitro. This study focused on locating the distribution of epitopes on PfCP-2.9. A panel of anti-PfCP-2.9 monoclonal antibodies (mAbs) were produced and their properties were examined by Western blot as well as in vitro growth inhibition assay (GIA). In addition, a series of PfCP-2.9 mutants containing single amino acid substitution were produced in Pichia pastoris. Interaction of the mAbs with the PfCP-2.9 mutants was measured by both Western blot and enzyme-linked immunosorbent assay (ELISA). Twelve mAbs recognizing PfCP-2.9 chimeric protein were produced. Of them, eight mAbs recognized conformational epitopes and six mAbs showed various levels of inhibitory activities on parasite growth in vitro. In addition, seventeen PfCP-2.9 mutants with single amino acid substitution were produced in Pichia pastoris for interaction with mAbs. Reduced binding of an inhibitory mAb (mAb7G), was observed in three mutants including M62 (Phe491-->Ala), M82 (Glu511-->Gln) and M84 (Arg513-->Lys), suggesting that these amino acid substitutions are critical to the epitope corresponding to mAb7G. The binding of two non-inhibitory mAbs (mAbG11.12 and mAbW9.10) was also reduced in the mutants of either M62 or M82. The substitution of Leu31 to Arg resulted in completely abolishing the binding of mAb1E1 (a blocking antibody) to M176 mutant, suggesting that the Leu residue at this position plays a crucial role in the formation of the epitope. In addition, the Asn15 residue may also play an important role

  15. Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01

    PubMed Central

    Payne, Ruth O.; Milne, Kathryn H.; Elias, Sean C.; Edwards, Nick J.; Douglas, Alexander D.; Brown, Rebecca E.; Silk, Sarah E.; Biswas, Sumi; Miura, Kazutoyo; Roberts, Rachel; Rampling, Thomas W.; Venkatraman, Navin; Hodgson, Susanne H.; Labbé, Geneviève M.; Halstead, Fenella D.; Poulton, Ian D.; Nugent, Fay L.; de Graaf, Hans; Sukhtankar, Priya; Williams, Nicola C.; Ockenhouse, Christian F.; Kathcart, April K.; Qabar, Aziz N.; Waters, Norman C.; Soisson, Lorraine A.; Birkett, Ashley J.; Cooke, Graham S.; Faust, Saul N.; Woods, Colleen; Ivinson, Karen; McCarthy, James S.; Diggs, Carter L.; Vekemans, Johan; Long, Carole A.; Hill, Adrian V. S.; Lawrie, Alison M.; Dutta, Sheetij; Draper, Simon J.

    2016-01-01

    Background. Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. Methods. Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. Results. FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. Conclusions. FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. Clinical Trials Registration. NCT02044198. PMID:26908756

  16. Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01.

    PubMed

    Payne, Ruth O; Milne, Kathryn H; Elias, Sean C; Edwards, Nick J; Douglas, Alexander D; Brown, Rebecca E; Silk, Sarah E; Biswas, Sumi; Miura, Kazutoyo; Roberts, Rachel; Rampling, Thomas W; Venkatraman, Navin; Hodgson, Susanne H; Labbé, Geneviève M; Halstead, Fenella D; Poulton, Ian D; Nugent, Fay L; de Graaf, Hans; Sukhtankar, Priya; Williams, Nicola C; Ockenhouse, Christian F; Kathcart, April K; Qabar, Aziz N; Waters, Norman C; Soisson, Lorraine A; Birkett, Ashley J; Cooke, Graham S; Faust, Saul N; Woods, Colleen; Ivinson, Karen; McCarthy, James S; Diggs, Carter L; Vekemans, Johan; Long, Carole A; Hill, Adrian V S; Lawrie, Alison M; Dutta, Sheetij; Draper, Simon J

    2016-06-01

    Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. NCT02044198. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Controlled Human Malaria Infection (CHMI) differentially affects cell-mediated and antibody responses to CSP and AMA1 induced by adenovirus vaccines with and without DNA-priming.

    PubMed

    Sedegah, Martha; Hollingdale, Michael R; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Huang, Jun; Abot, Esteban; Limbach, Keith; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E; Villasante, Eileen

    2015-01-01

    We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities. Generally, in the DNA/Ad trial, CHMI caused pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the protected subjects to fall but among non-protected subjects, CHMI caused rises of pre-CHMI ELISpot IFN-γ but falls of CD8+ T cell IFN-γ responses. In contrast in the AdCA trial, CHMI caused both pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the AdCA subjects to fall. We suggest that the falls in activities are due to migration of peripheral CD8+ T cells to the liver in response to developing liver stage parasites, and this fall, in the DNA/Ad trial, is masked in ELISpot responses of the non-protected subjects by rises in other immune cell types. In addition, CHMI caused falls in antibody activities of protected subjects, but rises in non-protected subjects in both trials to CSP, and dramatically in the AdCA trial to AMA1, reaching 380 μg/ml that is probably due to boosting by transient blood stage infection before chloroquine treatment. Taken together, these results further define differences in cellular responses between DNA/Ad and AdCA trials, and suggest that natural transmission may boost responses induced by these malaria vaccines especially when protection is not achieved.

  18. A Candidate H1N1 Pandemic Influenza Vaccine Elicits Protective Immunity in Mice

    PubMed Central

    Steitz, Julia; Barlow, Peter G.; Hossain, Jaber; Kim, Eun; Okada, Kaori; Kenniston, Tom; Rea, Sheri; Donis, Ruben O.; Gambotto, Andrea

    2010-01-01

    Background In 2009 a new pandemic disease appeared and spread globally. The recent emergence of the pandemic influenza virus H1N1 first isolated in Mexico and USA raised concerns about vaccine availability. We here report our development of an adenovirus-based influenza H1N1 vaccine tested for immunogenicity and efficacy to confer protection in animal model. Methods We generated two adenovirus(Ad5)-based influenza vaccine candidates encoding the wildtype or a codon-optimized hemagglutinin antigen (HA) from the recently emerged swine influenza isolate A/California/04/2009 (H1N1)pdm. After verification of antigen expression, immunogenicity of the vaccine candidates were tested in a mouse model using dose escalations for subcutaneous immunization. Sera of immunized animals were tested in microneutalization and hemagglutination inhibition assays for the presence of HA-specific antibodies. HA-specific T-cells were measured in IFNγ Elispot assays. The efficiency of the influenza vaccine candidates were evaluated in a challenge model by measuring viral titer in lung and nasal turbinate 3 days after inoculation of a homologous H1N1 virus. Conclusions/Significance A single immunization resulted in robust cellular and humoral immune response. Remarkably, the intensity of the immune response was substantially enhanced with codon-optimized antigen, indicating the benefit of manipulating the genetic code of HA antigens in the context of recombinant influenza vaccine design. These results highlight the value of advanced technologies in vaccine development and deployment in response to infections with pandemic potential. Our study emphasizes the potential of an adenoviral-based influenza vaccine platform with the benefits of speed of manufacture and efficacy of a single dose immunization. PMID:20463955

  19. Recombinant BCG vaccine candidates.

    PubMed

    Hernàndez-Pando, Rogelio; Castañòn, Mauricio; Espitia, Clara; Lopez-Vidal, Yolanda

    2007-06-01

    Given the variable protective efficacy provided by Mycobacterium bovis BCG (Bacillus Calmette-Guérin), there is a concerted effort worldwide to develop better vaccines that could be used to reduce the burden of tuberculosis. Recombinant BCG (rBCG) are vaccine candidates that offer some potential in this area. In this paper, we will discuss the molecular methods used to generate rBCG, and the results obtained with some of these new vaccines as compared with the conventional BCG vaccine in diverse animal models. Tuberculosis vaccine candidates based on rBCG are promising candidates, and some of them are now being tested in clinical trials.

  20. Prediction of merozoite surface protein 1 and apical membrane antigen 1 vaccine efficacies against Plasmodium chabaudi malaria based on prechallenge antibody responses.

    PubMed

    Lynch, Michelle M; Cernetich-Ott, Amy; Weidanz, William P; Burns, James M

    2009-03-01

    For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 1(42) (MSP1(42)) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP1(42) (PcMSP1(42)) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP1(42) vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP1(42) vaccines.

  1. Sequence Analysis of Different Domains of Plasmodium vivax Apical Membrane Antigen (PvAMA-1 gene) Locus in Iran.

    PubMed

    Motevalli Haghi, A; Nateghpour, M; Edrissian, Ghh; Sepehrizadeh, Z; Mohebali, M; Khoramizade, Mr; Shahrbabak, S Sabouri; Moghimi, H

    2012-01-01

    Plasmodium vivax is responsible for approximately 80 million malaria cases in the world. Apical membrane antigen1 (AMA-1) is a type I integral membrane protein present in all Plasmodium species. AMA-1 interferes in critical steps of invasion of human hepatocytes by sporozoites and red blood cells by merozoites and is one of the most immunodominant antigens for eliciting a protective immune response in human. It is considered as a promising antigen for inclusion in a vaccine against P. vivax. Since more knowledge is needed to lighten the scope of such antigen we compared genetic variation in P. vivax AMA-1from an Iranian isolate with those reported from some of the other malarious countries so far. P. vivax genomic DNA was extracted from the whole blood of an Iranian patient with patent P. vivax infection. The nucleotide sequence for 446 amino acid (AA) residues (42-488 of PvAMA-1) was amplified by PCR and cloned in pUC19 vector for sequencing. Sequence analysis of the antigen showed a high degree of identity (99%) with strong homology to the PvAMA-1 gene of P. vivax S3 and SKO814 isolates from India and Korea (Asian isolates) respectively, and 96% similarity with P. vivax Sal-1 AMA-1 gene from El Salvador. We cloned and characterized three domains of PvAMA-1 gene from an Iranian patient. Predicted protein sequence of this gene showed some discrepancies in corresponding protein in comparing with similar genes reported from other malarious countries.

  2. The influence of intestinal parasites on Plasmodium vivax-specific antibody responses to MSP-119 and AMA-1 in rural populations of the Brazilian Amazon.

    PubMed

    Sánchez-Arcila, Juan Camilo; de França, Marcelle Marcolino; Pereira, Virginia Araujo; Vasconcelos, Mariana Pinheiro Alves; Têva, Antonio; Perce-da-Silva, Daiana de Souza; Neto, Joffre Rezende; Aprígio, Cesarino Junior Lima; Lima-Junior, Josue da Costa; Rodrigues, Mauricio Martins; Soares, Irene Silva; Banic, Dalma Maria; Oliveira-Ferreira, Joseli

    2015-11-06

    Polyparasitism is a common condition in humans but its impact on the host immune system and clinical diseases is still poorly understood. There are few studies of the prevalence and the effect of malaria-intestinal parasite co-infections in the immune response to malaria vaccine candidates. The present study determines whether the presence of malaria and intestinal parasites co-infection is associated with impaired IgG responses to Plasmodium vivax AMA-1 and MSP-119 in a rural population of the Brazilian Amazon. A cross-sectional survey was performed in a rural area of Rondonia State and 279 individuals were included in the present study. At recruitment, whole blood was collected and Plasmodium and intestinal parasites were detected by microscopy and molecular tests. Blood cell count and haemoglobin were also tested and antibody response specific to P. vivax AMA-1 and MSP-119 was measured in plasma by ELISA. The participants were grouped according to their infection status: singly infected with Plasmodium (M); co-infected with Plasmodium and intestinal parasites (CI); singly infected with intestinal parasites (IP) and negative (N) for both malaria and intestinal parasites. The prevalence of intestinal parasites was significantly higher in individuals with malaria and protozoan infections were more prevalent. IgG antibodies to PvAMA-1 and/or PvMSP-119 were detected in 74 % of the population. The prevalence of specific IgG was similar for both proteins in all four groups and among the groups the lowest prevalence was in IP group. The cytophilic sub-classes IgG1 and IgG3 were predominant in all groups for PvAMA-1 and IgG1, IgG3 and IgG4 for PvMSP-119. In the case of non-cytophilic antibodies to PvAMA-1, IgG2 was significantly higher in IP and N group when compared to M and CI while IgG4 was higher in IP group. The presence of intestinal parasites, mainly protozoans, in malaria co-infected individuals does not seem to alter the antibody immune responses to P. vivax AMA

  3. Sterile Immunity to Malaria after DNA Prime/Adenovirus Boost Immunization Is Associated with Effector Memory CD8+T Cells Targeting AMA1 Class I Epitopes

    PubMed Central

    Sedegah, Martha; Hollingdale, Michael R.; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Kim, Yohan; Peters, Bjoern; Sette, Alessandro; Huang, Jun; McGrath, Shannon; Abot, Esteban; Limbach, Keith; Shi, Meng; Soisson, Lorraine; Diggs, Carter; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E.; Villasante, Eileen; Richie, Thomas L.

    2014-01-01

    Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches

  4. Prediction of Merozoite Surface Protein 1 and Apical Membrane Antigen 1 Vaccine Efficacies against Plasmodium chabaudi Malaria Based on Prechallenge Antibody Responses▿

    PubMed Central

    Lynch, Michelle M.; Cernetich-Ott, Amy; Weidanz, William P.; Burns, James M.

    2009-01-01

    For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 142 (MSP142) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP142 (PcMSP142) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP142 vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP142 vaccines. PMID:19116303

  5. Preclinical profiling of the immunogenicity of a two-component subunit malaria vaccine candidate based on virosome technology.

    PubMed

    Okitsu, Shinji L; Mueller, Markus S; Amacker, Mario; Vogel, Denise; Westerfeld, Nicole; Robinson, John A; Zurbriggen, Rinaldo; Pluschke, Gerd

    2008-01-01

    Presentation of synthetic peptides on immunopotentiating reconstituted influenza virosomes is a promising technology for subunit vaccine development. An optimized virosomally delivered peptide representing 5 NPNA repeats of P. falciparum circumsporozoite protein is highly immunogenic in mice. Antibodies against this peptide (UK-39) inhibit sporozoite invasion of human hepatocytes. A second peptide (AMA49-C1) based on domain III of apical membrane antigen 1, induces antibodies that inhibit blood-stage parasite growth in vitro. Here we show a detailed pre-clinical profiling of these virosomally formulated peptides alone and in combination in mice and rabbits. Two immunizations with virosomally formulated UK-39 or AMA49-C1 were enough to elicit high titers of parasite cross-reactive antibodies in both species. A low dose of 10 microg UK-39 was enough to induce maximal titers in rabbits. Higher doses of peptide did not increase antibody titers. In contrast, AMA49-C1 induced higher antibody titers with 25 and 50 microg peptide. Combination of UK-39 and AMA49- C1 on separate virosomes did not have any negative effect on anti-peptide antibody titers in mice or rabbits. No MHC restriction was observed in the development of humoral responses in outbred rabbits with different immunogenetic backgrounds. All vaccine formulations were safe in toxicity studies in rabbits and rats. Taken together, low amounts of synthetic peptides delivered on virosomes induced high antibody titers in mice and rabbits. Moreover, different peptides could be combined without interfering with individual anti-peptide responses, augmenting the value of this system for the development of a multivalent malaria vaccine.

  6. Computational and biophysical approaches to protein-protein interaction inhibition of Plasmodium falciparum AMA1/RON2 complex

    NASA Astrophysics Data System (ADS)

    Pihan, Emilie; Delgadillo, Roberto F.; Tonkin, Michelle L.; Pugnière, Martine; Lebrun, Maryse; Boulanger, Martin J.; Douguet, Dominique

    2015-06-01

    Invasion of the red blood cell by Plasmodium falciparum parasites requires formation of an electron dense circumferential ring called the Moving Junction (MJ). The MJ is anchored by a high affinity complex of two parasite proteins: Apical Membrane Antigen 1 ( PfAMA1) displayed on the surface of the parasite and Rhoptry Neck Protein 2 that is discharged from the parasite and imbedded in the membrane of the host cell. Structural studies of PfAMA1 revealed a conserved hydrophobic groove localized to the apical surface that coordinates RON2 and invasion inhibitory peptides. In the present work, we employed computational and biophysical methods to identify competitive P. falciparum AMA1-RON2 inhibitors with the goal of exploring the `druggability' of this attractive antimalarial target. A virtual screen followed by molecular docking with the PfAMA1 crystal structure was performed using an eight million compound collection that included commercial molecules, the ChEMBL malaria library and approved drugs. The consensus approach resulted in the selection of inhibitor candidates. We also developed a fluorescence anisotropy assay using a modified inhibitory peptide to experimentally validate the ability of the selected compounds to inhibit the AMA1-RON2 interaction. Among those, we identified one compound that displayed significant inhibition. This study offers interesting clues to improve the throughput and reliability of screening for new drug leads.

  7. Leishmaniasis: vaccine candidates and perspectives.

    PubMed

    Singh, Bhawana; Sundar, Shyam

    2012-06-06

    Leishmania is a protozoan parasite and a causative agent of the various clinical forms of leishmaniasis. High cost, resistance and toxic side effects of traditional drugs entail identification and development of therapeutic alternatives. The sound understanding of parasite biology is key for identifying novel drug targets, that can induce the cell mediated immunity (mainly CD4+ and CD8+ IFN-gamma mediated responses) polarized towards a Th1 response. These aspects are important in designing a new vaccine along with the consideration of the candidates with respect to their ability to raise memory response in order to improve the vaccine performance. This review is an effort to identify molecules according to their homology with the host and their ability to be used as potent vaccine candidates. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Not a Simple Tether: Binding of Toxoplasma gondii AMA1 to RON2 during Invasion Protects AMA1 from Rhomboid-Mediated Cleavage and Leads to Dephosphorylation of Its Cytosolic Tail

    PubMed Central

    Krishnamurthy, Shruthi; Deng, Bin; del Rio, Roxana; Buchholz, Kerry R.; Treeck, Moritz; Urban, Siniša; Boothroyd, John; Lam, Ying-Wai

    2016-01-01

    ABSTRACT Apical membrane antigen 1 (AMA1) is a receptor protein on the surface of Toxoplasma gondii that plays a critical role in host cell invasion. The ligand to which T. gondii AMA1 (TgAMA1) binds, TgRON2, is secreted into the host cell membrane by the parasite during the early stages of invasion. The TgAMA1-TgRON2 complex forms the core of the “moving junction,” a ring-shaped zone of tight contact between the parasite and host cell membranes, through which the parasite pushes itself during invasion. Paradoxically, the parasite also expresses rhomboid proteases that constitutively cleave the TgAMA1 transmembrane domain. How can TgAMA1 function effectively in host cell binding if its extracellular domain is constantly shed from the parasite surface? We show here that when TgAMA1 binds the domain 3 (D3) peptide of TgRON2, its susceptibility to cleavage by rhomboid protease(s) is greatly reduced. This likely serves to maintain parasite-host cell binding at the moving junction, a hypothesis supported by data showing that parasites expressing a hypercleavable version of TgAMA1 invade less efficiently than wild-type parasites do. Treatment of parasites with the D3 peptide was also found to reduce phosphorylation of S527 on the cytoplasmic tail of TgAMA1, and parasites expressing a phosphomimetic S527D allele of TgAMA1 showed an invasion defect. Taken together, these data suggest that TgAMA1-TgRON2 interaction at the moving junction protects TgAMA1 molecules that are actively engaged in host cell penetration from rhomboid-mediated cleavage and generates an outside-in signal that leads to dephosphorylation of the TgAMA1 cytosolic tail. Both of these effects are required for maximally efficient host cell invasion. PMID:27624124

  9. Immunization with apical membrane antigen 1 confers sterile infection-blocking immunity against Plasmodium sporozoite challenge in a rodent model.

    PubMed

    Schussek, Sophie; Trieu, Angela; Apte, Simon H; Sidney, John; Sette, Alessandro; Doolan, Denise L

    2013-10-01

    Apical membrane antigen 1 (AMA-1) is a leading blood-stage malaria vaccine candidate. Consistent with a key role in erythrocytic invasion, AMA-1-specific antibodies have been implicated in AMA-1-induced protective immunity. AMA-1 is also expressed in sporozoites and in mature liver schizonts where it may be a target of protective cell-mediated immunity. Here, we demonstrate for the first time that immunization with AMA-1 can induce sterile infection-blocking immunity against Plasmodium sporozoite challenge in 80% of immunized mice. Significantly higher levels of gamma interferon (IFN-γ)/interleukin-2 (IL-2)/tumor necrosis factor (TNF) multifunctional T cells were noted in immunized mice than in control mice. We also report the first identification of minimal CD8(+) and CD4(+) T cell epitopes on Plasmodium yoelii AMA-1. These data establish AMA-1 as a target of both preerythrocytic- and erythrocytic-stage protective immune responses and validate vaccine approaches designed to induce both cellular and humoral immunity.

  10. Production of EV71 vaccine candidates

    PubMed Central

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-01-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211–225 of VP1 formulated with Freund’s adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the

  11. Production of EV71 vaccine candidates.

    PubMed

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-12-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211-225 of VP1 formulated with Freund's adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the most

  12. Marker vaccine strategies and candidate CSFV marker vaccines.

    PubMed

    Dong, Xiao-Nan; Chen, Ying-Hua

    2007-01-04

    Classical swine fever (CSF) is an economically important highly contagious disease of swine worldwide. Classical swine fever virus (CSFV) is its etiological agent, and the only natural hosts are domestic pigs and wild boars. Although field CSFV strains vary in the virulence, they all result in serious losses in pig industry. Highly virulent field strains generally cause acute disease and high mortality; moderately virulent field strains raise subacute or chronic infections; postnatal infection by low virulent field strains produces subclinical infection and mortality in the new-born piglets. CSFV can cross the placental barrier, and this transplacental transmission usually results in mortality of fetuses and birth of congenitally infected pigs with a late-onset disease and death. Two main strategies to control CSF epidemic are systematic prophylactic vaccination with live attenuated vaccines (such as C-strain) and non-vaccination stamping-out policy. But neither of them is satisfying enough. Marker vaccine and companion serological diagnostic test is thought to be a promising strategy for future control and eradication of CSF. During the past 15 years, various candidate marker vaccines were constructed and evaluated in the animal experiments, including recombinant chimeric vaccines, recombinant deletion vaccines, DNA vaccines, subunit vaccines and peptide vaccines. Among them, two subunit vaccines entered the large scale marker vaccine trial of EU in 1999. Although they failed to fulfil all the demands of the Scientific Veterinary Committee, they successfully induced solid immunity against CSFV in the vaccinated pigs. It can be expected that new potent marker vaccines might be commercially available and used in systematic prophylactic vaccination campaign or emergency vaccination in the next 15 years. Here, we summarized current strategies and candidate CSFV marker vaccines. These strategies and methods are also helpful for the development of new

  13. Extended Safety, Immunogenicity and Efficacy of a Blood-Stage Malaria Vaccine in Malian Children: 24-Month Follow-Up of a Randomized, Double-Blinded Phase 2 Trial

    PubMed Central

    Laurens, Matthew B.; Thera, Mahamadou A.; Coulibaly, Drissa; Ouattara, Amed; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Traore, Idrissa; Kouriba, Bourema; Diallo, Dapa A.; Diarra, Issa; Daou, Modibo; Dolo, Amagana; Tolo, Youssouf; Sissoko, Mahamadou S.; Niangaly, Amadou; Sissoko, Mady; Takala-Harrison, Shannon; Lyke, Kirsten E.; Wu, Yukun; Blackwelder, William C.; Godeaux, Olivier; Vekemans, Johan; Dubois, Marie-Claude; Ballou, W. Ripley; Cohen, Joe; Dube, Tina; Soisson, Lorraine; Diggs, Carter L.; House, Brent; Bennett, Jason W.; Lanar, David E.; Dutta, Sheetij; Heppner, D. Gray; Plowe, Christopher V.; Doumbo, Ogobara K.

    2013-01-01

    Background The FMP2.1/AS02A candidate malaria vaccine was tested in a Phase 2 study in Mali. Based on results from the first eight months of follow-up, the vaccine appeared well-tolerated and immunogenic. It had no significant efficacy based on the primary endpoint, clinical malaria, but marginal efficacy against clinical malaria in secondary analyses, and high allele-specific efficacy. Extended follow-up was conducted to evaluate extended safety, immunogenicity and efficacy. Methods A randomized, double-blinded trial of safety, immunogenicity and efficacy of the candidate Plasmodium falciparum apical membrane antigen 1 (AMA1) vaccine FMP2.1/AS02A was conducted in Bandiagara, Mali. Children aged 1–6 years were randomized in a 11 ratio to receive FMP2.1/AS02A or control rabies vaccine on days 0, 30 and 60. Using active and passive surveillance, clinical malaria and adverse events as well as antibodies against P. falciparum AMA1 were monitored for 24 months after the first vaccination, spanning two malaria seasons. Findings 400 children were enrolled. Serious adverse events occurred in nine participants in the FMP2.1/AS02A group and three in the control group; none was considered related to study vaccination. After two years, anti-AMA1 immune responses remained significantly higher in the FMP2.1/AS02A group than in the control group. For the entire 24-month follow-up period, vaccine efficacy was 7.6% (p = 0.51) against first clinical malaria episodes and 9.9% (p = 0.19) against all malaria episodes. For the final 16-month follow-up period, vaccine efficacy was 0.9% (p = 0.98) against all malaria episodes. Allele-specific efficacy seen in the first malaria season did not extend into the second season of follow-up. Interpretation Allele-specific vaccine efficacy was not sustained in the second malaria season, despite continued high levels of anti-AMA1 antibodies. This study presents an opportunity to evaluate correlates of partial protection against

  14. Vaccine candidates for malaria: what's new?

    PubMed

    Takashima, Eizo; Morita, Masayuki; Tsuboi, Takafumi

    2016-01-01

    Although it is more than a decade since the parasite genome information was obtained, standardized novel genome-wide selection/prioritization strategies for candidacy of malaria vaccine antigens are still sought. In the quest to systematically identify candidates, it is impossible to overemphasize the usefulness of wheat germ cell-free technology in expressing quality proteins for the post-genome vaccine candidate discovery.

  15. Vaccine candidates for leishmaniasis: a review.

    PubMed

    Nagill, Rajeev; Kaur, Sukhbir

    2011-10-01

    Leishmaniasis is a diverse group of clinical syndromes caused by protozoan parasites of the genus Leishmania. The clinical manifestation of the disease varies from self-limiting cutaneous lesions to progressive visceral disease. It is estimated that 350 million people are at risk in 88 countries, with a global incidence of 1-1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. The key control measures mainly rely on early case detection and chemotherapy which has been hampered by the toxicity of drugs, side-effects and by the emergence of drug resistance in parasites. Control of reservoir host and vector is difficult due to operational difficulties and frequent relapses in the host. Therefore, the development of effective and affordable vaccine against leishmaniasis is highly desirable. Although considerable progress has been made over the last decade in understanding immune mechanisms underlying potential candidate antigens, including killed, live attenuated parasites, crude parasites, pure or recombinant Leishmania proteins or DNA encoding leishmanial proteins, as well as immunomodulators from sand fly saliva, very few candidate vaccines have progressed beyond the experimental stage. As such there is no vaccine against any form of human leishmaniasis. In recent years, however, much interest has been stimulated towards vaccination against leishmaniasis focused mainly on cutaneous leishmaniasis with fewer attempts against visceral leishmaniasis. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.

    PubMed

    Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B

    2014-12-01

    Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.

  17. Ebola vaccines in clinical trial: The promising candidates

    PubMed Central

    Wang, Yuxiao; Li, Jingxin; Hu, Yuemei; Liang, Qi; Wei, Mingwei; Zhu, Fengcai

    2017-01-01

    ABSTRACT Ebola virus disease (EVD) has become a great threat to humans across the world in recent years. The 2014 Ebola epidemic in West Africa caused numerous deaths and attracted worldwide attentions. Since no specific drugs and treatments against EVD was available, vaccination was considered as the most promising and effective method of controlling this epidemic. So far, 7 vaccine candidates had been developed and evaluated through clinical trials. Among them, the recombinant vesicular stomatitis virus-based vaccine (rVSV-EBOV) is the most promising candidate, which demonstrated a significant protection against EVD in phase III clinical trial. However, several concerns were still associated with the Ebola vaccine candidates, including the safety profile in some particular populations, the immunization schedule for emergency vaccination, and the persistence of the protection. We retrospectively reviewed the current development of Ebola vaccines and discussed issues and challenges remaining to be investigated in the future. PMID:27764560

  18. Amae as metalanguage: a critique of Doi's theory of amae.

    PubMed

    Taketomo, Y

    1986-10-01

    For many years Doi's ideas on the links between amae and the satisfaction of dependency needs have influenced discussions of the so-called Japanese character. In reviewing Doi's theory, however, major problems emerge. Beginning with the very definition of amae, one finds that Doi has chosen to stress only one aspect of amae. When one returns to his lexical sources, one discovers that the common denominator in the various definitions of amae does not lie in a single, monolithic motivation, as Doi proposes. Instead, it is suggested, amae should be viewed as a metalanguage. To understand the metacommunicational significance of amae, one must consider the rules that govern the behavior of the interactants in amae. Three different situations of amae are delineated. In the childhood interaction, the child playfully mimicks the infant's attachment behavior. With the adult coquetry situation, one observes the female playfully behaving as if she were the child mimicking the infant-mother prototype. Finally, in the third context subset of amae, there is a "trespassing on" or "taking advantage of" another person, with the beneficent approval of the second interactant. The common factor thus appears to be a mutually agreed-upon suspension of certain ordinary restraints on behavior. A metalanguage theory of amae, as an alternative to Doi's proposal, places emphasis on the culture-specific message of the interaction itself rather than on a single, monolithic motivation or an object-language interpretation. Indeed, various motivations are suggested, depending on the specific context of amae as well as the individual case. In this way, it is hoped, a metacommunicational approach to the understanding of amae may broaden the consideration of motivational issues, extending far beyond Doi's insistence on dependency and the search for passive love.

  19. A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP142 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge.

    PubMed

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-04-01

    Malaria is caused by parasites of the genus Plasmodium , which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum , it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP1 42 ) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP1 42 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP1 42 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development. Copyright © 2017 American Society for Microbiology.

  20. Population genetic structure and natural selection of Plasmodium falciparum apical membrane antigen-1 in Myanmar isolates.

    PubMed

    Kang, Jung-Mi; Lee, Jinyoung; Moe, Mya; Jun, Hojong; Lê, Hương Giang; Kim, Tae Im; Thái, Thị Lam; Sohn, Woon-Mok; Myint, Moe Kyaw; Lin, Khin; Shin, Ho-Joon; Kim, Tong-Soo; Na, Byoung-Kuk

    2018-02-07

    Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is one of leading blood stage malaria vaccine candidates. However, genetic variation and antigenic diversity identified in global PfAMA-1 are major hurdles in the development of an effective vaccine based on this antigen. In this study, genetic structure and the effect of natural selection of PfAMA-1 among Myanmar P. falciparum isolates were analysed. Blood samples were collected from 58 Myanmar patients with falciparum malaria. Full-length PfAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. PfAMA-1 sequence of each isolate was sequenced. Polymorphic characteristics and effect of natural selection were analysed with using DNASTAR, MEGA4, and DnaSP programs. Polymorphic nature and natural selection in 459 global PfAMA-1 were also analysed. Thirty-seven different haplotypes of PfAMA-1 were identified in 58 Myanmar P. falciparum isolates. Most amino acid changes identified in Myanmar PfAMA-1 were found in domains I and III. Overall patterns of amino acid changes in Myanmar PfAMA-1 were similar to those in global PfAMA-1. However, frequencies of amino acid changes differed by country. Novel amino acid changes in Myanmar PfAMA-1 were also identified. Evidences for natural selection and recombination event were observed in global PfAMA-1. Among 51 commonly identified amino acid changes in global PfAMA-1 sequences, 43 were found in predicted RBC-binding sites, B-cell epitopes, or IUR regions. Myanmar PfAMA-1 showed similar patterns of nucleotide diversity and amino acid polymorphisms compared to those of global PfAMA-1. Balancing natural selection and intragenic recombination across PfAMA-1 are likely to play major roles in generating genetic diversity in global PfAMA-1. Most common amino acid changes in global PfAMA-1 were located in predicted B-cell epitopes where high levels of nucleotide diversity and balancing natural selection were found. These results highlight the

  1. Study of rubella candidate vaccine based on a structurally modified plant virus.

    PubMed

    Trifonova, Ekaterina A; Zenin, Vladimir A; Nikitin, Nikolai A; Yurkova, Maria S; Ryabchevskaya, Ekaterina M; Putlyaev, Egor V; Donchenko, Ekaterina K; Kondakova, Olga A; Fedorov, Alexey N; Atabekov, Joseph G; Karpova, Olga V

    2017-08-01

    A novel rubella candidate vaccine based on a structurally modified plant virus - spherical particles (SPs) - was developed. SPs generated by the thermal remodelling of the tobacco mosaic virus are promising platforms for the development of vaccines. SPs combine unique properties: biosafety, stability, high immunogenicity and the effective adsorption of antigens. We assembled in vitro and characterised complexes (candidate vaccine) based on SPs and the rubella virus recombinant antigen. The candidate vaccine induced a strong humoral immune response against rubella. The IgG isotypes ratio indicated the predominance of IgG1 which plays a key role in immunity to natural rubella infection. The immune response was generally directed against the rubella antigen within the complexes. We suggest that SPs can act as a platform (depot) for the rubella antigen, enhancing specific immune response. Our results demonstrate that SPs-antigen complexes can be an effective and safe candidate vaccine against rubella. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Blood-stage malaria vaccines: post-genome strategies for the identification of novel vaccine candidates.

    PubMed

    Ntege, Edward H; Takashima, Eizo; Morita, Masayuki; Nagaoka, Hikaru; Ishino, Tomoko; Tsuboi, Takafumi

    2017-08-01

    An efficacious malaria vaccine is necessary to advance the current control measures towards malaria elimination. To-date, only RTS,S/AS01, a leading pre-erythrocytic stage vaccine completed phase 3 trials, but with an efficacy of 28-36% in children, and 18-26% in infants, that waned over time. Blood-stage malaria vaccines protect against disease, and are considered effective targets for the logical design of next generation vaccines to improve the RTS,S field efficacy. Therefore, novel blood-stage vaccine candidate discovery efforts are critical, albeit with several challenges including, high polymorphisms in vaccine antigens, poor understanding of targets of naturally protective immunity, and difficulties in the expression of high AT-rich plasmodial proteins. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects of malaria vaccine research and development. We focused on post-genome vaccine candidate discovery, malaria vaccine development, sequence diversity, pre-clinical and clinical trials. Expert commentary: Post-genome high-throughput technologies using wheat germ cell-free protein synthesis technology and immuno-profiling with sera from malaria patients with clearly defined outcomes are highlighted to overcome current challenges of malaria vaccine candidate discovery.

  3. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    PubMed Central

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  4. Vaccine candidate discovery for the next generation of malaria vaccines.

    PubMed

    Tuju, James; Kamuyu, Gathoni; Murungi, Linda M; Osier, Faith H A

    2017-10-01

    Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  5. Vaccines for leishmaniasis: from proteome to vaccine candidates.

    PubMed

    Schroeder, Juliane; Aebischer, Toni

    2011-01-01

    Leishmania spp. cause a wide spectrum of tropical diseases which are threatening an estimated 350 million people around the globe. While in most cases non-fatal, the disease is associated with high morbidity, social stigmata and poverty. However, the most severe form visceral leishmaniasis can be fatal if left untreated. Chemotherapeutics are available but show high toxicity, costs and are prone to resistance development due to prolonged treatment periods. Healing is associated with a life-long resistance to re-infection and this argues for the feasibility of vaccination. However, despite much effort, no such vaccine has become available yet. Here, the status of vaccine development in this field is briefly summarized before the focus is set on the promise of reverse vaccinology for anti-Leishmania vaccine development in the post-genomic era. We report on our own experience with this approach using an instructive example of successful candidate vaccine antigen identification.

  6. A Caenorhabditis elegans RNA polymerase II gene, ama-1 IV, and nearby essential genes.

    PubMed

    Rogalski, T M; Riddle, D L

    1988-01-01

    The amanitin-binding subunit of RNA polymerase II in Caenorhabditis elegans is encoded by the ama-1 gene, located approximately 0.05 map unit to the right of dpy-13 IV. Using the amanitin-resistant ama-1(m118) strain as a parent, we have isolated amanitin-sensitive mutants that carry recessive-lethal ama-1 alleles. Of the six ethyl methanesulfonate-induced mutants examined, two are arrested late in embryogenesis. One of these is a large deficiency, mDf9, but the second may be a novel point mutation. The four other mutants are hypomorphs, and presumably produce altered RNA polymerase II enzymes with some residual function. Two of these mutants develop into sterile adults at 20 degrees but are arrested as larvae at 25 degrees, and two others are fertile at 20 degrees and sterile at 25 degrees. Temperature-shift experiments performed with the adult sterile mutant, ama-1(m118m238ts), have revealed a temperature-sensitive period that begins late in gonadogenesis and is centered around the initiation of egg-laying. Postembryonic development at 25 degrees is slowed by 30%. By contrast, the amanitin-resistant allele of ama-1 has very little effect on developmental rate or fertility. We have identified 15 essential genes in an interval of 4.5 map units surrounding ama-1, as well as four gamma-ray-induced deficiencies and two duplications that include the ama-1 gene. The larger duplication, mDp1, may include the entire left arm of chromosome IV, and it recombines with the normal homologue at a low frequency. The smallest deficiency, mDf10, complements all but three identified genes: let-278, dpy-13 and ama-1, which define an interval of only 0.1 map unit. The terminal phenotype of mDf10 homozygotes is developmental arrest during the first larval stage, suggesting that there is sufficient maternal RNA polymerase II to complete embryonic development.

  7. Advanced Vaccine Candidates for Lassa Fever

    PubMed Central

    Lukashevich, Igor S.

    2012-01-01

    Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered. PMID:23202493

  8. Advanced vaccine candidates for Lassa fever.

    PubMed

    Lukashevich, Igor S

    2012-10-29

    Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.

  9. Serologic response to hepatitis B vaccination among lung transplantation candidates.

    PubMed

    Galar, Alicia; Engelson, Brian A; Kubiak, David W; Licona, Jose H; Boukedes, Steve; Goldberg, Hilary J; Baden, Lindsey R; Marty, Francisco M; Issa, Nicolas C

    2014-09-27

    Optimal hepatitis B (HBV) vaccination strategies for lung transplantation (LT) candidates are not well established. LT candidates with negative anti-HBs and anti-HBc antibody titers at baseline who received standard-dose HBV vaccination (Recombivax-HB 10 mcg/mL or Engerix-B 20 mcg/mL) administered at months 0, 1, and 6 or an accelerated vaccination schedule on days 0, 7 to 14, and 21 to 28 between June 1988 and October 2012 were studied. Patients who were more likely to undergo LT within 6 months of evaluation received the accelerated vaccination schedule starting in August 2009. Ninety-six HBV-seronegative patients who completed the vaccination series and had postvaccination anti-HBs titers available were identified. Median age was 60 years; 55.2% were female, and 92.7% were white. Underlying lung diseases included COPD (44.8%), idiopathic pulmonary fibrosis (22.9%), interstitial lung disease (15.6%), and cystic fibrosis (8.3%). The overall anti-HBs response rate was 54.2%. There was no significant difference in vaccine responses between accelerated and standard vaccination schedules (54.2% vs. 54.1%; P=1.0). Patients who received steroids or other immunosuppressants before transplantation had lower response rates compared with those who did not (38.9% vs. 63.3%; P=0.03). Better vaccination strategies to improve response rate are needed in this population. The accelerated HBV vaccination schedule elicited similar anti-HBs responses as the standard schedule and could be advantageous in this population, given current organ allocation practices, and it could allow repeat vaccination series for initial nonresponders before transplantation.

  10. Comparative Infectivity Determinations of Dengue Virus Vaccine Candidates in Rhesus Monkeys, Mosquitoes, and Cell Cultures

    DTIC Science & Technology

    1993-01-28

    34 are required for the evaluation of these vaccine candidates. RE: DAMDI7-89-C-9175 Page 16 REFERENCES 1. Sabin AB, Sclesinger RW, 1945. Production of...AD-A261 892 CONTRACT NO: DAMD17-89-C-9 175 \\II\\IllI\\I\\I1\\\\~il\\ TITLE: COMPARATIVE INFECTIVITY DETERMINATIONS OF DENGUE VIRUS VACCINE CANDIDATES IN... Vaccine Candidates in Rhesus Monkeys, 63002A Mosquitoes, and Cell Cultures 3M263002D870 AC 6. AUTHOR(S) DA335475 Edmundo Kraiselburd 7. PERFORMING

  11. A Field Trial to Assess a Blood-Stage Malaria Vaccine

    PubMed Central

    Thera, Mahamadou A.; Doumbo, Ogobara K.; Coulibaly, Drissa; Laurens, Matthew B.; Ouattara, Amed; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Traore, Idrissa; Kouriba, Bourema; Diallo, Dapa A.; Diarra, Issa; Daou, Modibo; Dolo, Amagana; Tolo, Youssouf; Sissoko, Mahamadou S.; Niangaly, Amadou; Sissoko, Mady; Takala-Harrison, Shannon; Lyke, Kirsten E.; Wu, Yukun; Blackwelder, William C.; Godeaux, Olivier; Vekemans, Johan; Dubois, Marie-Claude; Ballou, W. Ripley; Cohen, Joe; Thompson, Darby; Dube, Tina; Soisson, Lorraine; Diggs, Carter L.; House, Brent; Lanar, David E.; Dutta, Sheetij; Heppner, D. Gray; Plowe, Christopher V.

    2011-01-01

    BACKGROUND Blood-stage malaria vaccines are intended to prevent clinical disease. The malaria vaccine FMP2.1/AS02A, a recombinant protein based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, has previously been shown to have immunogenicity and acceptable safety in Malian adults and children. METHODS In a double-blind, randomized trial, we immunized 400 Malian children with either the malaria vaccine or a control (rabies) vaccine and followed them for 6 months. The primary end point was clinical malaria, defined as fever and at least 2500 parasites per cubic millimeter of blood. A secondary end point was clinical malaria caused by parasites with the AMA1 DNA sequence found in the vaccine strain. RESULTS The cumulative incidence of the primary end point was 48.4% in the malaria-vaccine group and 54.4% in the control group; efficacy against the primary end point was 17.4% (hazard ratio for the primary end point, 0.83; 95% confidence interval [CI], 0.63 to 1.09; P = 0.18). Efficacy against the first and subsequent episodes of clinical malaria, as defined on the basis of various parasite-density thresholds, was approximately 20%. Efficacy against clinical malaria caused by parasites with AMA1 corresponding to that of the vaccine strain was 64.3% (hazard ratio, 0.36; 95% CI, 0.08 to 0.86; P = 0.03). Local reactions and fever after vaccination were more frequent with the malaria vaccine. CONCLUSIONS On the basis of the primary end point, the malaria vaccine did not provide significant protection against clinical malaria, but on the basis of secondary results, it may have strain-specific efficacy. If this finding is confirmed, AMA1 might be useful in a multicomponent malaria vaccine. PMID:21916638

  12. Antibodies to Polymorphic Invasion-Inhibitory and Non-Inhibitory Epitopes of Plasmodium falciparum Apical Membrane Antigen 1 in Human Malaria

    PubMed Central

    Mugyenyi, Cleopatra K.; Elliott, Salenna R.; McCallum, Fiona J.; Anders, Robin F.; Marsh, Kevin; Beeson, James G.

    2013-01-01

    Background Antibodies to P. falciparum apical membrane protein 1 (AMA1) may contribute to protective immunity against clinical malaria by inhibiting blood stage growth of P. falciparum, and AMA1 is a leading malaria vaccine candidate. Currently, there is limited knowledge of the acquisition of strain-specific and cross-reactive antibodies to AMA1 in humans, or the acquisition of invasion-inhibitory antibodies to AMA1. Methodology/Findings We examined the acquisition of human antibodies to specific polymorphic invasion-inhibitory and non-inhibitory AMA1 epitopes, defined by the monoclonal antibodies 1F9 and 2C5, respectively. Naturally acquired antibodies were measured in cohorts of Kenyan children and adults. Antibodies to the invasion-inhibitory 1F9 epitope and non-inhibitory 2C5 epitope were measured indirectly by competition ELISA. Antibodies to the 1F9 and 2C5 epitopes were acquired by children and correlated with exposure, and higher antibody levels and prevalence were observed with increasing age and with active P. falciparum infection. Of note, the prevalence of antibodies to the inhibitory 1F9 epitope was lower than antibodies to AMA1 or the 2C5 epitope. Antibodies to AMA1 ectodomain, the 1F9 or 2C5 epitopes, or a combination of responses, showed some association with protection from P. falciparum malaria in a prospective longitudinal study. Furthermore, antibodies to the invasion-inhibitory 1F9 epitope were positively correlated with parasite growth-inhibitory activity of serum antibodies. Conclusions/Significance Individuals acquire antibodies to functional, polymorphic epitopes of AMA1 that may contribute to protective immunity, and these findings have implications for AMA1 vaccine development. Measuring antibodies to the 1F9 epitope by competition ELISA may be a valuable approach to assessing human antibodies with invasion-inhibitory activity in studies of acquired immunity and vaccine trials of AMA1. PMID:23861883

  13. Development of chimeric candidate vaccine against HPV18: a proof of concept.

    PubMed

    Wahiduzzaman, Mohammed; Sharma, Chandresh; Dey, Bindu; Bhatla, Neerja; Singh, Neeta

    2015-06-01

    Human papillomaviruses (HPVs) are prerequisite for the development of cervical cancer, with HPV16 and HPV18 being the most prevalent. Despite the fact that two prophylactic vaccines against HPVs are in the market, wide-scale application of the vaccine in developing countries is a major problem as far as cost of the vaccine and lack of therapeutic efficacy are concerned. Hence, the aim of our study was to develop HPV18 L1E7 chimeric virus-like particles (CVLPs) vaccine candidate possessing both, prophylactic and therapeutic potential against HPV18-associated cervical cancer. In this study, we have developed a potential candidate vaccine against HPV18 involving HPV18 L1E7 CVLPs, which was expressed in E. coli and assembled in vitro. These CVLPs were able to induce a neutralizing antibody response as well as a cell-mediated immune response in mice.

  14. Rational Design and Evaluation of an Artificial Escherichia coli K1 Protein Vaccine Candidate Based on the Structure of OmpA

    PubMed Central

    Gu, Hao; Liao, Yaling; Zhang, Jin; Wang, Ying; Liu, Zhiyong; Cheng, Ping; Wang, Xingyong; Zou, Quanming; Gu, Jiang

    2018-01-01

    Escherichia coli (E. coli) K1 causes meningitis and remains an unsolved problem in neonates, despite the application of antibiotics and supportive care. The cross-reactivity of bacterial capsular polysaccharides with human antigens hinders their application as vaccine candidates. Thus, protein antigens could be an alternative strategy for the development of an E. coli K1 vaccine. Outer membrane protein A (OmpA) of E. coli K1 is a potential vaccine candidate because of its predominant contribution to bacterial pathogenesis and sub-cellular localization. However, little progress has been made regarding the use of OmpA for this purpose due to difficulties in OmpA production. In the present study, we first investigated the immunogenicity of the four extracellular loops of OmpA. Using the structure of OmpA, we rationally designed and successfully generated the artificial protein OmpAVac, composed of connected loops from OmpA. Recombinant OmpAVac was successfully produced in E. coli BL21 and behaved as a soluble homogenous monomer in the aqueous phase. Vaccination with OmpAVac induced Th1, Th2, and Th17 immune responses and conferred effective protection in mice. In addition, OmpAVac-specific antibodies were able to mediate opsonophagocytosis and inhibit bacterial invasion, thereby conferring prophylactic protection in E. coli K1-challenged adult mice and neonatal mice. These results suggest that OmpAVac could be a good vaccine candidate for the control of E. coli K1 infection and provide an additional example of structure-based vaccine design. PMID:29876324

  15. Rational Design and Evaluation of an Artificial Escherichia coli K1 Protein Vaccine Candidate Based on the Structure of OmpA.

    PubMed

    Gu, Hao; Liao, Yaling; Zhang, Jin; Wang, Ying; Liu, Zhiyong; Cheng, Ping; Wang, Xingyong; Zou, Quanming; Gu, Jiang

    2018-01-01

    Escherichia coli ( E. coli ) K1 causes meningitis and remains an unsolved problem in neonates, despite the application of antibiotics and supportive care. The cross-reactivity of bacterial capsular polysaccharides with human antigens hinders their application as vaccine candidates. Thus, protein antigens could be an alternative strategy for the development of an E. coli K1 vaccine. Outer membrane protein A (OmpA) of E. coli K1 is a potential vaccine candidate because of its predominant contribution to bacterial pathogenesis and sub-cellular localization. However, little progress has been made regarding the use of OmpA for this purpose due to difficulties in OmpA production. In the present study, we first investigated the immunogenicity of the four extracellular loops of OmpA. Using the structure of OmpA, we rationally designed and successfully generated the artificial protein OmpAVac, composed of connected loops from OmpA. Recombinant OmpAVac was successfully produced in E. coli BL21 and behaved as a soluble homogenous monomer in the aqueous phase. Vaccination with OmpAVac induced Th1, Th2, and Th17 immune responses and conferred effective protection in mice. In addition, OmpAVac-specific antibodies were able to mediate opsonophagocytosis and inhibit bacterial invasion, thereby conferring prophylactic protection in E. coli K1-challenged adult mice and neonatal mice. These results suggest that OmpAVac could be a good vaccine candidate for the control of E. coli K1 infection and provide an additional example of structure-based vaccine design.

  16. Austrian Moderate Altitude Studies (AMAS): benefits of exposure to moderate altitudes (1,500-2,500 m).

    PubMed

    Schobersberger, Wolfgang; Leichtfried, Veronika; Mueck-Weymann, Michael; Humpeler, Egon

    2010-09-01

    A considerable part of the millions of Alpine tourists suffer from pre-existing diseases (e.g., metabolic syndrome) and high daily stress levels. The main goal of the Austrian Moderate Altitude Study (AMAS) was to investigate (a) the consequences of an active vacation at moderate altitude on the key parameters of the metabolic syndrome (AMAS I) and (b) the effects of a short active vacation on adult progenitor cells, bio-psychological parameters, and heart rate variability (HRV). During the AMAS I pilot study (n = 22; 1,700 m a.s.l.) and AMAS I main study (n = 71; 1,700 m a.s.l. and 200 m a.s.l.), the volunteers simulated 3-week coached hiking vacations. For AMAS II, healthy volunteers (n = 13) participated in a 1-week active holiday at 1,700 m. There were significant improvements of obesity, hypertension, dyslipidemia, and insulin resistance of AMAS I patients after the vacation. In AMAS II participants, we found an increase in circulating endothelial progenitor cells as well as improvements in bio-psychological and HRV parameters. Active vacations at moderate altitude are associated with a variety of positive health effects in persons with metabolic syndrome and in healthy subjects.

  17. Generation of a parvovirus B19 vaccine candidate.

    PubMed

    Chandramouli, Sumana; Medina-Selby, Angelica; Coit, Doris; Schaefer, Mary; Spencer, Terika; Brito, Luis A; Zhang, Pu; Otten, Gillis; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Settembre, Ethan C

    2013-08-20

    Parvovirus B19 is the causative agent of fifth disease in children, aplastic crisis in those with blood dyscrasias, and hydrops fetalis. Previous parvovirus B19 virus-like-particle (VLP) vaccine candidates were produced by co-infection of insect cells with two baculoviruses, one expressing wild-type VP1 and the other expressing VP2. In humans, the VLPs were immunogenic but reactogenic. We have developed new VLP-based parvovirus B19 vaccine candidates, produced by co-expressing VP2 and either wild-type VP1 or phospholipase-negative VP1 in a regulated ratio from a single plasmid in Saccharomyces cerevisiae. These VLPs are expressed efficiently, are very homogeneous, and can be highly purified. Although VP2 alone can form VLPs, in mouse immunizations, VP1 and the adjuvant MF59 are required to elicit a neutralizing response. Wild-type VLPs and those with phospholipase-negative VP1 are equivalently potent. The purity, homogeneity, yeast origin, and lack of phospholipase activity of these VLPs address potential causes of previously observed reactogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The Epstein-Barr virus lytic protein BZLF1 as a candidate target antigen for vaccine development1

    PubMed Central

    Hartlage, Alex S.; Liu, Tom; Patton, John T.; Garman, Sabrina L.; Zhang, Xiaoli; Kurt, Habibe; Lozanski, Gerard; Lustberg, Mark E.; Caligiuri, Michael A.; Baiocchi, Robert A.

    2015-01-01

    The Epstein-Barr virus (EBV) is an oncogenic, γ-herpesvirus associated with a broad spectrum of disease. While most immune-competent individuals can effectivley develop efficient adaptive immune responses to EBV, immunocompromised individuals are at serious risk for developing life threatening diseases such as Hodgkin’s lymphoma and post-transplant lymphoproliferative disorder (PTLD). Given the significant morbidity associated with EBV infection in high-risk populations, there is a need to develop vaccine strategies that restore or enhance EBV-specific immune responses. Here, we identify the EBV immediate-early protein BZLF1 as a potential target antigen for vaccine development. Primary tumors from patients with PTLD and a chimeric human-murine model of EBV-driven lymphoproliferative disorder (EBV-LPD) express BZLF1 protein. Pulsing human dendritic cells (DC) with recombinant BZLF1 followed by incubation with autologous mononuclear cells led to expansion of BZLF1-specific CD8(+) T cells in vitro and primed BZLF1-specific T-cell responses in vivo. In addition, vaccination of hu-PBL-SCID mice with BZLF1-transduced DCs induced specific cellular immunity and significantly prolonged survival from fatal EBV-LPD. These findings identify BZLF1 as a candidate target protein in the immunosurveillance of EBV and provide rationale for considering BZLF1 in vaccine strategies to enhance primary and recall immune responses and potentially prevent EBV-associated diseases. PMID:25735952

  19. AMA0428, A Potent Rock Inhibitor, Attenuates Early and Late Experimental Diabetic Retinopathy.

    PubMed

    Hollanders, Karolien; Hove, Inge Van; Sergeys, Jurgen; Bergen, Tine Van; Lefevere, Evy; Kindt, Nele; Castermans, Karolien; Vandewalle, Evelien; van Pelt, Jos; Moons, Lieve; Stalmans, Ingeborg

    2017-02-01

    decreased phospho-MYPT-1, enhanced phospho-eNOS, and reduced VEGF levels. In vitro, AMA0428 interfered with NF-κβ activity, thereby inhibiting ICAM-1 expression in ECs. Targeting ROCK with AMA0428 effectively attenuated outcome in an early DR model (STZ) and a late vasoproliferative retinopathy model (OIR). These findings make AMA0428 a promising candidate with an additional anti-inflammatory and neuroprotective benefit for DR patients, as compared with anti-VEGF treatment.

  20. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates.

    PubMed

    Mazur, Natalie I; Higgins, Deborah; Nunes, Marta C; Melero, José A; Langedijk, Annefleur C; Horsley, Nicole; Buchholz, Ursula J; Openshaw, Peter J; McLellan, Jason S; Englund, Janet A; Mejias, Asuncion; Karron, Ruth A; Simões, Eric Af; Knezevic, Ivana; Ramilo, Octavio; Piedra, Pedro A; Chu, Helen Y; Falsey, Ann R; Nair, Harish; Kragten-Tabatabaie, Leyla; Greenough, Anne; Baraldi, Eugenio; Papadopoulos, Nikolaos G; Vekemans, Johan; Polack, Fernando P; Powell, Mair; Satav, Ashish; Walsh, Edward E; Stein, Renato T; Graham, Barney S; Bont, Louis J

    2018-06-15

    The global burden of disease caused by respiratory syncytial virus (RSV) is increasingly recognised, not only in infants, but also in older adults (aged ≥65 years). Advances in knowledge of the structural biology of the RSV surface fusion glycoprotein have revolutionised RSV vaccine development by providing a new target for preventive interventions. The RSV vaccine landscape has rapidly expanded to include 19 vaccine candidates and monoclonal antibodies (mAbs) in clinical trials, reflecting the urgency of reducing this global health problem and hence the prioritisation of RSV vaccine development. The candidates include mAbs and vaccines using four approaches: (1) particle-based, (2) live-attenuated or chimeric, (3) subunit, (4) vector-based. Late-phase RSV vaccine trial failures highlight gaps in knowledge regarding immunological protection and provide lessons for future development. In this Review, we highlight promising new approaches for RSV vaccine design and provide a comprehensive overview of RSV vaccine candidates and mAbs in clinical development to prevent one of the most common and severe infectious diseases in young children and older adults worldwide. Copyright © 2018 World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved. Published by Elsevier Ltd.. All rights reserved.

  1. Vaccine Candidates against Nontypeable Haemophilus influenzae: a Review

    PubMed Central

    Behrouzi, Ava; Vaziri, Farzam; Rahimi-Jamnani, Fatemeh; Afrough, Parviz; Rahbar, Mohammad; Satarian, Fereshteh; Siadat, Seyed Davar

    2017-01-01

    Nonencapsulated, nontypeable Hemophilus influenzae (NTHi) remains an important cause of acute otitis and respiratory diseases in children and adults. NTHi bacteria are one of the major causes of respiratory tract infections, including acute otitis media, cystic fibrosis, and community-acquired pneumonia among children, especially in developing countries. The bacteria can also cause chronic diseases such as chronic bronchitis and chronic obstructive pulmonary disease in the lower respiratory tract of adults. Such bacteria express several outer membrane proteins, some of which have been studied as candidates for vaccine development. Due to the lack of effective vaccines as well as the spread and prevalence of NTHi worldwide, there is an urgent need to design and develop effective vaccine candidates against these strains. PMID:28088130

  2. Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach.

    PubMed

    Rashid, Muhammad Ibrahim; Naz, Anam; Ali, Amjad; Andleeb, Saadia

    2017-07-01

    Pseudomonas aeruginosa is among top critical nosocomial infectious agents due to its persistent infections and tendency for acquiring drug resistance mechanisms. To date, there is no vaccine available for this pathogen. We attempted to exploit the genomic and proteomic information of P. aeruginosa though reverse-vaccinology approaches to unveil the prospective vaccine candidates. P. aeruginosa strain PAO1 genome was subjected to sequential prioritization approach following genomic, proteomics and structural analyses. Among, the predicted vaccine candidates: surface components of antibiotic efflux pumps (Q9HY88, PA2837), chaperone-usher pathway components (CupC2, CupB3), penicillin binding protein of bacterial cell wall (PBP1a/mrcA), extracellular component of Type 3 secretory system (PscC) and three uncharacterized secretory proteins (PA0629, PA2822, PA0978) were identified as potential candidates qualifying all the set criteria. These proteins were then analyzed for potential immunogenic surface exposed epitopes. These predicted epitopes may provide a basis for development of a reliable subunit vaccine against P. aeruginosa. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine.

    PubMed

    Ferrier-Rembert, Audrey; Drillien, Robert; Tournier, Jean-Nicolas; Garin, Daniel; Crance, Jean-Marc

    2008-03-25

    This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.

  4. Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion.

    PubMed

    Srinivasan, Prakash; Yasgar, Adam; Luci, Diane K; Beatty, Wandy L; Hu, Xin; Andersen, John; Narum, David L; Moch, J Kathleen; Sun, Hongmao; Haynes, J David; Maloney, David J; Jadhav, Ajit; Simeonov, Anton; Miller, Louis H

    2013-01-01

    Plasmodium falciparum resistance to artemisinin derivatives, the first-line antimalarial drug, drives the search for new classes of chemotherapeutic agents. Current discovery is primarily directed against the intracellular forms of the parasite. However, late schizont-infected red blood cells (RBCs) may still rupture and cause disease by sequestration; consequently targeting invasion may reduce disease severity. Merozoite invasion of RBCs requires interaction between two parasite proteins AMA1 and RON2. Here we identify the first inhibitor of this interaction that also blocks merozoite invasion in genetically distinct parasites by screening a library of over 21,000 compounds. We demonstrate that this inhibition is mediated by the small molecule binding to AMA1 and blocking the formation of AMA1-RON complex. Electron microscopy confirms that the inhibitor prevents junction formation, a critical step in invasion that results from AMA1-RON2 binding. This study uncovers a strategy that will allow for highly effective combination therapies alongside existing antimalarial drugs.

  5. Construction and comparison of different source neuraminidase candidate vaccine strains for human infection with Eurasian avian-like influenza H1N1 virus.

    PubMed

    Liu, Liqi; Lu, Jian; Zhou, Jianfang; Li, Zi; Zhang, Heng; Wang, Dayan; Shu, Yuelong

    2017-12-01

    Human infections with Eurasian avian-like swine influenza H1N1 viruses have been reported in China in past years. One case resulted in death and others were mild case. In 2016, the World Health Organization recommended the use of A/Hunan/42443/2015(H1N1) virus to construct the first candidate vaccine strain for Eurasian avian-like swine influenza H1N1 viruses. Previous reports showed that the neuraminidase of A/Puerto Rico/8/34(H1N1) might improve the viral yield of reassortant viruses. Therefore, we constructed two reassortant candidate vaccine viruses of A/Hunan/42443/2015(H1N1) by reverse genetic technology, with (6+2) and (7+1) gene constitution, respectively. The (6+2) virus had hemagglutinin and neuraminidase from A/Hunan/42443/2015, and the (7+1) one had hemagglutinin from A/Hunan/42443/2015, while all the other genes were from A/Puerto Rico/8/34. Our data revealed that although the neuraminidase of the (7+1) virus was from high yield A/Puerto Rico/8/34, the hemagglutination titer and the hemagglutinin protein content of the (7+1) virus was not higher than that of the (6+2) virus. Both of the (7+1) and (6+2) viruses reached a similar level to that of A/Puerto Rico/8/34 at the usual harvest time in vitro. Therefore, both reassortant viruses are potential candidate vaccine viruses, which could contribute to pandemic preparedness. Copyright © 2017. Published by Elsevier Masson SAS.

  6. Ama1p-activated anaphase-promoting complex regulates the destruction of Cdc20p during meiosis II

    PubMed Central

    Tan, Grace S.; Magurno, Jennifer; Cooper, Katrina F.

    2011-01-01

    The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)–mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/CAma1 mediates Cdc20p destruction. APC/CAma1 recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/CAma1. Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Δ strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/CCdc20 activity as the cells complete meiosis II and form spores. PMID:21118994

  7. Stability and pre-formulation development of a plant-produced anthrax vaccine candidate.

    PubMed

    Jones, R Mark; Burke, Michael; Dubose, Devon; Chichester, Jessica A; Manceva, Slobodanka; Horsey, April; Streatfield, Stephen J; Breit, Jeff; Yusibov, Vidadi

    2017-10-04

    Second generation anthrax vaccines focus on the use of recombinant protective antigen (rPA) to elicit a strong, toxin neutralizing antibody responses in immunized subjects. The main difference between the rPA vaccines compared to the current licensed vaccine, anthrax vaccine absorbed (AVA), is the rPA vaccines are highly purified preparations of only rPA. These second generation rPA vaccines strive to elicit strong immune responses with substantially fewer doses than AVA while provoking less side effects. Many of the rPA candidates have shown to be effective in pre-clinical studies, but most of the second generation molecules have stability issues which reduce their efficacy over time. These stability issues are evident even under refrigerated conditions and thus emphasis has been directed to stabilizing the rPA molecule and determining an optimized final formulation. Stabilization of vaccines for long-term storage is a major challenge in the product development life cycle. The effort required to identify suitable formulations can be slow and expensive. The ideal storage for stockpiled vaccines would allow the candidate to withstand years of storage at ambient temperatures. The Fraunhofer Center for Molecular Biotechnology is developing a plant-produced rPA vaccine candidate that shows instability when stored under refrigerated conditions in a solution, as is typical for rPA vaccines. Increased stability of our plant-produced rPA vaccine candidate was achieved in a spray dried powder formulation that could eliminate the need for conventional cold chain allowing greater confidence to stockpile vaccine for civilian and military biodefense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy.

    PubMed

    Bennett, Jason W; Yadava, Anjali; Tosh, Donna; Sattabongkot, Jetsumon; Komisar, Jack; Ware, Lisa A; McCarthy, William F; Cowden, Jessica J; Regules, Jason; Spring, Michele D; Paolino, Kristopher; Hartzell, Joshua D; Cummings, James F; Richie, Thomas L; Lumsden, Joanne; Kamau, Edwin; Murphy, Jittawadee; Lee, Cynthia; Parekh, Falgunee; Birkett, Ashley; Cohen, Joe; Ballou, W Ripley; Polhemus, Mark E; Vanloubbeeck, Yannick F; Vekemans, Johan; Ockenhouse, Christian F

    2016-02-01

    A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15 μg, 30 μg, or 60 μg respectively of VMP001, all formulated in 500 μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.

  9. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy

    PubMed Central

    Bennett, Jason W.; Yadava, Anjali; Tosh, Donna; Sattabongkot, Jetsumon; Komisar, Jack; Ware, Lisa A.; McCarthy, William F.; Cowden, Jessica J.; Regules, Jason; Spring, Michele D.; Paolino, Kristopher; Hartzell, Joshua D.; Cummings, James F.; Richie, Thomas L.; Lumsden, Joanne; Kamau, Edwin; Murphy, Jittawadee; Lee, Cynthia; Parekh, Falgunee; Birkett, Ashley; Cohen, Joe; Ballou, W. Ripley; Polhemus, Mark E.; Vanloubbeeck, Yannick F.; Vekemans, Johan; Ockenhouse, Christian F.

    2016-01-01

    Background A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. Methods We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15μg, 30μg, or 60μg respectively of VMP001, all formulated in 500μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. Results The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. Significance This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for

  10. Type 1 diabetes vaccine candidates promote human Foxp3+Treg induction in humanized mice

    PubMed Central

    Serr, Isabelle; Fürst, Rainer W.; Achenbach, Peter; Scherm, Martin G.; Gökmen, Füsun; Haupt, Florian; Sedlmeier, Eva-Maria; Knopff, Annette; Shultz, Leonard; Willis, Richard A.; Ziegler, Anette-Gabriele; Daniel, Carolin

    2016-01-01

    Immune tolerance is executed partly by Foxp3+regulatory T (Treg) cells, which suppress autoreactive T cells. In autoimmune type 1 diabetes (T1D) impaired tolerance promotes destruction of insulin-producing β-cells. The development of autoantigen-specific vaccination strategies for Foxp3+Treg-induction and prevention of islet autoimmunity in patients is still in its infancy. Here, using human haematopoietic stem cell-engrafted NSG-HLA-DQ8 transgenic mice, we provide direct evidence for human autoantigen-specific Foxp3+Treg-induction in vivo. We identify HLA-DQ8-restricted insulin-specific CD4+T cells and demonstrate efficient human insulin-specific Foxp3+Treg-induction upon subimmunogenic vaccination with strong agonistic insulin mimetopes in vivo. Induced human Tregs are stable, show increased expression of Treg signature genes such as Foxp3, CTLA4, IL-2Rα and TIGIT and can efficiently suppress effector T cells. Such Foxp3+Treg-induction does not trigger any effector T cells. These T1D vaccine candidates could therefore represent an expedient improvement in the challenge to induce human Foxp3+Tregs and to develop novel precision medicines for prevention of islet autoimmunity in children at risk of T1D. PMID:26975663

  11. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1.

    PubMed

    Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha

    2013-10-29

    Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers

  12. HIV-1 Immunogen: an overview of almost 30 years of clinical testing of a candidate therapeutic vaccine.

    PubMed

    Graziani, Gina M; Angel, Jonathan B

    2016-07-01

    Although current antiretroviral therapy (ART) has transformed HIV infection into a chronic, manageable disease, ART does not cure HIV infection. Furthermore, the majority of the world's infected individuals live in resource-limited countries in which access to ART is limited. Thus, the development of an effective therapeutic HIV vaccine would be an invaluable treatment alternative. Developed by the late Dr. Jonas Salk, HIV-1 Immunogen (Remune®) is a candidate therapeutic vaccine that has been studied in thousands of HIV-infected individuals in more than a dozen clinical trials during almost three decades. This Drug Evaluation, which summarizes the results of these trials that have shown the vaccine to be safe and immunogenic, also discusses the contradictory and controversial conclusions drawn from the phases 2, 2/3 and 3 trials that assessed the clinical efficacy of this vaccine. Given the lack of unequivocal clinical benefits of HIV-1 Immunogen despite almost 30 years of extensive testing, it does not appear, in our view, that this vaccine is a clinically effective immunotherapy. However, inclusion of this vaccine in the newly proposed 'Kick/Shock and Kill' strategy for HIV eradication, or use as a prophylactic vaccine, could be considered for future trials.

  13. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques.

    PubMed

    Borggren, Marie; Vinner, Lasse; Andresen, Betina Skovgaard; Grevstad, Berit; Repits, Johanna; Melchers, Mark; Elvang, Tara Laura; Sanders, Rogier W; Martinon, Frédéric; Dereuddre-Bosquet, Nathalie; Bowles, Emma Joanne; Stewart-Jones, Guillaume; Biswas, Priscilla; Scarlatti, Gabriella; Jansson, Marianne; Heyndrickx, Leo; Grand, Roger Le; Fomsgaard, Anders

    2013-07-19

    HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  14. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques

    PubMed Central

    Borggren, Marie; Vinner, Lasse; Andresen, Betina Skovgaard; Grevstad, Berit; Repits, Johanna; Melchers, Mark; Elvang, Tara Laura; Sanders, Rogier W; Martinon, Frédéric; Dereuddre-Bosquet, Nathalie; Bowles, Emma Joanne; Stewart-Jones, Guillaume; Biswas, Priscilla; Scarlatti, Gabriella; Jansson, Marianne; Heyndrickx, Leo; Le Grand, Roger; Fomsgaard, Anders

    2013-01-01

    HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques. PMID:26344115

  15. Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus

    PubMed Central

    Morgan, Sophie B.; Hemmink, Johanneke D.; Porter, Emily; Harley, Ross; Shelton, Holly; Aramouni, Mario; Everett, Helen E.; Brookes, Sharon M.; Bailey, Michael; Townsend, Alain M.; Charleston, Bryan

    2016-01-01

    Influenza A viruses are a major health threat to livestock and humans, causing considerable mortality, morbidity, and economic loss. Current inactivated influenza vaccines are strain specific and new vaccines need to be produced at frequent intervals to combat newly arising influenza virus strains, so that a universal vaccine is highly desirable. We show that pandemic H1N1 influenza virus in which the hemagglutinin signal sequence has been suppressed (S-FLU), when administered to pigs by aerosol can induce CD4 and CD8 T cell immune responses in blood, bronchoalveolar lavage (BAL), and tracheobronchial lymph nodes. Neutralizing Ab was not produced. Detection of a BAL response correlated with a reduction in viral titer in nasal swabs and lungs, following challenge with H1N1 pandemic virus. Intratracheal immunization with a higher dose of a heterologous H5N1 S-FLU vaccine induced weaker BAL and stronger tracheobronchial lymph node responses and a lesser reduction in viral titer. We conclude that local cellular immune responses are important for protection against influenza A virus infection, that these can be most efficiently induced by aerosol immunization targeting the lower respiratory tract, and that S-FLU is a promising universal influenza vaccine candidate. PMID:27183611

  16. Safety and immunogenicity of pneumococcal protein vaccine candidates: monovalent choline-binding protein A (PcpA) vaccine and bivalent PcpA-pneumococcal histidine triad protein D vaccine.

    PubMed

    Bologa, Monica; Kamtchoua, Thierry; Hopfer, Robert; Sheng, Xiaohua; Hicks, Bryony; Bixler, Garvin; Hou, Victor; Pehlic, Vildana; Yuan, Tao; Gurunathan, Sanjay

    2012-12-14

    Pneumococcal vaccines based on protein antigens may provide expanded protection against Streptococcus pneumoniae. To evaluate safety and immunogenicity in adults of pneumococcal vaccine candidates comprising S. pneumoniae pneumococcal histidine triad protein D (PhtD) and pneumococcal choline-binding protein A (PcpA) in monovalent and bivalent formulations. This was a phase I, randomized, observer-blinded, placebo-controlled, step-wise dose-escalation study. Following a pilot safety study in which participants received one intramuscular injection of either aluminum hydroxide (AH)-adjuvanted PcpA (25 μg) or PhtD-PcpA (10 μg each), participants in the main study received AH-adjuvanted PcpA (25 μg), AH-adjuvanted PhtD-PcpA (10, 25, or 50 μg each), unadjuvanted PhtD-PcpA (25 μg each), or placebo as 2 injections 30 days apart. Assignment of successive dose cohorts was made after blinded safety reviews after each dose level. Safety endpoints included rates of solicited injection site and systemic reactions, unsolicited adverse events (AEs), serious AEs (SAEs), and safety laboratory tests. Immunogenicity endpoints included levels of anti-PhtD and anti-PcpA antibodies (ELISA). Six adults 18-50 years of age were included in the pilot study and 125 in the main study. No obvious increases in solicited reactions or unsolicited AEs were reported with escalating doses (adjuvanted vaccine) after either injection, or with repeated administration. Adjuvanted vaccine candidates were associated with a higher incidence of solicited reactions (particularly injection site reactions) than unadjuvanted vaccine candidates. However, no SAE or discontinuation due to an AE occurred. Geometric mean concentrations of anti-PhtD IgG and anti-PcpA IgG increased significantly after injection 2 compared with injection 1 at each dose level. No enhancement of immune responses was shown with adjuvanted vaccine candidates compared with the unadjuvanted vaccine candidate. In the dose

  17. Anti-Lyme Subunit Vaccines: Design and Development of Peptide-Based Vaccine Candidates.

    PubMed

    Small, Christina M; Mwangi, Waithaka; Esteve-Gassent, Maria D

    2016-01-01

    Vaccinology today has been presented with several avenues to improve protection against infectious disease. The recent employment of the reverse vaccinology technique has changed the face of vaccine development against many pathogens, including Borrelia burgdorferi, the causative agent of Lyme disease. Using this technique, genomics and in silico analyses come together to identify potentially antigenic epitopes in a high-throughput fashion. The forward methodology of vaccine development was used previously to generate the only licensed human vaccine for Lyme disease, which is no longer on the market. Using reverse vaccinology to identify new antigens and isolate specific epitopes to protect against B. burgdorferi, subunit vaccines will be generated that lack reactogenic and nonspecific epitopes, yielding more effective vaccine candidates. Additionally, novel epitopes are being utilized and are presently in the commercialization pipeline both for B. burgdorferi and other spirochaetal pathogens. The versatility and methodology of the subunit protein vaccine are described as it pertains to Lyme disease from conception to performance evaluation.

  18. Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure

    PubMed Central

    Le Nouën, Cyril; McCarty, Thomas; Brown, Michael; Smith, Melissa Laird; Lleras, Roberto; Dolan, Michael A.; Mehedi, Masfique; Yang, Lijuan; Luongo, Cindy; Liang, Bo; Munir, Shirin; DiNapoli, Joshua M.; Mueller, Steffen; Wimmer, Eckard; Collins, Peter L.; Buchholz, Ursula J.

    2017-01-01

    Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown. We evaluated phenotypic reversion of deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. Codon pair deoptimized (CPD) versions of RSV were attenuated and temperature-sensitive. During serial passage at progressively increasing temperature, a CPD RSV containing 2,692 synonymous mutations in 9 of 11 ORFs did not lose temperature sensitivity, remained genetically stable, and was restricted at temperatures of 34 °C/35 °C and above. However, a CPD RSV containing 1,378 synonymous mutations solely in the polymerase L ORF quickly lost substantial attenuation. Comprehensive sequence analysis of virus populations identified many different potentially deattenuating mutations in the L ORF as well as, surprisingly, many appearing in other ORFs. Phenotypic analysis revealed that either of two competing mutations in the virus transcription antitermination factor M2-1, outside of the CPD area, substantially reversed defective transcription of the CPD L gene and substantially restored virus fitness in vitro and in case of one of these two mutations, also in vivo. Paradoxically, the introduction into Min L of one mutation each in the M2-1, N, P, and L proteins resulted in a virus with increased attenuation in vivo but increased immunogenicity. Thus, in addition to providing insights on the adaptability of genome-scale deoptimized RNA viruses, stability studies can yield improved synthetic RNA virus vaccine candidates. PMID:28049853

  19. Dengue vaccines: recent developments, ongoing challenges and current candidates

    PubMed Central

    McArthur, Monica A.; Sztein, Marcelo B.; Edelman, Robert

    2013-01-01

    Summary Dengue is among the most prevalent and important arbovirus diseases of humans. In order to effectively control this rapidly spreading disease, control of the vector mosquito and a safe and efficacious vaccine are critical. Despite considerable efforts, the development of a successful vaccine has remained elusive. Multiple factors have complicated the creation of a successful vaccine, not the least of which are the complex, immune-mediated responses against four antigenically distinct serotypes necessitating a tetravalent vaccine providing long lasting protective immunity. Despite the multiple impediments, there are currently many promising vaccine candidates in pre-clinical and clinical development. Here we review the recent advances in dengue virus vaccine development and briefly discuss the challenges associated with the use of these vaccines as a public health tool. PMID:23984962

  20. Secreted HSP Vaccine for Malaria Prophylaxis

    DTIC Science & Technology

    2016-10-26

    AWARD NUMBER: W81XWH-13-2-0098 TITLE: Secreted HSP Vaccine for Malaria Prophylaxis PRINCIPAL INVESTIGATOR: Dr. Natasa Strbo CONTRACTING ORGANIZATION...Secreted HSP Vaccine for Malaria Prophylaxis 4. TITLE AND SUBTITLE NATASA STRBO, M.D., D.SC NAME(S) AND E-M tzA UNIVERS]TY OF MTAMI 1600 NW 1OTH AVENUE ROOM...Here we developed malaria vaccine that relies on secreted gp96-lg chaperon-ing Plasmodium falciparum antigenic sporozoite proteins CSP and AMA1. The

  1. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.

    PubMed

    Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G

    2016-05-27

    Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Efficient extraction of vaccines formulated in aluminum hydroxide gel by including surfactants in the extraction buffer

    PubMed Central

    Zhu, Daming; Huang, Shuhui; McClellan, Holly; Dai, Weili; Syed, Najam R; Gebregeorgis, Elizabeth; Mullen, Gregory E. D.; Long, Carole; Martin, Laura B.; Narum, David; Duffy, Patrick; Miller, Louis H.; Saul, Allan

    2011-01-01

    Efficient antigen extraction from vaccines formulated on aluminum hydroxide gels is a critical step for the evaluation of the quality of vaccines following formulation. It has been shown in our laboratory that the efficiency of antigen extraction from vaccines formulated on Alhydrogel decreased significantly with increased storage time. To increase antigen extraction efficiency, the present study determined the effect of surfactants on antigen recovery from vaccine formulations. The Plasmodium falciparum apical membrane antigen 1 (AMA1) formulated on Alhydrogel and stored at 2-8 °C for three years was used as a model in this study. The AMA1 on Alhydrogel was extracted in the presence or absence of 30 mM sodium dodecyl sulfate (SDS) or 20 mM cetylpyridinium chloride in the extraction buffer (0.60 M citrate, 0.55 M phosphate, pH 8.5) using our standard antigen extraction protocols. Extracted AMA1 antigen was analyzed by 4-20% Tris-glycine SDS-PAGE followed by silver staining or western blotting. The results showed that inclusion of SDS or cetylpyridinium chloride in extraction buffer increased the antigen recovery dramatically and can be used for efficient characterization of Alhydrogel vaccines. PMID:22107848

  3. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    PubMed

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  4. In vitro analysis of virus particle subpopulations in candidate live-attenuated influenza vaccines distinguishes effective from ineffective vaccines.

    PubMed

    Marcus, Philip I; Ngunjiri, John M; Sekellick, Margaret J; Wang, Leyi; Lee, Chang-Won

    2010-11-01

    Two effective (vac+) and two ineffective (vac-) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac- variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers. These in vitro analyses provide a benchmark for the screening of candidate LAIVs and their potential as effective vaccines. Vaccine design may be improved by enhancement of attributes that are dominant in the effective (vac+) vaccines.

  5. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    PubMed

    Chou, Ai-Hsiang; Liu, Chia-Chyi; Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele

    2012-01-01

    Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. These

  6. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    PubMed Central

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability

  7. AMA1-Deficient Toxoplasma gondii Parasites Transiently Colonize Mice and Trigger an Innate Immune Response That Leads to Long-Lasting Protective Immunity

    PubMed Central

    Lagal, Vanessa; Dinis, Márcia; Cannella, Dominique; Bargieri, Daniel; Gonzalez, Virginie; Andenmatten, Nicole; Meissner, Markus

    2015-01-01

    The apical membrane antigen 1 (AMA1) protein was believed to be essential for the perpetuation of two Apicomplexa parasite genera, Plasmodium and Toxoplasma, until we genetically engineered viable parasites lacking AMA1. The reduction in invasiveness of the Toxoplasma gondii RH-AMA1 knockout (RH-AMA1KO) tachyzoite population, in vitro, raised key questions about the outcome associated with these tachyzoites once inoculated in the peritoneal cavity of mice. In this study, we used AMNIS technology to simultaneously quantify and image the parasitic process driven by AMA1KO tachyzoites. We report their ability to colonize and multiply in mesothelial cells and in both resident and recruited leukocytes. While the RH-AMA1KO population amplification is rapidly lethal in immunocompromised mice, it is controlled in immunocompetent hosts, where immune cells in combination sense parasites and secrete proinflammatory cytokines. This innate response further leads to a long-lasting status immunoprotective against a secondary challenge by high inocula of the homologous type I or a distinct type II T. gondii genotypes. While AMA1 is definitively not an essential protein for tachyzoite entry and multiplication in host cells, it clearly assists the expansion of parasite population in vivo. PMID:25847964

  8. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine.

    PubMed

    Laurens, Matthew B; Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C; Wu, Yukun; Cohen, Joe; Ballou, W Ripley; Vekemans, Johan; Lanar, David E; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D Gray; Doumbo, Ogobara K; Plowe, Christopher V; Thera, Mahamadou A

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  9. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine

    PubMed Central

    Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C.; Wu, Yukun; Cohen, Joe; Ballou, W. Ripley; Vekemans, Johan; Lanar, David E.; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D. Gray; Doumbo, Ogobara K.; Plowe, Christopher V.; Thera, Mahamadou A.

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  10. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K TO Listeria sp.

    PubMed Central

    Todorov, Svetoslav D.

    2008-01-01

    Bacteriocin AMA-K produced by Lactobacillus plantarum AMA-K inhibits the growth of Enterococcus spp., Escherichia coli, Klebsiella pneumoniae and Listeria spp. Growth of strain AMA-K in BHI, M17, soy milk and molasses was similar to growth in MRS. The effect of organic nitrogen sources, carbohydrates, glycerol, K2HPO4 and KH2PO4, MgSO4, MnSO4, tri-ammonium citrate, Tween 80, vitamins and initial pH on bacteriocin AMA-K was determined. The mode of action of bacteriocin AMA-K was studied. The effect of bacteriocin AMA-K to actively growing Listeria innocua LMG13568, L. ivanovii subsp. ivanovii ATCC19119 and L. monocytogenes ScottA was determined. Adsorption of bacteriocin AMA-K to target cells at different temperatures, pH and in presence of Tween 20, Tween 80, ascorbic acid, potassium sorbate, sodium nitrate and sodium chloride were studied. Bacteriocin AMA-K shares high homology to pediocin PA-1. PMID:24031200

  11. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate.

    PubMed

    Wang, Xiaoyun; Chen, Wenjun; Tian, Yanli; Mao, Qiang; Lv, Xiaoli; Shang, Mei; Li, Xuerong; Yu, Xinbing; Huang, Yan

    2014-03-10

    Clonorchis sinensis (C. sinensis) infections remain the common public health problem in freshwater fish consumption areas. New effective prevention strategies are still the urgent challenges to control this kind of foodborne infectious disease. The biochemical importance and biological relevance render C. sinensis enolase (Csenolase) as a potential vaccine candidate. In the present study, we constructed Escherichia coli/Bacillus subtilis shuttle genetic engineering system and investigated the potential of Csenolase as an oral vaccine candidate for C. sinensis prevention in different immunization routes. Our results showed that, compared with control groups, both recombinant Csenolase protein and nucleic acid could induce a mixed IgG1/IgG2a immune response when administrated subcutaneously (P<0.001), intraperitoneally (P<0.01) and intramuscularly (P<0.001) with worm reduction rate of 56.29%, 15.38% and 37.42%, respectively. More importantly, Csenolase could be successfully expressed as a fusion protein (55kDa) on B. subtilis spore indicated by immunoblot and immunofluorescence assays. Killed spores triggered reactive Th1/Th2 immune response and exhibited protective efficacy against C. sinensis infection. Csenolase derived oral vaccine conferred worm reduction rate and egg reduction rate at 60.07% (P<0.001) and 80.67% (P<0.001), respectively. The shuttle genetic engineering system facilitated the development of oral vaccine with B. subtilis stably overexpressing target protein. Comparably vaccinal trails with Csenolase in different immunization routes potentialize Csenolase an oral vaccine candidate in C. sinensis prevention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana.

    PubMed

    Pêra, Francisco F P G; Mutepfa, David L R; Khan, Ayesha M; Els, Johann H; Mbewana, Sandiswa; van Dijk, Alberdina A A; Rybicki, Edward P; Hitzeroth, Inga I

    2015-12-02

    Human rotaviruses are the main cause of severe gastroenteritis in children and are responsible for over 500 000 deaths annually. There are two live rotavirus vaccines currently available, one based on human rotavirus serotype G1P[8], and the other a G1-G4 P[8] pentavalent vaccine. However, the recent emergence of the G9 and other novel rotavirus serotypes in Africa and Asia has prompted fears that current vaccines might not be fully effective against these new varieties. We report an effort to develop an affordable candidate rotavirus vaccine against the new emerging G9P[6] (RVA/Human-wt/ZAF/GR10924/1999/G9P[6]) strain. The vaccine is based on virus-like particles which are both highly immunogenic and safe. The vaccine candidate was produced in Nicotiana benthamiana by transient expression, as plants allow rapid production of antigens at lower costs, without the risk of contamination by animal pathogens. Western blot analysis of plant extracts confirmed the successful expression of two rotavirus capsid proteins, VP2 and VP6. These proteins assembled into VLPs resembling native rotavirus particles when analysed by transmission electron microscopy (TEM). Expression of the rotavirus glycoprotein VP7 and the spike protein VP4 was also tried. However, VP7 expression caused plant wilting during the course of the time trial and expression could never be detected for either protein. We therefore created three fusion proteins adding the antigenic part of VP4 (VP8*) to VP6 in an attempt to produce more appropriately immunogenic particles. Fusion protein expression in tobacco plants was detected by western blot using anti-VP6 and anti-VP4 antibodies, but no regular particles were observed by TEM, even when co-expressed with VP2. Our results suggest that the rotavirus proteins produced in N. benthamiana are candidates for a subunit vaccine specifically for the G9P[6] rotavirus strain. This could be more effective in developing countries, thereby possibly providing a higher

  13. The Vaccine Candidate Vibrio cholerae 638 Is Protective against Cholera in Healthy Volunteers

    PubMed Central

    García, Luis; Jidy, Manuel Díaz; García, Hilda; Rodríguez, Boris L.; Fernández, Roberto; Año, Gemma; Cedré, Bárbara; Valmaseda, Tania; Suzarte, Edith; Ramírez, Margarita; Pino, Yadira; Campos, Javier; Menéndez, Jorge; Valera, Rodrigo; González, Daniel; González, Irma; Pérez, Oliver; Serrano, Teresita; Lastre, Miriam; Miralles, Fernando; del Campo, Judith; Maestre, Jorge Luis; Pérez, José Luis; Talavera, Arturo; Pérez, Antonio; Marrero, Karen; Ledón, Talena; Fando, Rafael

    2005-01-01

    Vibrio cholerae 638 is a living candidate cholera vaccine strain attenuated by deletion of the CTXΦ prophage from C7258 (O1, El Tor Ogawa) and by insertion of the Clostridium thermocellum endoglucanase A gene into the hemagglutinin/protease coding sequence. This vaccine candidate was previously found to be well tolerated and immunogenic in volunteers. This article reports a randomized, double-blind, placebo-controlled trial conducted to test short-term protection conferred by 638 against subsequent V. cholerae infection and disease in volunteers in Cuba. A total of 45 subjects were enrolled and assigned to receive vaccine or placebo. The vaccine contained 109 CFU of freshly harvested 638 buffered with 1.3% NaHCO3, while the placebo was buffer alone. After vaccine but not after placebo intake, 96% of volunteers had at least a fourfold increase in vibriocidal antibody titers, and 50% showed a doubling of at least the lipopolysaccharide-specific immunoglobulin A titers in serum. At 1 month after vaccination, five volunteers from the vaccine group and five from the placebo group underwent an exploratory challenge study with 109 CFU of ΔCTXΦ attenuated mutant strain V. cholerae 81. Only two volunteers from the vaccine group shed strain 81 in their feces, but none of them experienced diarrhea; in the placebo group, all volunteers excreted the challenge strain, and three had reactogenic diarrhea. An additional 12 vaccinees and 9 placebo recipients underwent challenge with 7 × 105 CFU of virulent strain V. cholerae 3008 freshly harvested from a brain heart infusion agar plate and buffered with 1.3% NaHCO3. Three volunteers (25%) from the vaccine group and all from the placebo group shed the challenge agent in their feces. None of the 12 vaccinees but 7 volunteers from the placebo group had diarrhea, and 2 of the latter exhibited severe cholera (>5,000 g of diarrheal stool). These results indicate that at 1 month after ingestion of a single oral dose (109 CFU) of strain

  14. The vaccine candidate Vibrio cholerae 638 is protective against cholera in healthy volunteers.

    PubMed

    García, Luis; Jidy, Manuel Díaz; García, Hilda; Rodríguez, Boris L; Fernández, Roberto; Año, Gemma; Cedré, Bárbara; Valmaseda, Tania; Suzarte, Edith; Ramírez, Margarita; Pino, Yadira; Campos, Javier; Menéndez, Jorge; Valera, Rodrigo; González, Daniel; González, Irma; Pérez, Oliver; Serrano, Teresita; Lastre, Miriam; Miralles, Fernando; Del Campo, Judith; Maestre, Jorge Luis; Pérez, José Luis; Talavera, Arturo; Pérez, Antonio; Marrero, Karen; Ledón, Talena; Fando, Rafael

    2005-05-01

    Vibrio cholerae 638 is a living candidate cholera vaccine strain attenuated by deletion of the CTXPhi prophage from C7258 (O1, El Tor Ogawa) and by insertion of the Clostridium thermocellum endoglucanase A gene into the hemagglutinin/protease coding sequence. This vaccine candidate was previously found to be well tolerated and immunogenic in volunteers. This article reports a randomized, double-blind, placebo-controlled trial conducted to test short-term protection conferred by 638 against subsequent V. cholerae infection and disease in volunteers in Cuba. A total of 45 subjects were enrolled and assigned to receive vaccine or placebo. The vaccine contained 10(9) CFU of freshly harvested 638 buffered with 1.3% NaHCO(3), while the placebo was buffer alone. After vaccine but not after placebo intake, 96% of volunteers had at least a fourfold increase in vibriocidal antibody titers, and 50% showed a doubling of at least the lipopolysaccharide-specific immunoglobulin A titers in serum. At 1 month after vaccination, five volunteers from the vaccine group and five from the placebo group underwent an exploratory challenge study with 10(9) CFU of DeltaCTXPhi attenuated mutant strain V. cholerae 81. Only two volunteers from the vaccine group shed strain 81 in their feces, but none of them experienced diarrhea; in the placebo group, all volunteers excreted the challenge strain, and three had reactogenic diarrhea. An additional 12 vaccinees and 9 placebo recipients underwent challenge with 7 x 10(5) CFU of virulent strain V. cholerae 3008 freshly harvested from a brain heart infusion agar plate and buffered with 1.3% NaHCO(3). Three volunteers (25%) from the vaccine group and all from the placebo group shed the challenge agent in their feces. None of the 12 vaccinees but 7 volunteers from the placebo group had diarrhea, and 2 of the latter exhibited severe cholera (>5,000 g of diarrheal stool). These results indicate that at 1 month after ingestion of a single oral dose (10

  15. Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection

    PubMed Central

    Cornejo, Omar E.; Durrego, Ester; Stanley, Craig E.; Castillo, Andreína I.; Herrera, Sócrates; Escalante, Ananias A.

    2016-01-01

    Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28. PMID:27347876

  16. Leishmania genome analysis and high-throughput immunological screening identifies tuzin as a novel vaccine candidate against visceral leishmaniasis.

    PubMed

    Lakshmi, Bhavana Sethu; Wang, Ruobing; Madhubala, Rentala

    2014-06-24

    Leishmaniasis is a neglected tropical disease caused by Leishmania species. It is a major health concern affecting 88 countries and threatening 350 million people globally. Unfortunately, there are no vaccines and there are limitations associated with the current therapeutic regimens for leishmaniasis. The emerging cases of drug-resistance further aggravate the situation, demanding rapid drug and vaccine development. The genome sequence of Leishmania, provides access to novel genes that hold potential as chemotherapeutic targets or vaccine candidates. In this study, we selected 19 antigenic genes from about 8000 common Leishmania genes based on the Leishmania major and Leishmania infantum genome information available in the pathogen databases. Potential vaccine candidates thus identified were screened using an in vitro high throughput immunological platform developed in the laboratory. Four candidate genes coding for tuzin, flagellar glycoprotein-like protein (FGP), phospholipase A1-like protein (PLA1) and potassium voltage-gated channel protein (K VOLT) showed a predominant protective Th1 response over disease exacerbating Th2. We report the immunogenic properties and protective efficacy of one of the four antigens, tuzin, as a DNA vaccine against Leishmania donovani challenge. Our results show that administration of tuzin DNA protected BALB/c mice against L. donovani challenge and that protective immunity was associated with higher levels of IFN-γ and IL-12 production in comparison to IL-4 and IL-10. Our study presents a simple approach to rapidly identify potential vaccine candidates using the exhaustive information stored in the genome and an in vitro high-throughput immunological platform. Copyright © 2014. Published by Elsevier Ltd.

  17. Decrease in circulating CD25(hi)Foxp3(+) regulatory T cells following vaccination with the candidate malaria vaccine RTS,S.

    PubMed

    Parsons, Emily; Epstein, Judith; Sedegah, Martha; Villasante, Eileen; Stewart, Ann

    2016-08-31

    Regulatory T (Treg) cells have been shown in some cases to limit vaccine-specific immune responses and impact efficacy. Very little is known about the regulatory responses to the leading malaria vaccine candidate, RTS,S. The goal of this study was to begin to characterize the regulatory responses to the RTS,S vaccine. Using multi-parameter flow cytometry, we examined responses in 13 malaria naïve adult volunteers who received 2 doses of RTS,S given eight weeks apart. Five of these volunteers had previously received 3 doses of a candidate DNA-CSP vaccine, with the final dose given approximately one year prior to the first dose of the RTS,S vaccine. We found that the frequency of CD25(hi)Foxp3(+) Treg cells decreased following administration of RTS,S (p=0.0195), with no differences based on vaccine regimen. There was a concomitant decrease in CTLA-4 expression on CD25(hi)Foxp3(+) Treg cells (p=0.0093) and PD-1 levels on CD8(+) T cells (p=0.0002). Additionally, the frequency of anergic CTLA-4(+)CCR7(+) T cells decreased following vaccination. An inverse correlation was observed between the frequency of Plasmodium falciparum circumsporozoite protein (PfCSP)-specific IFN-γ and PfCSP-specific IL-10, as well as an inverse correlation between IL-10 induced by Hepatitis B surface antigen, the carrier of RTS,S, and PfCSP-specific IFN-γ, suggesting that immunity against the vaccine backbone could impact vaccine immunogenicity. These results have implications for future malaria vaccine design. Copyright © 2016. Published by Elsevier Ltd.

  18. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fangye; Zhou, Jian; Ma, Lei

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process hasmore » been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.« less

  19. Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease

    PubMed Central

    Hines, Murray E.; Turnquist, Sue E.; Ilha, Marcia R. S.; Rajeev, Sreekumari; Jones, Arthur L.; Whittington, Lisa; Bannantine, John P.; Barletta, Raúl G.; Gröhn, Yrjö T.; Katani, Robab; Talaat, Adel M.; Li, Lingling; Kapur, Vivek

    2014-01-01

    Johne's disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a major threat to the dairy industry and possibly some cases of Crohn's disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were (1) to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne's Disease Integrated Program (JDIP) Animal Model Standardization Committee (AMSC), and (2) to validate the AMSC Johne's disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis), or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 × 109 CFU divided in two consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate). All kids were necropsied at 13 months post-challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318) do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329) reduced fecal shedding and tissue colonization. PMID

  20. MVA ROP2 vaccinia virus recombinant as a vaccine candidate for toxoplasmosis.

    PubMed

    Roque-Reséndiz, J L; Rosales, R; Herion, P

    2004-04-01

    Toxoplasma gondii is the aetiological agent of toxoplasmosis and is the most frequent and best known of the parasitic diseases. In the United States, a serological survey from the Third National Health and Nutrition Examination Survey found that an estimated 23% of adolescents and adults have laboratory evidence of infection with T. gondii. Although toxoplasmosis is asymptomatic or shows self-limited symptoms in adults, in pregnant women infections can cause severe health problems to the fetus if the parasites are transmitted. Also, in immunodeficient patients, chronic infection with T. gondii can reactivate and produce encephalitis, which is frequently lethal. In addition, in veterinary medicine, T. gondii infection is of economic importance due to abortion and neonatal loss in sheep and goats. Recently, the development of vaccines against toxoplasmosis has progressed considerably. The live attenuated S48 strain of Toxoplasma has been broadly used for veterinary purposes. DNA vaccines containing the full-length of SAG1/P30, ROP2 or ROP1 genes have proved to be a promising candidate to induce protection against toxoplasmosis. Viral vectors have proved to be the best candidates for vaccination in different diseases. A recombinant Herpes virus carrying the ROP2 gene is able to induce protective immunity in cats. In the present work we describe the potential of the MVA ROP2 recombinant vaccinia virus as a vaccine against toxoplasmosis. MVA ROP2 induces antibodies against the ROP2 protein in similar amount and types as the thermo-sensible strain ts-4 of T. gondii, which is able to fully protect mice against challenge with the virulent RH strain of T. gondii. Also, the life-span of mice is increased in MVA ROP2 vaccinated animals. We conclude that MVA ROP2 vaccine can possibly generate an immune response, which could be useful in protection against toxoplasmosis.

  1. The ΔfbpA attenuated candidate vaccine from Mycobacterium tuberculosis, H37Rv primes for a stronger T-bet dependent Th1 immunity in mice.

    PubMed

    Roche, Cherie M; Smith, Amanda; Lindsey, Devin R; Meher, Akshay; Schluns, Kimberly; Arora, Ashish; Armitige, Lisa Y; Jagannath, Chinnaswamy

    2011-12-01

    The ΔfbpA candidate vaccine derived from Mycobacterium tuberculosis (H37Rv) (Mtb) protects mice better than BCG against tuberculosis, and we investigated the hypothesis that ΔfbpA may induce a stronger Th1 immunity. Since T-bet transcription factor regulates Th1 immunity, mice infected with ΔfbpA, BCG vaccine and related mycobacteria were analyzed for T-bet positive T cells. Mouse dendritic cells (DCs) or macrophages were also pulsed with excretory-secreted antigens (ES; Antigen-85B, ESAT-6 and CFP10) and cocultured with T cells from immunized or naïve mice and tested for in vitro induction of T-bet and IFN-γ. In both models, ΔfbpA mutant induced a stronger response of T-bet(+)CD4 T cells, which correlated with an increased expansion of IFN-γ(+)CD4 T cells in vivo and in vitro. When DCs pulsed with ES antigens were allowed to stimulate T cells, ESAT-6 and CFP-10 failed to induce a recall expansion of T-bet(+)IFN-γ(+)CD4 T cells from BCG vaccinated mice. Thus, deletion of RD1 in BCG seems to reduce its ability to induce T-bet and induce stronger Th1 immunity. Finally, mice were vaccinated with ΔfbpA and BCG and challenged with virulent Mtb for evaluation of protection and T cell expansion. ΔfbpA vaccinated mice showed a rapid and stronger expansion of CD4(+)CXCR3(+) IFN-γ(+) T cells in the lungs of Mtb challenged mice, compared to those which had BCG vaccine. ΔfbpA immunized mice also showed a better decline of the Mtb bacterial counts of the lungs. Mtb derived ΔfbpA candidate vaccine therefore induces qualitatively better T-bet dependent Th1 immunity than BCG vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mucosal Immunization with a Candidate Universal Influenza Vaccine Reduces Virus Transmission in a Mouse Model

    PubMed Central

    Lo, Chia-Yun; Misplon, Julia A.; Epstein, Suzanne L.

    2014-01-01

    ABSTRACT Pandemic influenza is a major public health concern, but conventional strain-matched vaccines are unavailable early in a pandemic. Candidate “universal” vaccines targeting the viral antigens nucleoprotein (NP) and matrix 2 (M2), which are conserved among all influenza A virus strains and subtypes, could be manufactured in advance for use at the onset of a pandemic. These vaccines do not prevent infection but can reduce disease severity, deaths, and virus titers in the respiratory tract. We hypothesized that such immunization may reduce virus transmission from vaccinated, infected animals. To investigate this hypothesis, we studied mouse models for direct-contact and airborne transmission of H1N1 and H3N2 influenza viruses. We established conditions under which virus transmission occurs and showed that transmission efficiency is determined in part at the level of host susceptibility to infection. Our findings indicate that virus transmission between mice has both airborne and direct-contact components. Finally, we demonstrated that immunization with recombinant adenovirus vectors expressing NP and M2 significantly reduced the transmission of virus to cohoused, unimmunized mice in comparison to controls. These findings have broad implications for the impact of conserved-antigen vaccines, not only in protecting the vaccinated individual but also in protecting others by limiting influenza virus transmission and potentially reducing the size of epidemics. IMPORTANCE Using a mouse model of influenza A virus transmission, we demonstrate that a candidate “universal” influenza vaccine both protects vaccinated animals from lethal infection and reduces the transmission of virus from vaccinated to nonvaccinated mice. This vaccine induces immunity against proteins conserved among all known influenza A virus strains and subtypes, so it could be used early in a pandemic before conventional strain-matched vaccines are available and could potentially reduce the

  3. Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand

    PubMed Central

    Lumkul, Lalita; Sawaswong, Vorthon; Simpalipan, Phumin; Kaewthamasorn, Morakot; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2018-01-01

    Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pairwise population differentiation (Fst indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the Fst indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand’s borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS. PMID:29742870

  4. Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.

    PubMed

    Kim, Seon-Hee; Bae, Young-An; Seoh, Ju-Young; Yang, Hyun-Jong

    2017-06-01

    Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium . Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii -infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

  5. Immunogenicity of mumps virus vaccine candidates matching circulating genotypes in the United States and China.

    PubMed

    Zengel, James; Phan, Shannon I; Pickar, Adrian; Xu, Pei; He, Biao

    2017-07-13

    Mumps virus (MuV) causes acute infection in humans with characteristic swelling of the parotid gland. While vaccination has greatly reduced the incidence of MuV infection, there have been multiple large outbreaks of mumps virus (MuV) in highly vaccinated populations. The most common vaccine strain, Jeryl Lynn, belongs to genotype A, which is no longer a circulating genotype. We have developed two vaccine candidates that match the circulating genotypes in the United States (genotype G) and China (genotype F). We found that there was a significant decrease in the ability of the Jeryl Lynn vaccine to produce neutralizing antibody responses to non-matched viruses, when compared to either of our vaccine candidates. Our data suggests that an updated vaccine may allow for better immunity against the circulating MuV genotypes G and F. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Safety, immunogenicity and protective efficacy in mice of a new cell-cultured Lister smallpox vaccine candidate.

    PubMed

    Ferrier-Rembert, Audrey; Drillien, Robert; Meignier, Bernard; Garin, Daniel; Crance, Jean-Marc

    2007-11-28

    It is now difficult to manufacture the first-generation smallpox vaccine, as the process could not comply with current safety and manufacturing regulations. In this study, a candidate non-clonal second-generation smallpox vaccine developed by Sanofi-Pasteur from the Lister strain has been assessed using a cowpox virus challenge in mice. We have observed similar safety, immunogenicity and protection (from disease and death) after a short or long interval following vaccination, as well as similar virus clearance post-challenge, with the second-generation smallpox vaccine candidate as compared to the traditional vaccine used as a benchmark.

  7. An Approach to Identify and Characterize a Subunit Candidate Shigella Vaccine Antigen.

    PubMed

    Pore, Debasis; Chakrabarti, Manoj K

    2016-01-01

    Shigellosis remains a serious issue throughout the developing countries, particularly in children under the age of 5. Numerous strategies have been tested to develop vaccines targeting shigellosis; unfortunately despite several years of extensive research, no safe, effective, and inexpensive vaccine against shigellosis is available so far. Here, we illustrate in detail an approach to identify and establish immunogenic outer membrane proteins from Shigella flexneri 2a as subunit vaccine candidates.

  8. α-Thalassaemia trait is associated with antibody prevalence against malaria antigens AMA-1 and MSP-1.

    PubMed

    Daou, Modibo; Kituma, Elimsaada; Kavishe, Reginald; Chilongola, Jaffu; Mosha, Frank; van der Ven, André; Kouriba, Bourema; Bousema, Teun; Sauerwein, Robert; Doumbo, Ogobaro

    2015-04-01

    A longitudinal study was conducted in a low endemic area in northern Tanzania to examine the influence of the α-thalassaemia trait on malaria incidence and antibody responses to malaria apical membrane antigen-1 (AMA-1) and merozoite surface protein1-19 (MSP-119). Out of 394 children genotyped for α-thalassaemia trait, 4.1% (16 of 394) and 30.7% (121 of 394) were homozygous and heterozygous, respectively. During the 1 year follow-up, four incidents of malaria cases were detected without an evident association with α-thalassaemia. Being heterozygous or homozygous for α-thalassaemia was associated with an increased prevalence of antibodies to AMA-1 [odds ratio (OR): 1.83, 95% confidence interval (CI): 1.07-3.12, p = 0.027] and MSP-1 (OR: 2.04, 95% CI: 1.16-3.60, p = 0.013) after adjustment for age and reported bednet use. The observed association between α-thalassaemia and malaria antibody responses may reflect longer-term differences in antigen exposure or differences in antibody acquisition upon exposure in this low endemic setting. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells

    PubMed Central

    2011-01-01

    Background Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. Results Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. Conclusions We describe for the first time the production

  10. Glycoprotein G deficient infectious laryngotracheitis virus is a candidate attenuated vaccine.

    PubMed

    Devlin, Joanne M; Browning, Glenn F; Hartley, Carol A; Gilkerson, James R

    2007-05-04

    Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes respiratory disease in chickens and is currently controlled by vaccination with conventionally attenuated virus strains. These vaccines have limitations because of residual pathogenicity and reversion to virulence, suggesting that a novel vaccine strain that lacks virulence gene(s) may enhance disease control. Glycoprotein G (gG) has recently been identified as a virulence factor in ILTV. In this study the immunogenicity and relative pathogenicity of gG deficient ILTV was investigated in SPF chickens. Birds vaccinated with gG deficient ILTV were protected against clinical signs of disease following challenge with virulent ILTV and gG deficient ILTV was also shown to be less pathogenic than currently available commercial vaccine strains. Thus gG deficient ILTV appears to have potential as a vaccine candidate.

  11. Evaluation of the Schistosoma mansoni Y-box-binding protein (SMYB1) potential as a vaccine candidate against schistosomiasis.

    PubMed

    Dias, Sílvia R C; Boroni, Mariana; Rocha, Elizângela A; Dias, Thomaz L; de Laet Souza, Daniela; Oliveira, Fabrício M S; Bitar, Mainá; Macedo, Andrea M; Machado, Carlos R; Caliari, Marcelo V; Franco, Glória R

    2014-01-01

    Schistosomiasis is a neglected tropical disease, and after malaria, is the second most important tropical disease in public health. A vaccine that reduces parasitemia is desirable to achieve mass treatment with a low cost. Although potential antigens have been identified and tested in clinical trials, no effective vaccine against schistosomiasis is available. Y-box-binding proteins (YBPs) regulate gene expression and participate in a variety of cellular processes, including transcriptional and translational regulation, DNA repair, cellular proliferation, drug resistance, and stress responses. The Schistosoma mansoni ortholog of the human YB-1, SMYB1, is expressed in all stages of the parasite life cycle. Although SMYB1 binds to DNA or RNA oligonucleotides, immunohistochemistry assays demonstrated that it is primarily localized in the cytoplasm of parasite cells. In addition, SMYB1 interacts with a protein involved in mRNA processing, suggesting that SMYB1 functions in the turnover, transport, and/or stabilization of RNA molecules during post-transcriptional gene regulation. Here we report the potential of SMYB1 as a vaccine candidate. We demonstrate that recombinant SMYB1 stimulates the production of high levels of specific IgG1 antibodies in a mouse model. The observed levels of specific IgG1 and IgG2a antibodies indicate an actual protection against cercariae challenge. Animals immunized with rSMYB1 exhibited a 26% reduction in adult worm burden and a 28% reduction in eggs retained in the liver. Although proteins from the worm tegument are considered optimal targets for vaccine development, this study demonstrates that unexposed cytoplasmic proteins can reduce the load of intestinal worms and the number of eggs retained in the liver.

  12. Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials.

    PubMed

    Modjarrad, Kayvon; Lin, Leyi; George, Sarah L; Stephenson, Kathryn E; Eckels, Kenneth H; De La Barrera, Rafael A; Jarman, Richard G; Sondergaard, Erica; Tennant, Janice; Ansel, Jessica L; Mills, Kristin; Koren, Michael; Robb, Merlin L; Barrett, Jill; Thompson, Jason; Kosel, Alison E; Dawson, Peter; Hale, Andrew; Tan, C Sabrina; Walsh, Stephen R; Meyer, Keith E; Brien, James; Crowell, Trevor A; Blazevic, Azra; Mosby, Karla; Larocca, Rafael A; Abbink, Peter; Boyd, Michael; Bricault, Christine A; Seaman, Michael S; Basil, Anne; Walsh, Melissa; Tonwe, Veronica; Hoft, Daniel F; Thomas, Stephen J; Barouch, Dan H; Michael, Nelson L

    2018-02-10

    A safe, effective, and rapidly scalable vaccine against Zika virus infection is needed. We developed a purified formalin-inactivated Zika virus vaccine (ZPIV) candidate that showed protection in mice and non-human primates against viraemia after Zika virus challenge. Here we present the preliminary results in human beings. We did three phase 1, placebo-controlled, double-blind trials of ZPIV with aluminium hydroxide adjuvant. In all three studies, healthy adults were randomly assigned by a computer-generated list to receive 5 μg ZPIV or saline placebo, in a ratio of 4:1 at Walter Reed Army Institute of Research, Silver Spring, MD, USA, or of 5:1 at Saint Louis University, Saint Louis, MO, USA, and Beth Israel Deaconess Medical Center, Boston, MA, USA. Vaccinations were given intramuscularly on days 1 and 29. The primary objective was safety and immunogenicity of the ZPIV candidate. We recorded adverse events and Zika virus envelope microneutralisation titres up to day 57. These trials are registered at ClinicalTrials.gov, numbers NCT02963909, NCT02952833, and NCT02937233. We enrolled 68 participants between Nov 7, 2016, and Jan 25, 2017. One was excluded and 67 participants received two injections of Zika vaccine (n=55) or placebo (n=12). The vaccine caused only mild to moderate adverse events. The most frequent local effects were pain (n=40 [60%]) or tenderness (n=32 [47%]) at the injection site, and the most frequent systemic reactogenic events were fatigue (29 [43%]), headache (26 [39%]), and malaise (15 [22%]). By day 57, 52 (92%) of vaccine recipients had seroconverted (microneutralisation titre ≥1:10), with peak geometric mean titres seen at day 43 and exceeding protective thresholds seen in animal studies. The ZPIV candidate was well tolerated and elicited robust neutralising antibody titres in healthy adults. Departments of the Army and Defense and National Institute of Allergy and Infectious Diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. H5N1 vaccines in humans

    PubMed Central

    Baz, Mariana; Luke, Catherine J; Cheng, Xing; Jin, Hong; Subbarao, Kanta

    2013-01-01

    The spread of highly pathogenic avian H5N1 influenza viruses since 1997 and their virulence for poultry and humans has raised concerns about their potential to cause an influenza pandemic. Vaccines offer the most viable means to combat a pandemic threat. However, it will be a challenge to produce, distribute and implement a new vaccine if a pandemic spreads rapidly. Therefore, efforts are being undertaken to develop pandemic vaccines that use less antigen and induce cross-protective and long-lasting responses, that can be administered as soon as a pandemic is declared or possibly even before, in order to prime the population and allow for a rapid and protective antibody response. In the last few years, several vaccine manufacturers have developed candidate pandemic and pre-pandemic vaccines, based on reverse genetics and have improved the immunogenicity by formulating these vaccines with different adjuvants. Some of the important and consistent observations from clinical studies with H5N1 vaccines are as follows: two doses of inactivated vaccine are generally necessary to elicit the level of immunity required to meet licensure criteria, less antigen can be used if an oil-in-water adjuvant is included, in general antibody titers decline rapidly but can be boosted with additional doses of vaccine and if high titers of antibody are elicited, cross-reactivity against other clades is observed. Prime-boost strategies elicit a more robust immune response. In this review, we discuss data from clinical trials with a variety of H5N1 influenza vaccines. We also describe studies conducted in animal models to explore the possibility of reassortment between pandemic live attenuated vaccine candidates and seasonal influenza viruses, since this is an important consideration for the use of live vaccines in a pandemic setting. PMID:23726847

  14. Attenuation and efficacy of live-attenuated Rift Valley fever virus vaccine candidates in non-human primates.

    PubMed

    Smith, Darci R; Johnston, Sara C; Piper, Ashley; Botto, Miriam; Donnelly, Ginger; Shamblin, Joshua; Albariño, César G; Hensley, Lisa E; Schmaljohn, Connie; Nichol, Stuart T; Bird, Brian H

    2018-05-09

    Rift Valley fever virus (RVFV) is an important mosquito-borne veterinary and human pathogen that has caused large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Currently, no licensed vaccine or therapeutics exists to treat this potentially deadly disease. The explosive nature of RVFV outbreaks and the severe consequences of its accidental or intentional introduction into RVFV-free areas provide the impetus for the development of novel vaccine candidates for use in both livestock and humans. Rationally designed vaccine candidates using reverse genetics have been used to develop deletion mutants of two known RVFV virulence factors, the NSs and NSm genes. These recombinant viruses were demonstrated to be protective and immunogenic in rats, mice, and sheep, without producing clinical illness in these animals. Here, we expand upon those findings and evaluate the single deletion mutant (ΔNSs rRVFV) and double deletion mutant (ΔNSs-ΔNSm rRVFV) vaccine candidates in the common marmoset (Callithrix jacchus), a non-human primate (NHP) model resembling severe human RVF disease. We demonstrate that both the ΔNSs and ΔNSs-ΔNSm rRVFV vaccine candidates were found to be safe and immunogenic in the current study. The vaccinated animals received a single dose of vaccine that led to the development of a robust antibody response. No vaccine-induced adverse reactions, signs of clinical illness or infectious virus were detected in the vaccinated marmosets. All vaccinated animals that were subsequently challenged with RVFV were protected against viremia and liver disease. In summary, our results provide the basis for further development of the ΔNSs and ΔNSs-ΔNSm rRVFV as safe and effective human RVFV vaccines for this significant public health threat.

  15. Reverse vaccinology as an approach for developing Histophilus somni vaccine candidates.

    PubMed

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Wang, Yejun; White, Aaron P; Brownlie, Robert; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-11-01

    Histophilosis of cattle is caused by the Gram negative bacterial pathogen Histophilus somni (H. somni) which is also associated with the bovine respiratory disease (BRD) complex. Existing vaccines for H. somni include either killed cells or bacteria-free outer membrane proteins from the organism which have proven to be moderately successful. In this study, reverse vaccinology was used to predict potential H. somni vaccine candidates from genome sequences. In turn, these may protect animals against new strains circulating in the field. Whole genome sequencing of six recent clinical H. somni isolates was performed using an Illumina MiSeq and compared to six genomes from the 1980's. De novo assembly of crude whole genomes was completed using Geneious 6.1.7. Protein coding regions was predicted using Glimmer3. Scores from multiple web-based programs were utilized to evaluate the antigenicity of these predicted proteins which were finally ranked based on their surface exposure scores. A single new strain was selected for future vaccine development based on conservation of the protein candidates among all 12 isolates. A positive signal with convalescent serum for these antigens in western blots indicates in vivo recognition. In order to test the protective capacity of these antigens bovine animal trials are ongoing. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of Three Live Attenuated H2 Pandemic Influenza Vaccine Candidates in Mice and Ferrets

    PubMed Central

    Chen, Grace L.; Lamirande, Elaine W.; Cheng, Xing; Torres-Velez, Fernando; Orandle, Marlene; Jin, Hong; Kemble, George

    2014-01-01

    ABSTRACT H2 influenza viruses have not circulated in humans since 1968, and therefore a significant portion of the population would be susceptible to infection should H2 influenza viruses reemerge. H2 influenza viruses continue to circulate in avian reservoirs worldwide, and these reservoirs are a potential source from which these viruses could emerge. Three reassortant cold-adapted (ca) H2 pandemic influenza vaccine candidates with hemagglutinin (HA) and neuraminidase (NA) genes derived from the wild-type A/Japan/305/1957 (H2N2) (Jap/57), A/mallard/6750/1978 (H2N2) (mal/78), or A/swine/MO/4296424/2006 (H2N3) (sw/06) viruses and the internal protein gene segments from the A/Ann Arbor/6/60 ca virus were generated by plasmid-based reverse genetics (Jap/57 ca, mal/78 ca, and sw/06 ca, respectively). The vaccine candidates exhibited the in vitro phenotypes of temperature sensitivity and cold adaptation and were restricted in replication in the respiratory tract of ferrets. In mice and ferrets, the vaccines elicited neutralizing antibodies and conferred protection against homologous wild-type virus challenge. Of the three candidates, the sw/06 ca vaccine elicited cross-reactive antibodies and provided significant protection against the greatest number of heterologous viruses. These observations suggest that the sw/06 ca vaccine should be further evaluated in a clinical trial as an H2 pandemic influenza vaccine candidate. IMPORTANCE Influenza pandemics arise when novel influenza viruses are introduced into a population with little prior immunity to the new virus and often result in higher rates of illness and death than annual seasonal influenza epidemics. An influenza H2 subtype virus caused a pandemic in 1957, and H2 viruses circulated in humans till 1968. H2 influenza viruses continue to circulate in birds, and the development of an H2 influenza vaccine candidate is therefore considered a priority in preparing for future pandemics. However, we cannot predict whether a

  17. Subcutaneous administration CpG-ODNs acts as a potent adjuvant for an HIV-1-tat-based vaccine candidate to elicit cellular immunity in BALB/c mice.

    PubMed

    Panahi, Zeinab; Abdoli, Asghar; Mosayebi, Ghasem; Mahdavi, Mehdi; Bahrami, Fariborz

    2018-03-01

    To evaluate the combined effects of CpG oligodeoxynucleotides (CpG-ODNs) adjuvant and subcutaneous injection route on efficacy of a HIV-1-tat DNA vaccine candidate using BALB/c mice as an animal model. Evaluation of cellular and humoral immunity of mice injected subcutaneously with HIV-1-tat gene cloned into a pcDNA3.1 vector indicated that significant levels of IFN-γ cytokine secretion (900 pg/ml), lymphocyte proliferation (2.5 stimulation index) and IgG 2a (1.45 absorbance 450 nm) production could be achieved. These indicators of stimulated cellular immunity were elicited 2 weeks after the last injection (P < 0.05). Formulation of HIV-1-tat DNA vaccine candidate with CpG-ODNs as an adjuvant while administrated subcutaneously are a promising approach to induce effective cellular immunity responses against HIV-1 infection.

  18. Glycolysis-related proteins are broad spectrum vaccine candidates against aquacultural pathogens.

    PubMed

    Liu, Xiaohong; Sun, Jiamin; Wu, Haizhen

    2017-07-05

    Reverse vaccinology (RV) has become a popular method for developing vaccines. Although Edwardsiella tarda is deemed to be an important fish pathogen, so far, no reports have used a genome-based approach to screen vaccine candidates against E. tarda. In the current study, protective antigens of E. tarda were screened using RV. Large-scale cloning, expression and purification of potential candidates were carried out, and their immunoprotective potential was evaluated. A candidate fructose-bisphosphate aldolase (FBA) exhibited broad spectrum protection, as did another glycolysis-related protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which we reported previously, indicating the potential of other glycolysis-related proteins of E. tarda as broad spectrum protective antigens. In total, half (5 out 10) of these proteins showed prominent immunoprotective potential. Therefore, we suggest that glycolysis-related proteins are a class of potential broad spectrum protective antigens and that these proteins should be preferentially selected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Immunogenicity of Novel Mumps Vaccine Candidates Generated by Genetic Modification

    PubMed Central

    Xu, Pei; Chen, Zhenhai; Phan, Shannon; Pickar, Adrian

    2014-01-01

    Mumps is a highly contagious human disease, characterized by lateral or bilateral nonsuppurative swelling of the parotid glands and neurological complications that can result in aseptic meningitis or encephalitis. A mumps vaccination program implemented since the 1960s reduced mumps incidence by more than 99% and kept the mumps case numbers as low as hundreds of cases per year in the United States before 2006. However, a large mumps outbreak occurred in vaccinated populations in 2006 and again in 2009 in the United States, raising concerns about the efficacy of the vaccination program. Previously, we have shown that clinical isolate-based recombinant mumps viruses lacking expression of either the V protein (rMuVΔV) or the SH protein (rMuVΔSH) are attenuated in a neurovirulence test using newborn rat brains (P. Xu et al., Virology 417:126–136, 2011, http://dx.doi.org/10.1016/j.virol.2011.05.003; P. Xu et al., J. Virol. 86:1768–1776, 2012, http://dx.doi.org/10.1128/JVI.06019-11) and may be good candidates for vaccine development. In this study, we examined immunity induced by rMuVΔSH and rMuVΔV in mice. Furthermore, we generated recombinant mumps viruses lacking expression of both the V protein and the SH protein (rMuVΔSHΔV). Analysis of rMuVΔSHΔV indicated that it was stable in tissue culture cell lines. Importantly, rMuVΔSHΔV was immunogenic in mice, indicating that it is a promising candidate for mumps vaccine development. PMID:24352450

  20. Immunogenicity of novel mumps vaccine candidates generated by genetic modification.

    PubMed

    Xu, Pei; Chen, Zhenhai; Phan, Shannon; Pickar, Adrian; He, Biao

    2014-03-01

    Mumps is a highly contagious human disease, characterized by lateral or bilateral nonsuppurative swelling of the parotid glands and neurological complications that can result in aseptic meningitis or encephalitis. A mumps vaccination program implemented since the 1960s reduced mumps incidence by more than 99% and kept the mumps case numbers as low as hundreds of cases per year in the United States before 2006. However, a large mumps outbreak occurred in vaccinated populations in 2006 and again in 2009 in the United States, raising concerns about the efficacy of the vaccination program. Previously, we have shown that clinical isolate-based recombinant mumps viruses lacking expression of either the V protein (rMuVΔV) or the SH protein (rMuVΔSH) are attenuated in a neurovirulence test using newborn rat brains (P. Xu et al., Virology 417:126-136, 2011, http://dx.doi.org/10.1016/j.virol.2011.05.003; P. Xu et al., J. Virol. 86:1768-1776, 2012, http://dx.doi.org/10.1128/JVI.06019-11) and may be good candidates for vaccine development. In this study, we examined immunity induced by rMuVΔSH and rMuVΔV in mice. Furthermore, we generated recombinant mumps viruses lacking expression of both the V protein and the SH protein (rMuVΔSHΔV). Analysis of rMuVΔSHΔV indicated that it was stable in tissue culture cell lines. Importantly, rMuVΔSHΔV was immunogenic in mice, indicating that it is a promising candidate for mumps vaccine development.

  1. Recent progress on sanofi pasteur's dengue vaccine candidate.

    PubMed

    Lang, Jean

    2009-10-01

    The sanofi pasteur candidate dengue tetravalent vaccine (TV) is a recombinant live attenuated vaccine. It is based on a backbone of yellow fever vaccine (YF 17D) replication genes and incorporates the envelope genes of the four dengue virus serotypes. Pre-clinical studies have demonstrated that dengue TV is genetically stable, non-hepatotropic, less neurovirulent than YF 17D and does not infect mosquitoes by the oral route. Dengue TV reactogenicity, viraemia induction and antibody responses were investigated in three Phase II trials in the USA, the Philippines and Mexico. Participants were randomised to receive a three-dose regimen of dengue TV over 12 months (given at baseline, 3-4 and 12 months) or a control vaccine/placebo at baseline followed by two injections of dengue TV. Results showed that the majority of adverse events were mild to moderate and transient in nature, while no evidence of induction of viraemia was reported after initial dengue TV administration. Seroconversion was 100% for all four serotypes in flavivirus-naive adults in the USA injected with dengue TV. Similarly, seroconversion was 88-100% following three administrations in flavivirus-naive Mexican children aged 2-5 years. Furthermore, the proportion of seropositive subjects increased with each dengue TV injection in the Philippines where baseline flavivirus immunity was high (80.1%). An extensive clinical development programme for dengue TV is underway including an efficacy trial in Ratchaburi province, Thailand (an area of high dengue incidence). Assuming continued successful outcomes, initial submissions to regulatory authorities are envisaged within a 5-year period.

  2. Construction and preliminary immunobiological characterization of a novel, non-reverting, intranasal live attenuated whooping cough vaccine candidate.

    PubMed

    Cornford-Nairns, Renee; Daggard, Grant; Mukkur, Trilochan

    2012-06-01

    We describe the construction and immunobiological properties of a novel whooping cough vaccine candidate, in which the aroQ gene, encoding 3-dehydroquinase, was deleted by insertional inactivation using the kanamycin resistance gene cassette and allelic exchange using a Bordetella suicide vector. The aroQ B. pertussis mutant required supplementation of media to grow but failed to grow on an unsupplemented medium. The aroQ B. pertussis mutant was undetectable in the trachea and lungs of mice at days 6 and 12 post-infection, respectively. Antigen-specific antibody isotypes IgG1 and IgG2a, were produced, and cell-mediated immunity [CMI], using interleukin-2 and interferon-gamma as indirect indicators, was induced in mice vaccinated with the aroQ B. pertussis vaccine candidate, which were substantially enhanced upon second exposure to virulent B. pertussis. Interleukin- 12 was also produced in the aroQ B. pertussis-vaccinated mice. On the other hand, neither IgG2a nor CMI-indicator cytokines were produced in DTaP-vaccinated mice, although the CMI-indicator cytokines became detectable post-challenge with virulent B. pertussis. Intranasal immunization with one dose of the aroQ B. pertussis mutant protected vaccinated mice against an intranasal challenge infection, with no pathogen being detected in the lungs of immunized mice by day 7 post-challenge. B. pertussis aroQ thus constitutes a safe, non-reverting, metabolite-deficient vaccine candidate that induces both humoral and cellmediated immune responses with potential for use as a single-dose vaccine in adolescents and adults, in the first instance, with a view to disrupting the transmission cycle of whooping cough to infants and the community.

  3. Transmission blocking malaria vaccines: Assays and candidates in clinical development.

    PubMed

    Sauerwein, R W; Bousema, T

    2015-12-22

    Stimulated by recent advances in malaria control and increased funding, the elimination of malaria is now considered to be an attainable goal for an increasing number of malaria-endemic regions. This has boosted the interest in transmission-reducing interventions including vaccines that target sexual, sporogenic, and/or mosquito-stage antigens to interrupt malaria transmission (SSM-VIMT). SSM-VIMT aim to prevent human malaria infection in vaccinated communities by inhibiting parasite development within the mosquito after a blood meal taken from a gametocyte carrier. Only a handful of target antigens are in clinical development and progress has been slow over the years. Major stumbling blocks include (i) the expression of appropriately folded target proteins and their downstream purification, (ii) insufficient induction of sustained functional blocking antibody titers by candidate vaccines in humans, and (iii) validation of a number of (bio)-assays as correlate for blocking activity in the field. Here we discuss clinical manufacturing and testing of current SSM-VIMT candidates and the latest bio-assay development for clinical evaluation. New testing strategies are discussed that may accelerate the evaluation and application of SSM-VIMT. Copyright © 2015. Published by Elsevier Ltd.

  4. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    PubMed

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  5. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates.

    PubMed

    Belanov, Sergei S; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E

    2015-11-27

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009-2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009-2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Human Vaccines & Immunotherapeutics

    PubMed Central

    Riedmann, Eva M.

    2012-01-01

    Two therapeutic HPV vaccine candidates successful in phase 1 Flu shot may prevent heart attacks and stroke CDX-1401 combined with TLR agonist: Positive phase 1 results Three MRSA vaccines in early clincial trials Ovarian cancer vaccine candidate DPX-Survivac: Positive interim results from phase 1 Chinese biotech partnership brings first hepatitis E vaccine to the market Therapeutic vaccine for treatment of genital herpes enters phase 2 Visionary concept: Printable vaccines PMID:23817319

  7. Activation of chicken bone marrow-derived dendritic cells induced by a Salmonella Enteritidis ghost vaccine candidate.

    PubMed

    Kamble, N M; Jawale, C V; Lee, J H

    2016-10-01

    Bacterial Ghost-based vaccine development has been applied to a variety of gram-negative bacteria. Developed Salmonella Enteritidis (S. Enteritidis) ghost are promising vaccine candidates because of their immunogenic and enhanced biosafety potential. In this study, we aimed to evaluate the immunostimulatory effect of a S. Enteritidis ghost vaccine on the maturation of chicken bone marrow-derived dendritic cells (chBM-DCs) in vitro The immature chBM-DCs were stimulated with S. Enteritidis ghost vaccine candidate. The vaccine efficiently stimulated maturation events in chBM-DCs, indicated by up-regulated expression of CD40, CD80, and MHC-II molecules. Immature BM-DCs responded to stimulation with S. Enteritidis ghost by increased expression of IL-6 and IL-12p40 cytokines. Also, S. Enteritidis ghost stimulated chBM-DCs induced the significant expression of IFN-γ and IL-2 in co-cultured autologous CD4+ T cells. In conclusion, our data suggest that S. Enteritidis ghost vaccine candidate is capable of activating and interacting with chBM-DCs. The results from current study may help for rational designing of Salmonella ghost based heterologous antigen delivery platforms to dendritic cells. © 2016 Poultry Science Association Inc.

  8. Induction of long-lasting multi-specific CD8+ T cells by a four-component DNA-MVA/HIVA-RENTA candidate HIV-1 vaccine in rhesus macaques.

    PubMed

    Im, Eung-Jun; Nkolola, Joseph P; di Gleria, Kati; McMichael, Andrew J; Hanke, Tomás

    2006-10-01

    As a part of a long-term effort to develop vaccine against HIV-1 clade A inducing protective T cell responses in humans, we run mutually complementing studies in humans and non-human primates (NHP) with the aim to maximize vaccine immunogenicity. The candidate vaccine under development has four components, pTHr.HIVA and pTH.RENTA DNA, and modified vaccinia virus Ankara (MVA).HIVA and MVA.RENTA, delivered in a heterologous DNA prime-MVA boost regimen. While the HIVA (Gag/epitopes) components have been tested in NHP and over 300 human subjects, we plan to test in humans the RENTA (reverse transcriptase, gp41, Nef, Tat) vaccines designed to broaden HIVA-induced responses in year 2007. Here, we investigated the four-component vaccine long-term immunogenicity in Mamu-A*01-positive rhesus macaques and demonstrated that the vaccine-induced T cells were multi-specific, multi-functional, readily proliferated to recall peptides and were circulating in the peripheral blood of vaccine recipients over 1 year after vaccine administration. The consensus clade A-elicited T cells recognized 50% of tested epitope variants from other HIV-1 clades. Thus, the DNA-MVA/HIVA-RENTA vaccine induced memory T cells of desirable characteristics and similarities to those induced in humans by HIVA vaccines alone; however, single-clade vaccines may not elicit sufficiently cross-reactive responses.

  9. Identification of L. infantum chagasi proteins in VL patients' urine: a promising antigen discovery approach of vaccine candidates

    PubMed Central

    Kashino, Suely S.; Abeijon, Claudia; Qin, Lizeng; Kanunfre, Kelly A.; Kubrusly, Flávia S.; Silva, Fernando O.; Costa, Dorcas L.; Campos, Dioclécio; Costa, Carlos H.N.; Raw, Isaias; Campos-Neto, Antonio

    2012-01-01

    Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in Southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500,000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver, and bone marrow lesions and excreted in the patients’ urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1), and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in E. coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2 + BpMPLASE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to kala-azar and opens novel possibilities for vaccine development to other serious infectious diseases. PMID:22443237

  10. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models.

    PubMed

    Rivera-Hernandez, Tania; Pandey, Manisha; Henningham, Anna; Cole, Jason; Choudhury, Biswa; Cork, Amanda J; Gillen, Christine M; Ghaffar, Khairunnisa Abdul; West, Nicholas P; Silvestri, Guido; Good, Michael F; Moyle, Peter M; Toth, Istvan; Nizet, Victor; Batzloff, Michael R; Walker, Mark J

    2016-06-14

    Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a "gold standard" for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. This set of experiments demonstrates the inherent variability of mouse models for the characterization of GAS vaccine candidate protective efficacy. Such variability poses an important challenge for GAS vaccine development, as advancement of candidates to human clinical trials requires strong evidence of efficacy. This study highlights the need for an open discussion within the field regarding standardization of animal models for GAS vaccine development. Copyright © 2016 Rivera-Hernandez et al.

  11. A randomized trial of candidate inactivated quadrivalent influenza vaccine versus trivalent influenza vaccines in children aged 3-17 years.

    PubMed

    Domachowske, Joseph B; Pankow-Culot, Heidemarie; Bautista, Milagros; Feng, Yang; Claeys, Carine; Peeters, Mathieu; Innis, Bruce L; Jain, Varsha

    2013-06-15

    Two antigenically distinct influenza B lineages have cocirculated since 2001, yet trivalent influenza vaccines (TIVs) contain 1 influenza B antigen, meaning lineage mismatch with the vaccine is frequent. We assessed a candidate inactivated quadrivalent influenza vaccine (QIV) containing both B lineages vs TIV in healthy children aged 3-17 years. Children were randomized 1:1:1 to receive QIV or 1 of 2 TIVs (either B/Victoria or B/Yamagata lineage; N = 2738). Hemagglutination-inhibition assays were performed 28 days after 1 or 2 doses in primed and unprimed children, respectively. Immunological noninferiority of QIV vs TIV against shared strains, and superiority against alternate-lineage B strains was based on geometric mean titers (GMTs) and seroconversion rates. Reactogenicity and safety were also assessed (Clinicaltrials.gov NCT01196988). Noninferiority against shared strains and superiority against alternate-lineage B strains was demonstrated for QIV vs TIV. QIV was highly immunogenic; seroconversion rates were 91.4%, 72.3%, 70.0%, and 72.5% against A/H1N1, A/H3N2, B/Victoria, and B/Yamagata, respectively. Reactogenicity and safety of QIV was consistent with TIV. QIV vs TIV showed superior immunogenicity for the additional B strain without interfering with immune responses to shared strains. QIV may offer improved protection against influenza B in children compared with current trivalent vaccines.

  12. Chlamydia vaccine candidates and tools for chlamydial antigen discovery.

    PubMed

    Rockey, Daniel D; Wang, Jie; Lei, Lei; Zhong, Guangming

    2009-10-01

    The failure of the inactivated Chlamydia-based vaccine trials in the 1960s has led researchers studying Chlamydia to take cautious and rational approaches to develop safe and effective chlamydial vaccines. Subsequent research efforts focused on three areas. The first is the analysis of the immunobiology of chlamydial infection in animal models, with supporting clinical studies, to identify the immune correlates of both protective immunity and pathological responses. Second, recent radical improvements in genomics, proteomics and associated technologies have assisted in the implementation of creative approaches to search for suitable vaccine candidates. Third, progress in the analysis of host response and adjuvanticity regulating both innate and adaptive immunity at the mucosal site of infection has led to progress in the design of optimal delivery and adjuvant systems for enhancing protective immunity. Considerable progress has been made in the first two areas but research efforts to better define the factors that regulate immunity at mucosal sites of infection and to develop strategies to boost protective immunity via immunomodulation, effective delivery systems and potent adjuvants, have remained elusive. In this article, we will summarize progress in these areas with a focus on chlamydial vaccine antigen discovery, and discuss future directions towards the development of a safe and effective chlamydial vaccine.

  13. Parallel conduction of the phase I preventive and therapeutic trials based on the Tat vaccine candidate.

    PubMed

    Bellino, S; Francavilla, V; Longo, O; Tripiciano, A; Paniccia, G; Arancio, A; Fiorelli, V; Scoglio, A; Collacchi, B; Campagna, M; Lazzarin, A; Tambussi, G; Din, C Tassan; Visintini, R; Narciso, P; Antinori, A; D'Offizi, G; Giulianelli, M; Carta, M; Di Carlo, A; Palamara, G; Giuliani, M; Laguardia, M E; Monini, P; Magnani, M; Ensoli, F; Ensoli, B

    2009-09-01

    The native HIV-1 Tat protein was chosen as vaccine candidate for phase I clinical trials in both uninfected (ClinicalTrials.gov identifier: NCT00529698) and infected volunteers (ClinicalTrials.gov identifier: NCT00505401). The rationale was based on the role of Tat in the natural infection and AIDS pathogenesis, on the association of Tat-specific immune responses with the asymptomatic stage and slow-progression rate as well as on its sequence conservation among HIV clades (http://www.hiv1tat-vaccines.info/). The parallel conduction in the same clinical centers of randomized, double blind, placebo-controlled phase I studies both in healthy, immunologically competent adults and in HIV-infected, clinically asymptomatic, individuals represents a unique occasion to compare the vaccine-induced immune response in both the preventive and therapeutic setting. In both studies, the same lot of the native Tat protein was administered 5 times, every four weeks, subcute (SC) with alum adjuvant or intradermic (ID), in the absence of adjuvant, at 7.5 microg, 15 microg or 30 microg doses, respectively. The primary and secondary endpoints of these studies were the safety and immunogenicity of the vaccine candidate, respectively. The study lasted 52 weeks and monitoring was conducted for on additional 3 years. The results of both studies indicated that the Tat vaccine is safe and well tolerated both locally and systemically and it is highly immunogenic at all the dosages and by both routes of administration. Vaccination with Tat induced a balanced immune response in uninfected and infected individuals. In particular, therapeutic immunization induced functional antibodies and partially reverted the marked Th1 polarization of anti-Tat immunity seen in natural infection, and elicited a more balanced Th1/Th2 immune response. Further, the number of CD4 T cells correlated positively with anti-Tat antibody titers. Based on these results, a phase II study is ongoing in infected drug

  14. Candid No. 1 Argentine Hemorrhagic Fever Vaccine Protects against Lethal Junin Virus Challenge in Rhesus Macaques

    DTIC Science & Technology

    1992-01-01

    HeLra Fever Vaccine Anna L. Kuhne Hemorrhagic Joan A. Spisso Protects against Lethal Junin Virus B.G. Mahlandt United States Army Medical Challenge in...live-attenuated vac- cine against Argentine hemorrhagic fever (AH F), was evaluated om in non-human primates. Twenty rhesus macaques immunized 3 months...nees that had received 3 logl,• PFU Candid No. I or fewer: all Argentine hemorrhagic fever others, including those receiving 127,200 PFU, maintained

  15. Phase I Clinical Trial of a Recombinant Blood Stage Vaccine Candidate for Plasmodium falciparum Malaria Based on MSP1 and EBA175

    PubMed Central

    Chitnis, Chetan E.; Mukherjee, Paushali; Mehta, Shantanu; Yazdani, Syed Shams; Dhawan, Shikha; Shakri, Ahmad Rushdi; Bharadwaj, Rukmini; Gupta, Puneet Kumar; Hans, Dhiraj; Mazumdar, Suman; Singh, Bijender; Kumar, Sanjeev; Pandey, Gaurav; Parulekar, Varsha; Imbault, Nathalie; Shivyogi, Preethi; Godbole, Girish; Mohan, Krishna; Leroy, Odile; Singh, Kavita; Chauhan, Virander S.

    2015-01-01

    Background A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-119, the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175. Method Healthy malaria naïve Indian male subjects aged 18–45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10μg, 25μg and 50μg of each antigen) of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180. Results JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-119. Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain. Conclusion Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-119 construct needs to be optimised to improve its immunogenicity. Trial Registration Clinical Trial Registry, India CTRI/2010/091/000301 PMID:25927360

  16. Lessons from HIV-1 vaccine efficacy trials.

    PubMed

    Excler, Jean-Louis; Michael, Nelson L

    2016-11-01

    Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.

  17. A multi-country study of dengue vaccination strategies with Dengvaxia and a future vaccine candidate in three dengue-endemic countries: Vietnam, Thailand, and Colombia.

    PubMed

    Lee, Jung-Seok; Lourenço, José; Gupta, Sunetra; Farlow, Andrew

    2018-04-19

    The dengue vaccination era began when Dengvaxia (CYD-TDV) became available in 2016. In addition, several second-generation vaccine candidates are currently in phase 3 trials, suggesting that a broader availability of dengue vaccines may be possible in the near future. Advancing on the recent WHO-SAGE recommendations for the safe and effective use of CYD-TDV at the regional level on average, this study investigates the vaccination impacts and cost-effectiveness of CYD-TDV and of a hypothetical new vaccine candidate (NVC) in a country-specific manner for three endemic countries: Vietnam, Thailand, and Colombia. The vaccination impacts of CYD-TDV and NVC were derived by fitting the empirical seroprevalence rates of 9 year olds into an individual-based meta-population transmission model, previously used for the WHO-SAGE working group. The disability-adjusted life years were estimated by applying country-specific parametric values. The cost-effectiveness analyses of four intervention strategies in combination with routine and catch-up campaigns were compared for both vaccines to inform decision makers regarding the most suitable immunization program in each of the three countries. Both CYD-TDV and NVC could be cost-effective at the DALY threshold cost of $2000 depending upon vaccination costs. With CYD-TDV, targeting 9 year olds in routine vaccination programs and 10-29 year olds as a one-off catch-up campaign was the most cost-effective strategy in all three countries. With NVC, while the most cost-effective strategy was to vaccinate 9-29 and 9-18 year olds in Vietnam and Thailand respectively, vaccinating younger age cohorts between 1 and 5 years old in Colombia was more cost-effective than other strategies. Given that three countries will soon face decisions regarding whether and how to incorporate CYD-TDV or future dengue vaccines into their budget-constrained national immunization programs, the current study outcomes can be used to help decision makers

  18. Genetic variation in potential Giardia vaccine candidates cyst wall protein 2 and α1-giardin.

    PubMed

    Radunovic, Matej; Klotz, Christian; Saghaug, Christina Skår; Brattbakk, Hans-Richard; Aebischer, Toni; Langeland, Nina; Hanevik, Kurt

    2017-08-01

    Giardia is a prevalent intestinal parasitic infection. The trophozoite structural protein a1-giardin (a1-g) and the cyst protein cyst wall protein 2 (CWP2) have shown promise as Giardia vaccine antigen candidates in murine models. The present study assesses the genetic diversity of a1-g and CWP2 between and within assemblages A and B in human clinical isolates. a1-g and CWP2 sequences were acquired from 15 Norwegian isolates by PCR amplification and 20 sequences from German cultured isolates by whole genome sequencing. Sequences were aligned to reference genomes from assemblage A2 and B to identify genetic variance. Genetic diversity was found between assemblage A and B reference sequences for both a1-g (90.8% nucleotide identity) and CWP2 (82.5% nucleotide identity). However, for a1-g, this translated into only 3 amino acid (aa) substitutions, while for CWP2 there were 41 aa substitutions, and also one aa deletion. Genetic diversity within assemblage B was larger; nucleotide identity 92.0% for a1-g and 94.3% for CWP2, than within assemblage A (nucleotide identity 99.0% for a1-g and 99.7% for CWP2). For CWP2, the diversity on both nucleotide and protein level was higher in the C-terminal end. Predicted antigenic epitopes were not affected for a1-g, but partially for CWP2. Despite genetic diversity in a1-g, we found aa sequence, characteristics, and antigenicity to be well preserved. CWP2 showed more aa variance and potential antigenic differences. Several CWP2 antigens might be necessary in a future Giardia vaccine to provide cross protection against both Giardia assemblages infecting humans.

  19. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates.

    PubMed

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-09-21

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in Escherichia coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. Published by Elsevier Ltd.

  20. Construction and Characterization of Human Rotavirus Recombinant VP8* Subunit Parenteral Vaccine Candidates

    PubMed Central

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W.; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-01-01

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in E. coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., (P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. PMID:22885016

  1. Optimization and revision of the production process of the Necator americanus glutathione S-transferase 1 (Na-GST-1), the lead hookworm vaccine recombinant protein candidate

    PubMed Central

    Curti, Elena; Seid, Christopher A; Hudspeth, Elissa; Center, Lori; Rezende, Wanderson; Pollet, Jeroen; Kwityn, Cliff; Hammond, Molly; Matsunami, Rise K; Engler, David A; Hotez, Peter J; Elena Bottazzi, Maria

    2014-01-01

    Infection by the human hookworm Necator americanus is a leading cause of anemia and disability in the developing countries of Africa, Asia, and the Americas. In order to prevent childhood hookworm disease in resource poor settings, a recombinant vaccine is under development by the Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, a Product Development Partnership (PDP). Previously, we reported on the expression and purification of a highly promising hookworm vaccine candidate, Na-GST-1, an N. americanus glutathione s-transferase expressed in Pichia pastoris (yeast), which led to production of 1.5 g of 95% pure recombinant protein at a 20L scale.1, 2, 3 This yield and purity of Na-GST-1 was sufficient for early pilot manufacturing and initial phase 1 clinical testing. However, based on the number of doses which would be required to allow mass vaccination and a potential goal to deliver a vaccine as inexpensively as possible, a higher yield of expression of the recombinant antigen at the lowest possible cost is highly desirable. Here we report on modifications to the fermentation (upstream process) of the antigen expressed in P. pastoris, and to the purification (downstream process) of the recombinant protein that allowed for a 2–3-fold improvement in the final yield of Na-GST-1 purified protein. The major improvements included upstream process changes such as the addition of a sorbitol pulse and co-feed during methanol induction as well as an extension of the induction stage to approximately 96 hours; downstream process changes included modifying the UFDF to flat sheet with a 10 kDa Molecular Weight cut-off (MWCO), adjusting the capacity of an ion-exchange chromatography step utilizing a gradient elution as opposed to the original step elution, and altering the hydrophobic interaction chromatography conditions. The full process, as well as the purity and stability profiles of the target Na-GST-1, and its formulation on

  2. African Green Monkeys Recapitulate the Clinical Experience with Replication of Live Attenuated Pandemic Influenza Virus Vaccine Candidates

    PubMed Central

    Matsuoka, Yumiko; Suguitan, Amorsolo; Orandle, Marlene; Paskel, Myeisha; Boonnak, Kobporn; Gardner, Donald J.; Feldmann, Friederike; Feldmann, Heinz; Marino, Michael; Jin, Hong; Kemble, George

    2014-01-01

    ABSTRACT Live attenuated cold-adapted (ca) H5N1, H7N3, H6N1, and H9N2 influenza vaccine viruses replicated in the respiratory tract of mice and ferrets, and 2 doses of vaccines were immunogenic and protected these animals from challenge infection with homologous and heterologous wild-type (wt) viruses of the corresponding subtypes. However, when these vaccine candidates were evaluated in phase I clinical trials, there were inconsistencies between the observations in animal models and in humans. The vaccine viruses did not replicate well and immune responses were variable in humans, even though the study subjects were seronegative with respect to the vaccine viruses before vaccination. Therefore, we sought a model that would better reflect the findings in humans and evaluated African green monkeys (AGMs) as a nonhuman primate model. The distribution of sialic acid (SA) receptors in the respiratory tract of AGMs was similar to that in humans. We evaluated the replication of wt and ca viruses of avian influenza (AI) virus subtypes H5N1, H6N1, H7N3, and H9N2 in the respiratory tract of AGMs. All of the wt viruses replicated efficiently, while replication of the ca vaccine viruses was restricted to the upper respiratory tract. Interestingly, the patterns and sites of virus replication differed among the different subtypes. We also evaluated the immunogenicity and protective efficacy of H5N1, H6N1, H7N3, and H9N2 ca vaccines. Protection from wt virus challenge correlated well with the level of serum neutralizing antibodies. Immune responses were slightly better when vaccine was delivered by both intranasal and intratracheal delivery than when it was delivered intranasally by sprayer. We conclude that live attenuated pandemic influenza virus vaccines replicate similarly in AGMs and human subjects and that AGMs may be a useful model to evaluate the replication of ca vaccine candidates. IMPORTANCE Ferrets and mice are commonly used for preclinical evaluation of influenza

  3. Identification and development of a promising novel mumps vaccine candidate strain.

    PubMed

    Liang, Yan; Ma, Shaohui; Liu, Longding; Zhao, Hongling; Wang, Lichun; Jiang, Li; Xie, Zhongping; Dong, Chenghong; Li, Qihan

    2010-12-01

    Mumps epidemics are usually caused by airborne transmission of mumps virus (MuV) and have high morbidity in non-immunized children. Epidemiological studies in many regions of China show that the genotype F viral strain is the most prevalent. However, the genotype A strain is currently used to prepare vaccines. Regional epidemiological MuV data suggest a significant application for the development of live attenuated mumps vaccines targeting specific genotypes. This article reports the isolation and culture of a genotype F MuV candidate strain that could be used to prepare a live attenuated mumps vaccine. This strain is shown to have good immunological efficacy and stability in neurovirulence evaluations. This work should facilitate the implementation of mumps vaccination in mainland China by targeting the most prevalent MuV genotype, genotype F. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  4. Seroprevalence of antibodies against the three serotypes of poliovirus and IPV vaccine response in adult solid organ transplant candidates.

    PubMed

    Brandão, Luciana Gomes Pedro; Santoro-Lopes, Guilherme; Oliveira, Silas de Souza; da Silva, Edson Elias; do Brasil, Pedro Emmanuel Alvarenga Americano

    2018-06-21

    To assess the prevalence of protective antibody titers to polioviruses in adults candidates for solid organ transplant (SOT), and to assess the immunogenic response to inactivated polio vaccine in this population. The study included SOT candidates referred to Immunization Reference Centre of Evandro Chagas National Institute of Infectious Diseases from March 2013 to January 2016. It was conducted in 2 phases. The first one, a cross-sectional seroprevalence study, followed by an uncontrolled analysis of vaccine response among patients without protective antibody titers at baseline. Antibody titers to poliomyelitis were determined by microneutralization assay. Among 206 SOT candidates included, 156 (76%) had protective antibody titers to all poliovirus serotypes (95% CI: 70-81%). Proven history of oral vaccination in childhood was not associated with higher seroprevalence of protective antibody. In 97% of individuals without protective antibody titers at baseline, there was adequate vaccine response with one dose of inactivated polio vaccine. A relevant proportion of adult candidates for SOT does not have protective titers of antibodies to one or more poliovirus serotype. One dose of inactivated vaccine elicited protective antibody titers in 97% of these subjects and should be routinely prescribed prior to SOT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Identification of Mutations in a Candidate Dengue 4 Vaccine Strain 341750 PDK20 and Construction of a Full-Length eDNA Clone of the PDK20 Vaccine Candidate

    DTIC Science & Technology

    2010-01-01

    comply with a collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE OCT 2009 2. REPORT TYPE 3. DATES...construction of a full-length eDNA clone of the PDK20 vaccine candidate 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Medical Research Center,Infectious

  6. Modulation of autophagy as a strategy for development of new vaccine candidates against tuberculosis.

    PubMed

    Flores-Valdez, Mario Alberto; Segura-Cerda, Cristian Alfredo; Gaona-Bernal, Jorge

    2018-05-01

    Effective prevention of tuberculosis (Tb) would undoubtedly be of paramount relevance in the control of its global burden, which resulted in more than 6 million new cases in 2016. Research aimed to improve the current vaccine, Bacillus Calmette- Guérin (BCG), or directed to develop new candidates, has taken into account the interaction between the host and Mycobacterium tuberculosis (Mtb). Recently, autophagy, an intracellular process of the host, has been shown to act as a mechanism that contributes to bacilli clearance in vitro and in vivo. Stimulation of autophagy, if correctly balanced, is an approach that has the potential to enhance the immune response of the host, and offers new avenues for developing immunogens that may give an improved protection upon immunization, given that in fact, some recent rBCG vaccine candidates have been shown to modulate autophagy. In this Discussion, we analyze the role of autophagy in the context of mycobacterial infection, its modulation via mycobacterial elements, and the management of host response as an alternative to develop new, hopefully improved, Tb-vaccine candidates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Comparative Genomics and Immunoinformatics Approach for the Identification of Vaccine Candidates for Enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    García-Angulo, Víctor A.; Kalita, Anjana; Kalita, Mridul; Lozano, Luis

    2014-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains are major human food-borne pathogens, responsible for bloody diarrhea and hemolytic-uremic syndrome worldwide. Thus far, there is no vaccine for humans against EHEC infections. In this study, a comparative genomics analysis was performed to identify EHEC-specific antigens useful as potential vaccines. The genes present in both EHEC EDL933 and Sakai strains but absent in nonpathogenic E. coli K-12 and HS strains were subjected to an in silico analysis to identify secreted or surface-expressed proteins. We obtained a total of 65 gene-encoding protein candidates, which were subjected to immunoinformatics analysis. Our criteria of selection aided in categorizing the candidates as high, medium, and low priority. Three members of each group were randomly selected and cloned into pVAX-1. Candidates were pooled accordingly to their priority group and tested for immunogenicity against EHEC O157:H7 using a murine model of gastrointestinal infection. The high-priority (HP) pool, containing genes encoding a Lom-like protein (pVAX-31), a putative pilin subunit (pVAX-12), and a fragment of the type III secretion structural protein EscC (pVAX-56.2), was able to induce the production of EHEC IgG and sIgA in sera and feces. HP candidate-immunized mice displayed elevated levels of Th2 cytokines and diminished cecum colonization after wild-type challenge. Individually tested HP vaccine candidates showed that pVAX-12 and pVAX-56.2 significantly induced Th2 cytokines and production of fecal EHEC sIgA, with pVAX-56.2 reducing EHEC cecum colonization. We describe here a bioinformatics approach able to identify novel vaccine candidates potentially useful for preventing EHEC O157:H7 infections. PMID:24595137

  8. Le point sur les amas de galaxies

    NASA Astrophysics Data System (ADS)

    Pierre, M.

    Clusters of galaxies: a review After having briefly described the 3 main components of clusters of galaxies (dark matter, gas and galaxies) we shall present clusters from a theoretical viewpoint: they are the largest entities known in the universe. Consequently, clusters of galaxies play a key role in any cosmological study and thus, are essential for our global understanding of the universe. In the general introduction, we shall outline this fundamental aspect, showing how the study of clusters can help to constrain the various cosmological scenarios. Once this cosmological framework is set, the next chapters will present a detailed analysis of cluster properties and of their cosmic evolution as observed in different wavebands mainly in the optical (galaxies), X-ray (gas) and radio (gas and particles) ranges. We shall see that the detailed study of a cluster is conditioned by the study of the interactions between its different components; this is the necessary step to ultimately derive the fundamental quantity which is the cluster mass. This will be the occasion to undertake an excursion into extremely varied physical processes such as the multi-phase nature of the intra-cluster medium, lensing phenomena, starbursts and morphology evolution in cluster galaxies or the interaction between the intra-cluster plasma and relativistic particles which are accelerated during cluster merging. For each waveband, we shall outline simply the dedicated observing and analysis techniques, which are of special interest in the case of space observations. Finally, we present several ambitious projects for the next observatory generation as well as their expected impact on the study of clusters of galaxies. Après avoir brièvement décrit les 3 constituants fondamentaux des amas de galaxies (matière noire, gaz et galaxies) nous présenterons les amas d'un point de vue plus théorique : ce sont les entités les plus massives à l'équilibre connues dans l'univers. Les amas de

  9. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria.

    PubMed

    Lozano, José Manuel; Varela, Yahson; Silva, Yolanda; Ardila, Karen; Forero, Martha; Guasca, Laura; Guerrero, Yuly; Bermudez, Adriana; Alba, Patricia; Vanegas, Magnolia; Patarroyo, Manuel Elkin

    2017-11-01

    Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of Pf CSP, STARP; MSA1 and Pf 155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei -ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  10. Combined semi-empirical screening and design of experiments (DOE) approach to identify candidate formulations of a lyophilized live attenuated tetravalent viral vaccine candidate.

    PubMed

    Patel, Ashaben; Erb, Steven M; Strange, Linda; Shukla, Ravi S; Kumru, Ozan S; Smith, Lee; Nelson, Paul; Joshi, Sangeeta B; Livengood, Jill A; Volkin, David B

    2018-05-24

    A combination experimental approach, utilizing semi-empirical excipient screening followed by statistical modeling using design of experiments (DOE), was undertaken to identify stabilizing candidate formulations for a lyophilized live attenuated Flavivirus vaccine candidate. Various potential pharmaceutical compounds used in either marketed or investigative live attenuated viral vaccine formulations were first identified. The ability of additives from different categories of excipients, either alone or in combination, were then evaluated for their ability to stabilize virus against freeze-thaw, freeze-drying, and accelerated storage (25°C) stresses by measuring infectious virus titer. An exploratory data analysis and predictive DOE modeling approach was subsequently undertaken to gain a better understanding of the interplay between the key excipients and stability of virus as well as to determine which combinations were interacting to improve virus stability. The lead excipient combinations were identified and tested for stabilizing effects using a tetravalent mixture of viruses in accelerated and real time (2-8°C) stability studies. This work demonstrates the utility of combining semi-empirical excipient screening and DOE experimental design strategies in the formulation development of lyophilized live attenuated viral vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Egg-Independent Influenza Vaccines and Vaccine Candidates

    PubMed Central

    Manini, Ilaria; Pozzi, Teresa; Rossi, Stefania; Montomoli, Emanuele

    2017-01-01

    Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines. PMID:28718786

  12. 7 CFR 1465.6 - AMA plan of operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false AMA plan of operations. 1465.6 Section 1465.6... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS AGRICULTURAL MANAGEMENT ASSISTANCE General Provisions § 1465.6 AMA plan of operations. (a) All conservation practices in the APO must be approved by...

  13. Japanese children's amae and mothers' attachment status as assessed by the Adult Attachment Interview.

    PubMed

    Behrens, Kazuko Y; Kondo-Ikemura, Kiyomi

    2011-10-01

    This study explored whether Japanese mothers' attachment status, as judged by the Adult Attachment Interview (AAI), would affect the way they perceive their child's amae. Amae, an indigenous Japanese concept of relatedness, has troubled, fascinated, and even mystified scholars across disciplines. In particular, amae has been sometimes misconstrued as the insecure-ambivalent pattern of attachment due to their apparent behavioral similarities. In an attempt to explore an empirical link between attachment and amae, Japanese mothers' (N = 47) views on their six-year-olds' amae were examined based on a brief amae questionnaire, given following the standard AAI. Mothers generally reported their child's amae similarly for questions of frequency (e.g., how often your child exhibits amae behaviors) or situations (e.g., in what circumstances your child most often engages in amae). However, a difference emerged when mothers' free descriptions of their child's amae were examined for the content quality, categorized, and analyzed against their secure/insecure attachment statuses. Secure mothers depicted their child's amae as being more affective, thus more welcoming, whereas insecure mothers depicted their child's typical amae as being more instrumental or manipulative, thus perhaps less welcoming. Japanese mothers' current states of mind with respect to attachment do appear to affect the way they perceive their child's typical amae. Future research on attachment and amae is discussed.

  14. In Vitro Analysis of Virus Particle Subpopulations in Candidate Live-Attenuated Influenza Vaccines Distinguishes Effective from Ineffective Vaccines▿

    PubMed Central

    Marcus, Philip I.; Ngunjiri, John M.; Sekellick, Margaret J.; Wang, Leyi; Lee, Chang-Won

    2010-01-01

    Two effective (vac+) and two ineffective (vac−) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac− variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers. These in vitro analyses provide a benchmark for the screening of candidate LAIVs and their potential as effective vaccines. Vaccine design may be improved by enhancement of attributes that are dominant in the effective (vac+) vaccines. PMID:20739541

  15. A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats

    PubMed Central

    Rostad, Christina A.; Stobart, Christopher C.; Gilbert, Brian E.; Pickles, Ray J.; Hotard, Anne L.; Meng, Jia; Blanco, Jorge C. G.; Moin, Syed M.; Graham, Barney S.; Piedra, Pedro A.

    2016-01-01

    ABSTRACT Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. IMPORTANCE RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV

  16. Safety and efficacy of the RTS,S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial.

    PubMed

    Asante, Kwaku Poku; Abdulla, Salim; Agnandji, Selidji; Lyimo, John; Vekemans, Johan; Soulanoudjingar, Solange; Owusu, Ruth; Shomari, Mwanajaa; Leach, Amanda; Jongert, Erik; Salim, Nahya; Fernandes, Jose F; Dosoo, David; Chikawe, Maria; Issifou, Saadou; Osei-Kwakye, Kingsley; Lievens, Marc; Paricek, Maria; Möller, Tina; Apanga, Stephen; Mwangoka, Grace; Dubois, Marie-Claude; Madi, Tigani; Kwara, Evans; Minja, Rose; Hounkpatin, Aurore B; Boahen, Owusu; Kayan, Kingsley; Adjei, George; Chandramohan, Daniel; Carter, Terrell; Vansadia, Preeti; Sillman, Marla; Savarese, Barbara; Loucq, Christian; Lapierre, Didier; Greenwood, Brian; Cohen, Joe; Kremsner, Peter; Owusu-Agyei, Seth; Tanner, Marcel; Lell, Bertrand

    2011-10-01

    The RTS,S/AS01(E) candidate malaria vaccine is being developed for immunisation of infants in Africa through the expanded programme on immunisation (EPI). 8 month follow-up data have been reported for safety and immunogenicity of RTS,S/AS01(E) when integrated into the EPI. We report extended follow-up to 19 months, including efficacy results. We did a randomised, open-label, phase 2 trial of safety and efficacy of the RTS,S/AS01(E) candidate malaria vaccine given with EPI vaccines between April 30, 2007, and Oct 7, 2009, in Ghana, Tanzania, and Gabon. Eligible children were 6-10 weeks of age at first vaccination, without serious acute or chronic illness. All children received the EPI diphtheria, tetanus, pertussis (inactivated whole-cell), and hepatitis-B vaccines, Haemophilus influenzae type b vaccine, and oral polio vaccine at study months 0, 1, and 2, and measles vaccine and yellow fever vaccines at study month 7. Participants were randomly assigned (1:1:1) to receive three doses of RTS,S/AS01(E) at 6, 10, and 14 weeks (0, 1, 2 month schedule) or at 6 weeks, 10 weeks, and 9 months (0, 2, 7 month schedule) or placebo. Randomisation was according to a predefined block list with a computer-generated randomisation code. Detection of serious adverse events and malaria was by passive case detection. Antibodies against Plasmodium falciparum circumsporozoite protein and HBsAg were monitored for 19 months. This study is registered with ClinicalTrials.gov, number NCT00436007. 511 children were enrolled. Serious adverse events occurred in 57 participants in the RTS,S/AS01(E) 0, 1, 2 month group (34%, 95% CI 27-41), 47 in the 0, 1, 7 month group (28%, 21-35), and 49 (29%, 22-36) in the control group; none were judged to be related to study vaccination. At month 19, anticircumsporozoite immune responses were significantly higher in the RTS,S/AS01(E) groups than in the control group. Vaccine efficacy for the 0, 1, 2 month schedule (2 weeks after dose three to month 19, site

  17. Identification of Leishmania infantum chagasi proteins in urine of patients with visceral leishmaniasis: a promising antigen discovery approach of vaccine candidates.

    PubMed

    Kashino, S S; Abeijon, C; Qin, L; Kanunfre, K A; Kubrusly, F S; Silva, F O; Costa, D L; Campos, D; Costa, C H N; Raw, I; Campos-Neto, A

    2012-07-01

    Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500,000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients' urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases. © 2012 Blackwell Publishing Ltd.

  18. Immunogenicity of a Psoralen-Inactivated Dengue Virus Type 1 Vaccine Candidate in Mice

    DTIC Science & Technology

    2010-02-01

    United States Naval Medical Research Center Detachment, Lima, Peru , 1 and United States Naval Medical Research Center, Silver Spring, Maryland2 R...and 28. The mice in group B mice received 10-ng vaccine doses on study clays 0, 14, and 28. The mice in group C received 10-ng vaccine doses on

  19. Optimization of the Production Process and Characterization of the Yeast-Expressed SARS-CoV Recombinant Receptor-Binding Domain (RBD219-N1), a SARS Vaccine Candidate.

    PubMed

    Chen, Wen-Hsiang; Chag, Shivali M; Poongavanam, Mohan V; Biter, Amadeo B; Ewere, Ebe A; Rezende, Wanderson; Seid, Christopher A; Hudspeth, Elissa M; Pollet, Jeroen; McAtee, C Patrick; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J

    2017-08-01

    From 2002 to 2003, a global pandemic of severe acute respiratory syndrome (SARS) spread to 5 continents and caused 8000 respiratory infections and 800 deaths. To ameliorate the effects of future outbreaks as well as to prepare for biodefense, a process for the production of a recombinant protein vaccine candidate is under development. Previously, we reported the 5 L scale expression and purification of a promising recombinant SARS vaccine candidate, RBD219-N1, the 218-amino acid residue receptor-binding domain (RBD) of SARS coronavirus expressed in yeast-Pichia pastoris X-33. When adjuvanted with aluminum hydroxide, this protein elicited high neutralizing antibody titers and high RBD-specific antibody titers. However, the yield of RBD219-N1 (60 mg RBD219-N1 per liter of fermentation supernatant; 60 mg/L FS) still required improvement to reach our target of >100 mg/L FS. In this study, we optimized the 10 L scale production process and increased the fermentation yield 6- to 7-fold to 400 mg/L FS with purification recovery >50%. A panel of characterization tests indicated that the process is reproducible and that the purified, tag-free RBD219-N1 protein has high purity and a well-defined structure and is therefore a suitable candidate for production under current Good Manufacturing Practice and future phase-1 clinical trials. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate.

    PubMed

    Ntege, Edward H; Arisue, Nobuko; Ito, Daisuke; Hasegawa, Tomoyuki; Palacpac, Nirianne M Q; Egwang, Thomas G; Horii, Toshihiro; Takashima, Eizo; Tsuboi, Takafumi

    2016-11-04

    Genetic variability in Plasmodium falciparum malaria parasites hampers current malaria vaccine development efforts. Here, we hypothesize that to address the impact of genetic variability on vaccine efficacy in clinical trials, conserved antigen targets should be selected to achieve robust host immunity across multiple falciparum strains. Therefore, suitable vaccine antigens should be assessed for levels of polymorphism and genetic diversity. Using a total of one hundred and two clinical isolates from a region of high malaria transmission in Uganda, we analyzed extent of polymorphism and genetic diversity in four recently reported novel blood-stage malaria vaccine candidate proteins: Rh5 interacting protein (PfRipr), GPI anchored micronemal antigen (PfGAMA), rhoptry-associated leucine zipper-like protein 1 (PfRALP1) and Duffy binding-like merozoite surface protein 1 (PfMSPDBL1). In addition, utilizing the wheat germ cell-free system, we expressed recombinant proteins for the four candidates based on P. falciparum laboratory strain 3D7 sequences, immunized rabbits to obtain specific antibodies (Abs) and performed functional growth inhibition assay (GIA). The GIA activity of the raised Abs was demonstrated using both homologous 3D7 and heterologous FVO strains in vitro. Both pfripr and pfralp1 are less polymorphic but the latter is comparatively more diverse, with varied number of regions having insertions and deletions, asparagine and 6-mer repeats in the coding sequences. Pfgama and pfmspdbl1 are polymorphic and genetically diverse among the isolates with antibodies against the 3D7-based recombinant PfGAMA and PfMSPDBL1 inhibiting merozoite invasion only in the 3D7 but not FVO strain. Moreover, although Abs against the 3D7-based recombinant PfRipr and PfRALP1 proteins potently inhibited merozoite invasion of both 3D7 and FVO, the GIA activity of anti-PfRipr was much higher than that of anti-PfRALP1. Thus, PfRipr is regarded as a promising blood-stage vaccine

  1. Design and Characterization of a Computationally Optimized Broadly Reactive Hemagglutinin Vaccine for H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Lefoley, Bradford C.; Crevar, Corey J.; Alefantis, Timothy; Oomen, Raymond; Anderson, Stephen F.; Strugnell, Tod; Cortés-Garcia, Guadalupe; Vogel, Thorsten U.; Parrington, Mark; Kleanthous, Harold

    2016-01-01

    ABSTRACT One of the challenges of developing influenza A vaccines is the diversity of antigenically distinct isolates. Previously, a novel hemagglutinin (HA) for H5N1 influenza was derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This COBRA HA elicited a broad antibody response against H5N1 isolates from different clades. We now report the development and characterization of a COBRA-based vaccine for both seasonal and pandemic H1N1 influenza virus isolates. Nine prototype H1N1 COBRA HA proteins were developed and tested in mice using a virus-like particle (VLP) format for the elicitation of broadly reactive, functional antibody responses and protection against viral challenge. These candidates were designed to recognize H1N1 viruses isolated within the last 30 years. In addition, several COBRA candidates were designed based on sequences of H1N1 viruses spanning the past 100 years, including modern pandemic H1N1 isolates. Four of the 9 H1N1 COBRA HA proteins (X1, X3, X6, and P1) had the broadest hemagglutination inhibition (HAI) activity against a panel of 17 H1N1 viruses. These vaccines were used in cocktails or prime-boost combinations. The most effective regimens that both elicited the broadest HAI response and protected mice against a pandemic H1N1 challenge were vaccines that contained the P1 COBRA VLP and either the X3 or X6 COBRA VLP vaccine. These mice had little or no detectable viral replication, comparable to that observed with a matched licensed vaccine. This is the first report describing a COBRA-based HA vaccine strategy that elicits a universal, broadly reactive, protective response against seasonal and pandemic H1N1 isolates. IMPORTANCE Universal influenza vaccine approaches have the potential to be paradigm shifting for the influenza vaccine field, with the goal of replacing the current standard of care with broadly cross-protective vaccines. We have used COBRA technology to develop an HA head

  2. A malaria vaccine for travelers and military personnel: Requirements and top candidates.

    PubMed

    Teneza-Mora, Nimfa; Lumsden, Joanne; Villasante, Eileen

    2015-12-22

    Malaria remains an important health threat to non-immune travelers with the explosive growth of global travel. Populations at high risk of acquiring malaria infections include once semi-immune travelers who visit friends and relatives, military forces, business travelers and international tourists with destinations to sub-Saharan Africa, where malaria transmission intensity is high. Most malaria cases have been associated with poor compliance with existing preventive measures, including chemoprophylaxis. High risk groups would benefit immensely from an efficacious vaccine to protect them against malaria infection and together make up a sizable market for such a vaccine. The attributes of an ideal malaria vaccine for non-immune travelers and military personnel include a protective efficacy of 80% or greater, durability for at least 6 months, an acceptable safety profile and compatibility with existing preventive measures. It is very likely that a malaria vaccine designed to effectively prevent infection and clinical disease in the non-immune traveler and military personnel will also protect semi-immune residents of malaria-endemic areas and contribute to malaria elimination by reducing or blocking malaria transmission. The RTS,S vaccine (GlaxoSmithKline) and the PfSPZ Vaccine (Sanaria Inc) are the leading products that would make excellent vaccine candidates for these vulnerable populations. Published by Elsevier Ltd.

  3. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, Paul W; Fischer, William M; Kuiken, Carla

    vaccine than is possible with a wild-type protein, (2) reducing the number of low-prevalence k-mers minimizes the likelihood of undesirable immunodominance, and (3) excluding exogenous k-mers will result in mosaic proteins whose processing for presentation is close to what occurs with wild-type proteins. The first and second applications of the mosaic method were to HIV and Hepatitis C Virus (HCV). HIV is the virus with the largest number of known sequences, and consequently a plethora of information for the CTL vaccine designer to incorporate into their mosaics. Experience with HIV and HCV mosaics supports the validity of the three conjectures above. The available FILV sequences are probably closer to the minimum amount of information needed to make a meaningful mosaic vaccine candidate. There were 532 protein sequences in the National Institutes of Health GenPept database in November 2007 when our reference set was downloaded. These sequences come from both Ebola and Marburg viruses (EBOV and MARV), representing transcripts of all 7 genes. The coverage of viral diversity by the 7 genes is variable, with genes 1 (nucleoprotein, NP), 4 (glycoprotein, GP; soluble glycoprotein, sGP) and 7 (polymerase, L) giving the best coverage. Broadly-protective vaccine candidates for diverse viruses, such as HIV or Hepatitis C virus (HCV) have required pools of antigens. FILV is similar in this regard. While we have designed CTL mosaic proteins using all 7 types of filoviral proteins, only NP, GP and L proteins are reported here. If it were important to include other proteins in a mosaic CTL vaccine, additional sequences would be required to cover the space of known viral diversity.« less

  4. Protection against Fasciola gigantica using paramyosin antigen as a candidate for vaccine production.

    PubMed

    Abou-Elhakam, H; Rabee, I; El Deeb, S; El Amir, A

    2013-11-15

    Yet no vaccine to protect ruminants against liver fluke infection has been commercialized. In an attempt to develop a suitable vaccine against Fasciola gigantica (F. gigantica) infection in rabbits, using 97 kDa Pmy antigen. It was found that, the mean worm burdens and bile egg count after challenge were reduced significantly by 58.40 and 61.40%, respectively. On the other hand, immunization of rabbits with Pmy induced a significant expression of humoral antibodies (IgM, total IgG, IgG1, IgG2 and IgG4) and different cytokines (IL-6, IL-10, L-12 and TNF-alpha). Among Ig isotypes, IgG2 and IgG4 were most dominant Post-infection (PI) while, recording a low IgG1 level. The dominance of IgG2 and IgG4 suggested late T helper1 (Th1) involvement in rabbit's cellular response. While, the low IgG1 level suggested Th2 response to adult F. gigantica worm Pmy. Among all cytokines, IL-10 was the highest in rabbits immunized with Pmy PI suggesting also the enhancement of Th2 response. It was clear that the native F. gigantica Pmy is considered as a relevant candidate for vaccination against fascioliasis. Also, these data suggested the immunoprophylactic effect of the native F. gigantica Pmy which is mediated by a mixed Th1/Th2 response.

  5. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate

    PubMed Central

    Chen, Wen-Hsiang; Du, Lanying; Chag, Shivali M; Ma, Cuiqing; Tricoche, Nancy; Tao, Xinrong; Seid, Christopher A; Hudspeth, Elissa M; Lustigman, Sara; Tseng, Chien-Te K; Bottazzi, Maria Elena; Hotez, Peter J; Zhan, Bin; Jiang, Shibo

    2014-01-01

    Development of vaccines for preventing a future pandemic of severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV) and for biodefense preparedness is urgently needed. Our previous studies have shown that a candidate SARS vaccine antigen consisting of the receptor-binding domain (RBD) of SARS-CoV spike protein can induce potent neutralizing antibody responses and protection against SARS-CoV challenge in vaccinated animals. To optimize expression conditions for scale-up production of the RBD vaccine candidate, we hypothesized that this could be potentially achieved by removing glycosylation sites in the RBD protein. In this study, we constructed two RBD protein variants: 1) RBD193-WT (193-aa, residues 318–510) and its deglycosylated forms (RBD193-N1, RBD193-N2, RBD193-N3); 2) RBD219-WT (219-aa, residues 318–536) and its deglycosylated forms (RBD219-N1, RBD219-N2, and RBD219-N3). All constructs were expressed as recombinant proteins in yeast. The purified recombinant proteins of these constructs were compared for their antigenicity, functionality and immunogenicity in mice using alum as the adjuvant. We found that RBD219-N1 exhibited high expression yield, and maintained its antigenicity and functionality. More importantly, RBD219-N1 induced significantly stronger RBD-specific antibody responses and a higher level of neutralizing antibodies in immunized mice than RBD193-WT, RBD193-N1, RBD193-N3, or RBD219-WT. These results suggest that RBD219-N1 could be selected as an optimal SARS vaccine candidate for further development. PMID:24355931

  6. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate.

    PubMed

    Chen, Wen-Hsiang; Du, Lanying; Chag, Shivali M; Ma, Cuiqing; Tricoche, Nancy; Tao, Xinrong; Seid, Christopher A; Hudspeth, Elissa M; Lustigman, Sara; Tseng, Chien-Te K; Bottazzi, Maria Elena; Hotez, Peter J; Zhan, Bin; Jiang, Shibo

    2014-01-01

    Development of vaccines for preventing a future pandemic of severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV) and for biodefense preparedness is urgently needed. Our previous studies have shown that a candidate SARS vaccine antigen consisting of the receptor-binding domain (RBD) of SARS-CoV spike protein can induce potent neutralizing antibody responses and protection against SARS-CoV challenge in vaccinated animals. To optimize expression conditions for scale-up production of the RBD vaccine candidate, we hypothesized that this could be potentially achieved by removing glycosylation sites in the RBD protein. In this study, we constructed two RBD protein variants: 1) RBD193-WT (193-aa, residues 318-510) and its deglycosylated forms (RBD193-N1, RBD193-N2, RBD193-N3); 2) RBD219-WT (219-aa, residues 318-536) and its deglycosylated forms (RBD219-N1, RBD219-N2, and RBD219-N3). All constructs were expressed as recombinant proteins in yeast. The purified recombinant proteins of these constructs were compared for their antigenicity, functionality and immunogenicity in mice using alum as the adjuvant. We found that RBD219-N1 exhibited high expression yield, and maintained its antigenicity and functionality. More importantly, RBD219-N1 induced significantly stronger RBD-specific antibody responses and a higher level of neutralizing antibodies in immunized mice than RBD193-WT, RBD193-N1, RBD193-N3, or RBD219-WT. These results suggest that RBD219-N1 could be selected as an optimal SARS vaccine candidate for further development.

  7. A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats.

    PubMed

    Rostad, Christina A; Stobart, Christopher C; Gilbert, Brian E; Pickles, Ray J; Hotard, Anne L; Meng, Jia; Blanco, Jorge C G; Moin, Syed M; Graham, Barney S; Piedra, Pedro A; Moore, Martin L

    2016-08-15

    Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV vaccine by

  8. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    PubMed

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  9. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage.

    PubMed

    Kumar, Hirdesh; Frischknecht, Friedrich; Mair, Gunnar R; Gomes, James

    2015-12-01

    Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development.

    PubMed

    Connolly, Joseph P; Comerci, Diego; Alefantis, Timothy G; Walz, Alexander; Quan, Marian; Chafin, Ryan; Grewal, Paul; Mujer, Cesar V; Ugalde, Rodolfo A; DelVecchio, Vito G

    2006-07-01

    Brucella abortus is the etiologic agent of bovine brucellosis and causes a chronic disease in humans known as undulant fever. In livestock the disease is characterized by abortion and sterility. Live, attenuated vaccines such as S19 and RB51 have been used to control the spread of the disease in animals; however, they are considered unsafe for human use and they induce abortion in pregnant cattle. For the development of a safer and equally efficacious vaccine, immunoproteomics was utilized to identify novel candidate proteins from B. abortus cell envelope (CE). A total of 163 proteins were identified using 2-DE with MALDI-TOF MS and LC-MS/MS. Some of the major protein components include outer-membrane protein (OMP) 25, OMP31, Omp2b porin, and 60 kDa chaperonin GroEL. 2-DE Western blot analyses probed with antiserum from bovine and a human patient infected with Brucella identified several new immunogenic proteins such as fumarate reductase flavoprotein subunit, F0F1-type ATP synthase alpha subunit, and cysteine synthase A. The elucidation of the immunome of B. abortus CE identified a number of candidate proteins for developing vaccines against Brucella infection in bovine and humans.

  11. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36.

    PubMed

    Palacpac, Nirianne Marie Q; Ntege, Edward; Yeka, Adoke; Balikagala, Betty; Suzuki, Nahoko; Shirai, Hiroki; Yagi, Masanori; Ito, Kazuya; Fukushima, Wakaba; Hirota, Yoshio; Nsereko, Christopher; Okada, Takuya; Kanoi, Bernard N; Tetsutani, Kohhei; Arisue, Nobuko; Itagaki, Sawako; Tougan, Takahiro; Ishii, Ken J; Ueda, Shigeharu; Egwang, Thomas G; Horii, Toshihiro

    2013-01-01

    Up to now a malaria vaccine remains elusive. The Plasmodium falciparum serine repeat antigen-5 formulated with aluminum hydroxyl gel (BK-SE36) is a blood-stage malaria vaccine candidate that has undergone phase 1a trial in malaria-naive Japanese adults. We have now assessed the safety and immunogenicity of BK-SE36 in a malaria endemic area in Northern Uganda. We performed a two-stage, randomized, single-blinded, placebo-controlled phase 1b trial (Current Controlled trials ISRCTN71619711). A computer-generated sequence randomized healthy subjects for 2 subcutaneous injections at 21-day intervals in Stage1 (21-40 year-olds) to 1-mL BK-SE36 (BKSE1.0) (n = 36) or saline (n = 20) and in Stage2 (6-20 year-olds) to BKSE1.0 (n = 33), 0.5-mL BK-SE36 (BKSE0.5) (n = 33), or saline (n = 18). Subjects and laboratory personnel were blinded. Safety and antibody responses 21-days post-second vaccination (Day42) were assessed. Post-trial, to compare the risk of malaria episodes 130-365 days post-second vaccination, Stage2 subjects were age-matched to 50 control individuals. Nearly all subjects who received BK-SE36 had induration (Stage1, n = 33, 92%; Stage2, n = 63, 96%) as a local adverse event. No serious adverse event related to BK-SE36 was reported. Pre-existing anti-SE36 antibody titers negatively correlated with vaccination-induced antibody response. At Day42, change in antibody titers was significant for seronegative adults (1.95-fold higher than baseline [95% CI, 1.56-2.43], p = 0.004) and 6-10 year-olds (5.71-fold [95% CI, 2.38-13.72], p = 0.002) vaccinated with BKSE1.0. Immunogenicity response to BKSE0.5 was low and not significant (1.55-fold [95% CI, 1.24-1.94], p = 0.75). In the ancillary analysis, cumulative incidence of first malaria episodes with ≥5000 parasites/µL was 7 cases/33 subjects in BKSE1.0 and 10 cases/33 subjects in BKSE0.5 vs. 29 cases/66 subjects in the control group. Risk ratio for BKSE1.0 was 0.48 (95% CI, 0

  12. Co-expression of tetanus toxin fragment C in Escherichia coli with thioredoxin and its evaluation as an effective subunit vaccine candidate.

    PubMed

    Yu, Yun-Zhou; Gong, Zheng-Wei; Ma, Yao; Zhang, Shu-Ming; Zhu, Heng-Qi; Wang, Wen-Bing; Du, Yun; Wang, Shuang; Yu, Wei-Yuan; Sun, Zhi-Wei

    2011-08-11

    The receptor-binding domain of tetanus toxin (THc), which mediates the binding of the toxin to the nerve cells, is a candidate subunit vaccine against tetanus. In this study one synthetic gene encoding the THc was constructed and highly expressed in Escherichia coli by co-expression with thioredoxin (Trx). The purified THc-vaccinated mice were completely protected against an active toxin challenge in mouse models of disease and the potency of two doses of THc was comparable to that of three doses of toxoid vaccine. And a solid-phase assay showed that the anti-THc sera inhibited the binding of THc or toxoid to the ganglioside GT1b as the anti-tetanus toxoid sera. Furthermore, mice were vaccinated once or twice at four different dosages of THc and a dose-response was observed in both the antibody titer and protective efficacy with increasing dosage of THc and number of vaccinations. The data presented in the report showed that the recombinant THc expressed in E. coli is efficacious in protecting mice against challenge with tetanus toxin suggesting that the THc protein may be developed into a human subunit vaccine candidate designed for the prevention of tetanus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates.

    PubMed

    Mooij, Petra; Balla-Jhagjhoorsingh, Sunita S; Koopman, Gerrit; Beenhakker, Niels; van Haaften, Patricia; Baak, Ilona; Nieuwenhuis, Ivonne G; Kondova, Ivanela; Wagner, Ralf; Wolf, Hans; Gómez, Carmen E; Nájera, José L; Jiménez, Victoria; Esteban, Mariano; Heeney, Jonathan L

    2008-03-01

    Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune responses, we undertook a head-to-head vaccine immunogenicity and efficacy study in the pathogenic HIV type 1 (HIV-1) model of AIDS in Indian rhesus macaques. Differences in the immune responses in outbred animals were not distinguished by enzyme-linked immunospot assays, but differences were distinguished by multiparameter fluorescence-activated cell sorter analysis, revealing a difference between the number of animals with both CD4(+) and CD8(+) T-cell responses to vaccine inserts (MVA) and those that elicit a dominant CD4(+) T-cell response (NYVAC). Remarkably, vector-induced differences in CD4(+)/CD8(+) T-cell immune responses persisted for more than a year after challenge and even accompanied antigenic modulation throughout the control of chronic infection. Importantly, strong preexposure HIV-1/simian immunodeficiency virus-specific CD4(+) T-cell responses did not prove deleterious with respect to accelerated disease progression. In contrast, in this setting, animals with strong vaccine-induced polyfunctional CD4(+) T-cell responses showed efficacies similar to those with stronger CD8(+) T-cell responses.

  14. A first-in-human phase 1 trial to evaluate the safety and immunogenicity of the candidate tuberculosis vaccine MVA85A-IMX313, administered to BCG-vaccinated adults

    PubMed Central

    Minhinnick, Alice; Satti, Iman; Harris, Stephanie; Wilkie, Morven; Sheehan, Sharon; Stockdale, Lisa; Thomas, Zita-Rose Manjaly; Lopez-Ramon, Raquel; Poulton, Ian; Lawrie, Alison; Vermaak, Samantha; Le Vert, Alexandre; Del Campo, Judith; Hill, Fergal; Moss, Paul; McShane, Helen

    2016-01-01

    Introduction There is an urgent need for a new and effective tuberculosis vaccine because BCG does not sufficiently prevent pulmonary disease. IMX313 is a novel carrier protein designed to improve cellular and humoral immunity. MVA85A-IMX313 is a novel vaccine candidate designed to boost immunity primed by bacillus Calmette-Guérin (BCG) that has been immunogenic in pre-clinical studies. This is the first evaluation of IMX313 delivered as MVA85A-IMX313 in humans. Methods In this phase 1, open-label first-in-human trial, 30 healthy previously BCG-vaccinated adults were enrolled into three treatment groups and vaccinated with low dose MVA85A-IMX313 (group A), standard dose MVA85A-IMX313 (group B), or MVA85A (group C). Volunteers were followed up for 6 months for safety and immunogenicity assessment. Results The majority of adverse events were mild and there were no vaccine-related serious AEs. Both MVA85A-IMX313 and MVA85A induced a significant increase in IFN-γ ELISpot responses. There were no significant differences between the Ag85A ELISpot and intracellular cytokine responses between the two study groups B (MVA85A-IMX313) and C (MVA85A) at any time point post-vaccination. Conclusion MVA85A-IMX313 was well tolerated and immunogenic. There was no significant difference in the number of vaccine-related, local or systemic adverse reactions between MVA85A and MVA85A-IMX313 groups. The mycobacteria-specific cellular immune responses induced by MVA85A-IMX313 were not significantly different to those detected in the MVA85A group. In light of this encouraging safety data, further work to improve the potency of molecular adjuvants like IMX313 is merited. This trial was registered on clinicatrials.gov ref. NCT01879163. PMID:26854906

  15. Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component

    DTIC Science & Technology

    2011-10-01

    receiving the vaccine (Figure 3). Within 14 days after the first immunization, Grade 1 neutropenia was recorded in one of 15 volunteers and Grade 2 in...one of 15 volunteers; within 14 days after the second immunization, Grade 1 neutropenia was recorded in two of 14 volunteers and Grade 2 in two of 14...range of doses was administered [62,64]. Neutropenia was the only apparent vaccine-related laboratory abnormality. Serotype 5 adenoviruses are thought

  16. Complex Immune Correlates of Protection in HIV-1 Vaccine Efficacy Trials

    PubMed Central

    Tomaras, Georgia D.; Plotkin, Stanley A.

    2016-01-01

    Summary Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate—thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine. PMID:28133811

  17. Maternal immunization with a DNA vaccine candidate elicits specific passive protection against post-natal Zika virus infection in immunocompetent BALB/c mice.

    PubMed

    Wang, Ran; Liao, Xianzheng; Fan, Dongying; Wang, Lei; Song, Ji; Feng, Kaihao; Li, Mingyuan; Wang, Peigang; Chen, Hui; An, Jing

    2018-06-07

    Zika virus (ZIKV) infection is closely associated in the fetus with microcephaly and in the adults with Guillain-Barré syndrome and even male infertility. It is an urgent international priority to develop a safe and effective vaccine that offers protection to both women of childbearing age and their children. In this study, female immunocompetent BALB/c mice were immunized with a DNA-based vaccine candidate, pVAX1-ZME, expressing the prM/E protein of ZIKV, and the immunogenicity for maternal mice and the post-natal protection for suckling mice were evaluated. It was found that administration with three doses of 50 μg pVAX1-ZME via in vivo electroporation induced robust ZIKV-specific cellular and long-term humoral immune responses with high and sustained neutralizing activity in adult mice. Moreover, using a maternal immunization protocol, neutralizing antibodies provided specific passive protection against ZIKV infection in neonatal mice and effectively inhibited the growth delay. This vaccine candidate is expected to be further evaluated in higher animals, and maternal vaccination shows great promise for protecting both women of childbearing age and their offspring against post-natal ZIKV infection. The vaccinated mothers and ZIKV-challenged pups provide key insight into Zika vaccine evaluation in an available fully immunocompetent animal model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates

    PubMed Central

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R.; Bett, Andrew J.

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  19. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    PubMed

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  20. Increased efficacy of inactivated vaccine candidates prepared with Salmonella enterica serovar Typhimurium strains of predominant genotypes in ducks.

    PubMed

    Youn, S Y; Kwon, Y K; Song, C S; Lee, H J; Jeong, O M; Choi, B K; Jung, S C; Kang, M S

    2016-08-01

    Salmonella enterica serovar Typhimurium has been a major causative agent of food-borne human disease, mainly due to consumption of contaminated food animal products. In particular, ducks serve as a reservoir of serovar Typhimurium, and are one of the common sources of human infection. To prevent infection of ducks, and therefore minimize human infection, it is critical to control the persistent epidemic strains in ducks. Here, we analyzed the genetic diversity and virulence of serovar Typhimurium isolates from ducks in Korea to identify the predominant strains that might be used as efficient vaccine candidates for ducks. Among the isolates, 2 representative isolates (ST26 and ST76) of predominant genotypes were selected as vaccine strains on the basis of genotypic analysis by pulsed-field gel electrophoresis and DNA microarrays. Two-week-old ducks were then injected intramuscularly with inactivated vaccine candidates prepared using ST26 or ST76 (10(8) cfu/0.5 mL/duck or 10(9) cfu/0.5 mL/duck), and oral challenge with a highly virulent serovar Typhimurium strain (10(9) cfu/0.5 mL/duck) was carried out 2 wk later. Shedding of the challenge strain was significantly decreased in group 2 after vaccination. The antibody levels by enzyme-linked immunosorbent assay in all vaccinated groups were enhanced significantly (P < 0.05) compared to the unvaccinated control group. Overall, vaccination with ST26 or ST76 reduced bacterial shedding and colonization in internal organs, and induced elevated antibody response. In particular, serovar Typhimurium ST26 (10(8) cfu/0.5 mL/duck) was the most effective vaccine candidate, which can provide efficient protection against serovar Typhimurium in ducks with higher effectiveness compared to a commercial vaccine currently used worldwide. © 2016 Poultry Science Association Inc.

  1. Collaborative study to assess the suitability of a candidate International Standard for yellow fever vaccine.

    PubMed

    Ferguson, Morag; Heath, Alan

    2004-12-01

    Yellow fever vaccines are routinely assayed by plaque assay. However, the results of these assays are then converted into mouse LD(50) using correlations/conversion factors which, in many cases, were established many years ago. The minimum required potency in WHO Recommendations is 10(3) LD(50)/dose. Thirteen participants from 8 countries participated in a collaborative study whose aim was to assess the suitability of two candidate preparations to serve as an International Standard for yellow fever vaccine. In addition, the study investigated the relationship between the mouse LD(50) test and plaque forming units with a view to updating the WHO recommendations. Plaque assays were more reproducible than mouse assays, as expected. Differences in sensitivities of plaque assays were observed between laboratories but these differences appear to be consistent within a laboratory for all samples and the expression of potency relative to the candidate standard vaccine improved the reproducibility of assays between laboratories. However, the use of potencies had little effect on the between laboratory variability in mouse LD(50) assays. There appears to be a consistent relationship between overall mean LD(50) and plaques titre for all study preparations other than sample E. The slope of the correlation curve is >1 and it would appear that 10(3) LD(50) is approximately equivalent to 10(4) plaque forming units (PFU), based on the overall means of all laboratory results. The First International Standard for yellow fever vaccine, NIBSC Code 99/616, has been established as the First International Standard for yellow fever vaccine by the Expert Committee of Biological Standards of the World Health Organisation. The International Standard has been arbitrarily assigned a potency of 10(4.5) International Units (IU) per ampoule. Manufacturers and National Control Laboratories are including the First International Standard for yellow fever vaccine in routine assays so that the minimum

  2. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates.

    PubMed

    Terasaki, Kaori; Tercero, Breanna R; Makino, Shinji

    2016-05-02

    Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever (RVF), which was first recognized in the Great Rift Valley of Kenya in 1931. RVF is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Combat pneumococcal infections: adhesins as candidates for protein-based vaccine development.

    PubMed

    Gamez, Gustavo; Hammerschmidt, Sven

    2012-03-01

    Streptococcus pneumoniae (pneumococcus) is an asymptomatic colonizer of the upper respiratory tract in humans. However, these apparently harmless bacteria have also a high virulence potential and are known as the etiologic agent of respiratory and life-threatening invasive diseases. Dissemination of pneumococci from the nasopharynx into the lungs or bloodstream leads to community-acquired pneumonia, septicaemia and meningitis. Traditionally, pneumococcal diseases are treated with antibiotics and prevented with polysaccharide-based vaccines. However, due to the dramatic increase in antibiotic resistance and limitations of the current available vaccines, the burden of diseases remains high. Thus, combating pneumococcal transmission and infections has emphasized the need for a new generation of protein-based vaccines. Interactions of pneumococci with soluble host proteins or cellular receptors are crucial for adherence, colonization, transmigration of host barriers and immune evasion. Therefore, surface-exposed proteins involved in these pathogenic processes and virtually expressed by all pneumococcal strains and serotypes are the prime potential targets for an immunogenic and highly protective pneumococcal-derived carrier protein of a vaccine. In this review, we will address the state of the art in deciphering, i). the conservation, distribution and pathogenic role of recently discovered pneumococcal adhesins in colonization and invasive diseases, ii). the interactions of these virulence factors with host-proteins and receptors, iii). the subversion of the host immune and cellular responses, and iv). the potential of pneumococcal adhesins as vaccine candidates.

  4. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity.

    PubMed

    Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G P S

    2017-01-01

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  5. An avirulent Micropterus salmoides rhabdovirus vaccine candidate protects Chinese perch against rhabdovirus infection.

    PubMed

    Lijuan, Zhang; Ningqiu, Li; Qiang, Lin; Lihui, Liu; Hongru, Liang; Zhibin, Huang; Xiaozhe, Fu

    2018-06-01

    In order to develop live vaccine against Siniperca chuatsi rhabdovirus (SCRV) disease, an avirulent virus strain, designed as Micropterus salmoides rhabdovirus Sanshui (MSRV-SS), was selected from six fish rhabdovirus isolates (SCRV-QY、SCRV-SS、SCRV-GM、CMRV-FS、OMBRV-JM、MSRV-SS) by fish challenge assay. When Chinese perch (Siniperca chuatsi) were intraperitoneally injected live virus strain MSRV-SS, they were completely protected from virulent SCRV-GM challenge with a relative percent survival (RPS) of 100% on 18th day post vaccination. Then, the wild type MSRV-SS was purified by plaque clone assays, and the biological characteristics of the clonal strain designed as MSRV-SS-7 were investigated. The MSRV-SS-7 was avirulent to Chinese perch and its growth characteristic was similar to the MSRV-SS. The immune protection effects of clonal MSRV-SS-7 against virulent SCRV-GM were evaluated by intraperitoneal injection (IP) vaccination and immersion (IM) vaccination, their RPSs were all 100%. Altogether, these results indicate that MSRV-SS-7 is a potential live vaccine candidate against SCRV disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Design of a Type-1 Diabetes Vaccine Candidate Using Edible Plants Expressing a Major Autoantigen

    PubMed Central

    Bertini, Edoardo; Merlin, Matilde; Gecchele, Elisa; Puggia, Andrea; Brozzetti, Annalisa; Commisso, Mauro; Falorni, Alberto; Bini, Vittorio; Klymyuk, Victor; Pezzotti, Mario; Avesani, Linda

    2018-01-01

    Type-1 diabetes (T1D) is a metabolic disease involving the autoimmune destruction of insulin-producing pancreatic beta cells. It is often diagnosed by the detection of autoantibodies, typically those recognizing insulin itself or the 65-kDa isoform of glutamic acid decarboxylase (GAD65). Oral insulin can be used to induce systemic immunological tolerance and thus prevent or delay the onset of T1D, suggesting that combination treatments with other autoantigens such as GAD65 could be even more successful. GAD65 has induced oral tolerance and prevented T1D in preclinical studies but it is difficult to produce in sufficient quantities for clinical testing. Here we combined edible plant systems, namely spinach (Spinacia oleracea cv Industra) and red beet (Beta vulgaris cv Moulin Rouge), with the magnICON® expression system to develop a safe, cost-effective and environmentally sustainable platform for the large-scale production of GAD65. The superior red beet platform was extensively characterized in terms of recombinant protein yields and bioequivalence to wild-type plants, and the product was tested for its ability to resist simulated gastric digestion. Our results indicate that red beet plants are suitable for the production of a candidate oral vaccine based on GAD65 for the future preclinical and clinical testing of T1D immunotherapy approaches. PMID:29765386

  7. Development and evaluation of novel recombinant adenovirus-based vaccine candidates for infectious bronchitis virus and Mycoplasma gallisepticum in chickens.

    PubMed

    Zhang, Dongchao; Long, Yuqing; Li, Meng; Gong, Jianfang; Li, Xiaohui; Lin, Jing; Meng, Jiali; Gao, Keke; Zhao, Ruili; Jin, Tianming

    2018-04-01

    Avian infectious bronchitis caused by the infectious bronchitis virus (IBV), and mycoplasmosis caused by Mycoplasma gallisepticum (MG) are two major respiratory diseases in chickens that have resulted in severe economic losses in the poultry industry. We constructed a recombinant adenovirus that simultaneously expresses the S1 spike glycoprotein of IBV and the TM-1 protein of MG (pBH-S1-TM-1-EGFP). For comparison, we constructed two recombinant adenoviruses (pBH-S1-EGFP and pBH-TM-1-EGFP) that express either the S1 spike glycoprotein or the TM-1 protein alone. The protective efficacy of these three vaccine constructs against challenge with IBV and/or MG was evaluated in specific pathogen free chickens. Groups of seven-day-old specific pathogen free chicks were immunized twice, two weeks apart, via the oculonasal route with the pBH-S1-TM-1-EGFP, pBH-S1-EGFP, or pBH-TM-1-EGFP vaccine candidates or the commercial attenuated infectious bronchitis vaccine strain H52 and MG vaccine strain F-36 (positive controls), and challenged with virulent IBV or MG two weeks later. Interestingly, by days 7 and 14 after the booster immunization, pBH-S1-TM-1-EGFP-induced antibody titre was significantly higher (P < 0.01) compared to attenuated commercial IBV vaccine; however, there was no significant difference between the pBH-S1-TM-1-EGFP and attenuated commercial MG vaccine groups (P > 0.05). The clinical signs, the gross, and histopathological lesions scores of the adenovirus vaccine constructs were not significantly different from that of the attenuated commercial IBV or MG vaccines (positive controls) (P > 0.05). These results demonstrate the potential of the bivalent pBH-S1-TM-1-EGFP adenovirus construct as a combination vaccine against IB and mycoplasmosis.

  8. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates

    PubMed Central

    Terasaki, Kaori; Tercero, Breanna R.; Makino, Shinji

    2015-01-01

    Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever, which was first recognized in the Great Rift Valley of Kenya in 1931. RVFV is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines’ residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines. PMID:26022573

  9. Strain-specific reverse transcriptase PCR assay: means to distinguish candidate vaccine from wild-type strains of respiratory syncytial virus.

    PubMed Central

    Zheng, H; Peret, T C; Randolph, V B; Crowley, J C; Anderson, L J

    1996-01-01

    Candidate live-virus vaccines for respiratory syncytial virus are being developed and are beginning to be evaluated in clinical trials. To distinguish candidate vaccine strains from wild-type strains isolated during these trials, we developed PCR assays specific to two sets of candidate vaccine strains. The two sets were a group A strain (3A), its three attenuated, temperature-sensitive variant strains, a group B strain (2B), and its four attenuated, temperature-sensitive variant strains. The PCR assays were evaluated by testing 18 group A wild-type strains, the 3A strains, 9 group B wild-type strains, and the 2B strains. PCR specific to group A wild-type strains amplified only group A wild-type strains, and 3A-specific PCR amplified only 3A strains. PCR specific to group B wild-type strains amplified all group A and group B strains but gave a 688-bp product for group B wild-type strains, a 279-bp product for 2B strains, a 547-bp product for all group A strains, and an additional 688-bp product for some group A strains, including 3A strains. These types of PCR assays can, in conjunction with other methods, be used to efficiently distinguish candidate vaccine strains from other respiratory syncytial virus strains. PMID:8789010

  10. Novel Sequence-Based Mapping of Recently Emerging H5NX Influenza Viruses Reveals Pandemic Vaccine Candidates

    PubMed Central

    Anderson, Christopher S.; DeDiego, Marta L.; Thakar, Juilee; Topham, David J.

    2016-01-01

    Recently, an avian influenza virus, H5NX subclade 2.3.4.4, emerged and spread to North America. This subclade has frequently reassorted, leading to multiple novel viruses capable of human infection. Four cases of human infections, three leading to death, have already occurred. Existing vaccine strains do not protect against these new viruses, raising a need to identify new vaccine candidate strains. We have developed a novel sequence-based mapping (SBM) tool capable of visualizing complex protein sequence data sets using a single intuitive map. We applied SBM on the complete set of avian H5 viruses in order to better understand hemagglutinin protein variance amongst H5 viruses and identify any patterns associated with this variation. The analysis successfully identified the original reassortments that lead to the emergence of this new subclade of H5 viruses, as well as their known unusual ability to re-assort among neuraminidase subtypes. In addition, our analysis revealed distinct clusters of 2.3.4.4 variants that would not be covered by existing strains in the H5 vaccine stockpile. The results suggest that our method may be useful for pandemic candidate vaccine virus selection. PMID:27494186

  11. The importance of a proper against-medical-advice (AMA) discharge: how signing out AMA may create significant liability protection for providers.

    PubMed

    Levy, Frederick; Mareiniss, Darren P; Iacovelli, Corianne

    2012-09-01

    Every year, patients leave the Emergency Department against medical advice (AMA) and before an adequate evaluation can be performed. It is well known that many of these patients are at risk of subsequent complications. The goal of this article is to explain the potential legal protections that may be created from a proper AMA discharge. In this article, the authors review the steps that need to be taken when performing an AMA discharge, including an assessment of capacity, proper documentation, and adequate disclosure. The authors then review the potential legal protections that can result from a properly documented and performed discharge. Among these protections are: proof that the provider's duty to the patient ended with discharge and that the patient assumed the risk of a subsequent complication. The authors conclude that a properly executed discharge can provide significant legal protection from liability risks. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. AMA-Reddit Media Event

    NASA Image and Video Library

    2014-12-02

    From left, Mike Bolger, Ground Systems Development and Operations program manager; and Mark Geyer, Orion program manager, participate in a live online Ask Me Anything, or AMA, session for reddit.com followers during Orion preflight activities at NASA Kennedy Space Center's News Center in Florida. Not shown is Todd May, Space Launch System program manager. Discussion topics include Mars and technology.

  13. Cellular Immune Responses to Nine Mycobacterium tuberculosis Vaccine Candidates following Intranasal Vaccination

    PubMed Central

    Sable, Suraj B.; Cheruvu, Mani; Nandakumar, Subhadra; Sharma, Sunita; Bandyopadhyay, Kakali; Kellar, Kathryn L.; Posey, James E.; Plikaytis, Bonnie B.; Amara, Rama Rao; Shinnick, Thomas M.

    2011-01-01

    Background The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. Methods and Principal Findings In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study. Conclusion and Significance Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis. PMID:21799939

  14. Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries.

    PubMed

    Srisutham, Suttipat; Saralamba, Naowarat; Sriprawat, Kanlaya; Mayxay, Mayfong; Smithuis, Frank; Nosten, Francois; Pukrittayakamee, Sasithon; Day, Nicholas P J; Dondorp, Arjen M; Imwong, Mallika

    2018-01-11

    Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine

  15. Identification of novel Haemophilus parasuis serovar 5 vaccine candidates using an immunoproteomic approach.

    PubMed

    Li, Gang; Xie, Fang; Li, Jianjun; Liu, Jiao; Li, Dapeng; Zhang, Yanhe; Langford, Paul R; Li, Yanwen; Liu, Siguo; Wang, Chunlai

    2017-06-23

    Haemophilus parasuis is the aetiological agent of Glässer's disease, which is responsible for cases of fibrinous polyserositis, polyarthritis and meningitis. No vaccine is known that provides cross-protection against all serovars. The identification of novel immunoprotective antigens would undoubtedly contribute to the development of efficient subunit vaccines. In the present study, an immunoproteomic approach was used to analyze secreted proteins of H. parasuis and six proteins with high immunogenicity were identified. Five of them were successfully expressed, and their immunogenicity and protective efficacy were assessed in a mouse challenge model. All five proteins elicited strong humoral antibody and cellular immune responses in mice. They all effectively reduced the growth of H. parasuis in mouse organs and conferred different levels of protection (40-80%) against challenge. IgG subtype analysis revealed that the five proteins induce a bias toward a Th1-type immune response, and a significant increase was observed in the cytokine levels of IL-2, IFN-γ and Th2-specific IL-4 in the culture supernatants of splenocytes isolated from immunized mice. The results suggest that both Th1 and Th2 responses are involved in mediating protection. These data suggest that the five proteins could be potential subunit vaccine candidates for use to prevent H. parasuis infection. Haemophilus parasuis can cause huge financial loss in the swine industry worldwide. There are still no vaccines which can provide cross-protection against all serovars. To address this need, we applied an immunoproteomic approach involving 2-DE, MALDI-TOF/TOF MS and Western-blot to identify the secreted proteins which may be able to provide immunoprotection to this disease. We identified six immunogenic proteins, and the immunogenicity and protective efficacy were validated. This result provides a foundation for developing novel subunit vaccines against Haemophilus parasuis. Copyright © 2017

  16. Decreased accumulation of subgenomic RNA in human cells infected with vaccine candidate DEN4Δ30 increases viral susceptibility to type I interferon.

    PubMed

    Bustos-Arriaga, José; Gromowski, Gregory D; Tsetsarkin, Konstantin A; Firestone, Cai-Yen; Castro-Jiménez, Tannya; Pletnev, Alexander G; Cedillo-Barrón, Leticia; Whitehead, Stephen S

    2018-06-07

    The NIH has developed live attenuated dengue virus (DENV) vaccine candidates by deletion of 30 nucleotides (Δ30) from the untranslated region of the viral genome. Although this attenuation strategy has proven to be effective in generating safe and immunogenic vaccine strains, the molecular mechanism of attenuation is largely unknown. To examine the mediators of the observed attenuation phenotype, differences in translation efficiency, genome replication, cytotoxicity, and type I interferon susceptibility were compared between wild type parental DENV and DENVΔ30 attenuated vaccine candidates. We observed that decreased accumulation of subgenomic RNA (sfRNA) from the vaccine candidates in infected human cells causes increased type I IFN susceptibility and propose this as one of the of attenuation mechanisms produced by the 3' UTR Δ30 mutation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children.

    PubMed

    Walker, Richard I

    2015-02-18

    Despite improvements to water quality, sanitation, and the implementation of current prevention and treatment interventions, diarrhea remains a major cause of illness and death, especially among children less than five years of age in the developing world. Rotavirus vaccines have already begun making a real impact on diarrhea, but several more enteric vaccines will be necessary to achieve broader reductions of illness and death. Among the many causes of diarrheal disease, enterotoxigenic Escherichia coli (ETEC) and Shigella are the two most important bacterial pathogens for which there are no currently licensed vaccines. Vaccines against these two pathogens could greatly reduce the impact of disease caused by these infections. This review describes the approaches to ETEC and Shigella vaccines that are currently under development, including a range of both cellular and subunit approaches for each pathogen. In addition, the review discusses strategies for maximizing the potential benefit of these vaccines, which includes the feasibility of co-administration, consolidation, and combination of vaccine candidates, as well as issues related to effective administration of enteric vaccines to infants. Recent impact studies indicate that ETEC and Shigella vaccines could significantly benefit global public health. Either vaccine, particularly if they could be combined together or with another enteric vaccine, would be an extremely valuable tool for saving lives and promoting the health of infants and children in the developing world, as well as potentially providing protection to travelers and military personnel visiting endemic areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Oral administration of live Shigella vaccine candidates in rhesus monkeys show no evidence of competition for colonization and immunogenicity between different serotypes.

    PubMed

    Ranallo, R T; Kaminski, R; Baqar, S; Dutta, M; Lugo-Roman, L A; Boren, T; Barnoy, S; Venkatesan, M M

    2014-03-26

    Live oral monovalent Shigella flexneri 2a vaccine candidates as well as bivalent formulations with Shigella sonnei were evaluated in a rhesus monkey model for colonization and immunogenicity. Freshly harvested suspensions of S. flexneri 2a vaccine candidates WRSf2G12 and WRSf2G15 as well as S. sonnei vaccine candidate WRSs3 were nasogastrically administered to groups of rhesus monkeys, Macaca mulatta, either in a monovalent form or when combined with each other. The animals were monitored daily for physical well-being, stools were subjected to quantitative colony immunoblot assays for bacterial excretion and blood and stools were evaluated for humoral and mucosal immune responses. No clinical symptoms were noted in any group of animals and the vaccine candidates were excreted robustly for 48-72h without significant changes in either the magnitude or duration of excretion when given as a monovalent or as bivalent mixtures. Similarly, immunological interferences were not apparent in the magnitude of humoral and mucosal immune responses observed toward Shigella-specific antigens when monkeys were fed monovalent or bivalent formulations. These results predict that a multivalent live oral vaccine of more than one serotype can have a favorable outcome for protection against shigellosis. Published by Elsevier Ltd.

  19. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates.

    PubMed

    Jones, Sophie; Grignard, Lynn; Nebie, Issa; Chilongola, Jaffu; Dodoo, Daniel; Sauerwein, Robert; Theisen, Michael; Roeffen, Will; Singh, Shrawan Kumar; Singh, Rajesh Kumar; Singh, Sanjay; Kyei-Baafour, Eric; Tetteh, Kevin; Drakeley, Chris; Bousema, Teun

    2015-07-01

    Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso. We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p < 0.001) and 230CMB (p = 0.031). Membrane feeding assays on a separate dataset demonstrated an association between functional transmission reducing activity and antibody prevalence for both 10C (p = 0.017) and 230CMB (p = 0.049). 17 single nucleotide polymorphisms were found in pfs48/45 (from 126 samples), with 5 non-synonymous SNPs in the Pfs48/45 10C region. We conclude there are naturally acquired antibody responses to both vaccine candidates which have functional relevance by reducing the transmissibility of infected individuals. We identified genetic polymorphisms, in pfs48/45 which exhibited geographical specificity. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system

    PubMed Central

    Huang, Lihong; Liu, Shukai; Zang, Fuyu; Xing, Jinchao; Zhang, Youyue; Liang, Jiaqi; Zhang, Guihong

    2017-01-01

    In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study, we described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health. This JEV DNA-based replicon contains a large deletion in the structural genes (C-prM-E). A PRRSV GP5/M was inserted into the deletion position of JEV DNA-based replicons to develop a chimeric replicon vaccine candidate for PRRSV. The results showed that BALB/c mice models with the replicon vaccines pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M stimulated antibody responses and induced a cellular immune response. Analysis of ELSA data showed that vaccination with the replicon vaccine expressing GP5/M induced a better antibodies response than traditional DNA vaccines. Therefore, the results suggested that this ectopic expression system based on JEV DNA-based replicons may represent a useful molecular platform for various biological applications, and the JEV DNA-based replicons expressing GP5/M can be further developed into a novel, safe vaccine candidate for PRRS. PMID:28740748

  1. AMA-Reddit Media Event

    NASA Image and Video Library

    2014-12-02

    NASA managers participate in a live online Ask Me Anything, or AMA, session for reddit.com followers during Orion preflight activities at NASA Kennedy Space Center's News Center in Florida. At left, is Mike Bolger, Ground Systems Development and Operations program manager. Not shown, but also participating were Mark Geyer, Orion program manager, and Todd May, Space Launch System program manager. Discussion topics include Mars and technology.

  2. Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K.

    PubMed

    Cha, Seung Bin; Kim, Woo Sik; Kim, Jong-Seok; Kim, Hongmin; Kwon, Kee Woong; Han, Seung Jung; Cho, Sang-Nae; Coler, Rhea N; Reed, Steven G; Shin, Sung Jae

    2016-04-27

    The majority of tuberculosis (TB) vaccine candidates advanced to clinical trials have been evaluated preclinically using laboratory-adapted strains. However, it has been proposed that challenge with clinical isolates in preclinical vaccine testing could provide further and more practical validation. Here, we tested the ID93/GLA-SE TB vaccine candidate against the clinical Mycobacterium tuberculosis (Mtb) strain K (Mtb K) belonging to the Beijing family, the most prevalent Mtb strain in South Korea. Mice immunized with ID93/GLA-SE exhibited a significant reduction in bacteria and reduced lung inflammation against Mtb K when compared to non-immunized controls. In addition, we analyzed the immune responses in the lungs of ID93/GLA-SE-immunized mice, and showed that ID93/GLA-SE was able to elicit sustained Th1-biased immune responses including antigen-specific multifunctional CD4(+) T cell co-producing IFN-γ, TNF-α, and IL-2 as well as a high magnitude of IFN-γ response for up to 10 weeks post-challenge. Notably, further investigation of T cell subsets in the lung following challenge showed remarkable generation of CD8(+) central memory T cells by ID93/GLA-SE-immunization. Our findings showed that ID93/GLA-SE vaccine confers a high level of robust protection against the hypervirulent Mtb Beijing infection which was characterized by pulmonary Th1-polarized T-cell immune responses. These findings may also provide relevant information for potential utility of this vaccine candidate in East-Asian countries where the Beijing genotype is highly prevalent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Systematic Approach Toward Stabilization of CagL, a Protein Antigen from Helicobacter pylori That Is a Candidate Subunit Vaccine

    PubMed Central

    Choudhari, Shyamal P.; Pendleton, Kirk P.; Ramsey, Joshua D.; Blanchard, Thomas G.; Picking, William D.

    2013-01-01

    An important consideration in the development of subunit vaccines is loss of activity caused by physical instability of the protein. Such instability often results from suboptimal solution conditions related to pH and temperature. Excipients can help to stabilize vaccines, but it is important to screen and identify excipients that adequately contribute to stabilization of a given formulation. CagL is a protein present in strains of Helicobacter pylori that possess type IV secretion systems. It contributes to bacterial adherence via α5β1 integrin, thereby making it an attractive subunit vaccine candidate. We characterized the stability of CagL in different pH and temperature conditions using a variety of spectroscopic techniques. Stability was assessed in terms of transition temperature (Tm) with the accumulated data then incorporated into an empirical phase diagram (EPD) that provided an overview of CagL physical stability. These analyses indicated maximum CagL stability at pH 4–6 up to 40 °C in the absence of excipient. Using this EPD analysis, aggregation assays were developed to screen a panel of excipients with some found to inhibit CagL aggregation. Candidate stabilizers were selected to confirm their enhanced stabilizing effect. These analyses will help in the formulation of a stable vaccine against H. pylori. PMID:23794457

  4. [IL-1beta, IL-10, INF-gamma, TNF-alpha, S100beta, AMA-M2 and cell immune response in stroke].

    PubMed

    Sergeeva, S P; Erofeeva, L M; Gul'tiaev, M M

    2011-01-01

    Clinical data showed a role for stress, inflammatory, innate immune and adaptive immune mechanisms is stroke. Absolute and relative count of lymphocytes decrease, CD3 HLA DR+ and immunoregulatory balance (CD4+/CD8+) increase, concentration of IL-1beta, INF-gamma, TNF-alpha, S100beta, AMA-M2 increase, IL-10 decrease were detected in peripheral blood of 25 patients with stroke. It is explained that the products of brain cell stroke destruction (AMA-M2) play in autoimmune stroke progress mechanisms the same role as neurospecific proteins as S100beta. It is concluded that both stereotype and autoimmune mechanisms are involved in the development of stroke.

  5. The study of H. pylori putative candidate factors for single- and multi-component vaccine development.

    PubMed

    Mirzaei, Nasrin; Poursina, Farkhondeh; Moghim, Sharareh; Rashidi, Niloufar; Ghasemian Safaei, Hajieh

    2017-09-01

    Helicobacter pylori has grown to colonize inside the stomach of nearly half of the world's population, turning into the most prevalent infections in the universe. Medical care failures noticeably confirm the need for a vaccine to hinder or deal with H. pylori. This review is planned to discuss the most known factors as a vaccine candidate, including single (AhpC, BG, CagA, KatA, Fla, Hsp, HWC, Lpp, LPS, NAP, OMP, OMV, SOD, Tpx, Urease, VacA) and multi-component vaccines. Many promising results in the field of single and multivalent vaccine can be seen, but there is no satisfactory outcome and neither a prophylactic nor a therapeutic vaccine to treat or eradicate the infection in human has been acquired. Hence, selecting suitable antigen is an important factor as an appropriate adjuvant. Taken all together, the development of efficient anti-H. pylori vaccines relies on the fully understanding of the interactions between H. pylori and its host immune system. Therefore, more work should be done on epitope mapping, analysis of molecular structure, and determination of the antigen determinant region as well due to design a vaccine, preferably a multi-component vaccine to elicit specific CD4 T-cell responses that are required for H. pylori vaccine efficacy.

  6. Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine.

    PubMed

    Longley, Rhea J; Halbroth, Benedict R; Salman, Ahmed M; Ewer, Katie J; Hodgson, Susanne H; Janse, Chris J; Khan, Shahid M; Hill, Adrian V S; Spencer, Alexandra J

    2017-03-01

    Efforts are under way to improve the efficacy of subunit malaria vaccines through assessments of new adjuvants, vaccination platforms, and antigens. In this study, we further assessed the Plasmodium falciparum antigen upregulated in infective sporozoites 3 (PfUIS3) as a vaccine candidate. PfUIS3 was expressed in the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) and used to immunize mice in a prime-boost regimen. We previously demonstrated that this regimen could provide partial protection against challenge with chimeric P. berghei parasites expressing PfUIS3. We now show that ChAd63-MVA PfUIS3 can also provide partial cross-species protection against challenge with wild-type P. berghei parasites. We also show that PfUIS3-specific cellular memory responses could be recalled in human volunteers exposed to P. falciparum parasites in a controlled human malaria infection study. When ChAd63-MVA PfUIS3 was coadministered with the vaccine candidate P. falciparum thrombospondin-related adhesion protein (PfTRAP) expressed in the ChAd63-MVA system, there was no significant change in immunogenicity to either vaccine. However, when mice were challenged with double chimeric P. berghei - P. falciparum parasites expressing both PfUIS3 and PfTRAP, vaccine efficacy was improved to 100% sterile protection. This synergistic effect was evident only when the two vaccines were mixed and administered at the same site. We have therefore demonstrated that vaccination with PfUIS3 can induce a consistent delay in patent parasitemia across mouse strains and against chimeric parasites expressing PfUIS3 as well as wild-type P. berghei ; when this vaccine is combined with another partially protective regimen (ChAd63-MVA PfTRAP), complete protection is induced. Copyright © 2017 Longley et al.

  7. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    PubMed

    Dauvillée, David; Delhaye, Stéphane; Gruyer, Sébastien; Slomianny, Christian; Moretz, Samuel E; d'Hulst, Christophe; Long, Carole A; Ball, Steven G; Tomavo, Stanislas

    2010-12-15

    Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production

  8. The preventive phase I trial with the HIV-1 Tat-based vaccine.

    PubMed

    Ensoli, Barbara; Fiorelli, Valeria; Ensoli, Fabrizio; Lazzarin, Adriano; Visintini, Raffaele; Narciso, Pasquale; Di Carlo, Aldo; Tripiciano, Antonella; Longo, Olimpia; Bellino, Stefania; Francavilla, Vittorio; Paniccia, Giovanni; Arancio, Angela; Scoglio, Arianna; Collacchi, Barbara; Ruiz Alvarez, Maria Josè; Tambussi, Giuseppe; Tassan Din, Chiara; Palamara, Guido; Latini, Alessandra; Antinori, Andrea; D'Offizi, Gianpiero; Giuliani, Massimo; Giulianelli, Marina; Carta, Maria; Monini, Paolo; Magnani, Mauro; Garaci, Enrico

    2009-12-11

    The native HIV-1 Tat protein was chosen as vaccine candidate for phase I clinical trials based on its role in the natural infection and AIDS pathogenesis, on the association of Tat-specific immune response with the asymptomatic stage as well as on its sequence conservation among HIV clades. A randomized, double blind, placebo-controlled phase I study (ISS P-001) was conducted in healthy adult volunteers without identifiable risk of HIV infection. Tat was administered 5 times monthly, subcute in alum or intradermic alone at 7.5 microg, 15 microg or 30 microg, respectively (ClinicalTrials.gov identifier: NCT00529698). Vaccination with Tat resulted to be safe and well tolerated (primary endpoint) both locally and systemically. In addition, Tat induced both Th1 and Th2 type specific immune responses in all subjects (secondary endpoint) with a wide spectrum of functional antibodies that are rarely seen in natural infection, providing key information for further clinical development of the Tat vaccine candidate.

  9. The stage-specific in vitro efficacy of a malaria antigen cocktail provides valuable insights into the development of effective multi-stage vaccines.

    PubMed

    Spiegel, Holger; Boes, Alexander; Kastilan, Robin; Kapelski, Stephanie; Edgue, Güven; Beiss, Veronique; Chubodova, Ivana; Scheuermayer, Matthias; Pradel, Gabriele; Schillberg, Stefan; Reimann, Andreas; Fischer, Rainer

    2015-10-01

    Multicomponent vaccines targeting different stages of Plasmodium falciparum represent a promising, holistic concept towards better malaria vaccines. Additionally, an effective vaccine candidate should demonstrate cross-strain specificity because many antigens are polymorphic, which can reduce vaccine efficacy. A cocktail of recombinant fusion proteins (VAMAX-Mix) featuring three diversity-covering variants of the blood-stage antigen PfAMA1, each combined with the conserved sexual-stage antigen Pfs25 and one of the pre-erythrocytic-stage antigens PfCSP_TSR or PfCelTOS, or the additional blood-stage antigen PfMSP1_19, was produced in Pichia pastoris and used to immunize rabbits. The immune sera and purified IgG were used to perform various assays determining antigen specific titers and in vitro efficacy against different parasite stages and strains. In functional in vitro assays we observed robust inhibition of blood-stage (up to 90%), and sexual-stage parasites (up to 100%) and biased inhibition of pre-erythrocytic parasites (0-40%). Cross-strain blood-stage efficacy was observed in erythrocyte invasion assays using four different P. falciparum strains. The quantification of antigen-specific IgGs allowed the determination of specific IC50 values. The significant difference in antigen-specific IC50 requirements, the direct correlation between antigen-specific IgG and the relative quantitative representation of antigens within the cocktail, provide valuable implementations for future multi-stage, multi-component vaccine designs. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evaluation of a Plasmodium-Specific Carrier Protein To Enhance Production of Recombinant Pfs25, a Leading Transmission-Blocking Vaccine Candidate.

    PubMed

    Parzych, Elizabeth M; Miura, Kazutoyo; Ramanathan, Aarti; Long, Carole A; Burns, James M

    2018-01-01

    Challenges with the production and suboptimal immunogenicity of malaria vaccine candidates have slowed the development of a Plasmodium falciparum multiantigen vaccine. Attempting to resolve these issues, we focused on the use of highly immunogenic merozoite surface protein 8 (MSP8) as a vaccine carrier protein. Previously, we showed that a genetic fusion of the C-terminal 19-kDa fragment of merozoite surface protein 1 (MSP1 19 ) to P. falciparum MSP8 ( Pf MSP8) facilitated antigen production and folding and the induction of neutralizing antibodies to conformational B cell epitopes of MSP1 19 Here, using the Pf MSP1/8 construct, we further optimized the recombinant Pf MSP8 (r Pf MSP8) carrier by the introduction of two cysteine-to-serine substitutions (CΔS) to improve the yield of the monomeric product. We then sought to test the broad applicability of this approach using the transmission-blocking vaccine candidate Pf s25. The production of r Pf s25-based vaccines has presented challenges. Antibodies directed against the four highly constrained epidermal growth factor (EGF)-like domains of Pf s25 block sexual-stage development in mosquitoes. The sequence encoding mature Pf s25 was codon harmonized for expression in Escherichia coli We produced a r Pf s25- Pf MSP8 fusion protein [r Pf s25/8(CΔS)] as well as unfused, mature r Pf s25. r Pf s25 was purified with a modest yield but required the incorporation of refolding protocols to obtain a proper conformation. In comparison, chimeric r Pf s25/8(CΔS) was expressed and easily purified, with the Pf s25 domain bearing the proper conformation without renaturation. Both antigens were immunogenic in rabbits, inducing IgG that bound native Pf s25 and exhibited potent transmission-reducing activity. These data further demonstrate the utility of Pf MSP8 as a parasite-specific carrier protein to enhance the production of complex malaria vaccine targets. Copyright © 2017 American Society for Microbiology.

  11. Evaluation of two mutants of Mycobacterium avium subsp. paratuberculosis as candidates for a live attenuated vaccine for Johne's disease

    USDA-ARS?s Scientific Manuscript database

    Efforts to control Johne’s disease (JD), caused by Mycobacterium avium subsp. paratuberculosis (Map), has been difficult because of a lack of an effective vaccine. To address this problem we examined the potential of targeted gene disruption as a method to develop candidate vaccines with impaired c...

  12. Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein.

    PubMed

    Beiss, Veronique; Spiegel, Holger; Boes, Alexander; Kapelski, Stephanie; Scheuermayer, Matthias; Edgue, Gueven; Sack, Markus; Fendel, Rolf; Reimann, Andreas; Schillberg, Stefan; Pradel, Gabriele; Fischer, Rainer

    2015-07-01

    Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 μg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail. © 2015 Wiley Periodicals, Inc.

  13. AMA-Reddit Media Event

    NASA Image and Video Library

    2014-12-02

    NASA managers participate in a live online Ask Me Anything, or AMA, session for reddit.com followers during Orion preflight activities at NASA Kennedy Space Center's News Center in Florida. From left, are Mike Bolger, Ground Systems Development and Operations program manager; and Mark Geyer, Orion program manager. Across from them, in the plaid shirt is Todd May, Space Launch System program manager. Discussion topics include Mars and technology.

  14. AMA-Reddit Media Event

    NASA Image and Video Library

    2014-12-02

    NASA managers participate in a live online Ask Me Anything, or AMA, session for reddit.com followers during Orion preflight activities at NASA Kennedy Space Center's News Center in Florida. From left, are Mike Bolger, Ground Systems Development and Operations program manager and Mark Geyer, Orion program manager. Also participating, but not shown in the photo is Todd May, Space Launch System program manager. Discussion topics include Mars and technology.

  15. Comparative Assessment of Transmission-Blocking Vaccine Candidates against Plasmodium falciparum

    PubMed Central

    Kapulu, M. C.; Da, D. F.; Miura, K.; Li, Y; Blagborough, A. M.; Churcher, T. S.; Nikolaeva, D.; Williams, A. R.; Goodman, A. L.; Sangare, I.; Turner, A. V.; Cottingham, M. G.; Nicosia, A.; Straschil, U.; Tsuboi, T.; Gilbert, S. C.; Long, Carole A.; Sinden, R. E.; Draper, S. J.; Hill, A. V. S.; Cohuet, A.; Biswas, S.

    2015-01-01

    Malaria transmission-blocking vaccines (TBVs) target the development of Plasmodium parasites within the mosquito, with the aim of preventing malaria transmission from one infected individual to another. Different vaccine platforms, mainly protein-in-adjuvant formulations delivering the leading candidate antigens, have been developed independently and have reported varied transmission-blocking activities (TBA). Here, recombinant chimpanzee adenovirus 63, ChAd63, and modified vaccinia virus Ankara, MVA, expressing AgAPN1, Pfs230-C, Pfs25, and Pfs48/45 were generated. Antibody responses primed individually against all antigens by ChAd63 immunization in BALB/c mice were boosted by the administration of MVA expressing the same antigen. These antibodies exhibited a hierarchy of inhibitory activity against the NF54 laboratory strain of P. falciparum in Anopheles stephensi mosquitoes using the standard membrane feeding assay (SMFA), with anti-Pfs230-C and anti-Pfs25 antibodies giving complete blockade. The observed rank order of inhibition was replicated against P. falciparum African field isolates in A. gambiae in direct membrane feeding assays (DMFA). TBA achieved was IgG concentration dependent. This study provides the first head-to-head comparative analysis of leading antigens using two different parasite sources in two different vector species, and can be used to guide selection of TBVs for future clinical development using the viral-vectored delivery platform. PMID:26063320

  16. The Hard Way towards an Antibody-Based HIV-1 Env Vaccine: Lessons from Other Viruses

    PubMed Central

    Ringel, Oliver; Vieillard, Vincent; Debré, Patrice; Eichler, Jutta; Büning, Hildegard

    2018-01-01

    Although effective antibody-based vaccines have been developed against multiple viruses, such approaches have so far failed for the human immunodeficiency virus type 1 (HIV-1). Despite the success of anti-retroviral therapy (ART) that has turned HIV-1 infection into a chronic disease and has reduced the number of new infections worldwide, a vaccine against HIV-1 is still urgently needed. We discuss here the major reasons for the failure of “classical” vaccine approaches, which are mostly due to the biological properties of the virus itself. HIV-1 has developed multiple mechanisms of immune escape, which also account for vaccine failure. So far, no vaccine candidate has been able to induce broadly neutralizing antibodies (bnAbs) against primary patient viruses from different clades. However, such antibodies were identified in a subset of patients during chronic infection and were shown to protect from infection in animal models and to reduce viremia in first clinical trials. Their detailed characterization has guided structure-based reverse vaccinology approaches to design better HIV-1 envelope (Env) immunogens. Furthermore, conserved Env epitopes have been identified, which are promising candidates in view of clinical applications. Together with new vector-based technologies, considerable progress has been achieved in recent years towards the development of an effective antibody-based HIV-1 vaccine. PMID:29662026

  17. Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate

    PubMed Central

    Liang, Bo; Surman, Sonja; Amaro-Carambot, Emerito; Kabatova, Barbora; Mackow, Natalie; Lingemann, Matthias; Yang, Lijuan; McLellan, Jason S.; Graham, Barney S.; Kwong, Peter D.; Schaap-Nutt, Anne; Collins, Peter L.

    2015-01-01

    ABSTRACT Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. IMPORTANCE Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are two major causes of pediatric pneumonia and bronchiolitis. The rB/HPIV3 vector expressing RSV F protein is a candidate bivalent live vaccine against HPIV3 and RSV. Previous clinical evaluation indicated the need to increase the immunogenicity and genetic stability of the RSV F

  18. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    PubMed Central

    Martins, Karen A.; Jahrling, Peter B.; Bavari, Sina; Kuhn, Jens H.

    2016-01-01

    Summary Filoviruses are the etiological agents of two human illnesses: Ebola virus disease and Marburg virus disease. Until 2013, medical countermeasure development against these afflictions was limited to only a few research institutes worldwide as both infections were considered exotic due to very low case numbers. Together with the high case-fatality rate of both diseases, evaluation of any candidate countermeasure in properly controlled clinical trials seemed impossible. However, in 2013, Ebola virus was identified as the etiological agent of a large disease outbreak in Western Africa including almost 30,000 infections and more than 11,000 deaths, including case exportations to Europe and North America. These large case numbers resulted in medical countermeasure development against Ebola virus disease becoming a global public-health priority. This review summarizes the status quo of candidate vaccines against Ebola virus disease, with a focus on those that are currently under evaluation in clinical trials. PMID:27160784

  19. Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae)

    PubMed Central

    Bartley, Kathryn; Wright, Harry W.; Huntley, John F.; Manson, Erin D.T.; Inglis, Neil F.; McLean, Kevin; Nath, Mintu; Bartley, Yvonne; Nisbet, Alasdair J.

    2015-01-01

    An aqueous extract of the haematophagous poultry ectoparasite, Dermanyssus gallinae, was subfractionated using anion exchange chromatography. Six of these subfractions were used to immunise hens and the blood from these hens was fed, in vitro, to poultry red mites. Mite mortality following these feeds was indicative of protective antigens in two of the subfractions, with the risks of mites dying being 3.1 and 3.7 times higher than in the control group (P < 0.001). A combination of two-dimensional immunoblotting and immunoaffinity chromatography, using IgY from hens immunised with these subfractions, was used in concert with proteomic analyses to identify the strongest immunogenic proteins in each of these subfractions. Ten of the immunoreactive proteins were selected for assessment as vaccine candidates using the following criteria: intensity of immune recognition; likelihood of exposure of the antigen to the antibodies in a blood meal; proposed function and known vaccine potential of orthologous molecules. Recombinant versions of each of these 10 proteins were produced in Escherichia coli and were used to immunise hens. Subsequent in vitro feeding of mites on blood from these birds indicated that immunisation with Deg-SRP-1 (serpin), Deg-VIT-1 (vitellogenin), Deg-HGP-1 (hemelipoglycoprotein) or Deg-PUF-1 (a protein of unknown function) resulted in significantly increased risk of mite death (1.7–2.8 times higher than in mites fed blood from control hens immunised with adjuvant only, P < 0.001). The potential for using these antigens in a recombinant vaccine is discussed. PMID:26296690

  20. Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae).

    PubMed

    Bartley, Kathryn; Wright, Harry W; Huntley, John F; Manson, Erin D T; Inglis, Neil F; McLean, Kevin; Nath, Mintu; Bartley, Yvonne; Nisbet, Alasdair J

    2015-11-01

    An aqueous extract of the haematophagous poultry ectoparasite, Dermanyssus gallinae, was subfractionated using anion exchange chromatography. Six of these subfractions were used to immunise hens and the blood from these hens was fed, in vitro, to poultry red mites. Mite mortality following these feeds was indicative of protective antigens in two of the subfractions, with the risks of mites dying being 3.1 and 3.7 times higher than in the control group (P<0.001). A combination of two-dimensional immunoblotting and immunoaffinity chromatography, using IgY from hens immunised with these subfractions, was used in concert with proteomic analyses to identify the strongest immunogenic proteins in each of these subfractions. Ten of the immunoreactive proteins were selected for assessment as vaccine candidates using the following criteria: intensity of immune recognition; likelihood of exposure of the antigen to the antibodies in a blood meal; proposed function and known vaccine potential of orthologous molecules. Recombinant versions of each of these 10 proteins were produced in Escherichia coli and were used to immunise hens. Subsequent in vitro feeding of mites on blood from these birds indicated that immunisation with Deg-SRP-1 (serpin), Deg-VIT-1 (vitellogenin), Deg-HGP-1 (hemelipoglycoprotein) or Deg-PUF-1 (a protein of unknown function) resulted in significantly increased risk of mite death (1.7-2.8times higher than in mites fed blood from control hens immunised with adjuvant only, P<0.001). The potential for using these antigens in a recombinant vaccine is discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Dynamic profiles of neutralizing antibody responses elicited in rhesus monkeys immunized with a combined tetravalent DTaP-Sabin IPV candidate vaccine.

    PubMed

    Sun, Mingbo; Ma, Yan; Xu, Yinhua; Yang, Huijuan; Shi, Li; Che, Yanchun; Liao, Guoyang; Jiang, Shude; Zhang, Shumin; Li, Qihan

    2014-02-19

    The World Health Organization has recommended that a Sabin inactivated polio vaccine (IPV) should gradually and synchronously replace oral polio vaccines for routine immunizations because its benefits in eliminating vaccine-associated paralytic poliomyelitis have been reported in different phases of clinical trials. It is also considered important to explore new tetravalent diphtheria, tetanus, and acellular pertussis-Sabin IPV (DTaP-sIPV) candidate vaccines for possible use in developing countries. In this study, the immunogenicity of a combined tetravalent DTaP-sIPV candidate vaccine was investigated in primates by evaluating the neutralizing antibody responses it induced. The dynamic profiles of the antibody responses to each of the separate antigenic components and serotypes of Sabin IPV were determined and their corresponding geometric mean titers were similar to those generated by the tetravalent diphtheria, tetanus, and acellular pertussis-conventional IPV (DTaP-cIPV), the tetravalent diphtheria, tetanus, and acellular pertussis (DTaP), and Sabin IPV vaccines in the control groups. This implies that protective immunogenic effects are conferred by this combined tetravalent formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A Novel Malaria Vaccine Candidate Antigen Expressed in Tetrahymena thermophila

    PubMed Central

    Eleni-Muus, Janna; Aldag, Ingo; Samuel, Kay; Creasey, Alison M.; Hartmann, Marcus W. W.; Cavanagh, David R.

    2014-01-01

    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens. PMID:24489871

  3. Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by Piper betel Derived Compounds

    PubMed Central

    Barh, Debmalya; Barve, Neha; Gupta, Krishnakant; Chandra, Sudha; Jain, Neha; Tiwari, Sandeep; Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; Rodrigues dos Santos, Anderson; Hassan, Syed Shah; Almeida, Síntia; Thiago Jucá Ramos, Rommel; Augusto Carvalho de Abreu, Vinicius; Ribeiro Carneiro, Adriana; de Castro Soares, Siomar; Luiz de Paula Castro, Thiago; Miyoshi, Anderson; Silva, Artur; Kumar, Anil; Narayan Misra, Amarendra; Blum, Kenneth; Braverman, Eric R.; Azevedo, Vasco

    2013-01-01

    Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species. PMID:23382822

  4. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein

    DOE PAGES

    Chen, Edwin; Salinas, Nichole D.; Huang, Yining; ...

    2016-05-18

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifsmore » in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.« less

  5. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Edwin; Salinas, Nichole D.; Huang, Yining

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifsmore » in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.« less

  6. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery

    PubMed Central

    Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nallapali, Samson; Verma, Dheeraj; Singh, Nameirakpam D.; Banks, Robert K.; Chakrabarti, Debopam; Daniell, Henry

    2009-01-01

    Summary Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10+ T cell but not Foxp3+ regulatory T cells, suppression of interferon-γ and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity. PMID:20051036

  7. [Recombinant Vp2 protein of infectious bursal disease virus AH1 strain expressed in insect cells: a vaccine candidate].

    PubMed

    Ouyang, Wei; Wang, Yongshan; Zhou, Yu; Zhang, Haibin; Tang, Yude

    2010-05-01

    Protective immune response of the available IBD vaccine is insufficient to fully protect against the prevailing strain of the infectious bursal disease virus (IBDV). Such a vaccination escape IBDV field isolate idenfied from Anhui province of China in December 2007, where IBD broke out at 2 weeks post vaccination. The IBDV vp2 gene was cloned into pFastBacHTA donor plasmid, followed by generation of the recombinant bacmid DNA pBac-VP2. The latter was used to transfect insect cell Sf9 with Lipofectamine to produce recombinant baculovirus vBac-VP2. The Sf9 cells infected with vBac-VP2 were stained positive against IBDV antibody using the indirect immunofluorescence assay (IFA), which was also confirmed by the detection of IBDV Vp2 protein in the infected Sf9 cells by IBDV sandwich ELISA. Western blotting revealed that the calculated protein of approximately 53 kDa was in the expressed in the insect cells. Moreover, virus-like particles (VLPs) and "inclusion body-like"structure in the infected Sf9 cells were observed under electron microscopy. We further developed an indirect ELISA for the detection of the IBDV antibodies, which was specific and sensitive. In addition, the lysates of vBac-VP2 infected cells was used to immunize 2-week-old SPF chickens, followed by challenging with the virulent IBDV, the survival rate was 30% at 14 days post primary immunization, however, the survival rate was 100% at 14 d after the booster vaccination. The ELISA antibody titers was up to 3.2 x 10(3) and neutralization antibody titer was 2536, significantly higher than those of one-shot vaccination, 8 x 10(2) and 1106, respectively. The immunized chickens did not show any clinical signs and histopathological changes of infection in 7-days trial time. The bursa/body-weight ratios were higher than those of the unimmunized control (P < 0.05). The virus-like-particle recombinant Vp2 protein expressed in insect cells promises to be a novel subunit vaccine and diagnostic reagent candidate

  8. AMA-Reddit Media Event

    NASA Image and Video Library

    2014-12-02

    NASA managers participate in a live online Ask Me Anything, or AMA, session for reddit.com followers during Orion preflight activities at NASA Kennedy Space Center's News Center in Florida. Participating are Mike Bolger, Ground Systems Development and Operations program manager Mark Geyer, Orion program manager and Todd May, Space Launch System program manager. Discussion topics include Mars and technology. Monitoring the live discussion is Brandi Dean, public affairs specialist from Johnson Space Center in Houston.

  9. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation.

    PubMed

    Barrett, Alan D T

    2018-01-01

    Zika virus (ZIKV), a mosquito-borne flavivirus, was first identified in the 1940s in Uganda in Africa and emerged in the Americas in Brazil in May 2015. In the 30 months since ZIKV emerged as a major public health problem, spectacular progress has been made with vaccine development cumulating with the publication of three reports of phase 1 clinical trials in the 4th quarter of 2017. Clinical trials involving candidate DNA and purified inactivated virus vaccines showed all were safe and well-tolerated in the small number of volunteers and all induced neutralizing antibodies, although these varied by vaccine candidate and dosing regimen. These results suggest that a Zika vaccine can be developed and that phase 2 clinical trials are warranted. However, it is difficult to compare the results from the different phase 1 studies or with neutralizing antibodies induced by licensed flavivirus vaccines (Japanese encephalitis, tick-borne encephalitis, and yellow fever) as neutralizing antibody assays vary and, unfortunately, there are no standards for Zika virus neutralizing antibodies. In addition to clinical studies, substantial progress continues to be made in nonclinical development, particularly in terms of the ability of candidate vaccines to protect reproductive tissues, and the potential use of monoclonal antibodies for passive prophylaxis.

  10. Construction and Characterization of a Nonproliferative El Tor Cholera Vaccine Candidate Derived from Strain 638

    PubMed Central

    Valle, Edgar; Ledón, Talena; Cedré, Bárbara; Campos, Javier; Valmaseda, Tania; Rodríguez, Boris; García, Luis; Marrero, Karen; Benítez, Jorge; Rodríguez, Sandra; Fando, Rafael

    2000-01-01

    In recent clinical assays, our cholera vaccine candidate strain, Vibrio cholerae 638 El Tor Ogawa, was well tolerated and immunogenic in Cuban volunteers. In this work we describe the construction of 638T, a thymidine auxotrophic version of improved environmental biosafety. In so doing, the thyA gene from V. cholerae was cloned, sequenced, mutated in vitro, and used to replace the wild-type allele. Except for its dependence on thymidine for growth in minimal medium, 638T is essentially indistinguishable from 638 in the rate of growth and morphology in complete medium. The two strains showed equivalent phenotypes with regard to motility, expression of the celA marker, colonization capacity in the infant mouse cholera model, and immunogenicity in the adult rabbit cholera model. However, the ability of this new strain to survive environmental starvation was limited with respect to that of 638. Taken together, these results suggest that this live, attenuated, but nonproliferative strain is a new, promising cholera vaccine candidate. PMID:11035753

  11. Recent mouse models and vaccine candidates for preventing chronic/latent tuberculosis infection and its reactivation.

    PubMed

    Pedroza-Roldán, César; Flores-Valdez, Mario Alberto

    2017-08-31

    Tuberculosis (TB) remains a major challenge in public health worldwide. Until today, the only widely used and approved vaccine is the Mycobacterium bovis bacille Calmette-Guerin (BCG). This vaccine provides a highly variable level of protection against the active, pulmonary form of tuberculosis, and practically none against the latent form of TB infection. This disparity in protection has been extensively studied, and for this reason, several groups have focused their research on the quest for attenuated vaccines based on M. tuberculosis or on the identification of latency-associated antigens that can be incorporated into modified BCG, or that can be used as adjuvanted subunit vaccines. In order to seek new potential antigens relevant for infection, some researchers have performed experiments with highly sensitive techniques such as transcriptomic and proteomic analyses using sputum samples from humans or by using mouse models resembling several aspects of TB. In this review, we focus on reports of new mouse models or mycobacterial antigens recently tested for developing vaccine candidates against chronic/latent tuberculosis and its reactivation.

  12. Tuberculosis vaccine candidate: Characterization of H4-IC31 formulation and H4 antigen conformation.

    PubMed

    Deshmukh, Sasmit S; Magcalas, Federico Webster; Kalbfleisch, Kristen N; Carpick, Bruce W; Kirkitadze, Marina D

    2018-08-05

    Tuberculosis (TB) is one of the leading causes of death worldwide, making the development of effective TB vaccines a global priority. A TB vaccine consisting of a recombinant fusion protein, H4, combined with a novel synthetic cationic adjuvant, IC31 ® , is currently being developed. The H4 fusion protein consists of two immunogenic mycobacterial antigens, Ag85 B and TB10.4, and the IC31 ® adjuvant is a mixture of KLK, a leucine-rich peptide (KLKL5KLK), and the oligodeoxynucleotide ODN1a, a TLR9 ligand. However, efficient and robust methods for assessing these formulated components are lacking. Here, we developed and optimized phase analysis light scattering (PALS), electrical sensing zone (ESZ), and Raman, FTIR, and CD spectroscopy methods to characterize the H4-IC31 vaccine formulation. PALS-measured conductivity and zeta potential values could differentiate between the similarly sized particles of IC31 ® adjuvant and the H4-IC31 vaccine candidate and could thereby serve as a control during vaccine formulation. In addition, zeta potential is indicative of the adjuvant to antigen ratio which is the key in the immunomodulatory response of the vaccine. ESZ was used as an orthogonal method to measure IC31 ® and H4-IC31 particle sizes. Raman, FTIR, and CD spectroscopy revealed structural changes in H4 protein and IC31 ® adjuvant, inducing an increase in both the β-sheet and random coil content as a result of adsorption. Furthermore, nanoDSF showed changes in the tertiary structure of H4 protein as a result of adjuvantation to IC31 ® . Our findings demonstrate the applicability of biophysical methods to characterize vaccine components in the final H4-IC31 drug product without the requirement for desorption. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    PubMed Central

    Rivera-Hernandez, Tania; Pandey, Manisha; Henningham, Anna; Cole, Jason; Choudhury, Biswa; Cork, Amanda J.; Gillen, Christine M.; Ghaffar, Khairunnisa Abdul; West, Nicholas P.; Silvestri, Guido; Good, Michael F.; Moyle, Peter M.; Toth, Istvan; Nizet, Victor; Batzloff, Michael R.

    2016-01-01

    ABSTRACT Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. PMID:27302756

  14. Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity.

    PubMed

    Zaman, Mehfuz; Chandrudu, Saranya; Giddam, Ashwini K; Reiman, Jennifer; Skwarczynski, Mariusz; McPhun, Virginia; Moyle, Peter M; Batzloff, Michael R; Good, Michael F; Toth, Istvan

    2014-12-01

    Utilize lipopeptide vaccine delivery system to develop a vaccine candidate against Group A Streptococcus. Lipopeptides synthesized by solid-phase peptide synthesis-bearing carboxyl (C)-terminal and amino (N)-terminal Group A Streptococcus peptide epitopes. Nanoparticles formed were evaluated in vivo. Immune responses were induced in mice without additional adjuvant. We demonstrated for the first time that incorporation of the C-terminal epitope significantly enhanced the N-terminal epitope-specific antibody response and correlated with forming smaller nanoparticles. Antigen-presenting cells had increased uptake and maturation by smaller, more immunogenic nanoparticles. Antibodies raised by vaccination recognized isolates. Demonstrated the lipopeptidic nanoparticles to induce an immune response which can be influenced by the combined effect of epitope choice and size.

  15. Conventional influenza vaccines influence the performance of a universal influenza vaccine in mice.

    PubMed

    Rowell, Janelle; Lo, Chia-Yun; Price, Graeme E; Misplon, Julia A; Epstein, Suzanne L; Garcia, Mayra

    2018-02-08

    Universal influenza vaccines are designed to protect against diverse strains of influenza virus. Preclinical testing of new vaccine candidates is usually done in naïve animals, despite intended use in the human population with its varied immune history including responses to previous vaccinations. As an approach more relevant to human use, we tested a candidate universal influenza vaccine in mice with a history of conventional vaccination. Female BALB/c mice were given two intramuscular doses of inactivated influenza vaccine (IIV) or diphtheria and tetanus toxoids vaccine (DT), one month apart. Another group was given two intranasal doses of live attenuated influenza virus (LAIV). One month after the second dose, mice were given the universal influenza vaccine: recombinant adenoviruses expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) (A/NP + M2-rAd). Immune responses to universal vaccine antigens A/NP and M2 were assessed by ELISA and interferon-γ ELISPOT. Protection was tested by challenge with mouse-adapted A/FM/1/47 (H1N1) and monitoring for weight loss and survival. Universal vaccine performance was enhanced, inhibited or unaffected by particular prior vaccinations. Mice given Afluria IIV and LAIV had greater antibody and T-cell response to A/NP than mice without prior vaccination, providing examples of enhanced A/NP + M2-rAd performance. Though Fluvirin IIV partially inhibited, the universal vaccine still provided considerable protection unlike conventional vaccination. Fluzone IIV and DT had no effect on A/NP + M2-rAd performance. Thus our results demonstrate that universal vaccine candidate A/NP + M2-rAd was at least partially effective in mice with diverse prior histories. However, the degree of protection and nature of the immune responses may be affected by a history of conventional vaccination and suggests that performance in humans would be influenced by immune history. Published by Elsevier Ltd.

  16. Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections

    PubMed Central

    Romero-Saavedra, Felipe; Laverde, Diana; Budin-Verneuil, Aurélie; Muller, Cécile; Bernay, Benoit; Benachour, Abdellah; Hartke, Axel; Huebner, Johannes

    2015-01-01

    Background Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens. Results We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72%) between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm,) and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm). These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens. Conclusion Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single

  17. Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate.

    PubMed

    Liang, Bo; Surman, Sonja; Amaro-Carambot, Emerito; Kabatova, Barbora; Mackow, Natalie; Lingemann, Matthias; Yang, Lijuan; McLellan, Jason S; Graham, Barney S; Kwong, Peter D; Schaap-Nutt, Anne; Collins, Peter L; Munir, Shirin

    2015-09-01

    Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are two major causes of pediatric pneumonia and bronchiolitis. The rB/HPIV3 vector expressing RSV F protein is a candidate bivalent live vaccine against HPIV3 and RSV. Previous clinical evaluation indicated the need to increase the immunogenicity and genetic stability of the RSV F insert. Here, we

  18. Current progress in the development of a prophylactic vaccine for HIV-1

    PubMed Central

    Gamble, Lena J; Matthews, Qiana L

    2011-01-01

    Since its discovery and characterization in the early 1980s as a virus that attacks the immune system, there has been some success for the treatment of human immunodeficiency virus-1 (HIV-1) infection. However, due to the overwhelming public health impact of this virus, a vaccine is needed urgently. Despite the tireless efforts of scientist and clinicians, there is still no safe and effective vaccine that provides sterilizing immunity. A vaccine that provides sterilizing immunity against HIV infection remains elusive in part due to the following reasons: 1) degree of diversity of the virus, 2) ability of the virus to evade the hosts’ immunity, and 3) lack of appropriate animal models in which to test vaccine candidates. There have been several attempts to stimulate the immune system to provide protection against HIV-infection. Here, we will discuss attempts that have been made to induce sterilizing immunity, including traditional vaccination attempts, induction of broadly neutralizing antibody production, DNA vaccines, and use of viral vectors. Some of these attempts show promise pending continued research efforts. PMID:21267356

  19. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    PubMed

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  20. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    PubMed

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  1. AMAS: a fast tool for alignment manipulation and computing of summary statistics.

    PubMed

    Borowiec, Marek L

    2016-01-01

    The amount of data used in phylogenetics has grown explosively in the recent years and many phylogenies are inferred with hundreds or even thousands of loci and many taxa. These modern phylogenomic studies often entail separate analyses of each of the loci in addition to multiple analyses of subsets of genes or concatenated sequences. Computationally efficient tools for handling and computing properties of thousands of single-locus or large concatenated alignments are needed. Here I present AMAS (Alignment Manipulation And Summary), a tool that can be used either as a stand-alone command-line utility or as a Python package. AMAS works on amino acid and nucleotide alignments and combines capabilities of sequence manipulation with a function that calculates basic statistics. The manipulation functions include conversions among popular formats, concatenation, extracting sites and splitting according to a pre-defined partitioning scheme, creation of replicate data sets, and removal of taxa. The statistics calculated include the number of taxa, alignment length, total count of matrix cells, overall number of undetermined characters, percent of missing data, AT and GC contents (for DNA alignments), count and proportion of variable sites, count and proportion of parsimony informative sites, and counts of all characters relevant for a nucleotide or amino acid alphabet. AMAS is particularly suitable for very large alignments with hundreds of taxa and thousands of loci. It is computationally efficient, utilizes parallel processing, and performs better at concatenation than other popular tools. AMAS is a Python 3 program that relies solely on Python's core modules and needs no additional dependencies. AMAS source code and manual can be downloaded from http://github.com/marekborowiec/AMAS/ under GNU General Public License.

  2. GapA, a potential vaccine candidate antigen against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus).

    PubMed

    Zhang, Ze; Yu, Angen; Lan, Jiangfeng; Zhang, Hua; Hu, Minqiang; Cheng, Jiewei; Zhao, Lijuan; Lin, Li; Wei, Shun

    2017-04-01

    Streptococcosis due to the bacterium Streptococcus agalactiae (S. agalactiae) has resulted in enormous economic losses in aquaculture worldwide, especially in the tilapia culture industry. Previously, there were limited vaccines that could be employed against streptococcosis in tilapia. This study aimed to develop a vaccine candidate using the glyceraldehyde-phosphate dehydrogenase protein (GapA) of S. agalactiae encoded by the gapA gene. Tilapia were intraperitoneally injected with PBS, PBS + Freund's adjuvant, PBS + Montanide's adjuvant, GapA + Freund's adjuvant, GapA + Montanide's adjuvant, killed S. agalactiae whole cells (WC)+Freund's adjuvant, or killed S. agalactiae whole cells (WC)+ Montanide's adjuvant. They were then challenged with S. agalactiae, and the relative percentage survival (RPS) was monitored 14 days after the challenge. The highest RPSs were observed in the WC groups, with 76.7% in WC + Freund's adjuvant and 74.4% in WC + Montanide's adjuvant groups; these were followed by the GapA groups, with 63.3% in GapA + Freund's adjuvant and 45.6% in GapA + Montanide's adjuvant groups. The RPS of the PBS group was 0%, and those of PBS + Freund's adjuvant and PBS + Montanide's adjuvant groups were 6.7% and 3.3%, respectively. Additionally, the IgM antibody responses elicited in GapA groups and WC groups were significantly higher than those in PBS groups. Furthermore, the expressions of cytokine (IL-1β and TNF-α) mRNAs in the GapA groups and WC groups were significantly higher than those in the PBS groups. Taken together, these results reveal that the GapA protein is a promising vaccine candidate that could be used to prevent streptococcosis in tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.

    PubMed

    Ghosh, Soma; Prava, Jyoti; Samal, Himanshu Bhusan; Suar, Mrutyunjay; Mahapatra, Rajani Kanta

    2014-06-01

    Now-a-days increasing emergence of antibiotic-resistant pathogenic microorganisms is one of the biggest challenges for management of disease. In the present study comparative genomics, metabolic pathways analysis and additional parameters were defined for the identification of 94 non-homologous essential proteins in Staphylococcus aureus genome. Further study prioritized 19 proteins as vaccine candidates where as druggability study reports 34 proteins suitable as drug targets. Enzymes from peptidoglycan biosynthesis, folate biosynthesis were identified as candidates for drug development. Furthermore, bacterial secretory proteins and few hypothetical proteins identified in our analysis fulfill the criteria of vaccine candidates. As a case study, we built a homology model of one of the potential drug target, MurA ligase, using MODELLER (9v12) software. The model has been further selected for in silico docking study with inhibitors from the DrugBank database. Results from this study could facilitate selection of proteins for entry into drug design and vaccine production pipelines. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Establishing the 1st Chinese National Standard for inactivated hepatitis A vaccine.

    PubMed

    Gao, Fan; Mao, Qun-Ying; Wang, Yi-Ping; Chen, Pan; Liang, Zheng-Lun

    2016-07-01

    A reference standard calibrated in the International Units is needed for the quality control of hepatitis A vaccine. Thus, National Institutes for Food and Drug Control launched a project to establish a non-adsorbed inactivated hepatitis A vaccine reference as the working standard calibrated against the 1st International Standard (IS). Two national standard candidates (NSCs) were obtained from two manufacturers, and designated as NSC A (lyophilized form) and NSC B (liquid form). Six laboratories participated in the collaborative study and were asked to use their in-house validated enzyme-linked immunosorbent assay methods to detect hepatitis A vaccine antigen content. Although both exhibited good parallelism and linear relationship with IS, NSC B showed a better agreement among laboratories than NSC A. And based on suitability of the candidates, NSC B was selected. The accelerated degradation study showed that NSC B was stable at the storage temperature (≤-70 °C). Therefore NSC B was approved as the first Chinese national antigen standard for inactivated hepatitis A vaccine, with an assigned antigen content of 70 IU/ml. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Safety and Immunogenicity of Adenovirus 35 Tuberculosis Vaccine Candidate in Adults with Active or Previous Tuberculosis. A Randomized Trial.

    PubMed

    van Zyl-Smit, Richard N; Esmail, Aliasgar; Bateman, Mary E; Dawson, Rodney; Goldin, Jonathan; van Rikxoort, Eva; Douoguih, Macaya; Pau, Maria Grazia; Sadoff, Jerald C; McClain, J Bruce; Snowden, Margaret Ann; Benko, Jacqueline; Hokey, David A; Rutkowski, Kathryn Tucker; Graves, Andrew; Shepherd, Barbara; Ishmukhamedov, Sadritdin; Kagina, Benjamin M N; Abel, Brian; Hanekom, Willem A; Scriba, Thomas J; Bateman, Eric D

    2017-05-01

    Administration of tuberculosis (TB) vaccines in participants with previous or current pulmonary TB may have the potential for causing harmful postvaccination immunologic (Koch-type) reactions. To assess the safety and immunogenicity of three dose levels of the AERAS-402 live, replication-deficient adenovirus 35-vectored TB candidate vaccine, containing three mycobacterial antigens, in individuals with current or previous pulmonary TB. We performed a phase II randomized, placebo-controlled, double-blinded dose-escalation study in an HIV-negative adult South African cohort (n = 72) with active pulmonary TB (on treatment for 1-4 mo) or pulmonary TB treated at least 12 months before study entry and considered cured. Safety endpoints included clinical assessment, flow volume curves, diffusing capacity of the lung for carbon monoxide, pulse oximetry, chest radiograph, and high-resolution thoracic computerized tomography scans. Cytokine expression by CD4 and CD8 T cells, after stimulation with Ag85A, Ag85B, and TB10.4 peptide pools, was examined by intracellular cytokine staining. No apparent temporal or dose-related changes in clinical status (specifically acute, Koch phenomenon-like reactions), lung function, or radiology attributable to vaccine were observed. Injection site reactions were mild or moderate. Hematuria (by dipstick only) occurred in 25 (41%) of 61 AERAS-402 recipients and 3 (27%) of 11 placebo recipients, although no gross hematuria was reported. AERAS-402 induced robust CD8 + and moderate CD4 + T-cell responses, mainly to Ag85B in both vaccine groups. Administration of the AERAS-402 candidate TB vaccine to participants with current or previous pulmonary TB induced a robust immune response and is not associated with clinically significant pulmonary complications. Clinical trial registered with www.clinicaltrials.gov (NCT 02414828) and in the South African National Clinical Trials Register ( www.sanctr.gov.za DOH 27-0808-2060).

  6. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon.

    PubMed

    Kwenti, Tebit Emmanuel; Moye, Adzemye Linus; Wiylanyuy, Adzemye Basil; Njunda, Longdoh Anna; Nkuo-Akenji, Theresa

    2017-11-09

    Studies to assess the immune responses against malaria in Cameroonian children are limited. The purpose of this study was to assess the immune responses against Plasmodium falciparum merozoite surface protein-1 (MSP-1 19 ) and apical membrane antigen-1 (AMA-1) in children residing in the different epidemiological strata of malaria in Cameroon. In a cross-sectional survey performed between April and July 2015, 602 children between 2 and 15 years (mean ± SD = 5.7 ± 3.7), comprising 319 (53%) males were enrolled from five epidemiological strata of malaria in Cameroon including: the sudano-sahelian (SS) strata, the high inland plateau (HIP) strata, the south Cameroonian equatorial forest (SCEF) strata, the high western plateau (HWP) strata, and the coastal (C) strata. The children were screened for clinical malaria (defined by malaria parasitaemia ≥ 5000 parasites/µl plus axillary temperature ≥ 37.5 °C). Their antibody responses were measured against P. falciparum MSP-1 19 and AMA-1 vaccine candidate antigens using standard ELISA technique. A majority of the participants were IgG responders 72.1% (95% CI 68.3-75.6). The proportion of responders was higher in females (p = 0.002) and in children aged 10 years and above (p = 0.005). The proportion of responders was highest in Limbe (C strata) and lowest in Ngaoundere (HIP strata) (p < 0.0001). Similarly, the mean IgG antibody levels were higher in children aged 10 years and above (p < 0.0001) and in Limbe (p = 0.001). The IgG antibody levels against AMA-1 were higher in females (p = 0.028), meanwhile no gender disparity was observed with MSP-1. Furthermore the risk of clinical malaria (p < 0.0001) and the mean parasite density (p = 0.035) were higher in IgG non-responders. A high proportion of IgG responders was observed in this study, suggesting a high degree exposure of the target population to malaria parasites. The immune responses varied considerably across the different strata

  7. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1.

    PubMed

    Hertz, Tomer; Ahmed, Hasan; Friedrich, David P; Casimiro, Danilo R; Self, Steven G; Corey, Lawrence; McElrath, M Juliana; Buchbinder, Susan; Horton, Helen; Frahm, Nicole; Robertson, Michael N; Graham, Barney S; Gilbert, Peter

    2013-01-01

    Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different

  8. Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins.

    PubMed

    Lázaro-Frías, Adrián; Gómez-Medina, Sergio; Sánchez-Sampedro, Lucas; Ljungberg, Karl; Ustav, Mart; Liljeström, Peter; Muñoz-Fontela, César; Esteban, Mariano; García-Arriaza, Juan

    2018-06-01

    Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV. IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths

  9. Comparative sequence analysis of domain I of Plasmodium falciparum apical membrane antigen 1 from Saudi Arabia and worldwide isolates.

    PubMed

    Al-Qahtani, Ahmed A; Abdel-Muhsin, Abdel-Muhsin A; Dajem, Saad M Bin; AlSheikh, Adel Ali H; Bohol, Marie Fe F; Al-Ahdal, Mohammed N; Putaporntip, Chaturong; Jongwutiwes, Somchai

    2016-04-01

    The apical membrane antigen 1 of Plasmodium falciparum (PfAMA1) plays a crucial role in erythrocyte invasion and is a target of protective antibodies. Although domain I of PfAMA1 has been considered a promising vaccine component, extensive sequence diversity in this domain could compromise an effective vaccine design. To explore the extent of sequence diversity in domain I of PfAMA1, P. falciparum-infected blood samples from Saudi Arabia collected between 2007 and 2009 were analyzed and compared with those from worldwide parasite populations. Forty-six haplotypes and a novel codon change (M190V) were found among Saudi Arabian isolates. The haplotype diversity (0.948±0.004) and nucleotide diversity (0.0191±0.0008) were comparable to those from African hyperendemic countries. Positive selection in domain I of PfAMA1 among Saudi Arabian parasite population was observed because nonsynonymous nucleotide substitutions per nonsynonymous site (dN) significantly exceeded synonymous nucleotide substitutions per synonymous site (dS) and Tajima's D and its related statistics significantly deviated from neutrality in the positive direction. Despite a relatively low prevalence of malaria in Saudi Arabia, a minimum of 17 recombination events occurred in domain I. Genetic differentiation was significant between P. falciparum in Saudi Arabia and parasites from other geographic origins. Several shared or closely related haplotypes were found among parasites from different geographic areas, suggesting that vaccine derived from multiple shared epitopes could be effective across endemic countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate.

    PubMed

    Cravo, Pedro; Machado, Renato B; Leite, Juliana A; Leda, Taizy; Suwanarusk, Rossarin; Bittencourt, Najara; Albrecht, Letusa; Judice, Carla; Lopes, Stefanie C P; Lacerda, Marcus V G; Ferreira, Marcelo U; Soares, Irene S; Goh, Yun Shan; Bargieri, Daniel Y; Nosten, François; Russell, Bruce; Rénia, Laurent; Costa, Fabio T M

    2018-01-10

    Technical limitations for culturing the human malaria parasite Plasmodium vivax have impaired the discovery of vaccine candidates, challenging the malaria eradication agenda. The immunogenicity of the M2 domain of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) antigen cloned from the Plasmodium yoelii murine parasite, has been previously demonstrated. Detailed epitope mapping of MAEBL through immunoinformatics identified several MHCI, MHCII and B cell epitopes throughout the peptide, with several of these lying in the M2 domain and being conserved between P. vivax, P. yoelii and Plasmodium falciparum, hinting that the M2-MAEBL is pan-reactive. This hypothesis was tested through functional assays, showing that P. yoelii M2-MAEBL antisera are able to recognize and inhibit erythrocyte invasion from both P. falciparum and P. vivax parasites isolated from Thai patients, in ex vivo assays. Moreover, the sequence of the M2-MAEBL is shown to be highly conserved between P. vivax isolates from the Amazon and Thailand, indicating that the MAEBL antigen may constitute a vaccine candidate outwitting strain-specific immunity. The MAEBL antigen is promising candidate towards the development of a malaria vaccine.

  11. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice

    PubMed Central

    García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  12. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice.

    PubMed

    García, Mayra; Misplon, Julia A; Price, Graeme E; Lo, Chia-Yun; Epstein, Suzanne L

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life.

  13. Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate.

    PubMed

    Oyler, Benjamin L; Khan, Mohd M; Smith, Donald F; Harberts, Erin M; Kilgour, David P A; Ernst, Robert K; Cross, Alan S; Goodlett, David R

    2018-06-01

    Recent advances in lipopolysaccharide (LPS) biology have led to its use in drug discovery pipelines, including vaccine and vaccine adjuvant discovery. Desirable characteristics for LPS vaccine candidates include both the ability to produce a specific antibody titer in patients and a minimal host inflammatory response directed by the innate immune system. However, in-depth chemical characterization of most LPS extracts has not been performed; hence, biological activities of these extracts are unpredictable. Additionally, the most widely adopted workflow for LPS structure elucidation includes nonspecific chemical decomposition steps before analyses, making structures inferred and not necessarily biologically relevant. In this work, several different mass spectrometry workflows that have not been previously explored were employed to show proof-of-principle for top down LPS primary structure elucidation, specifically for a rough-type mutant (J5) E. coli-derived LPS component of a vaccine candidate. First, ion mobility filtered precursor ions were subjected to collision induced dissociation (CID) to define differences in native J5 LPS v. chemically detoxified J5 LPS (dLPS). Next, ultra-high mass resolving power, accurate mass spectrometry was employed for unequivocal precursor and product ion empirical formulae generation. Finally, MS 3 analyses in an ion trap instrument showed that previous knowledge about dissociation of LPS components can be used to reconstruct and sequence LPS in a top down fashion. A structural rationale is also explained for differential inflammatory dose-response curves, in vitro, when HEK-Blue hTLR4 cells were administered increasing concentrations of native J5 LPS v. dLPS, which will be useful in future drug discovery efforts. Graphical Abstract ᅟ.

  14. Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate

    NASA Astrophysics Data System (ADS)

    Oyler, Benjamin L.; Khan, Mohd M.; Smith, Donald F.; Harberts, Erin M.; Kilgour, David P. A.; Ernst, Robert K.; Cross, Alan S.; Goodlett, David R.

    2018-02-01

    Recent advances in lipopolysaccharide (LPS) biology have led to its use in drug discovery pipelines, including vaccine and vaccine adjuvant discovery. Desirable characteristics for LPS vaccine candidates include both the ability to produce a specific antibody titer in patients and a minimal host inflammatory response directed by the innate immune system. However, in-depth chemical characterization of most LPS extracts has not been performed; hence, biological activities of these extracts are unpredictable. Additionally, the most widely adopted workflow for LPS structure elucidation includes nonspecific chemical decomposition steps before analyses, making structures inferred and not necessarily biologically relevant. In this work, several different mass spectrometry workflows that have not been previously explored were employed to show proof-of-principle for top down LPS primary structure elucidation, specifically for a rough-type mutant (J5) E. coli-derived LPS component of a vaccine candidate. First, ion mobility filtered precursor ions were subjected to collision induced dissociation (CID) to define differences in native J5 LPS v. chemically detoxified J5 LPS (dLPS). Next, ultra-high mass resolving power, accurate mass spectrometry was employed for unequivocal precursor and product ion empirical formulae generation. Finally, MS3 analyses in an ion trap instrument showed that previous knowledge about dissociation of LPS components can be used to reconstruct and sequence LPS in a top down fashion. A structural rationale is also explained for differential inflammatory dose-response curves, in vitro, when HEK-Blue hTLR4 cells were administered increasing concentrations of native J5 LPS v. dLPS, which will be useful in future drug discovery efforts. [Figure not available: see fulltext.

  15. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal

    PubMed Central

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-01-01

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665

  16. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice.

    PubMed

    Elhaik Goldman, Shirin; Dotan, Shahar; Talias, Amir; Lilo, Amit; Azriel, Shalhevet; Malka, Itay; Portnoi, Maxim; Ohayon, Ariel; Kafka, Daniel; Ellis, Ronald; Elkabets, Moshe; Porgador, Angel; Levin, Ditza; Azhari, Rosa; Swiatlo, Edwin; Ling, Eduard; Feldman, Galia; Tal, Michael; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2016-04-01

    involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.

  17. Immunogenicity of Live Attenuated B. pertussis BPZE1 Producing the Universal Influenza Vaccine Candidate M2e

    PubMed Central

    Kammoun, Hana; Roux, Xavier; Raze, Dominique; Debrie, Anne-Sophie; De Filette, Marina; Ysenbaert, Tine; Mielcarek, Nathalie; Saelens, Xavier; Fiers, Walter; Locht, Camille

    2013-01-01

    Background Intranasal delivery of vaccines directed against respiratory pathogens is an attractive alternative to parenteral administration. However, using this delivery route for inactivated vaccines usually requires the use of potent mucosal adjuvants, and no such adjuvant has yet been approved for human use. Methodology/Principal Findings We have developed a live attenuated Bordetella pertussis vaccine, called BPZE1, and show here that it can be used to present the universal influenza virus epitope M2e to the mouse respiratory tract to prime for protective immunity against viral challenge. Three copies of M2e were genetically fused to the N-terminal domain of filamentous hemagglutinin (FHA) and produced in recombinant BPZE1 derivatives in the presence or absence of endogenous full-length FHA. Only in the absence of FHA intranasal administration of the recombinant BPZE1 derivative induced antibody responses to M2e and effectively primed BALB/c mice for protection against influenza virus-induced mortality and reduced the viral load after challenge. Strong M2e-specific antibody responses and protection were observed after a single nasal administration with the recombinant BPZE1 derivative, followed by a single administration of M2e linked to a virus-like particle without adjuvant, whereas priming alone with the vaccine strain did not protect. Conclusions/Significance Using recombinant FHA-3M2e-producing BPZE1 derivatives for priming and the universal influenza M2e peptide linked to virus-like particles for boosting may constitute a promising approach for needle-free and adjuvant-free nasal vaccination against influenza. PMID:23555631

  18. A Phase-1 Clinical Trial of a DNA Vaccine for Venezuelan Equine Encephalitis Delivered by Intramuscular or Intradermal Electroporation

    DTIC Science & Technology

    2016-05-25

    A Phase 1 clinical trial of a DNA vaccine for Venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation Drew... vaccines against VEEV available in the United States. We developed a candidate DNA vaccine expressing the E3-E2-6K-E1 genes of VEEV (pWRG/VEEV) and...groups and were vaccinated with high and low doses of pWRG/VEE or a saline placebo by intramuscular (IM) or intradermal (ID) electroporation (EP

  19. Identification of Novel Pre-Erythrocytic Malaria Antigen Candidates for Combination Vaccines with Circumsporozoite Protein

    PubMed Central

    Sahu, Tejram; Malkov, Vlad; Morrison, Robert; Pei, Ying; Juompan, Laure; Milman, Neta; Zarling, Stasya; Anderson, Charles; Wong-Madden, Sharon; Wendler, Jason; Ishizuka, Andrew; MacMillen, Zachary W.; Garcia, Valentino; Kappe, Stefan H. I.; Krzych, Urszula; Duffy, Patrick E.

    2016-01-01

    Malaria vaccine development has been hampered by the limited availability of antigens identified through conventional discovery approaches, and improvements are needed to enhance the efficacy of the leading vaccine candidate RTS,S that targets the circumsporozoite protein (CSP) of the infective sporozoite. Here we report a transcriptome-based approach to identify novel pre-erythrocytic vaccine antigens that could potentially be used in combination with CSP. We hypothesized that stage-specific upregulated genes would enrich for protective vaccine targets, and used tiling microarray to identify P. falciparum genes transcribed at higher levels during liver stage versus sporozoite or blood stages of development. We prepared DNA vaccines for 21 genes using the predicted orthologues in P. yoelii and P. berghei and tested their efficacy using different delivery methods against pre-erythrocytic malaria in rodent models. In our primary screen using P. yoelii in BALB/c mice, we found that 16 antigens significantly reduced liver stage parasite burden. In our confirmatory screen using P. berghei in C57Bl/6 mice, we confirmed 6 antigens that were protective in both models. Two antigens, when combined with CSP, provided significantly greater protection than CSP alone in both models. Based on the observations reported here, transcriptional patterns of Plasmodium genes can be useful in identifying novel pre-erythrocytic antigens that induce protective immunity alone or in combination with CSP. PMID:27434123

  20. Identification of Novel Pre-Erythrocytic Malaria Antigen Candidates for Combination Vaccines with Circumsporozoite Protein.

    PubMed

    Speake, Cate; Pichugin, Alexander; Sahu, Tejram; Malkov, Vlad; Morrison, Robert; Pei, Ying; Juompan, Laure; Milman, Neta; Zarling, Stasya; Anderson, Charles; Wong-Madden, Sharon; Wendler, Jason; Ishizuka, Andrew; MacMillen, Zachary W; Garcia, Valentino; Kappe, Stefan H I; Krzych, Urszula; Duffy, Patrick E

    2016-01-01

    Malaria vaccine development has been hampered by the limited availability of antigens identified through conventional discovery approaches, and improvements are needed to enhance the efficacy of the leading vaccine candidate RTS,S that targets the circumsporozoite protein (CSP) of the infective sporozoite. Here we report a transcriptome-based approach to identify novel pre-erythrocytic vaccine antigens that could potentially be used in combination with CSP. We hypothesized that stage-specific upregulated genes would enrich for protective vaccine targets, and used tiling microarray to identify P. falciparum genes transcribed at higher levels during liver stage versus sporozoite or blood stages of development. We prepared DNA vaccines for 21 genes using the predicted orthologues in P. yoelii and P. berghei and tested their efficacy using different delivery methods against pre-erythrocytic malaria in rodent models. In our primary screen using P. yoelii in BALB/c mice, we found that 16 antigens significantly reduced liver stage parasite burden. In our confirmatory screen using P. berghei in C57Bl/6 mice, we confirmed 6 antigens that were protective in both models. Two antigens, when combined with CSP, provided significantly greater protection than CSP alone in both models. Based on the observations reported here, transcriptional patterns of Plasmodium genes can be useful in identifying novel pre-erythrocytic antigens that induce protective immunity alone or in combination with CSP.

  1. Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1

    DOE PAGES

    Lee, Ho-Hsien; Cherni, Irene; Yu, HongQi; ...

    2014-08-20

    CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli . The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to amore » resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.« less

  2. Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ho-Hsien; Cherni, Irene; Yu, HongQi

    CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli . The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to amore » resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.« less

  3. Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions

    PubMed Central

    2013-01-01

    Background Subunit vaccines based on recombinant proteins have been effective in preventing infectious diseases and are expected to meet the demands of future vaccine development. Computational approach, especially reverse vaccinology (RV) method has enormous potential for identification of protein vaccine candidates (PVCs) from a proteome. The existing protective antigen prediction software and web servers have low prediction accuracy leading to limited applications for vaccine development. Besides machine learning techniques, those software and web servers have considered only protein’s adhesin-likeliness as criterion for identification of PVCs. Several non-adhesin functional classes of proteins involved in host-pathogen interactions and pathogenesis are known to provide protection against bacterial infections. Therefore, knowledge of bacterial pathogenesis has potential to identify PVCs. Results A web server, Jenner-Predict, has been developed for prediction of PVCs from proteomes of bacterial pathogens. The web server targets host-pathogen interactions and pathogenesis by considering known functional domains from protein classes such as adhesin, virulence, invasin, porin, flagellin, colonization, toxin, choline-binding, penicillin-binding, transferring-binding, fibronectin-binding and solute-binding. It predicts non-cytosolic proteins containing above domains as PVCs. It also provides vaccine potential of PVCs in terms of their possible immunogenicity by comparing with experimentally known IEDB epitopes, absence of autoimmunity and conservation in different strains. Predicted PVCs are prioritized so that only few prospective PVCs could be validated experimentally. The performance of web server was evaluated against known protective antigens from diverse classes of bacteria reported in Protegen database and datasets used for VaxiJen server development. The web server efficiently predicted known vaccine candidates reported from Streptococcus pneumoniae and

  4. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    PubMed

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  5. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    PubMed Central

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  6. Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting.

    PubMed

    Penn-Nicholson, Adam; Geldenhuys, Hennie; Burny, Wivine; van der Most, Robbert; Day, Cheryl L; Jongert, Erik; Moris, Philippe; Hatherill, Mark; Ofori-Anyinam, Opokua; Hanekom, Willem; Bollaerts, Anne; Demoitie, Marie-Ange; Kany Luabeya, Angelique Kany; De Ruymaeker, Evi; Tameris, Michele; Lapierre, Didier; Scriba, Thomas J

    2015-07-31

    Vaccination that prevents tuberculosis (TB) disease, particularly in adolescents, would have the greatest impact on the global TB epidemic. Safety, reactogenicity and immunogenicity of the vaccine candidate M72/AS01E was evaluated in healthy, HIV-negative adolescents in a TB endemic region, regardless of Mycobacterium tuberculosis (M.tb) infection status. In a phase II, double-blind randomized, controlled study (NCT00950612), two doses of M72/AS01E or placebo were administered intramuscularly, one month apart. Participants were followed-up post-vaccination, for 6 months. M72-specific immunogenicity was evaluated by intracellular cytokine staining analysis of T cells and NK cells by flow cytometry. No serious adverse events were recorded. M72/AS01E induced robust T cell and antibody responses, including antigen-dependent NK cell IFN-γ production. CD4 and CD8 T cell responses were sustained at 6 months post vaccination. Irrespective of M.tb infection status, vaccination induced a high frequency of M72-specific CD4 T cells expressing multiple combinations of Th1 cytokines, and low level IL-17. We observed rapid boosting of immune responses in M.tb-infected participants, suggesting natural infection acts as a prime to vaccination. The clinically acceptable safety and immunogenicity profile of M72/AS01E in adolescents living in an area with high TB burden support the move to efficacy trials. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting

    PubMed Central

    Penn-Nicholson, Adam; Geldenhuys, Hennie; Burny, Wivine; van der Most, Robbert; Day, Cheryl L.; Jongert, Erik; Moris, Philippe; Hatherill, Mark; Ofori-Anyinam, Opokua; Hanekom, Willem

    2018-01-01

    Background Vaccination that prevents tuberculosis (TB) disease, particularly in adolescents, would have the greatest impact on the global TB epidemic. Safety, reactogenicity and immunogenicity of the vaccine candidate M72/AS01E was evaluated in healthy, HIV-negative adolescents in a TB endemic region, regardless of Mycobacterium tuberculosis (M.tb) infection status. Methods In a phase II, double-blind randomized, controlled study (NCT00950612), two doses of M72/AS01E or placebo were administered intramuscularly, one month apart. Participants were followed-up post-vaccination, for 6 months. M72-specific immunogenicity was evaluated by intracellular cytokine staining analysis of T cells and NK cells by flow cytometry. Results No serious adverse events were recorded. M72/AS01E induced robust T cell and antibody responses, including antigen-dependent NK cell IFN-γ production. CD4 and CD8 T cell responses were sustained at 6 months post vaccination. Irrespective of M.tb infection status, vaccination induced a high frequency of M72-specific CD4 T cells expressing multiple combinations of Th1 cytokines, and low level IL-17. We observed rapid boosting of immune responses in M.tb-infected participants, suggesting natural infection acts as a prime to vaccination. Conclusions The clinically acceptable safety and immunogenicity profile of M72/AS01E in adolescents living in an area with high TB burden support the move to efficacy trials. PMID:26072017

  8. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    PubMed Central

    2012-01-01

    Background Foot-and-mouth disease (FMD) is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong) posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East–South Asia (ME-SA), Southeast Asia (SEA), Cathay (CHY)) in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. Results The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHY topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. Conclusions Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHY topotype, compared with the wild O/HN/CHA/93 virus

  9. Generation of transgenic corn-derived Actinobacillus pleuropneumoniae ApxIIA fused with the cholera toxin B subunit as a vaccine candidate

    PubMed Central

    Shin, Min-Kyoung; Jung, Myung Hwan; Lee, Won-Jung; Choi, Pil Son; Jang, Yong-Suk

    2011-01-01

    Corn, one of the most important forage crops worldwide, has proven to be a useful expression vehicle due to the availability of established transformation procedures for this well-studied plant. The exotoxin Apx, a major virulence factor, is recognized as a common antigen of Actinobacillus (A.) pleuropneumoniae, the causative agent of porcine pleuropneumonia. In this study, a cholera toxin B (CTB)-ApxIIA#5 fusion protein and full-size ApxIIA expressed in corn seed, as a subunit vaccine candidate, were observed to induce Apx-specific immune responses in mice. These results suggest that transgenic corn-derived ApxIIA and CTB-ApxIIA#5 proteins are potential vaccine candidates against A. pleuropneumoniae infection. PMID:22122907

  10. A low-toxic site-directed mutant of Clostridium perfringens ε-toxin as a potential candidate vaccine against enterotoxemia.

    PubMed

    Li, Qing; Xin, Wenwen; Gao, Shan; Kang, Lin; Wang, Jinglin

    2013-11-01

    Clostridium perfringens epsilon toxin (ETX), one of the most potent toxins known, is a potential biological weapon; therefore, the development of an effective vaccine is important for preventing intoxication or disease by ETX. In this study, genetically detoxified epsilon toxin mutants were developed as candidate vaccines. We used site-directed mutagenesis to mutate the essential amino acid residues (His106, Ser111 and Phe199). Six site-directed mutants of ETX (mETX (H106P) , mETX (S111H) , mETX (S111Y) , mETX (F199H) , mETX (F199E) , mETX (S111YF199E) ) were generated and then expressed in Escherichia coli. Both mETX (F199E) and mETX (H106P) with low or non-cytotoxicity that retained their immunogenicity were selected to immunize mice 3 times, and the mouse survival data were recorded after challenging with recombinant wild-type ETX. mETX (F199E) induces the same protection as mETX (H106P) , which was reported previously as a promising toxin mutant for vaccine, and both of them could protect immunized mice against a 100× LD₅₀ dose of active wild-type recombinant ETX. This work showed that mETX (F199E) is another promising candidate vaccine against enterotoxemia and other diseases caused by ETX.

  11. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP142) administered intramuscularly with adjuvant system AS01

    PubMed Central

    2013-01-01

    Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions Given that the primary effector mechanism for

  12. Emerging human papillomavirus vaccines

    PubMed Central

    Ma, Barbara; Maraj, Bharat; Tran, Nam Phuong; Knoff, Jayne; Chen, Alexander; Alvarez, Ronald D; Hung, Chien-Fu; Wu, T.-C.

    2013-01-01

    Introduction Identification of human papillomavirus (HPV) as the etiologic factor of cervical, anogenital, and a subset of head and neck cancers has stimulated the development of preventive and therapeutic HPV vaccines to control HPV-associated malignancies. Excitement has been generated by the commercialization of two preventive L1-based vaccines, which use HPV virus-like particles (VLPs) to generate capsid-specific neutralizing antibodies. However, factors such as high cost and requirement for cold chain have prevented widespread implementation where they are needed most. Areas covered Next generation preventive HPV vaccine candidates have focused on cost-effective stable alternatives and generating broader protection via targeting multivalent L1 VLPs, L2 capsid protein, and chimeric L1/L2 VLPs. Therapeutic HPV vaccine candidates have focused on enhancing T cell-mediated killing of HPV-transformed tumor cells, which constitutively express HPV-encoded proteins, E6 and E7. Several therapeutic HPV vaccines are in clinical trials. Expert opinion Although progress is being made, cost remains an issue inhibiting the use of preventive HPV vaccines in countries that carry the majority of the cervical cancer burden. In addition, progression of therapeutic HPV vaccines through clinical trials may require combination strategies employing different therapeutic modalities. As research in the development of HPV vaccines continues, we may generate effective strategies to control HPV-associated malignancies. PMID:23163511

  13. Deletion of nuoG from the Vaccine Candidate Mycobacterium bovis BCG ΔureC::hly Improves Protection against Tuberculosis

    PubMed Central

    Gengenbacher, Martin; Nieuwenhuizen, Natalie; Vogelzang, Alexis; Liu, Haipeng; Kaiser, Peggy; Schuerer, Stefanie; Lazar, Doris; Wagner, Ina; Mollenkopf, Hans-Joachim

    2016-01-01

    ABSTRACT The current tuberculosis (TB) vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), provides insufficient protection against pulmonary TB. Previously, we generated a listeriolysin-expressing recombinant BCG strain, which to date has successfully completed phase I and phase IIa clinical trials. In an attempt to further improve efficacy, we deleted the antiapoptotic virulence gene nuoG, encoding NADH dehydrogenase 1 subunit G, from BCG ΔureC::hly. In vitro, deletion of nuoG unexpectedly led to strongly increased recruitment of the autophagosome marker LC3 to the engulfed vaccine, suggesting that nuoG also affects xenophagic pathways. In mice, BCG ΔureC::hly ΔnuoG vaccination was safer than BCG and improved protection over that of parental BCG ΔureC::hly, significantly reducing TB load in murine lungs, ameliorating pulmonary pathology, and enhancing immune responses. Transcriptome analysis of draining lymph nodes after vaccination with either BCG ΔureC::hly or BCG ΔureC::hly ΔnuoG demonstrated earlier and stronger induction of immune responses than that with BCG SSI and suggested upregulation of inflammasome activation and interferon-induced GTPases. In summary, BCG ΔureC::hly ΔnuoG is a promising next-generation TB vaccine candidate with excellent efficacy and safety. PMID:27222470

  14. Vaccine platforms to control Lassa fever.

    PubMed

    Lukashevich, Igor S; Pushko, Peter

    2016-09-01

    Lassa virus (LASV), the most prominent human pathogen of the Arenaviridae, is transmitted to humans from infected rodents and can cause Lassa Fever (LF). The sizeable disease burden in West Africa, numerous imported LF cases worldwide, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. There are no licensed LASV vaccines and the antiviral treatment is limited to an off-label use of ribavirin that is only partially effective. LASV vaccine development is hampered by high cost of biocontainment requirement, the absence of appropriate small animal models, genetic diversity of LASV species, and by high HIV-1 prevalence in LASV endemic areas. Over the past 15 years several vaccine platforms have been developed. Natural history of LASV and pathogenesis of the disease provide strong justification for replication-competent (RC) vaccine as one of the most feasible approaches to control LF. Development of LASV vaccine candidates based on reassortant, recombinant, and alphavirus replicon technologies is covered in this review. Expert commentary: Two lead RC vaccine candidates, reassortant ML29 and recombinant VSV/LASV, have been successfully tested in non-human primates and have been recommended by international vaccine experts for rapid clinical development. Both platforms have powerful molecular tools to further secure safety, improve immunogenicity, and cross-protection. These platforms are well positioned to design multivalent vaccines to protect against all LASV strains citculatrd in West Africa. The regulatory pathway of Candid #1, the first live-attenuated arenaviral vaccine against Argentine hemorrhagic, will be a reasonable guideline for LASV vaccine efficacy trials.

  15. Correction to: Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate

    NASA Astrophysics Data System (ADS)

    Oyler, Benjamin L.; Khan, Mohd M.; Smith, Donald F.; Harberts, Erin M.; Kilgour, David P. A.; Ernst, Robert K.; Cross, Alan S.; Goodlett, David R.

    2018-04-01

    In the preceding article "Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate" by Oyler et al., an error in the J5 E. coli LPS chemical structure (Figs. 2 and 4) was introduced and propagated into the final revision.

  16. Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite

    PubMed Central

    Blake, Damer P.; Billington, Karen J.; Copestake, Susan L.; Oakes, Richard D.; Quail, Michael A.; Wan, Kiew-Lian; Shirley, Martin W.; Smith, Adrian L.

    2011-01-01

    Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective

  17. T Cell Responses Induced by Adenoviral Vectored Vaccines Can Be Adjuvanted by Fusion of Antigen to the Oligomerization Domain of C4b-Binding Protein

    PubMed Central

    Forbes, Emily K.; de Cassan, Simone C.; Llewellyn, David; Biswas, Sumi; Goodman, Anna L.; Cottingham, Matthew G.; Long, Carole A.; Pleass, Richard J.; Hill, Adrian V. S.; Hill, Fergal; Draper, Simon J.

    2012-01-01

    Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp) as a candidate T cell “molecular adjuvant” when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5) vectored vaccines in BALB/c mice. We demonstrate that i) C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4+ and CD8+ T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii) an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP142) or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1), but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii) following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv) that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa) antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation. PMID:22984589

  18. Recent advances in recombinant protein-based malaria vaccines

    PubMed Central

    Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  19. Recent advances in recombinant protein-based malaria vaccines.

    PubMed

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Characterization and vaccine potential of Fasciola gigantica saposin-like protein 1 (SAP-1).

    PubMed

    Kueakhai, Pornanan; Changklungmoa, Narin; Waseewiwat, Pinkamon; Thanasinpaiboon, Thanaporn; Cheukamud, Werachon; Chaichanasak, Pannigan; Sobhon, Prasert

    2017-01-15

    The recombinant Fasciola gigantica Saposin-like protien-1 (rFgSAP-1) was cloned by polymerase chain reaction (PCR) from NEJ cDNA, expressed in Escherichia coli BL21 (DE3) and used for production of a polyclonal antibody in rabbits (anti-rFgSAP-1). By immunoblotting and immunohistochemistry, rabbit IgG anti-rFgSAP-1 reacted with rFgSAP-1 at a molecular weight 12kDa, but not with rFgSAP-2. The rFgSAP-1 reacted with antisera from mouse infected with F. gigantica metacercariae collected at 2, 4, and 6 weeks after infection. The FgSAP-1 protein was expressed at a high level in the caecal epithelium of metacercariae and NEJs. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rFgSAP-1 combined with Alum adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae per mouse by the oral route. The percents protection of rFgSAP-1 vaccine were estimated to be 73.2% and 74.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The levels of IgG1 and IgG2a specific to rFgSAP-1 in the immune sera, which are indicative of Th2 and Th1 immune responses, were inversely and significantly correlated with the numbers of worm recoveries. The rFgSAP-1-vaccinated mice showed significantly reduced levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and liver damage. These indicated that rFgSAP-1 has strong potential as a vaccine candidate against F. gigantica, whose efficacy will be studied further in large economic animals including cattle, sheep, and goat. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. CD4 T-cell autoreactivity to the mitochondrial autoantigen PDC-E2 in AMA-negative primary biliary cirrhosis.

    PubMed

    Shimoda, Shinji; Miyakawa, Hiroshi; Nakamura, Minoru; Ishibashi, Hiromi; Kikuchi, Kentaro; Kita, Hiroto; Niiro, Hiroaki; Arinobu, Youjirou; Ono, Nobuyuki; Mackay, Ian R; Gershwin, M Eric; Akashi, Koichi

    2008-09-01

    Approximately 5% of patients with primary biliary cirrhosis (PBC) lack characteristic anti-mitochondrial antibodies (AMA). Yet clinically AMA+ and AMA- patients are similar. Using both AMA+ and AMA- patients, we quantitated the frequency of autoreactive T cells that respond to the major CD4 T-cell epitope, PDC-E2 163-176, using limiting dilution assays and quantitation of IFN-gamma, IL-10 and IL-4. Further, based on data that both PBC patients and healthy subjects have CD4+ T cells that recognize PDC-E2 163-176 but with differing costimulation requirements, assays were performed using two different antigen-presenting cell (APC) systems: either autologous peripheral blood mononuclear cells (PBMC) or HLA DR53 transfected mouse fibroblast cell lines (L-DR53). When costimulation-incompetent L-DR53 were used as APCs, the PDC-E2 CD4 T-cell frequency and capacity for IFN-gamma production were equivalent in both AMA+ and AMA- patients but the frequencies of such cells were significantly lower in normals, with IL-10 production similar in all three groups. Thus, in PBC there is 'universal' autoreactive CD4+ T-cell immune responsiveness to the critical autoantigen, PDC-E2. These observations emphasize that the mitochondrial autoreactivity in PBC is a multi-lineage response and hence, AMA-negative PBC may be an anachronism that refers only to sera autoantibodies.

  2. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    PubMed Central

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher

  3. Successes and failures in human tuberculosis vaccine development.

    PubMed

    Zenteno-Cuevas, Roberto

    2017-12-01

    Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis. In 2016, the WHO estimated 10.5 million new cases and 1.8 million deaths, making this disease the leading cause of death by an infectious agent. The current and projected TB situation necessitates the development of new vaccines with improved attributes compared to the traditional BCG method. Areas covered: In this review, the authors describe the most promising candidate vaccines against TB and discuss additional key elements in vaccine development, such as animal models, new adjuvants and immunization routes and new strategies for the identification of candidate vaccines. Expert opinion: At present, around 13 candidate vaccines for TB are in the clinical phase of evaluation; however, there is still no substitute for the BCG vaccine. One major impediment to developing an effective vaccine is our lack of understanding of several of the mechanisms associated with infection and the immune response against TB. However, the recent implementation of an entirely new set of technological advances will facilitate the proposal of new candidates. Finally, development of a new vaccine will require a major coordination of effort in order to achieve its effective administration to the people most in need of it.

  4. Recombinant Mip-PilE-FlaA dominant epitopes vaccine candidate against Legionella pneumophila.

    PubMed

    He, Jinlei; Huang, Fan; Chen, Han; Chen, Qiwei; Zhang, Junrong; Li, Jiao; Chen, Dali; Chen, Jianping

    2017-06-01

    Legionella pneumophila is the main causative agent of Legionnaires' disease, which is a severe multi-system disease with pneumonia as the primary manifestation. We designed a recombinant Mip-PilE-FlaA dominant epitopes vaccine against Legionella pneumophila to prevent the disease and evaluated its immunogenicity and protective immunity. The protein structures of Mip, PilE and FlaA were analyzed using a computer, and the gene sequences of the dominant epitopes of the three proteins were selected to construct and optimize the vaccine. The optimized mip, pilE, flaA and recombinant mip-pilE-flaA gene sequences were cloned, expressed and purified. The purified proteins were used as dominant epitopes vaccines to immunize BALB/c mice and determine the protective immunity and immunogenicity of these purified proteins. The identification confirmed that the recombinant mip-pilE-flaA was successfully cloned and expressed. ELISA revealed that the Mip-PilE-FlaA group produced the highest IgG response, and this protein may considerably improve the production of some cytokines in BALB/c mice. Histopathology analyses of lungs from mice immunized with Mip-PilE-FlaA revealed a certain protective effect. Our work demonstrated that the recombinant dominant epitopes of Mip-PilE-FlaA exhibited strong immunogenicity and immune protection, and this protein may be an efficient epitopes vaccine candidate against Legionella pneumophila. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Tuberculosis vaccine development at a divide.

    PubMed

    Kaufmann, Stefan H E

    2014-05-01

    Tuberculosis (TB) remains a major health threat that will only be defeated by a combination of better drugs, diagnostics and vaccines. The only licensed TB vaccine, bacille Calmette-Guérin (BCG), protects against extrapulmonary TB in infants. Novel vaccine candidates that could protect against pulmonary TB either in TB naïve or in latent TB-infected healthy individuals have been developed and are currently being assessed in clinical trials. Subunit booster vaccines are either based on viral vectors expressing TB-specific antigens or on TB-protein antigens in adjuvants. Subunit vaccines are administered on top of BCG. Replacement vaccines for BCG are recombinant viable BCG or Mycobacterium tuberculosis. Several candidates are undergoing, or will soon start, phase IIb assessment for efficacy. The first vaccine candidate, MVA85A, to complete a phase IIb trial, unfortunately failed to show protection against TB in infants. Therapeutic vaccines composed of killed mycobacterial preparations target patients with complicated TB in adjunct to drug treatment. With increasing numbers of TB vaccine candidates in clinical trials, financial, regulatory and infrastructural issues arise, which would be best tackled by a global strategy. In addition, selection of the most promising vaccine candidates for further clinical development gains increasing importance.

  6. Specific memory B cell response and participation of CD4+ central and effector memory T cells in mice immunized with liposome encapsulated recombinant NE protein based Hepatitis E vaccine candidate.

    PubMed

    Kulkarni, Shruti P; Thanapati, Subrat; Arankalle, Vidya A; Tripathy, Anuradha S

    2016-11-21

    Liposome encapsulated neutralizing epitope protein of Hepatitis E virus (HEV), rNEp, our Hepatitis E vaccine candidate, was shown to be immunogenic and safe in pregnant and non-pregnant mice and yielded sterilizing immunity in rhesus monkeys. The current study in Balb/c mice assessed the levels and persistence of anti-HEV IgG antibodies by ELISA, frequencies of B, memory B, T and memory T cells by flow cytometry and HEV-specific IgG secreting memory B cells by ELISPOT till 420days post immunization (PI) with 5?g rNEp encapsulated in liposome based adjuvant (2 doses, 4weeks apart). Mice immunized with a lower dose (1?g) were assessed only for anamnestic response post booster dose. Vaccine candidate immunized mice (5?g dose) elicited strong anti-HEV IgG response that was estimated to persist for lifetime. At day 120 PI, frequency of memory B cells was higher in immunized mice than those receiving adjuvant alone. Anti-HEV IgG titers were lower in mice immunized with 1?g dose. A booster dose yielded a heightened antibody response in mice with both high (>800GMT, 5?g) and low (?100GMT, 1?g) anti-HEV IgG titers. At day 6th post booster dose, HEV-specific antibody secreting plasma cells (ASCs) were detected in 100% and 50% of mice with high and low anti-HEV IgG titers, respectively, whereas the frequencies of CD4 + central and effector memory T cells were high in mice with high anti-HEV IgG titers only. Taken together, the vaccine candidate effectively generates persistent and anamnestic antibody response, elicits participation of CD4 + memory T cells and triggers memory B cells to differentiate into ASCs upon boosting. This approach of assessing the immunogenicity of vaccine candidate could be useful to explore the longevity of HEV-specific memory response in future HEV vaccine trials in human. Copyright © 2016. Published by Elsevier Ltd.

  7. Live Attenuated Pertussis Vaccine BPZE1 Protects Baboons Against Bordetella pertussis Disease and Infection

    PubMed Central

    Papin, James F.; Lecher, Sophie; Debrie, Anne-Sophie; Thalen, Marcel; Solovay, Ken; Rubin, Keith; Mielcarek, Nathalie

    2017-01-01

    Abstract Evidence suggests that the resurgence of pertussis in many industrialized countries may result from the failure of current vaccines to prevent nasopharyngeal colonization by Bordetella pertussis, the principal causative agent of whooping cough. Here, we used a baboon model to test the protective potential of the novel, live attenuated pertussis vaccine candidate BPZE1. A single intranasal/intratracheal inoculation of juvenile baboons with BPZE1 resulted in transient nasopharyngeal colonization and induction of immunoglobulin G and immunoglobulin A to all antigens tested, while causing no adverse symptoms or leukocytosis. When BPZE1-vaccinated baboons were challenged with a high dose of a highly virulent B. pertussis isolate, they were fully protected against disease, whereas naive baboons developed illness (with 1 death) and leukocytosis. Total postchallenge nasopharyngeal virulent bacterial burden of vaccinated animals was substantially reduced (0.002%) compared to naive controls, providing promising evidence in nonhuman primates that BPZE1 protects against both pertussis disease and B. pertussis infection. PMID:28535276

  8. Vaccination Against Tuberculosis With Whole-Cell Mycobacterial Vaccines.

    PubMed

    Scriba, Thomas J; Kaufmann, Stefan H E; Henri Lambert, Paul; Sanicas, Melvin; Martin, Carlos; Neyrolles, Olivier

    2016-09-01

    Live attenuated and killed whole-cell vaccines (WCVs) offer promising vaccination strategies against tuberculosis. A number of WCV candidates, based on recombinant bacillus Calmette-Guerin (BCG), attenuated Mycobacterium tuberculosis, or related mycobacterial species are in various stages of preclinical or clinical development. In this review, we discuss the vaccine candidates and key factors shaping the development pathway for live and killed WCVs and provide an update on progress. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. European Vaccine Initiative: lessons from developing malaria vaccines.

    PubMed

    Geels, Mark J; Imoukhuede, Egeruan B; Imbault, Nathalie; van Schooten, Harry; McWade, Terry; Troye-Blomberg, Marita; Dobbelaer, Roland; Craig, Alister G; Leroy, Odile

    2011-12-01

    For over 10 years, the European Vaccine Initiative (EVI; European Malaria Vaccine Initiative until 2009) has contributed to the development of 24 malaria candidate vaccine antigens with 13 vaccine candidates being advanced into Phase I clinical trials, two of which have been transitioned for further clinical development in sub-Saharan Africa. Since its inception the EVI organization has operated as a funding agency, but with a clear service-oriented strategy. The scientific successes and difficulties encountered during these years and how these efforts have led to standardization and harmonization in vaccine development through large-scale European consortia are discussed. In the future, the EVI will remain instrumental in the pharmaceutical and clinical development of vaccines against 'diseases of poverty' with a continued focus on malaria. EVI will continue to focus on funding and managing preclinical evaluation up to Phase I/II clinical trials and strengthening the vaccine-development infrastructure in Europe, albeit with a global orientation.

  10. Recombinant lipoprotein-based vaccine candidates against C. difficile infections.

    PubMed

    Huang, Jui-Hsin; Wu, Chia-Wei; Lien, Shu-Pei; Leng, Chih-Hsiang; Hsiao, Kuang-Nan; Liu, Shih-Jen; Chen, Hsin-Wei; Siu, Leung-Kei; Chong, Pele

    2015-08-07

    Opportunistically nosocomial infections in hospitalized patients are often related to Clostridium difficile infections (CDI) due to disruption of the intestinal micro-flora by antibiotic therapies during hospitalization. Clostridial exotoxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) in the host intestine, disrupt the intestinal barrier leading to acute inflammation and diarrhea. The C-terminal receptor binding domain of TcdA (A-rRBD) has been shown to elicit antibody responses that neutralize TcdA toxicity in Vero cell cytotoxicity assays, but not effectively protect hamsters against a lethal dose challenge of C. difficile spores. To develop an effective recombinant subunit vaccine against CDI, A-rRBD was lipidated (rlipoA-RBD) as a rational design to contain an intrinsic adjuvant, a toll-like receptor 2 agonist and expressed in Escherichia coli. The purified rlipoA-RBD was characterized immunologically and found to have the following properties: (a) mice, hamsters and rabbits vaccinated with 3 μg of rlipoA-RBD produced strong antibody responses that neutralized TcdA toxicity in Vero cell cytotoxicity assays; furthermore, the neutralization titer was comparable to those obtained from antisera immunized either with 10 μg of TcdA toxoid or 30 μg of A-rRBD; (b) rlipoA-RBD elicited immune responses and protected mice from TcdA challenge, but offered insignificant protection (10 to 20 %) against C. difficile spores challenge in hamster models; (c) only rlipoA-RBD formulated with B-rRBD consistently confers protection (90 to 100 %) in the hamster challenge model; and (d) rlipoA-RBD was found to be 10-fold more potent than A-rRBD as an adjuvant to enhancing immune responses against a poor antigen such as ovalbumin. These results indicate that rlipoA-RBD formulated with B-rRBD could be an excellent vaccine candidate for preclinical studies and future clinical trials.

  11. Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis

    PubMed Central

    Gurung, Ratna B.; Purdie, Auriol C.; Whittington, Richard J.; Begg, Douglas J.

    2014-01-01

    Control of Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP) in ruminants using commercially available vaccine reduces production losses, mortality, fecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne's disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE™ (ISA 50V2, 61VG, 71VG, and 201VG) adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ) release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE™ ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate. PMID:25077074

  12. The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper.

    PubMed

    Pan, Zihao; Liu, Jin; Ma, Jiale; Jin, Qiuli; Yao, Huochun; Osterrieder, Nikolaus

    2017-10-01

    Canine distemper virus (CDV), is a pantropic agent of morbillivirus that causes fetal disease in dogs. Base on a broad host rang of CDV, the continued vaccines inoculation is unavoidable to pose gene recombination risk in vaccine virus and wild virus. The current study presents the construction of novel vectors, using equine herpesvirus type 1 (EHV-1) expressing the canine distemper virus (CDV). The recent field strain hemagglutinin protein and nucleoprotein were used for the construction of the viral vector vaccines. Based on the Bacterial artificial chromosome (BAC) genomes of EHV-1 RacH strain, the recombinant EHV-1 vaccine virus encoding CDV hemagglutinin protein (EHV-H) or CDV nucleoprotein (EHV-N) was constructed separately. The constructed BACs were rescued after 72 h post infection, and the expression of H or N in the recombinant viruses was confirmed by western-blotting. Furthermore, high levels of neutralizing antibodies were induced persistently following vaccination in the groups EHV-H&EHV-N and EHV-H, but the EHV-N group. The groups of vaccinated EHV-H and EHV-H&EHV-N pups were monitored for clinical signs, whereas the vaccinated EHV-N group developed moderate symptoms. The present study demonstrated that EHV-1 based recombinant virus carrying CDV H could be a promising vaccine candidate against canine distemper. Copyright © 2017. Published by Elsevier Ltd.

  13. AmaRosa,” a red skinned, red fleshed fingerling with high phytonutrient value

    USDA-ARS?s Scientific Manuscript database

    AmaRosa is a mid season specialty potato with red skin and red flesh. This selection is unique among commercially available potato varieties in that plants set a large number of smooth, small, fingerling-shaped tubers with red skin and red flesh. AmaRosa tubers have higher total anthocyanin and hyd...

  14. Universal fungal vaccines

    PubMed Central

    Hamad, Mawieh

    2012-01-01

    The complex nature of fungal pathogens, the intricate host-pathogen relationship and the health status of subjects in need of antifungal vaccination continue to hamper efforts to develop fungal vaccines for clinical use. That said, the rise of the universal vaccine concept is hoped to revive fungal vaccine research by expanding the pool of vaccine candidates worthy of clinical evaluation. It can do so through antigenic commonality-based screening for vaccine candidates from a wide range of pathogens and by reassessing the sizable collection of already available experimental and approved vaccines. Development of experimental vaccines protective against multiple fungal pathogens is evidence of the utility of this concept in fungal vaccine research. However, universal fungal vaccines are not without difficulties; for instance, development of vaccines with differential effectiveness is an issue that should be addressed. Additionally, rationalizing the development of universal fungal vaccines on health or economic basis could be contentious. Herein, universal fungal vaccines are discussed in terms of their potential usefulness and possible drawbacks. PMID:22922769

  15. Immunogenicity and Safety of Yellow Fever Vaccine (Stamaril) When Administered Concomitantly With a Tetravalent Dengue Vaccine Candidate in Healthy Toddlers at 12-13 Months of Age in Colombia and Peru: A Randomized Trial.

    PubMed

    López, Pio; Lanata, Claudio F; Zambrano, Betzana; Cortés, Margarita; Andrade, Teresa; Amemiya, Isabel; Terrones, Cynthia; Gil, Ana I; Verastegui, Hector; Marquez, Viviana; Crevat, Denis; Jezorwski, John; Noriega, Fernando

    2016-10-01

    Dengue and yellow fever (YF) viruses are closely related members of the Flaviviridae family. Given the inherent similarities between the YF vaccine and dengue vaccine (CYD-TDV) candidate, it is possible that the latter could interfere with the response to the licensed YF vaccine when coadministered. In this randomized, observer-blind, controlled, phase III trial, conducted in Colombia and Peru, 787 toddlers were administered YF vaccine concomitantly with CYD-TDV (group 1) or placebo (group 2), followed by CYD-TDV after 6 and 12 months. YF and dengue neutralizing antibody titers were determined using a 50% plaque reduction neutralization test. Noninferiority was demonstrated if the lower limit of the 2-sided 95% confidence interval of the difference in seroconversion rates [(YF + CYD-TDV) - YF alone] was greater than -10%. The safety of both vaccines was also assessed. Concomitant administration of YF with either CYD-TDV or placebo yielded YF seroconversion rates of 100.0% and 99.7%, respectively. The difference in YF seroconversion rates between the 2 groups was 0.33% (95% confidence interval:0.98; 1.87), demonstrating that the immune response against YF administered concomitantly with CYD-TDV was noninferior to YF administered with placebo. After 2 injections of CYD-TDV, the percentage of participants with dengue titres ≥10 (1/dil) for the 4 dengue serotypes were 91.2%-100% for group 1 and 97.2%-100% in group 2. There were no safety concerns during the study period. Concomitant administration of YF vaccine with CYD-TDV has no relevant impact on the immunogenicity or safety profile of the YF vaccine.

  16. In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein

    PubMed Central

    Zheng, Juzeng; Lin, Xianfan; Wang, Xiuyan; Zheng, Liyu; Lan, Songsong; Jin, Sisi; Ou, Zhanfan; Wu, Jinming

    2017-01-01

    Hepatitis B virus (HBV) infection has persisted as a major public health problem due to the lack of an effective treatment for those chronically infected. Therapeutic vaccination holds promise, and targeting HBV polymerase is pivotal for viral eradication. In this research, a computational approach was employed to predict suitable HBV polymerase targeting multi-peptides for vaccine candidate selection. We then performed in-depth computational analysis to evaluate the predicted epitopes’ immunogenicity, conservation, population coverage, and toxicity. Lastly, molecular docking and MHC-peptide complex stabilization assay were utilized to determine the binding energy and affinity of epitopes to the HLA-A0201 molecule. Criteria-based analysis provided four predicted epitopes, RVTGGVFLV, VSIPWTHKV, YMDDVVLGA and HLYSHPIIL. Assay results indicated the lowest binding energy and high affinity to the HLA-A0201 molecule for epitopes VSIPWTHKV and YMDDVVLGA and epitopes RVTGGVFLV and VSIPWTHKV, respectively. Regions 307 to 320 and 377 to 387 were considered to have the highest probability to be involved in B cell epitopes. The T cell and B cell epitopes identified in this study are promising targets for an epitope-focused, peptide-based HBV vaccine, and provide insight into HBV-induced immune response. PMID:28509875

  17. Cystic fibrosis on the Internet: a survey of site adherence to AMA guidelines.

    PubMed

    Anselmo, Mark A; Lash, Katherine M; Stieb, Elisabeth S; Haver, Kenan E

    2004-07-01

    The Internet permits unprecedented and mostly unrestricted access to medical knowledge; however, concerns exist regarding viewer privacy, accountability of authorship, accuracy of information, and patient safety. To address these issues, the American Medical Association (AMA) has developed guidelines concerning web site content and visitor rights. Cystic fibrosis (CF) is the most common genetically inherited lethal disease in North America. Many Internet sites that provide information on CF have been developed, although adherence to validated guidelines for online health information is not required. The purpose of this study was to assess systematically web sites with content pertaining to CF for adherence to the published AMA guidelines. The search term "cystic fibrosis" was entered into a commonly used search engine (Google), and the first 100 eligible sites were reviewed. Each site was examined for adherence to the AMA Guidelines for Medical and Health Information Sites on the Internet using a series of adapted questions. There were 15 questions divided into the following main categories: 1) site structure and viewer privacy, 2) author accountability, 3) scientific citation, and 4) patient safety. The number of positives for each question was tabulated. With respect to site structure, fewer than half (45%) of the reviewed sites indicated a date of last revision. Only 11 (11%) carried an explicit privacy policy. A responsible author or group was listed in only 43 (43%) of 100 sites. Presented data regarding CF was supported by references, sources, or expert review in only 38 (38%) of 100 sites. A medical disclaimer noting that information provided does not substitute for evaluation by a health care team was evident in only 37 (37%) sites. The majority of easily accessible CF informational web sites do not adhere to guidelines published by the AMA. Patients and families who use the Internet as a CF information resource should examine the web sites carefully and be

  18. HIV-1 vaccines

    PubMed Central

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  19. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    PubMed

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Immunoproteomics Approach for Screening of Vaccine Candidates against Intestinal Botulism.

    PubMed

    Sharma, Arti; Rani, Sarita; Alam, Syed Imteyaz; Ponmariappan, Sarkaraisamy

    2017-01-01

    Intestinal botulism is an infectious form of botulism in which disease results from ingesting spores, which is followed by spore germination and intraluminal production of botulinum neurotoxins over an extended period. Botulinum neurotoxin is produced by endospore forming bacteria called C. botulinum. Immunoproteomic study was used to screen the cross reactive immunogenic proteins of Clostridium botulinum type B using C. botulinum type B live spore antiserum. The whole cell proteins were separated by two dimensional gel electrophoresis and transferred to polyvinylidene difluoride membranes. Further, the Western blotting was performed with mouse pups immune serum against C. botulinum type B live spores. Eight predominant cross immunoreactive proteins were identified by mass spectrometry. These immunogenic proteins might be used to develop novel subunit vaccine candidates against the intestinal botulism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    PubMed Central

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  2. Characterization and protective efficacy in an animal model of a novel truncated rotavirus VP8 subunit parenteral vaccine candidate.

    PubMed

    Xue, Miaoge; Yu, Linqi; Che, Yaojian; Lin, Haijun; Zeng, Yuanjun; Fang, Mujin; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2015-05-21

    The cell-attachment protein VP8* of rotavirus is a potential candidate parenteral vaccine. However, the yield of full-length VP8 protein (VP8*, residues 1-231) expressed in Escherichia coli was low, and a truncated VP8 protein (ΔVP8*, residues 65-231) cannot elicit efficient protective immunity in a mouse model. In this study, tow novel truncated VP8 proteins, VP8-1 (residues 26-231) and VP8-2 (residues 51-231), were expressed in E. coli and evaluated for immunogenicity and protective efficacy, compared with VP8* and ΔVP8*. As well as ΔVP8*, the protein VP8-1 and VP8-2 were successfully expressed in high yield and purified in homogeneous dimeric forms, while the protein VP8* was expressed with lower yield and prone to aggregation and degradation in solution. Although the immunogenicity of the protein VP8*, VP8-1, VP8-2 and ΔVP8* was comparable, immunization of VP8* and VP8-1 elicited significantly higher neutralizing antibody titers than that of VP8-2 and ΔVP8* in mice. Furthermore, when assessed using a mouse maternal antibody model, the efficacy of VP8-1 to protect against rotavirus-induced diarrhea in pups was comparable to that of VP8*, both were dramatically higher than that of VP8-2 and ΔVP8*. Taken together, the novel truncated protein VP8-1, with increased yield, improved homogeneity and high protective efficacy, is a viable candidate for further development of a parenterally administrated prophylactic vaccine against rotavirus infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Recombinant α-actinin subunit antigens of Trichomonas vaginalis as potential vaccine candidates in protecting against trichomoniasis.

    PubMed

    Xie, Yi-Ting; Gao, Jiang-Mei; Wu, Ya-Ping; Tang, Petrus; Hide, Geoff; Lai, De-Hua; Lun, Zhao-Rong

    2017-02-16

    Human trichomoniasis caused by Trichomonas vaginalis is one of the most common sexually transmitted diseases with more than 200 million cases worldwide. It has caused a series of health problems to patients. For prevention and control of infectious diseases, vaccines are usually considered as one of the most cost-efficient tools. However, until now, work on the development of T. vaginalis vaccines is still mainly focused on the screening of potential immunogens. Alpha-actinin characterized by high immunogenicity in T. vaginalis was suggested as a promising candidate. Therefore, the purpose of this study was to evaluate the protective potency of recombinant α-actinin against T. vaginalis infection in a mouse intraperitoneal model. Two selected coding regions of α-actinin (ACT-F, 14-469 aa and ACT-T, 462-844 aa) amplified from cDNA were cloned into pET-32a (+) expression vector and transfected into BL21 cells. After induction with IPTG and purification with electroelution, the two recombinant fusion proteins were emulsified in Freund's adjuvant (FA) and used to immunize BALB/C mice. Following intraperitoneal inoculation with T. vaginalis, the survival rate of mice was monitored for the assessment of protective potency. After immunization, the antibody level in mouse serum was assessed by ELISA, splenocyte proliferation response was detected with CCK8 and cytokines in the supernatant of splenocytes were quantified with a cytometric bead-based assay. We successfully obtained purified ACT-F (70.33 kDa) and ACT-T (61.7kDa). Both recombinant proteins could provide significant protection against T. vaginalis challenge, especially ACT-T (with 100% protection within one month). Meanwhile, high levels of specific total IgG and subtypes (IgG1 > IgG2a) were detected in sera from the immunized mice. Our results also revealed a statistically significant increase in splenocyte proliferation and related cytokine (IFN-γ, IL-6, IL-17A and IL-10) production after repeated

  4. A glycosylated recombinant subunit candidate vaccine consisting of Ehrlichia ruminantium major antigenic protein1 induces specific humoral and Th1 type cell responses in sheep.

    PubMed

    Faburay, Bonto; McGill, Jodi; Jongejan, Frans

    2017-01-01

    Heartwater, or cowdriosis, is a tick-borne disease of domestic and wild ruminants that is endemic in the Caribbean and sub-Saharan Africa. The disease is caused by an intracellular pathogen, Ehrlichia ruminantium and may be fatal within days of the onset of clinical signs with mortality rates of up to 90% in susceptible hosts. Due to the presence of competent tick vectors in North America, there is substantial risk of introduction of heartwater with potentially devastating consequences to the domestic livestock industry. There is currently no reliable or safe vaccine for use globally. To develop a protective DIVA (differentiate infected from vaccinated animals) subunit vaccine for heartwater, we targeted the E. ruminantium immunodominant major antigenic protein1 (MAP1) with the hypothesis that MAP1 is a glycosylated protein and glycans contained in the antigenic protein are important epitope determinants. Using a eukaryotic recombinant baculovirus expression system, we expressed and characterized, for the first time, a glycoform profile of MAP1 of two Caribbean E. ruminantium isolates, Antigua and Gardel. We have shown that the 37-38 kDa protein corresponded to a glycosylated form of the MAP1 protein, whereas the 31-32 kDa molecular weight band represented the non-glycosylated form of the protein frequently reported in scientific literature. Three groups of sheep (n = 3-6) were vaccinated with increasing doses of a bivalent (Antigua and Gardel MAP1) rMAP1 vaccine cocktail formulation with montanide ISA25 as an adjuvant. The glycosylated recombinant subunit vaccine induced E. ruminantium-specific humoral and Th1 type T cell responses, which are critical for controlling intracellular pathogens, including E. ruminantium, in infected hosts. These results provide an important basis for development of a subunit vaccine as a novel strategy to protect susceptible livestock against heartwater in non-endemic and endemic areas.

  5. A glycosylated recombinant subunit candidate vaccine consisting of Ehrlichia ruminantium major antigenic protein1 induces specific humoral and Th1 type cell responses in sheep

    PubMed Central

    McGill, Jodi; Jongejan, Frans

    2017-01-01

    Heartwater, or cowdriosis, is a tick-borne disease of domestic and wild ruminants that is endemic in the Caribbean and sub-Saharan Africa. The disease is caused by an intracellular pathogen, Ehrlichia ruminantium and may be fatal within days of the onset of clinical signs with mortality rates of up to 90% in susceptible hosts. Due to the presence of competent tick vectors in North America, there is substantial risk of introduction of heartwater with potentially devastating consequences to the domestic livestock industry. There is currently no reliable or safe vaccine for use globally. To develop a protective DIVA (differentiate infected from vaccinated animals) subunit vaccine for heartwater, we targeted the E. ruminantium immunodominant major antigenic protein1 (MAP1) with the hypothesis that MAP1 is a glycosylated protein and glycans contained in the antigenic protein are important epitope determinants. Using a eukaryotic recombinant baculovirus expression system, we expressed and characterized, for the first time, a glycoform profile of MAP1 of two Caribbean E. ruminantium isolates, Antigua and Gardel. We have shown that the 37–38 kDa protein corresponded to a glycosylated form of the MAP1 protein, whereas the 31–32 kDa molecular weight band represented the non-glycosylated form of the protein frequently reported in scientific literature. Three groups of sheep (n = 3–6) were vaccinated with increasing doses of a bivalent (Antigua and Gardel MAP1) rMAP1 vaccine cocktail formulation with montanide ISA25 as an adjuvant. The glycosylated recombinant subunit vaccine induced E. ruminantium-specific humoral and Th1 type T cell responses, which are critical for controlling intracellular pathogens, including E. ruminantium, in infected hosts. These results provide an important basis for development of a subunit vaccine as a novel strategy to protect susceptible livestock against heartwater in non-endemic and endemic areas. PMID:28957443

  6. A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs

    PubMed Central

    Matoba, Nobuyuki; Magérus, Aude; Geyer, Brian C.; Zhang, Yunfang; Muralidharan, Mrinalini; Alfsen, Annette; Arntzen, Charles J.; Bomsel, Morgane; Mor, Tsafrir S.

    2004-01-01

    A vaccine that would engage the mucosal immune system against a broad range of HIV-1 subtypes and prevent epithelial transmission is highly desirable. Here we report fusing the mucosal targeting B subunit of cholera toxin to the conserved galactosylceramide-binding domain (including the ELDKWA-neutralizing epitope) of the HIV-1 gp41 envelope protein, which mediates the transcytosis of HIV-1 across the mucosal epithelia. Chimeric protein expressed in bacteria or plants assembled into oligomers that were capable of binding galactosyl-ceramide and GM1 gangliosides. Mucosal (intranasal) administration in mice of the purified chimeric protein followed by an i.p. boost resulted in transcytosis-neutralizing serum IgG and mucosal IgA responses and induced immunological memory. Plant production of mucosally targeted immunogens could be particularly useful for immunization programs in developing countries, where desirable product traits include low cost of manufacture, heat stability, and needle-free delivery. PMID:15347807

  7. Effects of sex, parity, and sequence variation on seroreactivity to candidate pregnancy malaria vaccine antigens.

    PubMed

    Oleinikov, Andrew V; Rossnagle, Eddie; Francis, Susan; Mutabingwa, Theonest K; Fried, Michal; Duffy, Patrick E

    2007-07-01

    Plasmodium falciparum-infected erythrocytes adhere to chondroitin sulfate A (CSA) to sequester in the human placenta, and pregnancy malaria (PM) is associated with the development of disease in and the death of both mother and child. A PM vaccine appears to be feasible, because women become protected as they develop antibodies against placental infected erythrocytes (IEs). Two IE surface molecules, VAR1CSA and VAR2CSA, bind CSA in vitro and are potential vaccine candidates. We expressed all domains of VAR1CSA and VAR2CSA as mammalian cell surface proteins, using a novel approach that allows rapid purification, immobilization, and quantification of target antigen. For serum samples from East Africa, we measured reactivity to all domains, and we examined the effects of host sex and parity, as well as the effects of parasite antigenic variation. Serum samples obtained from multigravid women had a higher reactivity to all VAR2CSA domains than did those obtained from primigravid women or from men. Conversely, serum samples obtained from men had consistently higher reactivity to VAR1CSA domains than did those obtained from gravid women. Seroreactivity was strongly influenced by antigenic variation of VAR2CSA Duffy binding-like domains. Women acquire antibodies to VAR2CSA over successive pregnancies, but they lose reactivity to VAR1CSA. Serum reactivity to VAR2CSA is variant specific, and future studies should examine the degree to which functional antibodies, such as binding-inhibition antibodies, are variant specific.

  8. Safety, Protective Immunity, and DIVA Capability of a Rough Mutant Salmonella Pullorum Vaccine Candidate in Broilers.

    PubMed

    Guo, Rongxian; Jiao, Yang; Li, Zhuoyang; Zhu, Shanshan; Fei, Xiao; Geng, Shizhong; Pan, Zhiming; Chen, Xiang; Li, Qiuchun; Jiao, Xinan

    2017-01-01

    Salmonella enterica subsp. enterica serovar Gallinarum biovar Pullorum ( Salmonella Pullorum) is highly adapted to chickens causing an acute systemic disease that results in high mortality. Vaccination represents one approach for promoting animal health, food safety and reducing environmental persistence in Salmonella control. An important consideration is that Salmonella vaccination in poultry should not interfere with the salmonellosis monitoring program. This is the basis of the DIVA (Differentiation of Infected and Vaccinated Animals) program. In order to achieve this goal, waaL mutant was developed on a spiC mutant that was developed previously. The safety, efficacy, and DIVA features of this vaccine candidate ( Salmonella Pullorum Δ spiC Δ waaL ) were evaluated in broilers. Our results show that the truncated LPS in the vaccine strain has a differentiating use as both a bacteriological marker (rough phenotype) and also as a serological marker facilitating the differentiation between infected and vaccinated chickens. The rough mutant showed adequate safety being avirulent in the host chicks and showed increased sensitivity to environmental stresses. Single intramuscular immunization of day-old broiler chicks with the mutant confers ideal protection against lethal wild type challenge by significantly stimulating both humoral and cellular immune responses as well as reducing the colonization of the challenge strain. Significantly lower mean pathology scores were observed in the vaccination group compared to the control group. Additionally, the mutant strain generated cross-protection against challenge with the wild type Salmonella Gallinarum thereby improving survival and with the wild type Salmonella Enteritidis thereby reducing colonization. These results suggest that the double-mutant strain may be a safe, effective, and cross-protective vaccine against Salmonella infection in chicks while conforming to the requirements of the DIVA program.

  9. Limited variation in vaccine candidate Plasmodium falciparum Merozoite Surface Protein-6 over multiple transmission seasons.

    PubMed

    Neal, Aaron T; Jordan, Stephen J; Oliveira, Ana L; Hernandez, Jean N; Branch, Oralee H; Rayner, Julian C

    2010-05-24

    Plasmodium falciparum Merozoite Surface Protein-6 (PfMSP6) is a component of the complex proteinacious coat that surrounds P. falciparum merozoites. This location, and the presence of anti-PfMSP6 antibodies in P. falciparum-exposed individuals, makes PfMSP6 a potential blood stage vaccine target. However, genetic diversity has proven to be a major hurdle for vaccines targeting other blood stage P. falciparum antigens, and few endemic field studies assessing PfMSP6 gene diversity have been conducted. This study follows PfMSP6 diversity in the Peruvian Amazon from 2003 to 2006 and is the first longitudinal assessment of PfMSP6 sequence dynamics. Parasite DNA was extracted from 506 distinct P. falciparum infections spanning the transmission seasons from 2003 to 2006 as part of the Malaria Immunology and Genetics in the Amazon (MIGIA) cohort study near Iquitos, Peru. PfMSP6 was amplified from each sample using a nested PCR protocol, genotyped for allele class by agarose gel electrophoresis, and sequenced to detect diversity. Allele frequencies were analysed using JMP v.8.0.1.0 and correlated with clinical and epidemiological data collected as part of the MIGIA project. Both PfMSP6 allele classes, K1-like and 3D7-like, were detected at the study site, confirming that both are globally distributed. Allele frequencies varied significantly between transmission seasons, with 3D7-class alleles dominating and K1-class alleles nearly disappearing in 2005 and 2006. There was a significant association between allele class and village location (p-value = 0.0008), but no statistically significant association between allele class and age, sex, or symptom status. No intra-allele class sequence diversity was detected. Both PfMSP6 allele classes are globally distributed, and this study shows that allele frequencies can fluctuate significantly between communities separated by only a few kilometres, and over time in the same community. By contrast, PfMSP6 was highly stable at the

  10. Improving rotavirus vaccine coverage: Can newer-generation and locally produced vaccines help?

    PubMed Central

    Kanungo, Suman; Anh, Dang Duc; Grais, Rebecca F.

    2018-01-01

    ABSTRACT There are two internationally available WHO-prequalified oral rotavirus vaccines (Rotarix and RotaTeq), two rotavirus vaccines licensed in India (Rotavac and Rotasiil), one in China (Lanzhou lamb rotavirus vaccine) and one in Vietnam (Rotavin-M1), and several candidates in development. Rotavirus vaccination has been rolled out in Latin American countries and is beginning to be deployed in sub-Saharan African countries but middle- and low-income Asian countries have lagged behind in rotavirus vaccine introduction. We provide a mini-review of the leading newer-generation rotavirus vaccines and compare them with Rotarix and RotaTeq. We discuss how the development and future availability of newer-generation rotavirus vaccines that address the programmatic needs of poorer countries may help scale-up rotavirus vaccination where it is needed. PMID:29135339

  11. The green vaccine: A global strategy to combat infectious and autoimmune diseases

    PubMed Central

    Davoodi-Semiromi, Abdoreza; Samson, Nalapalli; Daniell, Henry

    2009-01-01

    Plant derived oral green vaccines eliminate expenses associated with fermenters, purification, cold storage/transportation and sterile delivery. Green vaccines are expressed via the plant nuclear or chloroplast genomes. Chloroplast expression has advantages of hyper-expression of therapeutic proteins (10,000 copies of trans-gene per cell), efficient oral delivery and transgene containment via maternal inheritance. To date, 23 vaccine antigens against 16 different bacterial, viral or protozoan pathogens have been expressed in chloroplasts. Mice subcutaneously immunized with the chloroplast derived anthrax protective antigen conferred 100% protection against lethal doses of the anthrax toxin. Oral immunization (ORV) of F1-V antigens without adjuvant conferred greater protection (88%) against 50-fold lethal dose of aerosolized plague (Yersinia pestis) than subcutaneous (SQV) immunization (33%). Oral immunization of malarial vaccine antigens fused to the cholera antigen (CTB-AMA1/CTB-Msp1) conferred prolonged immunity (50% life span), 100% protection against cholera toxin challenge and inhibited proliferation of the malarial parasite. Protection was correlated with antigen-specific titers of intestinal, serum IgA & IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. High level expression in edible plant chloroplasts ideal for oral delivery and long-term immunity observed should facilitate development of low cost human vaccines for large populations, at times of outbreak. PMID:19430198

  12. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160DELTAV1V2 is strongly immunogenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160DELTAV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity tomore » both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.« less

  13. Oral vaccination with an adenovirus-vectored vaccine protects against botulism

    PubMed Central

    Chen, Shan; Xu, Qingfu; Zeng, Mingtao

    2013-01-01

    We have previously shown that an adenovirus vectored vaccine delivered intramuscularly or intranasally was effective in protection against botulism in a mouse model. The adenoviral vector encodes a human codon-optimized heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). Here, we evaluate the same vaccine candidate as an oral vaccine against BoNT/C in a mouse model. To elicit protective immunity, the mice were orally vaccinated with a single dose of 1×104 to 1×107 plaque forming units (pfu) of the adenoviral vector. The immune sera, collected six weeks after oral vaccination with 2×107 pfu adenovirus, has shown an ability to neutralize the biological activity of BoNT/C in vitro. Additionally, animals receiving a single dose of 2×106 pfu adenovirus or greater were completely protected against challenge with 100×MLD50 of BoNT/C. The data demonstrated the feasibility to develop an adenovirus-based oral vaccine against botulism. PMID:23295065

  14. Why does the world need another rotavirus vaccine?

    PubMed Central

    Ward, Richard L; McNeal, Monica M; Steele, A Duncan

    2008-01-01

    A “Meeting on Upstream Rotavirus Vaccines and Emerging Vaccine Producers” was held at the World Health Organization in Geneva, Switzerland on March 28–30, 2006. The purpose was to discuss, evaluate, and weigh the importance of additional rotavirus vaccine candidates following the successful international licensure of rotavirus vaccines by two major pharmaceutical companies (GlaxoSmithKline and Merck) that had been in development for many years. Both licensed vaccines are composed of live rotaviruses that are delivered orally as have been all candidate rotavirus vaccines evaluated in humans. Each is built on the experience gained with previous candidates whose development had either been discontinued or, in the case of the previously licensed rhesus rotavirus reassortant vaccine (Rotashield), was withdrawn by its manufacturer after the discovery of a rare association with intussusception. Although which alternative candidate vaccines should be supported for development and where this should be done are controversial topics, there was general agreement expressed at the Geneva meeting that further development of alternative candidates is a high priority. This development will help insure that the most safe, effective and economic vaccines are available to children in Third World nations where the vast majority of the >600,000 deaths due to rotavirus occur each year. This review is intended to provide the history and present status of rotavirus vaccines as well as a perspective on the future development of candidate vaccines as a means of promulgating plans suggested at the Geneva meeting. PMID:18728720

  15. Steps toward a globally available malaria vaccine: harnessing the potential of algae for future low cost vaccines.

    PubMed

    Jones, Carla S; Mayfield, Stephen P

    2013-01-01

    Malaria is an infectious disease that threatens half of the world's population. This debilitating disease is caused by infection from parasites of the genus Plasmodium. Insecticides, bed nets and drug therapies have lowered the prevalence and death rate associated with malaria but this disease continues to plague many populations around the world. In recent years, many organizations have suggested developing methods for a complete eradication of malaria. The most straightforward and effective method for this potential eradication will be through the development of a low-cost vaccine. To achieve eradication, it will be necessary to develop new vaccine candidates and novel systems for both the production and delivery of these vaccines. Recently, the green algae Chlamydomonas reinhardtii has been used for the recombinant expression of malaria vaccine candidates including the transmission blocking vaccine candidate Pfs48/45. Here, we discuss the potential of this research on the future development of a low-cost malaria vaccine candidate.

  16. Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates.

    PubMed

    Ault, Alida; Tennant, Sharon M; Gorres, J Patrick; Eckhaus, Michael; Sandler, Netanya G; Roque, Annelys; Livio, Sofie; Bao, Saran; Foulds, Kathryn E; Kao, Shing-Fen; Roederer, Mario; Schmidlein, Patrick; Boyd, Mary Adetinuke; Pasetti, Marcela F; Douek, Daniel C; Estes, Jacob D; Nabel, Gary J; Levine, Myron M; Rao, Srinivas S

    2013-12-02

    Nontyphoidal Salmonella (NTS) serovars are a common cause of acute food-borne gastroenteritis worldwide and can cause invasive systemic disease in young infants, the elderly, and immunocompromised hosts, accompanied by high case fatality. Vaccination against invasive NTS disease is warranted where the disease incidence and mortality are high and multidrug resistance is prevalent, as in sub-Saharan Africa. Live-attenuated vaccines that mimic natural infection constitute one strategy to elicit protection. However, they must particularly be shown to be adequately attenuated for consideration of immunocompromised subjects. Accordingly, we examined the safety and tolerability of an oral live attenuated Salmonella typhimurium vaccine candidate, CVD 1921, in an established chronic simian immunodeficiency virus (SIV)-infected rhesus macaque model. We evaluated clinical parameters, histopathology, and measured differences in mucosal permeability to wild-type and vaccine strains. Compared to the wild-type S. typhimurium strain I77 in both SIV-infected and SIV-uninfected nonhuman primate hosts, this live-attenuated vaccine shows reduced shedding and systemic spread, exhibits limited pathological disease manifestations in the digestive tract, and induces low levels of cellular infiltration in tissues. Furthermore, wild-type S. typhimurium induces increased intestinal epithelial damage and permeability, with infiltration of neutrophils and macrophages in both SIV-infected and SIV-uninfected nonhuman primates compared to the vaccine strain. Based on shedding, systemic spread, and histopathology, the live-attenuated S. typhimurium strain CVD 1921 appears to be safe and well-tolerated in the nonhuman primate model, including chronically SIV-infected rhesus macaques. Copyright © 2013. Published by Elsevier Ltd.

  17. Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and respiratory syndrome virus vaccine candidate T cell antigens.

    PubMed

    Mokhtar, Helen; Biffar, Lucia; Somavarapu, Satyanarayana; Frossard, Jean-Pierre; McGowan, Sarah; Pedrera, Miriam; Strong, Rebecca; Edwards, Jane C; Garcia-Durán, Margarita; Rodriguez, Maria Jose; Stewart, Graham R; Steinbach, Falko; Graham, Simon P

    2017-09-01

    PRRS control is hampered by the inadequacies of existing vaccines to combat the extreme diversity of circulating viruses. Since immune clearance of PRRSV infection may not be dependent on the development of neutralising antibodies and the identification of broadly-neutralising antibody epitopes have proven elusive, we hypothesised that conserved T cell antigens represent potential candidates for development of a novel PRRS vaccine. Previously we had identified the M and NSP5 proteins as well-conserved targets of polyfunctional CD8 and CD4 T cells. To assess their vaccine potential, peptides representing M and NSP5 were encapsulated in hydrophobically-modified chitosan particles adjuvanted by incorporation of a synthetic multi-TLR2/TLR7 agonist and coated with a model B cell PRRSV antigen. For comparison, empty particles and adjuvanted particles encapsulating inactivated PRRSV-1 were prepared. Vaccination with the particulate formulations induced antigen-specific antibody responses, which were most pronounced following booster immunisation. M and NSP5-specific CD4, but not CD8, T cell IFN-γ reactivity was measurable following the booster immunisation in a proportion of animals vaccinated with peptide-loaded particles. Upon challenge, CD4 and CD8 T cell reactivity was detected in all groups, with the greatest responses being detected in the peptide vaccinated group but with limited evidence of an enhanced control of viraemia. Analysis of the lungs during the resolution of infection showed significant M/NSP5 specific IFN-γ responses from CD8 rather than CD4 T cells. Vaccine primed CD8 T cell responses may therefore be required for protection and future work should focus on enhancing the cross-presentation of M/NSP5 to CD8 T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. HIV-1 Tat-based vaccines: from basic science to clinical trials.

    PubMed

    Fanales-Belasio, Emanuele; Cafaro, Aurelio; Cara, Andrea; Negri, Donatella R M; Fiorelli, Valeria; Butto, Stefano; Moretti, Sonia; Maggiorella, Maria Teresa; Baroncelli, Silvia; Michelini, Zuleika; Tripiciano, Antonella; Sernicola, Leonardo; Scoglio, Arianna; Borsetti, Alessandra; Ridolfi, Barbara; Bona, Roberta; Ten Haaft, Peter; Macchia, Iole; Leone, Pasqualina; Pavone-Cossut, Maria Rosaria; Nappi, Filomena; Vardas, Eftyhia; Magnani, Mauro; Laguardia, Elena; Caputo, Antonella; Titti, Fausto; Ensoli, Barbara

    2002-09-01

    Vaccination against human immunodeficiency virus (HIV)-1 infection requires candidate antigen(s) (Ag) capable of inducing an effective, broad, and long-lasting immune response against HIV-1 despite mutation events leading to differences in virus clades. The HIV-1 Tat protein is more conserved than envelope proteins, is essential in the virus life cycle and is expressed very early upon virus entry. In addition, both humoral and cellular responses to Tat have been reported to correlate with a delayed progression to disease in both humans and monkeys. This suggested that Tat is an optimal target for vaccine development aimed at controlling virus replication and blocking disease onset. Here are reviewed the results of our studies including the effects of the Tat protein on monocyte-derived dendritic cells (MDDCs) that are key antigen-presenting cells (APCs), and the results from vaccination trials with both the Tat protein or tat DNA in monkeys. We provide evidence that the HIV-1 Tat protein is very efficiently taken up by MDDCs and promotes T helper (Th)-1 type immune responses against itself as well as other Ag. In addition, a Tat-based vaccine elicits an immune response capable of controlling primary infection of monkeys with the pathogenic SHIV89.6P at its early stages allowing the containment of virus spread. Based on these results and on data of Tat conservation and immune cross-recognition in field isolates from different clades, phase I clinical trials are being initiated in Italy for both preventive and therapeutic vaccination.

  19. 2009 H1N1 Flu Vaccine Facts

    MedlinePlus

    ... turn Javascript on. Feature: Flu 2009 H1N1 Flu Vaccine Facts Past Issues / Fall 2009 Table of Contents ... H1N1 flu vaccine. 1 The 2009 H1N1 flu vaccine is safe and well tested. Clinical trials conducted ...

  20. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    PubMed

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  1. Global genetic diversity of the Plasmodium vivax transmission-blocking vaccine candidate Pvs48/45.

    PubMed

    Vallejo, Andres F; Martinez, Nora L; Tobon, Alejandra; Alger, Jackeline; Lacerda, Marcus V; Kajava, Andrey V; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2016-04-12

    Plasmodium vivax 48/45 protein is expressed on the surface of gametocytes/gametes and plays a key role in gamete fusion during fertilization. This protein was recently expressed in Escherichia coli host as a recombinant product that was highly immunogenic in mice and monkeys and induced antibodies with high transmission-blocking activity, suggesting its potential as a P. vivax transmission-blocking vaccine candidate. To determine sequence polymorphism of natural parasite isolates and its potential influence on the protein structure, all pvs48/45 sequences reported in databases from around the world as well as those from low-transmission settings of Latin America were compared. Plasmodium vivax parasite isolates from malaria-endemic regions of Colombia, Brazil and Honduras (n = 60) were used to sequence the Pvs48/45 gene, and compared to those previously reported to GenBank and PlasmoDB (n = 222). Pvs48/45 gene haplotypes were analysed to determine the functional significance of genetic variation in protein structure and vaccine potential. Nine non-synonymous substitutions (E35K, Y196H, H211N, K250N, D335Y, E353Q, A376T, K390T, K418R) and three synonymous substitutions (I73, T149, C156) that define seven different haplotypes were found among the 282 isolates from nine countries when compared with the Sal I reference sequence. Nucleotide diversity (π) was 0.00173 for worldwide samples (range 0.00033-0.00216), resulting in relatively high diversity in Myanmar and Colombia, and low diversity in Mexico, Peru and South Korea. The two most frequent substitutions (E353Q: 41.9 %, K250N: 39.5 %) were predicted to be located in antigenic regions without affecting putative B cell epitopes or the tertiary protein structure. There is limited sequence polymorphism in pvs48/45 with noted geographical clustering among Asian and American isolates. The low genetic diversity of the protein does not influence the predicted antigenicity or protein structure and, therefore

  2. Detection of antigenic proteins expressed by lymphocystis virus as vaccine candidates in olive flounder, Paralichthys olivaceus (Temminck & Schlegel).

    PubMed

    Jang, H B; Kim, Y R; Cha, I S; Noh, S W; Park, S B; Ohtani, M; Hikima, J; Aoki, T; Jung, T S

    2011-07-01

    Although the major capsid proteins (MCPs) of lymphocystis disease virus (LCDV) have been characterized, little is known about the host-derived immune response to MCPs and other LCDV antigenic proteins. To identify antigenic proteins of LCDV that could be used as vaccine candidates in olive flounder, Paralichthys olivaceus, we analysed the viral proteins responsible for its virulence by applying immuno-proteomics. LCDV proteins were separated by one-dimensional gel electrophoresis, transferred to polyvinylidene difluoride membrane, and probed with homogeneous P. olivaceus antisera elicited by LCDV natural infection and vaccination with formalin-killed LCDV. Four immune-reactive proteins were obtained at 68-, 51-, 41- and 21 kDa using antisera collected from natural infection while two proteins at 51- and 21 kDa exhibited response to antisera from vaccinated fish, indicating that the latter two proteins have vaccine potential. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray MS/MS, the 51 and 21 kDa proteins were identified as MCP and an unknown protein, respectively. © 2011 Blackwell Publishing Ltd.

  3. Efficacy of phase 3 trial of RTS, S/AS01 malaria vaccine: The need for an alternative development plan.

    PubMed

    Mahmoudi, Shima; Keshavarz, Hossein

    2017-09-02

    Although vaccines would be the ideal tool for control, prevention, elimination, and eradication of many infectious diseases, developing of parasites vaccines such as malaria vaccine is very complex. The most advanced malaria vaccine candidate RTS,S, a pre-erythrocytic vaccine, has been recommended for licensure by EMEA. The results of this phase III trial suggest that this candidate malaria vaccine has relatively little efficacy, and the vaccine apparently will not meet the goal of malaria eradication by itself. Since there are many vaccine candidates in the pipeline 1 that are being evaluated in vaccine trials, further study on using of alternative parasite targets and vaccination strategies are highly recommended.

  4. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    PubMed

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Safety and immunogenicity of an AS01-adjuvanted varicella-zoster virus subunit candidate vaccine against herpes zoster in adults >=50 years of age.

    PubMed

    Chlibek, Roman; Bayas, José M; Collins, Harry; de la Pinta, Maria Luisa Rodriguez; Ledent, Edouard; Mols, Johann F; Heineman, Thomas C

    2013-12-15

    An adjuvanted varicella-zoster virus glycoprotein E (gE) subunit vaccine candidate for herpes zoster is in development. In this trial we compared the safety, reactogenicity, and immunogenicity of the vaccine antigen combined with different adjuvant doses. This was a phase II, observer-blind, randomized, multinational study. Adults ≥50 years old were randomized 4:4:2:1 to be vaccinated at months 0 and 2 with gE combined with a higher (AS01B) or lower (AS01E) dose adjuvant, unadjuvanted gE, or saline. Following each dose, solicited events were recorded for 7 days and unsolicited adverse events for 30 days. Serious adverse events were collected for 1 year. Cell-mediated and humoral immune responses were assessed at baseline and following each dose. No vaccine-related severe adverse events were reported. Solicited adverse events were generally mild to moderate and transient. For all gE-based vaccines, pain was the most common local symptom and fatigue the most common general symptom. Immune responses were significantly enhanced by AS01B and AS01E compared to unadjuvanted gE and were significantly stronger for gE/AS01B than for gE/AS01E. AS01 improved the immunogenicity of gE while retaining acceptable safety and reactogenicity profiles. The enhancement of gE-specific cellular and humoral responses was adjuvant dose dependent. NCT00802464.

  6. Decrease in Numbers of Naive and Resting B Cells in HIV-Infected Kenyan Adults Leads to a Proportional Increase in Total and Plasmodium falciparum-Specific Atypical Memory B Cells.

    PubMed

    Frosch, Anne E; Odumade, Oludare A; Taylor, Justin J; Ireland, Kathleen; Ayodo, George; Ondigo, Bartholomew; Narum, David L; Vulule, John; John, Chandy C

    2017-06-15

    Human immunodeficiency virus type 1 (HIV-1) infection is associated with B cell activation and exhaustion, and hypergammaglobulinemia. How these changes influence B cell responses to coinfections such as malaria is poorly understood. To address this, we compared B cell phenotypes and Abs specific for the Plasmodium falciparum vaccine candidate apical membrane Ag-1 (AMA1) in HIV-infected and uninfected adults living in Kenya. Surprisingly, HIV-1 infection was not associated with a difference in serum AMA1-specific Ab levels. HIV-infected individuals had a higher proportion of total atypical and total activated memory B cells (MBCs). Using an AMA1 tetramer to detect AMA1-specific B cells, HIV-infected individuals were also shown to have a higher proportion of AMA1-specific atypical MBCs. However, this proportional increase resulted in large part from a loss in the number of naive and resting MBCs rather than an increase in the number of atypical and activated cells. The loss of resting MBCs and naive B cells was mirrored in a population of cells specific for an Ag to which these individuals were unlikely to have been chronically exposed. Together, the data show that changes in P. falciparum Ag-specific B cell subsets in HIV-infected individuals mirror those in the overall B cell population, and suggest that the increased proportion of atypical MBC phenotypes found in HIV-1-infected individuals results from the loss of naive and resting MBCs. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Current ebola vaccines.

    PubMed

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-07-01

    Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates (NHPs), with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in NHPs, the gold standard animal model for ebola hemorrhagic fever. This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios and describes current ebolavirus vaccines. Among these vaccines are recombinant adenoviruses, recombinant vesicular stomatitis viruses (VSVs), recombinant human parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant VSVs, has also demonstrated post-exposure protection in NHPs. The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and toward licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible.

  8. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model

    PubMed Central

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V.S.; Fletcher, Helen A.

    2015-01-01

    Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination. PMID:26256523

  9. Induction of Protective Immunity against Toxoplasmosis in BALB/c Mice Vaccinated with Toxoplasma gondii Rhoptry-1

    PubMed Central

    Sonaimuthu, Parthasarathy; Ching, Xiao T.; Fong, Mun Y.; Kalyanasundaram, Ramaswamy; Lau, Yee L.

    2016-01-01

    Toxoplasma gondii is the causative agent for toxoplasmosis. The rhoptry protein 1 (ROP1) is secreted by rhoptry, an apical secretory organelle of the parasite. ROP1 plays an important role in host cell invasion. In this study, the efficacy of ROP1 as a vaccine candidate against toxoplasmosis was evaluated through intramuscular or subcutaneous injection of BALB/c mice followed by immunological characterization (humoral- and cellular-mediated) and lethal challenge against virulent T. gondii RH strain in BALB/c mice. Briefly, a recombinant DNA plasmid (pVAX1-GFP-ROP1) was expressed in CHO cells while expression of recombinant ROP1 protein (rROP1) was carried out in Escherichia coli expression system. Immunization study involved injection of the recombinant pVAX1-ROP1 and purified rROP1 into different group of mice. Empty vector and PBS served as two different types of negative controls. Results obtained demonstrated that ROP1 is an immunogenic antigen that induced humoral immune response whereby detection of a protein band with expected size of 43 kDa was observed against vaccinated mice sera through western blot analysis. ROP1 antigen was shown to elicit cellular-mediated immunity as well whereby stimulated splenocytes with total lysate antigen (TLA) and rROP1 from pVAX1-ROP1 and rROP1-immunized mice, respectively, readily proliferated and secreted large amount of IFN-γ (712 ± 28.1 pg/ml and 1457 ± 31.19 pg/ml, respectively) and relatively low IL-4 level (94 ± 14.5 pg/ml and 186 ± 14.17 pg/ml, respectively). These phenomena suggested that Th1-favored immunity was being induced. Vaccination with ROP1 antigen was able to provide partial protection in the vaccinated mice against lethal challenge with virulent RH strain of tachyzoites. These findings proposed that the ROP1 antigen is a potential candidate for the development of vaccine against toxoplasmosis. PMID:27303390

  10. Safety and reactogenicity of an MSP-1 malaria vaccine candidate: a randomized phase Ib dose-escalation trial in Kenyan children.

    PubMed

    Withers, Mark R; McKinney, Denise; Ogutu, Bernhards R; Waitumbi, John N; Milman, Jessica B; Apollo, Odika J; Allen, Otieno G; Tucker, Kathryn; Soisson, Lorraine A; Diggs, Carter; Leach, Amanda; Wittes, Janet; Dubovsky, Filip; Stewart, V Ann; Remich, Shon A; Cohen, Joe; Ballou, W Ripley; Holland, Carolyn A; Lyon, Jeffrey A; Angov, Evelina; Stoute, José A; Martin, Samuel K; Heppner, D Gray

    2006-11-24

    Our aim was to evaluate the safety, reactogenicity, and immunogenicity of an investigational malaria vaccine. This was an age-stratified phase Ib, double-blind, randomized, controlled, dose-escalation trial. Children were recruited into one of three cohorts (dosage groups) and randomized in 2:1 fashion to receive either the test product or a comparator. The study was conducted in a rural population in Kombewa Division, western Kenya. Subjects were 135 children, aged 12-47 mo. Subjects received 10, 25, or 50 microg of falciparum malaria protein 1 (FMP1) formulated in 100, 250, and 500 microL, respectively, of AS02A, or they received a comparator (Imovax (rabies vaccine). We performed safety and reactogenicity parameters and assessment of adverse events during solicited (7 d) and unsolicited (30 d) periods after each vaccination. Serious adverse events were monitored for 6 mo after the last vaccination. Both vaccines were safe and well tolerated. FMP1/AS02A recipients experienced significantly more pain and injection-site swelling with a dose-effect relationship. Systemic reactogenicity was low at all dose levels. Hemoglobin levels remained stable and similar across arms. Baseline geometric mean titers were comparable in all groups. Anti-FMP1 antibody titers increased in a dose-dependent manner in subjects receiving FMP1/AS02A; no increase in anti-FMP1 titers occurred in subjects who received the comparator. By study end, subjects who received either 25 or 50 microg of FMP1 had similar antibody levels, which remained significantly higher than that of those who received the comparator or 10 microg of FMP1. A longitudinal mixed effects model showed a statistically significant effect of dosage level on immune response (F(3,1047) = 10.78, or F(3, 995) = 11.22, p < 0.001); however, the comparison of 25 microg and 50 microg recipients indicated no significant difference (F(1,1047) = 0.05; p = 0.82). The FMP1/AS02A vaccine was safe and immunogenic in malaria-exposed 12- to

  11. Atypical antibody responses in dengue vaccine recipients.

    PubMed

    Kanesa-Thasan, N; Sun, W; Ludwig, G V; Rossi, C; Putnak, J R; Mangiafico, J A; Innis, B L; Edelman, R

    2003-12-01

    Eight of 69 (12%) healthy adult volunteers vaccinated with monovalent live-attenuated dengue virus (DENV) vaccine candidates had atypical antibody responses, with depressed IgM:IgG antibody ratios and induction of high-titer hemagglutination-inhibiting and neutralizing (NT) antibodies to all four DENV serotypes. These features suggested flavivirus exposure prior to DENV vaccination, yet no volunteer had a history of previous flavivirus infection, flavivirus vaccination, or antibody to flaviviruses evident before DENV vaccination. Moreover, production of antibody to DENV by atypical responders (AR) was not accelerated compared with antibody responses in the 61 flavivirus-naive responders (NR). Further evaluation revealed no differences in sex, age, race, DENV vaccine candidate received, or clinical signs and symptoms following vaccination between AR and NR. However, viremia was delayed at the onset in AR compared with NR. A comparative panel of all AR and five randomly selected NR found flavivirus cross-reactive antibody after vaccination only in AR. Unexpectedly, six of eight AR had NT antibodies to yellow fever virus (YFV) > 1:10 before vaccination while NR had none (P = 0.04). The AR also universally demonstrated YFV NT antibody titers > or = 1:160 after DENV vaccination, whereas four of five NR failed to seroconvert (P = 0.02). Yellow fever virus priming broadens the antibody response to monovalent DENV vaccination. The effect of flavivirus priming on the clinical and immunologic response to tetravalent DENV vaccine remains to be determined.

  12. Next-generation dengue vaccines: novel strategies currently under development.

    PubMed

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  13. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    PubMed Central

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; Borducchi, Erica N.; Iampietro, M. Justin; Bricault, Christine A.; Teigler, Jeffrey E.; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A.; Zhao, Guoyan; Virgin, Herbert W.; Korber, Bette

    2014-01-01

    ABSTRACT Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. PMID:25410856

  14. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    DTIC Science & Technology

    2016-06-02

    studies in HPIV-3-immune guinea pigs with EBOV GP1,2-expressing HPIV-3 have suggested that while pre-existing immunity to the vector suppressed... guinea pigs and nonhuman primates against infection with multiple Marburg viruses. Expert Rev Vaccines, 7(4), 417-429 (2008). 98. Warfield KL...Swenson DL, Negley DL et al. Marburg virus-like particles protect guinea pigs from lethal Marburg virus infection. Vaccine, 22(25-26), 3495-3502 (2004

  15. Live attenuated tetravalent dengue vaccine.

    PubMed

    Bhamarapravati, N; Sutee, Y

    2000-05-26

    The development of a live attenuated tetravalent dengue vaccine is currently the best strategy to obtain a vaccine against dengue viruses. The Mahidol University group developed candidate live attenuated vaccines by attenuation through serial passages in certified primary cell cultures. Dengue serotype 1, 2 and 4 viruses were developed in primary dog kidney cells, whereas dengue serotype 3 was serially passaged in primary African green monkey kidney cells. Tissue culture passaged strain viruses were subjected to biological marker studies. Candidate vaccines have been tested as monovalent (single virus), bivalent (two viruses), trivalent (three viruses) and tetravalent (all four serotype viruses) vaccines in Thai volunteers. They were found to be safe and immunogenic in both adults and children. The Mahidol live attenuated dengue 2 virus was also tested in American volunteers and resulted in good immune response indistinguishable from those induced in Thai volunteers. The master seeds from the four live attenuated virus strains developed were provided to Pasteur Merieux Connaught of France for production on an industrial scale following good manufacturing practice guidelines.

  16. Back to the future: The AMA and religion, 1961-1974.

    PubMed

    Kim, Daniel T; Curlin, Farr A; Wolenberg, Kelly M; Sulmasy, Daniel P

    2014-12-01

    U.S. medical scholarship and education regarding religion and spirituality has been growing rapidly in recent years. This rising interest, however, is not new; it is a renewal of significant interweavings that date back to the mid-20th century. In this Perspective, the authors draw attention to the little-known history of organized medicine's engagement with religion from 1961 to 1974. Relying on primary source documents, they recount the dramatic rise and fall of the Committee on Medicine and Religion (CMR) at the American Medical Association (AMA). At its height, there were state-level committees on medicine and religion in 49 states, the District of Columbia, and Puerto Rico, and there were county-level committees in over 800 county medical societies. Thousands of physicians attended annual conferences for clinicians and clergy, and direct outreach to patients included a film viewed by millions. The CMR arose in the context of rapid medical advances, the growth of professional chaplaincy, and concern for declining "humanism" in medicine-conditions with parallels in medicine today. The CMR was brought to a puzzling end in 1972 by the AMA's Board of Trustees. The authors argue that this termination was linked to the AMA's long and contentious debate on abortion. They conclude with the story's significance for today's explorations of the intersection of spirituality, religion, and medicine, focusing on the need for mutual respect, transparency, and dialogue around the needs of patients and physicians.

  17. Current State in the Development of Candidate Therapeutic HPV Vaccines

    PubMed Central

    Yang, Andrew; Jeang, Jessica; Cheng, Kevin; Cheng, Ting; Yang, Benjamin; Wu, T.-C.; Hung, Chien-Fu

    2016-01-01

    Summary The identification of human papillomavirus (HPV) as an etiological factor for HPV-associated malignancies creates the opportunity to control these cancers through vaccination. Currently, available preventive HPV vaccines have not yet demonstrated strong evidences for therapeutic effects against established HPV infections and lesions. Furthermore, HPV infections remain extremely common. Thus, there is urgent need for therapeutic vaccines to treat existing HPV infections and HPV-associated diseases. Therapeutic vaccines differ from preventive vaccines in that they are aimed at generating cell-mediated immunity rather than neutralizing antibodies. The HPV-encoded early proteins, especially oncoproteins E6 and E7, form ideal targets for therapeutic HPV vaccines since they are consistently expressed in HPV-associated malignancies and precancerous lesions, playing crucial roles in the generation and maintenance of HPV-associated disease. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we review strategies to enhance vaccine efficacy and the latest clinical trials on therapeutic HPV vaccines. PMID:26901118

  18. Construction high-yield candidate influenza vaccine viruses in Vero cells by reassortment.

    PubMed

    Yu, Wei; Yang, Fan; Yang, Jinghui; Ma, Lei; Cun, Yina; Song, Shaohui; Liao, Guoyang

    2016-11-01

    Usage of influenza vaccine is the best choice measure for preventing and conclusion of influenza virus infection. Although it has been used of chicken embryo to produce influenza vaccine, following with WHO recommended vaccine strain, there were uncontrollable factors and its deficiencies, specially, during an influenza pandemic in the world. The Vero cells are used for vaccine production of a few strains including influenza virus, because of its homology with human, recommended by WHO. However, as known most of the influenza viruses strains could not culture by Vero cells. It was used two high-yield influenza viruses adapted in Vero cells as donor viruses, such as A/Yunnan/1/2005Va (H3N2) and B/Yunnan/2/2005Va (B), to construct high-yield wild influenza virus in Vero cells under antibody selection pressure. After reassortment and passages, it obtained the new Vaccine strains with A/Tianjin/15/2009Va (H1N1), A/Fujian/196/2009Va (H3N2) and B/Chongqing/1384/2010Va (B), which was not only completely keeping their original antigenic (HA and NA), but also grown well in Vero cells with high-yield. All results of gene analysis and HA, HI shown that this reassortment method could be used to find new direction to product the influenza vaccine. J. Med. Virol. 88:1914-1921, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Seasonal and 2009 H1N1 influenza vaccine uptake, predictors of vaccination and self-reported barriers to vaccination among secondary school teachers and staff

    PubMed Central

    Painter, Julia E; Sales, Jessica M; Morfaw, Christopher; Jones, LaDawna M; Murray, Dennis; Wingood, Gina M; DiClemente, Ralph J; Hughes, James M

    2011-01-01

    Objective Teachers, like healthcare workers, may be a strategic target for influenza immunization programs. Influenza vaccination is critical to protect both teachers and the students they come into contact with. This study assessed factors associated with seasonal and H1N1 influenza vaccine uptake among middle- and high-school teachers. Results Seventy-eight percent of teachers who planned to receive seasonal influenza vaccine and 36% of those who planned to receive H1N1 influenza vaccine at baseline reported that they did so. Seasonal vaccine uptake was significantly associated with perceived severity (odds ratio [OR] 1.57, p = 0.05) and self-efficacy (OR 4.46, p = 0.006). H1N1 vaccine uptake was associated with perceived barriers (OR 0.7, p = 0.014) and social norms (OR 1.39, p = 0.05). The number one reason for both seasonal and H1N1 influenza vaccine uptake was to avoid getting seasonal/H1N1 influenza disease. The number one reason for seasonal influenza vaccine refusal was a concern it would make them sick and for H1N1 influenza vaccine refusal was concern about vaccine side effects. Methods Participants were recruited from two counties in rural Georgia. Data were collected from surveys in September 2009 and May 2010. Multivariate logistic regression was used to assess the association between teachers' attitudes toward seasonal and H1N1 influenza vaccination and vaccine uptake. Conclusions There is a strong association between the intention to be vaccinated against influenza (seasonal or 2009 H1N1) and actual vaccination uptake. Understanding and addressing factors associated with teachers' influenza vaccine uptake may enhance future influenza immunization efforts. PMID:21263225

  20. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development

    PubMed Central

    Blake, Damer P.; Clark, Emily L.; Macdonald, Sarah E.; Thenmozhi, Venkatachalam; Kundu, Krishnendu; Garg, Rajat; Jatau, Isa D.; Ayoade, Simeon; Kawahara, Fumiya; Moftah, Abdalgader; Reid, Adam James; Adebambo, Ayotunde O.; Álvarez Zapata, Ramón; Srinivasa Rao, Arni S. R.; Thangaraj, Kumarasamy; Banerjee, Partha S.; Dhinakar-Raj, G.; Raman, M.; Tomley, Fiona M.

    2015-01-01

    The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host. PMID:26354122

  1. Tuberculosis vaccine development: strength lies in tenacity.

    PubMed

    Kaufmann, Stefan H E

    2012-07-01

    The past decade has witnessed a tremendous increase in the development of novel vaccines against tuberculosis (TB). In mice, each of these vaccine candidates stimulates an immune response that reduces the bacillary load, reflecting control but not sterilization of infection. Yet, the immune mechanisms underlying vaccine efficacy are only partially understood. In parallel to clinical assessment of current candidates, the next generation of vaccine candidates still needs to be developed. This requires basic research on how to induce the most efficacious immune response. Equally important is the dissection of immune responses in patients, latently infected healthy individuals, and participants of clinical vaccine trials. Amalgamation of this information will foster the way towards more efficacious vaccination strategies that not only prevent disease, but prevent or abolish infection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model.

    PubMed

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A

    2015-09-29

    The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Surface proteome mining for identification of potential vaccine candidates against Campylobacter jejuni: an in silico approach.

    PubMed

    Mehla, Kusum; Ramana, Jayashree

    2017-01-01

    Campylobacter jejuni remains a major cause of human gastroenteritis with estimated annual incidence rate of 450 million infections worldwide. C. jejuni is a major burden to public health in both socioeconomically developing and industrialized nations. Virulence determinants involved in C. jejuni pathogenesis are multifactorial in nature and not yet fully understood. Despite the completion of the first C. jejuni genome project in 2000, there are currently no vaccines in the market against this pathogen. Traditional vaccinology approach is an arduous and time extensive task. Omics techniques coupled with sequencing data have engaged researcher's attention to reduce the time and resources applied in the process of vaccine development. Recently, there has been remarkable increase in development of in silico analysis tools for efficiently mining biological information obscured in the genome. In silico approaches have been crucial for combating infectious diseases by accelerating the pace of vaccine development. This study employed a range of bioinformatics approaches for proteome scale identification of peptide vaccine candidates. Whole proteome of C. jejuni was investigated for varied properties like antigenicity, allergenicity, major histocompatibility class (MHC)-peptide interaction, immune cell processivity, HLA distribution, conservancy, and population coverage. Predicted epitopes were further tested for binding in MHC groove using computational docking studies. The predicted epitopes were conserved; covered more than 80 % of the world population and were presented by MHC-I supertypes. We conclude by underscoring that the epitopes predicted are believed to expedite the development of successful vaccines to control or prevent C. jejuni infections albeit the results need to be experimentally validated.

  4. Safety and Reactogenicity of an MSP-1 Malaria Vaccine Candidate: A Randomized Phase Ib Dose-Escalation Trial in Kenyan Children

    PubMed Central

    Withers, Mark R; McKinney, Denise; Ogutu, Bernhards R; Waitumbi, John N; Milman, Jessica B; Apollo, Odika J; Allen, Otieno G; Tucker, Kathryn; Soisson, Lorraine A; Diggs, Carter; Leach, Amanda; Wittes, Janet; Dubovsky, Filip; Stewart, V. Ann; Remich, Shon A; Cohen, Joe; Ballou, W. Ripley; Holland, Carolyn A; Lyon, Jeffrey A; Angov, Evelina; Stoute, José A; Martin, Samuel K; Heppner, D. Gray

    2006-01-01

    Objective: Our aim was to evaluate the safety, reactogenicity, and immunogenicity of an investigational malaria vaccine. Design: This was an age-stratified phase Ib, double-blind, randomized, controlled, dose-escalation trial. Children were recruited into one of three cohorts (dosage groups) and randomized in 2:1 fashion to receive either the test product or a comparator. Setting: The study was conducted in a rural population in Kombewa Division, western Kenya. Participants: Subjects were 135 children, aged 12–47 mo. Interventions: Subjects received 10, 25, or 50 μg of falciparum malaria protein 1 (FMP1) formulated in 100, 250, and 500 μL, respectively, of AS02A, or they received a comparator (Imovax® rabies vaccine). Outcome Measures: We performed safety and reactogenicity parameters and assessment of adverse events during solicited (7 d) and unsolicited (30 d) periods after each vaccination. Serious adverse events were monitored for 6 mo after the last vaccination. Results: Both vaccines were safe and well tolerated. FMP1/AS02A recipients experienced significantly more pain and injection-site swelling with a dose-effect relationship. Systemic reactogenicity was low at all dose levels. Hemoglobin levels remained stable and similar across arms. Baseline geometric mean titers were comparable in all groups. Anti-FMP1 antibody titers increased in a dose-dependent manner in subjects receiving FMP1/AS02A; no increase in anti-FMP1 titers occurred in subjects who received the comparator. By study end, subjects who received either 25 or 50 μg of FMP1 had similar antibody levels, which remained significantly higher than that of those who received the comparator or 10 μg of FMP1. A longitudinal mixed effects model showed a statistically significant effect of dosage level on immune response (F3,1047 = 10.78, or F3, 995 = 11.22, p < 0.001); however, the comparison of 25 μg and 50 μg recipients indicated no significant difference (F1,1047 = 0.05; p = 0.82). Conclusions

  5. Current Ebola vaccines

    PubMed Central

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  6. Design and characterization of plasmids encoding antigenic peptides of Aha1 from Aeromonas hydrophila as prospective fish vaccines.

    PubMed

    Rauta, Pradipta R; Nayak, Bismita; Monteiro, Gabriel A; Mateus, Marília

    2017-01-10

    The current investigation aimed at designing DNA vaccines against Aeromonas hydrophila infections. The DNA vaccine candidates were designed to express two antigenic outer membrane protein (Aha1) peptides and to be delivered by a nanoparticle-based delivery system. Gene sequences of conserved regions of antigenic Aha1 [aha1(211-381), aha1(211-381)opt, aha1(703-999) and aha1(703-999)opt] were cloned into pVAX-GFP expression vector. The selected DNA vaccine candidates were purified from E. coli DH5α and transfected into Chinese hamster ovary cells. The expression of the antigenic peptides was measured in cells along post-transfection time, through the fluorescence intensity of the reporter GFP. The lipofection efficiency of aha-pVAX-GFP was highest after 24h incubation. Formulated PLGA-chitosan nanoparticle/plasmid DNA complexes were characterized in terms of size, size distribution and zeta potential. Nanocomplexes with average diameters in the range of 150-170nm transfected in a similar fashion into CHO cells confirmed transfection efficiency comparable to that of lipofection. DNA entrapment and further DNase digestion assays demonstrated ability for pDNA protection by the nanoparticles against enzymatic digestion. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Large-scale production of foot-and-mouth disease virus (serotype Asia1) VLP vaccine in Escherichia coli and protection potency evaluation in cattle.

    PubMed

    Xiao, Yan; Chen, Hong-Ying; Wang, Yuzhou; Yin, Bo; Lv, Chaochao; Mo, Xiaobing; Yan, He; Xuan, Yajie; Huang, Yuxin; Pang, Wenqiang; Li, Xiangdong; Yuan, Y Adam; Tian, Kegong

    2016-07-02

    Foot-and-mouth disease (FMD) is an acute, highly contagious disease that infects cloven-hoofed animals. Vaccination is an effective means of preventing and controlling FMD. Compared to conventional inactivated FMDV vaccines, the format of FMDV virus-like particles (VLPs) as a non-replicating particulate vaccine candidate is a promising alternative. In this study, we have developed a co-expression system in E. coli, which drove the expression of FMDV capsid proteins (VP0, VP1, and VP3) in tandem by a single plasmid. The co-expressed FMDV capsid proteins (VP0, VP1, and VP3) were produced in large scale by fermentation at 10 L scale and the chromatographic purified capsid proteins were auto-assembled as VLPs in vitro. Cattle vaccinated with a single dose of the subunit vaccine, comprising in vitro assembled FMDV VLP and adjuvant, developed FMDV-specific antibody response (ELISA antibodies and neutralizing antibodies) with the persistent period of 6 months. Moreover, cattle vaccinated with the subunit vaccine showed the high protection potency with the 50 % bovine protective dose (PD50) reaching 11.75 PD50 per dose. Our data strongly suggest that in vitro assembled recombinant FMDV VLPs produced from E. coli could function as a potent FMDV vaccine candidate against FMDV Asia1 infection. Furthermore, the robust protein expression and purification approaches described here could lead to the development of industrial level large-scale production of E. coli-based VLPs against FMDV infections with different serotypes.

  8. Correlation between anthrax lethal toxin neutralizing antibody levels and survival in guinea pigs and nonhuman primates vaccinated with the AV7909 anthrax vaccine candidate.

    PubMed

    Savransky, Vladimir; Shearer, Jeffry D; Gainey, Melicia R; Sanford, Daniel C; Sivko, Gloria S; Stark, Gregory V; Li, Na; Ionin, Boris; Lacy, Michael J; Skiadopoulos, Mario H

    2017-09-05

    The anthrax vaccine candidate AV7909 is being developed as a next generation vaccine for a post-exposure prophylaxis (PEP) indication against anthrax. AV7909 consists of the Anthrax Vaccine Adsorbed (AVA, BioThrax®) bulk drug substance adjuvanted with the immunostimulatory oligodeoxynucleotide (ODN) compound, CPG 7909. The addition of CPG 7909 to AVA enhances both the magnitude and the kinetics of antibody responses in animals and human subjects, making AV7909 a suitable next-generation vaccine for use in a PEP setting. The studies described here provide initial information on AV7909-induced toxin-neutralizing antibody (TNA) levels associated with the protection of animals from lethal Bacillus anthracis challenge. Guinea pigs or nonhuman primates (NHPs) were immunized on Days 0 and 28 with various dilutions of AV7909, AVA or a saline or Alhydrogel+CPG 7909 control. Animals were challenged via the inhalational route with a lethal dose of aerosolized B. anthracis (Ames strain) spores and observed for clinical signs of disease and mortality. The relationship between pre-challenge serum TNA levels and survival following challenge was determined in order to calculate a threshold TNA level associated with protection. Immunisation with AV7909 induced a rapid, highly protective TNA response in guinea pigs and NHPs. Surprisingly, the TNA threshold associated with a 70% probability of survival for AV7909 immunized animals was substantially lower than the threshold which has been established for the licensed AVA vaccine. The results of this study suggest that the TNA threshold of protection against anthrax could be modified by the addition of an immune stimulant such as CPG 7909 and that the TNA levels associated with protection may be vaccine-specific. Copyright © 2017. Published by Elsevier Ltd.

  9. Early phase clinical trials with human immunodeficiency virus-1 and malaria vectored vaccines in The Gambia: frontline challenges in study design and implementation.

    PubMed

    Afolabi, Muhammed O; Adetifa, Jane U; Imoukhuede, Egeruan B; Viebig, Nicola K; Kampmann, Beate; Bojang, Kalifa

    2014-05-01

    Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) and malaria are among the most important infectious diseases in developing countries. Existing control strategies are unlikely to curtail these diseases in the absence of efficacious vaccines. Testing of HIV and malaria vaccines candidates start with early phase trials that are increasingly being conducted in developing countries where the burden of the diseases is high. Unique challenges, which affect planning and implementation of vaccine trials according to internationally accepted standards have thus been identified. In this review, we highlight specific challenges encountered during two early phase trials of novel HIV-1 and malaria vectored vaccine candidates conducted in The Gambia and how some of these issues were pragmatically addressed. We hope our experience will be useful for key study personnel involved in day-to-day running of similar clinical trials. It may also guide future design and implementation of vaccine trials in resource-constrained settings.

  10. 20 CFR 30.910 - Will an impairment that cannot be assigned a numerical percentage using the AMA's Guides be...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...

  11. 20 CFR 30.910 - Will an impairment that cannot be assigned a numerical percentage using the AMA's Guides be...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...

  12. 20 CFR 30.910 - Will an impairment that cannot be assigned a numerical percentage using the AMA's Guides be...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...

  13. 20 CFR 30.910 - Will an impairment that cannot be assigned a numerical percentage using the AMA's Guides be...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...

  14. 20 CFR 30.910 - Will an impairment that cannot be assigned a numerical percentage using the AMA's Guides be...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the AMA's...

  15. Assessment of Lactobacillus gasseri as a candidate oral vaccine vector.

    PubMed

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R; Dean, Gregg A

    2011-11-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3(+) colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens.

  16. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    PubMed

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials.

    PubMed

    Gaudinski, Martin R; Houser, Katherine V; Morabito, Kaitlyn M; Hu, Zonghui; Yamshchikov, Galina; Rothwell, Ro Shauna; Berkowitz, Nina; Mendoza, Floreliz; Saunders, Jamie G; Novik, Laura; Hendel, Cynthia S; Holman, LaSonji A; Gordon, Ingelise J; Cox, Josephine H; Edupuganti, Srilatha; McArthur, Monica A; Rouphael, Nadine G; Lyke, Kirsten E; Cummings, Ginny E; Sitar, Sandra; Bailer, Robert T; Foreman, Bryant M; Burgomaster, Katherine; Pelc, Rebecca S; Gordon, David N; DeMaso, Christina R; Dowd, Kimberly A; Laurencot, Carolyn; Schwartz, Richard M; Mascola, John R; Graham, Barney S; Pierson, Theodore C; Ledgerwood, Julie E; Chen, Grace L

    2018-02-10

    The Zika virus epidemic and associated congenital infections have prompted rapid vaccine development. We assessed two new DNA vaccines expressing premembrane and envelope Zika virus structural proteins. We did two phase 1, randomised, open-label trials involving healthy adult volunteers. The VRC 319 trial, done in three centres, assessed plasmid VRC5288 (Zika virus and Japanese encephalitis virus chimera), and the VRC 320, done in one centre, assessed plasmid VRC5283 (wild-type Zika virus). Eligible participants were aged 18-35 years in VRC19 and 18-50 years in VRC 320. Participants were randomly assigned 1:1 by a computer-generated randomisation schedule prepared by the study statistician. All participants received intramuscular injection of 4 mg vaccine. In VRC 319 participants were assigned to receive vaccinations via needle and syringe at 0 and 8 weeks, 0 and 12 weeks, 0, 4, and 8 weeks, or 0, 4, and 20 weeks. In VRC 320 participants were assigned to receive vaccinations at 0, 4, and 8 weeks via single-dose needle and syringe injection in one deltoid or split-dose needle and syringe or needle-free injection with the Stratis device (Pharmajet, Golden, CO, USA) in each deltoid. Both trials followed up volunteers for 24 months for the primary endpoint of safety, assessed as local and systemic reactogenicity in the 7 days after each vaccination and all adverse events in the 28 days after each vaccination. The secondary endpoint in both trials was immunogenicity 4 weeks after last vaccination. These trials are registered with ClinicalTrials.gov, numbers NCT02840487 and NCT02996461. VRC 319 enrolled 80 participants (20 in each group), and VRC 320 enrolled 45 participants (15 in each group). One participant in VRC 319 and two in VRC 320 withdrew after one dose of vaccine, but were included in the safety analyses. Both vaccines were safe and well tolerated. All local and systemic symptoms were mild to moderate. In both studies, pain and tenderness at the injection site

  18. Human papillomavirus vaccines and vaccine implementation.

    PubMed

    de Sanjosé, Silvia; Alemany, Laia; Castellsagué, Xavier; Bosch, F Xavier

    2008-11-01

    Countries are now challenged by the rapid development of vaccines aimed at the primary prevention of infections. In the years to come, several vaccines will need to be considered as potential candidates in routine immunization programs. Recently, two new vaccines against two/four types of human papillomavirus (HPV) have been commercialized. Bivalent HPV 16 and 18 (Cervarix) and quadrivalent HPV 6, 11, 16 and 18 (Gardasil) vaccines are now extensively used in some countries. These vaccines will prevent infection and long-running complications, such as cervical cancer, other HPV-related cancers and genital warts (for the quadrivalent vaccine). The beneficial effect of these vaccines will be largely observed in women. This article summarizes the burden of HPV preventable disease worldwide and briefly describes the impact of secondary prevention and the most relevant aspects of the current available vaccines, their efficacy and safety. Finally, some major aspects that are likely to impact the introduction of these vaccines around the world are outlined, with particular emphasis on developing countries.

  19. Immunogenicity, Protective Efficacy, and Non-Replicative Status of the HSV-2 Vaccine Candidate HSV529 in Mice and Guinea Pigs

    PubMed Central

    Bernard, Marie-Clotilde; Barban, Véronique; Pradezynski, Fabrine; de Montfort, Aymeric; Ryall, Robert; Caillet, Catherine; Londono-Hayes, Patricia

    2015-01-01

    HSV-2 vaccine is needed to prevent genital disease, latent infection, and virus transmission. A replication-deficient mutant virus (dl5-29) has demonstrated promising efficacy in animal models of genital herpes. However, the immunogenicity, protective efficacy, and non-replicative status of the highly purified clinical vaccine candidate (HSV529) derived from dl5-29 have not been evaluated. Humoral and cellular immune responses were measured in mice and guinea pigs immunized with HSV529. Protection against acute and recurrent genital herpes, mortality, latent infection, and viral shedding after vaginal HSV-2 infection was determined in mice or in naïve and HSV-1 seropositive guinea pigs. HSV529 replication and pathogenicity were investigated in three sensitive models of virus replication: severe combined immunodeficient (SCID/Beige) mice inoculated by the intramuscular route, suckling mice inoculated by the intracranial route, and vaginally-inoculated guinea pigs. HSV529 immunization induced HSV-2-neutralizing antibody production in mice and guinea pigs. In mice, it induced production of specific HSV-2 antibodies and splenocytes secreting IFNγ or IL-5. Immunization effectively prevented HSV-2 infection in all three animal models by reducing mortality, acute genital disease severity and frequency, and viral shedding. It also reduced ganglionic viral latency and recurrent disease in naïve and HSV-1 seropositive guinea pigs. HSV529 replication/propagation was not detected in the muscles of SCID/Beige mice, in the brains of suckling mice, or in vaginal secretions of inoculated guinea pigs. These results confirm the non-replicative status, as well as its immunogenicity and efficacy in mice and guinea pigs, including HSV-1 seropositive guinea pigs. In mice, HSV529 produced Th1/Th2 characteristic immune response thought to be necessary for an effective vaccine. These results further support the clinical investigation of HSV529 in human subjects as a prophylactic vaccine

  20. Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: immunological analyses from a phase I clinical trial.

    PubMed

    Lindesmith, Lisa C; Ferris, Martin T; Mullan, Clancy W; Ferreira, Jennifer; Debbink, Kari; Swanstrom, Jesica; Richardson, Charles; Goodwin, Robert R; Baehner, Frank; Mendelman, Paul M; Bargatze, Robert F; Baric, Ralph S

    2015-03-01

    Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an

  1. Broad Blockade Antibody Responses in Human Volunteers after Immunization with a Multivalent Norovirus VLP Candidate Vaccine: Immunological Analyses from a Phase I Clinical Trial

    PubMed Central

    Lindesmith, Lisa C.; Ferris, Martin T.; Mullan, Clancy W.; Ferreira, Jennifer; Debbink, Kari; Swanstrom, Jesica; Richardson, Charles; Goodwin, Robert R.; Baehner, Frank; Mendelman, Paul M.; Bargatze, Robert F.; Baric, Ralph S.

    2015-01-01

    Background Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. Methods and Findings Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. Conclusions Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and

  2. Malaria vaccines: past, present and future.

    PubMed

    von Seidlein, Lorenz; Bejon, Philip

    2013-12-01

    The currently available malaria control tools have allowed malaria elimination in many regions but there remain many regions where malaria control has made little progress. A safe and protective malaria vaccine would be a huge asset for malaria control. Despite the many challenges, efforts continue to design and evaluate malaria vaccine candidates. These candidates target different stages in the life cycle of Plasmodia. The most advanced vaccine candidates target the pre-erythrocytic stages in the life cycle of the parasite and include RTS,S/AS01, which has progressed through clinical development to the stage that it may be licensed in 2015. Attenuated whole-parasite vaccine candidates are highly protective, but there are challenges to manufacture and to administration. Cellular immunity is targeted by the prime-boost approach. Priming vectors trigger only modest responses but these are focused on the recombinant antigen. Boosting vectors trigger strong but broad non-specific responses. The heterologous sequence produces strong immunological responses to the recombinant antigen. Candidates that target the blood stages of the parasite have to result in an immune response that is more effective than the response to an infection to abort or control the infection of merozoites and hence disease. Finally, the sexual stages of the parasite offer another target for vaccine development, which would prevent the transmission of malaria. Today it seems unlikely that any candidate targeting a single antigen will provide complete protection against an organism of the complexity of Plasmodium. A systematic search for vaccine targets and combinations of antigens may be a more promising approach.

  3. Long-term follow-up of HIV-1-infected adults who received the F4/AS01B HIV-1 vaccine candidate in two randomised controlled trials.

    PubMed

    Harrer, Thomas; Dinges, Warren; Roman, François

    2018-05-03

    This Phase I/II, open, long-term follow-up study was conducted in antiretroviral therapy (ART)-naïve (N = 212) and ART-treated (N = 19) human immunodeficiency virus 1 (HIV-1)-infected adults, who received an HIV-1 investigational vaccine (F4/AS01 B ) or placebo in two previous studies (NCT00814762 and NCT01218113). After a minimum of two years and a maximum of four years of follow-up post-vaccination per patient, no significant differences were observed between F4/AS01 B and placebo groups in terms of viral load, CD4 + T-cell count and incidence of specific clinical events. Vaccine-induced polyfunctional CD4 + T-cells persisted up to study end and no relevant vaccine-related safety events were reported in F4/AS01 B groups. This study has been registered at ClinicalTrials.gov (NCT01092611). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Construction and phase I clinical evaluation of the safety and immunogenicity of a candidate enterotoxigenic Escherichia coli vaccine strain expressing colonization factor antigen CFA/I.

    PubMed

    Turner, Arthur K; Beavis, Juliet C; Stephens, Jonathan C; Greenwood, Judith; Gewert, Cornelia; Thomas, Nicola; Deary, Alison; Casula, Gabriella; Daley, Alexandra; Kelly, Paul; Randall, Roger; Darsley, Michael J

    2006-02-01

    Oral delivery of toxin-negative derivatives of enterotoxigenic Escherichia coli (ETEC) that express colonization factor antigens (CFA) with deletions of the aroC, ompC, ompF, and toxin genes may be an effective approach to vaccination against ETEC-associated diarrhea. We describe the creation and characterization of an attenuated CFA/I-expressing ETEC vaccine candidate, ACAM2010, from a virulent isolate in which the heat-stable enterotoxin (ST) and CFA/I genes were closely linked and on the same virulence plasmid as the enteroaggregative E. coli heat-stable toxin (EAST1) gene. A new suicide vector (pJCB12) was constructed and used to delete the ST and EAST1 genes and to introduce defined deletion mutations into the aroC, ompC, and ompF chromosomal genes. A phase I trial, consisting of an open-label dose escalation phase in 18 adult outpatient volunteers followed by a placebo-controlled double-blind phase in an additional 31 volunteers, was conducted. The vaccine was administered in two formulations, fresh culture and frozen suspension. These were both well tolerated, with no evidence of significant adverse events related to vaccination. Immunoglobulin A (IgA) and IgG antibody-secreting cells specific for CFA/I were assayed by ELISPOT. Positive responses (greater than twofold increase) were seen in 27 of 37 (73%) subjects who received the highest dose level of vaccine (nominally 5 x 10(9) CFU). Twenty-nine of these volunteers were secreting culturable vaccine organisms at day 3 following vaccination; five were still positive on day 7, with a single isolation on day 13. This live attenuated bacterial vaccine is safe and immunogenic in healthy adult volunteers.

  5. Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes

    PubMed Central

    Lubell, Yoel; Koh, Gavin C. K. W.; White, Lisa J.; Day, Nicholas P. J.; Titball, Richard W.

    2012-01-01

    Background Burkholderia pseudomallei is a Category B select agent and the cause of melioidosis. Research funding for vaccine development has largely considered protection within the biothreat context, but the resulting vaccines could be applicable to populations who are at risk of naturally acquired melioidosis. Here, we discuss target populations for vaccination, consider the cost-benefit of different vaccination strategies and review potential vaccine candidates. Methods and Findings Melioidosis is highly endemic in Thailand and northern Australia, where a biodefense vaccine might be adopted for public health purposes. A cost-effectiveness analysis model was developed, which showed that a vaccine could be a cost-effective intervention in Thailand, particularly if used in high-risk populations such as diabetics. Cost-effectiveness was observed in a model in which only partial immunity was assumed. The review systematically summarized all melioidosis vaccine candidates and studies in animal models that had evaluated their protectiveness. Possible candidates included live attenuated, whole cell killed, sub-unit, plasmid DNA and dendritic cell vaccines. Live attenuated vaccines were not considered favorably because of possible reversion to virulence and hypothetical risk of latent infection, while the other candidates need further development and evaluation. Melioidosis is acquired by skin inoculation, inhalation and ingestion, but routes of animal inoculation in most published studies to date do not reflect all of this. We found a lack of studies using diabetic models, which will be central to any evaluation of a melioidosis vaccine for natural infection since diabetes is the most important risk factor. Conclusion Vaccines could represent one strand of a public health initiative to reduce the global incidence of melioidosis. PMID:22303489

  6. Report of a consultation on the optimization of clinical challenge trials for evaluation of candidate blood stage malaria vaccines, 18-19 March 2009, Bethesda, MD, USA.

    PubMed

    Moorthy, V S; Diggs, C; Ferro, S; Good, M F; Herrera, S; Hill, A V; Imoukhuede, E B; Kumar, S; Loucq, C; Marsh, K; Ockenhouse, C F; Richie, T L; Sauerwein, R W

    2009-09-25

    Development and optimization of first generation malaria vaccine candidates has been facilitated by the existence of a well-established Plasmodium falciparum clinical challenge model in which infectious sporozoites are administered to human subjects via mosquito bite. While ideal for testing pre-erythrocytic stage vaccines, some researchers believe that the sporozoite challenge model is less appropriate for testing blood stage vaccines. Here we report a consultation, co-sponsored by PATH MVI, USAID, EMVI and WHO, where scientists from all institutions globally that have conducted such clinical challenges in recent years and representatives from regulatory agencies and funding agencies met to discuss clinical malaria challenge models. Participants discussed strengthening and harmonizing the sporozoite challenge model and considered the pros and cons of further developing a blood stage challenge possibly better suited for evaluating the efficacy of blood stage vaccines. This report summarizes major findings and recommendations, including an update on the Plasmodium vivax clinical challenge model, the prospects for performing experimental challenge trials in malaria endemic countries and an update on clinical safety data. While the focus of the meeting was on the optimization of clinical challenge models for evaluation of blood stage candidate malaria vaccines, many of the considerations are relevant for the application of challenge trials to other purposes.

  7. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    PubMed

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  8. Dietary pyridoxine controls efficacy of vitamin B6-auxotrophic tuberculosis vaccine bacillus Calmette-Guérin ΔureC::hly Δpdx1 in mice.

    PubMed

    Gengenbacher, Martin; Vogelzang, Alexis; Schuerer, Stefanie; Lazar, Doris; Kaiser, Peggy; Kaufmann, Stefan H E

    2014-06-03

    The only tuberculosis (TB) vaccine in use today, bacillus Calmette-Guérin (BCG), provides insufficient protection and can cause adverse events in immunocompromised individuals, such as BCGosis in HIV(+) newborns. We previously reported improved preclinical efficacy and safety of the recombinant vaccine candidate BCG ΔureC::hly, which secretes the pore-forming listeriolysin O of Listeria monocytogenes. Here, we evaluate a second-generation construct, BCG ΔureC::hly Δpdx1, which is deficient in pyridoxine synthase, an enzyme that is required for biosynthesis of the essential cofactor vitamin B6. This candidate was auxotrophic for vitamin B6 in a concentration-dependent manner, as was its survival in vivo. BCG ΔureC::hly Δpdx1 showed markedly restricted dissemination in subcutaneously vaccinated mice, which was ameliorated by dietary supplementation with vitamin B6. The construct was safer in severe combined immunodeficiency mice than the parental BCG ΔureC::hly. A prompt innate immune response to vaccination, measured by secretion of interleukin-6, granulocyte colony-stimulating factor, keratinocyte cytokine, and macrophage inflammatory protein-1α, remained independent of vitamin B6 administration, while acquired immunity, notably stimulation of antigen-specific CD4 T cells, B cells, and memory T cells, was contingent on vitamin B6 administration. The early protection provided by BCG ΔureC::hly Δpdx1 in a murine Mycobacterium tuberculosis aerosol challenge model consistently depended on vitamin B6 supplementation. Prime-boost vaccination increased protection against the canonical M. tuberculosis H37Rv laboratory strain and a clinical isolate of the Beijing/W lineage. We demonstrate that the efficacy of a profoundly attenuated recombinant BCG vaccine construct can be modulated by external administration of a small molecule. This principle fosters the development of safer vaccines required for immunocompromised individuals, notably HIV(+) infants

  9. The secreted fructose 1,6-bisphosphate aldolase as a broad spectrum vaccine candidate against pathogenic bacteria in aquaculture.

    PubMed

    Sun, Zhongyang; Shen, Binbing; Wu, Haizhen; Zhou, Xiangyu; Wang, Qiyao; Xiao, Jingfan; Zhang, Yuanxing

    2015-10-01

    The development of aquaculture has been hampered by different aquatic pathogens that can cause edwardsiellosis, vibriosis, or other diseases. Therefore, developing a broad spectrum vaccine against different fish diseases is necessary. In this study, fructose 1,6-bisphosphate aldolase (FBA), a conserved enzyme in the glycolytic pathway, was demonstrated to be located in the non-cytoplasmic components of five aquatic pathogenic bacteria and exhibited remarkable protection and cross-protection against these pathogens in turbot and zebrafish. Further analysis revealed that sera sampled from vaccinated turbot had a high level of specific antibody and bactericidal activity against these pathogens. Meanwhile, the increased expressions of immune response-related genes associated with antigen recognition and presentation indicated that the adaptive immune response was effectively aroused. Taken together, our results suggest that FBA can be utilized as a broad-spectrum vaccine against various pathogenic bacteria of aquaculture in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Consensus on the Development of Vaccines against Naturally Acquired Melioidosis

    PubMed Central

    Funnell, Simon G.P.; Torres, Alfredo G.; Morici, Lisa A.; Brett, Paul J.; Dunachie, Susanna; Atkins, Timothy; Altmann, Daniel M.; Bancroft, Gregory; Peacock, Sharon J.

    2015-01-01

    Several candidates for a vaccine against Burkholderia pseudomallei, the causal bacterium of melioidosis, have been developed, and a rational approach is now needed to select and advance candidates for testing in relevant nonhuman primate models and in human clinical trials. Development of such a vaccine was the topic of a meeting in the United Kingdom in March 2014 attended by international candidate vaccine developers, researchers, and government health officials. The focus of the meeting was advancement of vaccines for prevention of natural infection, rather than for protection from the organism’s known potential for use as a biological weapon. A direct comparison of candidate vaccines in well-characterized mouse models was proposed. Knowledge gaps requiring further research were identified. Recommendations were made to accelerate the development of an effective vaccine against melioidosis. PMID:25992835

  11. Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine

    PubMed Central

    Ahmad, Gul; Zhang, Weidong; Torben, Workineh; Haskins, Chad; Diggs, Sue; Noor, Zahid; Le, Loc

    2009-01-01

    Advent of an effective schistosome vaccine would contribute significantly toward reducing the disease spectrum and transmission of schistosomiasis. We have targeted a functionally important antigen, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective and antifecundity potentials, and important role in the immune evasion process. In this study, we report that using two vaccination approaches (prime boost and recombinant protein), Sm-p80-based vaccine formulation(s) confer up to 70% reduction in worm burden in mice. Animals immunized with the vaccine exhibited a decrease in egg production by up to 75%. The vaccine elicited strong immune responses that included IgM, IgA, and IgG (IgG1, IgG2a, IgG2b, and IgG3) in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced Th1 and Th17 response enhancing cytokines. These results again emphasize the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis. PMID:19809833

  12. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-07

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Economic value of dengue vaccine in Thailand.

    PubMed

    Lee, Bruce Y; Connor, Diana L; Kitchen, Sarah B; Bacon, Kristina M; Shah, Mirat; Brown, Shawn T; Bailey, Rachel R; Laosiritaworn, Yongjua; Burke, Donald S; Cummings, Derek A T

    2011-05-01

    With several candidate dengue vaccines under development, this is an important time to help stakeholders (e.g., policy makers, scientists, clinicians, and manufacturers) better understand the potential economic value (cost-effectiveness) of a dengue vaccine, especially while vaccine characteristics and strategies might be readily altered. We developed a decision analytic Markov simulation model to evaluate the potential health and economic value of administering a dengue vaccine to an individual (≤ 1 year of age) in Thailand from the societal perspective. Sensitivity analyses evaluated the effects of ranging various vaccine (e.g., cost, efficacy, side effect), epidemiological (dengue risk), and disease (treatment-seeking behavior) characteristics. A ≥ 50% efficacious vaccine was highly cost-effective [< 1× per capita gross domestic product (GDP) ($4,289)] up to a total vaccination cost of $60 and cost-effective [< 3× per capita GDP ($12,868)] up to a total vaccination cost of $200. When the total vaccine series was $1.50, many scenarios were cost saving.

  14. Economic Value of Dengue Vaccine in Thailand

    PubMed Central

    Lee, Bruce Y.; Connor, Diana L.; Kitchen, Sarah B.; Bacon, Kristina M.; Shah, Mirat; Brown, Shawn T.; Bailey, Rachel R.; Laosiritaworn, Yongjua; Burke, Donald S.; Cummings, Derek A. T.

    2011-01-01

    With several candidate dengue vaccines under development, this is an important time to help stakeholders (e.g., policy makers, scientists, clinicians, and manufacturers) better understand the potential economic value (cost-effectiveness) of a dengue vaccine, especially while vaccine characteristics and strategies might be readily altered. We developed a decision analytic Markov simulation model to evaluate the potential health and economic value of administering a dengue vaccine to an individual (≤ 1 year of age) in Thailand from the societal perspective. Sensitivity analyses evaluated the effects of ranging various vaccine (e.g., cost, efficacy, side effect), epidemiological (dengue risk), and disease (treatment-seeking behavior) characteristics. A ≥ 50% efficacious vaccine was highly cost-effective [< 1× per capita gross domestic product (GDP) ($4,289)] up to a total vaccination cost of $60 and cost-effective [< 3× per capita GDP ($12,868)] up to a total vaccination cost of $200. When the total vaccine series was $1.50, many scenarios were cost saving. PMID:21540387

  15. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis.

    PubMed

    Oliveira, Carolina R; Rezende, Cíntia M F; Silva, Marina R; Pêgo, Ana Paula; Borges, Olga; Goes, Alfredo M

    2012-01-01

    Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticles containing the antigen SmRho and coated with sodium alginate. Our results showed an efficient performance of protein loading of nanoparticles before and after coating with alginate. Characterization of the resulting nanoparticles reported a size around 430 nm and a negative zeta potential. In vitro release studies of protein showed great stability of coated nanoparticles in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Further in vivo studies was performed with different formulations of chitosan nanoparticles and it showed that oral immunization was not able to induce high levels of antibodies, otherwise intramuscular immunization induced high levels of both subtypes IgG1 and IgG2a SmRho specific antibodies. Mice immunized with nanoparticles associated to CpG showed significant modulation of granuloma reaction. Mice from all groups immunized orally with nanoparticles presented significant levels of protection against infection challenge with S. mansoni worms, suggesting an important role of chitosan in inducing a protective immune response. Finally, mice immunized with nanoparticles associated with the antigen SmRho plus CpG had 38% of the granuloma area reduced and also presented 48% of protection against of S. mansoni infection. Taken together, this results support this new strategy as an efficient delivery system and a potential vaccine against schistosomiasis.

  16. B cells from knock-in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates.

    PubMed

    Ota, Takayuki; Doyle-Cooper, Colleen; Cooper, Anthony B; Doores, Katherine J; Aoki-Ota, Miyo; Le, Khoa; Schief, William R; Wyatt, Richard T; Burton, Dennis R; Nemazee, David

    2013-09-15

    Broadly neutralizing Abs against HIV protect from infection, but their routine elicitation by vaccination has not been achieved. To generate small animal models to test vaccine candidates, we have generated targeted transgenic ("knock-in") mice expressing, in the physiological Ig H and L chain loci, two well-studied broadly neutralizing Abs: 4E10, which interacts with the membrane proximal external region of gp41, and b12, which binds to the CD4 binding site on gp120. 4E10HL mice are described in the companion article (Doyle-Cooper et al., J. Immunol. 191: 3186-3191). In this article, we describe b12 mice. B cells in b12HL mice, in contrast to the case in 4E10 mice, were abundant and essentially monoclonal, retaining the b12 specificity. In cell culture, b12HL B cells responded avidly to HIV envelope gp140 trimers and to BCR ligands. Upon transfer to wild-type recipients, b12HL B cells responded robustly to vaccination with gp140 trimers. Vaccinated b12H mice, although generating abundant precursors and Abs with affinity for Env, were unable to rapidly generate neutralizing Abs, highlighting the importance of developing Ag forms that better focus responses to neutralizing epitopes. The b12HL and b12H mice should be useful in optimizing HIV vaccine candidates to elicit a neutralizing response while avoiding nonprotective specificities.

  17. Evaluation of seasonal influenza vaccines for H1N1pdm09 and type B viruses based on a replication-incompetent PB2-KO virus.

    PubMed

    Ui, Hiroki; Yamayoshi, Seiya; Uraki, Ryuta; Kiso, Maki; Oishi, Kohei; Murakami, Shin; Mimori, Shigetaka; Kawaoka, Yoshihiro

    2017-04-04

    Vaccination is the first line of protection against influenza virus infection in humans. Although inactivated and live-attenuated vaccines are available, each vaccine has drawbacks in terms of immunogenicity and safety. To overcome these issues, our group has developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2-expressing cells. Here we generated PB2-KO viruses possessing the hemagglutinin (HA) and neuraminidase (NA) segments from H1N1pdm09 or type B viruses and tested their vaccine potential. The two PB2-KO viruses propagated efficiently in PB2-expressing cells, and expressed chimeric HA as expected. Virus-specific IgG and IgA antibodies were detected in mice immunized with the viruses, and the immunized mice showed milder clinical signs and/or lower virus replication levels in the respiratory tract upon virus challenge. Our results indicate that these PB2-KO viruses have potential as vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Progress and challenges in TB vaccine development

    PubMed Central

    Voss, Gerald; Casimiro, Danilo; Neyrolles, Olivier; Williams, Ann; Kaufmann, Stefan H.E.; McShane, Helen; Hatherill, Mark; Fletcher, Helen A

    2018-01-01

    The Bacille Calmette Guerin (BCG) vaccine can provide decades of protection against tuberculosis (TB) disease, and although imperfect, BCG is proof that vaccine mediated protection against TB is a possibility. A new TB vaccine is, therefore, an inevitability; the question is how long will it take us to get there? We have made substantial progress in the development of vaccine platforms, in the identification of antigens and of immune correlates of risk of TB disease. We have also standardized animal models to enable head-to-head comparison and selection of candidate TB vaccines for further development.  To extend our understanding of the safety and immunogenicity of TB vaccines we have performed experimental medicine studies to explore route of administration and have begun to develop controlled human infection models. Driven by a desire to reduce the length and cost of human efficacy trials we have applied novel approaches to later stage clinical development, exploring alternative clinical endpoints to prevention of disease outcomes. Here, global leaders in TB vaccine development discuss the progress made and the challenges that remain. What emerges is that, despite scientific progress, few vaccine candidates have entered clinical trials in the last 5 years and few vaccines in clinical trials have progressed to efficacy trials. Crucially, we have undervalued the knowledge gained from our “failed” trials and fostered a culture of risk aversion that has limited new funding for clinical TB vaccine development. The unintended consequence of this abundance of caution is lack of diversity of new TB vaccine candidates and stagnation of the clinical pipeline. We have a variety of new vaccine platform technologies, mycobacterial antigens and animal and human models.  However, we will not encourage progression of vaccine candidates into clinical trials unless we evaluate and embrace risk in pursuit of vaccine development. PMID:29568497

  19. Progress and challenges in TB vaccine development.

    PubMed

    Voss, Gerald; Casimiro, Danilo; Neyrolles, Olivier; Williams, Ann; Kaufmann, Stefan H E; McShane, Helen; Hatherill, Mark; Fletcher, Helen A

    2018-01-01

    The Bacille Calmette Guerin (BCG) vaccine can provide decades of protection against tuberculosis (TB) disease, and although imperfect, BCG is proof that vaccine mediated protection against TB is a possibility. A new TB vaccine is, therefore, an inevitability; the question is how long will it take us to get there? We have made substantial progress in the development of vaccine platforms, in the identification of antigens and of immune correlates of risk of TB disease. We have also standardized animal models to enable head-to-head comparison and selection of candidate TB vaccines for further development.  To extend our understanding of the safety and immunogenicity of TB vaccines we have performed experimental medicine studies to explore route of administration and have begun to develop controlled human infection models. Driven by a desire to reduce the length and cost of human efficacy trials we have applied novel approaches to later stage clinical development, exploring alternative clinical endpoints to prevention of disease outcomes. Here, global leaders in TB vaccine development discuss the progress made and the challenges that remain. What emerges is that, despite scientific progress, few vaccine candidates have entered clinical trials in the last 5 years and few vaccines in clinical trials have progressed to efficacy trials. Crucially, we have undervalued the knowledge gained from our "failed" trials and fostered a culture of risk aversion that has limited new funding for clinical TB vaccine development. The unintended consequence of this abundance of caution is lack of diversity of new TB vaccine candidates and stagnation of the clinical pipeline. We have a variety of new vaccine platform technologies, mycobacterial antigens and animal and human models.  However, we will not encourage progression of vaccine candidates into clinical trials unless we evaluate and embrace risk in pursuit of vaccine development.

  20. Pathogenicity testing of influenza candidate vaccine viruses in the ferret model.

    PubMed

    Belser, Jessica A; Johnson, Adam; Pulit-Penaloza, Joanna A; Pappas, Claudia; Pearce, Melissa B; Tzeng, Wen-Pin; Hossain, M Jaber; Ridenour, Callie; Wang, Li; Chen, Li-Mei; Wentworth, David E; Katz, Jacqueline M; Maines, Taronna R; Tumpey, Terrence M

    2017-11-01

    The development of influenza candidate vaccine viruses (CVVs) for pre-pandemic vaccine production represents a critical step in pandemic preparedness. The multiple subtypes and clades of avian or swine origin influenza viruses circulating world-wide at any one time necessitates the continuous generation of CVVs to provide an advanced starting point should a novel zoonotic virus cross the species barrier and cause a pandemic. Furthermore, the evolution and diversity of novel influenza viruses that cause zoonotic infections requires ongoing monitoring and surveillance, and, when a lack of antigenic match between circulating viruses and available CVVs is identified, the production of new CVVs. Pandemic guidelines developed by the WHO Global Influenza Program govern the design and preparation of reverse genetics-derived CVVs, which must undergo numerous safety and quality tests prior to human use. Confirmation of reassortant CVV attenuation of virulence in ferrets relative to wild-type virus represents one of these critical steps, yet there is a paucity of information available regarding the relative degree of attenuation achieved by WHO-recommended CVVs developed against novel viruses with pandemic potential. To better understand the degree of CVV attenuation in the ferret model, we examined the relative virulence of six A/Puerto Rico/8/1934-based CVVs encompassing five different influenza A subtypes (H2N3, H5N1, H5N2, H5N8, and H7N9) compared with the respective wild-type virus in ferrets. Despite varied virulence of wild-type viruses in the ferret, all CVVs examined showed reductions in morbidity and viral shedding in upper respiratory tract tissues. Furthermore, unlike the wild-type counterparts, none of the CVVs spread to extrapulmonary tissues during the acute phase of infection. While the magnitude of virus attenuation varied between virus subtypes, collectively we show the reliable and reproducible attenuation of CVVs that have the A/Puerto Rico/9/1934 backbone

  1. Pathogenicity testing of influenza candidate vaccine viruses in the ferret model

    PubMed Central

    Belser, Jessica A.; Johnson, Adam; Pulit-Penaloza, Joanna A.; Pappas, Claudia; Pearce, Melissa B.; Tzeng, Wen-Pin; Hossain, M. Jaber; Ridenour, Callie; Wang, Li; Chen, Li-Mei; Wentworth, David E.; Katz, Jacqueline M.; Maines, Taronna R.; Tumpey, Terrence M.

    2018-01-01

    The development of influenza candidate vaccine viruses (CVVs) for pre-pandemic vaccine production represents a critical step in pandemic preparedness. The multiple subtypes and clades of avian or swine origin influenza viruses circulating world-wide at any one time necessitates the continuous generation of CVVs to provide an advanced starting point should a novel zoonotic virus cross the species barrier and cause a pandemic. Furthermore, the evolution and diversity of novel influenza viruses that cause zoonotic infections requires ongoing monitoring and surveillance, and, when a lack of antigenic match between circulating viruses and available CVVs is identified, the production of new CVVs. Pandemic guidelines developed by the WHO Global Influenza Program govern the design and preparation of reverse genetics-derived CVVs, which must undergo numerous safety and quality tests prior to human use. Confirmation of reassortant CVV attenuation of virulence in ferrets relative to wild-type virus represents one of these critical steps, yet there is a paucity of information available regarding the relative degree of attenuation achieved by WHO-recommended CVVs developed against novel viruses with pandemic potential. To better understand the degree of CVV attenuation in the ferret model, we examined the relative virulence of six A/Puerto Rico/8/1934-based CVVs encompassing five different influenza A subtypes (H2N3, H5N1, H5N2, H5N8, and H7N9) compared with the respective wild-type virus in ferrets. Despite varied virulence of wild-type viruses in the ferret, all CVVs examined showed reductions in morbidity and viral shedding in upper respiratory tract tissues. Furthermore, unlike the wild-type counterparts, none of the CVVs spread to extrapulmonary tissues during the acute phase of infection. While the magnitude of virus attenuation varied between virus subtypes, collectively we show the reliable and reproducible attenuation of CVVs that have the A/Puerto Rico/9/1934 backbone

  2. Candidate hepatitis C vaccine trials and people who inject drugs: Challenges and opportunities

    PubMed Central

    Maher, Lisa; White, Bethany; Hellard, Margaret; Madden, Annie; Prins, Maria; Kerr, Thomas; Page, Kimberly

    2013-01-01

    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright People who inject drugs (PWID) are at high risk of HCV. Limited evidence of the effectiveness of prevention interventions and low uptake of treatment in this group highlight the need for increased investment in biomedical interventions, notably safe and efficacious vaccines. While several candidates are currently in development, field trials in PWID present challenges, including ethical issues associated with trial literacy, informed consent and standards of care. Significant biological and social factors and differences between HIV and HCV suggest that HCV warrants targeted vaccine preparedness research to lay the groundwork for successful implementation of future trials. PMID:20831914

  3. Menstruation experiences of South African women belonging to the ama-Xhosa ethnic group.

    PubMed

    Padmanabhanunni, Anita; Jaffer, Labeeqah; Steenkamp, Jeanette

    2017-09-15

    A growing body of research has emphasised the salience of cultural beliefs and traditional practices to women's experiences of menstruation. Relatively less research has, however, been undertaken in South Africa. This study explored the experience of menstruation among women from the ama-Xhosa ethnic group, one of the largest ethnic groups in the country. Among the ama-Xhosa, there are distinct cultural practices associated with menstruation, including the female rite of passage (intonjane) and virginity testing (inkciyo). However, few studies have explored the experience of menstruation for women from this cultural group. This study involved the synthesis of data from individual interviews and focus group discussions conducted among a sample of ama-Xhosa women. The data were analysed using thematic analysis. Distinctive findings included women's participation in traditional cultural practices of intonjane and inkciyo and the presence of cultural taboos associated with menstruation. Women's narratives revealed strong ambivalence regarding these practices. On the one hand, they wanted to adhere to traditional practices but experienced these customs as evoking discomfort and shame. The study confirmed the prevalence of negative constructions of menstruation. Positive appraisals of menstruation as evoking joy and happiness were also encountered.

  4. Status of vaccine research and development of vaccines for herpes simplex virus.

    PubMed

    Johnston, Christine; Gottlieb, Sami L; Wald, Anna

    2016-06-03

    Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  5. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies.

    PubMed

    Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Kepler, Thomas B; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly E; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, M Juliana; Mascola, John R; Koup, Richard A; Corey, Lawrence; Nabel, Gary J; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S; Baden, Lindsey R; Tomaras, Georgia D; Haynes, Barton F

    2015-08-14

    An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. Copyright © 2015, American Association for the Advancement of Science.

  6. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    PubMed

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Sterile Protection against Plasmodium knowlesi in Rhesus Monkeys from a Malaria Vaccine: Comparison of Heterologous Prime Boost Strategies

    PubMed Central

    Jiang, George; Shi, Meng; Conteh, Solomon; Richie, Nancy; Banania, Glenna; Geneshan, Harini; Valencia, Anais; Singh, Priti; Aguiar, Joao; Limbach, Keith; Kamrud, Kurt I.; Rayner, Jonathan; Smith, Jonathan; Bruder, Joseph T.; King, C. Richter; Tsuboi, Takafumi; Takeo, Satoru; Endo, Yaeta; Doolan, Denise L.; Richie, Thomas L.; Weiss, Walter R.

    2009-01-01

    Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost. PMID:19668343

  8. Responses to A(H1N1)pdm09 Influenza Vaccines in Participants Previously Vaccinated With Seasonal Influenza Vaccine: A Randomized, Observer-Blind, Controlled Study

    PubMed Central

    Roy-Ghanta, Sumita; Van der Most, Robbert; Li, Ping; Vaughn, David W.

    2014-01-01

    Background. Prior receipt of a trivalent seasonal influenza vaccine (TIV) can affect hemagglutination inhibition (HI) antibody responses to pandemic influenza vaccines. We investigated the effect of TIV priming on humoral responses to AS03-adjuvanted and nonadjuvanted A(H1N1)pdm09 vaccines, the role of AS03 on cell-mediated immune (CMI) responses, and vaccine safety. Methods. Healthy adults (aged 19–40 years) were randomized 1:1:1:1 to receive TIV or saline followed 4 months later by 2 doses, 3 weeks apart, of adjuvanted or nonadjuvanted A(H1N1)pdm09 vaccine and followed up to study end (day 507). Pre- and postvaccination responses of HI and neutralizing antibody, CD4+/CD8+ T cells, memory B cells, and plasmablasts were assessed. Results. Ninety-nine of the 133 participants enrolled completed the study. No vaccine-related serious adverse events were recorded. In TIV-primed participants, A(H1N1)pdm09-specific antibody and CD4+ T-cell and memory B-cell responses to the pandemic vaccine tended to be diminished. Vaccine adjuvantation led to increased responses of vaccine-homologous and -heterologous HI and neutralizing antibodies and CD4+ T cells, homologous memory B cells, and plasmablasts. Conclusions. In healthy adults, prior TIV administration decreased humoral and CMI responses to A(H1N1)pdm09 vaccine. Adjuvantation of A(H1N1)pdm09 antigen helped to overcome immune interference between the influenza vaccines. No safety concerns were observed. Registration. Clinical Trials.gov identifier NCT00707967. PMID:24864125

  9. Biophysical characterization and immunization studies of dominant negative inhibitor (DNI), a candidate anthrax toxin subunit vaccine.

    PubMed

    Iyer, Vidyashankara; Hu, Lei; Schanté, Carole E; Vance, David; Chadwick, Chrystal; Jain, Nishant Kumar; Brey, Robert N; Joshi, Sangeeta B; Volkin, David B; Andra, Kiran K; Bann, James G; Mantis, Nicholas J; Middaugh, C Russell

    2013-11-01

    Dominant Negative Inhibitor (DNI) is a translocation-deficient homolog of recombinant protective antigen of Bacillus anthracis that is a candidate for a next generation anthrax vaccine. This study demonstrates that the biophysical characteristics of the DNI protein stored in lyophilized form at 4°C for 8 y were similar to recombinant Protective Antigen (rPA). To provide information on the accelerated stability of DNI, samples in the lyophilized form were subjected to thermal stress (40°C and 70°C for up to 4 weeks) and thoroughly evaluated using various biophysical and chemical characterization techniques. Results demonstrate preserved structural stability of the DNI protein under extreme conditions, suggesting long-term stability can be achieved for a vaccine that employs DNI, as desired for a biodefense countermeasure. Furthermore, the biological activity of the stressed DNI bound to the adjuvant Alhydrogel (®) was evaluated in mice and it was found that the immunogenicity DNI was not affected by thermal stress.

  10. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys.

    PubMed

    Barouch, Dan H; Liu, Jinyan; Li, Hualin; Maxfield, Lori F; Abbink, Peter; Lynch, Diana M; Iampietro, M Justin; SanMiguel, Adam; Seaman, Michael S; Ferrari, Guido; Forthal, Donald N; Ourmanov, Ilnour; Hirsch, Vanessa M; Carville, Angela; Mansfield, Keith G; Stablein, Donald; Pau, Maria G; Schuitemaker, Hanneke; Sadoff, Jerald C; Billings, Erik A; Rao, Mangala; Robb, Merlin L; Kim, Jerome H; Marovich, Mary A; Goudsmit, Jaap; Michael, Nelson L

    2012-01-04

    Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIV(SME543) Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIV(MAC251) challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.

  11. The future for blood-stage vaccines against malaria.

    PubMed

    Richards, Jack S; Beeson, James G

    2009-07-01

    Malaria is a leading cause of mortality and morbidity globally, and effective vaccines are urgently needed. Malaria vaccine approaches can be broadly grouped as pre-erythrocytic, blood stage and transmission blocking. This review focuses on blood-stage vaccines, and considers the evidence supporting the development of blood-stage vaccines, the advantages and challenges of this approach, potential targets, human vaccine studies and future directions. There is a strong rationale for the development of vaccines based on antigens of blood-stage parasites. Symptomatic malaria is caused by blood-stage parasitemia and acquired immunity in humans largely targets blood-stage antigens. Several candidate vaccines have proved efficacious in animal models and at least one vaccine showed partial efficacy in a clinical trial. At present, all leading candidate blood-stage antigens are merozoite proteins, located on the merozoite surface or within the apical organelles. Major challenges and priorities include overcoming antigenic diversity, identification of protective epitopes, understanding the nature and targets of protective immune responses, and defining antigen combinations that give the greatest efficacy. Additionally, objective criteria and approaches are needed to prioritize the large number of candidate antigens, and strong candidates need to be tested in clinical trials as quickly as possible.

  12. Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: A phase II randomised study.

    PubMed

    Gillard, Paul; Yang, Pan-Chyr; Danilovits, Manfred; Su, Wei-Juin; Cheng, Shih-Lung; Pehme, Lea; Bollaerts, Anne; Jongert, Erik; Moris, Philippe; Ofori-Anyinam, Opokua; Demoitié, Marie-Ange; Castro, Marcela

    2016-09-01

    Previous studies have shown that the M72/AS01E candidate tuberculosis vaccine is immunogenic with a clinically acceptable safety profile in healthy and Mycobacterium tuberculosis-infected adults. This phase II, observer-blind, randomised study compared the safety, reactogenicity, and immunogenicity of M72/AS01E in 3 cohorts: tuberculosis-naïve adults (n = 80), adults previously treated for tuberculosis (n = 49), and adults who have completed the intensive phase of tuberculosis treatment (n = 13). In each cohort, 18-59-year-old adults were randomised (1:1) to receive two doses of M72/AS01E (n = 71) or placebo (n = 71) and followed-up until six months post-dose 2. Safety and reactogenicity were assessed as primary objective. Recruitment in the study ended prematurely because of a high incidence of large injection site redness/swelling reactions in M72/AS01E-vaccinated adults undergoing tuberculosis treatment. No additional clinically relevant adverse events were observed, except one possibly vaccine-related serious adverse event (hypersensitivity in a tuberculosis-treated-M72/AS01E participant). Robust and persistent M72-specific humoral and polyfunctional CD4(+) T-cell-mediated immune responses were observed post-M72/AS01E vaccination in each cohort. In conclusion, the M72/AS01E vaccine was immunogenic in adults previously or currently treated for tuberculosis, but further analyses are needed to explain the high local reactogenicity in adults undergoing tuberculosis treatment. ClinicalTrials.gov: NCT01424501. Copyright © 2016 GlaxoSmithKline Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  13. A 52 Kilodalton Protein Vaccine Candidate for Francisella tularensis

    DTIC Science & Technology

    2004-12-01

    du vaccin vivant F. tularensis (LVS). Soixante pourcent (60%) des souris vaccindes ont survdcu la dose ltale multiple alors que toutes les souris non...le lysat des cellules de cultures vivantes du vaccin vivant F. tularensis. Plusieurs composants de Francisella tularensis ont dt6 identifids par cet...antiserum. Le s6rum de souris provenant de souris vaccin6es avec F. tularensis non- vivant n’a pas identifid ces composants. A partir de ces prot6ines

  14. Effect of Repeated Vaccination With the Same Vaccine Component Against 2009 Pandemic Influenza A(H1N1) Virus.

    PubMed

    Martínez-Baz, Iván; Casado, Itziar; Navascués, Ana; Díaz-González, Jorge; Aguinaga, Aitziber; Barrado, Laura; Delfrade, Josu; Ezpeleta, Carmen; Castilla, Jesús

    2017-03-15

    The 2009 pandemic influenza A(H1N1) (A[H1N1]pdm09) vaccine component has remained unchanged from 2009. We estimate the effectiveness of current and prior inactivated influenza A(H1N1)pdm09 vaccination from influenza seasons 2010-2011 to 2015-2016. Patients attended with influenza-like illness were tested for influenza. Four periods with continued A(H1N1)pdm09 circulation were included in a test-negative design. We enrolled 1278 cases and 2343 controls. As compared to individuals never vaccinated against influenza A(H1N1)pdm09, the highest effectiveness (66%; 95% confidence interval, 49%-78%) was observed in those vaccinated in the current season who had received 1-2 prior doses. The effectiveness was not statistically lower in individuals vaccinated in the current season only (52%) or in those without current vaccination and >2 prior doses (47%). However, the protection was lower in individuals vaccinated in the current season after >2 prior doses (38%; P = .009) or those currently unvaccinated with 1-2 prior doses (10%; P < .001). Current-season vaccination improved the effect in individuals with 1-2 prior doses and did not modify significantly the risk of influenza in individuals with >2 prior doses. Current vaccination or several prior doses were needed for high protection. Despite the decreasing effect of repeated vaccination, current-season vaccination was not inferior to no current-season vaccination. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Vaccinations in pediatric kidney transplant recipients.

    PubMed

    Fox, Thomas G; Nailescu, Corina

    2018-04-18

    Pediatric kidney transplant (KT) candidates should be fully immunized according to routine childhood schedules using age-appropriate guidelines. Unfortunately, vaccination rates in KT candidates remain suboptimal. With the exception of influenza vaccine, vaccination after transplantation should be delayed 3-6 months to maximize immunogenicity. While most vaccinations in the KT recipient are administered by primary care physicians, there are specific schedule alterations in the cases of influenza, hepatitis B, pneumococcal, and meningococcal vaccinations; consequently, these vaccines are usually administered by transplant physicians. This article will focus on those deviations from the normal vaccine schedule important in the care of pediatric KT recipients. The article will also review human papillomavirus vaccine due to its special importance in cancer prevention. Live vaccines are generally contraindicated in KT recipients. However, we present a brief review of live vaccines in organ transplant recipients, as there is evidence that certain live virus vaccines may be safe and effective in select groups. Lastly, we review vaccination of pediatric KT recipients prior to international travel.

  16. The recent progress in RSV vaccine technology.

    PubMed

    Fretzayas, Andrew; Papadopoulou, Anna; Kotzia, Doxa; Moustaki, Maria

    2012-12-01

    The most effective way to control RSV infection would be the development of an expedient and safe vaccine. Subunit vaccines, live attenuated RSV vaccines, plasmid DNA vaccines have been tested either in human or in mouse models without reaching the ultimate goal of efficacy and safety, at least in humans. Viruses such as adenovirus, sendai virus, measles virus were also used as vectors for the generation of RSV vaccines with promising results in animal models. Recent patents describe new techniques for the generation of candidate vaccines. These patents include virus like particles as vaccine platforms, recombinant RSVs or modified RSV F protein as component of the vaccine. Despite the number of the candidate vaccines, the new RSV vaccines should overcome many obstacles before being established as effective vaccines for the control of RSV infections especially for the young infants who are more susceptible to the virus.

  17. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Guangwen; Qin, Mei; Liu, Xianyong

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (amore » truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.« less

  18. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models

    NASA Astrophysics Data System (ADS)

    Kali, E.; Leloup, P. H.; Arnaud, N.; MahéO, G.; Liu, Dunyi; Boutonnet, E.; van der Woerd, J.; Liu, Xiaohan; Liu-Zeng, Jing; Li, Haibing

    2010-04-01

    The Ama Drime range located at the transition between the high Himalayan range and south Tibet is a N-S active horst that offsets the South Tibetan Detachment System (STDS). Within the horst, a paragneissic unit, possibly attributed to the upper Himalayan crystalline series, overly the lower Himalayan crystalline series Ama Drime orthogneissic unit containing large metabasite layers and pods that have experienced pressure ≥1.4 GPa. Combining structural analysis with new and published pressure-temperature (P-T) estimates as well as U-Th/Pb, 39Ar/40Ar and (U-Th)/He ages, the P-T-deformation-time (P-T-D-t) paths of the main units within and on both sides of the horst are reconstructed. They imply that N-S normal faults initiated prior to 11 Ma and have accounted for a total exhumation ≤0.6 GPa (22 km) that probably occurred in two phases: the first one until ˜9 Ma and the second one since 6 to 4 Ma at a rate of ˜1 mm/yr. In the Ama Drime unit, 1 to 1.3 GPa (37 to 48 km) of exhumation occurred after partial melting since ˜30 Ma until ˜13 Ma, above the Main Central Trust (MCT) and below the STDS when these two fault systems were active together. The switch from E-W (STDS) to N-S (Ama Drime horst) normal faulting between 13 and 12 Ma occurs at the time of propagation of thrusting from the MCT to the Main Boundary Thrust. These data are in favor of a wedge extrusion or thrust system rather than a crustal flow model for the building of the Himalaya. We propose that the kinematics of south Tibet Cenozoic extension phases is fundamentally driven by the direction and rate of India underthrusting.

  19. Enhanced mucosal immune responses induced by a combined candidate mucosal vaccine based on Hepatitis A virus and Hepatitis E virus structural proteins linked to tuftsin.

    PubMed

    Gao, Yan; Su, Qiudong; Yi, Yao; Jia, Zhiyuan; Wang, Hao; Lu, Xuexin; Qiu, Feng; Bi, Shengli

    2015-01-01

    Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2) sequence (aa 368-607) of HEV (HE-ORF2) and partial virus protein 1 (VP1) sequence (aa 1-198) of HAV (HA-VP1), which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs) as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG) showed higher levels of IFN-γ-secreting splenocytes (Th1 response) and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG). Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection.

  20. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses.

    PubMed

    Carter, Donald M; Darby, Christopher A; Johnson, Scott K; Carlock, Michael A; Kirchenbaum, Greg A; Allen, James D; Vogel, Thorsten U; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold; Ross, Ted M

    2017-12-15

    Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  1. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Johnson, Scott K.; Carlock, Michael A.; Kirchenbaum, Greg A.; Allen, James D.; Vogel, Thorsten U.; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold

    2017-01-01

    ABSTRACT Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  2. A Phase 1 Trial of MSP2-C1, a Blood-Stage Malaria Vaccine Containing 2 Isoforms of MSP2 Formulated with Montanide® ISA 720

    PubMed Central

    McCarthy, James S.; Marjason, Joanne; Elliott, Suzanne; Fahey, Paul; Bang, Gilles; Malkin, Elissa; Tierney, Eveline; Aked-Hurditch, Hayley; Adda, Christopher; Cross, Nadia; Richards, Jack S.; Fowkes, Freya J. I.; Boyle, Michelle J.; Long, Carole; Druilhe, Pierre; Beeson, James G.; Anders, Robin F.

    2011-01-01

    Background In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2), parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27), formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion. Methodology/Principal Findings The trial was designed to include three dose cohorts (10, 40, and 80 µg), each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 µg dose; no subjects received the 80 µg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 µg and 40 µg dose cohorts, with antibody levels by ELISA higher in the 40 µg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI) of parasite growth. Conclusions/Significance As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this formulation, further

  3. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.

    PubMed

    Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J

    2017-01-26

    The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses

  4. The Swedish A(H1N1) vaccination campaign--why did not all Swedes take the vaccination?

    PubMed

    Björkman, Ingeborg; Sanner, Margareta A

    2013-01-01

    In Sweden, a mass vaccination campaign against the influenza A(H1N1) 2009 resulted in 60% vaccination coverage. However, many countries had difficulty in motivating citizens to be vaccinated. To be prepared for future vaccination campaigns, it is important to understand people's reasons for not taking the vaccination. The aim of this qualitative study was to explore motives, beliefs and reactions of individuals with varying backgrounds who did not get vaccinated. The total 28 individuals participating in the interviews were permitted to speak freely about their experiences and ideas about the vaccination. Interviews were analysed using a Grounded Theory approach. The strength of participants' decisions not to be vaccinated was also estimated. Patterns of motives were identified and described in five main categories: (A) distinguishing between unnecessary and necessary vaccination, (B) distrust, (C) the idea of the natural, (D) resisting an exaggerated safety culture, and (E) injection fear. The core category, upholding autonomy and own health, constitutes the base on which the decisions were grounded. A prerequisite for taking the vaccine would be that people feel involved in the vaccination enterprise to make a sensible decision regarding whether their health will be best protected by vaccination. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Prevention of bubonic and pneumonic plague using plant-derived vaccines.

    PubMed

    Alvarez, M Lucrecia; Cardineau, Guy A

    2010-01-01

    Yersinia pestis, the causative agent of bubonic and pneumonic plague, is an extremely virulent bacterium but there are currently no approved vaccines for protection against this organism. Plants represent an economical and safer alternative to fermentation-based expression systems for the production of therapeutic proteins. The recombinant plague vaccine candidates produced in plants are based on the two most immunogenic antigens of Y. pestis: the fraction-1 capsular antigen (F1) and the low calcium response virulent antigen (V) either in combination or as a fusion protein (F1-V). These antigens have been expressed in plants using all three known possible strategies: nuclear transformation, chloroplast transformation and plant-virus-based expression vectors. These plant-derived plague vaccine candidates were successfully tested in animal models using parenteral, oral, or prime/boost immunization regimens. This review focuses on the recent research accomplishments towards the development of safe and effective pneumonic and bubonic plague vaccines using plants as bioreactors.

  6. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    NASA Astrophysics Data System (ADS)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  7. Advances in HIV-1 Vaccine Development

    PubMed Central

    Gao, Yong

    2018-01-01

    An efficacious HIV-1 vaccine is regarded as the best way to halt the ongoing HIV-1 epidemic. However, despite significant efforts to develop a safe and effective vaccine, the modestly protective RV144 trial remains the only efficacy trial to provide some level of protection against HIV-1 acquisition. This review will outline the history of HIV vaccine development, novel technologies being applied to HIV vaccinology and immunogen design, as well as the studies that are ongoing to advance our understanding of vaccine-induced immune correlates of protection. PMID:29614779

  8. Tests in mice of a dengue vaccine candidate made of chimeric Junin virus-like particles and conserved dengue virus envelope sequences.

    PubMed

    Mareze, Vania Aparecida; Borio, Cristina Silvia; Bilen, Marcos F; Fleith, Renata; Mirazo, Santiago; Mansur, Daniel Santos; Arbiza, Juan; Lozano, Mario Enrique; Bruña-Romero, Oscar

    2016-01-01

    Two new vaccine candidates against dengue virus (DENV) infection were generated by fusing the coding sequences of the self-budding Z protein from Junin virus (Z-JUNV) to those of two cryptic peptides (Z/DENV-P1 and Z/DENV-P2) conserved on the envelope protein of all serotypes of DENV. The capacity of these chimeras to generate virus-like particles (VLPs) and to induce virus-neutralizing antibodies in mice was determined. First, recombinant proteins that displayed reactivity with a Z-JUNV-specific serum by immunofluorescence were detected in HEK-293 cells transfected with each of the two plasmids and VLP formation was also observed by transmission electron microscopy. Next, we determined the presence of antibodies against the envelope peptides of DENV in the sera of immunized C57BL/6 mice. Results showed that those animals that received Z/DENV-P2 DNA coding sequences followed by a boost with DENV-P2 synthetic peptides elicited significant specific antibody titers (≥6.400). Finally, DENV plaque-reduction neutralization tests (PRNT) were performed. Although no significant protective effect was observed when using sera of Z/DENV-P1-immunized animals, antibodies raised against vaccine candidate Z/DENV-P2 (diluted 1:320) were able to reduce in over 50 % the number of viral plaques generated by infectious DENV particles. This reduction was comparable to that of the 4G2 DENV-specific monoclonal cross-reactive (all serotypes) neutralizing antibody. We conclude that Z-JUNV-VLP is a valid carrier to induce antibody-mediated immune responses in mice and that Z/DENV-P2 is not only immunogenic but also protective in vitro against infection of cells with DENV, deserving further studies. On the other side, DENV's fusion peptide-derived chimera Z/DENV-P1 did not display similar protective properties.

  9. Advancing a vaccine to prevent human schistosomiasis.

    PubMed

    Merrifield, Maureen; Hotez, Peter J; Beaumier, Coreen M; Gillespie, Portia; Strych, Ulrich; Hayward, Tara; Bottazzi, Maria Elena

    2016-06-03

    Several candidate human schistosomiasis vaccines are in different stages of preclinical and clinical development. The major targets are Schistosoma haematobium (urogenitial schistosomiasis) and Schistosoma mansoni (intestinal schistosomiasis) that account for 99% of the world's 252 million cases, with 90% of these cases in Africa. Two recombinant S. mansoni vaccines - Sm-TSP-2 and Sm-14 are in Phase 1 trials, while Smp80 (calpain) is undergoing testing in non-human primates. Sh28GST, also known as Bilhvax is in advanced clinical development for S. haematobium infection. The possibility remains that some of these vaccines may cross-react to target both schistosome species. These vaccines were selected on the basis of their protective immunity in preclinical challenge models, through human immune-epidemiological studies or both. They are being advanced through a combination of academic research institutions, non-profit vaccine product development partnerships, biotechnology companies, and developing country vaccine manufacturers. In addition, new schistosome candidate vaccines are being identified through bioinformatics, OMICs approaches, and moderate throughput screening, although the full potential of reverse vaccinology for schistosomiasis has not yet been realized. The target product profiles of these vaccines vary but many focus on vaccinating children, in some cases following mass treatment with praziquantel, also known as vaccine-linked chemotherapy. Several regulatory pathways have been proposed, some of which rely on World Health Organization prequalification. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  10. Thermostable Cross-Protective Subunit Vaccine against Brucella Species

    PubMed Central

    Barabé, Nicole D.; Grigat, Michelle L.; Lee, William E.; Poirier, Robert T.; Jager, Scott J.; Berger, Bradley J.

    2014-01-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 105 CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  11. Thermostable cross-protective subunit vaccine against Brucella species.

    PubMed

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Immunogenicity of sanofi pasteur tetravalent dengue vaccine.

    PubMed

    Guy, Bruno

    2009-10-01

    A candidate tetravalent (TV) dengue vaccine based on the yellow fever (YF) 17D vaccine has been developed by sanofi pasteur. This dengue TV vaccine induced a controlled dendritic cell stimulation in vitro. In clinical trials, Th1 and CD8 responses were induced with an IFN-gamma/TNF-alpha ratio favouring IFN-gamma in both cases, regardless of whether the vaccine recipients were flavivirus naive or not. There was an absence of Th2 response in all cases. The Th1 response was dominated by the D4 serotype in flavivirus naive individuals after initial vaccination but broadened to include all serotypes after second vaccination. This broadened response was also observed after primary dengue TV vaccination in subjects previously administered monovalent live-attenuated dengue 1 and dengue 2 vaccines. Notably, virtually no cross-reactivity between YF 17D and dengue NS3 antigens at the CD8 level was observed. Clinical and pre-clinical results support the favourable immunogenicity and short-term safety of the dengue TV. Future studies will establish the longevity of the vaccine-induced immunity and requirements for boosters.

  13. Protective role of adenylate cyclase in the context of a live pertussis vaccine candidate.

    PubMed

    Lim, Annabelle; Ng, Jowin K W; Locht, Camille; Alonso, Sylvie

    2014-01-01

    Despite high vaccination coverage, pertussis remains an important respiratory infectious disease and the least-controlled vaccine-preventable infectious disease in children. Natural infection with Bordetella pertussis is known to induce strong and long-lasting immunity that wanes later than vaccine-mediated immunity. Therefore, a live attenuated B. pertussis vaccine, named BPZE1, has been developed and has recently completed a phase I clinical trial in adult human volunteers. In this study, we investigated the contribution of adenylate cyclase (CyaA) in BPZE1-mediated protection against pertussis. A CyaA-deficient BPZE1 mutant was thus constructed. Absence of CyaA did not compromise the adherence properties of the bacteria onto mammalian cells. However, the CyaA-deficient mutant displayed a slight impairment in the ability to survive within macrophages compared to the parental BPZE1 strain. In vivo, whereas the protective efficacy of the CyaA-deficient mutant was comparable to the parental strain at a vaccine dose of 5 × 10(5) colony forming units (CFU), it was significantly impaired at a vaccine dose of 5 × 10(3) CFU. This impairment correlated with impaired lung colonization ability, and impaired IFN-γ production in the animal immunized with the CyaA-deficient BPZE1 mutant while the pertussis-specific antibody profile and Th17 response were comparable to those observed in BPZE1-immunized mice. Our findings thus support a role of CyaA in BPZE1-mediated protection through induction of cellular mediated immunity. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. H1N1 vaccination in pediatric renal transplant patients.

    PubMed

    Kelen, K; Ferenczi, D; Jankovics, I; Varga, M; Molnar, M Z; Sallay, P; Reusz, G; Langer, R M; Pasti, K; Gerlei, Z; Szabo, A J

    2011-05-01

    Solid organ transplant recipients undergoing immunosuppressive therapy are considered to be at high risk of serious infectious complications. In 2009, a new influenza pandemic caused serious infections and deaths, especially among children and immunocompromised patients. Herein we have reported the safety and efficacy of a single-shot monovalent whole-virus vaccine against H1N1 infection in the pediatric renal transplant population. In November and December 2009, we vaccinated 37 renal transplant children and adolescents and measured their antibody responses. Seroprotection, seroconversion, and seroconversion factors were analyzed at 21 days after vaccination. None of the vaccinated patients experienced vaccine-related side effects. None of the patients had an H1N1 influenza infection after vaccination. All of the patients showed elevations in antibody titer at 21 days after vaccination. In contrast, only 29.72% of the patients achieved a safe seroprotection level and only 18.75% a safe seroconversion rate. More intense immunosuppressive treatment displayed negative effect on seroprotection and seroconversion, and antibody production significantly increased with age. No other factor was observed to influence seroprotection. We recommend vaccination of children and adolescent renal transplant recipients against H1N1 virus. However, a single shot of vaccine may not be sufficient; to achieve seroprotection, a booster vaccination and measurement of the antibody response are needed to assure protection of our patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Possibilities and challenges for developing a successful vaccine for leishmaniasis.

    PubMed

    Srivastava, Saumya; Shankar, Prem; Mishra, Jyotsna; Singh, Sarman

    2016-05-12

    Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.

  16. Assessment of Lactobacillus gasseri as a Candidate Oral Vaccine Vector ▿

    PubMed Central

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R.; Dean, Gregg A.

    2011-01-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3+ colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens. PMID:21900526

  17. Evaluation of candidate vaccine approaches for MERS-CoV

    DOE PAGES

    Wang, Lingshu; Shi, Wei; Joyce, M. Gordon; ...

    2015-07-28

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanismsmore » were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.« less

  18. Evaluation of candidate vaccine approaches for MERS-CoV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingshu; Shi, Wei; Joyce, M. Gordon

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanismsmore » were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.« less

  19. A Bivalent Heterologous DNA Virus-Like-Particle Prime-Boost Vaccine Elicits Broad Protection against both Group 1 and 2 Influenza A Viruses

    PubMed Central

    Jiang, Wenbo; Wang, Shuangshuang; Chen, Honglin; Ren, Huanhuan; Huang, Xun; Wang, Guiqin; Chen, Ling; Chen, Zhiwei

    2017-01-01

    ABSTRACT Current seasonal influenza vaccines are efficacious when vaccine strains are matched with circulating strains. However, they do not protect antigenic variants and newly emerging pandemic and outbreak strains. Thus, there is a critical need for developing so-called “universal” vaccines that protect against all influenza viruses. In the present study, we developed a bivalent heterologous DNA virus-like particle prime-boost vaccine strategy. We show that mice immunized with this vaccine were broadly protected against lethal challenge from group 1 (H1, H5, and H9) and group 2 (H3 and H7) viruses, with 94% aggregate survival. To determine the immune correlates of protection, we performed passive immunizations and in vitro assays. We show that this vaccine elicited antibody responses that bound HA from group 1 (H1, H2, H5, H6, H8, H9, H11, and H12) and group 2 (H3, H4, H7, H10, H14, and H15) and neutralized homologous and intrasubtypic H5 and H7 and heterosubtypic H1 viruses and hemagglutinin-specific CD4 and CD8 T cell responses. As a result, passive immunization with immune sera fully protected mice against H5, H7, and H1 challenge, whereas with both immune sera and T cells the mice survived heterosubtypic H3 and H9 challenge. Thus, it appears that (i) neutralizing antibodies alone fully protect against homologous and intrasubtypic H5 and H7 and (ii) neutralizing and binding antibodies are sufficient to protect against heterosubtypic H1, (iii) but against heterosubtypic H3 and H9, binding antibodies and T cells are required for complete survival. We believe that this vaccine regimen could potentially be a candidate for a “universal” influenza vaccine. IMPORTANCE Influenza virus infection is global health problem. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. However, these vaccines do not protect antigenic variants and newly emerging pandemic and outbreak strains. Because of this

  20. Sieve analysis in HIV-1 vaccine efficacy trials.

    PubMed

    Edlefsen, Paul T; Gilbert, Peter B; Rolland, Morgane

    2013-09-01

    The genetic characterization of HIV-1 breakthrough infections in vaccine and placebo recipients offers new ways to assess vaccine efficacy trials. Statistical and sequence analysis methods provide opportunities to mine the mechanisms behind the effect of an HIV vaccine. The release of results from two HIV-1 vaccine efficacy trials, Step/HVTN-502 (HIV Vaccine Trials Network-502) and RV144, led to numerous studies in the last 5 years, including efforts to sequence HIV-1 breakthrough infections and compare viral characteristics between the vaccine and placebo groups. Novel genetic and statistical analysis methods uncovered features that distinguished founder viruses isolated from vaccinees from those isolated from placebo recipients, and identified HIV-1 genetic targets of vaccine-induced immune responses. Studies of HIV-1 breakthrough infections in vaccine efficacy trials can provide an independent confirmation to correlates of risk studies, as they take advantage of vaccine/placebo comparisons, whereas correlates of risk analyses are limited to vaccine recipients. Through the identification of viral determinants impacted by vaccine-mediated host immune responses, sieve analyses can shed light on potential mechanisms of vaccine protection.

  1. Vaccination and auto-immune rheumatic diseases: lessons learnt from the 2009 H1N1 influenza virus vaccination campaign.

    PubMed

    Touma, Zahi; Gladman, Dafna D; Urowitz, Murray B

    2013-03-01

    To determine the safety and efficacy of adjuvant and nonadjuvant influenza A/H1NI vaccination in patients with rheumatic diseases. Due to immune abnormalities and the use of steroids and immunosuppressant treatment, patients with rheumatic diseases are susceptible to infections including influenza. Infections continue to be one of the leading causes of morbidity and mortality in rheumatic diseases, partly due to the disease processes and partly due to medications. Viral infections are particularly an issue, so vaccinations would be advisable. However, because of the abnormalities in immune mechanisms in many rheumatic diseases, it is not clear whether vaccinations are well tolerated and effective. A number of studies confirmed the efficacy and safety of adjuvant and nonadjuvant influenza A/H1NI vaccination in patients with rheumatic diseases. The potential side effects associated with H1N1 vaccines were not different from those observed with seasonal influenza vaccine. The use of steroids and immunosuppressant therapies may alter the efficacy of the vaccines. Adjuvant and nonadjuvant influenza A/H1NI vaccinations have no clinically important effect on production or levels of autoantibodies in patients with rheumatic diseases. H1N1 vaccination should be given to patients with rheumatic diseases.

  2. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations.

    PubMed

    Prabhu, Arpan V; Hansberry, David R; Agarwal, Nitin; Clump, David A; Heron, Dwight E

    2016-11-01

    Physicians encourage patients to be informed about their health care options, but much of the online health care-related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Radiation oncology-related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, RadiologyInfo.org, and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making each physician-patient interaction more productive

  3. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhu, Arpan V.; Hansberry, David R.; Agarwal, Nitin

    Purpose: Physicians encourage patients to be informed about their health care options, but much of the online health care–related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Methods: Radiation oncology–related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Associationmore » of Physicists in Medicine, American Brachytherapy Society, (RadiologyInfo.org), and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. Results: When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Conclusion: Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making

  4. [H1N1 influenza vaccines in Tunisia: efficiency and safety].

    PubMed

    Chaabane, Amel; Aouam, Karim; Ben Fredj, Nadia; Toumi, Adnen; Braham, Dorra; A Boughattas, Naceur; Chakroun, Mohamed

    2011-01-01

    We carried out this study in order to evaluate the effectiveness and the safety of the two H1N1 vaccines available in Tunisia: Focetria(®) and Panenza(®). It's a prospective epidemiological study including 601 vaccinated subjects. The vaccine effectiveness was based on the occurrence of flu clinical symptoms after vaccination. The safety was based on the occurrence of unexpected events after vaccines administration. The vaccines imputability was established according to Begaud et al. method. The number of subjects vaccinated by Focetria(®) is more important than Panenza(®). The efficiency of vaccines would be 93.6%. Neither the medical statue nor the type of the vaccine used influence the occurrence of a flu episode after vaccination. We recorded 406 adverse effects (32.4%) with a high score of imputability (I3). Focetria(®) adverse effects were more frequent than Panenza(®) ones (p = 0.009). Almost all adverse events disappeared within few days. The two vaccines used in Tunisia remain enough efficient to face the influenza (H1N1) pandemia and are well tolerated independently of the demographic and pathological statue of the vaccinated person as well as nature of the vaccine used. © 2011 Société Française de Pharmacologie et de Thérapeutique.

  5. The Human Hookworm Vaccine.

    PubMed

    Hotez, Peter J; Diemert, David; Bacon, Kristina M; Beaumier, Coreen; Bethony, Jeffrey M; Bottazzi, Maria Elena; Brooker, Simon; Couto, Artur Roberto; Freire, Marcos da Silva; Homma, Akira; Lee, Bruce Y; Loukas, Alex; Loblack, Marva; Morel, Carlos Medicis; Oliveira, Rodrigo Correa; Russell, Philip K

    2013-04-18

    Hookworm infection is one of the world's most common neglected tropical diseases and a leading cause of iron deficiency anemia in low- and middle-income countries. A Human Hookworm Vaccine is currently being developed by the Sabin Vaccine Institute and is in phase 1 clinical testing. The candidate vaccine is comprised of two recombinant antigens known as Na-GST-1 and Na-APR-1, each of which is an important parasite enzyme required for hookworms to successfully utilize host blood as a source of energy. The recombinant proteins are formulated on Alhydrogel(®) and are being tested in combination with a synthetic Toll-like receptor 4 agonist. The aim of the vaccine is to induce anti-enzyme antibodies that will reduce both host blood loss and the number of hookworms attached to the gut. Transfer of the manufacturing technology to the Oswaldo Cruz Foundation (FIOCRUZ)/Bio-Manguinhos (a Brazilian public sector developing country vaccine manufacturer) is planned, with a clinical development plan that could lead to registration of the vaccine in Brazil. The vaccine would also need to be introduced in the poorest regions of Africa and Asia, where hookworm infection is highly endemic. Ultimately, the vaccine could become an essential tool for achieving hookworm control and elimination, a key target in the 2012 London Declaration on Neglected Tropical Diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The Human Hookworm Vaccine

    PubMed Central

    Hotez, Peter J.; Diemert, David; Bacon, Kristina M.; Beaumier, Coreen; Bethony, Jeffrey M.; Bottazzi, Maria Elena; Brooker, Simon; Couto, Artur Roberto; da Silva Freire, Marcos; Homma, Akira; Lee, Bruce Y.; Loukas, Alex; Loblack, Marva; Morel, Carlos Medicis; Oliveira, Rodrigo Correa; Russell, Philip K.

    2013-01-01

    Hookworm infection is one of the world's most common neglected tropical diseases and a leading cause of iron deficiency anemia in low- and middle-income countries. A Human Hookworm Vaccine is currently being developed by the Sabin Vaccine Institute and is in phase 1 clinical testing. The candidate vaccine is comprised of two recombinant antigens known as Na-GST-1 and Na-APR-1, each of which is an important parasite enzyme required for hookworms to successfully utilize host blood as a source of energy. The recombinant proteins are formulated on Alhydrogel® and are being tested in combination with a synthetic Toll-like receptor 4 agonist. The aim of the vaccine is to induce anti-enzyme antibodies that will reduce both host blood loss and the number of hookworms attached to the gut. Transfer of the manufacturing technology to the Oswaldo Cruz Foundation (FIOCRUZ)/Bio-Manguinhos (a Brazilian public sector developing country vaccine manufacturer) is planned, with a clinical development plan that could lead to registration of the vaccine in Brazil. The vaccine would also need to be introduced in the poorest regions of Africa and Asia, where hookworm infection is highly endemic. Ultimately, the vaccine could become an essential tool for achieving hookworm control and elimination, a key target in the 2012 London Declaration on Neglected Tropical Diseases. PMID:23598487

  7. Plant-Produced Subunit Vaccine Candidates against Yellow Fever Induce Virus Neutralizing Antibodies and Confer Protection against Viral Challenge in Animal Models.

    PubMed

    Tottey, Stephen; Shoji, Yoko; Jones, R Mark; Chichester, Jessica A; Green, Brian J; Musiychuk, Konstantin; Si, Huaxin; Manceva, Slobodanka D; Rhee, Amy; Shamloul, Moneim; Norikane, Joey; Guimarães, Rosane C; Caride, Elena; Silva, Andrea N M R; Simões, Marisol; Neves, Patricia C C; Marchevsky, Renato; Freire, Marcos S; Streatfield, Stephen J; Yusibov, Vidadi

    2018-02-01

    Yellow fever (YF) is a viral disease transmitted by mosquitoes and endemic mostly in South America and Africa with 20-50% fatality. All current licensed YF vaccines, including YF-Vax ® (Sanofi-Pasteur, Lyon, France) and 17DD-YFV (Bio-Manguinhos, Rio de Janeiro, Brazil), are based on live attenuated virus produced in hens' eggs and have been widely used. The YF vaccines are considered safe and highly effective. However, a recent increase in demand for YF vaccines and reports of rare cases of YF vaccine-associated fatal adverse events have provoked interest in developing a safer YF vaccine that can be easily scaled up to meet this increased global demand. To this point, we have engineered the YF virus envelope protein (YFE) and transiently expressed it in Nicotiana benthamiana as a stand-alone protein (YFE) or as fusion to the bacterial enzyme lichenase (YFE-LicKM). Immunogenicity and challenge studies in mice demonstrated that both YFE and YFE-LicKM elicited virus neutralizing (VN) antibodies and protected over 70% of mice from lethal challenge infection. Furthermore, these two YFE-based vaccine candidates induced VN antibody responses with high serum avidity in nonhuman primates and these VN antibody responses were further enhanced after challenge infection with the 17DD strain of YF virus. These results demonstrate partial protective efficacy in mice of YFE-based subunit vaccines expressed in N. benthamiana . However, their efficacy is inferior to that of the live attenuated 17DD vaccine, indicating that formulation development, such as incorporating a more suitable adjuvant, may be required for product development.

  8. Reverse Vaccinology: An Approach for Identifying Leptospiral Vaccine Candidates

    PubMed Central

    Dellagostin, Odir A.; Grassmann, André A.; Rizzi, Caroline; Schuch, Rodrigo A.; Jorge, Sérgio; Oliveira, Thais L.; McBride, Alan J. A.; Hartwig, Daiane D.

    2017-01-01

    Leptospirosis is a major public health problem with an incidence of over one million human cases each year. It is a globally distributed, zoonotic disease and is associated with significant economic losses in farm animals. Leptospirosis is caused by pathogenic Leptospira spp. that can infect a wide range of domestic and wild animals. Given the inability to control the cycle of transmission among animals and humans, there is an urgent demand for a new vaccine. Inactivated whole-cell vaccines (bacterins) are routinely used in livestock and domestic animals, however, protection is serovar-restricted and short-term only. To overcome these limitations, efforts have focused on the development of recombinant vaccines, with partial success. Reverse vaccinology (RV) has been successfully applied to many infectious diseases. A growing number of leptospiral genome sequences are now available in public databases, providing an opportunity to search for prospective vaccine antigens using RV. Several promising leptospiral antigens were identified using this approach, although only a few have been characterized and evaluated in animal models. In this review, we summarize the use of RV for leptospirosis and discuss the need for potential improvements for the successful development of a new vaccine towards reducing the burden of human and animal leptospirosis. PMID:28098813

  9. Improving the Th1 cellular efficacy of the lead Yersinia pestis rF1-V subunit vaccine using SA-4-1BBL as a novel adjuvant.

    PubMed

    Dinc, Gunes; Pennington, Jarrod M; Yolcu, Esma S; Lawrenz, Matthew B; Shirwan, Haval

    2014-09-03

    The lead candidate plague subunit vaccine is the recombinant fusion protein rF1-V adjuvanted with alum. While alum generates Th2 regulated robust humoral responses, immune protection against Yersinia pestis has been shown to also involve Th1 driven cellular responses. Therefore, the rF1-V-based subunit vaccine may benefit from an adjuvant system that generates a mixed Th1 and humoral immune response. We herein assessed the efficacy of a novel SA-4-1BBL costimulatory molecule as a Th1 adjuvant to improve cellular responses generated by the rF1-V vaccine. SA-4-1BBL as a single adjuvant had better efficacy than alum in generating CD4(+) and CD8(+) T cells producing TNFα and IFNγ, signature cytokines for Th1 responses. The combination of SA-4-1BBL with alum further increased this Th1 response as compared with the individual adjuvants. Analysis of the humoral response revealed that SA-4-1BBL as a single adjuvant did not generate a significant Ab response against rF1-V, and SA-4-1BBL in combination with alum did not improve Ab titers. However, the combined adjuvants significantly increased the ratio of Th1 regulated IgG2c in C57BL/6 mice to the Th2 regulated IgG1. Finally, a single vaccination with rF1-V adjuvanted with SA-4-1BBL+alum had better protective efficacy than vaccines containing individual adjuvants. Taken together, these results demonstrate that SA-4-1BBL improves the protective efficacy of the alum adjuvanted lead rF1-V subunit vaccine by generating a more balanced Th1 cellular and humoral immune response. As such, this adjuvant platform may prove efficacious not only for the rF1-V vaccine but also against other infections that require both cellular and humoral immune responses for protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Universal influenza vaccines: Shifting to better vaccines.

    PubMed

    Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J

    2016-06-03

    Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  11. Case study for a vaccine against leishmaniasis.

    PubMed

    Alvar, Jorge; Croft, Simon L; Kaye, Paul; Khamesipour, Ali; Sundar, Shyam; Reed, Steven G

    2013-04-18

    Leishmaniasis in many ways offers a unique vaccine case study. Two reasons for this are that leishmaniasis is a disease complex caused by several different species of parasite that are highly related, thus raising the possibility of developing a single vaccine to protect against multiple diseases. Another reason is the demonstration that a leishmaniasis vaccine may be used therapeutically as well as prophylactically. Although there is no registered human leishmaniasis vaccine today, immunization approaches using live or killed organisms, as well as defined vaccine candidates, have demonstrated at least some degree of efficacy in humans to prevent and to treat some forms of leishmaniasis, and there is a vigorous pipeline of candidates in development. Current approaches include using individual or combined antigens of the parasite or of salivary gland extract of the parasites' insect vector, administered with or without formulation in adjuvant. Animal data obtained with several vaccine candidates are promising and some have been or will be entered into clinical testing in the near future. There is sufficient scientific and epidemiological justification to continue to invest in the development of vaccines against leishmaniasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Protection against Multiple Influenza A Virus Strains Induced by Candidate Recombinant Vaccine Based on Heterologous M2e Peptides Linked to Flagellin

    PubMed Central

    Kovaleva, Anna A.; Potapchuk, Marina V.; Korotkov, Alexandr V.; Sergeeva, Mariia V.; Kasianenko, Marina A.; Kuprianov, Victor V.; Ravin, Nikolai V.; Tsybalova, Liudmila M.; Skryabin, Konstantin G.; Kiselev, Oleg I.

    2015-01-01

    Matrix 2 protein ectodomain (M2e) is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek). Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1) and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1) and A/Chicken/Kurgan/05/05 RG (H5N1) to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2) and avian influenza virus (H5N1). Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins. PMID:25799221

  13. A consultation on the optimization of controlled human malaria infection by mosquito bite for evaluation of candidate malaria vaccines.

    PubMed

    Laurens, Matthew B; Duncan, Christopher J; Epstein, Judith E; Hill, Adrian V; Komisar, Jack L; Lyke, Kirsten E; Ockenhouse, Christian F; Richie, Thomas L; Roestenberg, Meta; Sauerwein, Robert W; Spring, Michele D; Talley, Angela K; Moorthy, Vasee S

    2012-08-03

    Early clinical investigations of candidate malaria vaccines and antimalarial medications increasingly employ an established model of controlled human malaria infection (CHMI). Study results are used to guide further clinical development of vaccines and antimalarial medications as CHMI results to date are generally predictive of efficacy in malaria-endemic areas. The urgency to rapidly develop an efficacious malaria vaccine has increased demand for efficacy studies that include CHMI and the need for comparability of study results among the different centres conducting CHMI. An initial meeting with the goal to optimize and standardise CHMI procedures was held in 2009 with follow-up meetings in March and June 2010 to harmonise methods used at different centres. The end result is a standardised document for the design and conduct of CHMI and a second document for the microscopy methods used to determine the patency endpoint. These documents will facilitate high accuracy and comparability of CHMI studies and will be revised commensurate with advances in the field. Copyright © 2012. Published by Elsevier Ltd.. All rights reserved.

  14. Live vaccines for human metapneumovirus designed by reverse genetics.

    PubMed

    Buchholz, Ursula J; Nagashima, Kunio; Murphy, Brian R; Collins, Peter L

    2006-10-01

    Human metapneumovirus (HMPV) was first described in 2001 and has quickly become recognized as an important cause of respiratory tract disease worldwide, especially in the pediatric population. A vaccine against HMPV is required to prevent severe disease associated with infection in infancy. The primary strategy is to develop a live-attenuated virus for intranasal immunization, which is particularly well suited against a respiratory virus. Reverse genetics provides a means of developing highly characterized 'designer' attenuated vaccine candidates. To date, several promising vaccine candidates have been developed, each using a different mode of attenuation. One candidate involves deletion of the G glycoprotein, providing attenuation that is probably based on reduced efficiency of attachment. A second candidate involves deletion of the M2-2 protein, which participates in regulating RNA synthesis and whose deletion has the advantageous property of upregulating transcription and increasing antigen synthesis. A third candidate involves replacing the P protein gene of HMPV with its counterpart from the related avian metapneumovirus, thereby introducing attenuation owing to its chimeric nature and host range restriction. Another live vaccine strategy involves using an attenuated parainfluenza virus as a vector to express HMPV protective antigens, providing a bivalent pediatric vaccine. Additional modifications to provide improved vaccines will also be discussed.

  15. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE PAGES

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; ...

    2014-11-19

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  16. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  17. Formulation and Immunogenicity studies of Type III Secretion System needle antigens as Vaccine Candidates

    PubMed Central

    Barrett, Brooke S.; Markham, Aaron P.; Esfandiary, Reza; Picking, Wendy L.; Picking, William D.; Joshi, Sangeeta B.; Middaugh, C. Russell

    2013-01-01

    Bacterial infections caused by Shigella flexneri, Salmonella typhimurium and Burkholderia pseudomallei are currently difficult to prevent due to the lack of a licensed vaccine. Here we present formulation and immunogenicity studies for the three type III secretion system (TTSS) needle proteins MxiHΔ5, PrgIΔ5 and BsaLΔ5 (each truncated by five residues at its C terminus) as potential candidates for vaccine development. These antigens are found to be thermally stabilized by the presence of carbohydrates and polyols. Additionally, all adsorb readily to aluminum hydroxide apparently through a combination of hydrogen bonds and/or Van der Waals forces. The interaction of these proteins with the aluminum-based adjuvant changes with time to resulting in varying degrees of irreversible binding. Peptide maps of desorbed protein, however, suggest that chemical changes are not responsible for this irreversible association. The ability of MxiHΔ5 and PrgIΔ5 to elicit strong humoral immune responses was tested in a murine model. When administered intramuscularly as monomers, the needle components exhibited dose dependent immunogenic behavior. The polymerized version of MxiH was exceptionally immunogenic even at low doses. The responses of both monomeric and polymerized forms were boosted by adsorption to an aluminum salt adjuvant. PMID:20845448

  18. The clinical development process for a novel preventive vaccine: An overview.

    PubMed

    Singh, K; Mehta, S

    2016-01-01

    Each novel vaccine candidate needs to be evaluated for safety, immunogenicity, and protective efficacy in humans before it is licensed for use. After initial safety evaluation in healthy adults, each vaccine candidate follows a unique development path. This article on clinical development gives an overview on the development path based on the expectations of various guidelines issued by the World Health Organization (WHO), the European Medicines Agency (EMA), and the United States Food and Drug Administration (USFDA). The manuscript describes the objectives, study populations, study designs, study site, and outcome(s) of each phase (Phase I-III) of a clinical trial. Examples from the clinical development of a malaria vaccine candidate, a rotavirus vaccine, and two vaccines approved for human papillomavirus (HPV) have also been discussed. The article also tabulates relevant guidelines, which can be referred to while drafting the development path of a novel vaccine candidate.

  19. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris.

    PubMed

    Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D

    2009-06-29

    VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.

  20. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris

    PubMed Central

    Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D

    2009-01-01

    Background VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. Methods VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. Results From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. Conclusion These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development. PMID:19563628

  1. Progress and prospects for blood-stage malaria vaccines.

    PubMed

    Miura, Kazutoyo

    2016-06-01

    There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.

  2. Frequent associations between CTL and T-Helper epitopes in HIV-1 genomes and implications for multi-epitope vaccine designs

    PubMed Central

    2010-01-01

    Background Epitope vaccines have been suggested as a strategy to counteract viral escape and development of drug resistance. Multiple studies have shown that Cytotoxic T-Lymphocyte (CTL) and T-Helper (Th) epitopes can generate strong immune responses in Human Immunodeficiency Virus (HIV-1). However, not much is known about the relationship among different types of HIV epitopes, particularly those epitopes that can be considered potential candidates for inclusion in the multi-epitope vaccines. Results In this study we used association rule mining to examine relationship between different types of epitopes (CTL, Th and antibody epitopes) from nine protein-coding HIV-1 genes to identify strong associations as potent multi-epitope vaccine candidates. Our results revealed 137 association rules that were consistently present in the majority of reference and non-reference HIV-1 genomes and included epitopes of two different types (CTL and Th) from three different genes (Gag, Pol and Nef). These rules involved 14 non-overlapping epitope regions that frequently co-occurred despite high mutation and recombination rates, including in genomes of circulating recombinant forms. These epitope regions were also highly conserved at both the amino acid and nucleotide levels indicating strong purifying selection driven by functional and/or structural constraints and hence, the diminished likelihood of successful escape mutations. Conclusions Our results provide a comprehensive systematic survey of CTL, Th and Ab epitopes that are both highly conserved and co-occur together among all subtypes of HIV-1, including circulating recombinant forms. Several co-occurring epitope combinations were identified as potent candidates for inclusion in multi-epitope vaccines, including epitopes that are immuno-responsive to different arms of the host immune machinery and can enable stronger and more efficient immune responses, similar to responses achieved with adjuvant therapies. Signature of strong

  3. Fact and fiction in tuberculosis vaccine research: 10 years later.

    PubMed

    Kaufmann, Stefan H E

    2011-08-01

    Tuberculosis is one of the most deadly infectious diseases. The situation is worsening because of co-infection with HIV and increased occurrence of drug resistance. Although the BCG vaccine has been in use for 90 years, protection is insufficient; new vaccine candidates are therefore needed. 12 potential vaccines have gone into clinical trials. Ten are aimed at prevention of tuberculosis and, of these, seven are subunit vaccines either as adjuvanted or viral-vectored antigens. These vaccines would be boosters of BCG-prime vaccination. Three vaccines are recombinant BCG constructs-possible replacements for BCG. Additional vaccine candidates will enter clinical trials in the near future, including postexposure vaccines for individuals with latent infection. In the long term, vaccines that prevent or eradicate infection with Mycobacterium tuberculosis would be the best possible option. Improved knowledge of immunology, molecular microbiology, cell biology, biomics, and biotechnology has paved the way towards an effective and safe vaccine against tuberculosis. The pipeline of new vaccine candidates from preclinical to clinical testing could be accelerated by development of biomarkers that can predict the clinical outcome of tuberculosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The state-of-the-art of approved and under-development cholera vaccines.

    PubMed

    Pastor, M; Pedraz, J L; Esquisabel, A

    2013-08-28

    Cholera remains a huge public health problem. Although in 1894, the first cholera vaccination was reported, an ideal vaccine that meets all the requirements of the WHO has not yet been produced. Among the different approaches used for cholera vaccination, attenuated vaccines represent a major category; these vaccines are beneficial in being able to induce a strong protective response after a single administration. However, they have possible negative effects on immunocompromised patient populations. Both the licensed CVD103-HgR and other vaccine approaches under development are detailed in this article, such as the Vibrio cholerae 638 vaccine candidate, Peru-15 or CholeraGarde(®) and the VA1.3, VA1.4, IEM 108 VCUSM2 and CVD 112 vaccine candidates. In another strategy, killed V. cholerae vaccines have been developed, including Dukoral(®), mORCAX(®) and Sanchol™. The killed vaccines are already sold, and they have successfully demonstrated their potential to protect populations in endemic areas or after natural disasters. However, these vaccines do not fulfill all the requirements of the WHO because they fail to confer long-term protection, are not suitable for children under two years, require more than a single dose and require a distribution chain with cold storage. Lastly, other vaccine strategies under development are summarized in this review. Among these strategies, vaccine candidates based on alternative drug delivery systems that have been reported lately in the literature are discussed, such as microparticles, proteoliposomes, LPS subunits, DNA vaccines and rice seeds containing toxin subunits. Preliminary results reported by many groups working on alternative delivery systems for cholera vaccines demonstrate the importance of new technologies in addressing old problems such as cholera. Although a fully ideal vaccine has not yet been designed, promising steps have been reported in the literature resulting in hope for the fight against cholera

  5. Challenges in reducing dengue burden; diagnostics, control measures and vaccines.

    PubMed

    Lam, Sai Kit

    2013-09-01

    Dengue is a major public health concern worldwide, with the number of infections increasing globally. The illness imposes the greatest economic and human burden on developing countries that have limited resources to deal with the scale of the problem. No cure for dengue exists; treatment is limited to rehydration therapy, and with vector control strategies proving to be relatively ineffective, a vaccine is an urgent priority. Despite the numerous challenges encountered in the development of a dengue vaccine, several vaccine candidates have shown promise in clinical development and it is believed that a vaccination program would be at least as cost-effective as current vector control programs. The lead candidate vaccine is a tetravalent, live attenuated, recombinant vaccine, which is currently in Phase III clinical trials. Vaccine introduction is a complex process that requires consideration and is discussed here. This review discusses the epidemiology, burden and pathogenesis of dengue, as well as the vaccine candidates currently in clinical development.

  6. Construction of a Salmonella Gallinarum ghost as a novel inactivated vaccine candidate and its protective efficacy against fowl typhoid in chickens

    PubMed Central

    2012-01-01

    In order to develop a novel, safe and immunogenic fowl typhoid (FT) vaccine candidate, a Salmonella Gallinarum ghost with controlled expression of the bacteriophage PhiX174 lysis gene E was constructed using pMMP99 plasmid in this study. The formation of the Salmonella Gallinarum ghost with tunnel formation and loss of cytoplasmic contents was observed by scanning electron microscopy and transmission electron microscopy. No viable cells were detectable 24 h after the induction of gene E expression by an increase in temperature from 37 °C to 42 °C. The safety and protective efficacy of the Salmonella Gallinarum ghost vaccine was tested in chickens that were divided into four groups: group A (non-immunized control), group B (orally immunized), group C (subcutaneously immunized) and group D (intramuscularly immunized). The birds were immunized at day 7 of age. None of the immunized animals showed any adverse reactions such as abnormal behavior, mortality, or signs of FT such as anorexia, depression, or diarrhea. These birds were subsequently challenged with a virulent Salmonella Gallinarum strain at 3 weeks post-immunization (wpi). Significant protection against the virulent challenge was observed in all immunized groups based on mortality and post-mortem lesions compared to the non-immunized control group. In addition, immunization with the Salmonella Gallinarum ghosts induced significantly high systemic IgG response in all immunized groups. Among the groups, orally-vaccinated group B showed significantly higher levels of secreted IgA. A potent antigen-specific lymphocyte activation response along with significantly increased percentages of CD4+ and CD8+ T lymphocytes found in all immunized groups clearly indicate the induction of cellular immune responses. Overall, these findings suggest that the newly constructed Salmonella Gallinarum ghost appears to be a safe, highly immunogenic, and efficient non-living bacterial vaccine candidate that protects against

  7. Advances and challenges in malaria vaccine development.

    PubMed

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  8. Investigation into the misincorporation of norleucine into a recombinant protein vaccine candidate.

    PubMed

    Ni, Joyce; Gao, Meg; James, Andrew; Yao, Jiansheng; Yuan, Tao; Carpick, Bruce; D'Amore, Tony; Farrell, Patrick

    2015-06-01

    A high level of norleucine misincorporation was detected in a recombinant methionine-rich protein vaccine candidate expressed in E. coli K12. An investigation was conducted to evaluate a simple remediation strategy to reduce norleucine misincorporation and to determine if the phenomenon was either (a) due to the depletion of methionine during fermentation, (b) a result of the cultivation environment, or (c) a strain-specific effect. While supplementation with exogenous methionine improved product quality, the undesirable biosynthesis of non-standard amino acids such as norleucine and norvaline persisted. In contrast, non-standard amino acid biosynthesis was quickly minimized upon selection of an appropriate fed-batch process control strategy, fermentation medium, and nutrient feed. By expressing the same protein in E. coli BL21(DE3), it was determined that the biosynthesis of norleucine and norvaline, and the misincorporation of norleucine into the protein were primarily attributed to the use of E. coli K12 as the host for protein expression.

  9. A Randomized, Controlled Safety, and Immunogenicity Trial of the M72/AS01 Candidate Tuberculosis Vaccine in HIV-Positive Indian Adults.

    PubMed

    Kumarasamy, Nagalingeswaran; Poongulali, Selvamuthu; Bollaerts, Anne; Moris, Philippe; Beulah, Faith Esther; Ayuk, Leo Njock; Demoitié, Marie-Ange; Jongert, Erik; Ofori-Anyinam, Opokua

    2016-01-01

    Human immunodeficiency virus (HIV)-associated tuberculosis is a major public health threat. We evaluated the safety and immunogenicity of the candidate tuberculosis vaccine M72/AS01 in HIV-positive and HIV-negative Indian adults.Randomized, controlled observer-blind trial (NCT01262976).We assigned 240 adults (1:1:1) to antiretroviral therapy (ART)-stable, ART-naive, or HIV-negative cohorts. Cohorts were randomized 1:1 to receive M72/AS01 or placebo following a 0, 1-month schedule and followed for 12 months (time-point M13). HIV-specific and laboratory safety parameters, adverse events (AEs), and M72-specific T-cell-mediated and humoral responses were evaluated.Subjects were predominantly QuantiFERON-negative (60%) and Bacille Calmette-Guérin-vaccinated (73%). Seventy ART-stable, 73 ART-naive, and 60 HIV-negative subjects completed year 1. No vaccine-related serious AEs or ART-regimen adjustments, or clinically relevant effects on laboratory parameters, HIV-1 viral loads or CD4 counts were recorded. Two ART-naive vaccinees died of vaccine-unrelated diseases. M72/AS01 induced polyfunctional M72-specific CD4 T-cell responses (median [interquartile range] at 7 days postdose 2: ART-stable, 0.9% [0.7-1.5]; ART-naive, 0.5% [0.2-1.0]; and HIV-negative, 0.6% [0.4-1.1]), persisting at M13 (0.4% [0.2-0.5], 0.09% [0.04-0.2], and 0.1% [0.09-0.2], respectively). Median responses were higher in the ART-stable cohort versus ART-naive cohort from day 30 onwards (P ≤ 0.015). Among HIV-positive subjects (irrespective of ART-status), median responses were higher in QuantiFERON-positive versus QuantiFERON-negative subjects up to day 30 (P ≤ 0.040), but comparable thereafter. Cytokine-expression profiles were comparable between cohorts after dose 2. At M13, M72-specific IgG responses were higher in ART-stable and HIV-negative vaccinees versus ART-naive vaccinees (P ≤ 0.001).M72/AS01 was well-tolerated and immunogenic in this population of ART-stable and ART-naive HIV

  10. A Randomized, Controlled Safety, and Immunogenicity Trial of the M72/AS01 Candidate Tuberculosis Vaccine in HIV-Positive Indian Adults

    PubMed Central

    Kumarasamy, Nagalingeswaran; Poongulali, Selvamuthu; Bollaerts, Anne; Moris, Philippe; Beulah, Faith Esther; Ayuk, Leo Njock; Demoitié, Marie-Ange; Jongert, Erik; Ofori-Anyinam, Opokua

    2016-01-01

    Abstract Human immunodeficiency virus (HIV)-associated tuberculosis is a major public health threat. We evaluated the safety and immunogenicity of the candidate tuberculosis vaccine M72/AS01 in HIV-positive and HIV-negative Indian adults. Randomized, controlled observer-blind trial (NCT01262976). We assigned 240 adults (1:1:1) to antiretroviral therapy (ART)-stable, ART-naive, or HIV-negative cohorts. Cohorts were randomized 1:1 to receive M72/AS01 or placebo following a 0, 1-month schedule and followed for 12 months (time-point M13). HIV-specific and laboratory safety parameters, adverse events (AEs), and M72-specific T-cell-mediated and humoral responses were evaluated. Subjects were predominantly QuantiFERON-negative (60%) and Bacille Calmette–Guérin-vaccinated (73%). Seventy ART-stable, 73 ART-naive, and 60 HIV-negative subjects completed year 1. No vaccine-related serious AEs or ART-regimen adjustments, or clinically relevant effects on laboratory parameters, HIV-1 viral loads or CD4 counts were recorded. Two ART-naive vaccinees died of vaccine-unrelated diseases. M72/AS01 induced polyfunctional M72-specific CD4+ T-cell responses (median [interquartile range] at 7 days postdose 2: ART-stable, 0.9% [0.7–1.5]; ART-naive, 0.5% [0.2–1.0]; and HIV-negative, 0.6% [0.4–1.1]), persisting at M13 (0.4% [0.2–0.5], 0.09% [0.04–0.2], and 0.1% [0.09–0.2], respectively). Median responses were higher in the ART-stable cohort versus ART-naive cohort from day 30 onwards (P ≤ 0.015). Among HIV-positive subjects (irrespective of ART-status), median responses were higher in QuantiFERON-positive versus QuantiFERON-negative subjects up to day 30 (P ≤ 0.040), but comparable thereafter. Cytokine-expression profiles were comparable between cohorts after dose 2. At M13, M72-specific IgG responses were higher in ART-stable and HIV-negative vaccinees versus ART-naive vaccinees (P ≤ 0.001). M72/AS01 was well-tolerated and immunogenic in this population of

  11. Vaccination with Eimeria tenella elongation factor-1α recombinant protein induces protective immunity against E. tenella and E. maxima infections.

    PubMed

    Lin, Rui-Qing; Lillehoj, Hyun S; Lee, Seung Kyoo; Oh, Sungtaek; Panebra, Alfredo; Lillehoj, Erik P

    2017-08-30

    Avian coccidiosis is caused by multiple species of the apicomplexan protozoan, Eimeria, and is one of the most economically devastating enteric diseases for the poultry industry worldwide. Host immunity to Eimeria infection, however, is relatively species-specific. The ability to immunize chickens against different species of Eimeria using a single vaccine will have a major beneficial impact on commercial poultry production. In this paper, we describe the molecular cloning, purification, and vaccination efficacy of a novel Eimeria vaccine candidate, elongation factor-1α (EF-1α). One day-old broiler chickens were given two subcutaneous immunizations one week apart with E. coli-expressed E. tenella recombinant (r)EF-1α protein and evaluated for protection against challenge infection with E. tenella or E. maxima. rEF-1α-vaccinated chickens exhibited increased body weight gains, decreased fecal oocyst output, and greater serum anti-EF-1α antibody levels following challenge infection with either E. tenella or E. maxima compared with unimmunized controls. Vaccination with EF-1α may represent a new approach to inducing cross-protective immunity against avian coccidiosis in the field. Published by Elsevier B.V.

  12. Virological and immunological outcome of treatment interruption in HIV-1-infected subjects vaccinated with MVA-B

    PubMed Central

    Noguera-Julian, Marc; Bellido, Rocío; Puertas, Maria C.; Carrillo, Jorge; Rodriguez, C.; Perez-Alvarez, Núria; Cobarsí, Patricia; Gomez, Carmen E.; Esteban, Mariano; Jímenez, Jose Luis; García, Felipe; Blanco, Julià; Martinez-Picado, Javier; Paredes, Roger

    2017-01-01

    The most relevant endpoint in therapeutic HIV vaccination is the assessment of time to viral rebound or duration of sustained control of low-level viremia upon cART treatment cessation. Structured treatment interruptions (STI) are however not without risk to the patient and reliable predictors of viral rebound/control after therapeutic HIV-1 vaccination are urgently needed to ensure patient safety and guide therapeutic vaccine development. Here, we integrated immunological and virological parameters together with viral rebound dynamics after STI in a phase I therapeutic vaccine trial of a polyvalent MVA-B vaccine candidate to define predictors of viral control. Clinical parameters, proviral DNA, host HLA genetics and measures of humoral and cellular immunity were evaluated. A sieve effect analysis was conducted comparing pre-treatment viral sequences to breakthrough viruses after STI. Our results show that a reduced proviral HIV-1 DNA at study entry was independently associated with two virological parameters, delayed HIV-1 RNA rebound (p = 0.029) and lower peak viremia after treatment cessation (p = 0.019). Reduced peak viremia was also positively correlated with a decreased number of HLA class I allele associated polymorphisms in Gag sequences in the rebounding virus population (p = 0.012). Our findings suggest that proviral DNA levels and the number of HLA-associated Gag polymorphisms may have an impact on the clinical outcome of STI. Incorporation of these parameters in future therapeutic vaccine trials may guide refined immunogen design and help conduct safer STI approaches. PMID:28953921

  13. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    PubMed

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  14. Novel CTL epitopes identified through a Y. pestis proteome-wide analysis in the search for vaccine candidates against plague.

    PubMed

    Zvi, Anat; Rotem, Shahar; Zauberman, Ayelet; Elia, Uri; Aftalion, Moshe; Bar-Haim, Erez; Mamroud, Emanuelle; Cohen, Ofer

    2017-10-20

    The causative agent of Plague, Yersinia pestis, is a highly virulent pathogen and a potential bioweapon. Depending on the route of infection, two prevalent occurrences of the disease are known, bubonic and pneumonic. The latter has a high fatality rate. In the absence of a licensed vaccine, intense efforts to develop a safe and efficacious vaccine have been conducted, and humoral-driven subunit vaccines containing the F1 and LcrV antigens are currently under clinical trials. It is well known that a cellular immune response might have an essential additive value to immunity and protection against Y. pestis infection. Nevertheless, very few documented epitopes eliciting a protective T-cell response have been reported. Here, we present a combined high throughput computational and experimental effort towards identification of CD8 T-cell epitopes. All 4067 proteins of Y. pestis were analyzed with state-of-the-art recently developed prediction algorithms aimed at mapping potential MHC class I binders. A compilation of the results obtained from several prediction methods revealed a total of 238,000 peptide candidates, which necessitated downstream filtering criteria. Our previously established and proven approach for enrichment of true positive CTL epitopes, which relies on mapping clusters rich in tandem or overlapping predicted MHC binders ("hotspots"), was applied, as well as considerations of predicted binding affinity. A total of 1532 peptides were tested for their ability to elicit a specific T-cell response by following the production of IFNγ from splenocytes isolated from vaccinated mice. Altogether, the screen resulted in 178 positive responders (11.8%), all novel Y. pestis CTL epitopes. These epitopes span 113 Y. pestis proteins. Substantial enrichment of membrane-associated proteins was detected for epitopes selected from hotspots of predicted MHC binders. These results considerably expand the repertoire of known CTL epitopes in Y. pestis and pave the way to

  15. Sieve analysis in HIV-1 vaccine efficacy trials

    PubMed Central

    Edlefsen, Paul T.; Gilbert, Peter B.; Rolland, Morgane

    2013-01-01

    Purpose of review The genetic characterization of HIV-1 breakthrough infections in vaccine and placebo recipients offers new ways to assess vaccine efficacy trials. Statistical and sequence analysis methods provide opportunities to mine the mechanisms behind the effect of an HIV vaccine. Recent findings The release of results from two HIV-1 vaccine efficacy trials, Step/HVTN-502 and RV144, led to numerous studies in the last five years, including efforts to sequence HIV-1 breakthrough infections and compare viral characteristics between the vaccine and placebo groups. Novel genetic and statistical analysis methods uncovered features that distinguished founder viruses isolated from vaccinees from those isolated from placebo recipients, and identified HIV-1 genetic targets of vaccine-induced immune responses. Summary Studies of HIV-1 breakthrough infections in vaccine efficacy trials can provide an independent confirmation to correlates of risk studies, as they take advantage of vaccine/placebo comparisons while correlates of risk analyses are limited to vaccine recipients. Through the identification of viral determinants impacted by vaccine-mediated host immune responses, sieve analyses can shed light on potential mechanisms of vaccine protection. PMID:23719202

  16. Technical Transformation of Biodefense Vaccines

    PubMed Central

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  17. Vaccines in a hurry.

    PubMed

    Søborg, Christian; Mølbak, Kåre; Doherty, T Mark; Ulleryd, Peter; Brooks, Tim; Coenen, Claudine; van der Zeijst, Ben

    2009-05-26

    Preparing populations for health threats, including threats from new or re-emerging infectious diseases is recognised as an important public health priority. The development, production and application of emergency vaccinations are the important measures against such threats. Vaccines are cost-effective tools to prevent disease, and emergency vaccines may be the only means to prevent a true disaster for global society in the event of a new pandemic with potential to cause morbidity and mortality comparable to the Spanish flu, the polio epidemics in the 1950s, or the SARS outbreak in 2003 if its spread had not been contained in time. Given the early recognition of a new threat, and given the advances of biotechnology, vaccinology and information systems, it is not an unrealistic goal to have promising prototype vaccine candidates available in a short time span following the identification of a new infectious agent; this is based on the assumption that the emerging infection is followed by natural immunity. However, major bottlenecks for the deployment of emergency vaccine are lack of established systems for fast-track regulatory approval of such candidates and limited international vaccine production capacity. In the present discussion paper, we propose mechanisms to facilitate development of emergency vaccines in Europe by focusing on public-private scientific partnerships, fast-track approval of emergency vaccine by regulatory agencies and proposing incentives for emergency vaccine production in private vaccine companies.

  18. Developing a Questionnaire on Technology-Integrated Mathematics Instruction: A Case Study of the AMA Training Course in Xinjiang and Taiwan

    ERIC Educational Resources Information Center

    Lee, Chun-Yi; Chen, Ming-Jang

    2016-01-01

    This study describes the development of a questionnaire to evaluate how teachers perceive technology-integrated math instruction. Following an AMA (Activate Mind Attention) training course, we surveyed 322 teachers to understand their views on the implantation of AMA in the classroom. We also analyzed differences in viewpoints between teachers…

  19. Status of vaccine research and development of vaccines for tuberculosis.

    PubMed

    Evans, Thomas G; Schrager, Lew; Thole, Jelle

    2016-06-03

    TB is now the single pathogen that causes the greatest mortality in the world, at over 1.6 million deaths each year. The widely used the 90 year old BCG vaccine appears to have minimal impact on the worldwide incidence despite some efficacy in infants. Novel vaccine development has accelerated in the past 15 years, with 15 candidates entering human trials; two vaccines are now in large-scale efficacy studies. Modeling by three groups has consistently shown that mass vaccination that includes activity in the latently infected population, especially adolescents and young adults, will likely have the largest impact on new disease transmission. At present the field requires better validated animal models, better understanding of a correlate of immunity, new cost-effective approaches to Proof of Concept trials, and increased appreciation by the public health and scientific community for the size of the problem and the need for a vaccine. Such a vaccine is likely to also play a role in the era of increasing antibiotic resistance. Ongoing efforts and studies are working to implement these needs over the next 5 years, which will lead to an understanding that will increase the likelihood of a successful TB vaccine. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  20. Chemoprophylaxis with sporozoite immunization in P. knowlesi rhesus monkeys confers protection and elicits sporozoite-specific memory T cells in the liver

    PubMed Central

    Spring, Michele D.; Yongvanitchit, Kosol; Kum-Arb, Utaiwan; Limsalakpetch, Amporn; Im-Erbsin, Rawiwan; Ubalee, Ratawan; Vanachayangkul, Pattaraporn; Remarque, Edmond J.; Angov, Evelina; Smith, Philip L.; Saunders, David L.

    2017-01-01

    Whole malaria sporozoite vaccine regimens are promising new strategies, and some candidates have demonstrated high rates of durable clinical protection associated with memory T cell responses. Little is known about the anatomical distribution of memory T cells following whole sporozoite vaccines, and immunization of nonhuman primates can be used as a relevant model for humans. We conducted a chemoprophylaxis with sporozoite (CPS) immunization in P. knowlesi rhesus monkeys and challenged via mosquito bites. Half of CPS immunized animals developed complete protection, with a marked delay in parasitemia demonstrated in the other half. Antibody responses to whole sporozoites, CSP, and AMA1, but not CelTOS were detected. Peripheral blood T cell responses to whole sporozoites, but not CSP and AMA1 peptides were observed. Unlike peripheral blood, there was a high frequency of sporozoite-specific memory T cells observed in the liver and bone marrow. Interestingly, sporozoite-specific CD4+ and CD8+ memory T cells in the liver highly expressed chemokine receptors CCR5 and CXCR6, both of which are known for liver sinusoid homing. The majority of liver sporozoite-specific memory T cells expressed CD69, a phenotypic marker of tissue-resident memory (TRM) cells, which are well positioned to rapidly control liver-stage infection. Vaccine strategies that aim to elicit large number of liver TRM cells may efficiently increase the efficacy and durability of response against pre-erythrocytic parasites. PMID:28182750

  1. [Construction and eukaryotic expression of PVAX1-hPV58mE6E7fcGB composite gene vaccine].

    PubMed

    Wang, He; Yu, Jiyun; Li, Li

    2013-10-01

    To construct and express a composite gene vaccine for human papillomavirus 58(HPV58)-associated cervical cancer, we inserted HPV58mE6E7 fusion gene into pCI-Fc-GPI eukaryotic expression vector, constructing a recombinant plasmid named pCI-sig-HPV58mE6E7-Fc-GPI. Then we further inserted fragment of sig-HPV58mE6E7Fc-GPI into the novel vaccine vector PVAX1-IRES-GM/B7, constructing PVAX1-HPV58mE6E7FcGB composite gene vaccine. PVAX1-HPV58mE6E7FcGB vaccine was successfully constructed and identified by restriction endonuclease and sequencing analysis. Eukaryotic expression of fusion antigen sig-HPV58mE6E7-Fc-GPI and molecular ad-juvant GM-CSF and B7. 1 were proved to be realized at the same time by flow cytometry and immunofluorescence. So PVAX1-HPV58mE6E7FcGB can be taken as a candidate of therapeutic vaccine for HPV58-associated tumors and their precancerous transformations.

  2. [Overview of the Ebola vaccines in pre-clinical and clinical development].

    PubMed

    Buchy, P

    2016-10-01

    The Ebola epidemic that occurred in West Africa between 2013-2016 significantly accelerated the research and development of Ebola vaccines. Few dozens of clinical trials have been recently conducted leading to opportunities to test several new vaccine candidates. Other vaccines are still in early development phases (table 1). This paper provides an overview of the new developments in that area.

  3. Live Respiratory Syncytial Virus (RSV) Vaccine Candidate Containing Stabilized Temperature-Sensitivity Mutations Is Highly Attenuated in RSV-Seronegative Infants and Children.

    PubMed

    Buchholz, Ursula J; Cunningham, Coleen K; Muresan, Petronella; Gnanashanmugam, Devasena; Sato, Paul; Siberry, George K; Rexroad, Vivian; Valentine, Megan; Perlowski, Charlotte; Schappell, Elizabeth; Thumar, Bhagvinji; Luongo, Cindy; Barr, Emily; Aziz, Mariam; Yogev, Ram; Spector, Stephen A; Collins, Peter L; McFarland, Elizabeth J; Karron, Ruth A

    2018-04-11

    Respiratory syncytial virus (RSV) is the most important viral cause of severe respiratory illness in young children and lacks a vaccine. RSV cold-passage/stabilized 2 (RSVcps2) is a modification of a previously evaluated vaccine candidate in which 2 major attenuating mutations have been stabilized against deattenuation. RSV-seronegative 6-24-month-old children received an intranasal dose of 105.3 plaque-forming units (PFU) of RSVcps2 (n = 34) or placebo (n = 16) (International Maternal Pediatric Adolescent AIDS Clinical Trials protocol P1114 and companion protocol CIR285). RSV serum neutralizing antibody titers before and 56 days after vaccination, vaccine virus infectivity (defined as vaccine virus shedding detectable in nasal wash and/or a ≥4-fold rise in serum antibodies), reactogenicity, and genetic stability were assessed. During the following RSV transmission season, participants were monitored for respiratory illness, with serum antibody titers measured before and after the season. A total of 85% of vaccinees were infected with RSVcps2 (median peak titer, 0.5 log10 PFU/mL by culture and 2.9 log10 copies/mL by polymerase chain reaction analysis); 77% shed vaccine virus, and 59% developed a ≥4-fold rise in RSV-serum neutralizing antibody titers. Respiratory tract and/or febrile illness occurred at the same rate (50%) in the vaccine and placebo groups. Deattenuation was not detected at either of 2 stabilized mutation sites. RSVcps2 was well tolerated and moderately immunogenic and had increased genetic stability in 6-24-month-old RSV-seronegative children. NCT01852266 and NCT01968083.

  4. Clinical experience with respiratory syncytial virus vaccines.

    PubMed

    Piedra, Pedro A

    2003-02-01

    Respiratory syncytial virus (RSV) infection is at times associated with life-threatening lower respiratory tract illness in infancy. Severe infection during the first year of life may be an important risk factor or indicator for the development of asthma in early childhood. Severe infections primarily occur in healthy infants, and young infants and children with specific risk factors. However, RSV causes respiratory infections in all age groups. Indeed it is now recognized that RSV disease is responsible for significant morbidity and mortality in the geriatric population. RSV infection remains difficult to treat, and prevention is a worldwide goal. For this reason there has been an intensive effort to develop an effective and safe RSV vaccine. Initial infection with RSV affords limited protection to reinfection, yet repeated episodes decrease the risk for lower respiratory tract illness. In the 20 years from 1960 to 1980, trials of several candidate RSV vaccines failed to attain the desired safety and protection against natural infection. Some vaccine types either failed to elicit immunogenicity, as with the live subcutaneous vaccine, or resulted in exaggerated disease on natural exposure to the virus, as with the formalin-inactivated (FI) type. Currently vaccine candidates are being developed based on the molecular virology of RSV. Recent formulations of candidate RSV vaccines have focused on subunit vaccines [such as purified fusion protein (PFP)], subunit vaccines combined with nonspecific immune activating adjuvants, live attenuated vaccines (including cold passaged, temperature-sensitive or cpts mutants), genetically engineered live attenuated vaccines and polypeptide vaccines.

  5. Phase I evaluation of delta virG Shigella sonnei live, attenuated, oral vaccine strain WRSS1 in healthy adults.

    PubMed

    Kotloff, Karen L; Taylor, David N; Sztein, Marcelo B; Wasserman, Steven S; Losonsky, Genevieve A; Nataro, James P; Venkatesan, Malabi; Hartman, Antoinette; Picking, William D; Katz, David E; Campbell, James D; Levine, Myron M; Hale, Thomas L

    2002-04-01

    We conducted a phase I trial with healthy adults to evaluate WRSS1, a live, oral Delta virG Shigella sonnei vaccine candidate. In a double-blind, randomized, dose-escalating fashion, inpatient volunteers received a single dose of either placebo (n = 7) or vaccine (n = 27) at 3 x 10(3) CFU (group 1), 3 x 10(4) CFU (group 2), 3 x 10(5) CFU (group 3), or 3 x 10(6) CFU (group 4). The vaccine was generally well tolerated, although a low-grade fever or mild diarrhea occurred in six (22%) of the vaccine recipients. WRSS1 was recovered from the stools of 50 to 100% of the vaccinees in each group. The geometric mean peak anti-lipopolysaccharide responses in groups 1 to 4, respectively, were 99, 39, 278, and 233 for immunoglobulin (IgA) antibody-secreting cell counts; 401, 201, 533, and 284 for serum reciprocal IgG titers; and 25, 3, 489, and 1,092 for fecal IgA reciprocal titers. Postvaccination increases in gamma interferon production in response to Shigella antigens occurred in some volunteers. We conclude that WRSS1 vaccine is remarkably immunogenic in doses ranging from 10(3) to 10(6) CFU but elicits clinical reactions that must be assessed in further volunteer trials.

  6. Phase I Evaluation of ΔvirG Shigella sonnei Live, Attenuated, Oral Vaccine Strain WRSS1 in Healthy Adults

    PubMed Central

    Kotloff, Karen L.; Taylor, David N.; Sztein, Marcelo B.; Wasserman, Steven S.; Losonsky, Genevieve A.; Nataro, James P.; Venkatesan, Malabi; Hartman, Antoinette; Picking, William D.; Katz, David E.; Campbell, James D.; Levine, Myron M.; Hale, Thomas L.

    2002-01-01

    We conducted a phase I trial with healthy adults to evaluate WRSS1, a live, oral ΔvirG Shigella sonnei vaccine candidate. In a double-blind, randomized, dose-escalating fashion, inpatient volunteers received a single dose of either placebo (n = 7) or vaccine (n = 27) at 3 × 103 CFU (group 1), 3 × 104 CFU (group 2), 3 × 105 CFU (group 3), or 3 × 106 CFU (group 4). The vaccine was generally well tolerated, although a low-grade fever or mild diarrhea occurred in six (22%) of the vaccine recipients. WRSS1 was recovered from the stools of 50 to 100% of the vaccinees in each group. The geometric mean peak anti-lipopolysaccharide responses in groups 1 to 4, respectively, were 99, 39, 278, and 233 for immunoglobulin (IgA) antibody-secreting cell counts; 401, 201, 533, and 284 for serum reciprocal IgG titers; and 25, 3, 489, and 1,092 for fecal IgA reciprocal titers. Postvaccination increases in gamma interferon production in response to Shigella antigens occurred in some volunteers. We conclude that WRSS1 vaccine is remarkably immunogenic in doses ranging from 103 to 106 CFU but elicits clinical reactions that must be assessed in further volunteer trials. PMID:11895966

  7. Immune efficacy of an adenoviral vector-based swine influenza vaccine against antigenically distinct H1N1 strains in mice.

    PubMed

    Wu, Yunpu; Yang, Dawei; Xu, Bangfeng; Liang, Wenhua; Sui, Jinyu; Chen, Yan; Yang, Huanliang; Chen, Hualan; Wei, Ping; Qiao, Chuanling

    2017-11-01

    Avian-like H1N1 swine influenza viruses are prevalent in pigs and have occasionally crossed the species barrier and infected humans, which highlights the importance of preventing swine influenza. Human adenovirus serotype 5 (Ad5) has been tested in human influenza vaccine clinical trials and has exhibited a reliable safety profile. Here, we generated a replication-defective, recombinant adenovirus (designated as rAd5-avH1HA) expressing the hemagglutinin gene of an avian-like H1N1 virus (A/swine/Zhejiang/199/2013, ZJ/199/13). Using a BALB/c mouse model, we showed that a two-dose intramuscular administration of recombinant rAd5-avH1HA induced high levels of hemagglutination inhibition antibodies and prevented homologous and heterologous H1N1 virus-induced weight loss, as well as viral replication in the nasal turbinates and lungs of mice. Furthermore, a prime-boost immunization strategy trial with a recombinant plasmid (designated as pCAGGS-HA) followed by rAd5-avH1HA vaccine provided effective protection against homologous and heterologous H1N1 virus infection in mice. These results indicate that rAd5-avH1HA is an efficacious genetically engineered vaccine candidate against H1N1 swine influenza. Future studies should examine its immune efficacy in pigs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterization of a candidate tetravalent vaccine based on 2'-O-methyltransferase mutants

    PubMed Central

    Züst, Roland; Li, Shi-Hua; Xie, Xuping; Velumani, Sumathy; Chng, Melissa; Toh, Ying-Xiu; Zou, Jing; Dong, Hongping; Shan, Chao; Pang, Jassia; Qin, Cheng-Feng; Newell, Evan W.; Shi, Pei-Yong

    2018-01-01

    Dengue virus (DENV) is one of the most widespread arboviruses. The four DENV serotypes infect about 400 million people every year, causing 96 million clinical dengue cases, of which approximately 500’000 are severe and potentially life-threatening. The only licensed vaccine has a limited efficacy and is only recommended in regions with high endemicity. We previously reported that 2’-O-methyltransferase mutations in DENV-1 and DENV-2 block their capacity to inhibit type I IFNs and render the viruses attenuated in vivo, making them amenable as vaccine strains; here we apply this strategy to all four DENV serotypes to generate a tetravalent, non-chimeric live-attenuated dengue vaccine. 2’-O-methyltransferase mutants of all four serotypes are highly sensitive to type I IFN inhibition in human cells. The tetravalent formulation is attenuated and immunogenic in mice and cynomolgus macaques and elicits a response that protects from virus challenge. These results show the potential of 2’-O-methyltransferase mutant viruses as a safe, tetravalent, non-chimeric dengue vaccine. PMID:29298302

  9. Progress and prospects for blood-stage malaria vaccines

    PubMed Central

    Miura, Kazutoyo

    2016-01-01

    ABSTRACT There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part. PMID:26760062

  10. Evaluation of protective efficacy of three novel H3N2 canine influenza vaccines.

    PubMed

    Tu, Liqing; Zhou, Pei; Li, Lutao; Li, Xiuzhen; Hu, Renjun; Jia, Kun; Sun, Lingshuang; Yuan, Ziguo; Li, Shoujun

    2017-11-17

    Canine influenza virus (CIV) has the potential risk to spread in different areas and dog types. Thus, there is a growing need to develop an effective vaccine to control CIV disease. Here, we developed three vaccine candidates: 1) a recombinant pVAX1 vector expressing H3N2 CIV hemagglutinin (pVAX1-HA); 2) a live attenuated canine adenovirus type 2 expressing H3N2 CIV hemagglutinin (rCAV2-HA); and 3) an inactivated H3N2 CIV (A/canine/Guangdong/01/2006 (H3N2)). Mice received an initial intramuscular immunization that followed two booster injections at 2 and 4 weeks post-vaccination (wpv). The splenic lymphocytes were collected to assess the immune responses at 6 wpv. The protective efficacy was evaluated by challenging H3N2 CIV after vaccination (at 6 wpv). Our results demonstrated that all three vaccine candidates elicited cytokine and antibody responses in mice. The rCAV2-HA vaccine and the inactivated vaccine generated efficient protective efficacy in mice, whereas limited protection was provided by the pVAX1-HA DNA vaccine. Therefore, both the rCAV2-HA live recombinant virus and the inactivated CIV could be used as potential novel vaccines against H3N2CIV. This study provides guidance for choosing the most appropriate vaccine for the prevention and control of CIV disease.

  11. [Adverse effects of seasonal flu vaccine and new influenza A (H1N1) vaccine in health care workers].

    PubMed

    Torruella, Joan Inglés; Soto, Rosa Gil; Valls, Rosa Carreras; Lozano, Judit Valverde; Carreras, Dolors Benito; Cunillera, Arnau Besora

    2013-01-01

    To assess and compare adverse effects of Seasonal Influenza Vaccine (SIV) and new Influenza A(H1N1) Vaccine (AIV) in health care workers. Multicenter cross-sectional study in health care workers from acute care hospitals, primary health care centers, social centers, mental health centers and a geriatric hospital participating in the 2009 vaccination campaign. Self-administered questionnaires were sent to all workers vaccinated with SIV and/or AIV. 527 valid questionnaires were collected out of 1123 sent to SIV vaccinated workers (46.9%), and 241 out of 461 sent to AIV vaccinated workers (52.%%). Participant workers include 527 vaccinated only with SIV, 117 first vaccinated with SIV and later with AIV (SIV+AIV), and 125 vaccinated only with AIV. Overall, 18.4% (95%CI 15.1-21.7) of workers vaccinated only with SIV reported adverse effects, as compared to 45.3% (95I 36.3-54.3) reporting adverse effects to AIV in the SIV+AIV group and 46.4% (95%CI 37.7-55.1) of workers vaccinated only with AIV. In all participants the most common adverseeffect was a local reaction. Women wre more reactive to both SIV and AIV than men. In all age groups SIV vaccination alone caused fewer reactions that either AIV only or the combination of SIV+AIV, with the exception of workers below 29 years of age. AIV was associated with more reactions than SIV, with no differences observed in relation to administration sequence. There were differences by sex and age, but reactions always occurred more commonly with AIV. Copyright belongs to the Societat Catalana de Seguretat i Medicina del Treball.

  12. Ebola hemorrhagic Fever and the current state of vaccine development.

    PubMed

    Hong, Joo Eun; Hong, Kee-Jong; Choi, Woo Young; Lee, Won-Ja; Choi, Yeon Hwa; Jeong, Chung-Hyeon; Cho, Kwang-Il

    2014-12-01

    Current Ebola virus outbreak in West Africa already reached the total number of 1,323 including 729 deaths by July 31st. the fatality is around 55% in the southeastern area of Guinea, Sierra Leone, Liberia, and Nigeria. The number of patients with Ebola Hemorrhagic Fever (EHF) was continuously increasing even though the any effective therapeutics or vaccines has not been developed yet. The Ebola virus in Guinea showed 98% homology with Zaire Ebola Virus. Study of the pathogenesis of Ebola virus infection and assess of the various candidates of vaccine have been tried for a long time, especially in United States and some European countries. Even though the attenuated live vaccine and DNA vaccine containing Ebola viral genes were tested and showed efficacy in chimpanzees, those candidates still need clinical tests requiring much longer time than the preclinical development to be approved for the practical treatment. It can be expected to eradicate Ebola virus by a safe and efficient vaccine development similar to the case of smallpox virus which was extinguished from the world by the variola vaccine.

  13. Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine.

    PubMed

    Erova, Tatiana E; Rosenzweig, Jason A; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C; Kirtley, Michelle L; van Lier, Christina J; Telepnev, Maxim V; Motin, Vladimir L; Chopra, Ashok K

    2013-02-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1(-) strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1(-) mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1(-) CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.

  14. Evaluation of Protective Potential of Yersinia pestis Outer Membrane Protein Antigens as Possible Candidates for a New-Generation Recombinant Plague Vaccine

    PubMed Central

    Erova, Tatiana E.; Rosenzweig, Jason A.; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C.; Kirtley, Michelle L.; van Lier, Christina J.; Telepnev, Maxim V.; Motin, Vladimir L.

    2013-01-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1− strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1− mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1− CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains. PMID:23239803

  15. Influenza Virus Vaccines: Lessons from the 2009 H1N1 pandemic

    PubMed Central

    Broadbent, Andrew J.; Subbarao, Kanta

    2011-01-01

    Reflecting on the 2009 H1N1 pandemic, we summarize lessons regarding influenza vaccines that can be applied in the future. The two major challenges to vaccination during the 2009 H1N1 pandemic were timing and availability of vaccine. Vaccines were, however, well-tolerated and immunogenic, with inactivated vaccines containing 15μg of HA generally inducing antibody titers ≥1:40 in adults within 2 weeks of the administration of a single dose. Moreover, the use of oil-in-water adjuvants in Europe permitted dose- reduction, with vaccines containing as little as 3.75 or 7.5μg HA being immunogenic. Case-control studies demonstrated that monovalent 2009 H1N1 vaccines were effective in preventing infection with the 2009 H1N1 virus, but preliminary data suggests that it is important for individuals to be re-immunized annually. PMID:22125588

  16. Report 59 of the AMA Board of Trustees (A-96). Physician-assisted suicide. Reference Committee on Amendments to Constitution and Bylaws.

    PubMed

    1996-08-01

    This Board of Trustees report calls for reaffirmation of the position of the American Medical Association (AMA) in opposition to physicians assisting their patients in committing suicide. The AMA maintains that the appropriate step for physicians is not to assist a patient in death but to provide compassion and palliative care. In providing end-of-life care, the option of allowing physicians to intentionally cause the death of patients is a line that should not be crossed. This position is based on the historical role of physicians as advocates for healing. The report discusses AMA activity to design and implement a comprehensive physician education plan on end-of-life care in response to the House of Delegates' action in adopting Board of Trustees Report 48-I-95, "Quality Care at the End of Life." This plan will further the AMA's commitment that patients should receive high quality care during every stage of life, including the end of life. The goal of this educational campaign is to advance the medical culture by making palliative treatment and care directions based on values-based advance care planning the standard of care for meeting the needs of patients at the end of life. The basis for this activity will be the acknowledgment that physicians, while unable to always provide a cure, should always be able to relieve suffering, address the psychological needs of patients at the end of life, add value to remaining life, and help patients die with dignity. The report presents information on state legislative activities and judicial actions relating to physician-assisted suicide. The report also presents a discussion on the ethical under-pinnings against physician participation in patients' suicides. This report recommends that: the AMA reaffirm current policies 140.952 and 140.966 (AMA Policy Compendium), in accordance with Council on Ethical and Judicial Affairs Opinion 2.211 (opposition to physician-assisted suicide); the AMA initiate an educational campaign to

  17. Protective effect of A/H1N1 vaccination in immune-mediated disease--a prospectively controlled vaccination study.

    PubMed

    Adler, Sabine; Krivine, Anne; Weix, Janine; Rozenberg, Flore; Launay, Odile; Huesler, Juerg; Guillevin, Loïc; Villiger, Peter M

    2012-04-01

    To assess the 2009 influenza vaccine A/H1N1 on antibody response, side effects and disease activity in patients with immune-mediated diseases. Patients with RA, SpA, vasculitis (VAS) or CTD (n = 149) and healthy individuals (n = 40) received a single dose of adjuvanted A/H1N1 influenza vaccine. Sera were obtained before vaccination, and 3 weeks, 6 weeks and 6 months thereafter. A/H1N1 antibody titres were measured by haemagglutination inhibition (HAI) assay. Seroprotection was defined as specific antibody titre ≥ 1 : 40, seroconversion as 4-fold increase in antibody titre. Titres increased significantly in patients and controls with a maximum at Week 3, declining to levels below protection at Month 6 (P < 0.001). Seroprotection was more frequently reached in SpA and CTD than in RA and VAS (80 and 82% and 57 and 47%, respectively). There was a significantly negative impact by MTX (P < 0.001), rituximab (P = 0.0031) and abatacept (P = 0.045). Other DMARDs, glucocorticoids and TNF blockers did not significantly suppress response (P = 0.06, 0.11 and 0.81, respectively). A linear decline in response was noted in patients with increasing age (P < 0.001). Disease reactivation possibly related to vaccination was suspected in 8/149 patients. No prolonged side effects or A/H1N1 infections were noted. The results show that vaccination response is a function of disease type, intensity and character of medication and age. A single injection of adjuvanted influenza vaccine is sufficient to protect a high percentage of patients. Therefore, differential vaccination recommendations might in the future reduce costs and increase vaccination acceptance.

  18. Working towards dengue as a vaccine-preventable disease: challenges and opportunities.

    PubMed

    Shrivastava, Ambuj; Tripathi, Nagesh K; Dash, Paban K; Parida, Manmohan

    2017-10-01

    Dengue is an emerging viral disease that affects the human population around the globe. Recent advancements in dengue virus research have opened new avenues for the development of vaccines against dengue. The development of a vaccine against dengue is a challenging task because any of the four serotypes of dengue viruses can cause disease. The development of a dengue vaccine aims to provide balanced protection against all the serotypes. Several dengue vaccine candidates are in the developmental stages such as inactivated, live attenuated, recombinant subunit, and plasmid DNA vaccines. Area covered: The authors provide an overview of the progress made in the development of much needed dengue vaccines. The authors include their expert opinion and their perspectives for future developments. Expert opinion: Human trials of a live attenuated tetravalent chimeric vaccine have clearly demonstrated its potential as a dengue vaccine. Other vaccine candidate molecules such as DENVax, a recombinant chimeric vaccine andTetraVax, are at different stages of development at this time. The authors believe that the novel strategies for testing and improving the immune response of vaccine candidates in humans will eventually lead to the development of a successful dengue vaccine in future.

  19. MALVAC 2012 scientific forum: accelerating development of second-generation malaria vaccines

    PubMed Central

    2012-01-01

    The World Health Organization (WHO) convened a malaria vaccines committee (MALVAC) scientific forum from 20 to 21 February 2012 in Geneva, Switzerland, to review the global malaria vaccine portfolio, to gain consensus on approaches to accelerate second-generation malaria vaccine development, and to discuss the need to update the vision and strategic goal of the Malaria Vaccine Technology Roadmap. This article summarizes the forum, which included reviews of leading Plasmodium falciparum vaccine candidates for pre-erythrocytic vaccines, blood-stage vaccines, and transmission-blocking vaccines. Other major topics included vaccine candidates against Plasmodium vivax, clinical trial site capacity development in Africa, trial design considerations for a second-generation malaria vaccine, adjuvant selection, and regulatory oversight functions including vaccine licensure. PMID:23140365

  20. Simultaneous Detection of Metalloprotease Activities in Complex Biological Samples Using the PrAMA (Proteolytic Activity Matrix Assay) Method.

    PubMed

    Conrad, Catharina; Miller, Miles A; Bartsch, Jörg W; Schlomann, Uwe; Lauffenburger, Douglas A

    2017-01-01

    Proteolytic Activity Matrix Analysis (PrAMA) is a method for simultaneously determining the activities of specific Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs) in complex biological samples. In mixtures of unknown proteases, PrAMA infers selective metalloproteinase activities by using a panel of moderately specific FRET-based polypeptide protease substrates in parallel, typically monitored by a plate-reader in a 96-well format. Fluorescence measurements are then quantitatively compared to a standard table of catalytic efficiencies measured from purified mixtures of individual metalloproteinases and FRET substrates. Computational inference of specific activities is performed with an easily used Matlab program, which is provided herein. Thus, we describe PrAMA as a combined experimental and mathematical approach to determine real-time metalloproteinase activities, which has previously been applied to live-cell cultures, cellular lysates, cell culture supernatants, and body fluids from patients.

  1. Evidence for Globally Shared, Cross-Reacting Polymorphic Epitopes in the Pregnancy-Associated Malaria Vaccine Candidate VAR2CSA▿

    PubMed Central

    Avril, Marion; Kulasekara, Bridget R.; Gose, Severin O.; Rowe, Chris; Dahlbäck, Madeleine; Duffy, Patrick E.; Fried, Michal; Salanti, Ali; Misher, Lynda; Narum, David L.; Smith, Joseph D.

    2008-01-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size (∼350 kDa) and extensive polymorphism may pose a challenge to vaccine development. In this study, rabbits were immunized with individual VAR2CSA Duffy binding-like (DBL) domains expressed in Pichia pastoris or var2csa plasmid DNA and sera were screened on different CSA-binding parasite lines. Rabbit antibodies to three recombinant proteins (DBL1, DBL3, and DBL6) and four plasmid DNAs (DBL1, DBL3, DBL5, and DBL6) reacted with homologous FCR3-CSA IEs. By comparison, antibodies to the DBL4 domain were unable to react with native VAR2CSA protein unless it was first partially proteolyzed with trypsin or chymotrypsin. To investigate the antigenic relationship of geographically diverse CSA-binding isolates, rabbit immune sera were screened on four heterologous CSA-binding lines from different continental origins. Antibodies did not target conserved epitopes exposed in all VAR2CSA alleles; however, antisera to several DBL domains cross-reacted on parasite isolates that had polymorphic loops in common with the homologous immunogen. This study demonstrates that VAR2CSA contains common polymorphic epitopes that are shared between geographically diverse CSA-binding lines. PMID:18250177

  2. Evidence for globally shared, cross-reacting polymorphic epitopes in the pregnancy-associated malaria vaccine candidate VAR2CSA.

    PubMed

    Avril, Marion; Kulasekara, Bridget R; Gose, Severin O; Rowe, Chris; Dahlbäck, Madeleine; Duffy, Patrick E; Fried, Michal; Salanti, Ali; Misher, Lynda; Narum, David L; Smith, Joseph D

    2008-04-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size ( approximately 350 kDa) and extensive polymorphism may pose a challenge to vaccine development. In this study, rabbits were immunized with individual VAR2CSA Duffy binding-like (DBL) domains expressed in Pichia pastoris or var2csa plasmid DNA and sera were screened on different CSA-binding parasite lines. Rabbit antibodies to three recombinant proteins (DBL1, DBL3, and DBL6) and four plasmid DNAs (DBL1, DBL3, DBL5, and DBL6) reacted with homologous FCR3-CSA IEs. By comparison, antibodies to the DBL4 domain were unable to react with native VAR2CSA protein unless it was first partially proteolyzed with trypsin or chymotrypsin. To investigate the antigenic relationship of geographically diverse CSA-binding isolates, rabbit immune sera were screened on four heterologous CSA-binding lines from different continental origins. Antibodies did not target conserved epitopes exposed in all VAR2CSA alleles; however, antisera to several DBL domains cross-reacted on parasite isolates that had polymorphic loops in common with the homologous immunogen. This study demonstrates that VAR2CSA contains common polymorphic epitopes that are shared between geographically diverse CSA-binding lines.

  3. Polymorphisms in HLA-DPB1 Are Associated With Differences in Rubella Virus–Specific Humoral Immunity After Vaccination

    PubMed Central

    Lambert, Nathaniel D.; Haralambieva, Iana H.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Pankratz, Vernon Shane; Poland, Gregory A.

    2015-01-01

    Vaccination with live attenuated rubella virus induces a strong immune response in most individuals. However, small numbers of subjects never reach or maintain protective antibody levels, and there is a high degree of variability in immune response. We have previously described genetic polymorphisms in HLA and other candidate genes that are associated with interindividual differences in humoral immunity to rubella virus. To expand our previous work, we performed a genome-wide association study (GWAS) to discover single-nucleotide polymorphisms (SNPs) associated with rubella virus–specific neutralizing antibodies. We identified rs2064479 in the HLA-DPB1 genetic region as being significantly associated with humoral immune response variations after rubella vaccination (P = 8.62 × 10−8). All other significant SNPs in this GWAS were located near the HLA-DPB1 gene (P ≤ 1 × 10−7). These findings demonstrate that polymorphisms in HLA-DPB1 are strongly associated with interindividual differences in neutralizing antibody levels to rubella vaccination and represent a validation of our previous HLA work. PMID:25293367

  4. Virus-Like Particle Secretion and Genotype-Dependent Immunogenicity of Dengue Virus Serotype 2 DNA Vaccine

    PubMed Central

    Galula, Jedhan U.; Shen, Wen-Fan; Chuang, Shih-Te

    2014-01-01

    ABSTRACT Dengue virus (DENV), composed of four distinct serotypes, is the most important and rapidly emerging arthropod-borne pathogen and imposes substantial economic and public health burdens. We constructed candidate vaccines containing the DNA of five of the genotypes of dengue virus serotype 2 (DENV-2) and evaluated the immunogenicity, the neutralizing (Nt) activity of the elicited antibodies, and the protective efficacy elicited in mice immunized with the vaccine candidates. We observed a significant correlation between the level of in vitro virus-like particle secretion, the elicited antibody response, and the protective efficacy of the vaccines containing the DNA of the different DENV genotypes in immunized mice. However, higher total IgG antibody levels did not always translate into higher Nt antibodies against homologous and heterologous viruses. We also found that, in contrast to previous reports, more than 50% of total IgG targeted ectodomain III (EDIII) of the E protein, and a substantial fraction of this population was interdomain highly neutralizing flavivirus subgroup-cross-reactive antibodies, such as monoclonal antibody 1B7-5. In addition, the lack of a critical epitope(s) in the Sylvatic genotype virus recognized by interdomain antibodies could be the major cause of the poor protection of mice vaccinated with the Asian 1 genotype vaccine (pVD2-Asian 1) from lethal challenge with virus of the Sylvatic genotype. In conclusion, although the pVD2-Asian 1 vaccine was immunogenic, elicited sufficient titers of Nt antibodies against all DENV-2 genotypes, and provided 100% protection against challenge with virus of the homologous Asian 1 genotype and virus of the heterologous Cosmopolitan genotype, it is critical to monitor the potential emergence of Sylvatic genotype viruses, since vaccine candidates under development may not protect vaccinated humans from these viruses. IMPORTANCE Five genotype-specific dengue virus serotype 2 (DENV-2) DNA vaccine

  5. Effect of Vaccine Administration Modality on Immunogenicity and Efficacy

    PubMed Central

    Zhang, Lu; Wang, Wei; Wang, Shixia

    2016-01-01

    Summary The many factors impacting the efficacy of a vaccine can be broadly divided into three categories: (1) features of the vaccine itself, including immunogen design, vaccine type, formulation, adjuvant, and dosing; (2) individual variations among vaccine recipients; and (3) vaccine administration-related parameters. While much literature exists related to vaccines, and recently systems biology has started to dissect the impact of individual subject variation on vaccine efficacy, few studies have focused on the role of vaccine administration-related parameters on vaccine efficacy. Parenteral and mucosal vaccinations are traditional approaches for licensed vaccines; novel vaccine delivery approaches, including needless injection and adjuvant formulations, are being developed to further improve vaccine safety and efficacy. This review provides a brief summary of vaccine administration-related factors, including vaccination approach, delivery route, and method of administration, to gain a better understanding of their potential impact on the safety and immunogenicity of candidate vaccines. PMID:26313239

  6. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses

    PubMed Central

    Lekcharoensuk, Porntippa; Wiriyarat, Witthawat; Petcharat, Nuntawan; Lekcharoensuk, Chalermpol; Auewarakul, Prasert; Richt, Juergen A

    2012-01-01

    Reverse genetics viruses for influenza vaccine production usually utilize the internal genes of the egg-adapted A/Puerto Rico/8/34 (PR8) strain. This egg-adapted strain provides high production yield in embryonated eggs but does not necessarily give the best yield in mammalian cell culture. In order to generate a reverse genetics viral backbone that is well-adapted to high growth in mammalian cell culture, a swine influenza isolate (A/swine/Iowa/15/30 (H1N1) (rg1930) that was shown to give high yield in Madin-Darby Canine Kidney (MDCK) cells was used as the internal gene donor for reverse genetics plasmids. In this report, the internal genes from rg1930 were used for construction of reverse genetics viruses carrying a cleavage site-modified hemagglutinin (HA) gene and neuraminidase (NA) gene from a highly pathogenic H5N1 virus. The resulting virus (rg1930H5N1) was low pathogenic in vivo. Inactivated rg1930H5N1 vaccine completely protected chickens from morbidity and mortality after challenge with highly pathogenic H5N1. Protective immunity was obtained when chickens were immunized with an inactivated vaccine consisting of at least 29 HA units of the rg1930H5N1 virus. In comparison to the PR8-based reverse genetics viruses carrying the same HA and NA genes from an H5N1 virus, rg1930 based viruses yielded higher viral titers in MDCK and Vero cells. In addition, the reverse genetics derived H3N2 and H5N2 viruses with the rg1930 backbone replicated in MDCK cells better than the cognate viruses with the rgPR8 backbone. It is concluded that this newly established reverse genetics backbone system could serve as a candidate for a master donor strain for development of inactivated influenza vaccines in cell-based systems. PMID:22230579

  7. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses.

    PubMed

    Lekcharoensuk, Porntippa; Wiriyarat, Witthawat; Petcharat, Nantawan; Lekcharoensuk, Chalermpol; Auewarakul, Prasert; Richt, Juergen A

    2012-02-14

    Reverse genetics viruses for influenza vaccine production usually utilize the internal genes of the egg-adapted A/Puerto Rico/8/34 (PR8) strain. This egg-adapted strain provides high production yield in embryonated eggs but does not necessarily give the best yield in mammalian cell culture. In order to generate a reverse genetics viral backbone that is well-adapted to high growth in mammalian cell culture, a swine influenza isolate A/swine/Iowa/15/30 (H1N1) (rg1930) that was shown to give high yield in Madin-Darby canine kidney (MDCK) cells was used as the internal gene donor for reverse genetics plasmids. In this report, the internal genes from rg1930 were used for construction of reverse genetics viruses carrying a cleavage site-modified hemagglutinin (HA) gene and neuraminidase (NA) gene from a highly pathogenic H5N1 virus. The resulting virus (rg1930H5N1) was low pathogenic in vivo. Inactivated rg1930H5N1 vaccine completely protected chickens from morbidity and mortality after challenge with highly pathogenic H5N1. Protective immunity was obtained when chickens were immunized with an inactivated vaccine consisting of at least 2(9) HA units of the rg1930H5N1 virus. In comparison to the PR8-based reverse genetics viruses carrying the same HA and NA genes from an H5N1 virus, rg1930 based viruses yielded higher viral titers in MDCK and Vero cells. In addition, the reverse genetics derived H3N2 and H5N2 viruses with the rg1930 backbone replicated in MDCK cells better than the cognate viruses with the rgPR8 backbone. It is concluded that this newly established reverse genetics backbone system could serve as a candidate for a master donor strain for development of inactivated influenza vaccines in cell-based systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Zika virus vaccines.

    PubMed

    Abbink, Peter; Stephenson, Kathryn E; Barouch, Dan H

    2018-06-19

    The recent epidemic of Zika virus (ZIKV) in the Americas has revealed the devastating consequences of ZIKV infection, particularly in pregnant women. Congenital Zika syndrome, characterized by malformations and microcephaly in neonates as well as developmental challenges in children, highlights the need for the development of a safe and effective vaccine. Multiple vaccine candidates have been developed and have shown promising results in both animal models and phase I clinical trials. However, important challenges remain for the clinical development of these vaccines. In this Progress article, we discuss recent preclinical studies and lessons learned from first-in-human clinical trials with ZIKV vaccines.

  9. New vaccines against otitis media: projected benefits and cost-effectiveness.

    PubMed

    O'Brien, Megan A; Prosser, Lisa A; Paradise, Jack L; Ray, G Thomas; Kulldorff, Martin; Kurs-Lasky, Marcia; Hinrichsen, Virginia L; Mehta, Jyotsna; Colborn, D Kathleen; Lieu, Tracy A

    2009-06-01

    New vaccines that offer protection against otitis media caused by nontypeable Haemophilus influenzae and by Moraxella catarrhalis are under development. However, the potential health benefits and economic effects of such candidate vaccines have not been systematically assessed. We created a computerized model to compare the projected benefits and costs of (1) the currently available 7-valent pneumococcal conjugate vaccine, (2) a candidate pneumococcal-nontypeable H influenzae vaccine that has been tested in Europe, (3) a hypothetical pneumococcal-nontypeable H influenzae-Moraxella vaccine, and (4) no vaccination. The clinical probabilities of acute otitis media and of otitis media with effusion were generated from multivariate analyses of data from 2 large health maintenance organizations and from the Pittsburgh Child Development/Otitis Media Study cohort. Other probabilities, costs, and quality-of-life values were derived from published and unpublished sources. The base-case analysis assumed vaccine dose costs of $65 for the 7-valent pneumococcal conjugate vaccine, $100 for the pneumococcal-nontypeable H influenzae vaccine, and $125 for the pneumococcal-nontypeable H influenzae-Moraxella vaccine. With no vaccination, we projected that 13.7 million episodes of acute otitis media would occur annually in US children aged 0 to 4 years, at an annual cost of $3.8 billion. The 7-valent pneumococcal conjugate vaccine was projected to prevent 878,000 acute otitis media episodes, or 6.4% of those that would occur with no vaccination; the corresponding value for the pneumococcal-nontypeable H influenzae vaccine was 3.7 million (27%) and for the pneumococcal-nontypeable H influenzae-Moraxella vaccine was 4.2 million (31%). Using the base-case vaccine costs, pneumococcal-nontypeable H influenzae vaccine use would result in net savings compared with nontypeable 7-valent pneumococcal conjugate use. Conversely, pneumococcal-nontypeable H influenzae-Moraxella vaccine use would not

  10. Post-Genomics and Vaccine Improvement for Leishmania

    PubMed Central

    Seyed, Negar; Taheri, Tahereh; Rafati, Sima

    2016-01-01

    Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies. PMID:27092123

  11. Current Trends in West Nile Virus Vaccine Development

    PubMed Central

    Amanna, Ian J.; Slifka, Mark K.

    2014-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that has become endemic in the United States. From 1999-2012, there have been 37,088 reported cases of WNV and 1,549 deaths, resulting in a 4.2% case-fatality rate. Despite development of effective WNV vaccines for horses, there is no vaccine to prevent human WNV infection. Several vaccines have been tested in preclinical studies and to date there have been 8 clinical trials, with promising results in terms of safety and induction of antiviral immunity. Although mass vaccination is unlikely to be cost-effective, implementation of a targeted vaccine program may be feasible if a safe and effective vaccine can be brought to market. Further evaluation of new and advanced vaccine candidates is strongly encouraged. PMID:24689659

  12. Basic Skills Testing & Training. 1996 AMA Survey. Summary of Key Findings.

    ERIC Educational Resources Information Center

    American Management Association, New York, NY.

    The American Management Association's (AMA) 10th annual survey on workplace testing was mailed in January 1996 to a sample of its 9,500 member companies, resulting in 961 usable responses. The survey sought to determine how many firms test for "basic skills," how job applicants perform on these tests, how much the tests costs, and what firms do…

  13. Status of research and development of vaccines for Streptococcus pyogenes.

    PubMed

    Steer, Andrew C; Carapetis, Jonathan R; Dale, James B; Fraser, John D; Good, Michael F; Guilherme, Luiza; Moreland, Nicole J; Mulholland, E Kim; Schodel, Florian; Smeesters, Pierre R

    2016-06-03

    Streptococcus pyogenes is an important global pathogen, causing considerable morbidity and mortality, especially in low and middle income countries where rheumatic heart disease and invasive infections are common. There is a number of promising vaccine candidates, most notably those based on the M protein, the key virulence factor for the bacterium. Vaccines against Streptococcus pyogenes are considered as impeded vaccines because of a number of crucial barriers to development. Considerable effort is needed by key players to bring current vaccine candidates through phase III clinical trials and there is a clear need to develop a roadmap for future development of current and new candidates. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  14. Study of the true performance limits of the Astrometric Multiplexing Area Scanner (AMAS)

    NASA Technical Reports Server (NTRS)

    Frederick, L. W.; Mcalister, H. A.

    1975-01-01

    The Astrometric Multiplexing Area Scanner (AMAS) is an instrument designed to perform photoelectric long focus astrometry of small fields. Modulation of a telescope focal plane with a rotating Ronchi ruling produces a frequency modulated signal from which relative positions and magnitudes can be extracted. Evaluation instrumental precision, accuracy and resolution characteristics with respect to a variety of instrumental and cosmical parameters indicates 1.5 micron precision and accuracy for single stars under specific conditions. This value decreases for increased number of field stars, particularly for fainter stars.

  15. Vaccination against group B streptococcus.

    PubMed

    Heath, Paul T; Feldman, Robert G

    2005-04-01

    Streptococcus agalactiae (Group B streptococcus) is an important cause of disease in infants, pregnant women, the elderly and in immunosuppressed adults. An effective vaccine is likely to prevent the majority of infant disease (both early and late onset), as well as Group B streptococcus-related stillbirths and prematurity, to avoid the current real and theoretical limitations of intrapartum antibiotic prophylaxis, and to be cost effective. The optimal time to administer such a vaccine would be in the third trimester of pregnancy. The main limitations on the production of a Group B streptococcus vaccine are not technical or scientific, but regulatory and legal. A number of candidates including capsular conjugate vaccines using traditional carrier proteins such as tetanus toxoid and mutant diphtheria toxin CRM197, as well as Group B streptococcus-specific proteins such as C5a peptidase, protein vaccines using one or more Group B streptococcus surface proteins and mucosal vaccines, have the potential to be successful vaccines. The capsular conjugate vaccines using tetanus and CRM197 carrier proteins are the most advanced candidates, having already completed Phase II human studies including use in the target population of pregnant women (tetanus toxoid conjugate), however, no definitive protein conjugates have yet been trialed. However, unless the regulatory environment is changed specifically to allow the development of a Group B streptococcus vaccine, it is unlikely that one will ever reach the market.

  16. Serologic response to porcine circovirus type 1 (PCV1) in infants vaccinated with the human rotavirus vaccine, Rotarix™: A retrospective laboratory analysis

    PubMed Central

    Han, Htay Htay; Karkada, Naveen; Jayadeva, Girish; Dubin, Gary

    2017-01-01

    ABSTRACT In 2010, porcine circovirus type 1 (PCV1) material was unexpectedly detected in the oral live-attenuated human rotavirus (RV) vaccine, Rotarix™ (GSK Vaccines, Belgium). An initial study (NCT01511133) found no immunologic response against PCV1 in 40 vaccinated infants. As a follow-up, the current study (NCT02153333), searched for evidence of post-vaccination serologic response to PCV1 in a larger number of archived serum samples. Unlike the previous study, serum anti-PCV1 antibodies were assessed with an adapted Immuno Peroxidase Monolayer Assay (IPMA) using a Vero-adapted PCV1 strain. Samples from 596 infants who participated in clinical trials of the human RV vaccine were randomly selected and analyzed. The observed anti-PCV1 antibody seropositivity rate 1–2 months post-dose 2 was approximately 1% [90% Confidence Interval (CI): 0.3–2.6] (3/299 samples) in infants who received the human RV vaccine and 0.3% [90% CI: 0.0–1.6] (1/297 samples) in those who received placebo; the difference between the groups was −0.66 [90% CI: −2.16–0.60]. One subject in the vaccinated group was also seropositive before vaccination. Notably, the seropositivity rate observed in vaccinated subjects was below that observed during assay qualification in samples from unvaccinated subjects outside of this study (2.5%; 5/200 samples). No serious adverse events had been reported in any of the 4 subjects providing anti-PCV1 positive samples during the 31-day post-vaccination follow-up period in the original studies. In conclusion, the presence of PCV1 in the human RV vaccine is considered to be a manufacturing quality issue and does not appear to pose a safety risk to vaccinated infants. PMID:27657348

  17. A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets and monkeys

    USDA-ARS?s Scientific Manuscript database

    A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of HP A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (...

  18. Arenavirus reverse genetics for vaccine development

    PubMed Central

    Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; Carlos de la Torre, Juan

    2013-01-01

    Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1. PMID:23364194

  19. Efficacy assessment of an inactivated Tembusu virus vaccine candidate in ducks.

    PubMed

    Zhang, Lijiao; Li, Zhanhong; Zhang, Qingshui; Sun, Mengxu; Li, Shuang; Su, Wenliang; Hu, Xueying; He, Weiyong; Su, Jingliang

    2017-02-01

    Duck Tembusu virus (TMUV) is a recently identified pathogen that causes severe egg drop and neurological disease in domestic duck and goose flocks. The infection has spread across the China mainland since its outbreak in 2010. Effective vaccines are needed to fight the disease. In this work, we describe the development and laboratory assessment of a cell culture-derived, inactivated duck TMUV vaccine. The TMUV-JXSP strain was successfully propagated on a baby hamster kidney cell line (BHK-21), inactivated with beta-propiolactone (BPL) and emulsified with mineral oil. The efficacy of different vaccination schedules was assessed in laying ducks and table ducks using virus challenge experiments. Two doses of vaccine provided efficient protection against the virus challenge to avoid the egg production drop in laying ducks. An ELISA demonstrated that 97% (39/40) of ducks seroconverted on day 21 after one dose of the inactivated vaccine and that significant increases in antibody titers against the virus were induced after the second immunization. For table ducks, a single dose of vaccine immunization resulted in a protection index of 87% and significant reduction of viral loads in tissues. Sterilizing immunity can be attained after second immunization. Our results demonstrate that BHK-21 cell culture is suitable for duck TMUV propagation and that BPL-inactivated TMUV vaccine can provide a high level of protection from virus challenge in laying ducks and table ducks. These data provide a scientific basis for the development of an inactivated vaccine for the prevention of duck TMUV infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dengue Fever: Causes, Complications, and Vaccine Strategies

    PubMed Central

    Khanna, Ira

    2016-01-01

    Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur's chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals. PMID:27525287