Sample records for vaccine development process

  1. Process development of a New Haemophilus influenzae type b conjugate vaccine and the use of mathematical modeling to identify process optimization possibilities.

    PubMed

    Hamidi, Ahd; Kreeftenberg, Hans; V D Pol, Leo; Ghimire, Saroj; V D Wielen, Luuk A M; Ottens, Marcel

    2016-05-01

    Vaccination is one of the most successful public health interventions being a cost-effective tool in preventing deaths among young children. The earliest vaccines were developed following empirical methods, creating vaccines by trial and error. New process development tools, for example mathematical modeling, as well as new regulatory initiatives requiring better understanding of both the product and the process are being applied to well-characterized biopharmaceuticals (for example recombinant proteins). The vaccine industry is still running behind in comparison to these industries. A production process for a new Haemophilus influenzae type b (Hib) conjugate vaccine, including related quality control (QC) tests, was developed and transferred to a number of emerging vaccine manufacturers. This contributed to a sustainable global supply of affordable Hib conjugate vaccines, as illustrated by the market launch of the first Hib vaccine based on this technology in 2007 and concomitant price reduction of Hib vaccines. This paper describes the development approach followed for this Hib conjugate vaccine as well as the mathematical modeling tool applied recently in order to indicate options for further improvements of the initial Hib process. The strategy followed during the process development of this Hib conjugate vaccine was a targeted and integrated approach based on prior knowledge and experience with similar products using multi-disciplinary expertise. Mathematical modeling was used to develop a predictive model for the initial Hib process (the 'baseline' model) as well as an 'optimized' model, by proposing a number of process changes which could lead to further reduction in price. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:568-580, 2016. © 2016 American Institute of Chemical Engineers.

  2. Assuring the quality, safety, and efficacy of DNA vaccines.

    PubMed

    Robertson, J S; Griffiths, E

    2001-02-01

    Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes as the development of a novel vaccine could be problematic owing to the starting material often being developed in a research laboratory under ill-defined conditions. This paper examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations that must be addressed during preclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinees chromosomes, and the potential for the formation of anti-DNA antibodies.

  3. Assuring the quality, safety, and efficacy of DNA vaccines.

    PubMed

    Robertson, James S; Griffiths, Elwyn

    2006-01-01

    Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes, as the development of a novel vaccine could be problematic as a result of the starting material often being developed in a research laboratory under ill-defined conditions. This chapter examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations which must be addressed during nonclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinee's chromosomes and the potential for the formation of anti-DNA antibodies.

  4. Why certain vaccines have been delayed or not developed at all.

    PubMed

    Plotkin, Stanley A

    2005-01-01

    Vaccine development is a long process, with the time from early research to licensure steadily increasing. At one time the process took about ten years; now it takes closer to fifteen to twenty years. The process begins with investigators in universities or biotech firms who have an idea. However, to take things further, there must be a vaccine manufacturer, a regulatory authority ready to give permission for the use of the vaccine, and public health authorities that will recommend and foster vaccination.

  5. Characterization of a whole, inactivated influenza (H5N1) vaccine.

    PubMed

    Tada, Yoshikazu

    2008-11-01

    Effective vaccines against the highly pathogenic influenza A/H5N1 virus are being developed worldwide. In Japan, two adjuvanted, inactivated, whole-virion influenza vaccines were recently developed and licensed as mock-up, pre-pandemic vaccine formulations by the Ministry of Health and Labor Welfare of Japan. During the vaccine design and development process, various obstacles were overcome and, in this report, we introduce the non clinical production, immunogenicity data in human and development process that was associated with egg-derived adjuvanted, inactivated, whole-virion influenza A (H5N1) vaccine. Pilot lots of H5N1 vaccine were produced using the avirulent H5N1 reference strain A/Vietnam/1194/2004 (H5N1) NIBRG-14 and administered following adsorption with aluminum hydroxide as an adjuvant. Quality control and formulation stability tests were performed before clinical trials were initiated (phase I-III). The research foundation for microbial diseases of Osaka University (BIKEN) carried out vaccine production, quality control, stability testing and the phase I clinical trial in addition to overseeing the licensing of this vaccine. Mitsubishi Chemical Safety Institute Ltd. carried out the non clinical pharmacological toxicity and safety studies and the Japanese medical association carried out the phase II/III trials. Phase I-III trials took place in 2006. The production processes were well controlled by established tests and validations. Vaccine quality was confirmed by quality control, stability and pre-clinical tests, and the vaccine was approved as a mock-up, pre-pandemic vaccine by the Ministry of Health and Labor Welfare of Japan. Numerous safety and efficacy procedures were carried out prior to the approval of the described vaccine formulation. Some of these procedures were of particular importance e.g., vaccine development, validation, and quality control tests that included strict monitoring of the hemagglutinin (HA) content of the vaccine formulations. Improving vaccine productivity, shortening the production period and improving antigen yield of the avirulent vaccine strains were also considered important vaccine development criteria.

  6. [Vaccine for human immunodeficiency virus (HIV)--relevance of these days].

    PubMed

    Laiskonis, Alvydas; Pukenyte, Evelina

    2005-01-01

    Since 1980 more than 25 million people have died from acquired immunodeficiency syndrome (AIDS), which results from infection with human immunodeficiency virus (HIV). Number of new cases increases very threateningly. One and the most effective method to stop the progress of epidemic is the development of the vaccine for HIV. There is the presentation of the first stage of the vaccine for HIV testing (structure, methodology), which is now on trial in St. Pierre hospital, Brussels University. HIV characteristics which inflame the process of the vaccine development, historical facts and facts about vaccines on trial in these days are reviewed in this article. More than 10,000 volunteers have been participating in various clinical trials since 1987. The development of the vaccine is a very difficult, long-terming (about 8-10 years) and costly process. The process of the vaccine testing is very difficult in developing countries where the infection spreads the most rapidly. Available data confirm that the vaccine must be multi-componential, inducing cellular, humoral immunity against various subtypes of HIV. The vaccine cannot protect fully but the changes of the natural infection course could decrease virulence, distance the stage of AIDS, and retard the spread of the epidemic.

  7. Preclinical evaluation of a Haemophilus influenzae type b conjugate vaccine process intended for technology transfer.

    PubMed

    Hamidi, Ahd; Verdijk, Pauline; Kreeftenberg, Hans

    2014-01-01

    Introduction of Haemophilus influenzae type b (Hib) vaccine in low- and middle-income countries has been limited by cost and availability of Hib conjugate vaccines for a long time. It was previously recognized by the Institute for Translational Vaccinology (Intravacc, originating from the former Vaccinology Unit of the National Institute of Public Health [RIVM] and the Netherlands Vaccine Institute [NVI]) that local production of a Hib conjugate vaccine would increase the affordability and sustainability of the vaccine and thereby help to speed up Hib introduction in these countries. A new affordable and a non-infringing production process for a Hib conjugate vaccine was developed, including relevant quality control tests, and the technology was transferred to a number of vaccine manufacturers in India, Indonesia, and China. As part of the Hib technology transfer project managed by Intravacc, a preclinical toxicity study was conducted in the Netherlands to test the safety and immunogenicity of this new Hib conjugate vaccine. The data generated by this study were used by the technology transfer partners to accelerate the clinical development of the new Hib conjugate vaccine. A repeated dose toxicity and local tolerance study in rats was performed to assess the reactogenicity and immunogenicity of a new Hib conjugate vaccine compared to a licensed vaccine. The results showed that the vaccine was well tolerated and immunogenic in rats, no major differences in both safety and immunogenicity in rats were found between the vaccine produced according to the production process developed by Intravacc and the licensed one. Rats may be useful to verify the immunogenicity of Hib conjugate vaccines and for preclinical evaluation. In general, nonclinical evaluation of the new Hib conjugate vaccine, including this proof of concept (safety and immunogenicity study in rats), made it possible for technology transfer partners, having implemented the original process with no changes in the manufacturing process and vaccine formulation, to start directly with phase 1 clinical trials.

  8. The pharmaceuticalization of sexual risk: vaccine development and the new politics of cancer prevention.

    PubMed

    Mamo, Laura; Epstein, Steven

    2014-01-01

    Vaccine development is a core component of pharmaceutical industry activity and a key site for studying pharmaceuticalization processes. In recent decades, two so-called cancer vaccines have entered the U.S. medical marketplace: a vaccine targeting hepatitis B virus (HBV) to prevent liver cancers and a vaccine targeting human papillomavirus (HPV) to prevent cervical and other cancers. These viruses are two of six sexually transmissible infectious agents (STIs) that are causally linked to the development of cancers; collectively they reference an expanding approach to apprehending cancer that focuses attention simultaneously "inward" toward biomolecular processes and "outward" toward risk behaviors, sexual practices, and lifestyles. This paper juxtaposes the cases of HBV and HPV and their vaccine trajectories to analyze how vaccines, like pharmaceuticals more generally, are emblematic of contemporary pharmaceuticalization processes. We argue that individualized risk, in this case sexual risk, is produced and treated by scientific claims of links between STIs and cancers and through pharmaceutical company and biomedical practices. Simultaneous processes of sexualization and pharmaceuticalization mark these cases. Our comparison demonstrates that these processes are not uniform, and that the production of risks, subjects, and bodies depends not only on the specificities of vaccine development but also on the broader political and cultural frames within which sexuality is understood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Implementing a School-Located Vaccination Program in Denver Public Schools.

    PubMed

    Shlay, Judith C; Rodgers, Sarah; Lyons, Jean; Romero, Scott; Vogt, Tara M; McCormick, Emily V

    2015-08-01

    School-located vaccination (SLV) offers an opportunity to deliver vaccines to students, particularly those without a primary care provider. This SLV program offered 2 clinics at each of 20 elementary schools (influenza vaccine) and 3 clinics at each of 7 middle/preschool-eighth-grade schools (adolescent platform plus catch-up vaccines) during the 2009-2010 and 2010-2011 school years. Established programmatic processes for immunization delivery in an outreach setting were used. Billing and vaccine inventory management processes were developed. Vaccines from the federal Vaccines for Children program were used for eligible students. Third-party payers were billed for insured students; parents were not billed for services. The proportion of enrolled students who received at least 1 dose of vaccine increased from year 1 to year 2 (elementary: 28% to 31%; middle: 12% to 19%). Issues identified and addressed included program planning with partners, development and implementation of billing processes, development of a solution to adhere to the Family Educational Rights and Privacy Act requirements, development and utilization of an easy-to-comprehend consent form, and implementation of standard work procedures. This SLV program offered an alternative approach for providing vaccinations to students outside of the primary care setting. To be successful, ongoing partnerships are needed. © 2015, American School Health Association.

  10. Lessons learned during the development and transfer of technology related to a new Hib conjugate vaccine to emerging vaccine manufacturers.

    PubMed

    Hamidi, A; Boog, C; Jadhav, S; Kreeftenberg, H

    2014-07-16

    The incidence of Haemophilus Influenzae type b (Hib) disease in developed countries has decreased since the introduction of Hib conjugate vaccines in their National Immunization Programs (NIP). In countries where Hib vaccination is not applied routinely, due to limited availability and high cost of the vaccines, invasive Hib disease is still a cause of mortality. Through the development of a production process for a Hib conjugate vaccine and related quality control tests and the transfer of this technology to emerging vaccine manufacturers in developing countries, a substantial contribution was made to the availability and affordability of Hib conjugate vaccines in these countries. Technology transfer is considered to be one of the fastest ways to get access to the technology needed for the production of vaccines. The first Hib conjugate vaccine based on the transferred technology was licensed in 2007, since then more Hib vaccines based on this technology were licensed. This paper describes the successful development and transfer of Hib conjugate vaccine technology to vaccine manufacturers in India, China and Indonesia. By describing the lessons learned in this process, it is hoped that other technology transfer projects can benefit from the knowledge and experience gained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Introduction of pentavalent vaccine in Indonesia: a policy analysis

    PubMed Central

    Hadisoemarto, Panji F; Reich, Michael R; Castro, Marcia C

    2016-01-01

    The introduction of pentavalent vaccine containing Haemophilus influenzae type b antigen in Indonesia’s National Immunization Program occurred nearly three decades after the vaccine was first available in the United States and 16 years after Indonesia added hepatitis B vaccine into the program. In this study, we analyzed the process that led to the decision to introduce pentavalent vaccine in Indonesia. Using process tracing and case comparison, we used qualitative data gathered through interviews with key informants and data extracted from written sources to identify four distinct but interrelated processes that were involved in the decision making: (a) pentavalent vaccine use policy process, (b) financing process, (c) domestic vaccine development process and (d) political process. We hypothesized that each process is associated with four necessary conditions that are jointly sufficient for the successful introduction of pentavalent vaccine in Indonesia, namely (a) an evidence-based vaccine use recommendation, (b) sufficient domestic financing capacity, (c) sufficient domestic vaccine manufacturing capacity and (d) political support for introduction. This analysis of four processes that led to the decision to introduce a new vaccine in Indonesia may help policy makers and other stakeholders understand and manage activities that can accelerate vaccine introduction in the future. PMID:27107293

  12. WHO policy development processes for a new vaccine: case study of malaria vaccines.

    PubMed

    Milstien, Julie; Cárdenas, Vicky; Cheyne, James; Brooks, Alan

    2010-06-24

    Recommendations from the World Health Organization (WHO) are crucial to inform developing country decisions to use, or not, a new intervention. This article analysed the WHO policy development process to predict its course for a malaria vaccine. The decision-making processes for one malaria intervention and four vaccines were classified through (1) consultations with staff and expert advisors to WHO's Global Malaria Programme (GMP) and Immunization, Vaccines and Biologicals Department (IVB); (2) analysis of the procedures and recommendations of the major policy-making bodies of these groups; (3) interviews with staff of partnerships working toward new vaccine availability; and (4) review and analyses of evidence informing key policy decisions. WHO policy formulation related to use of intermittent preventive treatment in infancy (IPTi) and the following vaccine interventions: Haemophilus influenzae type b conjugate vaccine (Hib), pneumococcal conjugate vaccine (PCV), rotavirus vaccine (RV), and human papillomavirus vaccine (HPV), five interventions which had relatively recently been through systematic WHO policy development processes as currently constituted, was analysed. Required information was categorized in three areas defined by a recent WHO publication on development of guidelines: safety and efficacy in relevant populations, implications for costs and population health, and localization of data to specific epidemiological situations. Data needs for a malaria vaccine include safety; the demonstration of efficacy in a range of epidemiological settings in the context of other malaria prevention interventions; and information on potential rebound in which disease increases subsequent to the intervention. In addition, a malaria vaccine would require attention to additional factors, such as costs and cost-effectiveness, supply and demand, impact of use on other interventions, and distribution issues. Although policy issues may be more complex for future vaccines, the lead-time between the date of product regulatory approval and a recommendation for its use in developing countries is decreasing. This study presents approaches to define in advance core data needs to support evidence-based decisions, to further decrease this lead-time, accelerating the availability of a malaria vaccine. Specific policy areas for which information should be collected are defined, including studying its use within the context of other malaria interventions.

  13. Introduction of New Vaccines: Decision-making Process in Bangladesh

    PubMed Central

    Sarma, Haribondhu; Bari, Tajul I.; Koehlmoos, Tracey P.

    2013-01-01

    The understanding of the decision-making process in the introduction of new vaccines helps establish why vaccines are adopted or not. It also contributes to building a sustainable demand for vaccines in a country. The purpose of the study was to map and analyze the formal decision-making process in relation to the introduction of new vaccines within the context of health policy and health systems and identify the ways of making decisions to introduce new vaccines in Bangladesh. During February-April 2011, a qualitative assessment was made at the national level to evaluate the decision-making process around the adoption of new vaccines in Bangladesh. The study population included: policy-level people, programme heads or associates, and key decision-makers of the Government, private sector, non-governmental organizations, and international agencies at the national level. In total, 13 key informants were purposively selected. Data were collected by interviewing key informants and reviewing documents. Data were analyzed thematically. The findings revealed that the actors from different sectors at the policy level were involved in the decision-making process in the introduction of new vaccines. They included policy-makers from the ministries of health and family welfare, finance, and local government and rural development; academicians; researchers; representatives from professional associations; development partners; and members of different committees on EPI. They contributed to the introduction of new vaccines in their own capacity. The burden of disease, research findings on vaccine-preventable diseases, political issues relating to outbreaks of certain diseases, initiatives of international and local stakeholders, pressure of development partners, the Global Alliance for Vaccines and Immunization (GAVI) support, and financial matters were the key factors in the introduction of new vaccines in Bangladesh. The slow introduction and uptake of new vaccines is a concern in the country. Rapid action on the application of GAVI support and less time taken by the Government in processing the implementation and administrative work may expedite the introduction of new vaccines in future in this country. PMID:23930339

  14. Introduction of new vaccines: decision-making process in Bangladesh.

    PubMed

    Uddin, Jasim; Sarma, Haribondhu; Bari, Tajul I; Koehlmoos, Tracey P

    2013-06-01

    The understanding of the decision-making process in the introduction of new vaccines helps establish why vaccines are adopted or not. It also contributes to building a sustainable demand for vaccines in a country. The purpose of the study was to map and analyze the formal decision-making process in relation to the introduction of new vaccines within the context of health policy and health systems and identify the ways of making decisions to introduce new vaccines in Bangladesh. During February-April 2011, a qualitative assessment was made at the national level to evaluate the decision-making process around the adoption of new vaccines in Bangladesh. The study population included: policy-level people, programme heads or associates, and key decision-makers of the Government, private sector, non-governmental organizations, and international agencies at the national level. In total, 13 key informants were purposively selected. Data were collected by interviewing key informants and reviewing documents. Data were analyzed thematically. The findings revealed that the actors from different sectors at the policy level were involved in the decision-making process in the introduction of new vaccines. They included policy-makers from the ministries of health and family welfare, finance, and local government and rural development; academicians; researchers; representatives from professional associations; development partners; and members of different committees on EPI. They contributed to the introduction of new vaccines in their own capacity. The burden of disease, research findings on vaccine-preventable diseases, political issues relating to outbreaks of certain diseases, initiatives of international and local stakeholders, pressure of development partners, the Global Alliance for Vaccines and Immunization (GAVI) support, and financial matters were the key factors in the introduction of new vaccines in Bangladesh. The slow introduction and uptake of new vaccines is a concern in the country. Rapid action on the application of GAVI support and less time taken by the Government in processing the implementation and administrative work may expedite the introduction of new vaccines in future in this country.

  15. Impact of BRICS' investment in vaccine development on the global vaccine market.

    PubMed

    Kaddar, Miloud; Milstien, Julie; Schmitt, Sarah

    2014-06-01

    Brazil, the Russian Federation, India, China and South Africa--the countries known as BRICS--have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector's price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS' accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes.

  16. Technical Transformation of Biodefense Vaccines

    PubMed Central

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  17. Introduction of human papillomavirus (HPV) vaccination into national immunisation schedules in Europe: Results of the VENICE 2007 survey.

    PubMed

    King, L A; Lévy-Bruhl, D; O'Flanagan, D; Bacci, S; Lopalco, P L; Kudjawu, Y; Salmaso, S

    2008-08-14

    The European Union Member States are simultaneously considering introducing HPV vaccination into their national immunisation schedules. The Vaccine European New Integrated Collaboration Effort (VENICE) project aims to develop a collaborative European vaccination network. A survey was undertaken to describe the decision status and the decision-making process regarding the potential introduction of human papillomavirus (HPV) vaccination in to their national immunisation schedules. A web-based questionnaire was developed and completed online in 2007 by 28 countries participating in VENICE. As of 31 October 2007,five countries had decided to introduce HPV vaccination into the national immunisation schedule, while another seven had started the decision-making process with a recommendation favouring introduction. Varying target populations were selected by the five countries which had introduced the vaccination. Half of the surveyed countries had undertaken at least one ad hoc study to support the decision-making process. According to an update of the decision-status from January 2008, the number of countries which had made a decision or recommendation changed to 10 and 5 respectively. This survey demonstrates the rapidly evolving nature of HPV vaccine introduction in Europe and the existence of expertise and experience among EU Member States. The VENICE network is capable of following this process and supporting countries in making vaccine introduction decisions. A VENICE collaborative web-space is being developed as a European resource for the decision-making process for vaccine introduction.

  18. Vaccine process technology.

    PubMed

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory perspective, Quality by Design (QbD) and Process Analytical Technology (PAT) are important initiatives that can be applied effectively to many types of vaccine processes. Universal demand for vaccines requires that a manufacturer plan to supply tens and sometimes hundreds of millions of doses per year at low cost. To enable broader use, there is intense interest in improving temperature stability to allow for excursions from a rigid cold chain supply, especially at the point of vaccination. Finally, there is progress in novel routes of delivery to move away from the traditional intramuscular injection by syringe approach. Copyright © 2012 Wiley Periodicals, Inc.

  19. An overview of the regulation of influenza vaccines in the United States.

    PubMed

    Weir, Jerry P; Gruber, Marion F

    2016-09-01

    Influenza virus vaccines are unique among currently licensed viral vaccines. The vaccines designed to protect against seasonal influenza illness must be updated periodically in an effort to match the vaccine strain with currently circulating viruses, and the vaccine manufacturing timeline includes multiple, overlapping processes with a very limited amount of flexibility. In the United States (U.S.), over 150 million doses of seasonal trivalent and quadrivalent vaccine are produced annually, a mammoth effort, particularly in the context of a vaccine with components that usually change on a yearly basis. In addition, emergence of an influenza virus containing an HA subtype that has not recently circulated in humans is an ever present possibility. Recently, pandemic influenza vaccines have been licensed, and the pathways for licensure of pandemic vaccines and subsequent strain updating have been defined. Thus, there are formidable challenges for the regulation of currently licensed influenza vaccines, as well as for the regulation of influenza vaccines under development. This review describes the process of licensing influenza vaccines in the U.S., the process and steps involved in the annual updating of seasonal influenza vaccines, and some recent experiences and regulatory challenges faced in development and evaluation of novel influenza vaccines. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  20. Introduction of pentavalent vaccine in Indonesia: a policy analysis.

    PubMed

    Hadisoemarto, Panji F; Reich, Michael R; Castro, Marcia C

    2016-10-01

    The introduction of pentavalent vaccine containing Haemophilus influenzae type b antigen in Indonesia's National Immunization Program occurred nearly three decades after the vaccine was first available in the United States and 16 years after Indonesia added hepatitis B vaccine into the program. In this study, we analyzed the process that led to the decision to introduce pentavalent vaccine in Indonesia. Using process tracing and case comparison, we used qualitative data gathered through interviews with key informants and data extracted from written sources to identify four distinct but interrelated processes that were involved in the decision making: (a) pentavalent vaccine use policy process, (b) financing process, (c) domestic vaccine development process and (d) political process. We hypothesized that each process is associated with four necessary conditions that are jointly sufficient for the successful introduction of pentavalent vaccine in Indonesia, namely (a) an evidence-based vaccine use recommendation, (b) sufficient domestic financing capacity, (c) sufficient domestic vaccine manufacturing capacity and (d) political support for introduction. This analysis of four processes that led to the decision to introduce a new vaccine in Indonesia may help policy makers and other stakeholders understand and manage activities that can accelerate vaccine introduction in the future. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  1. Impact of BRICS’ investment in vaccine development on the global vaccine market

    PubMed Central

    Milstien, Julie; Schmitt, Sarah

    2014-01-01

    Abstract Brazil, the Russian Federation, India, China and South Africa – the countries known as BRICS – have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector’s price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS’ accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes. PMID:24940018

  2. Use of immuno assays during the development of a Hemophilus influenzae type b vaccine for technology transfer to emerging vaccine manufacturers.

    PubMed

    Hamidi, Ahd; Kreeftenberg, Hans

    2014-01-01

    Quality control of Hemophilus Influenzae type b (Hib) conjugate vaccines is mainly dependent on physicochemical methods. Overcoming sample matrix interference when using physicochemical tests is very challenging, these tests are therefore only used to test purified samples of polysaccharide, protein, bulk conjugate, and final product. For successful development of a Hib conjugate vaccine, several ELISA (enzyme-linked immunosorbent assay) methods were needed as an additional tool to enable testing of in process (IP) samples. In this paper, three of the ELISA's that have been very valuable during the process development, implementation and scaling up are highlighted. The PRP-ELISA, was a very efficient tool in testing in process (IP) samples generated during the development of the cultivation and purification process of the Hib-polysaccharide. The antigenicity ELISA, was used to confirm the covalent linkage of PRP and TTd in the conjugate. The anti-PRP IgG ELISA was developed as part of the immunogenicity test, used to demonstrate the ability of the Hib conjugate vaccine to elicit a T-cell dependent immune response in mice. ELISA methods are relatively cheap and easy to implement and therefore very useful during the development of polysaccharide conjugate vaccines.

  3. Lessons learned from a review of the development of selected vaccines. National Vaccine Advisory Committee.

    PubMed

    Peter, G; des Vignes-Kendrick, M; Eickhoff, T C; Fine, A; Galvin, V; Levine, M M; Maldonado, Y A; Marcuse, E K; Monath, T P; Osborn, J E; Plotkin, S; Poland, G A; Quinlisk, M P; Smith, D R; Sokol, M; Soland, D B; Whitley-Williams, P N; Williamson, D E; Breiman, R F

    1999-10-01

    Although the vaccine research and development network in the United States remains vibrant, its continued success requires maintaining harmonious interaction among its many components. Changing one component is likely to affect the system overall. An examination of case studies of the development of selected vaccines would allow an examination of the network as a whole. This article presents conclusions drawn from the case study review undertaken. Successful development of vaccines is a time-intensive process requiring years of commitment from a network of scientists and a continuum of regulatory and manufacturing entities. We undertook this work to shed light on how well the vaccine development system in the United States performs. The National Vaccine Advisory Committee examined the research and development pathways of several vaccines that reached licensure expeditiously (hepatitis B vaccine, Haemophilus influenzae type b conjugate vaccines); some that became licensed only after considerable delay (oral typhoid Ty21a vaccine, varicella vaccine); some that are at the point of imminent or recent licensure (reassortant Rhesus rotavirus vaccine, which was licensed by the Food and Drug Administration on August 30, 1998) or near submission for licensure (intranasal cold adapted influenza vaccine); and one for which clinical development is slow because of hurdles that must be overcome (respiratory syncytial virus vaccines). Some common themes emerged from the reviews of these vaccine "case histories": the expediting influence of a strong scientific base and rationale; the need for firm quantitation of disease burden and clear identification of target populations; the critical role played by individuals or teams who act as "champions" to overcome the inevitable obstacles; availability of relevant animal models, high-quality reagents and standardized assays to measure immune response; the absolute requirement for well designed, meticulously executed clinical trials of vaccine safety, immunogenicity, and efficacy; postlicensure measurements of the public health impact of the vaccine and a track record of the vaccine's safety and acceptance with large-scale use; and the critical need for international collaborations to evaluate vaccines against diseases of global importance that are rare in the United States (eg, typhoid fever). It was clear that the critical step-up from bench scale to pilot lots and then to large-scale production, which depends on a small group of highly trained individuals, is often a particularly vulnerable point in the development process. One fundamental lesson learned is that within the varied and comprehensive US vaccine development infrastructure, multiple and rather distinct paths can be followed to reach vaccine licensure. The National Vaccine Advisory Committee review process should be conducted periodically in the future to ascertain that the US vaccine development network, which has been enormously productive heretofore and has played a leadership role globally, is adapting appropriately to ensure that new, safe, and efficacious vaccines become available in a timely manner.

  4. Development of pediatric vaccine recommendations and policies.

    PubMed

    Pickering, Larry K; Orenstein, Walter A

    2002-07-01

    A significant decrease in each vaccine-preventable disease has occurred since the introduction of the respective immunizations now included in the recommended childhood immunization schedule. The process through which a vaccine must travel from development to approval and implementation is complex. Hurdles include receiving approval from several advisory committees, government agencies, and professional organizations. At each step in the process, data regarding safety, immunogenicity, and efficacy are evaluated continuously and rigorously. Once a vaccine is approved by the Food and Drug Administration (FDA) and incorporated into the recommended childhood immunization schedule, continuing issues include those that deal with supply, safety, effectiveness, and financing. The logistics of development and implementation of pediatric vaccine recommendations and policies are reviewed.

  5. Innovations in vaccine development: can regulatory authorities keep up?

    PubMed

    Cox, Manon M J; Onraedt, Annelies

    2012-10-01

    Vaccine Production Summit San Francisco, CA, USA, 4-6 June 2012 IBC's 3rd Vaccine Production Summit featured 28 presentations discussing regulatory challenges in vaccine development, including the use of adjuvants, vaccine manufacturing and technology transfer, process development for vaccines and the role of quality by design, how to address vaccine stability, and how vaccine development timelines can be improved. The conference was run in parallel with the single-use applications for Biopharmaceutical Manufacturing conference. Approximately 250 attendees from large pharmaceutical companies, large and small biotech companies, vendors and a more limited number from academia were allowed to access sessions of either conference, including one shared session. This article summarizes the recurring themes across various presentations.

  6. Comprehensive hands-on training for influenza vaccine manufacturing: a WHO-BARDA-BTEC partnership for global workforce development.

    PubMed

    Ruiz, Jennifer; Gilleskie, Gary L; Brown, Patty; Burnett, Bruce; Carbonell, Ruben G

    2014-01-01

    The critical need for enhancing influenza pandemic preparedness in many developing nations has led the World Health Organization (WHO) and the Biomedical Advanced Research and Development Authority (BARDA), part of the U.S. Department of Health and Human Services (HHS), to develop an international influenza vaccine capacity-building program. Among the critical limitations faced by many of these nations is lack of access to training programs for staff supporting operations within vaccine production facilities. With support from BARDA, the Biomanufacturing Training and Education Center (BTEC) at North Carolina State University has addressed this need for training by developing and delivering a comprehensive training program, consisting of three courses: Fundamentals of cGMP Influenza Vaccine Manufacturing, Advanced Upstream Processes for Influenza Vaccine Manufacturing, and Advanced Downstream Processes for Influenza Vaccine Manufacturing. The courses cover process design, transfer, and execution at manufacturing scale, quality systems, and regulations covering both manufacturing and approval of pandemic vaccines. The Fundamentals course focuses on the concepts, equipment, applicable regulations, and procedures commonly used to produce influenza vaccine. The two Advanced courses focus on process design, scale up, validation, and new technologies likely to improve efficiency of vaccine production. All three courses rely on a combination of classroom instruction and hands-on training in BTEC's various laboratories. Each course stands alone, and participants may take one or more of the three courses. Overall participant satisfaction with the courses has been high, and follow-up surveys show that participants actively transferred the knowledge they gained to the workplace. Future plans call for BTEC to continue offering the three courses and to create an online version of several modules of the Fundamentals course. Copyright © 2014 Wiley Periodicals, Inc.

  7. Vaccines in the pipeline: the path from development to use in the United States.

    PubMed

    Pickering, Larry K; Walton, L Reed

    2013-08-01

    New vaccines in the United States go through a complex process on their path from development to the domestic market involving an intricate partnership of public and private agencies and organizations. This process includes licensure by the US Food and Drug Administration, the development of recommendations by the Advisory Committee on Immunization Practices, and safety oversight post-licensure. This article examines the roles of the US Food and Drug Administration and the Centers for Disease Control and Prevention as well as certain professional organizations in governing the testing, marketing, and usage of new vaccines. Vaccines currently in development to treat numerous infectious and noninfectious diseases are also examined and compared with frameworks of domestic vaccine development prioritization, past and present, as assessed by the Institute of Medicine. Copyright 2013, SLACK Incorporated.

  8. Vaccine provision: Delivering sustained & widespread use.

    PubMed

    Preiss, Scott; Garçon, Nathalie; Cunningham, Anthony L; Strugnell, Richard; Friedland, Leonard R

    2016-12-20

    The administration of a vaccine to a recipient is the final step in a development and production process that may have begun several decades earlier. Here we describe the scale and complexity of the processes that brings a candidate vaccine through clinical development to the recipient. These challenges include ensuring vaccine quality (between 100 and 500 different Quality Control tests are performed during production to continually assess safety, potency and purity); making decisions about optimal vaccine presentation (pre-filled syringes versus multi-dose vials) that affect capacity and supply; and the importance of maintaining the vaccine cold chain (most vaccines have stringent storage temperature requirements necessary to maintain activity and potency). The ultimate aim is to make sure that an immunogenic product matching the required specifications reaches the recipient. The process from concept to licensure takes 10-30years. Vaccine licensure is based on a file submitted to regulatory agencies which contains the comprehensive compilation of chemistry, manufacturing information, assay procedures, preclinical and clinical trial results, and proposals for post-licensure effectiveness and safety data collection. Expedited development and licensure pathways may be sought in emergency settings: e.g., the 2009 H1N1 influenza pandemic, the 2014 West African Ebola outbreak and meningococcal serogroup B meningitis outbreaks in the United States and New Zealand. Vaccines vary in the complexity of their manufacturing process. Influenza vaccines are particularly challenging to produce and delays in manufacturing may occur, leading to vaccine shortages during the influenza season. Shortages can be difficult to resolve due to long manufacturing lead times and stringent, but variable, local regulations. New technologies are driving the development of new vaccines with simplified manufacturing requirements and with quality specifications that can be confirmed with fewer tests. These technologies could have far-reaching effects on supply, cost of goods, and on response timing to a medical need until product availability. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Establishing global policy recommendations: the role of the Strategic Advisory Group of Experts on immunization.

    PubMed

    Duclos, Philippe; Okwo-Bele, Jean-Marie; Salisbury, David

    2011-02-01

    The vaccine landscape has changed considerably over the last decade with many new vaccines and technological developments, unprecedented progress in reaching out to children and the development of new financing mechanisms. At the same time, there are more demands and additional expectations of national policy makers, donors and other interested parties for increased protection through immunization. The Global Immunization Vision and Strategy (GIVS), which broadens the previous scope of immunization efforts, sets a number of goals to be met by countries. The WHO has recently reviewed and adjusted both its policy making structure and processes for vaccines and immunization to include an enlarged consultation process to generate evidence-based recommendations, thereby ensuring the transparency of the decision making process and improving communications. This article describes the process of development of immunization policy recommendations at the global level and some of their impacts. It focuses on the roles and modes of operating of the Strategic Advisory Group of Experts on immunization, which is the overarching advisory group involved with the issuance of policy recommendations, monitoring and facilitating the achievement of the GIVS goals. The article also describes the process leading to the publication of WHO vaccine position papers, which provide WHO recommendations on vaccine use. WHO vaccine-related recommendations have become a necessary step in the pathway to the introduction and use of vaccines, especially in developing countries and, consequently, have a clear and significant impact.

  10. Production of adenovirus vectors and their use as a delivery system for influenza vaccines

    PubMed Central

    Vemula, Sai V.; Mittal, Suresh K.

    2010-01-01

    IMPORTANCE OF THE FIELD With the emergence of highly pathogenic avian influenza H5N1 viruses that have crossed species barriers and are responsible for lethal infections in humans in many countries, there is an urgent need for the development of effective vaccines which can be produced in large quantities at a short notice and confer broad protection against these H5N1 variants. In order to meet the potential global vaccine demand in a pandemic scenario, new vaccine-production strategies must be explored in addition to the currently used egg-based technology for seasonal influenza. AREAS COVERED IN THIS REVIEW Adenovirus (Ad) based influenza vaccines represent an attractive alternative/supplement to the currently licensed egg-based influenza vaccines. Ad-based vaccines are relatively inexpensive to manufacture, and their production process does not require either chicken eggs or labor intensive and time-consuming processes necessitating enhanced biosafety facilities. Most importantly, in a pandemic situation, this vaccine strategy could offer a stockpiling option to reduce the response time before a strain-matched vaccine could be developed. WHAT THE READER WILL GAIN This review discusses Ad-vector technology and the current progress in the development of Ad-based influenza vaccines. TAKE HOME MESSAGE Ad vector-based influenza vaccines for pandemic preparedness are under development to meet the global vaccine demand. PMID:20822477

  11. Parental Acceptance of HPV Vaccine in Peru: A Decision Framework

    PubMed Central

    Bartolini, Rosario M.; Winkler, Jennifer L.; Penny, Mary E.; LaMontagne, D. Scott

    2012-01-01

    Objective and Method Cervical cancer is the third most common cancer affecting women worldwide and it is an important cause of death, especially in developing countries. Cervical cancer is caused by human papillomavirus (HPV) and can be prevented by HPV vaccine. The challenge is to expand vaccine availability to countries where it is most needed. In 2008 Peru’s Ministry of Health implemented a demonstration project involving 5th grade girls in primary schools in the Piura region. We designed and conducted a qualitative study of the decision-making process among parents of girls, and developed a conceptual model describing the process of HPV vaccine acceptance. Results We found a nonlinear HPV decision-making process that evolved over time. Initially, the vaccine’s newness, the requirement of written consent, and provision of information were important. If information was sufficient and provided by credible sources, many parents accepted the vaccine. Later, after obtaining additional information from teachers, health personnel, and other trusted sources, more parents accepted vaccination. An understanding of the issues surrounding the vaccine developed, parents overcome fears and rumors, and engaged in family negotiations–including hearing the girl’s voice in the decision-making process. The concept of prevention (cancer as danger, future health, and trust in vaccines) combined with pragmatic factors (no cost, available at school) and the credibility of the offer (information in the media, recommendation of respected authority figure) were central to motivations that led parents to decide to vaccinate their daughters. A lack of confidence in the health system was the primary inhibitor of vaccine acceptance. Conclusions Health personnel and teachers are credible sources of information and can provide important support to HPV vaccination campaigns. PMID:23144719

  12. HSV-2 Vaccine: Current Status and Insight into Factors for Developing an Efficient Vaccine

    PubMed Central

    Zhu, Xiao-Peng; Muhammad, Zaka S.; Wang, Jian-Guang; Lin, Wu; Guo, Shi-Kun; Zhang, Wei

    2014-01-01

    Herpes simplex virus type 2 (HSV-2), a globally sexually transmitted virus, and also one of the main causes of genital ulcer diseases, increases susceptibility to HIV-1. Effective vaccines to prevent HSV-2 infection are not yet available, but are currently being developed. To facilitate this process, the latest progress in development of these vaccines is reviewed in this paper. A summary of the most promising HSV-2 vaccines tested in animals in the last five years is presented, including the main factors, and new ideas for developing an effective vaccine from animal experiments and human clinical trials. Experimental results indicate that future HSV-2 vaccines may depend on a strategy that targets mucosal immunity. Furthermore, estradiol, which increases the effectiveness of vaccines, may be considered as an adjuvant. Therefore, this review is expected to provide possible strategies for development of future HSV-2 vaccines. PMID:24469503

  13. Chemistry, manufacturing and control (CMC) and clinical trial technical support for influenza vaccine manufacturers.

    PubMed

    Wahid, Rahnuma; Holt, Renee; Hjorth, Richard; Berlanda Scorza, Francesco

    2016-10-26

    With the support of the Biomedical Advanced Research and Development Authority (BARDA) of the US Department of Health and Human Services, PATH has contributed to the World Health Organization's (WHO's) Global Action Plan for Influenza Vaccines (GAP) by providing technical and clinical assistance to several developing country vaccine manufacturers (DCVMs). GAP builds regionally based independent and sustainable influenza vaccine production capacity to mitigate the overall global shortage of influenza vaccines. The program also ensures adequate influenza vaccine manufacturing capacity in the event of an influenza pandemic. Since 2009, PATH has worked closely with two DCVMs in Vietnam: the Institute of Vaccines and Medical Biologicals (IVAC) and VABIOTECH. Beginning in 2013, PATH also began working with Torlak Institute in Serbia; Instituto Butantan in Brazil; Serum Institute of India Private Ltd. in India; and Changchun BCHT Biotechnology Co. (BCHT) in China. The DCVMs supported under the GAP program all had existing influenza vaccine manufacturing capability and required technical support from PATH to improve vaccine yield, process efficiency, and product formulation. PATH has provided customized technical support for the manufacturing process to each DCVM based on their respective requirements. Additionally, PATH, working with BARDA and WHO, supported several DCVMs in the clinical development of influenza vaccine candidates progressing toward national licensure or WHO prequalification. As a result of the activities outlined in this review, several companies were able to make excellent progress in developing state-of-the-art manufacturing processes and completing early phase clinical trials. Licensure trials are currently ongoing or planned for several DCVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Bivalent rLP2086 (Trumenba®): Development of a well-characterized vaccine through commercialization.

    PubMed

    Sunasara, Khurram; Cundy, John; Srinivasan, Sriram; Evans, Brad; Sun, Weiqiang; Cook, Scott; Bortell, Eric; Farley, John; Griffin, Daniel; Bailey Piatchek, Michele; Arch-Douglas, Katherine

    2018-05-24

    The phrase "Process is the Product" is often applied to biologics, including multicomponent vaccines composed of complex components that evade complete characterization. Vaccine production processes must be defined and locked early in the development cycle to ensure consistent quality of the vaccine throughout scale-up, clinical studies, and commercialization. This approach of front-loading the development work helped facilitate the accelerated approval of the Biologic License Application for the well-characterized vaccine bivalent rLP2086 (Trumenba®, Pfizer Inc) in 2014 under Breakthrough Therapy Designation. Bivalent rLP2086 contains two rLP2086 antigens and is licensed for the prevention of meningococcal meningitis disease caused by Neisseria meningitidis serogroup B in individuals 10-25years of age in the United States. This paper discusses the development of the manufacturing process of the two antigens for the purpose of making it amenable to any manufacturing facility. For the journey to commercialization, the operating model used to manage this highly accelerated program led to a framework that ensured "right the first time" execution, robust process characterization, and proactive process monitoring. This framework enabled quick problem identification and proactive resolutions, resulting in a robust control strategy for the commercial process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Systematic documentation of new vaccine introduction in selected countries of the Latin American Region.

    PubMed

    de Oliveira, Lúcia H; Toscano, Cristiana M; Sanwogou, N Jennifer; Ruiz-Matus, Cuauhtémoc; Tambini, Gina; Roses-Periago, Mirta; Andrus, Jon K

    2013-07-02

    Countries in Latin America were among the first developing countries to introduce new vaccines, particularly rotavirus (RV) and pneumococcal conjugate vaccines (PCVs), into their national immunization schedules. Experiences and lessons learned from these countries are valuable to donors, immunization partners, and policy makers in other countries wishing to make informed decisions on vaccine introduction. In order to enhance knowledge and promote understanding of the process of new vaccine introduction in the Latin American Region, with particular focus on RV and PCV, we conducted a systematic qualitative assessment. We evaluated the decision-making process, documented the structure in place, and reviewed key factors pertaining to new vaccine introduction. These include country morbidity and mortality data available prior to vaccine introduction, funding sources and mechanisms for vaccine introduction, challenges of implementation, and assessment of vaccine impact. From March 2010 to April 2011, we evaluated a subset of countries that had introduced RV and/or PCV in the past five years through interviews with key informants at the country level and through a systematic review of published data, gray literature, official technical documents, and country-specific health indicators. Countries evaluated were Bolivia, Brazil, Nicaragua, Peru, and Venezuela. In all countries, the potential of new vaccines to reduce mortality, as established by Millennium Development Goal 4, was an important consideration leading to vaccine introduction. Several factors-the availability of funds, the existence of sufficient evidence for vaccine introduction, and the feasibility of sustainable financing-were identified as crucial components of the decision-making process in the countries evaluated. The decision making process regarding new vaccine introduction in the countries evaluated does not follow a systematic approach. Nonetheless, existing evidence on efficacy, potential impact, and cost-effectiveness of vaccine introduction, even if not local data, was important in the decision making process for vaccine introduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. An adjuvant-modulated vaccine response in human whole blood

    PubMed Central

    Hakimi, Jalil; Azizi, Ali; Ausar, Salvador F.; Todryk, Stephen M.; Rahman, Nausheen; Brookes, Roger H.

    2017-01-01

    ABSTRACT The restimulation of an immune memory response by in vitro culture of blood cells with a specific antigen has been used as a way to gauge immunity to vaccines for decades. In this commentary we discuss a less appreciated application to support vaccine process development. We report that human whole blood from pre-primed subjects can generate a profound adjuvant-modulated, antigen-specific response to several different vaccine formulations. The response is able to differentiate subtle changes in the quality of an immune memory response to vaccine formulations and can be used to select optimal conditions relating to a particular manufacture process step. While questions relating to closeness to in vivo vaccination remain, the approach is another big step nearer to the more relevant human response. It has special importance for new adjuvant development, complementing other preclinical in vivo and in vitro approaches to considerably de-risk progression of novel vaccines before and throughout early clinical development. Broader implications of the approach are discussed. PMID:28605295

  17. Inactivated polio vaccine development for technology transfer using attenuated Sabin poliovirus strains to shift from Salk-IPV to Sabin-IPV.

    PubMed

    Bakker, Wilfried A M; Thomassen, Yvonne E; van't Oever, Aart G; Westdijk, Janny; van Oijen, Monique G C T; Sundermann, Lars C; van't Veld, Peter; Sleeman, Eelco; van Nimwegen, Fred W; Hamidi, Ahd; Kersten, Gideon F A; van den Heuvel, Nico; Hendriks, Jan T; van der Pol, Leo A

    2011-09-22

    Industrial-scale inactivated polio vaccine (IPV) production dates back to the 1960s when at the Rijks Instituut voor de Volksgezondheid (RIV) in Bilthoven a process was developed based on micro-carrier technology and primary monkey kidney cells. This technology was freely shared with several pharmaceutical companies and institutes worldwide. In this contribution, the history of one of the first cell-culture based large-scale biological production processes is summarized. Also, recent developments and the anticipated upcoming shift from regular IPV to Sabin-IPV are presented. Responding to a call by the World Health Organization (WHO) for new polio vaccines, the development of Sabin-IPV was continued, after demonstrating proof of principle in the 1990s, at the Netherlands Vaccine Institute (NVI). Development of Sabin-IPV plays an important role in the WHO polio eradication strategy as biocontainment will be critical in the post-OPV cessation period. The use of attenuated Sabin strains instead of wild-type Salk polio strains will provide additional safety during vaccine production. Initially, the Sabin-IPV production process will be based on the scale-down model of the current, and well-established, Salk-IPV process. In parallel to clinical trial material production, process development, optimization and formulation research is being carried out to further optimize the process and reduce cost per dose. Also, results will be shown from large-scale (to prepare for future technology transfer) generation of Master- and Working virus seedlots, and clinical trial material (for phase I studies) production. Finally, the planned technology transfer to vaccine manufacturers in low and middle-income countries is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. [Global immunization policies and recommendations: objectives and process].

    PubMed

    Duclos, Philippe; Okwo-Bele, Jean-Marie

    2007-04-01

    The World Health Organization (WHO) has a dual mandate of providing global policies, standards and norms as well as support for member countries in applying such policies and standards to national programmes with the aim to improve health. The vaccine world is changing and with it the demands and expectations of the global and national policy makers, donors, and other interested parties. Changes pertain to : new vaccines and technologies developments, vaccine safety issues, regulation and approval of vaccines, and increased funding flowing through new financing mechanisms. This places a special responsibility on WHO to respond effectively. WHO has recently reviewed and optimized its policy making structure for vaccines and immunization and adjusted it to the new Global Immunization Vision and Strategy, which broadens the scope of immunization efforts to all age groups and vaccines with emphasis on integration of immunization delivery with other health interventions. This includes an extended consultation process to promptly generate evidence base recommendations, ensuring transparency of the decision making process and added communication efforts. This article presents the objectives and impact of the process set to develop global immunization policies, norms, standards and recommendations. The key advisory committees landscape contributing to this process is described. This includes the Strategic Advisory Group of Experts, the Global Advisory Committee on Vaccine Safety and the Expert Committee on Biological Standardization. The elaboration of WHO vaccine position papers is also described.

  19. Development and technology transfer of Haemophilus influenzae type b conjugate vaccines for developing countries.

    PubMed

    Beurret, Michel; Hamidi, Ahd; Kreeftenberg, Hans

    2012-07-13

    This paper describes the development of a Haemophilus influenzae type b (Hib) conjugate vaccine at the National Institute for Public Health and the Environment/Netherlands Vaccine Institute (RIVM/NVI, Bilthoven, The Netherlands), and the subsequent transfer of its production process to manufacturers in developing countries. In 1998, at the outset of the project, the majority of the world's children were not immunized against Hib because of the high price and limited supply of the conjugate vaccines, due partly to the fact that local manufacturers in developing countries did not master the Hib conjugate production technology. To address this problem, the RIVM/NVI has developed a robust Hib conjugate vaccine production process based on a proven model, and transferred this technology to several partners in India, Indonesia, Korea and China. As a result, emerging manufacturers in developing countries acquired modern technologies previously unavailable to them. This has in turn facilitated their approach to producing other conjugate vaccines. As an additional spin-off from the project, a World Health Organization (WHO) Hib quality control (QC) course was designed and conducted at the RIVM/NVI, resulting in an increased regulatory capacity for conjugate vaccines in developing countries at the National Regulatory Authority (NRA) level. For the local populations, this has translated into an increased and sustainable supply of affordable Hib conjugate-containing combination vaccines. During the course of this project, developing countries have demonstrated their ability to produce large quantities of high-quality modern vaccines after a successful transfer of the technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. R&D in Vaccines Targeting Neglected Diseases: An Exploratory Case Study Considering Funding for Preventive Tuberculosis Vaccine Development from 2007 to 2014

    PubMed Central

    Costa Barbosa Bessa, Theolis; Santos de Aragão, Erika; Medeiros Guimarães, Jane Mary

    2017-01-01

    Based on an exploratory case study regarding the types of institutions funding the research and development to obtain new tuberculosis vaccines, this article intends to provoke discussion regarding the provision of new vaccines targeting neglected disease. Although our findings and discussion are mainly relevant to the case presented here, some aspects are more generally applicable, especially regarding the dynamics of development in vaccines to prevent neglected diseases. Taking into account the dynamics of innovation currently seen at work in the vaccine sector, a highly concentrated market dominated by few multinational pharmaceutical companies, we feel that global PDP models can play an important role throughout the vaccine development cycle. In addition, the authors call attention to issues surrounding the coordination of actors and resources in the research, development, manufacturing, and distribution processes of vaccine products arising from PDP involvement. PMID:28133608

  1. Making vaccines "on demand": a potential solution for emerging pathogens and biodefense?

    PubMed

    De Groot, Anne S; Einck, Leo; Moise, Leonard; Chambers, Michael; Ballantyne, John; Malone, Robert W; Ardito, Matthew; Martin, William

    2013-09-01

    The integrated US Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) has made great strides in strategic preparedness and response capabilities. There have been numerous advances in planning, biothreat countermeasure development, licensure, manufacturing, stockpiling and deployment. Increased biodefense surveillance capability has dramatically improved, while new tools and increased awareness have fostered rapid identification of new potential public health pathogens. Unfortunately, structural delays in vaccine design, development, manufacture, clinical testing and licensure processes remain significant obstacles to an effective national biodefense rapid response capability. This is particularly true for the very real threat of "novel pathogens" such as the avian-origin influenzas H7N9 and H5N1, and new coronaviruses such as hCoV-EMC. Conventional approaches to vaccine development, production, clinical testing and licensure are incompatible with the prompt deployment needed for an effective public health response. An alternative approach, proposed here, is to apply computational vaccine design tools and rapid production technologies that now make it possible to engineer vaccines for novel emerging pathogen and WMD biowarfare agent countermeasures in record time. These new tools have the potential to significantly reduce the time needed to design string-of-epitope vaccines for previously unknown pathogens. The design process-from genome to gene sequence, ready to insert in a DNA plasmid-can now be accomplished in less than 24 h. While these vaccines are by no means "standard," the need for innovation in the vaccine design and production process is great. Should such vaccines be developed, their 60-d start-to-finish timeline would represent a 2-fold faster response than the current standard.

  2. Development of Stable Influenza Vaccine Powder Formulations: Challenges and Possibilities

    PubMed Central

    Amorij, J-P.; Huckriede, A.; Wilschut, J.; Frijlink, H. W.

    2008-01-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought into the dry state using suitable excipients, stabilizers and drying processes. The resulting stable influenza vaccine powder is independent of cold-chain facilities. This can be attractive for the integration of the vaccine logistics with general drug distribution in Western as well as developing countries. In addition, a stockpile of stable vaccine formulations of potential vaccines against pandemic viruses can provide an immediate availability and simple distribution of vaccine in a pandemic outbreak. Finally, in the development of new needle-free dosage forms, dry and stable influenza vaccine powder formulations can facilitate new or improved targeting strategies for the vaccine compound. This review represents the current status of dry stable inactivated influenza vaccine development. Attention is given to the different influenza vaccine types (i.e. whole inactivated virus, split, subunit or virosomal vaccine), the rationale and need for stabilized influenza vaccines, drying methods by which influenza vaccines can be stabilized (i.e. lyophilization, spray drying, spray-freeze drying, vacuum drying or supercritical fluid drying), the current status of dry influenza vaccine development and the challenges for ultimate market introduction of a stable and effective dry-powder influenza vaccine. PMID:18338241

  3. The clinical development process for a novel preventive vaccine: An overview.

    PubMed

    Singh, K; Mehta, S

    2016-01-01

    Each novel vaccine candidate needs to be evaluated for safety, immunogenicity, and protective efficacy in humans before it is licensed for use. After initial safety evaluation in healthy adults, each vaccine candidate follows a unique development path. This article on clinical development gives an overview on the development path based on the expectations of various guidelines issued by the World Health Organization (WHO), the European Medicines Agency (EMA), and the United States Food and Drug Administration (USFDA). The manuscript describes the objectives, study populations, study designs, study site, and outcome(s) of each phase (Phase I-III) of a clinical trial. Examples from the clinical development of a malaria vaccine candidate, a rotavirus vaccine, and two vaccines approved for human papillomavirus (HPV) have also been discussed. The article also tabulates relevant guidelines, which can be referred to while drafting the development path of a novel vaccine candidate.

  4. Pneumococcal conjugate vaccine: economic issues of the introduction of a new childhood vaccine.

    PubMed

    Ray, G Thomas

    2002-06-01

    In February 2000, a pneumococcal conjugate vaccine was licensed for use in the USA. This vaccine has been shown to be effective in reducing pneumococcal disease, and has been recommended for universal use in infants. However, pneumococcal conjugate vaccine is by far the most expensive child vaccine series routinely administered in the USA, alone accounting for over 40% of the total purchase price of vaccines for the recommended childhood schedule. This article reviews the existing efficacy and economic studies of pneumococcal conjugate vaccine and discusses the process by which routine use of pneumococcal conjugate vaccine was introduced and the role economic analysis played in that process. Some of the scientific and funding issues relating to its use in both the industrialized and developing world are also discussed.

  5. [Selected problems of manufacturing influenza vaccines].

    PubMed

    Augustynowicz, Ewa

    2010-01-01

    In the study chosen issues of manufacturing influenza vaccines running to increase effectiveness were performed. New concepts into development of process of safety and efficacy influenza vaccines are connected with use a new adjuvants, use of alternative routes of administration of vaccine, new structural virus subunits including DNA, new way of virus culture and use of live, attenuated vaccines.

  6. Nanoparticle based tailoring of adjuvant function: the role in vaccine development.

    PubMed

    Prashant, Chandravilas Keshvan; Kumar, Manoj; Dinda, Amit Kumar

    2014-09-01

    Vaccination is one of the most powerful therapeutic tools for prevention and management of various infective and non-infective diseases including malignancy. Mass vaccination is a great strategy for eradicating major infectious diseases throughout the world like small pox. Application of nanotechnology for antigen delivery is a unique area of research and development which can change the vaccination strategy and policy in future. Nanocarriers can enhance antigen presentation including modulation of antigen processing pathways according to the specific need. The current review explores the pros and cons of application of different nanomaterials for antigen presentation and vaccine development.

  7. Vaccine stabilization: research, commercialization, and potential impact.

    PubMed

    Kristensen, Debra; Chen, Dexiang; Cummings, Ray

    2011-09-22

    All vaccines are susceptible to damage by elevated temperatures and many are also damaged by freezing. The distribution, storage, and use of vaccines therefore present challenges that could be reduced by enhanced thermostability, with resulting improvements in vaccine effectiveness. Formulation and processing technologies exist that can improve the stability of vaccines at temperature extremes, however, customization is required for individual vaccines and results are variable. Considerations affecting decisions about stabilization approaches include development cost, manufacturing cost, and the ease of use of the final product. Public sector agencies can incentivize vaccine developers to prioritize stabilization efforts through advocacy and by implementing policies that increase demand for thermostable vaccines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. In vitro Studies of Sandfly Fever Viruses and Their Potential Significance for Vaccine Development.

    DTIC Science & Technology

    1981-02-01

    34 - "’: / AD In vitro Studies of Sandfly Fever Viruses and Their Potential Significance for Vaccine Development Annual Progress Report by CO Jonathan F. Smith...Significance for Vaccine 1 gR1 Development 6 WPW"a EOTHmaei AUTHOV&PSI CONTRACt OR GRANT NUMSERWa Jonahan . Smth, h.D.DAMD-17-78-C-8056 P6EftJrPORim...antibodies, post-translational processing, Immunoprecipitation, antigen purification, In vitro translation, passive transfer, vaccines _26. AEISTRACTMO

  9. Vaccination policies and programs: the federal government's role in making the system work.

    PubMed

    Schwartz, B; Orenstein, W A

    2001-12-01

    Government agencies play a key role, from preclinical development to postlicensure monitoring, in making vaccinations one of the leading public health interventions. Important steps in this process include development and testing of vaccine antigens, evaluation of clinical and manufacturing data leading to licensure, formulation of recommendations, vaccine purchase, defining strategies to improve coverage, compensation of those injured by vaccine adverse reactions, and monitoring vaccine impact and safety. Using examples of newly recommended vaccines, this article describes the infrastructure that underlies a safe and effective program and highlights some of the opportunities and threats likely to impact the system in coming years.

  10. An international technology platform for influenza vaccines.

    PubMed

    Hendriks, Jan; Holleman, Marit; de Boer, Otto; de Jong, Patrick; Luytjes, Willem

    2011-07-01

    Since 2008, the World Health Organization has provided seed grants to 11 manufacturers in low- and middle-income countries to establish or improve their pandemic influenza vaccine production capacity. To facilitate this ambitious project, an influenza vaccine technology platform (or "hub") was established at the Netherlands Vaccine Institute for training and technology transfer to developing countries. During its first two years of operation, a robust and transferable monovalent pilot process for egg-based inactivated whole virus influenza A vaccine production was established under international Good Manufacturing Practice standards, as well as in-process and release assays. A course curriculum was designed, including a two-volume practical handbook on production and quality control. Four generic hands-on training courses were successfully realized for over 40 employees from 15 developing country manufacturers. Planned extensions to the curriculum include cell-culture based technology for viral vaccine production, split virion influenza production, and generic adjuvant formulation. We conclude that technology transfer through the hub model works well, significantly builds vaccine manufacturing capacity in developing countries, and thereby increases global and equitable access to vaccines of high public health relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Adverse Reactions to Vaccination: From Anaphylaxis to Autoimmunity.

    PubMed

    Gershwin, Laurel J

    2018-03-01

    Vaccines are important for providing protection from infectious diseases. Vaccination initiates a process that stimulates development of a robust and long-lived immune response to the disease agents in the vaccine. Side effects are sometimes associated with vaccination. These vary from development of acute hypersensitivity responses to vaccine components to local tissue reactions that are annoying but not significantly detrimental to the patient. The pathogenesis of these responses and the consequent clinical outcomes are discussed. Overstimulation of the immune response and the potential relationship to autoimmunity is evaluated in relation to genetic predisposition. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Challenges in reducing dengue burden; diagnostics, control measures and vaccines.

    PubMed

    Lam, Sai Kit

    2013-09-01

    Dengue is a major public health concern worldwide, with the number of infections increasing globally. The illness imposes the greatest economic and human burden on developing countries that have limited resources to deal with the scale of the problem. No cure for dengue exists; treatment is limited to rehydration therapy, and with vector control strategies proving to be relatively ineffective, a vaccine is an urgent priority. Despite the numerous challenges encountered in the development of a dengue vaccine, several vaccine candidates have shown promise in clinical development and it is believed that a vaccination program would be at least as cost-effective as current vector control programs. The lead candidate vaccine is a tetravalent, live attenuated, recombinant vaccine, which is currently in Phase III clinical trials. Vaccine introduction is a complex process that requires consideration and is discussed here. This review discusses the epidemiology, burden and pathogenesis of dengue, as well as the vaccine candidates currently in clinical development.

  13. mRNA Cancer Vaccines-Messages that Prevail.

    PubMed

    Grunwitz, Christian; Kranz, Lena M

    2017-01-01

    During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.

  14. The introduction of new vaccines into developing countries. IV: Global Access Strategies.

    PubMed

    Mahoney, Richard T; Krattiger, Anatole; Clemens, John D; Curtiss, Roy

    2007-05-16

    This paper offers a framework for managing a comprehensive Global Access Strategy for new vaccines in developing countries. It is aimed at strengthening the ability of public-sector entities to reach their goals. The Bill and Melinda Gates Foundation and The Rockefeller Foundation have been leaders in stimulating the creation of new organizations - public/private product development partnerships (PDPs) - that seek to accelerate vaccine development and distribution to meet the health needs of the world's poor. Case studies of two of these PDPs - the Salmonella Anti-pneumococcal Vaccine Program and the Pediatric Dengue Vaccine Initiative - examine development of such strategies. Relying on the application of innovation theory, the strategy leads to the identification of six Components of Innovation which cover all aspects of the vaccine innovation process. Appropriately modified, the proposed framework can be applied to the development and introduction of other products in developing countries including drugs, and nutritional and agricultural products.

  15. Epidemiological Studies to Support the Development of Next Generation Influenza Vaccines.

    PubMed

    Petrie, Joshua G; Gordon, Aubree

    2018-03-26

    The National Institute of Allergy and Infectious Diseases recently published a strategic plan for the development of a universal influenza vaccine. This plan focuses on improving understanding of influenza infection, the development of influenza immunity, and rational design of new vaccines. Epidemiological studies such as prospective, longitudinal cohort studies are essential to the completion of these objectives. In this review, we discuss the contributions of epidemiological studies to our current knowledge of vaccines and correlates of immunity, and how they can contribute to the development and evaluation of the next generation of influenza vaccines. These studies have been critical in monitoring the effectiveness of current influenza vaccines, identifying issues such as low vaccine effectiveness, reduced effectiveness among those who receive repeated vaccination, and issues related to egg adaptation during the manufacturing process. Epidemiological studies have also identified population-level correlates of protection that can inform the design and development of next generation influenza vaccines. Going forward, there is an enduring need for epidemiological studies to continue advancing knowledge of correlates of protection and the development of immunity, to evaluate and monitor the effectiveness of next generation influenza vaccines, and to inform recommendations for their use.

  16. Developments in the formulation and delivery of spray dried vaccines.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-10-03

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  17. The development of global vaccine stockpiles

    PubMed Central

    Yen, Catherine; Hyde, Terri B; Costa, Alejandro J; Fernandez, Katya; Tam, John S; Hugonnet, Stéphane; Huvos, Anne M; Duclos, Philippe; Dietz, Vance J; Burkholder, Brenton T

    2016-01-01

    Global vaccine stockpiles, in which vaccines are reserved for use when needed for emergencies or supply shortages, have effectively provided countries with the capacity for rapid response to emergency situations, such as outbreaks of yellow fever and meningococcal meningitis. The high cost and insufficient supply of many vaccines, including oral cholera vaccine and pandemic influenza vaccine, have prompted discussion on expansion of the use of vaccine stockpiles to address a wider range of emerging and re-emerging diseases. However, the decision to establish and maintain a vaccine stockpile is complex and must take account of disease and vaccine characteristics, stockpile management, funding, and ethical concerns, such as equity. Past experience with global vaccine stockpiles provide valuable information about the processes for their establishment and maintenance. In this Review we explored existing literature and stockpile data to discuss the lessons learned and to inform the development of future vaccine stockpiles. PMID:25661473

  18. Collaborative vaccine development: partnering pays.

    PubMed

    Ramachandra, Rangappa

    2008-01-01

    Vaccine development, supported by infusions of public and private venture capital, is re-entering a golden age as one of the fastest growing sectors in the life-sciences industry. Demand is driven by great unmet need in underdeveloped countries, increased resistance to current treatments, bioterrorism, and for prevention indications in travelers, pediatric, and adult diseases. Production systems are becoming less reliant on processes such as egg-based manufacturing, while new processes can help to optimize vaccines. Expeditious development hinges on efficient study conduct, which is greatly enhanced through research partnerships with specialized contract research organizations (CROs) that are licensed and knowledgeable in the intricacies of immunology and with the technologic and scientific foundation to support changing timelines and strategies inherent to vaccine development. The CRO often brings a more objective assessment for probability of success and may offer alternative development pathways. Vaccine developers are afforded more flexibility and are free to focus on innovation and internal core competencies. Functions readily outsourced to a competent partner include animal model development, safety and efficacy studies, immunotoxicity and immunogenicity, dose response studies, and stability and potency testing. These functions capitalize on the CRO partner's regulatory and scientific talent and expertise, and reduce infrastructure expenses for the vaccine developer. Successful partnerships result in development efficiencies, elimination or reduced redundancies, and improved time to market. Keys to success include honest communications, transparency, and flexibility.

  19. Country planning for health interventions under development: lessons from the malaria vaccine decision-making framework and implications for other new interventions

    PubMed Central

    Brooks, Alan; Ba-Nguz, Antoinette

    2012-01-01

    Traditionally it has taken years or decades for new public health interventions targeting diseases found in developing countries to be accessible to those most in need. One reason for the delay has been insufficient anticipation of the eventual processes and evidence required for decision making by countries. This paper describes research into the anticipated processes and data needed to inform decision making on malaria vaccines, the most advanced of which is still in phase 3 trials. From 2006 to 2008, a series of country consultations in Africa led to the development of a guide to assist countries in preparing their malaria vaccine decision-making frameworks. The guide builds upon the World Health Organization’s Vaccine Introduction Guidelines. It identifies the processes and data for decisions, when they would be needed relative to the development timelines of the intervention, and where they will come from. Policy development will be supported by data (e.g. malaria disease burden; roles of other malaria interventions; malaria vaccine impact; economic and financial issues; malaria vaccine efficacy, quality and safety) as will implementation decisions (e.g. programmatic issues and socio-cultural environment). This generic guide can now be applied to any future malaria vaccine. The paper discusses the opportunities and challenges to early planning for country decision-making—from the potential for timely, evidence-informed decisions to the risks of over-promising around an intervention still under development. Careful and well-structured planning by countries is an important way to ensure that new interventions do not remain unused for years or decades after they become available. PMID:22513733

  20. Sustainable vaccine development: a vaccine manufacturer's perspective.

    PubMed

    Rappuoli, Rino; Hanon, Emmanuel

    2018-05-08

    Vaccination remains the most cost-effective public health intervention after clean water, and the benefits impressively outweigh the costs. The efforts needed to fulfill the steadily growing demands for next-generation and novel vaccines designed for emerging pathogens and new indications are only realizable in a sustainable business model. Vaccine development can be fast-tracked through strengthening international collaborations, and the continuous innovation of technologies to accelerate their design, development, and manufacturing. However, these processes should be supported by a balanced project portfolio, and by managing sustainable vaccine procurement strategies for different types of markets. Collectively this will allow a gradual shift to a more streamlined and profitable vaccine production, which can significantly contribute to the worldwide effort to shape global health. Copyright © 2018 GlaxoSmithKine Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  1. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains.

    PubMed

    Verdijk, Pauline; Rots, Nynke Y; Bakker, Wilfried A M

    2011-05-01

    Following achievement of polio eradication, the routine use of all live-attenuated oral poliovirus vaccines should be discontinued. However, the costs per vaccine dose for the alternative inactivated poliovirus vaccine (IPV) are significantly higher and the current production capacity is not sufficient for worldwide distribution of the vaccine. In order to achieve cost-prize reduction and improve affordability, IPV production processes and dose-sparing strategies should be developed to facilitate local manufacture at a relatively lower cost. The use of attenuated Sabin instead of wild-type polio strains will provide additional safety during vaccine production and permits production in low-cost settings. Sabin-IPV is under development by several manufacturers. This article gives an overview of results from clinical trials with Sabin-IPV and discusses the requirements and challenges in the clinical development of this novel IPV.

  2. Vaccinomics and a New Paradigm for the Development of Preventive Vaccines Against Viral Infections

    PubMed Central

    Ovsyannikova, Inna G.; Kennedy, Richard B.; Haralambieva, Iana H.; Jacobson, Robert M.

    2011-01-01

    Abstract In this article we define vaccinomics as the integration of immunogenetics and immunogenomics with systems biology and immune profiling. Vaccinomics is based on the use of cutting edge, high-dimensional (so called “omics”) assays and novel bioinformatics approaches to the development of next-generation vaccines and the expansion of our capabilities in individualized medicine. Vaccinomics will allow us to move beyond the empiric “isolate, inactivate, and inject” approach characterizing past vaccine development efforts, and toward a more detailed molecular and systemic understanding of the carefully choreographed series of biological processes involved in developing viral vaccine-induced “immunity.” This enhanced understanding will then be applied to overcome the obstacles to the creation of effective vaccines to protect against pathogens, particularly hypervariable viruses, with the greatest current impact on public health. Here we provide an overview of how vaccinomics will inform vaccine science, the development of new vaccines and/or clinically relevant biomarkers or surrogates of protection, vaccine response heterogeneity, and our understanding of immunosenescence. PMID:21732819

  3. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    PubMed

    Chou, Ai-Hsiang; Liu, Chia-Chyi; Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele

    2012-01-01

    Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. These results provide valuable information supporting the current cell-based serum-free EV71 vaccine candidate going into human Phase I clinical trials.

  4. Genome-based approaches to develop vaccines against bacterial pathogens.

    PubMed

    Serruto, Davide; Serino, Laura; Masignani, Vega; Pizza, Mariagrazia

    2009-05-26

    Bacterial infectious diseases remain the single most important threat to health worldwide. Although conventional vaccinology approaches were successful in conferring protection against several diseases, they failed to provide efficacious solutions against many others. The advent of whole-genome sequencing changed the way to think about vaccine development, enabling the targeting of possible vaccine candidates starting from the genomic information of a single bacterial isolate, with a process named reverse vaccinology. As the genomic era progressed, reverse vaccinology has evolved with a pan-genome approach and multi-strain genome analysis became fundamental for the design of universal vaccines. This review describes the applications of genome-based approaches in the development of new vaccines against bacterial pathogens.

  5. Propelling novel vaccines directed against tuberculosis through the regulatory process.

    PubMed

    Brennan, M J; Collins, F M; Morris, S L

    1999-01-01

    The development of novel vaccines for use in the prevention and immunotherapy of tuberculosis is an area of intense interest for scientific researchers, public health agencies and pharmaceutical manufacturers. Development of effective anti-tuberculosis vaccines for use in specific target populations will require close cooperation among several different international organizations including agencies responsible for evaluating the safety and effectiveness of new biologics for human use. In this review, the major issues that are addressed by regulatory agencies to ensure that vaccines are pure, potent, safe, and effective are discussed. It is hoped that the comments provided here will help accelerate the development of new effective vaccines for the prevention and treatment of tuberculosis.

  6. Expression, purification, and characterization of the Necator americanus aspartic protease-1 (Na-APR-1 (M74)) antigen, a component of the bivalent human hookworm vaccine.

    PubMed

    Seid, Christopher A; Curti, Elena; Jones, R Mark; Hudspeth, Elissa; Rezende, Wanderson; Pollet, Jeroen; Center, Lori; Versteeg, Leroy; Pritchard, Sonya; Musiychuk, Konstantin; Yusibov, Vidadi; Hotez, Peter J; Bottazzi, Maria Elena

    2015-01-01

    Over 400 million people living in the world's poorest developing nations are infected with hookworms, mostly of the genus Necator americanus. A bivalent human hookworm vaccine composed of the Necator americanus Glutathione S-Transferase-1 (Na-GST-1) and the Necator americanus Aspartic Protease-1 (Na-APR-1 (M74)) is currently under development by the Sabin Vaccine Institute Product Development Partnership (Sabin PDP). Both monovalent vaccines are currently in Phase 1 trials. Both Na-GST-1 and Na-APR-1 antigens are expressed as recombinant proteins. While Na-GST-1 was found to express with high yields in Pichia pastoris, the level of expression of Na-APR-1 in this host was too low to be suitable for a manufacturing process. When the tobacco plant Nicotiana benthamiana was evaluated as an expression system, acceptable levels of solubility, yield, and stability were attained. Observed expression levels of Na-APR-1 (M74) using this system are ∼300 mg/kg. Here we describe the achievements and obstacles encountered during process development as well as characterization and stability of the purified Na-APR-1 (M74) protein and formulated vaccine. The expression, purification and analysis of purified Na-APR-1 (M74) protein obtained from representative 5 kg reproducibility runs performed to qualify the Na-APR-1 (M74) production process is also presented. This process has been successfully transferred to a pilot plant and a 50 kg scale manufacturing campaign under current Good Manufacturing Practice (cGMP) has been performed. The 50 kg run has provided a sufficient amount of protein to support the ongoing hookworm vaccine development program of the Sabin PDP.

  7. Development of World Health Organization (WHO) recommendations for appropriate clinical trial endpoints for next-generation Human Papillomavirus (HPV) vaccines.

    PubMed

    Prabhu, Malavika; Eckert, Linda O

    2016-12-01

    The World Health Organization (WHO) serves as a key organization to bring together experts along the continuum of vaccine development and regulatory approval, among its other functions. Using the revision of WHO's guidelines on prophylactic human papillomavirus (HPV) vaccine as an example, we describe the process by which (1) a need to revise the guidelines was identified; (2) a group of stakeholders with complementary expertise and key questions were identified; (3) a scientific review was conducted; (4) consensus on revisions was achieved; (5) guidelines were updated, reviewed widely, and approved. This multi-year process resulted in the consensus that regulatory agencies could consider additional endpoints, such as persistent HPV infection or immune equivalence, depending on the design of the HPV vaccine trials. Updating the guidelines will now accelerate vaccine development, reduce costs of clinical trials, and lead to faster regulatory approval. Copyright © 2016. Published by Elsevier B.V.

  8. A policy framework for accelerating adoption of new vaccines

    PubMed Central

    Hajjeh, Rana; Wecker, John; Cherian, Thomas; O'Brien, Katherine L; Knoll, Maria Deloria; Privor-Dumm, Lois; Kvist, Hans; Nanni, Angeline; Bear, Allyson P; Santosham, Mathuram

    2010-01-01

    Rapid uptake of new vaccines can improve health and wealth and contribute to meeting Millennium Development Goals. In the past, however, the introduction and use of new vaccines has been characterized by delayed uptake in the countries where the need is greatest. Based on experience with accelerating the adoption of Hib, pneumococcal and rotavirus vaccines, we propose here a framework for new vaccine adoption that may be useful for future efforts. The framework organizes the major steps in the process into a continuum from evidence to policy, implementation and finally access. It highlights the important roles of different actors at various times in the process and may allow new vaccine initiatives to save time and improve their efficiency by anticipating key steps and actions. PMID:21150269

  9. A policy framework for accelerating adoption of new vaccines.

    PubMed

    Levine, Orin S; Hajjeh, Rana; Wecker, John; Cherian, Thomas; O'Brien, Katherine L; Knoll, Maria Deloria; Privor-Dumm, Lois; Kvist, Hans; Nanni, Angeline; Bear, Allyson P; Santosham, Mathuram

    2010-12-01

    Rapid uptake of new vaccines can improve health and wealth and contribute to meeting Millennium Development Goals. In the past, however, the introduction and use of new vaccines has been characterized by delayed uptake in the countries where the need is greatest. Based on experience with accelerating the adoption of Hib, pneumococcal and rotavirus vaccines, we propose here a framework for new vaccine adoption that may be useful for future efforts. The framework organizes the major steps in the process into a continuum from evidence to policy, implementation and finally access. It highlights the important roles of different actors at various times in the process and may allow new vaccine initiatives to save time and improve their efficiency by anticipating key steps and actions.

  10. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible

    PubMed Central

    Chen, Qiang

    2015-01-01

    The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV. PMID:25676782

  11. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible.

    PubMed

    Chen, Qiang

    2015-05-01

    The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Obligatory vaccination reporting in Saxony-Anhalt. Possibilities and limitations of establishing a computerized vaccination registry].

    PubMed

    Oppermann, H; Wahl, G; Borrmann, M; Fleischer, J

    2009-11-01

    Vaccination registries are databases intended to assess and manage complete vaccination data of as many individuals as possible in a population under survey. The task of these registries is to identify low vaccination rates on the individual and population level, to enable systems of reminding individuals, to focus vaccination campaigns and to maximize overall vaccination coverage. Saxony-Anhalt is the only federal state of Germany to have a law that prescribes the reporting of vaccinations. Vaccinations of children up to the age of 7 are reported to the regional public health services. However, as the law provides no regulations as to how the data should be registered and processed, the development of a vaccination registry depends entirely on the initiative and cooperation of the "players in vaccination". The key players in vaccination in Saxony-Anhalt have recently created a Vaccination-Committee, which set out to develop the theoretical standards and a software prototype for the establishment of a computerized vaccination registry. Recent developments in the public health reporting system of Saxony-Anhalt (which strives to modernize its computerized assessment of child and adolescent health) are now opening the possibility to integrate the vaccination registry into the commercially available child health software.

  13. Developments in the formulation and delivery of spray dried vaccines

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794

  14. Egg-Independent Influenza Vaccines and Vaccine Candidates

    PubMed Central

    Manini, Ilaria; Pozzi, Teresa; Rossi, Stefania; Montomoli, Emanuele

    2017-01-01

    Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines. PMID:28718786

  15. Moving new vaccines for tuberculosis through the regulatory process.

    PubMed

    Brennan, M J

    2000-06-01

    The development of novel vaccines for the prevention of tuberculosis is an area of intense interest for scientific researchers, public health agencies, and pharmaceutical manufacturers. Development of effective new vaccines directed against tuberculosis for use in target populations will require close cooperation among several different international organizations, including regulatory agencies responsible for evaluating the safety and effectiveness of new biologics for human use.

  16. THE INFLUENCE EXERTED BY ROENTGENOLOGICAL RADIATION ON THE COURSE OF THE VACCINATION PROCESS AND THE IMMUNITY INTENSITY RATE FOLLOWING VACCINATION AGAINST TULAREMIA (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savel'eva, R.A.

    1962-10-01

    Studies were made of 90 vaccinated guinea pigs weighing 300 to 400 g and exposed to 200 r. The obtained data showed that irradiation depressed the immunogenic resistance to tuiaremia and, in cases of simultaneous vaccination and exposure, depressed the development of immunity. (R.V.J.)

  17. Making vaccines “on demand”

    PubMed Central

    De Groot, Anne S; Einck, Leo; Moise, Leonard; Chambers, Michael; Ballantyne, John; Malone, Robert W; Ardito, Matthew; Martin, William

    2013-01-01

    The integrated US Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) has made great strides in strategic preparedness and response capabilities. There have been numerous advances in planning, biothreat countermeasure development, licensure, manufacturing, stockpiling and deployment. Increased biodefense surveillance capability has dramatically improved, while new tools and increased awareness have fostered rapid identification of new potential public health pathogens. Unfortunately, structural delays in vaccine design, development, manufacture, clinical testing and licensure processes remain significant obstacles to an effective national biodefense rapid response capability. This is particularly true for the very real threat of “novel pathogens” such as the avian-origin influenzas H7N9 and H5N1, and new coronaviruses such as hCoV-EMC. Conventional approaches to vaccine development, production, clinical testing and licensure are incompatible with the prompt deployment needed for an effective public health response. An alternative approach, proposed here, is to apply computational vaccine design tools and rapid production technologies that now make it possible to engineer vaccines for novel emerging pathogen and WMD biowarfare agent countermeasures in record time. These new tools have the potential to significantly reduce the time needed to design string-of-epitope vaccines for previously unknown pathogens. The design process—from genome to gene sequence, ready to insert in a DNA plasmid—can now be accomplished in less than 24 h. While these vaccines are by no means “standard,” the need for innovation in the vaccine design and production process is great. Should such vaccines be developed, their 60-d start-to-finish timeline would represent a 2-fold faster response than the current standard. PMID:23877094

  18. The development of global vaccine stockpiles.

    PubMed

    Yen, Catherine; Hyde, Terri B; Costa, Alejandro J; Fernandez, Katya; Tam, John S; Hugonnet, Stéphane; Huvos, Anne M; Duclos, Philippe; Dietz, Vance J; Burkholder, Brenton T

    2015-03-01

    Global vaccine stockpiles, in which vaccines are reserved for use when needed for emergencies or supply shortages, have effectively provided countries with the capacity for rapid response to emergency situations, such as outbreaks of yellow fever and meningococcal meningitis. The high cost and insufficient supply of many vaccines, including oral cholera vaccine and pandemic influenza vaccine, have prompted discussion on expansion of the use of vaccine stockpiles to address a wider range of emerging and re-emerging diseases. However, the decision to establish and maintain a vaccine stockpile is complex and must take account of disease and vaccine characteristics, stockpile management, funding, and ethical concerns, such as equity. Past experience with global vaccine stockpiles provide valuable information about the processes for their establishment and maintenance. In this Review we explored existing literature and stockpile data to discuss the lessons learned and to inform the development of future vaccine stockpiles. Copyright © 2015 World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved. Published by Elsevier Ltd. All rights reserved.

  19. Influenza vaccine production for Brazil: a classic example of successful North-South bilateral technology transfer.

    PubMed

    Miyaki, Cosue; Meros, Mauricio; Precioso, Alexander R; Raw, Isaias

    2011-07-01

    Technology transfer is a promising approach to increase vaccine production at an affordable price in developing countries. In the case of influenza, it is imperative that developing countries acquire the technology to produce pandemic vaccines through the transfer of know-how, as this will be the only way for the majority of these countries to face the huge demand for vaccine created by influenza pandemics. Access to domestically produced influenza vaccine in such health crises is thus an important national defence strategy. However, technology transfer is not a simple undertaking. It requires a committed provider who is willing to transfer a complete production process, and not just the formulation and fill-finish parts of the process. It requires a recipient with established experience in vaccine production for human use and the ability to conduct research into new developments. In addition, the country of the recipient should preferably have sufficient financial resources to support the undertaking, and an internal market for the new vaccine. Technology transfer should create a solid partnership that results in the joint development of new competency, improvements to the product, and to further innovation. The Instituto Butantan-sanofi pasteur partnership can be seen as a model for successful technology transfer and has led to the technological independence of the Instituto Butantan in the use a strategic public health tool. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Advancing a multivalent ‘Pan-anthelmintic’ vaccine against soil-transmitted nematode infections

    PubMed Central

    Zhan, Bin; Beaumier, Coreen M; Briggs, Neima; Jones, Kathryn M; Keegan, Brian P; Bottazzi, Maria Elena; Hotez, Peter J

    2014-01-01

    Ascaris lumbricoides The Sabin Vaccine Institute Product Development Partnership is developing a Pan-anthelmintic vaccine that simultaneously targets the major soil-transmitted nematode infections, in other words, ascariasis, trichuriasis and hookworm infection. The approach builds off the current bivalent Human Hookworm Vaccine now in clinical development and would ultimately add both a larval Ascaris lumbricoides antigen and an adult-stage Trichuris trichiura antigen from the parasite stichosome. Each selected antigen would partially reproduce the protective immunity afforded by UV-attenuated Ascaris eggs and Trichuris stichosome extracts, respectively. Final antigen selection will apply a ranking system that includes the evaluation of expression yields and solubility, feasibility of process development and the absence of circulating antigen-specific IgE among populations living in helminth-endemic regions. Here we describe a five year roadmap for the antigen discovery, feasibility and antigen selection, which will ultimately lead to the scale-up expression, process development, manufacture, good laboratory practices toxicology and preclinical evaluation, ultimately leading to Phase 1 clinical testing. PMID:24392641

  1. The complementary roles of Phase 3 trials and post-licensure surveillance in the evaluation of new vaccines

    PubMed Central

    Lopalco, Pier Luigi; DeStefano, Frank

    2015-01-01

    Vaccines have led to significant reductions in morbidity and saved countless lives from many infectious diseases and are one of the most important public health successes of the modern era. Both vaccines' effectiveness and safety are keys for the success of immunisation programmes. The role of post-licensure surveillance has become increasingly recognised by regulatory authorities in the overall vaccine development process. Safety, purity, and effectiveness of vaccines are carefully assessed before licensure, but some safety and effectiveness aspects need continuing monitoring after licensure; Post-marketing activities are a necessary complement to pre-licensure activities for monitoring vaccine quality and to inform public health programmes. In the recent past, the availability of large databases together with data-mining and cross-linkage techniques have significantly improved the potentialities of post-licensure surveillance. The scope of this review is to present challenges and opportunities offered by vaccine post-licensure surveillance. While pre-licensure activities form the foundation for the development of effective and safe vaccines, post-licensure monitoring and assessment, are necessary to assure that vaccines are effective and safe when translated in real world settings. Strong partnerships and collaboration at an international level between different stakeholders is necessary for finding and optimally allocating resources and establishing robust post-licensure processes. PMID:25444788

  2. Accelerating vaccine development and deployment: report of a Royal Society satellite meeting

    PubMed Central

    Bregu, Migena; Draper, Simon J.; Hill, Adrian V. S.; Greenwood, Brian M.

    2011-01-01

    The Royal Society convened a meeting on the 17th and 18th November 2010 to review the current ways in which vaccines are developed and deployed, and to make recommendations as to how each of these processes might be accelerated. The meeting brought together academics, industry representatives, research sponsors, regulators, government advisors and representatives of international public health agencies from a broad geographical background. Discussions were held under Chatham House rules. High-throughput screening of new vaccine antigens and candidates was seen as a driving force for vaccine discovery. Multi-stakeholder, small-scale manufacturing facilities capable of rapid production of clinical grade vaccines are currently too few and need to be expanded. In both the human and veterinary areas, there is a need for tiered regulatory standards, differentially tailored for experimental and commercial vaccines, to allow accelerated vaccine efficacy testing. Improved cross-fertilization of knowledge between industry and academia, and between human and veterinary vaccine developers, could lead to more rapid application of promising approaches and technologies to new product development. Identification of best-practices and development of checklists for product development plans and implementation programmes were seen as low-cost opportunities to shorten the timeline for vaccine progression from the laboratory bench to the people who need it. PMID:21893549

  3. Gelatin-containing diphtheria-tetanus-pertussis (DTP) vaccine causes sensitization to gelatin in the recipients.

    PubMed

    Kumagai, T; Ozaki, T; Kamada, M; Igarashi, C; Yuri, K; Furukawa, H; Wagatuma, K; Chiba, S; Sato, M; Kojima, H; Saito, A; Okui, T; Yano, S

    2000-02-14

    Gelatin-specific T cell response was performed to determine whether a series of vaccinations with gelatin-containing DTP is a primary sensitization process in gelatin allergy. Thirty-seven recipients with gelatin-containing DTP who developed adverse reactions after vaccination and eight recipients of DTP without gelatin who also developed adverse reactions were studied. In addition, 10 subjects receiving gelatin-containing vaccine and 10 subjects inoculated with non-gelatin vaccine who did not show any adverse reactions were also investigated. All subjects inoculated with gelatin-containing DTP vaccine showed positive T cell responses against gelatin, however, occurrence of adverse reactions did not correlate with T cell responses. We conclude that DTP vaccine containing gelatin induces sensitization to gelatin in the recipients, but the mechanism of local reactions remains unknown.

  4. Optimization and revision of the production process of the Necator americanus glutathione S-transferase 1 (Na-GST-1), the lead hookworm vaccine recombinant protein candidate

    PubMed Central

    Curti, Elena; Seid, Christopher A; Hudspeth, Elissa; Center, Lori; Rezende, Wanderson; Pollet, Jeroen; Kwityn, Cliff; Hammond, Molly; Matsunami, Rise K; Engler, David A; Hotez, Peter J; Elena Bottazzi, Maria

    2014-01-01

    Infection by the human hookworm Necator americanus is a leading cause of anemia and disability in the developing countries of Africa, Asia, and the Americas. In order to prevent childhood hookworm disease in resource poor settings, a recombinant vaccine is under development by the Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, a Product Development Partnership (PDP). Previously, we reported on the expression and purification of a highly promising hookworm vaccine candidate, Na-GST-1, an N. americanus glutathione s-transferase expressed in Pichia pastoris (yeast), which led to production of 1.5 g of 95% pure recombinant protein at a 20L scale.1, 2, 3 This yield and purity of Na-GST-1 was sufficient for early pilot manufacturing and initial phase 1 clinical testing. However, based on the number of doses which would be required to allow mass vaccination and a potential goal to deliver a vaccine as inexpensively as possible, a higher yield of expression of the recombinant antigen at the lowest possible cost is highly desirable. Here we report on modifications to the fermentation (upstream process) of the antigen expressed in P. pastoris, and to the purification (downstream process) of the recombinant protein that allowed for a 2–3-fold improvement in the final yield of Na-GST-1 purified protein. The major improvements included upstream process changes such as the addition of a sorbitol pulse and co-feed during methanol induction as well as an extension of the induction stage to approximately 96 hours; downstream process changes included modifying the UFDF to flat sheet with a 10 kDa Molecular Weight cut-off (MWCO), adjusting the capacity of an ion-exchange chromatography step utilizing a gradient elution as opposed to the original step elution, and altering the hydrophobic interaction chromatography conditions. The full process, as well as the purity and stability profiles of the target Na-GST-1, and its formulation on Alhydrogel®, is described. PMID:25424799

  5. Assessment of safety and immunogenicity of two different lots of diphtheria, tetanus, pertussis, hepatitis B and Haemophilus influenzae type b vaccine manufactured using small and large scale manufacturing process.

    PubMed

    Sharma, Hitt J; Patil, Vishwanath D; Lalwani, Sanjay K; Manglani, Mamta V; Ravichandran, Latha; Kapre, Subhash V; Jadhav, Suresh S; Parekh, Sameer S; Ashtagi, Girija; Malshe, Nandini; Palkar, Sonali; Wade, Minal; Arunprasath, T K; Kumar, Dinesh; Shewale, Sunil D

    2012-01-11

    Hib vaccine can be easily incorporated in EPI vaccination schedule as the immunization schedule of Hib is similar to that of DTP vaccine. To meet the global demand of Hib vaccine, SIIL scaled up the Hib conjugate manufacturing process. This study was conducted in Indian infants to assess and compare the immunogenicity and safety of DTwP-HB+Hib (Pentavac(®)) vaccine of SIIL manufactured at large scale with the 'same vaccine' manufactured at a smaller scale. 720 infants aged 6-8 weeks were randomized (2:1 ratio) to receive 0.5 ml of Pentavac(®) vaccine from two different lots one produced at scaled up process and the other at a small scale process. Serum samples obtained before and at one month after the 3rd dose of vaccine from both the groups were tested for IgG antibody response by ELISA and compared to assess non-inferiority. Neither immunological interference nor increased reactogenicity was observed in either of the vaccine groups. All infants developed protective antibody titres to diphtheria, tetanus and Hib disease. For hepatitis B antigen, one child from each group remained sero-negative. The response to pertussis was 88% in large scale group vis-à-vis 87% in small scale group. Non-inferiority was concluded for all five components of the vaccine. No serious adverse event was reported in the study. The scale up vaccine achieved comparable response in terms of the safety and immunogenicity to small scale vaccine and therefore can be easily incorporated in the routine childhood vaccination programme. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Identification of IBV QX vaccine markers : Should vaccine acceptance by authorities require similar identifications for all live IBV vaccines?

    PubMed

    Listorti, Valeria; Laconi, Andrea; Catelli, Elena; Cecchinato, Mattia; Lupini, Caterina; Naylor, Clive J

    2017-10-09

    IBV genotype QX causes sufficient disease in Europe for several commercial companies to have started developing live attenuated vaccines. Here, one of those vaccines (L1148) was fully consensus sequenced alongside its progenitor field strain (1148-A) to determine vaccine markers, thereby enabling detection on farms. Twenty-eight single nucleotide substitutions were associated with the 1148-A attenuation, of which any combination can identify vaccine L1148 in the field. Sixteen substitutions resulted in amino acid coding changes of which half were in spike. One change in the 1b gene altered the normally highly conserved final 5 nucleotides of the transcription regulatory sequence of the S gene, common to all IBV QX genes. No mutations can currently be associated with the attenuation process. Field vaccination strategies would greatly benefit by such comparative sequence data being mandatorily submitted to regulators prior to vaccine release following a successful registration process. Copyright © 2017. Published by Elsevier Ltd.

  7. Plant-derived vaccines: an approach for affordable vaccines against cervical cancer.

    PubMed

    Waheed, Mohammad Tahir; Gottschamel, Johanna; Hassan, Syed Waqas; Lössl, Andreas Günter

    2012-03-01

    Several types of human papillomavirus (HPV) are causatively associated with cervical cancer, which is the second most common cancer in women worldwide. HPV-16 and 18 are among the high risk types and responsible for HPV infection in more than 70% of the cases. The majority of cervical cancer cases occur in developing countries. Currently available HPV vaccines are expensive and probably unaffordable for most women in low and middle income countries. Therefore, there is a need to develop cost-effective vaccines for these countries. Due to many advantages, plants offer an attractive platform for the development of affordable vaccines. These include low cost of production, scalability, low health risks and the potential ability to be used as unprocessed or partially processed material. Among several techniques, chloroplast transformation is of eminent interest for the production of vaccines because of high yield of foreign protein and lack of transgene transmission through pollen. In this commentary, we focus on the most relevant aspects of plant-derived vaccines that are decisive for the future development of cost-effective HPV vaccines.

  8. Shigellosis

    MedlinePlus

    ... for Diseases Control and Prevention (CDC) Shigella site . Biology & Genetics NIAID supports research to study how bacterial ... in the disease process. Read more about shigellosis biology and genetics Vaccines Researchers are developing vaccines to ...

  9. Development and approval of vaccines in the United States.

    PubMed

    Botstein, P

    1986-01-01

    In the United States, vaccines and the establishments in which they are manufactured are required to be licensed by the Food and Drug Administration (FDA) before the vaccine can be marketed. This licensing process, as well as the development and investigation of vaccines, is regulated by the FDA's Office of Biologics Research and Review. An application for licensing must contain information supporting the safety, effectiveness, purity and potency of the product. These are data obtained during the investigational phase and then submitted by a commercial sponsor for review and approval. Inspections, surveillance and laboratory testing are performed by the FDA before and after issuance of a license for marketing. The procedures and policies in the investigational and licensing phases of vaccine development are described.

  10. Vaccine and adjuvant design for emerging viruses

    PubMed Central

    McAuley, Alexander J

    2011-01-01

    Vaccination is currently the most effective strategy to medically control viral diseases. However, developing vaccines is a long and expensive process and traditional methods, such as attenuating wild-type viruses by serial passage, may not be suitable for all viruses and may lead to vaccine safety considerations, particularly in the case of the vaccination of particular patient groups, such as the immunocompromised and the elderly. In particular, developing vaccines against emerging viral pathogens adds a further level of complexity, as they may only be administered to small groups of people or only in response to a specific event or threat, limiting our ability to study and evaluate responses. In this commentary, we discuss how novel techniques may be used to engineer a new generation of vaccine candidates as we move toward a more targeted vaccine design strategy, driven by our understanding of the mechanisms of viral pathogenesis, attenuation and the signaling events which are required to develop a lasting, protective immunity. We will also briefly discuss the potential future role of vaccine adjuvants, which could be used to bridge the gap between vaccine safety and lasting immunity from a single vaccination. PMID:21637006

  11. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.

    PubMed

    Karczewski, Jerzy; Zorman, Julie; Wang, Su; Miezeiewski, Matthew; Xie, Jinfu; Soring, Keri; Petrescu, Ioan; Rogers, Irene; Thiriot, David S; Cook, James C; Chamberlin, Mihaela; Xoconostle, Rachel F; Nahas, Debbie D; Joyce, Joseph G; Bodmer, Jean-Luc; Heinrichs, Jon H; Secore, Susan

    2014-05-19

    Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases.

    PubMed

    Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried

    2017-09-01

    Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.

  13. 5 CFR 2640.203 - Miscellaneous exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... develop recommendations for new standards for AIDS vaccine trials involving human subjects. Even though the chemist's employer is in the process of developing an experimental AIDS vaccine and therefore will..., in advance, authority to make such approvals in accordance with agency policy. Example 4: A GS-14...

  14. 5 CFR 2640.203 - Miscellaneous exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... develop recommendations for new standards for AIDS vaccine trials involving human subjects. Even though the chemist's employer is in the process of developing an experimental AIDS vaccine and therefore will..., in advance, authority to make such approvals in accordance with agency policy. Example 4: A GS-14...

  15. 5 CFR 2640.203 - Miscellaneous exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... develop recommendations for new standards for AIDS vaccine trials involving human subjects. Even though the chemist's employer is in the process of developing an experimental AIDS vaccine and therefore will..., in advance, authority to make such approvals in accordance with agency policy. Example 4: A GS-14...

  16. Strategies to advance vaccine technologies for resource-poor settings.

    PubMed

    Kristensen, Debra; Chen, Dexiang

    2013-04-18

    New vaccine platform and delivery technologies that can have significant positive impacts on the effectiveness, acceptability, and safety of immunizations in developing countries are increasingly available. Although donor support for vaccine technology development is strong, the uptake of proven technologies by the vaccine industry and demand for them by purchasers continues to lag. This article explains the challenges and opportunities associated with accelerating the availability of innovative and beneficial vaccine technologies to meet critical needs in resource-poor settings over the next decade. Progress will require increased dialog between the public and private sectors around vaccine product attributes; establishment of specifications for vaccines that mirror programmatic needs; stronger encouragement of vaccine developers to consider novel technologies early in the product development process; broader facilitation of research and access to technologies through the formation of centers of excellence; the basing of vaccine purchase decisions on immunization systems costs rather than price per dose alone; possible subsidization of early technology adoption costs for vaccine producers that take on the risks of new technologies of importance to the public sector; and the provision of data to purchasers, better enabling them to make informed decisions that take into account the value of specific product attributes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Food and Drug Administration regulation and evaluation of vaccines.

    PubMed

    Marshall, Valerie; Baylor, Norman W

    2011-05-01

    The vaccine-approval process in the United States is regulated by the Center for Biologics Evaluation and Research of the US Food and Drug Administration. Throughout the life cycle of development, from preclinical studies to after licensure, vaccines are subject to rigorous testing and oversight. Manufacturers must adhere to good manufacturing practices and control procedures to ensure the quality of vaccines. As mandated by Title 21 of the Code of Regulations, licensed vaccines must meet stringent criteria for safety, efficacy, and potency.

  18. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    PubMed

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to batch cultivations, keeping high yields for extended production times is still a challenge. Overall, we demonstrate that process intensification of cell culture-based viral vaccine production can be realized by the consequent application of fed-batch, perfusion, and continuous systems with a significant increase in productivity. The potential for even further improvements is high, considering recent developments in establishment of new (designer) cell lines, better characterization of host cell metabolism, advances in media design, and the use of mathematical models as a tool for process optimization and control.

  19. Evaluation of introduction of the Haemophilus influenzae vaccine in Côte d’Ivoire

    PubMed

    Yohou, Kévin Sylvestre; Aka, Nicaise Lepri; Noufe, Soualihou; Douba, Alfred; Assi Assi, Bernard; Dagnan, Simplice N Cho

    2016-11-25

    Introduction: Côte d’Ivoire introduced the Haemophilus influenzae type b vaccine into the EPI in March 2009. Following this introduction, an evaluation was conducted in 2012 in order to evaluate the vaccine introduction process. Methods: Data collection methods consisted of document review, structured interviews and direct observation. This study collected information from six health region officials, 12 health districts and 36 healthcare institutions. Seventy-two mothers or child carers were also interviewed. Collected data were processed and analysed by Excel, Epi Info and SPSS. Results: A vaccine introduction plan was developed, but was not communicated at the operational level. The planned training for district health care providers was conducted eighteen months after introduction of the vaccine. None of the vaccinating centres had communication support about the new vaccine. Temperature recording was regularly performed in 92% of district deposits and 68% of vaccinating centres. Deteriorated vaccines were observed in 6% of vaccinating centres. Only 3.5% of parents had been informed about introduction of the vaccine. Increased immunization coverage for the third dose of pentavalent vaccine was observed in one half of health districts. Conclusion: Evaluation of the introduction of Haemophilus influenzae type b vaccine highlightsthe strengths and weaknesses of the health system and provides lessons for the introduction of other vaccines into the expanded programme on immunization.

  20. THE INFLUENCE OF ANTITUBERCULOUS VACCINATION ON THE COURSE OF THE TUBERCULOUS PROCESS IN CHRONIC IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khudushina, T.A.

    1961-10-01

    Preliminary antituberculosis vaccination of tuberculosisinfected rabbits subjected to protracted x irradiation (10 r daily) yields a positive effect only during the first stages of irradiation. Disturbance of specific antituberculous immunity occurs in the process of development of chronic radiation sickness. At this period the tuberculous process acquires a marked exudative-necrotic character. (auth)

  1. Informing vaccine decision-making: A strategic multi-attribute ranking tool for vaccines-SMART Vaccines 2.0.

    PubMed

    Knobler, Stacey; Bok, Karin; Gellin, Bruce

    2017-01-20

    SMART Vaccines 2.0 software is being developed to support decision-making among multiple stakeholders in the process of prioritizing investments to optimize the outcomes of vaccine development and deployment. Vaccines and associated vaccination programs are one of the most successful and effective public health interventions to prevent communicable diseases and vaccine researchers are continually working towards expanding targets for communicable and non-communicable diseases through preventive and therapeutic modes. A growing body of evidence on emerging vaccine technologies, trends in disease burden, costs associated with vaccine development and deployment, and benefits derived from disease prevention through vaccination and a range of other factors can inform decision-making and investment in new and improved vaccines and targeted utilization of already existing vaccines. Recognizing that an array of inputs influences these decisions, the strategic multi-attribute ranking method for vaccines (SMART Vaccines 2.0) is in development as a web-based tool-modified from a U.S. Institute of Medicine Committee effort (IOM, 2015)-to highlight data needs and create transparency to facilitate dialogue and information-sharing among decision-makers and to optimize the investment of resources leading to improved health outcomes. Current development efforts of the SMART Vaccines 2.0 framework seek to generate a weighted recommendation on vaccine development or vaccination priorities based on population, disease, economic, and vaccine-specific data in combination with individual preference and weights of user-selected attributes incorporating valuations of health, economics, demographics, public concern, scientific and business, programmatic, and political considerations. Further development of the design and utility of the tool is being carried out by the National Vaccine Program Office of the Department of Health and Human Services and the Fogarty International Center of the National Institutes of Health. We aim to demonstrate the utility of SMART Vaccines 2.0 through the engagement of a community of relevant stakeholders and to identify a limited number of pilot projects to determine explicitly defined attribute preferences and the related data and model requirements that are responsive to user needs and able to improve the use of evidence for vaccine-related decision-making and consequential priorities of vaccination options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. High-Density Peptide Arrays for Malaria Vaccine Development.

    PubMed

    Loeffler, Felix F; Pfeil, Johannes; Heiss, Kirsten

    2016-01-01

    The development of an efficacious and practicable vaccine conferring sterile immunity towards a Plasmodium infection represents a not yet achieved goal. A crucial factor for the impact of a given anti-plasmodial subunit vaccine is the identification of the most potent parasitic components required to induce protection from both infection and disease. Here, we present a method based on a novel high-density peptide array technology that allows for a flexible readout of malaria antibodies. Peptide arrays applied as a screening method can be used to identify novel immunogenic antibody epitopes under a large number of potential antigens/peptides. Ultimately, discovered antigen candidates and/or epitope sequences can be translated into vaccine prototype design. The technology can be further utilized to unravel antibody-mediated immune responses (e.g., involved in the establishment of semi-immunity) and moreover to confirm vaccine potency during the process of clinical development by verifying the induced antibody responses following vaccination.

  3. The complementary roles of Phase 3 trials and post-licensure surveillance in the evaluation of new vaccines.

    PubMed

    Lopalco, Pier Luigi; DeStefano, Frank

    2015-03-24

    Vaccines have led to significant reductions in morbidity and saved countless lives from many infectious diseases and are one of the most important public health successes of the modern era. Both vaccines' effectiveness and safety are keys for the success of immunisation programmes. The role of post-licensure surveillance has become increasingly recognised by regulatory authorities in the overall vaccine development process. Safety, purity, and effectiveness of vaccines are carefully assessed before licensure, but some safety and effectiveness aspects need continuing monitoring after licensure; Post-marketing activities are a necessary complement to pre-licensure activities for monitoring vaccine quality and to inform public health programmes. In the recent past, the availability of large databases together with data-mining and cross-linkage techniques have significantly improved the potentialities of post-licensure surveillance. The scope of this review is to present challenges and opportunities offered by vaccine post-licensure surveillance. While pre-licensure activities form the foundation for the development of effective and safe vaccines, post-licensure monitoring and assessment, are necessary to assure that vaccines are effective and safe when translated in real world settings. Strong partnerships and collaboration at an international level between different stakeholders is necessary for finding and optimally allocating resources and establishing robust post-licensure processes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination?

    PubMed Central

    2017-01-01

    A key goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs) targeted to the vulnerable regions of the HIV envelope. BnAbs develop overtime in ∼50%of HIV-1-infected individuals. However, to date, no vaccines have induced bnAbs and few or none of these vaccine-elicited HIV-1 antibodies carry the high frequencies of V(D)J mutations characteristic of bnAbs. Do the high frequencies of mutations characteristic of naturally induced bnAbs represent a fundamental barrier to the induction of bnAbs by vaccines? Recent studies suggest that high frequencies of V(D)J mutations can be achieved by serial vaccination strategies. Rather, it appears that, in the absence of HIV-1 infection, physiologic immune tolerance controls, including a germinal center process termed affinity reversion, may limit vaccine-driven bnAb development by clonal elimination or selecting for mutations incompatible with bnAb activity. PMID:28630077

  5. Making new vaccines affordable: a comparison of financing processes used to develop and deploy new meningococcal and pneumococcal conjugate vaccines.

    PubMed

    Hargreaves, James R; Greenwood, Brian; Clift, Charles; Goel, Akshay; Roemer-Mahler, Anne; Smith, Richard; Heymann, David L

    2011-11-26

    Mechanisms to increase access to health products are varied and controversial. Two innovative mechanisms have been used to accelerate the development of low-price supply lines for conjugate vaccines. The Meningitis Vaccine Project is a so-called push mechanism that facilitated technology transfer to an Indian company to establish capacity to manufacture a vaccine. The Advanced Market Commitment for pneumococcal vaccines is a so-called pull mechanism that guarantees companies a supplement paid in addition to the purchase price for vaccines for a specific period. We compare these approaches, identifying key dimensions of each and considering their potential for replication. We also discuss issues that the Global Alliance for Vaccines and Immunisation (GAVI) face now that these new vaccines are available. Progress towards GAVI's strategic aims is needed and funding is crucial. Approaches that decrease the financial pressure on GAVI and greatly increase political and financial engagement by low-income countries should also be considered. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Pricing of new vaccines

    PubMed Central

    McGlone, Sarah M

    2010-01-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following eleven components: (1) Conduct a target population analysis; (2) Map potential competitors and alternatives; (3) Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; (4) Quantify the incremental value of the new vaccine's characteristics; (5) Determine vaccine positioning in the marketplace; (6) Estimate the vaccine price-demand curve; (7) Calculate vaccine costs (including those of manufacturing, distribution, and research and development); (8) Account for various legal, regulatory, third party payer and competitor factors; (9) Consider the overall product portfolio; (10) Set pricing objectives; (11) Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area. PMID:20861678

  7. Pricing of new vaccines.

    PubMed

    Lee, Bruce Y; McGlone, Sarah M

    2010-08-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical, and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following ten components: 1. Conduct a target population analysis; 2. Map potential competitors and alternatives; 3. Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; 4. Quantify the incremental value of the new vaccine's characteristics; 5. Determine vaccine positioning in the marketplace; 6. Estimate the vaccine price-demand curve; 7. Calculate vaccine costs (including those of manufacturing, distribution, and research and development); 8. Account for various legal, regulatory, third party payer, and competitor factors; 9. Consider the overall product portfolio; 10. Set pricing objectives; 11. Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area.

  8. The introduction of new vaccines into developing countries. III. The role of intellectual property.

    PubMed

    Mahoney, Richard T; Pablos-Mendez, Ariel; Ramachandran, S

    2004-01-26

    The development of new vaccines that address the particular needs of developing countries has been proceeding slowly. A number of new public sector vaccine research and development initiatives have been launched to address this problem. These new initiatives find that they often wish to collaborate with the private sector and, in collaborating with the private sector, they must address issues of intellectual property (IP) management. It has not been well understood why IP management is important and how such management by public sector groups can best be conducted. IP management has become very important because vaccine research and development is driven by the regulatory process. The regulatory process has increased the cost of vaccine development to very high levels especially for the highly sophisticated new vaccines currently under development. Thus, investors seek IP protection for the required large investments. Conversely, we assert this concept as a new insight, IP rights are essential for mobilizing the significant funds necessary to meet regulatory requirements. Thus, IP rights are of value not only for investors but also for the public at large. In the absence of public sector mechanisms to carry out the functions that the private sector currently conducts, the public sector needs to increase its sophistication in IP management and needs to identify and implement strategies that will help the public sector to achieve its public health goals, especially for the poor and, among these individuals, the poor in developing countries. This paper suggests some strategies that might be used by the public sector to help achieve its public health goals, especially for the poor.

  9. The Top Five “Game Changers” in Vaccinology: Toward Rational and Directed Vaccine Development

    PubMed Central

    Kennedy, Richard B.

    2011-01-01

    Abstract Despite the tremendous success of the classical “isolate, inactivate, and inject” approach to vaccine development, new breakthroughs in vaccine research are increasingly reliant on novel approaches that incorporate cutting edge technology and advances in innate and adaptive immunology, microbiology, virology, pathogen biology, genetics, bioinformatics, and many other disciplines in order to: (1) deepen our understanding of the key biological processes that lead to protective immunity, (2) observe vaccine responses on a global, systems level, and (3) directly apply the new knowledge gained to the development of next-generation vaccines with improved safety profiles, enhanced efficacy, and even targeted utility in select populations. Here we highlight five key components foundational to vaccinomics efforts: applied immunogenomics, next generation sequencing and other cutting-edge “omics” technologies, advanced bioinformatics and analysis techniques, and finally, systems biology applied to immune profiling and vaccine responses. We believe these “game changers” will play a critical role in moving us toward the rational and directed development of new vaccines in the 21st century. PMID:21815811

  10. Meningococcal vaccine development--from glycoconjugates against MenACWY to proteins against MenB--potential for broad protection against meningococcal disease.

    PubMed

    Dull, Peter M; McIntosh, E David

    2012-05-30

    Novartis Vaccines has a long-standing research and development interest in the prevention of invasive meningococcal disease. From the initial licensure of the monovalent meningococcal C glycoconjugate vaccine, Menjugate(®), in response to the emergence of a virulent serogroup C ST-11 strain in the United Kingdom to the more recent development and licensure of a quadrivalent meningococcal ACWY glycoconjugate vaccine, Menveo(®), Novartis has a continuing commitment to the development of more effective tools for the control of meningococcal disease. Menveo is now licensed for use in adolescents and adults in over 50 countries and results from phase III studies have shown the vaccine to be well-tolerated and highly immunogenic in infants with vaccination beginning from 2 months of age. The 'holy grail' of meningococcal disease control is a broadly protective vaccine against serogroup B (MenB), preferably a vaccine that protects all age groups including infants. As the serogroup B capsule is poorly immunogenic, efforts over the past 40 years have focused on identifying conserved proteins expressed on the bacterial surface that elicit bactericidal antibodies. Novartis has approached this problem utilizing genomic tools to identify proteins meeting these criteria in a process now known as 'reverse vaccinology'[1]. This process has resulted in a novel multicomponent MenB vaccine (4CMenB) that consists of four major immunogenic components (three subcapsular MenB protein antigens plus outer membrane vesicles (OMVs) which themselves provide multiple subcapsular antigens, the immunodominant one being PorA). These all induce bactericidal antibodies against the antigens that are important in determining the survival, function, and virulence of the meningococci. Phase II studies of 4CMenB have been completed and have demonstrated that the vaccine is highly immunogenic against reference meningococcal strains selected to support licensure. Post-vaccination sera from clinical studies have also been tested against a diverse panel of serogroup B strains to support the development of the Meningococcal Antigen Typing System (MATS), a tool used to predict vaccine strain coverage [2] This overview is intended to give a broad summary of the key clinical data derived from the Menveo and 4CMenB clinical development programs. Copyright © 2012. Published by Elsevier Ltd.

  11. Adverse effect versus quality control of the Fuenzalida-Palacios antirabies vaccine.

    PubMed

    Nogueira, Y L

    1998-01-01

    We evaluated the components of the Fuenzalida-Palacios antirabies vaccine, which is till used in most developing countries in human immunization for treatment and prophylaxis. This vaccine is prepared from newborn mouse brains at 1% concentration. Even though the vaccine is considered to have a low myelin content, it is not fully free of myelin or of other undesirable components that might trigger adverse effects after vaccination. The most severe effect is a post-vaccination neuroparalytic accident associated with Guillain-Barré syndrome. In the present study we demonstrate how the vaccines produced and distributed by different laboratories show different component patterns with different degrees of impurity and with varying protein concentrations, indicating that production processes can vary from one laboratory to another. These differences, which could be resolved using a better quality control process, may affect and impair immunization, with consequent risks and adverse effects after vaccination. We used crossed immunoelectrophoresis to evaluate and demonstrate the possibility of quality control in vaccine production, reducing the risk factors possibly involved in these immunizing products.

  12. Drug Development Process

    MedlinePlus

    ... Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Patients Home For Patients Learn About Drug and Device Approvals The Drug Development Process The Drug Development Process Share Tweet Linkedin Pin ...

  13. Development of the Vaccine Analytic Unit's research agenda for investigating potential adverse events associated with anthrax vaccine adsorbed.

    PubMed

    Payne, Daniel C; Franzke, Laura H; Stehr-Green, Paul A; Schwartz, Benjamin; McNeil, Michael M

    2007-01-01

    In 2002, the Centers for Disease Control and Prevention established the Vaccine Analytic Unit (VAU) in collaboration with the Department of Defense (DoD). The focus of this report is to describe the process by which the VAU's anthrax vaccine safety research plan was developed following a comprehensive review of these topics. Public health literature, surveillance data, and clinical sources were reviewed to create a list of adverse events hypothesized to be potentially related to anthrax vaccine adsorbed (AVA). From this list, a consensus process was used to select 11 important research topics. Adverse event background papers were written for each of these topics, addressing predetermined criteria. These were independently reviewed and ranked by a National Vaccine Advisory Committee (NVAC) workgroup. The adverse events included in the final priority list will be the subject of observational or other post marketing surveillance studies using the Defense Medical Surveillance System (DMSS) database. A review of various information sources identified over 100 potential adverse events. The review process recommended 11 topics as potentially warranting further study. The NVAC workgroup identified the following adverse event topics for study: arthritis, optic neuritis, and Stevens-Johnson syndrome/Toxic epidermal necrolysis. Two additional topics (systemic lupus erythematosus (SLE) and multiple, near-concurrent military vaccinations) were added in response to emerging public health and military concerns. The experience described, while specific for establishing the VAU's research agenda for the safety of the current anthrax vaccine, may be useful and adapted for research planning in other areas of public health research. Copyright (c) 2006 John Wiley & Sons, Ltd.

  14. [Severe Yellow fever vaccine-associated disease: a case report and current overview].

    PubMed

    Slesak, Günther; Gabriel, Martin; Domingo, Cristina; Schäfer, Johannes

    2017-08-01

    History and physical examination  A 56-year-old man developed high fever with severe headaches, fatigue, impaired concentration skills, and an exanthema 5 days after a yellow fever (YF) vaccination. Laboratory tests  Liver enzymes and YF antibody titers were remarkably elevated. YF vaccine virus was detected in urine by PCR. Diagnosis and therapy  Initially, severe YF vaccine-associated visceral disease was suspected and treated symptomatically. Clinical Course  His fever ceased after 10 days in total, no organ failure developed. However, postencephalitic symptoms persisted with fatigue and impaired concentration, memory, and reading skills and partly incapability to work for over 3 months. A diagnosis was made of suspected YF vaccine-associated neurotropic disease. Conclusion  Severe vaccine-derived adverse effects need to be considered in the indication process for YF vaccination. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Lessons learned from successful human vaccines: Delineating key epitopes by dissecting the capsid proteins

    PubMed Central

    Zhang, Xiao; Xin, Lu; Li, Shaowei; Fang, Mujin; Zhang, Jun; Xia, Ningshao; Zhao, Qinjian

    2015-01-01

    Recombinant VLP-based vaccines have been successfully used against 3 diseases caused by viral infections: Hepatitis B, cervical cancer and hepatitis E. The VLP approach is attracting increasing attention in vaccine design and development for human and veterinary use. This review summarizes the clinically relevant epitopes on the VLP antigens in successful human vaccines. These virion-like epitopes, which can be delineated with molecular biology, cryo-electron microscopy and x-ray crystallographic methods, are the prerequisites for these efficacious vaccines to elicit functional antibodies. The critical epitopes and key factors influencing these epitopes are discussed for the HEV, HPV and HBV vaccines. A pentamer (for HPV) or a dimer (for HEV and HBV), rather than a monomer, is the basic building block harboring critical epitopes for the assembly of VLP antigen. The processing and formulation of VLP-based vaccines need to be developed to promote the formation and stabilization of these epitopes in the recombinant antigens. Delineating the critical epitopes is essential for antigen design in the early phase of vaccine development and for critical quality attribute analysis in the commercial phase of vaccine manufacturing. PMID:25751641

  16. Cryopreservation-related loss of antigen-specific IFNγ producing CD4+ T-cells can skew immunogenicity data in vaccine trials: Lessons from a malaria vaccine trial substudy.

    PubMed

    Ford, Tom; Wenden, Claire; Mbekeani, Alison; Dally, Len; Cox, Josephine H; Morin, Merribeth; Winstone, Nicola; Hill, Adrian V S; Gilmour, Jill; Ewer, Katie J

    2017-04-04

    Ex vivo functional immunoassays such as ELISpot and intracellular cytokine staining (ICS) by flow cytometry are crucial tools in vaccine development both in the identification of novel immunogenic targets and in the immunological assessment of samples from clinical trials. Cryopreservation and subsequent thawing of PBMCs via validated processes has become a mainstay of clinical trials due to processing restrictions inherent in the disparate location and capacity of trial centres, and also in the need to standardize biological assays at central testing facilities. Logistical and financial requirement to batch process samples from multiple study timepoints are also key. We used ELISpot and ICS assays to assess antigen-specific immunogenicity in blood samples taken from subjects enrolled in a phase II malaria heterologous prime-boost vaccine trial and showed that the freeze thaw process can result in a 3-5-fold reduction of malaria antigen-specific IFNγ-producing CD3 + CD4 + effector populations from PBMC samples taken post vaccination. We have also demonstrated that peptide responsive CD8 + T cells are relatively unaffected, as well as CD4 + T cell populations that do not produce IFNγ. These findings contribute to a growing body of data that could be consolidated and synthesised as guidelines for clinical trials with the aim of increasing the efficiency of vaccine development pipelines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. THE EFFECT OF X-RAY IRRADIATION ON THE COURSE OF VACCINAL PROCESS CAUSED BY THE ADMINISTRATION OF LIVING BRUCELLOSIS VACCINE TO ANIMALS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevtsova, Z.V.

    1959-10-01

    Investigations were conducted on white rats irradiated at doses of 300 to 600 r and guinea pigs irradiated at doses of 150 to 250 r. It appeared that immunizition with vaccinal brucella culture it the height of radiation sickness increases the death rate of the irradiated animals. As demonstrated by bacteriological examination, development of generalized vaccinal process in the irradiated and immunized animals pursued the same course as in the immunized non- irradiated animals. This procoss was manifested in the dissemination of brucella vaccinal strain in various organs. However the irradiated animals become cleared of the vaccinal culture at amore » somewhat slower rate than in the non-irradiated ones. in guinea pigs, irradiated privious to vaccination there was a slower formation of agglutinins with lower titre than in control non-irradiated animals. Opsonic phagocytic blood index was somewhat lower only in the animals irradiated 24 hours previous to the vaccination. When irradiating white rats 24 hours or 10 days in advance or 24 hours after the vaccination, a delay in the agglutinin production has been observed during the first days following the vaccination. (auth)« less

  18. Development and approval of live attenuated influenza vaccines based on Russian master donor viruses: Process challenges and success stories.

    PubMed

    Rudenko, Larisa; Yeolekar, Leena; Kiseleva, Irina; Isakova-Sivak, Irina

    2016-10-26

    Influenza is a viral infection that affects much of the global population each year. Vaccination remains the most effective tool for preventing the disease. Live attenuated influenza vaccine (LAIV) has been used since the 1950s to protect humans against seasonal influenza. LAIVs developed by the Institute of Experimental Medicine (IEM), Saint Petersburg, Russia, have been successfully used in Russia since 1987. In 2006, the World Health Organization (WHO) announced a Global action plan for influenza vaccines (GAP). WHO, recognizing potential advantages of LAIV over the inactivated influenza vaccine in a pandemic situation, included LAIV in the GAP. BioDiem Ltd., a vaccine development company based in Melbourne, Australia which held the rights for the Russian LAIV, licensed this technology to WHO in 2009. WHO was permitted to grant sub-licenses to vaccine manufacturers in newly industrialized and developing countries to use the Russian LAIV for the development, manufacture, use and sale of pandemic and seasonal LAIVs. To date, WHO has granted sub-licenses to vaccine manufacturers in China (Changchun BCHT Biotechnology Co., Ltd.), India (Serum Institute of India Pvt. Ltd.) and Thailand (Government Pharmaceutical Organization). In parallel, in 2009, IEM signed an agreement with WHO, under which IEM committed to supply pandemic and seasonal candidate vaccine viruses to the sub-licensees. This paper describes the progress made by collaborators from China, India, Russia and Thailand in developing preventive measures, including LAIV against pandemic influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The imperative for stronger vaccine supply and logistics systems.

    PubMed

    Zaffran, Michel; Vandelaer, Jos; Kristensen, Debra; Melgaard, Bjørn; Yadav, Prashant; Antwi-Agyei, K O; Lasher, Heidi

    2013-04-18

    With the introduction of new vaccines, developing countries are facing serious challenges in their vaccine supply and logistics systems. Storage capacity bottlenecks occur at national, regional, and district levels and system inefficiencies threaten vaccine access, availability, and quality. As countries adopt newer and more expensive vaccines and attempt to reach people at different ages and in new settings, their logistics systems must be strengthened and optimized. As a first step, national governments, donors, and international agencies have crafted a global vision for 2020 vaccine supply and logistics systems with detailed plans of action to achieve five priority objectives. Vaccine products and packaging are designed to meet the needs of developing countries. Immunization supply systems support efficient and effective vaccine delivery. The environmental impact of energy, materials, and processes used in immunization systems is minimized. Immunization information systems enable better and more timely decision-making. Competent and motivated personnel are empowered to handle immunization supply chain issues. Over the next decade, vaccine supply and logistics systems in nearly all developing countries will require significant investments of time and resources from global and national partners, donors, and governments. These investments are critical if we are to reach more people with current and newer vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Characterization of Prostate-Specific Membrane Antigen (PSMA) for Use in Therapeutic and Diagnostic Strategies against Prostate Cancer

    DTIC Science & Technology

    2000-07-01

    Copenhagen, Copenhagen, Denmark To develop adjuvant therapy for glioma patients vaccination by autologous Neovascularization of blood vessels is...on the physiology of solid Vaccines : Novel Antigens and Vectors I tumors and their response to treatment. #5056 DNA VACCINATION OF BRAIN TUMOR...involvement of Mtsl(S1 0OA4) Cal’-binding protein in DNA vaccination with irradiation of tumor. The induced immunological processes tumour progression and

  1. Development of an Interactive Social Media Tool for Parents with Concerns about Vaccines

    ERIC Educational Resources Information Center

    Shoup, Jo Ann; Wagner, Nicole M.; Kraus, Courtney R.; Narwaney, Komal J.; Goddard, Kristin S.; Glanz, Jason M.

    2015-01-01

    Objective: Describe a process for designing, building, and evaluating a theory-driven social media intervention tool to help reduce parental concerns about vaccination. Method: We developed an interactive web-based tool using quantitative and qualitative methods (e.g., survey, focus groups, individual interviews, and usability testing). Results:…

  2. Strategic priorities for respiratory syncytial virus (RSV) vaccine development

    PubMed Central

    Anderson, L.J.; Dormitzer, P.R.; Nokes, D.J.; Rappuoli, R.; Roca, A.; Graham, B.S.

    2013-01-01

    Although RSV has been a high priority for vaccine development, efforts to develop a safe and effective vaccine have yet to lead to a licensed product. Clinical and epidemiologic features of RSV disease suggest there are at least 4 distinct target populations for vaccines, the RSV naïve young infant, the RSV naïve child ≥6 months of age, pregnant women (to provide passive protection to newborns), and the elderly. These target populations raise different safety and efficacy concerns and may require different vaccination strategies. The highest priority target population is the RSV naïve child. The occurrence of serious adverse events associated with the first vaccine candidate for young children, formalin inactivated RSV (FI-RSV), has focused vaccine development for the young RSV naïve child on live virus vaccines. Enhanced disease is not a concern for persons previously primed by a live virus infection. A variety of live-attenuated viruses have been developed with none yet achieving licensure. New live-attenuated RSV vaccines are being developed and evaluated that maybe sufficiently safe and efficacious to move to licensure. A variety of subunit vaccines are being developed and evaluated primarily for adults in whom enhanced disease is not a concern. An attenuated parainfluenza virus 3 vector expressing the RSV F protein was evaluated in RSV naïve children. Most of these candidate vaccines have used the RSV F protein in various vaccine platforms including virus-like particles, nanoparticles, formulated with adjuvants, and expressed by DNA or virus vectors. The other surface glycoprotein, the G protein, has also been used in candidate vaccines. We now have tools to make and evaluate a wide range of promising vaccines. Costly clinical trials in the target population are needed to evaluate and select candidate vaccines for advancement to efficacy trials. Better data on RSV-associated mortality in developing countries, better estimates of the risk of long term sequelae such as wheezing after infection, better measures of protection in target populations, and data on the costs and benefits of vaccines for target populations are needed to support and justify funding this process. Addressing these challenges and needs should improve the efficiency and speed of achieving a safe and effective, licensed RSV vaccine. PMID:23598484

  3. A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells.

    PubMed

    Weng, Desheng; Calderwood, Stuart K; Gong, Jianlin

    2018-01-01

    We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of Hsp70 peptide complexes after the fusion of tumor and dendritic cells (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen processing machinery of dendritic cells through the cell fusion process and thus we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and therefore constitutes an improved formulation of chaperone protein-based tumor vaccine.

  4. Drug versus vaccine investment: a modelled comparison of economic incentives

    PubMed Central

    2013-01-01

    Background Investment by manufacturers in research and development of vaccines is relatively low compared with that of pharmaceuticals. If current evaluation technologies favour drugs over vaccines, then the vaccines market becomes relatively less attractive to manufacturers. Methods We developed a mathematical model simulating the decision-making process of regulators and payers, in order to understand manufacturers’ economic incentives to invest in vaccines rather than curative treatments. We analysed the objectives and strategies of manufacturers and payers when considering investment in technologies to combat a disease that affects children, and the interactions between them. Results The model confirmed that, for rare diseases, the economically justifiable prices of vaccines could be substantially lower than drug prices, and that, for diseases spread across multiple cohorts, the revenues derived from vaccinating one cohort per year (routine vaccination) could be substantially lower than those generated by treating sick individuals. Conclusions Manufacturers may see higher incentives to invest in curative treatments rather than in routine vaccines. To encourage investment in vaccines, health authorities could potentially revise their incentive schemes by: (1) committing to vaccinate all susceptible cohorts in the first year (catch-up campaign); (2) choosing a long-term horizon for health technology evaluation; (3) committing higher budgets for vaccines than for treatments; and (4) taking into account all intangible values derived from vaccines. PMID:24011090

  5. Safety, immunogenicity and protective efficacy in mice of a new cell-cultured Lister smallpox vaccine candidate.

    PubMed

    Ferrier-Rembert, Audrey; Drillien, Robert; Meignier, Bernard; Garin, Daniel; Crance, Jean-Marc

    2007-11-28

    It is now difficult to manufacture the first-generation smallpox vaccine, as the process could not comply with current safety and manufacturing regulations. In this study, a candidate non-clonal second-generation smallpox vaccine developed by Sanofi-Pasteur from the Lister strain has been assessed using a cowpox virus challenge in mice. We have observed similar safety, immunogenicity and protection (from disease and death) after a short or long interval following vaccination, as well as similar virus clearance post-challenge, with the second-generation smallpox vaccine candidate as compared to the traditional vaccine used as a benchmark.

  6. Strengthening the influenza vaccine virus selection and development process: Report of the 3rd WHO Informal Consultation for Improving Influenza Vaccine Virus Selection held at WHO headquarters, Geneva, Switzerland, 1-3 April 2014.

    PubMed

    Ampofo, William K; Azziz-Baumgartner, Eduardo; Bashir, Uzma; Cox, Nancy J; Fasce, Rodrigo; Giovanni, Maria; Grohmann, Gary; Huang, Sue; Katz, Jackie; Mironenko, Alla; Mokhtari-Azad, Talat; Sasono, Pretty Multihartina; Rahman, Mahmudur; Sawanpanyalert, Pathom; Siqueira, Marilda; Waddell, Anthony L; Waiboci, Lillian; Wood, John; Zhang, Wenqing; Ziegler, Thedi

    2015-08-26

    Despite long-recognized challenges and constraints associated with their updating and manufacture, influenza vaccines remain at the heart of public health preparedness and response efforts against both seasonal and potentially pandemic influenza viruses. Globally coordinated virological and epidemiological surveillance is the foundation of the influenza vaccine virus selection and development process. Although national influenza surveillance and reporting capabilities are being strengthened and expanded, sustaining and building upon recent gains has become a major challenge. Strengthening the vaccine virus selection process additionally requires the continuation of initiatives to improve the timeliness and representativeness of influenza viruses shared by countries for detailed analysis by the WHO Global Influenza Surveillance and Response System (GISRS). Efforts are also continuing at the national, regional, and global levels to better understand the dynamics of influenza transmission in both temperate and tropical regions. Improved understanding of the degree of influenza seasonality in tropical countries of the world should allow for the strengthening of national vaccination policies and use of the most appropriate available vaccines. There remain a number of limitations and difficulties associated with the use of HAI assays for the antigenic characterization and selection of influenza vaccine viruses by WHOCCs. Current approaches to improving the situation include the more-optimal use of HAI and other assays; improved understanding of the data produced by neutralization assays; and increased standardization of serological testing methods. A number of new technologies and associated tools have the potential to revolutionize influenza surveillance and response activities. These include the increasingly routine use of whole genome next-generation sequencing and other high-throughput approaches. Such approaches could not only become key elements in outbreak investigations but could drive a new surveillance paradigm. However, despite the advances made, significant challenges will need to be addressed before next-generation technologies become routine, particularly in low-resource settings. Emerging approaches and techniques such as synthetic genomics, systems genetics, systems biology and mathematical modelling are capable of generating potentially huge volumes of highly complex and diverse datasets. Harnessing the currently theoretical benefits of such bioinformatics ("big data") concepts for the influenza vaccine virus selection and development process will depend upon further advances in data generation, integration, analysis and dissemination. Over the last decade, growing awareness of influenza as an important global public health issue has been coupled to ever-increasing demands from the global community for more-equitable access to effective and affordable influenza vaccines. The current influenza vaccine landscape continues to be dominated by egg-based inactivated and live attenuated vaccines, with a small number of cell-based and recombinant vaccines. Successfully completing each step in the annual influenza vaccine manufacturing cycle will continue to rely upon timely and regular communication between the WHO GISRS, manufacturers and regulatory authorities. While the pipeline of influenza vaccines appears to be moving towards a variety of niche products in the near term, it is apparent that the ultimate aim remains the development of effective "universal" influenza vaccines that offer longer-lasting immunity against a broad range of influenza A subtypes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. A global regulatory science agenda for vaccines.

    PubMed

    Elmgren, Lindsay; Li, Xuguang; Wilson, Carolyn; Ball, Robert; Wang, Junzhi; Cichutek, Klaus; Pfleiderer, Michael; Kato, Atsushi; Cavaleri, Marco; Southern, James; Jivapaisarnpong, Teeranart; Minor, Philip; Griffiths, Elwyn; Sohn, Yeowon; Wood, David

    2013-04-18

    The Decade of Vaccines Collaboration and development of the Global Vaccine Action Plan provides a catalyst and unique opportunity for regulators worldwide to develop and propose a global regulatory science agenda for vaccines. Regulatory oversight is critical to allow access to vaccines that are safe, effective, and of assured quality. Methods used by regulators need to constantly evolve so that scientific and technological advances are applied to address challenges such as new products and technologies, and also to provide an increased understanding of benefits and risks of existing products. Regulatory science builds on high-quality basic research, and encompasses at least two broad categories. First, there is laboratory-based regulatory science. Illustrative examples include development of correlates of immunity; or correlates of safety; or of improved product characterization and potency assays. Included in such science would be tools to standardize assays used for regulatory purposes. Second, there is science to develop regulatory processes. Illustrative examples include adaptive clinical trial designs; or tools to analyze the benefit-risk decision-making process of regulators; or novel pharmacovigilance methodologies. Included in such science would be initiatives to standardize regulatory processes (e.g., definitions of terms for adverse events [AEs] following immunization). The aim of a global regulatory science agenda is to transform current national efforts, mainly by well-resourced regulatory agencies, into a coordinated action plan to support global immunization goals. This article provides examples of how regulatory science has, in the past, contributed to improved access to vaccines, and identifies gaps that could be addressed through a global regulatory science agenda. The article also identifies challenges to implementing a regulatory science agenda and proposes strategies and actions to fill these gaps. A global regulatory science agenda will enable regulators, academics, and other stakeholders to converge around transformative actions for innovation in the regulatory process to support global immunization goals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Breaking through Immunity's Glass Ceiling.

    PubMed

    Kelsoe, Garnett; Haynes, Barton F

    2018-05-01

    A key goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs) targeted to the vulnerable regions of the HIV envelope. BnAbs develop over time in ∼50% of HIV-1-infected individuals. However, to date, no vaccines have induced bnAbs and few or none of these vaccine-elicited HIV-1 antibodies carry the high frequencies of V(D)J mutations characteristic of bnAbs. Do the high frequencies of mutations characteristic of naturally induced bnAbs represent a fundamental barrier to the induction of bnAbs by vaccines? Recent studies suggest that high frequencies of V(D)J mutations can be achieved by serial vaccination strategies. Rather, it appears that, in the absence of HIV-1 infection, physiologic immune tolerance controls, including a germinal center process termed affinity reversion, may limit vaccine-driven bnAb development by clonal elimination or selecting for mutations incompatible with bnAb activity. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Towards ambient temperature-stable vaccines: the identification of thermally stabilizing liquid formulations for measles virus using an innovative high-throughput infectivity assay.

    PubMed

    Schlehuber, Lisa D; McFadyen, Iain J; Shu, Yu; Carignan, James; Duprex, W Paul; Forsyth, William R; Ho, Jason H; Kitsos, Christine M; Lee, George Y; Levinson, Douglas A; Lucier, Sarah C; Moore, Christopher B; Nguyen, Niem T; Ramos, Josephine; Weinstock, B André; Zhang, Junhong; Monagle, Julie A; Gardner, Colin R; Alvarez, Juan C

    2011-07-12

    As a result of thermal instability, some live attenuated viral (LAV) vaccines lose substantial potency from the time of manufacture to the point of administration. Developing regions lacking extensive, reliable refrigeration ("cold-chain") infrastructure are particularly vulnerable to vaccine failure, which in turn increases the burden of disease. Development of a robust, infectivity-based high throughput screening process for identifying thermostable vaccine formulations offers significant promise for vaccine development across a wide variety of LAV products. Here we describe a system that incorporates thermal stability screening into formulation design using heat labile measles virus as a prototype. The screening of >11,000 unique formulations resulted in the identification of liquid formulations with marked improvement over those used in commercial monovalent measles vaccines, with <1.0 log loss of activity after incubation for 8h at 40°C. The approach was shown to be transferable to a second unrelated virus, and therefore offers significant promise towards the optimization of formulation for LAV vaccine products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Is new always better than old?: The development of human vaccines for anthrax.

    PubMed

    Baillie, Leslie W

    2009-12-01

    Anthrax is caused by a Gram-positive aerobic spore-forming bacillus called Bacillus anthracis. Although primarily a disease of animals, it can also infect man, sometimes with fatal consequences. As a result of concerns over the illicit use of this organism, considerable effort is focused on the development of therapies capable of conferring protection against anthrax. while effective concerns over the toxicity of the current vaccines have driven the development of second-generation products. Recombinant Protective Antigen (rPA), the nontoxic cell-binding component of anthrax lethal toxin, is the principal immunogen of the vaccines currently undergoing human clinical trials. While these new vaccines are likely to show reduced side effects they will still require multiple needle based dosing and the inclusion of the adjuvant alum which will make them expensive to administer and stockpile. To address these issues, researchers are seeking to develop vaccine formulations capable of stimulating rapid protection following needle-free injection which are stable at room temperature to facilitate stockpiling and mass vaccination programs. Recent concerns over the potential use of molecular biology to engineer vaccine resistant strains has prompted investigators to identify additional vaccine targets with which to extend the spectrum of protection conferred by rPA. While the injection of research dollars has seen a dramatic expansion of the anthrax vaccine field it is sobering to remember that work to develop the current second generation vaccines began around the time of the first gulf war. Almost two decades and millions of dollars later we still do not have a replacement vaccine and even when we do some argue that the spectrum of protection that it confers will not be as broad as the vaccine it replaces. If we are to respond effectively to emerging biological threats we need to develop processes that generate protective vaccines in a meaningful time frame and yield products in months not decades!

  11. Indian vaccine innovation: the case of Shantha Biotechnics

    PubMed Central

    2011-01-01

    Background Although the World Health Organization had recommended that every child be vaccinated for Hepatitis B by the early 1980s, large multinational pharmaceutical companies held monopolies on the recombinant Hepatitis B vaccine. At a price as high as USD$23 a dose, most Indians families could not afford vaccination. Shantha Biotechnics, a pioneering Indian biotechnology company founded in 1993, saw an unmet need domestically, and developed novel processes for manufacturing Hepatitis B vaccine to reduce prices to less than $1/dose. Further expansion enabled low-cost mass vaccination globally through organizations such as UNICEF. In 2009, Shantha sold over 120 million doses of vaccines. The company was recently acquired by Sanofi-Aventis at a valuation of USD$784 million. Methods The case study and grounded research method was used to illustrate how the globalization of healthcare R&D is enabling private sector companies such as Shantha to address access to essential medicines. Sources including interviews, literature analysis, and on-site observations were combined to conduct a robust examination of Shantha's evolution as a major provider of vaccines for global health indications. Results Shantha's ability to become a significant global vaccine manufacturer and achieve international valuation and market success appears to have been made possible by focusing first on the local health needs of India. How Shantha achieved this balance can be understood in terms of a framework of four guiding principles. First, Shantha identified a therapeutic area (Hepatitis B) in which cost efficiencies could be achieved for reaching the poor. Second, Shantha persistently sought investments and partnerships from non-traditional and international sources including the Foreign Ministry of Oman and Pfizer. Third, Shantha focused on innovation and quality - investing in innovation from the outset yielded the crucial process innovation that allowed Shantha to make an affordable vaccine. Fourth, Shantha constructed its own cGMP facility, which established credibility for vaccine prequalification by the World Health Organization and generated interest from large pharmaceutical companies in its contract research services. These two sources of revenue allowed Shantha to continue to invest in health innovation relevant to the developing world. Conclusions The Shantha case study underscores the important role the private sector can play in global health and access to medicines. Home-grown companies in the developing world are becoming a source of low-cost, locally relevant healthcare R&D for therapeutics such as vaccines. Such companies may be compelled by market forces to focus on products relevant to diseases endemic in their country. Sanofi-Aventis' acquisition of Shantha reveals that even large pharmaceutical companies based in the developed world have recognized the importance of meeting the health needs of the developing world. Collectively, these processes suggest an ability to tap into private sector investments for global health innovation, and illustrate the globalization of healthcare R&D to the developing world. PMID:21507259

  12. Indian vaccine innovation: the case of Shantha Biotechnics.

    PubMed

    Chakma, Justin; Masum, Hassan; Perampaladas, Kumar; Heys, Jennifer; Singer, Peter A

    2011-04-20

    Although the World Health Organization had recommended that every child be vaccinated for Hepatitis B by the early 1980s, large multinational pharmaceutical companies held monopolies on the recombinant Hepatitis B vaccine. At a price as high as USD$23 a dose, most Indians families could not afford vaccination. Shantha Biotechnics, a pioneering Indian biotechnology company founded in 1993, saw an unmet need domestically, and developed novel processes for manufacturing Hepatitis B vaccine to reduce prices to less than $1/dose. Further expansion enabled low-cost mass vaccination globally through organizations such as UNICEF. In 2009, Shantha sold over 120 million doses of vaccines. The company was recently acquired by Sanofi-Aventis at a valuation of USD$784 million. The case study and grounded research method was used to illustrate how the globalization of healthcare R&D is enabling private sector companies such as Shantha to address access to essential medicines. Sources including interviews, literature analysis, and on-site observations were combined to conduct a robust examination of Shantha's evolution as a major provider of vaccines for global health indications. Shantha's ability to become a significant global vaccine manufacturer and achieve international valuation and market success appears to have been made possible by focusing first on the local health needs of India. How Shantha achieved this balance can be understood in terms of a framework of four guiding principles. First, Shantha identified a therapeutic area (Hepatitis B) in which cost efficiencies could be achieved for reaching the poor. Second, Shantha persistently sought investments and partnerships from non-traditional and international sources including the Foreign Ministry of Oman and Pfizer. Third, Shantha focused on innovation and quality - investing in innovation from the outset yielded the crucial process innovation that allowed Shantha to make an affordable vaccine. Fourth, Shantha constructed its own cGMP facility, which established credibility for vaccine prequalification by the World Health Organization and generated interest from large pharmaceutical companies in its contract research services. These two sources of revenue allowed Shantha to continue to invest in health innovation relevant to the developing world. The Shantha case study underscores the important role the private sector can play in global health and access to medicines. Home-grown companies in the developing world are becoming a source of low-cost, locally relevant healthcare R&D for therapeutics such as vaccines. Such companies may be compelled by market forces to focus on products relevant to diseases endemic in their country. Sanofi-Aventis' acquisition of Shantha reveals that even large pharmaceutical companies based in the developed world have recognized the importance of meeting the health needs of the developing world. Collectively, these processes suggest an ability to tap into private sector investments for global health innovation, and illustrate the globalization of healthcare R&D to the developing world.

  13. A Perspective on the Development of Plant-Made Vaccines in the Fight against Ebola Virus

    PubMed Central

    Rosales-Mendoza, Sergio; Nieto-Gómez, Ricardo; Angulo, Carlos

    2017-01-01

    The Ebola virus (EBOV) epidemic indicated a great need for prophylactic and therapeutic strategies. The use of plants for the production of biopharmaceuticals is a concept being adopted by the pharmaceutical industry, with an enzyme for human use currently commercialized since 2012 and some plant-based vaccines close to being commercialized. Although plant-based antibodies against EBOV are under clinical evaluation, the development of plant-based vaccines against EBOV essentially remains an unexplored area. The current technologies for the production of plant-based vaccines include stable nuclear expression, transient expression mediated by viral vectors, and chloroplast expression. Specific perspectives on how these technologies can be applied for developing anti-EBOV vaccines are provided, including possibilities for the design of immunogens as well as the potential of the distinct expression modalities to produce the most relevant EBOV antigens in plants considering yields, posttranslational modifications, production time, and downstream processing. PMID:28344580

  14. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials.

    PubMed

    Kallel, Héla; Kamen, Amine A

    2015-05-01

    Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Matrix and Backstage: Cellular Substrates for Viral Vaccines

    PubMed Central

    Jordan, Ingo; Sandig, Volker

    2014-01-01

    Vaccines are complex products that are manufactured in highly dynamic processes. Cellular substrates are one critical component that can have an enormous impact on reactogenicity of the final preparation, level of attenuation of a live virus, yield of infectious units or antigens, and cost per vaccine dose. Such parameters contribute to feasibility and affordability of vaccine programs both in industrialized countries and developing regions. This review summarizes the diversity of cellular substrates for propagation of viral vaccines from primary tissue explants and embryonated chicken eggs to designed continuous cell lines of human and avian origin. PMID:24732259

  16. Surface proteome mining for identification of potential vaccine candidates against Campylobacter jejuni: an in silico approach.

    PubMed

    Mehla, Kusum; Ramana, Jayashree

    2017-01-01

    Campylobacter jejuni remains a major cause of human gastroenteritis with estimated annual incidence rate of 450 million infections worldwide. C. jejuni is a major burden to public health in both socioeconomically developing and industrialized nations. Virulence determinants involved in C. jejuni pathogenesis are multifactorial in nature and not yet fully understood. Despite the completion of the first C. jejuni genome project in 2000, there are currently no vaccines in the market against this pathogen. Traditional vaccinology approach is an arduous and time extensive task. Omics techniques coupled with sequencing data have engaged researcher's attention to reduce the time and resources applied in the process of vaccine development. Recently, there has been remarkable increase in development of in silico analysis tools for efficiently mining biological information obscured in the genome. In silico approaches have been crucial for combating infectious diseases by accelerating the pace of vaccine development. This study employed a range of bioinformatics approaches for proteome scale identification of peptide vaccine candidates. Whole proteome of C. jejuni was investigated for varied properties like antigenicity, allergenicity, major histocompatibility class (MHC)-peptide interaction, immune cell processivity, HLA distribution, conservancy, and population coverage. Predicted epitopes were further tested for binding in MHC groove using computational docking studies. The predicted epitopes were conserved; covered more than 80 % of the world population and were presented by MHC-I supertypes. We conclude by underscoring that the epitopes predicted are believed to expedite the development of successful vaccines to control or prevent C. jejuni infections albeit the results need to be experimentally validated.

  17. Lymphoid tissue fibrosis is associated with impaired vaccine responses.

    PubMed

    Kityo, Cissy; Makamdop, Krystelle Nganou; Rothenberger, Meghan; Chipman, Jeffrey G; Hoskuldsson, Torfi; Beilman, Gregory J; Grzywacz, Bartosz; Mugyenyi, Peter; Ssali, Francis; Akondy, Rama S; Anderson, Jodi; Schmidt, Thomas E; Reimann, Thomas; Callisto, Samuel P; Schoephoerster, Jordan; Schuster, Jared; Muloma, Proscovia; Ssengendo, Patrick; Moysi, Eirini; Petrovas, Constantinos; Lanciotti, Ray; Zhang, Lin; Arévalo, Maria T; Rodriguez, Benigno; Ross, Ted M; Trautmann, Lydie; Sekaly, Rafick-Pierre; Lederman, Michael M; Koup, Richard A; Ahmed, Rafi; Reilly, Cavan; Douek, Daniel C; Schacker, Timothy W

    2018-05-21

    Vaccine responses vary by geographic location. We have previously described how HIV-associated inflammation leads to fibrosis of secondary lymph nodes (LNs) and T cell depletion. We hypothesized that other infections may cause LN inflammation and fibrosis, in a process similar to that seen in HIV infection, which may lead to T cell depletion and affect vaccine responses. We studied LNs of individuals from Kampala, Uganda, before and after yellow fever vaccination (YFV) and found fibrosis in LNs that was similar to that seen in HIV infection. We found blunted antibody responses to YFV that correlated to the amount of LN fibrosis and loss of T cells, including T follicular helper cells. These data suggest that LN fibrosis is not limited to HIV infection and may be associated with impaired immunologic responses to vaccines. This may have an impact on vaccine development, especially for infectious diseases prevalent in the developing world.

  18. Roadmap for the establishment of a European vaccine R&D infrastructure.

    PubMed

    Leroy, Odile; Geels, Mark; Korejwo, Joanna; Dodet, Betty; Imbault, Nathalie; Jungbluth, Stefan

    2014-12-05

    To consolidate the integration of the fragmented European vaccine development landscape, TRANSVAC - the European Network of Vaccine Research and Development, funded by the European Commission (EC) - has initiated the development of a roadmap through a process of stakeholder consultation. The outcome of this consultation highlighted the need for transnational cooperation and the opportunities that could be generated by such efforts. This cooperation can be achieved through the establishment of a European Vaccine Research and Development Infrastructure (EVRI). EVRI will support cooperation between existing vaccine Research and Development (R&D) organisations from the public and private sector and other networks throughout Europe. It will become sustainable over time by receiving support from multiple sources including the EC, European Union (EU) Member States, European vaccine companies, EVRI partner organisations, and by income generated. Different stakeholders have demonstrated support for the concept of a vaccine infrastructure and agree that such an infrastructure can function as leverage institution between public and private institutions thus making significant contributions to the vaccine field as a whole in its quest to develop vaccines. EVRI will be launched in three phases: preparatory (during which the legal and administrative framework will be defined and a business plan will be elaborated), implementation and operational. If sufficient political and financial commitment can be secured from relevant national and European entities as well as from the private sector and other stakeholders, it could enter into operational phase from 2017 onwards. In conclusion, EVRI can make vaccine R&D more efficient and help address European and global health challenges, help alleviate the burden and spread of infectious diseases, thus contributing to the sustainability of public healthcare systems. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. A model for estimating the impact of changes in children's vaccines.

    PubMed

    Simpson, K N; Biddle, A K; Rabinovich, N R

    1995-12-01

    To assist in strategic planning for the improvement of vaccines and vaccine programs, an economic model was developed and tested that estimates the potential impact of vaccine innovations on health outcomes and costs associated with vaccination and illness. A multistep, iterative process of data extraction/integration was used to develop the model and the scenarios. Parameter replication, sensitivity analysis, and expert review were used to validate the model. The greatest impact on the improvement of health is expected to result from the production of less reactogenic vaccines that require fewer inoculations for immunity. The greatest economic impact is predicted from improvements that decrease the number of inoculations required. Scenario analysis may be useful for integrating health outcomes and economic data into decision making. For childhood infections, this analysis indicates that large cost savings can be achieved in the future if we can improve vaccine efficacy so that the number of required inoculations is reduced. Such an improvement represents a large potential "payback" for the United States and might benefit other countries.

  20. Vi-CRM 197 as a new conjugate vaccine against Salmonella Typhi.

    PubMed

    Micoli, F; Rondini, S; Pisoni, I; Proietti, D; Berti, F; Costantino, P; Rappuoli, R; Szu, S; Saul, A; Martin, L B

    2011-01-17

    An efficacious, low cost vaccine against typhoid fever, especially for young children, would make a major impact on disease burden in developing countries. The virulence capsular polysaccharide of Salmonella Typhi (Vi) coupled to recombinant mutant Pseudomonas aeruginosa exoprotein A (Vi-rEPA) has been shown to be highly efficacious. We investigated the use of carrier proteins included in infant vaccines, standardized the conjugation process and developed key assays required for routine lot release at production scale. Vi from a BSL1 organism, Citrobacter freundii, strain WR7011, was used as an alternative to Vi from S. Typhi. We showed that Vi conjugated to CRM(197), a non-toxic mutant of diphtheria toxin, widely used in commercial vaccines, was produced at high yield. Vi-CRM(197) proved immunogenic in animal studies, even without adjuvant. Thus, Vi-CRM(197) appears to be a suitable candidate for the development of a commercially viable, effective typhoid vaccine for developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Fourth International Conference: Modern Vaccines/Adjuvants Formulation--Impact on Future Development: May 15-17 2013, CHUV, Lausanne, Switzerland.

    PubMed

    Tupin, Emmanuel

    2013-09-01

    On the 15-17th of May 2013, about 120 scientists, postdoctoral fellows and professors representing renowned academic institutes and senior scientists and executives from small biotechs, contract research organizations (CROs) and Big Pharma companies, gathered at the Centre Hospitalier Universitaire Vaudois (CHUV) in Lausanne, Switzerland for the 4th international conference on Modern Vaccines and Adjuvants Formulation. Despite this relative small number, the speakers and attendees covered together a very broad field of expertise. Indeed, experts in microbiology, immunology, biochemistry, formulation, virus and nanoparticle characterization, vaccine production, quality control as well as regulatory professionals attended the conference and were able to present their works and discuss new developments within the field of vaccine and adjuvant development, characterization and approval process. This broad diversity was a highpoint of the conference and allowed for a stimulating environment and underlined the complexity of the challenges that the field currently faces in order to develop better or completely new vaccines and adjuvants.

  2. [Technological development: a weak link in vaccine innovation in Brazil].

    PubMed

    Homma, Akira; Martins, Reinaldo M; Jessouroum, Ellen; Oliva, Otavio

    2003-01-01

    In very recent years, the federal government has launched important initiatives mean to strengthen science, technology, and innovation in Brazil and thus enhance the results of technological innovation in key areas of the country's economy. Yet these initiatives have not been enough to reduce Brazil's heavy dependence on goods and technology from more developed nations. The article describes the current state of vaccination, production, and technological development of vaccines both internationally and nationally. Some thoughts are also offered on the complexity of vaccine innovation and the various stages whose completion is essential to the whole process of technological development. An analysis is made of the parameters and factors involved in each stage; technical requirements for facilities and equipment; good manufacturing practice guidelines; organizational, infrastructural, and managerial needs; and the lengthy time periods adn high costs entailed in these activities.

  3. Executive summary and recommendations from the WHO/UNAIDS/IAVI expert group consultation on 'Phase IIB-TOC trials as a novel strategy for evaluation of preventive HIV vaccines', 31 January-2 February 2006, IAVI, New York, USA.

    PubMed

    2007-02-19

    This report summarizes the discussions and recommendations from a consultation held in New York City, USA (31 January-2 February 2006) organized by the joint World Health Organization-United Nations Programme on HIV/AIDS HIV Vaccine Initiative and the International AIDS Vaccine Initiative. The consultation discussed issues related to the design and implementation of phase IIB 'test of concept' trials (phase IIB-TOC), also referred to as 'proof of concept' trials, in evaluating candidate HIV vaccines and their implications for future approval and licensure. The results of a single phase IIB-TOC trial would not be expected to provide sufficient evidence of safety or efficacy required for licensure. In many instances, phase IIB-TOC trials may be undertaken relatively early in development, before manufacturing processes and capacity are developed sufficiently to distribute the vaccine on a large scale. However, experts at this meeting considered the pressure that could arise, particularly in regions hardest hit by AIDS, if a phase IIB-TOC trial showed high levels of efficacy. The group largely agreed that full-scale phase III trials would still be necessary to demonstrate that the vaccine candidate was safe and effective, but emphasized that governments and organizations conducting trials should consider these issues in advance. The recommendations from this meeting should be helpful for all organizations involved in HIV vaccine trials, in particular for the national regulatory authorities in assessing the utility of phase IIB-TOC trials in the overall HIV vaccine research and development process.

  4. Plant-made oral vaccines against human infectious diseases—Are we there yet?

    PubMed Central

    Chan, Hui-Ting; Daniell, Henry

    2016-01-01

    Summary Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches. PMID:26387509

  5. Virus like particles as a platform for cancer vaccine development.

    PubMed

    Ong, Hui Kian; Tan, Wen Siang; Ho, Kok Lian

    2017-01-01

    Cancers have killed millions of people in human history and are still posing a serious health problem worldwide. Therefore, there is an urgent need for developing preventive and therapeutic cancer vaccines. Among various cancer vaccine development platforms, virus-like particles (VLPs) offer several advantages. VLPs are multimeric nanostructures with morphology resembling that of native viruses and are mainly composed of surface structural proteins of viruses but are devoid of viral genetic materials rendering them neither infective nor replicative. In addition, they can be engineered to display multiple, highly ordered heterologous epitopes or peptides in order to optimize the antigenicity and immunogenicity of the displayed entities. Like native viruses, specific epitopes displayed on VLPs can be taken up, processed, and presented by antigen-presenting cells to elicit potent specific humoral and cell-mediated immune responses. Several studies also indicated that VLPs could overcome the immunosuppressive state of the tumor microenvironment and break self-tolerance to elicit strong cytotoxic lymphocyte activity, which is crucial for both virus clearance and destruction of cancerous cells. Collectively, these unique characteristics of VLPs make them optimal cancer vaccine candidates. This review discusses current progress in the development of VLP-based cancer vaccines and some potential drawbacks of VLPs in cancer vaccine development. Extracellular vesicles with close resembling to viral particles are also discussed and compared with VLPs as a platform in cancer vaccine developments.

  6. Regulatory constraints as seen from the pharmaceutical industry.

    PubMed

    Galligani, G; David-Andersen, I; Fossum, B

    2005-01-01

    In Chile, Canada, Europe, Japan, and the USA, which are the main geographical areas for fish farming of high value fish such as salmonids, sea bass, sea bream, yellowtail and catfish, vaccination has been established as an important method for the prevention of infectious diseases. To make new vaccines available to the fish farming industry, pharmaceutical companies must comply with the regulatory framework for licensing of fish vaccines, which in recent years has become more regulated. Considerable scientific and regulatory skills are thus required to develop, document and license vaccines in accordance with the requirements in the different geographical areas. International co-operation to harmonise requirements for the licensing documentation is ongoing. Even though there are obvious benefits to the pharmaceutical industry from the harmonisation process, it may sometimes impose unreasonable requirements. The regulatory framework for fish vaccines clearly has an impact on the time for bringing a new fish vaccine to the market. Several hurdles need to be passed to complete the regulatory process, i.e. obtain a licence. Fulfilment of the rather detailed and extensive requirements for documentation of the production and controls, as well as safety and efficacy of the vaccine, represent a challenge to the pharmaceutical industry, as do the different national and regional licensing procedures. This paper describes regulatory constraints related to the documentation, the licensing process, the site of production and the continuing international harmonisation work, with emphasis on inactivated conventional fish vaccines.

  7. The complexity and cost of vaccine manufacturing - An overview.

    PubMed

    Plotkin, Stanley; Robinson, James M; Cunningham, Gerard; Iqbal, Robyn; Larsen, Shannon

    2017-07-24

    As companies, countries, and governments consider investments in vaccine production for routine immunization and outbreak response, understanding the complexity and cost drivers associated with vaccine production will help to inform business decisions. Leading multinational corporations have good understanding of the complex manufacturing processes, high technological and R&D barriers to entry, and the costs associated with vaccine production. However, decision makers in developing countries, donors and investors may not be aware of the factors that continue to limit the number of new manufacturers and have caused attrition and consolidation among existing manufacturers. This paper describes the processes and cost drivers in acquiring and maintaining licensure of childhood vaccines. In addition, when export is the goal, we describe the requirements to supply those vaccines at affordable prices to low-resource markets, including the process of World Health Organization (WHO) prequalification and supporting policy recommendation. By providing a generalized and consolidated view of these requirements we seek to build awareness in the global community of the benefits and costs associated with vaccine manufacturing and the challenges associated with maintaining consistent supply. We show that while vaccine manufacture may prima facie seem an economic growth opportunity, the complexity and high fixed costs of vaccine manufacturing limit potential profit. Further, for most lower and middle income countries a large majority of the equipment, personnel and consumables will need to be imported for years, further limiting benefits to the local economy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. DNA vaccines against viral diseases of farmed fish.

    PubMed

    Evensen, Øystein; Leong, Jo-Ann C

    2013-12-01

    Immunization by an antigen-encoding DNA was approved for commercial sale in Canada against a Novirhabdovirus infection in fish. DNA vaccines have been particularly successful against the Novirhabdoviruses while there are reports on the efficacy against viral pathogens like infectious pancreatic necrosis virus, infectious salmon anemia virus, and lymphocystis disease virus and these are inferior to what has been attained for the novirhabdoviruses. Most recently, DNA vaccination of Penaeus monodon against white spot syndrome virus was reported. Research efforts are now focused on the development of more effective vectors for DNA vaccines, improvement of vaccine efficacy against various viral diseases of fish for which there is currently no vaccines available and provision of co-expression of viral antigen and immunomodulatory compounds. Scientists are also in the process of developing new delivery methods. While a DNA vaccine has been approved for commercial use in farmed salmon in Canada, it is foreseen that it is still a long way to go before a DNA vaccine is approved for use in farmed fish in Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Motors of influenza vaccination uptake and vaccination advocacy in healthcare workers: Development and validation of two short scales.

    PubMed

    Vallée-Tourangeau, Gaëlle; Promberger, Marianne; Moon, Karis; Wheelock, Ana; Sirota, Miroslav; Norton, Christine; Sevdalis, Nick

    2017-09-25

    Healthcare workers (HCWs) are an important priority group for vaccination against influenza, yet, flu vaccine uptake remains low among them. Psychosocial studies of HCWs' decisions to get vaccinated have commonly drawn on subjective expected utility models to assess predictors of vaccination, assuming HCWs' choices result from a rational information-weighing process. By contrast, we recast those decisions asa commitment to vaccination and we aimed to understand why HCWs may want to (rather than believe they need to) get vaccinated against the flu. This article outlines the development and validation of a 9-item measure of cognitive empowerment towards flu vaccination (MoVac-flu scale) and an 11-item measure of cognitive empowerment towards vaccination advocacy. Both scales were administered to 784 frontline NHS HCWs with direct patient contact between June 2014 and July 2015. The scales exhibited excellent reliability and a clear unidimensional factor structure. An examination of the nomological network of the cognitive empowerment construct in relation to HCWs' vaccination against the flu revealed that this construct was distinct from traditional measures of risk perception and the strongest predictor of HCWs' decisions to vaccinate. Similarly, cognitive empowerment in relation to vaccination advocacy was a strong predictor of HCWs' engagement with vaccination advocacy. These findings suggest that the cognitive empowerment construct has important implications for advancing our understanding of HCWs' decisions to vaccinate as well as their advocacy behavior. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Considerations for setting the specifications of vaccines.

    PubMed

    Minor, Philip

    2012-05-01

    The specifications of vaccines are determined by the particular product and its method of manufacture, which raise issues unique to the vaccine in question. However, the general principles are shared, including the need to have sufficient active material to immunize a very high proportion of recipients, an acceptable level of safety, which may require specific testing or may come from the production process, and an acceptable low level of contamination with unwanted materials, which may include infectious agents or materials used in production. These principles apply to the earliest smallpox vaccines and the most recent recombinant vaccines, such as those against HPV. Manufacturing development includes more precise definitions of the product through improved tests and tighter control of the process parameters. Good manufacturing practice plays a major role, which is likely to increase in importance in assuring product quality almost independent of end-product specifications.

  11. Bounded rationality alters the dynamics of paediatric immunization acceptance.

    PubMed

    Oraby, Tamer; Bauch, Chris T

    2015-06-02

    Interactions between disease dynamics and vaccinating behavior have been explored in many coupled behavior-disease models. Cognitive effects such as risk perception, framing, and subjective probabilities of adverse events can be important determinants of the vaccinating behaviour, and represent departures from the pure "rational" decision model that are often described as "bounded rationality". However, the impact of such cognitive effects in the context of paediatric infectious disease vaccines has received relatively little attention. Here, we develop a disease-behavior model that accounts for bounded rationality through prospect theory. We analyze the model and compare its predictions to a reduced model that lacks bounded rationality. We find that, in general, introducing bounded rationality increases the dynamical richness of the model and makes it harder to eliminate a paediatric infectious disease. In contrast, in other cases, a low cost, highly efficacious vaccine can be refused, even when the rational decision model predicts acceptance. Injunctive social norms can prevent vaccine refusal, if vaccine acceptance is sufficiently high in the beginning of the vaccination campaign. Cognitive processes can have major impacts on the predictions of behaviour-disease models, and further study of such processes in the context of vaccination is thus warranted.

  12. Bounded rationality alters the dynamics of paediatric immunization acceptance

    PubMed Central

    Oraby, Tamer; Bauch, Chris T.

    2015-01-01

    Interactions between disease dynamics and vaccinating behavior have been explored in many coupled behavior-disease models. Cognitive effects such as risk perception, framing, and subjective probabilities of adverse events can be important determinants of the vaccinating behaviour, and represent departures from the pure “rational” decision model that are often described as “bounded rationality”. However, the impact of such cognitive effects in the context of paediatric infectious disease vaccines has received relatively little attention. Here, we develop a disease-behavior model that accounts for bounded rationality through prospect theory. We analyze the model and compare its predictions to a reduced model that lacks bounded rationality. We find that, in general, introducing bounded rationality increases the dynamical richness of the model and makes it harder to eliminate a paediatric infectious disease. In contrast, in other cases, a low cost, highly efficacious vaccine can be refused, even when the rational decision model predicts acceptance. Injunctive social norms can prevent vaccine refusal, if vaccine acceptance is sufficiently high in the beginning of the vaccination campaign. Cognitive processes can have major impacts on the predictions of behaviour-disease models, and further study of such processes in the context of vaccination is thus warranted. PMID:26035413

  13. Pneumococcal whole-cell vaccine: optimization of cell growth of unencapsulated Streptococcus pneumoniae in bioreactor using animal-free medium.

    PubMed

    Liberman, C; Takagi, M; Cabrera-Crespo, J; Sbrogio-Almeida, M E; Dias, W O; Leite, L C C; Gonçalves, V M

    2008-11-01

    The high cost of the available pneumococcal conjugated vaccines has been an obstacle in implementing vaccination programs for children in developing countries. As an alternative, Malley et al. proposed a vaccine consisting of inactivated whole-cells of unencapsulated S. pneumoniae, which provides serotype-independent protection and involves lower production costs. Although the pneumococcus has been extensively studied, little research has focused on its large-scale culture, thus implying a lack of knowledge of process parameters, which in turn are essential for its successful industrial production. The strain Rx1Al- eryR was originally cultured in Todd-Hewitt medium (THY), which is normally used for pneumococcus isolation, but is unsuitable for human vaccine preparations. The purposes of this study were to compare the strains Rx1Al- eryR and kanR, develop a new medium, and generate new data parameters for scaling-up the process. In static flasks, cell densities were higher for eryR than kanR. In contrast, the optical density (OD) of the former decreased immediately after reaching the stationary phase, and the OD of the latter remained stable. The strain Rx1Al- kanR was cultivated in bioreactors with medium based on either acid-hydrolyzed casein (AHC) or enzymatically hydrolyzed soybean meal (EHS). Biomass production in EHS was 2.5 times higher than in AHC, and about ten times higher than in THY. The process developed for growing the strain Rx1Al- kanR in pH-controlled bioreactors was shown to be satisfactory to this fastidious bacterium. The new culture conditions using this animal-free medium may allow the production of the pneumococcal whole-cell vaccine.

  14. National Advisory Groups and their role in immunization policy-making processes in European countries.

    PubMed

    Nohynek, H; Wichmann, O; D Ancona, F

    2013-12-01

    During the twenty-first century, the development of national immunization programmes (NIP) has matured into robust processes where evidence-based methodologies and frameworks have increasingly been adopted. A key role in the decision-making and recommending processes is played by National Immunization Technical Advisory Groups (NITAGs). In a survey performed among European Union member states, Norway and Iceland, in February 2013, 85% of the 27 responding countries reported having established a NITAG, and of these, 45% have formal frameworks in place for the systematic development of vaccination recommendations. Independent of whether a formal framework is in place, common key factors are addressed by all NITAGs and also in countries without NITAGs. The four main factors addressed by all were: disease burden in the country, severity of the disease, vaccine effectiveness or efficacy, and vaccine safety at population level. Mathematical modelling and cost-effectiveness analyses are still not common tools. Differences in the relative weighting of these key factors, differences in data or assumptions on country-specific key factors, and differences in existing vaccination systems and financing, are likely to be reasons for differences in NITAG recommendations, and eventually NIPs, across Europe. Even if harmonization of NIPs is presently not a reasonable aim, systematic reviews and the development of mathematical/economic models could be performed at supranational level, thus sharing resources and easing the present work-load of NITAGs. Nevertheless, it has been argued that harmonization would ease central purchase of vaccines, thus reducing the price and increasing access to new vaccines. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  15. Impact of committed individuals on vaccination behavior

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Tao; Wu, Zhi-Xi; Zhang, Lianzhong

    2012-11-01

    We study how the presence of committed vaccinators, a small fraction of individuals who consistently hold the vaccinating strategy and are immune to influence, impact the vaccination dynamics in well-mixed and spatially structured populations. For this purpose, we develop an epidemiological game-theoretic model of a flu-like vaccination by integrating an epidemiological process into a simple agent-based model of adaptive learning, where individuals (except for those committed ones) use anecdotal evidence to estimate costs and benefits of vaccination. We show that the committed vaccinators, acting as “steadfast role models” in the populations, can efficiently avoid the clustering of susceptible individuals and stimulate other imitators to take vaccination, hence contributing to the promotion of vaccine uptake. We substantiate our findings by making comparative studies of our model on a full lattice and on a randomly diluted one. Our work is expected to provide valuable information for decision-making and design more effective disease-control strategy.

  16. Dengue vaccine-induced CD8+ T cell immunity confers protection in the context of enhancing, interfering maternal antibodies.

    PubMed

    Lam, Jian Hang; Chua, Yen Leong; Lee, Pei Xuan; Martínez Gómez, Julia María; Ooi, Eng Eong; Alonso, Sylvie

    2017-12-21

    Declining levels of maternal antibodies were shown to sensitize infants born to dengue-immune mothers to severe disease during primary infection, through the process of antibody-dependent enhancement of infection (ADE). With the recent approval for human use of Sanofi-Pasteur's chimeric dengue vaccine CYD-TDV and several vaccine candidates in clinical development, the scenario of infants born to vaccinated mothers has become a reality. This raises 2 questions: will declining levels of maternal vaccine-induced antibodies cause ADE; and, will maternal antibodies interfere with vaccination efficacy in the infant? To address these questions, the above scenario was modeled in mice. Type I IFN-deficient female mice were immunized with live attenuated DENV2 PDK53, the core component of the tetravalent DENVax candidate currently under clinical development. Pups born to PDK53-immunized dams acquired maternal antibodies that strongly neutralized parental strain 16681, but not the heterologous DENV2 strain D2Y98P-PP1, and instead caused ADE during primary infection with this strain. Furthermore, pups failed to seroconvert after PDK53 vaccination, owing to maternal antibody interference. However, a cross-protective multifunctional CD8+ T cell response did develop. Thus, our work advocates for the development of dengue vaccine candidates that induce protective CD8+ T cells despite the presence of enhancing, interfering maternal antibodies.

  17. Innovation Partnership for a Roadmap on Vaccines in Europe (IPROVE): A vision for the vaccines of tomorrow.

    PubMed

    Medaglini, Donata; De Azero, Magdalena R; Leroy, Odile; Bietrix, Florence; Denoel, Philippe

    2018-02-21

    A clear vision for vaccines research and development (R&D) is needed if Europe is to continue to lead the discovery of next generation vaccines. Innovation Partnership for a Roadmap on Vaccines in Europe (IPROVE) is a collaboration between leading vaccine experts to develop a roadmap setting out how Europe can best invest in the science and technology essential for vaccines innovation. This FP7 project, started in December 2013, brought together more than 130 key public and private stakeholders from academia, public health institutes, regulators, industry and small and medium-sized enterprises to determine and prioritise the gaps and challenges to be addressed to bolster innovation in vaccines and vaccination in Europe. The IPROVE consultation process was structured around seven themes: vaccine R&D, manufacturing and quality control, infrastructure, therapeutic vaccines, needs of small and medium-sized enterprises, vaccines acceptance and training needs. More than 80 recommendations were made by the consultation groups, mainly focused on the need for a multidisciplinary research approach to stimulate innovation, accelerated translation of scientific knowledge into technological innovation, and fostering of real collaboration within the European vaccine ecosystem. The consultation also reinforced the fact that vaccines are only as good as their vaccine implementation programmes, and that more must be done to understand and address vaccination hesitancy of both the general public and healthcare professionals. Bringing together a wide range of stakeholders to work on the IPROVE roadmap has increased mutual understanding of their different perspectives, needs and priorities. IPROVE is a first attempt to develop such a comprehensive view of the vaccine sector. This prioritisation effort, aims to help policy-makers and funders identify those vaccine-related areas and technologies where key investment is needed for short and medium-long term success. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development.

    PubMed

    Lee, Amanda J; Ashkar, Ali A

    2012-02-01

    Herpes simplex virus (HSV)-2 is the predominant cause of genital herpes and has been implicated in HIV infection and transmission. Thus far, vaccines developed against HSV-2 have been clinically ineffective in preventing infection. This review aims to summarize the innate and adaptive immune responses against HSV-2 and examines the current status of vaccine development. Both innate and adaptive immune responses are essential for an effective primary immune response and the generation of immunity. The innate response involves Toll-like receptors, natural killer cells, plasmacytoid dendritic cells, and type I, II, and III interferons. The adaptive response requires a balance between CD4+ and CD8+ T-cells for optimal viral clearance. T-regulatory cells may be involved, although their exact function has yet to be determined. Current vaccine development involves the use of HSV-2 peptides or attenuated/replication-defective HSV-2 to generate adaptive anti-HSV-2 immune responses, however the generation of innate responses may also be an important consideration. Although vaccine development has primarily focused on the adaptive response, arguments for innate involvement are emerging. A greater understanding of the innate and adaptive processes underlying the response to HSV-2 infection will provide the foundation for the development of an effective vaccine.

  19. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    PubMed

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  20. Overview of dendritic cell-based vaccine development for leishmaniasis.

    PubMed

    Bagirova, M; Allahverdiyev, A M; Abamor, E S; Ullah, I; Cosar, G; Aydogdu, M; Senturk, H; Ergenoglu, B

    2016-11-01

    Leishmaniasis is one of the most serious vector-borne diseases in the world and is distributed over 98 countries. It is estimated that 350 million people are at risk for leishmaniasis. There are three different generation of vaccines that have been developed to provide immunity and protection against leishmaniasis. However, their use has been limited due to undesired side effects. These vaccines have also failed to provide effective and reliable protection and, as such, currently, there is no safe and effective vaccine for leishmaniasis. Dendritic cells (DCs) are a unique population of cells that come from bone marrow and become specialized to take up, process and present antigens to helper T cells in a mechanism similar to macrophages. By considering these significant features, DCs stimulated with different kinds of Leishmania antigens have been used in recent vaccine studies for leishmaniasis with promising results so far. In this review, we aim to review and combine the latest studies about this issue after defining potential problems in vaccine development for leishmaniasis and considering the importance of DCs in the immunopathogenesis of the disease. © 2016 John Wiley & Sons Ltd.

  1. Domestic influenza vaccine production in Mexico: a state-owned and a multinational company working together for public health.

    PubMed

    Ponce-de-Leon, Samuel; Velazquez-Fernandez, Ruth; Bugarin-González, Jose; García-Bañuelos, Pedro; Lopez-Sotelo, Angelica; Jimenez-Corona, María-Eugenia; Padilla-Catalan, Francisco; Cervantes-Rosales, Rocio

    2011-07-01

    The Mexican Government developed a plan in 2004 for pandemic influenza preparedness that included local production of influenza vaccine. To achieve this, an agreement was concluded between Birmex - a state-owned vaccine manufacturer - and sanofi pasteur, a leading developer of vaccine technology. Under this agreement, sanofi pasteur will establish a facility in Mexico to produce antigen for up to 30 million doses of egg-based seasonal vaccine per year, and Birmex will build a facility to formulate, fill and package the inactivated split-virion influenza vaccine. As at November 2010, the sanofi pasteur facility has been completed and the Birmex plant is under construction. Most of the critical equipment has been purchased and is in the process of validation. In addition to intensive support from sanofi pasteur for the transfer of the technology, the project is supported by the Mexican Ministry of Health, complemented by Birmex's own budget and grants from the WHO developing country influenza technology transfer project. Copyright © 2011. Published by Elsevier Ltd.

  2. The Molecular Specificity of the Human Antibody Response to Dengue Virus Infections.

    PubMed

    Gallichotte, Emily N; Baric, Ralph S; de Silva, Aravinda M

    2018-01-01

    Dengue viruses (DENV) are mosquito-borne positive sense RNA viruses in the family Flaviviridae. The four serotypes of DENV (DENV1, DENV2, DENV3, DENV4) are widely distributed and it is estimated over a third of the world's population is at risk of infection [4]. While the majority of infections are asymptomatic, DENV infection can cause a spectrum of disease, from mild flu-like symptoms, to the more severe DENV hemorrhagic fever and shock syndrome [24]. Over the past 20 years, there have been intense efforts to develop a tetravalent live-attenuated DENV vaccine [36]. The process of vaccine development has been largely empirical, because effective live attenuated vaccines have been developed for other flaviviruses like yellow fever and Japanese encephalitis viruses. However, recent results from phase III live attenuated DENV vaccine efficacy trials are mixed with evidence for efficacy in some populations but not others [20]. In light of unexpected results from DENV vaccine trials, in this chapter we will review recent discoveries about the human antibody response to natural DENV infection and discuss the relevance of this work to understanding vaccine performance.

  3. The Twenty-Year Story of a Plant-Based Vaccine Against Hepatitis B: Stagnation or Promising Prospects?

    PubMed Central

    Pniewski, Tomasz

    2013-01-01

    Hepatitis B persists as a common human disease despite effective vaccines having been employed for almost 30 years. Plants were considered as alternative sources of vaccines, to be mainly orally administered. Despite 20-year attempts, no real anti-HBV plant-based vaccine has been developed. Immunization trials, based on ingestion of raw plant tissue and conjugated with injection or exclusively oral administration of lyophilized tissue, were either impractical or insufficient due to oral tolerance acquisition. Plant-produced purified HBV antigens were highly immunogenic when injected, but their yields were initially insufficient for practical purposes. However, knowledge and technology have progressed, hence new plant-derived anti-HBV vaccines can be proposed today. All HBV antigens can be efficiently produced in stable or transient expression systems. Processing of injection vaccines has been developed and needs only to be successfully completed. Purified antigens can be used for injection in an equivalent manner to the present commercial vaccines. Although oral vaccines require improvement, plant tissue, lyophilized or extracted and converted into tablets, etc., may serve as a boosting vaccine. Preliminary data indicate also that both vaccines can be combined in an effective parenteral-oral immunization procedure. A partial substitution of injection vaccines with oral formulations still offers good prospects for economically viable and efficacious anti-HBV plant-based vaccines. PMID:23337199

  4. Geneva-Seattle collaboration in support of developing country vaccine manufacturing.

    PubMed

    Stevenson, Michael A

    2018-04-01

    Vaccines were once produced almost exclusively by state-supported entities. While they remain essential tools for public health protection, the majority of the world's governments have allowed industry to assume responsibility for this function. This is significant because while the international harmonisation of quality assurance standards have effectively increased vaccine safety, they have also reduced the number of developing country vaccine producers, and Northern multinational pharmaceutical companies have shown little interest in offering the range of low-priced products needed in low and middle-income-country contexts. This article examines how public-private collaboration is relevant to contemporary efforts aimed at strengthening developing country manufacturers' capacity to produce high-quality, low-priced vaccines. Specifically, it casts light on the important and largely complimentary roles of the World Health Organization, The Bill and Melinda Gates Foundation, and the Seattle-based non-profit PATH, in this process. The take away message is that external support remains critical to ensuring that developing country vaccine manufacturers have the tools needed to produce for both domestic and global markets, and the United Nations supply chain, and collaboration at the public-private interface is driving organisational innovation focused on meeting these goals.

  5. Potency assays for therapeutic live whole cell cancer vaccines.

    PubMed

    Petricciani, John; Egan, William; Vicari, Giuseppe; Furesz, John; Schild, Geoffrey

    2007-04-01

    Therapeutic cancer vaccines are under development with the goal of enhancing the body's immune response to cancer cells sufficient to arrest cancer cell growth. Among the various approaches being used are those based on whole tumor cells. Developing a suitable measure of the potency of such vaccines presents a significant challenge because neither cellular associated markers nor in vivo biological responses that are correlated with efficacy have been identified; nevertheless, manufacturers and regulatory agencies will need to develop methods to evaluate these products. At this moment, the challenge for manufacturers who are developing whole cell vaccines is to demonstrate batch-to-batch consistency for the vaccine used in clinical studies and to show that comparable vaccine batches have the same capacity to achieve an acceptable level of biological activity that may be related to efficacy. This is particularly challenging in that animal models to test that activity do not exist and direct serological or immunological correlates of clinical protection are not available because protection has not yet been established in clinical trials. In the absence of well-defined biological markers and tests for manufacturing consistency, manufacturers and regulators will need to rely heavily on a highly reproducible manufacturing process--the consistency of the process therefore becomes critical. In developing regulatory approaches to whole cell cancer vaccines, the experience from the field of infectious disease vaccines should be examined for general guidance. A framework that draws heavily on the field of infectious disease vaccines is presented and suggests that at this point in the development of this new class of products, it is reasonable to develop data on quantitative antigen expression as a measure of potency with the expectation that when clinical efficacy has been established it will confirm the appropriateness of this approach. But because this will not be known until the end of a pivotal trial, a bioassay should be considered and run in parallel. Several examples of bioassays are presented along with their advantages and disadvantages. The final selection of a potency assay for use in lot release of a commercializable therapeutic whole cell vaccine ultimately will depend on the totality of the data available at the time of approval by regulatory agencies. Based on information currently available, it is likely that quantitative antigen expression or a bioassay could be used to measure potency. If both are determined to be acceptable, the use of quantitative antigen expression could be considered for routine lot release, while the bioassay could be reserved for use as one of the elements in establishing comparability when manufacturing changes are being considered after approval.

  6. How baby's first shot determines the development of maternal attitudes towards vaccination.

    PubMed

    Betsch, Cornelia; Bödeker, Birte; Schmid, Philipp; Wichmann, Ole

    2018-05-17

    The attitude towards vaccination is a major determinant of vaccination behavior; this also includes parents' attitudes towards the immunization of their child. Negative attitudes have been associated with vaccine hesitancy and outbreaks of infectious diseases throughout the globe. This study aimed to assess how and why attitudes become more pro-vaccine or vaccine-skeptical over time, and which sources are especially influential in this process. Prospective cohort study with measurements at time of recruitment during pregnancy and at +3, +6 and +14 months after childbirth with cross-sectional control groups. In total, 351 women entered the longitudinal analyses, while 204, 215 and 173 women were recruited in the cross-sectional control groups, respectively. Inclusion criteria were: (i) being at least 18 years of age, (ii) pregnant, (iii) primigravida, and (iv) living in Germany. During pregnancy mothers reported rather positive prior experiences with vaccinations. However, their judgment turned significantly more negative after the first vaccination experience with their child. Mixed-effects models showed that these changes were significantly related to increased risk perceptions and concerns about vaccination, which then had a negative impact on the vaccination attitude. In contrast, gaining more vaccine-related knowledge over time positively influenced attitude formation. During the first year of their child's life maternal attitudes towards vaccination are formed and guide future decisions whether to vaccinate or not vaccinate a child. Strategies should be implemented that improve mothers' experiences when their newborn is vaccinated to prevent the development of vaccine hesitancy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania: Preclinical evaluation of split virion inactivated H5N1 vaccine with adjuvant.

    PubMed

    Stavaru, Crina; Onu, Adrian; Lupulescu, Emilia; Tucureanu, Catalin; Rasid, Orhan; Vlase, Ene; Coman, Cristin; Caras, Iuliana; Ghiorghisor, Alina; Berbecila, Laurentiu; Tofan, Vlad; Bowen, Richard A; Marlenee, Nicole; Hartwig, Airn; Bielefeldt-Ohmann, Helle; Baldwin, Susan L; Van Hoeven, Neal; Vedvick, Thomas S; Huynh, Chuong; O'Hara, Michael K; Noah, Diana L; Fox, Christopher B

    2016-04-02

    Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.

  8. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    PubMed

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  9. Modes of Action for Mucosal Vaccine Adjuvants

    PubMed Central

    2017-01-01

    Abstract Vaccine adjuvants induce innate immune responses and the addition of adjuvants to the vaccine helps to induce protective immunity in the host. Vaccines utilizing live attenuated or killed whole pathogens usually contain endogenous adjuvants, such as bacterial cell wall products and their genomic nucleic acids, which act as pathogen-associated molecular patterns and are sufficient to induce adaptive immune responses. However, purified protein- or antigen-based vaccines, including component or recombinant vaccines, usually lose these endogenous innate immune stimulators, so the addition of an exogenous adjuvant is essential for the success of these vaccine types. Although this adjuvant requirement is mostly the same for parental and mucosal vaccines, the development of mucosal vaccine adjuvants requires the specialized consideration of adapting the adjuvants to characteristic mucosal conditions. This review provides a brief overview of mucosa-associated immune response induction processes, such as antigen uptake and dendritic cell subset-dependent antigen presentation. It also highlights several mucosal vaccine adjuvants from recent reports, particularly focusing on their modes of action. PMID:28436755

  10. Replacing the Measles Ten-Dose Vaccine Presentation with the Single-Dose Presentation in Thailand

    PubMed Central

    Lee, Bruce Y.; Assi, Tina-Marie; Rookkapan, Korngamon; Connor, Diana L.; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T.; Welling, Joel S.; Norman, Bryan A.; Chen, Sheng-I; Bailey, Rachel R.; Wiringa, Ann E.; Wateska, Angela R.; Jana, Anirban; Van Panhuis, Willem G.; Burke, Donald S.

    2011-01-01

    Introduced to minimize open vial wastage, single-dose vaccine vials require more storage space and therefore may affect vaccine supply chains (i.e., the series of steps and processes entailed to deliver vaccines from manufacturers to patients). We developed a computational model of Thailand’s Trang province vaccine supply chain to analyze the effects of switching from a ten-dose measles vaccine presentation to each of the following: a single-dose Measles-Mumps-Rubella vaccine (which Thailand is currently considering) and a single-dose measles vaccine. While the Trang province vaccine supply chain would generally have enough storage and transport capacity to accommodate the switches, the added volume could push some locations’ storage and transport space utilization close to their limits. Single-dose vaccines would allow for more precise ordering and decrease open vial waste, but decrease reserves for unanticipated demand. Moreover, the added disposal and administration costs could far outweigh the costs saved from preventing open vial wastage. PMID:21439313

  11. Modes of Action for Mucosal Vaccine Adjuvants.

    PubMed

    Aoshi, Taiki

    Vaccine adjuvants induce innate immune responses and the addition of adjuvants to the vaccine helps to induce protective immunity in the host. Vaccines utilizing live attenuated or killed whole pathogens usually contain endogenous adjuvants, such as bacterial cell wall products and their genomic nucleic acids, which act as pathogen-associated molecular patterns and are sufficient to induce adaptive immune responses. However, purified protein- or antigen-based vaccines, including component or recombinant vaccines, usually lose these endogenous innate immune stimulators, so the addition of an exogenous adjuvant is essential for the success of these vaccine types. Although this adjuvant requirement is mostly the same for parental and mucosal vaccines, the development of mucosal vaccine adjuvants requires the specialized consideration of adapting the adjuvants to characteristic mucosal conditions. This review provides a brief overview of mucosa-associated immune response induction processes, such as antigen uptake and dendritic cell subset-dependent antigen presentation. It also highlights several mucosal vaccine adjuvants from recent reports, particularly focusing on their modes of action.

  12. Improving the selection and development of influenza vaccine viruses - Report of a WHO informal consultation on improving influenza vaccine virus selection, Hong Kong SAR, China, 18-20 November 2015.

    PubMed

    Hampson, Alan; Barr, Ian; Cox, Nancy; Donis, Ruben O; Siddhivinayak, Hirve; Jernigan, Daniel; Katz, Jacqueline; McCauley, John; Motta, Fernando; Odagiri, Takato; Tam, John S; Waddell, Anthony; Webby, Richard; Ziegler, Thedi; Zhang, Wenqing

    2017-02-22

    Since 2010 the WHO has held a series of informal consultations to explore ways of improving the currently highly complex and time-pressured influenza vaccine virus selection and development process. In November 2015 experts from around the world met to review the current status of efforts in this field. Discussion topics included strengthening influenza surveillance activities to increase the availability of candidate vaccine viruses and improve the extent, timeliness and quality of surveillance data. Consideration was also given to the development and potential application of newer laboratory assays to better characterize candidate vaccine viruses, the potential importance of antibodies directed against influenza virus neuraminidase, and the role of vaccine effectiveness studies. Advances in next generation sequencing and whole genome sequencing of influenza viruses were also discussed, along with associated developments in synthetic genomics technologies, evolutionary analysis and predictive mathematical modelling. Discussions were also held on the late emergence of an antigenic variant influenza A(H3N2) virus in mid-2014 that could not be incorporated in time into the 2014-15 northern hemisphere vaccine. There was broad recognition that given the current highly constrained influenza vaccine development and production timeline it would remain impossible to incorporate any variant virus which emerged significantly long after the relevant WHO biannual influenza vaccine composition meetings. Discussions were also held on the development of pandemic and broadly protective vaccines, and on associated regulatory and manufacturing requirements and constraints. With increasing awareness of the health and economic burdens caused by seasonal influenza, the ever-present threat posed by zoonotic influenza viruses, and the significant impact of the 2014-15 northern hemisphere seasonal influenza vaccine mismatch, this consultation provided a very timely opportunity to share developments and exchange views. In all areas, a renewed and strengthened emphasis was placed on developing concrete and measurable actions and identifying the key stakeholders responsible for their implementation. Copyright © 2017. Published by Elsevier Ltd.

  13. Policy analysis for deciding on a malaria vaccine RTS,S in Tanzania.

    PubMed

    Romore, Idda; Njau, Ritha J A; Semali, Innocent; Mwisongo, Aziza; Ba Nguz, Antoinette; Mshinda, Hassan; Tanner, Marcel; Abdulla, Salim

    2016-03-08

    Traditionally, it has taken decades to introduce new interventions in low-income countries. Several factors account for these delays, one of which is the absence of a framework to facilitate comprehensive understanding of policy process to inform policy makers and stimulate the decision-making process. In the case of the proposed introduction of malaria vaccines in Tanzania, a specific framework for decision-making will speed up the administrative process and shorten the time until the vaccine is made available to the target population. Qualitative research was used as a basis for developing the Policy Framework. Interviews were conducted with government officials, bilateral and multilateral partners and other stakeholders in Tanzania to assess malaria treatment policy changes and to draw lessons for malaria vaccine adoption. The decision-making process for adopting malaria interventions and new vaccines in general takes years, involving several processes: meetings and presentations of scientific data from different studies with consistent results, packaging and disseminating evidence and getting approval for use by the Ministry of Health and Social Welfare (MOHSW). It is influenced by contextual factors; Promoting factors include; epidemiological and intervention characteristics, country experiences of malaria treatment policy change, presentation and dissemination of evidence, coordination and harmonization of the process, use of international scientific evidence. Barriers factors includes; financial sustainability, competing health and other priorities, political will and bureaucratic procedures, costs related to the adoption and implementations of interventions, supply and distribution and professional compliance with anti-malarial drugs. The framework facilitates the synthesis of information in a coherent way, enabling a clearer understanding of the policy process, thereby speeding up the policy decision-making process and shortening the time for a malaria vaccine to become available.

  14. The Regulatory Evaluation of Vaccines for Human Use.

    PubMed

    Baylor, Norman W

    2016-01-01

    A vaccine is an immunogen, the administration of which is intended to stimulate the immune system to result in the prevention, amelioration, or therapy of any disease or infection (US Food and Drug Administration. Guidance for Industry: content and format of chemistry, manufacturing, and controls information and establishment description information for a vaccine or related product). A vaccine may be a live attenuated preparation of microorganisms, inactivated (killed) whole organisms, living irradiated cells, crude fractions, or purified immunogens, including those derived from recombinant DNA in a host cell, conjugates formed by covalent linkage of components, synthetic antigens, polynucleotides (such as the plasmid DNA vaccines), living vectored cells expressing specific heterologous immunogens, or cells pulsed with immunogen. Vaccines are highly complex products that differ from small molecule drugs because of the biological nature of the source materials such as those derived from microorganisms as well as the various cell substrates from which some are derived. Regardless of the technology used, because of their complexities, vaccines must undergo extensive characterization and testing. Special expertise and procedures are needed for their manufacture, control, and regulation. The Food and Drug Administration (FDA) is the National Regulatory Authority (NRA) in the United States responsible for assuring quality, safety, and effectiveness of all human medical products, including vaccines for human use.The Center for Biologics Evaluation and Research (CBER) within the US FDA is responsible for overseeing the regulation of therapeutic and preventative vaccines against infectious diseases. Authority for the regulation of vaccines resides in Section 351 of the Public Health Service Act and specific sections of the Federal Food, Drug, and Cosmetic Act (FD&C). Vaccines are regulated as biologics and licensed based on the demonstration of safety and effectiveness. The vaccine development process can be divided into two major categories: those events that are not under the regulatory authority of the FDA and are exploratory in nature and those events that are subject to regulatory authority by the FDA. Exploratory events or research and development cover basic research drug discovery processes that occur before the sponsor submits an investigational new drug application (IND) to the FDA. There are four main stages of vaccine development under the purview of regulatory authorities: preclinical, clinical (IND), licensing, and post-licensure. Throughout their life cycle from preclinical evaluation to post-licensure lot release testing, vaccines are subject to rigorous testing and oversight by manufacturers and NRAs. In this chapter an overview of the regulatory evaluation and testing requirements for vaccines is presented.

  15. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    PubMed

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. HPV vaccine introduction at the local level in a developing country: attitudes and criteria among key actors.

    PubMed

    Piñeros, Marion; Wiesner, Carolina; Cortés, Claudia; Trujillo, Lina María

    2010-05-01

    In most developing countries, HPV vaccines have been licensed but there are no national policy recommendations, nor is it clear how decisions on the introduction of this new vaccine are made. Decentralization processes in many Latin American countries favor decision-making at the local level. Through a qualitative study we explored knowledge regarding the HPV vaccine and the criteria that influence decision-making among local health actors in four regions of Colombia. We conducted a total of 14 in-depths interviews with different actors; for the analysis we performed content analysis. Results indicate that decision-making on the HPV vaccine at the local level has mainly been driven by pressure from local political actors, in a setting where there is low technical knowledge of the vaccine. This increases the risk of initiatives that may foster inequity. Local decisions and initiatives need to be strengthened technically and supported by national-level decisions, guidelines and follow-up.

  17. Investigation of a regulatory agency enquiry into potential porcine circovirus type 1 contamination of the human rotavirus vaccine, Rotarix: approach and outcome.

    PubMed

    Dubin, Gary; Toussaint, Jean-François; Cassart, Jean-Pol; Howe, Barbara; Boyce, Donna; Friedland, Leonard; Abu-Elyazeed, Remon; Poncelet, Sylviane; Han, Htay Htay; Debrus, Serge

    2013-11-01

    In January 2010, porcine circovirus type 1 (PCV1) DNA was unexpectedly detected in the oral live-attenuated human rotavirus vaccine, Rotarix (GlaxoSmithKline [GSK] Vaccines) by an academic research team investigating a novel, highly sensitive analysis not routinely used for adventitious agent screening. GSK rapidly initiated an investigation to confirm the source, nature and amount of PCV1 in the vaccine manufacturing process and to assess potential clinical implications of this finding. The investigation also considered the manufacturer's inactivated poliovirus (IPV)-containing vaccines, since poliovirus vaccine strains are propagated using the same cell line as the rotavirus vaccine strain. Results confirmed the presence of PCV1 DNA and low levels of PCV1 viral particles at all stages of the Rotarix manufacturing process. PCV type 2 DNA was not detected at any stage. When tested in human cell lines, productive PCV1 infection was not observed. There was no immunological or clinical evidence of PCV1 infection in infants who had received Rotarix in clinical trials. PCV1 DNA was not detected in the IPV-containing vaccine manufacturing process beyond the purification stage. Retrospective testing confirmed the presence of PCV1 DNA in Rotarix since the initial stages of its development and in vaccine lots used in clinical studies conducted pre- and post-licensure. The acceptable safety profile observed in clinical trials of Rotarix therefore reflects exposure to PCV1 DNA. The investigation into the presence of PCV1 in Rotarix could serve as a model for risk assessment in the event of new technologies identifying adventitious agents in the manufacturing of other vaccines and biological products.

  18. Investigation of a regulatory agency enquiry into potential porcine circovirus type 1 contamination of the human rotavirus vaccine, Rotarix™

    PubMed Central

    Dubin, Gary; Toussaint, Jean-François; Cassart, Jean-Pol; Howe, Barbara; Boyce, Donna; Friedland, Leonard; Abu-Elyazeed, Remon; Poncelet, Sylviane; Han, Htay Htay; Debrus, Serge

    2013-01-01

    In January 2010, porcine circovirus type 1 (PCV1) DNA was unexpectedly detected in the oral live-attenuated human rotavirus vaccine, Rotarix™ (GlaxoSmithKline [GSK] Vaccines) by an academic research team investigating a novel, highly sensitive analysis not routinely used for adventitious agent screening. GSK rapidly initiated an investigation to confirm the source, nature and amount of PCV1 in the vaccine manufacturing process and to assess potential clinical implications of this finding. The investigation also considered the manufacturer’s inactivated poliovirus (IPV)-containing vaccines, since poliovirus vaccine strains are propagated using the same cell line as the rotavirus vaccine strain. Results confirmed the presence of PCV1 DNA and low levels of PCV1 viral particles at all stages of the Rotarix™ manufacturing process. PCV type 2 DNA was not detected at any stage. When tested in human cell lines, productive PCV1 infection was not observed. There was no immunological or clinical evidence of PCV1 infection in infants who had received Rotarix™ in clinical trials. PCV1 DNA was not detected in the IPV-containing vaccine manufacturing process beyond the purification stage. Retrospective testing confirmed the presence of PCV1 DNA in Rotarix™ since the initial stages of its development and in vaccine lots used in clinical studies conducted pre- and post-licensure. The acceptable safety profile observed in clinical trials of Rotarix™ therefore reflects exposure to PCV1 DNA. The investigation into the presence of PCV1 in Rotarix™ could serve as a model for risk assessment in the event of new technologies identifying adventitious agents in the manufacturing of other vaccines and biological products. PMID:24056737

  19. Influenza virus surveillance, vaccine strain selection, and manufacture.

    PubMed

    Stöhr, Klaus; Bucher, Doris; Colgate, Tony; Wood, John

    2012-01-01

    As outlined in other chapters, the influenza virus, existing laboratory diagnostic abilities, and disease epidemiology have several peculiarities that impact on the timing and processes for the annual production of influenza vaccines. The chapter provides an overview on the key biological and other factors that influence vaccine production. They are the reason for an "annual circle race" beginning with global influenza surveillance during the influenza season in a given year to the eventual supply of vaccines 12 months later in time before the next seasonal outbreak and so on. As influenza vaccines are needed for the Northern and Southern Hemisphere outbreaks in fall and spring, respectively, global surveillance and vaccine production has become a year round business. Its highlights are the WHO recommendations on vaccine strains in February and September and the eventual delivery of vaccine doses in time before the coming influenza season. In between continues vaccine strain and epidemiological surveillance, preparation of new high growth reassortments, vaccine seed strain preparation and development of standardizing reagents, vaccine bulk production, fill-finishing and vaccine release, and in some regions, clinical trials for regulatory approval.

  20. Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology.

    PubMed

    Loughney, John W; Lancaster, Catherine; Ha, Sha; Rustandi, Richard R

    2014-09-15

    Bovine serum albumin (BSA) is a major component of fetal bovine serum (FBS), which is commonly used as a culture medium during vaccine production. Because BSA can cause allergic reactions in humans the World Health Organization (WHO) has set a guidance of 50 ng or less residual BSA per vaccine dose. Vaccine manufacturers are expected to develop sensitive assays to detect residual BSA. Generally, sandwich enzyme-linked immunosorbent assays (ELISA) are used in the industry to detect these low levels of BSA. We report the development of a new improved method for residual BSA detection using the SimpleWestern technology to analyze residual BSA in an attenuated virus vaccine. The method is based on automated Capillary Western and has linearity of two logs, >80% spike recovery (accuracy), intermediate precision of CV <15%, and LOQ of 5.2 ng/ml. The final method was applied to analyze BSA in four lots of bulk vaccine products and was used to monitor BSA clearance during vaccine process purification. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Validation of the safety of MDCK cells as a substrate for the production of a cell-derived influenza vaccine.

    PubMed

    Onions, David; Egan, William; Jarrett, Ruth; Novicki, Deborah; Gregersen, Jens-Peter

    2010-09-01

    Cell culture-based production methods may assist in meeting increasing demand for seasonal influenza vaccines and developing production flexibility required for addressing influenza pandemics. MDCK-33016PF cells are used in propagation of a cell-based seasonal influenza vaccine (Optaflu); but, like most continuous cell lines, can grow in immunocompromised mice to produce tumors. It is, therefore, essential that no residual cells remain within the vaccine, that cell lysates or DNA are not oncogenic, and that the cell substrate does not contain oncogenic viruses or oncogenic DNA. Multiple, redundant processes ensure the safety of influenza vaccines produced in MDCK-33016PF cells. The probability of a residual cell being present in a dose of vaccine is approximately 1 in 10(34). Residual MDCK-DNA is < or =10 ng per dose and the ss-propiolactone used to inactivate influenza virus results in reduction of detectable DNA to less than 200 base pairs (bp). Degenerate PCR and specific PCR confirm exclusion of oncogenic viruses. The manufacturing process has been validated for its capacity to remove and inactivate viruses. We conclude that the theoretical risks arising from manufacturing seasonal influenza vaccine using MDCK-33016PF cells are reduced to levels that are effectively zero by the multiple, orthogonal processes used during production. Copyright 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  2. Development trends for new cancer therapeutics and vaccines.

    PubMed

    Reichert, Janice M; Wenger, Julia B

    2008-01-01

    Global commercial development of cancer treatments has dramatically increased over the past 15 years. To assess trends in the process, we analyzed data for 1111 candidates that entered clinical study during 1990-2006. Our results show that although the average number of therapeutic candidates entering clinical study per year more than doubled, the US approval success rate was low (8%) during the period. The therapeutics took seven years on average to go through the clinical and US approval phases, but cancer vaccines have yet to gain any US approvals. These results indicate that improvement in the efficiency of the development process for innovative cancer treatments is needed.

  3. A Brief History of Vaccines Against Polio.

    PubMed

    Vashishtha, Vipin M; Kamath, Sachidanand

    2016-08-07

    Poliomyelitis, a dreaded disease of the last century that had already crippled millions of people across the globe, is now on the verge of eradication thanks mainly to two polio vaccines, inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Ever since their development in late 1950s and early 1960s, the journey of their early development process, clinical trials, licensure and ultimately widespread clinical use in different countries provide a fascinating tale of events. Oral polio vaccine has been the mainstay of global polio eradication initiative (GPEI) in most of the countries. With the advent of 'polio endgame', the focus has now shifted back to IPV. However, there are certain issues associated with global cessation of OPV use and universal implementation of IPV in routine immunization schedules across the globe that need to be dealt with some urgency, before proclaiming the global victory over polio.

  4. The need for targeted implementation research to improve coverage of basic vaccines and introduction of new vaccines.

    PubMed

    Arora, Narendra K; Lal, Altaf A; Hombach, Joachim M; Santos, Jose I; Bhutta, Zulfiqar A; Sow, Samba O; Greenwood, Brian

    2013-04-18

    The Decade of Vaccines Collaboration (DoVC) Research and Development (R&D) Working Group identified implementation research as an important step toward achieving high vaccine coverage and the uptake of desirable new vaccines. The R&D Working Group noted that implementation research is highly complex and requires participation of stakeholders from diverse backgrounds to ensure effective planning, execution, interpretation, and adoption of research outcomes. Unlike other scientific disciplines, implementation research is highly contextual and depends on social, cultural, geographic, and economic factors to make the findings useful for local, national, and regional applications. This paper presents the broad framework for implementation research in support of immunization and sets out a series of research questions developed through a Delphi process (during a DoVC-supported workshop in Sitges, Spain) and a literature review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Design of clinical trials for therapeutic cancer vaccines development.

    PubMed

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.

  6. Plasmodium immunomics.

    PubMed

    Doolan, Denise L

    2011-01-01

    The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ∼5300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing <0.5% of the genome. The recent availability of comprehensive genomic, proteomic and transcriptomic datasets from human and selected non-human primate and rodent malarias provide a foundation to exploit for vaccine development. This information can be mined to identify promising vaccine candidate antigens, by proteome-wide screening of antibody and T cell reactivity using specimens from individuals exposed to malaria and technology platforms such as protein arrays, high throughput protein production and epitope prediction algorithms. Such antigens could be incorporated into a rational vaccine development process that targets specific stages of the Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritising antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. [Dengue, zika, chikungunya and the development of vaccines].

    PubMed

    Kantor, Isabel N

    2018-01-01

    Dengue (DENV), zika (ZIKV) and chikungunya (CHIKV), three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjects. In 2017, Dengvaxia was approved in Argentina, for ages 9 to 45, but is not included in the national vaccination calendar. Two other vaccines are in Phase III evaluation: one developed by NIAID / Instituto Butantan and the other by Takeda. ZIKV, a virus associated with microcephaly in newborns in Brazil, circulates since 2016 in Argentina. There is still not effective treatment nor vaccine with proven activity against ZIKV. There has been no active circulation of CHIKV in Argentina in 2017. Outbreaks of CHIKV fever have a complication: the development of chronic post-disease rheumatism. There are not approved vaccines for humans nor effective antiviral therapies. The seriousness of these virosis has contributed to a rapid progress in the knowledge of the infection processes and the immune response. For now, Aedes aegypti and A. albopictus vectors continue to expand, suggesting that the vaccine will be the most effective means of controlling these viruses. Here we summarize information about these arbovirosis in Argentina and Brazil and describe advances in the development and evaluation of vaccines.

  8. Therapeutic vaccines in renal cell carcinoma.

    PubMed

    Schwaab, Thomas; Ernstoff, Marc S

    2011-07-01

    Metastatic renal cell carcinoma (mRCC) is a lethal disease. The advent of tyrosine kinase inhibitors (TKIs) has changed the disease process, yet the majority of patients will develop treatment-resistant disease. IL-2 based immunotherapy in mRCC is the only US FDA-approved treatment with curative results. Immunotherapeutic vaccine approaches to mRCC have been under investigation for several decades with mixed results. The recent FDA-approval of the first cellular immunotherapy in prostate cancer (Provenge(®)) has reinvigorated the search for similar vaccines approaches in mRCC. This review introduces the concepts and different features required for a successful anticancer vaccine approach.

  9. Meeting report: Initial World Health Organization consultation on herpes simplex virus (HSV) vaccine preferred product characteristics, March 2017.

    PubMed

    Gottlieb, Sami L; Giersing, Birgitte K; Hickling, Julian; Jones, Rebecca; Deal, Carolyn; Kaslow, David C

    2017-12-07

    The development of vaccines against herpes simplex virus (HSV) is an important global goal for sexual and reproductive health. A key priority to advance development of HSV vaccines is the definition of preferred product characteristics (PPCs), which provide strategic guidance on World Health Organization (WHO) preferences for new vaccines, specifically from a low- and middle-income country (LMIC) perspective. To start the PPC process for HSV vaccines, the WHO convened a global stakeholder consultation in March 2017, to define the priority public health needs that should be addressed by HSV vaccines and discuss the key considerations for HSV vaccine PPCs, particularly for LMICs. Meeting participants outlined an initial set of overarching public health goals for HSV vaccines in LMICs, which are: to reduce the acquisition of HIV associated with HSV-2 infection in high HIV-prevalence populations and to reduce the burden of HSV-associated disease, including mortality and morbidity due to neonatal herpes and impacts on sexual and reproductive health. Participants also considered the role of prophylactic versus therapeutic vaccines, whether both HSV-2 and HSV-1 should be targeted, important target populations, and infection and disease endpoints for clinical trials. This article summarizes the main discussions from the consultation. Copyright © 2017.

  10. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins.

    PubMed

    Cuccui, Jon; Wren, Brendan

    2015-03-01

    Glycosylation or the modification of a cellular component with a carbohydrate moiety has been demonstrated in all three domains of life as a basic post-translational process important in a range of biological processes. This review will focus on the latest studies attempting to exploit bacterial N-linked protein glycosylation for glycobiotechnological applications including glycoconjugate vaccine and humanised glycoprotein production. The challenges that remain for these approaches to reach full biotechnological maturity will be discussed. Oligosaccharyltransferase-dependent N-linked glycosylation can be exploited to make glycoconjugate vaccines against bacterial pathogens. Few technical limitations remain, but it is likely that the technologies developed will soon be considered a cost-effective and flexible alternative to current chemical-based methods of vaccine production. Some highlights from current glycoconjugate vaccines developed using this in-vivo production system include a vaccine against Shigella dysenteriae O1 that has passed phase 1 clinical trials, a vaccine against the tier 1 pathogen Francisella tularensis that has shown efficacy in mice and a vaccine against Staphylococcus aureus serotypes 5 and 8. Generation of humanised glycoproteins within bacteria was considered impossible due to the distinct nature of glycan modification in eukaryotes and prokaryotes. We describe the method used to overcome this conundrum to allow engineering of a eukaryotic pentasaccharide core sugar modification within Escherichia coli. This core was assembled by combining the function of the initiating transferase WecA, several Alg genes from Saccharomyces cerevisiae and the oligosaccharyltransferase function of the Campylobacter jejuni PglB. Further exploitation of a cytoplasmic N-linked glycosylation system found in Actinobacillus pleuropneumoniae where the central enzyme is known as N-linking glycosyltransferase has overcome some of the limitations demonstrated by the oligosaccharyltransferase-dependent system. Characterisation of the first bacterial N-linked glycosylation system in the human enteropathogen Campylobacter jejuni has led to substantial biotechnological applications. Alternative methods for glycoconjugate vaccine production have been developed using this N-linked system. Vaccines against both Gram-negative and Gram-positive organisms have been developed, and efficacy testing has thus far demonstrated that the vaccines are safe and that robust immune responses are being detected. These are likely to complement and reduce the cost of current technologies thus opening new avenues for glycoconjugate vaccines. These new markets could potentially include glycoconjugate vaccines tailored specifically for animal vaccination, which has until today thought to be non-viable due to the cost of current in-vitro chemical conjugation methods. Utilisation of N-linked glycosylation to generate humanised glycoproteins is also close to becoming reality. This 'bottom up' assembly mechanism removes the heterogeneity seen in current humanised products. The majority of developments reported in this review exploit a single N-linked glycosylation system from Campylobacter jejuni; however, alternative N-linked glycosylation systems have been discovered which should help to overcome current technical limitations and perhaps more systems remain to be discovered. The likelihood is that further glycosylation systems exist and are waiting to be exploited. © 2014 Royal Pharmaceutical Society.

  11. The future of HIV vaccine research and the role of the Global HIV Vaccine Enterprise.

    PubMed

    Voronin, Yegor; Manrique, Amapola; Bernstein, Alan

    2010-09-01

    This review covers the role of the Global HIV Vaccine Enterprise (the Enterprise), an alliance of independent organizations committed to development of a safe and effective HIV vaccine. It discusses the history, impact on the field, and future directions and initiatives of the alliance in the context of recent progress in HIV vaccine research and development. Significant progress has been made in the field since the release of the 2005 Scientific Strategic Plan (the Plan) of the Enterprise. Over the last year, the Enterprise embarked on an impact assessment of the 2005 Plan and the development of the 2010 Plan. Enterprise Working Groups identified key priorities in the field, several of which are discussed in this review, including changing the nature, purpose and process of clinical trials, increasing and facilitating data sharing, and optimizing existing and mobilizing new resources. This time is an important moment in HIV vaccine research. New clinical trial and laboratory results have created new opportunities to advance the search for an HIV vaccine and reinvigorated the field. The Enterprise will publish its 2010 Plan this year, providing a framework for setting new priorities and directions and encouraging new and existing partners to embark on a shared scientific agenda.

  12. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    PubMed

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    PubMed Central

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and challenge pathogen strain) change. It is suggestive that it is difficult to protect against aerosol challenge. Somewhat counter-intuitively, our results indicate that intraperitoneal and subcutaneous vaccinations are much more effective to protect against aerosol Brucella challenge than intranasal vaccination. Conclusions Literature meta-analysis identified variables that significantly contribute to Brucella vaccine protection efficacy. The results obtained provide critical information for rational vaccine study design. Literature meta-analysis is generic and can be applied to analyze variables critical for vaccine protection against other infectious diseases. PMID:23735014

  14. Improvement in Herpes Zoster Vaccination in Patients with Rheumatoid Arthritis: A Quality Improvement Project.

    PubMed

    Sheth, Heena; Moreland, Larry; Peterson, Hilary; Aggarwal, Rohit

    2017-01-01

    To improve herpes zoster (HZ) vaccination rates in high-risk patients with rheumatoid arthritis (RA) being treated with immunosuppressive therapy. This quality improvement project was based on the pre- and post-intervention design. The project targeted all patients with RA over the age of 60 years while being treated with immunosuppressive therapy (not with biologics) seen in 13 rheumatology outpatient clinics. The study period was from July 2012 to June 2013 for the pre-intervention and February 2014 to January 2015 for the post-intervention phase. The electronic best practice alert (BPA) for HZ vaccination was developed; it appeared on electronic medical records during registration and medication reconciliation of the eligible patient by the medical assistant. The BPA was designed to electronically identify patient eligibility and to enable the physician to order the vaccine or to document refusal or deferral reason. Education regarding vaccine guidelines, BPA, vaccination process, and feedback were crucial components of the project interventions. The vaccination rates were compared using the chi-square test. We evaluated 1823 and 1554 eligible patients with RA during the pre-intervention and post-intervention phases, respectively. The HZ vaccination rates, reported as patients vaccinated among all eligible patients, improved significantly from the pre-intervention period of 10.1% (184/1823) to 51.7% (804/1554) during the intervention phase (p < 0.0001). The documentation rates (vaccine received, vaccine ordered, patient refusal, and deferral reasons) increased from 28% (510/1823) to 72.9% (1133/1554; p < 0.0001). The HZ infection rates decreased significantly from 2% to 0.3% (p = 0.002). Electronic identification of vaccine eligibility and BPA significantly improved HZ vaccination rates. The process required minimal modification of clinic work flow and did not burden the physician's time, and has the potential for self-sustainability and generalizability.

  15. Evidence based vaccinology.

    PubMed

    Nalin, David R

    2002-02-22

    Evidence based vaccinology (EBV) is the identification and use of the best evidence in making and implementing decisions during all of the stages of the life of a vaccine, including pre-licensure vaccine development and post-licensure manufacture and research, and utilization of the vaccine for disease control. Vaccines, unlike most pharmaceuticals, are in a continuous process of development both before and after licensure. Changes in biologics manufacturing technology and changes that vaccines induce in population and disease biology lead to periodic review of regimens (and sometimes dosage) based on changing immunologic data or public perceptions relevant to vaccine safety and effectiveness. EBV includes the use of evidence based medicine (EBM) both in clinical trials and in national disease containment programs. The rationale for EBV is that the highest evidentiary standards are required to maintain a rigorous scientific basis of vaccine quality control in manufacture and to ensure valid determination of vaccine efficacy, field effectiveness and safety profiles (including post-licensure safety monitoring), cost-benefit analyses, and risk:benefit ratios. EBV is increasingly based on statistically validated, clearly defined laboratory, manufacturing, clinical and epidemiological research methods and procedures, codified as good laboratory practices (GLP), good manufacturing practices (GMP), good clinical research practices (GCRP) and in clinical and public health practice (good vaccination practices, GVP). Implementation demands many data-driven decisions made by a spectrum of specialists pre- and post-licensure, and is essential to maintaining public confidence in vaccines.

  16. Novel licensure pathways for expeditious introduction of new tuberculosis vaccines: a discussion of the adaptive licensure concept.

    PubMed

    Rustomjee, Roxana; Lockhart, Stephen; Shea, Jacqueline; Fourie, P Bernard; Hindle, Zoë; Steel, Gavin; Hussey, Gregory; Ginsberg, Ann; Brennan, Michael J

    2014-03-01

    The ultimate goal of vaccine development is licensure of a safe and efficacious product that has a well-defined manufacturing process resulting in a high quality product. In general, clinical development and regulatory approval occurs in a linear, sequential manner: Phase 1 - safety, immunogenicity; Phase 2 - immunogenicity, safety, dose ranging and preliminary efficacy; Phase 3 - definitive efficacy, safety, lot consistency; and, following regulatory approval, Phase 4 - post-marketing safety and effectiveness. For candidate TB vaccines, where correlates of protection are not yet identified, phase 2 and 3 efficacy of disease prevention trials are, by necessity, very large. Each trial would span 2-5 years, with full licensure expected only after 1 or even 2 decades of development. Given the urgent unmet need for a new TB vaccine, a satellite discussion was held at the International African Vaccinology Conference in Cape Town, South Africa in November 2012, to explore the possibility of expediting licensure by use of an "adaptive licensure" process, based on a risk/benefit assessment that is specific to regional needs informed by epidemiology. This may be appropriate for diseases such as TB, where high rates of morbidity, mortality, particularly in high disease burden countries, impose an urgent need for disease prevention. The discussion focused on two contexts: licensure within the South African regulatory environment - a high burden country where TB vaccine efficacy trials are on-going, and licensure by the United States FDA --a well-resourced regulatory agency where approval could facilitate global licensure of a novel TB vaccine. Copyright © 2013. Published by Elsevier Ltd.

  17. Purified coronavirus Spike protein nanoparticles induce coronavirus neutralizing antibodies in mice

    PubMed Central

    Mu, Haiyan; Taylor, Justin K; Massare, Michael; Flyer, David C

    2014-01-01

    Development of vaccination strategies for emerging pathogens are particularly challenging because of the sudden nature of the emergence of these viruses and the long process needed for traditional vaccine development. Therefore, there is a need for development of a rapid method of vaccine development that can respond to emerging pathogens in a short time frame. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and Middle East respiratory syndrome (MERS-CoV) in late 2012 demonstrate the importance of coronaviruses as emerging pathogens. The spike glycoproteins of coronaviruses reside on the surface of the virion and are responsible for virus entry. The spike glycoprotein is the major immunodominant antigen of coronaviruses and has proven to be an excellent target for vaccine designs that seek to block coronavirus entry and promote antibody targeting of infected cells. Vaccination strategies for coronaviruses have involved live attenuated virus, recombinant viruses, non-replicative virus-like particles expressing coronavirus proteins or DNA plasmids expressing coronavirus genes. None of these strategies has progressed to an approved human coronavirus vaccine in the ten years since SARS-CoV emerged. Here we describe a novel method for generating MERS-CoV and SARS-CoV full-length spike nanoparticles, which in combination with adjuvants are able to produce high titer antibodies in mice. PMID:24736006

  18. How Are New Vaccines Prioritized in Low-Income Countries? A Case Study of Human Papilloma Virus Vaccine and Pneumococcal Conjugate Vaccine in Uganda

    PubMed Central

    Wallace, Lauren; Kapirir, Lydia

    2017-01-01

    Background: To date, research on priority-setting for new vaccines has not adequately explored the influence of the global, national and sub-national levels of decision-making or contextual issues such as political pressure and stakeholder influence and power. Using Kapiriri and Martin’s conceptual framework, this paper evaluates priority setting for new vaccines in Uganda at national and sub-national levels, and considers how global priorities can influence country priorities. This study focuses on 2 specific vaccines, the human papilloma virus (HPV) vaccine and the pneumococcal conjugate vaccine (PCV). Methods: This was a qualitative study that involved reviewing relevant Ugandan policy documents and media reports, as well as 54 key informant interviews at the global level and national and sub-national levels in Uganda. Kapiriri and Martin’s conceptual framework was used to evaluate the prioritization process. Results: Priority setting for PCV and HPV was conducted by the Ministry of Health (MoH), which is considered to be a legitimate institution. While respondents described the priority setting process for PCV process as transparent, participatory, and guided by explicit relevant criteria and evidence, the prioritization of HPV was thought to have been less transparent and less participatory. Respondents reported that neither process was based on an explicit priority setting framework nor did it involve adequate representation from the districts (program implementers) or publicity. The priority setting process for both PCV and HPV was negatively affected by the larger political and economic context, which contributed to weak institutional capacity as well as power imbalances between development assistance partners and the MoH. Conclusion: Priority setting in Uganda would be improved by strengthening institutional capacity and leadership and ensuring a transparent and participatory processes in which key stakeholders such as program implementers (the districts) and beneficiaries (the public) are involved. Kapiriri and Martin’s framework has the potential to guide priority setting evaluation efforts, however, evaluation should be built into the priority setting process a priori such that information on priority setting is gathered throughout the implementation cycle. PMID:29172378

  19. [The awareness and attitude of population of Kazakhstan to inoculation against human papilloma virus].

    PubMed

    Nasritdinova, N Yu; Reznik, V L; Kuatbaieva, A M; Kairbaiev, M R

    2016-01-01

    The vaccines against human papilloma virus are a potential tool for prevention of cervix cancer and particular other types of cancer. The high inclusion of target group in applied vaccination program is economically effective and successful activity depending in many instances on reliable knowledge and positive attitude of population to inoculation. The cross-sectional study was carried out using previously developed anonymous questionnaires for various groups of population in four pilot regions of Kazakhstan where national ministry of health proposes for inoculation of girls aged 9-13 years two vaccines against human papilloma virus (four- and two-valence) The data base was organized using software Microsoft Access. The materials were integrated and processed using variation statistics techniques in software IBM SPSS Statistics 19 and applying Student criterion and calculating correlation dependences. Out of all respondents, 66% were aware about existence of human papilloma virus/ the main portion of parents 'female adolescents learned about vaccination against human papilloma virus from Internet and medical workers. The most significant factor preventing implementation of vaccination and the proper perception by respondents was absence of confidence in safety of vaccine. About 54% of parents of female adolescents and 75% of teachers consider vaccine as unsafe. And only 72% of medical workers consider vaccine as safe. Despite known effectiveness of vaccination against human papilloma virus, number of problems exist related to implementation of program. The level of awareness and understanding of different groups of population concerning the role of vaccination in development of oncologic pathology and possibility of prevention of cancer at the expense of vaccination. The intersectoral relationships are to be developed between medicine and education system. The significance of information activities of medical control organs and organizations is to be enhanced.

  20. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.

    PubMed

    Hoffman, Stephen L; Billingsley, Peter F; James, Eric; Richman, Adam; Loyevsky, Mark; Li, Tao; Chakravarty, Sumana; Gunasekera, Anusha; Chattopadhyay, Rana; Li, Minglin; Stafford, Richard; Ahumada, Adriana; Epstein, Judith E; Sedegah, Martha; Reyes, Sharina; Richie, Thomas L; Lyke, Kirsten E; Edelman, Robert; Laurens, Matthew B; Plowe, Christopher V; Sim, B Kim Lee

    2010-01-01

    Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.

  1. Introduction of a HIV vaccine in developing countries: social and cultural dimensions.

    PubMed

    Streefland, P H

    2003-03-28

    Using insights from studies on social and cultural aspects of immunization in Africa and Asia the paper discusses the introduction of a HIV vaccine from three perspectives. Firstly, it shows how at the side of public health programs local differences will impact on the introduction of a new vaccine. Secondly, it elaborates how at the side of the users of vaccinations acceptance, non-acceptance and demand of and for a new vaccine are related to local vaccination cultures, images of the HIV/AIDS epidemic, and perceptions of vaccine potency and efficacy. Thirdly, it points out socio-cultural aspects of the introductory process. Tailoring health education and social marketing to local conditions and local interpretations of globally provided information will be decisive for a successful introduction. Strong public health programs with highly motivated and appropriately supported staff are another necessary condition.

  2. Exploiting virus-like particles as innovative vaccines against emerging viral infections.

    PubMed

    Jeong, Hotcherl; Seong, Baik Lin

    2017-03-01

    Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.

  3. Lessons from the Salk Polio Vaccine: Methods for and Risks of Rapid Translation

    PubMed Central

    Juskewitch, B.A., Justin E.; Tapia, B.A., Carmen J.; Windebank, Anthony J.

    2010-01-01

    Abstract The Salk inactivated poliovirus vaccine is one of the most rapid examples of bench‐to‐bedside translation in medicine. In the span of 6 years, the key basic lab discoveries facilitating the development of the vaccine were made, optimization and safety testing was completed in both animals and human volunteers, the largest clinical trial in history of 1.8 million children was conducted, and the results were released to an eagerly awaiting public. Such examples of rapid translation cannot only offer clues to what factors can successfully drive and accelerate the translational process but also what mistakes can occur (and thus should be avoided) during such a swift process. In this commentary, we explore the translational path of the Salk polio vaccine from the key basic science discoveries to the 1954 Field Trials and delve into the scientific and sociopolitical factors that aided in its rapid development. Moreover, we look at the Cutter and Wyeth incidents after the vaccine’s approval and the errors that led to them. Clin Trans Sci 2010; Volume 3: 182–185 PMID:20718820

  4. Vaccine production training to develop the workforce of foreign institutions supported by the BARDA influenza vaccine capacity building program.

    PubMed

    Tarbet, E Bart; Dorward, James T; Day, Craig W; Rashid, Kamal A

    2013-03-15

    In the event of an influenza pandemic, vaccination will be the best method to limit virus spread. However, lack of vaccine biomanufacturing capacity means there will not be enough vaccine for the world's population. The U.S. Department of Health and Human Services, Biomedical Advanced Research and Development Authority (BARDA) provides support to the World Health Organization to enhance global vaccine production capacity in developing countries. However, developing a trained workforce in some of those countries is necessary. Biomanufacturing is labor-intensive, requiring unique skills not found in traditional academic programs. Employees must understand the scientific basis of biotechnology, operate specialized equipment, and work in an environment regulated by good manufacturing practices (cGMP). Therefore, BARDA supported development of vaccine biomanufacturing training at Utah State University. The training consisted of a three-week industry-focused course for participants from institutions supported by the BARDA and WHO influenza vaccine production capacity building program. The curriculum was divided into six components: (1) biosafety, (2) cell culture and growth of cells in bioreactors, (3) virus assays and inactivation, (4) scale-up strategies, (5) downstream processing, and (6) egg- and cell-based vaccine production and cGMP. Lectures were combined with laboratory exercises to provide a balance of theory and hands-on training. The initial course included sixteen participants from seven countries including: Egypt, Romania, Russia, Serbia, South Korea, Thailand, and Vietnam. The participant's job responsibilities included: Production, Quality Control, Quality Assurance, and Research; and their education ranged from bachelors to doctoral level. Internal course evaluations utilized descriptive methods including surveys, observation of laboratory activities, and interviews with participants. Generally, participants had appropriate academic backgrounds, but lacked expertise in vaccine production. All participants acknowledged the utility of the training, and many expressed interest in receiving additional support to implement new practices at their home institutions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    PubMed

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  6. VaxCelerate II: Rapid development of a self-assembling vaccine for Lassa fever

    PubMed Central

    Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C

    2014-01-01

    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d. A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4+ T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models. PMID:25483693

  7. VaxCelerate II: rapid development of a self-assembling vaccine for Lassa fever.

    PubMed

    Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C

    2014-01-01

    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.

  8. 27 CFR 21.40 - Formula No. 12-A.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... products, vitamins, hormones, and yeasts. 343.Processing antibiotics and vaccines. 344.Processing medicinal... medicinal chemicals. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant...

  9. 27 CFR 21.40 - Formula No. 12-A.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... products, vitamins, hormones, and yeasts. 343.Processing antibiotics and vaccines. 344.Processing medicinal... medicinal chemicals. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant...

  10. 27 CFR 21.40 - Formula No. 12-A.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... products, vitamins, hormones, and yeasts. 343.Processing antibiotics and vaccines. 344.Processing medicinal... medicinal chemicals. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant...

  11. Gore offers to help drug companies pursue research.

    PubMed

    1996-03-08

    A meeting convened between Vice President Al Gore and executives of leading pharmaceutical companies to determine means of accelerating efforts to develop vaccines, therapeutics, and microbicides for people with HIV. Gore explained that the administration will work with pharmaceutical companies to determine the long-term effectiveness of drugs approved by the Food and Drug Administration (FDA), work with international groups to increase investment in vaccine development, help develop new microbicides for women with HIV, and identify promising areas of AIDS research. According to advocates, the Clinton Administration has made great strides in improving and accelerating the FDA's drug approval process. The next goal of the pharmaceutical research agenda should be to include consumer advocates in the decision-making process.

  12. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice.

    PubMed

    Alvarez, M Lucrecia; Pinyerd, Heidi L; Crisantes, Jason D; Rigano, M Manuela; Pinkhasov, Julia; Walmsley, Amanda M; Mason, Hugh S; Cardineau, Guy A

    2006-03-24

    Yersinia pestis, the causative agent of plague, is an extremely virulent bacterium but there are no approved vaccines for protection against it. Our goal was to produce a vaccine that would address: ease of delivery, mucosal efficacy, safety, rapid scalability, and cost. We developed a novel production and delivery system for a plague vaccine of a Y. pestis F1-V antigen fusion protein expressed in tomato. Immunogenicity of the F1-V transgenic tomatoes was confirmed in mice that were primed subcutaneously with bacterially-produced F1-V and boosted orally with transgenic tomato fruit. Expression of the plague antigens in fruit allowed producing an oral vaccine candidate without protein purification and with minimal processing technology.

  13. Ebola virus glycoprotein Fc fusion protein confers protection against lethal challenge in vaccinated mice

    PubMed Central

    Konduru, Krishnamurthy; Bradfute, Steven B.; Jacques, Jerome; Manangeeswaran, Mohanraj; Nakamura, Siham; Morshed, Sufi; Wood, Steven C.; Bavari, Sina

    2011-01-01

    Ebola virus is a Filoviridae that causes hemorrhagic fever in humans and induces high morbidity and mortality rates. Filoviruses are classified as "Category A bioterrorism agents", and currently there are no licensed therapeutics or vaccines to treat and prevent infection. The Filovirus glycoprotein (GP) is sufficient to protect individuals against infection, and several vaccines based on GP are under development including recombinant adenovirus, parainfluenza virus, Venezuelan equine encephalitis virus, vesicular stomatitis virus (VSV) and virus-like particles. Here we describe the development of a GP Fc fusion protein as a vaccine candidate. We expressed the extracellular domain of the Zaire Ebola virus (ZEBOV) GP fused to the Fc fragment of human IgG1 (ZEBOVGP-Fc) in mammalian cells and showed that GP undergoes the complex furin cleavage and processing observed in the native membrane-bound GP. Mice immunized with ZEBOVGP-Fc developed T-cell immunity against ZEBOV GP and neutralizing antibodies against replication-competent VSV-G deleted recombinant VSV containing ZEBOV GP. The ZEBOVGP-Fc vaccinated mice were protected against challenge with a lethal dose of ZEBOV. These results show that vaccination with the ZEBOVGP-Fc fusion protein alone without the need of a viral vector or assembly into virus-like particles is sufficient to induce protective immunity against ZEBOV in mice. Our data suggested that Filovirus GP Fc fusion proteins could be developed as a simple, safe, efficacious, and cost effective vaccine against Filovirus infection for human use. PMID:21329775

  14. Association rule mining in the US Vaccine Adverse Event Reporting System (VAERS).

    PubMed

    Wei, Lai; Scott, John

    2015-09-01

    Spontaneous adverse event reporting systems are critical tools for monitoring the safety of licensed medical products. Commonly used signal detection algorithms identify disproportionate product-adverse event pairs and may not be sensitive to more complex potential signals. We sought to develop a computationally tractable multivariate data-mining approach to identify product-multiple adverse event associations. We describe an application of stepwise association rule mining (Step-ARM) to detect potential vaccine-symptom group associations in the US Vaccine Adverse Event Reporting System. Step-ARM identifies strong associations between one vaccine and one or more adverse events. To reduce the number of redundant association rules found by Step-ARM, we also propose a clustering method for the post-processing of association rules. In sample applications to a trivalent intradermal inactivated influenza virus vaccine and to measles, mumps, rubella, and varicella (MMRV) vaccine and in simulation studies, we find that Step-ARM can detect a variety of medically coherent potential vaccine-symptom group signals efficiently. In the MMRV example, Step-ARM appears to outperform univariate methods in detecting a known safety signal. Our approach is sensitive to potentially complex signals, which may be particularly important when monitoring novel medical countermeasure products such as pandemic influenza vaccines. The post-processing clustering algorithm improves the applicability of the approach as a screening method to identify patterns that may merit further investigation. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Social vaccines to resist and change unhealthy social and economic structures: a useful metaphor for health promotion.

    PubMed

    Baum, Fran; Narayan, Ravi; Sanders, David; Patel, Vikram; Quizhpe, Arturo

    2009-12-01

    The term 'social vaccine' is designed to encourage the biomedically orientated health sector to recognize the legitimacy of action on the distal social and economic determinants of health. It is proposed as a term to assist the health promotion movement in arguing for a social view of health which is so often counter to medical and popular conceptions of health. The idea of a social vaccine builds on a long tradition in social medicine as well as on a biomedical tradition of preventing illness through vaccines that protect against disease. Social vaccines would be promoted as a means to encourage popular mobilization and advocacy to change the social and economic structural conditions that render people and communities vulnerable to disease. They would facilitate social and political processes that develop popular and political will to protect and promote health through action (especially governments prepared to intervene and regulate to protect community health) on the social and economic determinants. Examples provided for the effects of social vaccines are: restoring land ownership to Indigenous peoples, regulating the advertising of harmful products and progressive taxation for universal social protection. Social vaccines require more research to improve understanding of social and political processes that are likely to improve health equity worldwide. The vaccine metaphor should be helpful in arguing for increased action on the social determinants of health.

  16. Coated microneedle arrays for transcutaneous delivery of live virus vaccines

    PubMed Central

    Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.

    2016-01-01

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8+ T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. PMID:22245683

  17. Coated microneedle arrays for transcutaneous delivery of live virus vaccines.

    PubMed

    Vrdoljak, Anto; McGrath, Marie G; Carey, John B; Draper, Simon J; Hill, Adrian V S; O'Mahony, Conor; Crean, Abina M; Moore, Anne C

    2012-04-10

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8(+) T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Facilitators and barriers to the use of standing orders for vaccination in obstetrics and gynecology settings.

    PubMed

    Barnard, Juliana G; Dempsey, Amanda F; Brewer, Sarah E; Pyrzanowski, Jennifer; Mazzoni, Sara E; O'Leary, Sean T

    2017-01-01

    Many young and middle-aged women receive their primary health care from their obstetrician-gynecologists. A recent change to vaccination recommendations during pregnancy has forced the integration of new clinical processes at obstetrician-gynecology practices. Evidence-based best practices for vaccination delivery include the establishment of vaccination standing orders. As part of an intervention to increase adoption of evidence-based vaccination strategies for women in safety-net and private obstetrician-gynecology settings, we conducted a qualitative study to identify the facilitators and barriers experienced by obstetrician-gynecology sites when establishing vaccination standing orders. At 6 safety-net and private obstetrician-gynecology practices, 51 semistructured interviews were completed by trained qualitative researchers over 2 years with clinical staff and vaccination program personnel. Standardized qualitative research methods were used during data collection and team-based data analysis to identify major themes and subthemes within the interview data. All study practices achieved partial to full implementation of vaccine standing orders for human papillomavirus, tetanus diphtheria pertussis, and influenza vaccines. Facilitating factors for vaccine standing order adoption included process standardization, acceptance of a continual modification process, and staff training. Barriers to vaccine standing order adoption included practice- and staff-level competing demands, pregnant women's preference for medical providers to discuss vaccine information with them, and staff hesitation in determining HPV vaccine eligibility. With guidance and commitment to integration of new processes, obstetrician-gynecology practices are able to establish vaccine standing orders for pregnant and nonpregnant women. Attention to certain process barriers can aid the adoption of processes to support the delivery of vaccinations in obstetrician-gynecology practice setting, and provide access to preventive health care for many women. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Summary of the National Advisory Committee on Immunization (NACI) Statement on Seasonal Influenza Vaccine for 2016-2017.

    PubMed

    Gemmill, I; Zhao, L; Cochrane, L

    2016-09-01

    Influenza is a respiratory infection caused primarily by influenza A and B viruses. Vaccination is the most effective way to prevent influenza and its complications. The National Advisory Committee on Immunization (NACI) provides recommendations regarding seasonal influenza vaccines annually to the Public Health Agency of Canada (the Agency). To summarize the NACI recommendations regarding the use of seasonal influenza vaccines for the 2016-2017 influenza season. Annual influenza vaccine recommendations are developed by NACI's Influenza Working Group for consideration and approval by NACI, based on NACI's evidence-based process for developing recommendations, and include a consideration of the burden of influenza illness and the target populations for vaccination; efficacy and effectiveness, immunogenicity and safety of influenza vaccines; vaccine schedules; and other aspects of influenza immunization. These recommendations are published annually on the Agency's website in the NACI Advisory Committee Statement: Canadian Immunization Guide Chapter on Influenza and Statement on Seasonal Influenza Vaccine (the Statement). The annual NACI seasonal influenza vaccine recommendations have been updated for the 2016-2017 influenza season to include adults with neurologic or neurodevelopment conditions among the groups for whom influenza vaccination is particularly recommended; to include the new high-dose, trivalent inactivated influenza vaccine for use in adults 65 years of age and over; to recommend that egg-allergic individuals may also be vaccinated against influenza using the low ovalbumin-containing live attenuated influenza vaccine (LAIV) licensed for use in Canada (NACI has previously recommended that egg-allergic individuals may be vaccinated using inactivated influenza vaccines); and to remove the preferential recommendation for the use of LAIV in children 2-17 years of age. Two addenda to the 2016-2017 Statement address these new LAIV recommendations. NACI continues to recommend annual influenza vaccination for all individuals aged six months and older, with particular focus on people at high risk of influenza-related complications or hospitalization, people capable of transmitting influenza to those at high risk and others as indicated.

  20. Persistent parasites and immunologic memory in cutaneous leishmaniasis: implications for vaccine designs and vaccination strategies.

    PubMed

    Okwor, Ifeoma; Uzonna, Jude

    2008-01-01

    Despite a plethora of publications on the murine model of cutaneous leishmaniasis and their contribution to our understanding of the factors that regulate the development of CD4+ T cell immunity in vivo, there is still no effective vaccine against the human disease. While recovery from natural or experimental infection with Leishmania major, the causative agent of human cutaneous leishmaniasis, results in persistence of parasites at the primary infection site and the development of long-lasting immunity to reinfection, vaccination with killed parasites or recombinant proteins induces only short-term protection. The reasons for the difference in protective immunity following recovery from live infection and vaccination with heat-killed parasites are not known. This may in part be related to persistence of live parasites following healing of primary cutaneous lesions, because complete clearance of parasites leads to rapid loss of infection-induced immunity. Recent reports indicate that in addition to persistent parasites, IL-10-producing natural regulatory T cells may also play critical roles in the maintenance and loss of infection-induced immunity. This review focuses on current understanding of the factors that regulate the development, maintenance and loss of anti-Leishmania memory responses and highlights the role of persistent parasites and regulatory T cells in this process. Understanding these factors is crucial for designing effective vaccines and vaccination strategies against cutaneous leishmaniasis.

  1. Proteomics and bioinformatics strategies to design countermeasures against infectious threat agents.

    PubMed

    Khan, Akbar S; Mujer, Cesar V; Alefantis, Timothy G; Connolly, Joseph P; Mayr, Ulrike Beate; Walcher, Petra; Lubitz, Werner; Delvecchio, Vito G

    2006-01-01

    The potential devastation resulting from an intentional outbreak caused by biological warfare agents such as Brucella abortus and Bacillus anthracis underscores the need for next generation vaccines. Proteomics, genomics, and systems biology approaches coupled with the bacterial ghost (BG) vaccine delivery strategy offer an ideal approach for developing safer, cost-effective, and efficacious vaccines for human use in a relatively rapid time frame. Critical to any subunit vaccine development strategy is the identification of a pathogen's proteins with the greatest potential of eliciting a protective immune response. These proteins are collectively referred to as the pathogen's immunome. Proteomics provides high-resolution identification of these immunogenic proteins using standard proteomic technologies, Western blots probed with antisera from infected patients, and the pathogen's sequenced and annotated genome. Selected immunoreactive proteins can be then cloned and expressed in nonpathogenic Gram-negative bacteria. Subsequently, a temperature shift or chemical induction process is initiated to induce expression of the PhiX174 E-lysis gene, whose protein product forms an E tunnel between the inner and outer membrane of the bacteria, expelling all intracellular contents. The BG vaccine system is a proven strategy developed for many different pathogens and tested in a complete array of animal models. The BG vaccine system also has great potential for producing multiagent vaccines for protection to multiple species in a single formulation.

  2. Regulatory considerations on new adjuvants and delivery systems.

    PubMed

    Sesardic, D

    2006-04-12

    New and improved vaccines and delivery systems are increasingly being developed for prevention, treatment and diagnosis of human diseases. Prior to their use in humans, all new biological products must undergo pre-clinical evaluation. These pre-clinical studies are important not only to establish the biological properties of the material and to evaluate its possible risk to the public, but also to plan protocols for subsequent clinical trials from which safety and efficacy can be evaluated. For vaccines, evaluation in pre-clinical studies is particularly important as information gained may also contribute to identifying the optimum composition and formulation process and provide an opportunity to develop suitable indicator tests for quality control. Data from pre-clinical and laboratory evaluation studies, which continue during clinical studies, is used to support an application for marketing authorisation. Addition of a new adjuvant and exploration of new delivery systems for vaccines presents challenges to both manufacturers and regulatory authorities. Because no adjuvant is licensed as a medicinal product in its own right, but only as a component of a particular vaccine, pre-clinical and appropriate toxicology studies need to be designed on a case-by-case basis to evaluate the safety profile of the adjuvant and adjuvant/vaccine combination. Current regulatory requirements for the pharmaceutical and pre-clinical safety assessment of vaccines are insufficient and initiatives are in place to develop more specific guidelines for evaluation of adjuvants in vaccines.

  3. Overview of Vaccine Adjuvants: Introduction, History, and Current Status.

    PubMed

    Shah, Ruchi R; Hassett, Kimberly J; Brito, Luis A

    2017-01-01

    Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immunogenic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation science, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical tools are developed which allows us to delve deeper into the various mechanisms that generates a potent immune response. Additionally, these new techniques help the field learn about our existing vaccines and what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our goal in this chapter is to define the concept, need, and mechanism of adjuvants in the vaccine field while describing its history, present use, and future prospects. More details on individual adjuvants and their formulation, development, mechanism, and use will be covered in depth in the next chapters.

  4. 'It's a logistical nightmare!' Recommendations for optimising human papillomavirus school-based vaccination experience.

    PubMed

    Robbins, Spring Chenoa Cooper; Bernard, Diana; McCaffery, Kirsten; Skinner, S Rachel

    2010-09-01

    To date, no published studies examine procedural factors of the school-based human papillomavirus (HPV) vaccination program from the perspective of those involved. This study examines the factors that were perceived to impact optimal vaccination experience. Schools across Sydney were selected to reflect a range of vaccination coverage at the school level and different school types to ensure a range of experiences. Semi-structured focus groups were conducted with girls; and one-on-one interviews were undertaken with parents, teachers and nurses until saturation of data in all emergent themes was reached. Focus groups and interviews explored participants' experiences in school-based HPV vaccination. Transcripts were analysed, letting themes emerge. Themes related to participants' experience of the organisational, logistical and procedural aspects of the vaccination program and their perceptions of an optimal process were organised into two categories: (1) preparation for the vaccination program and (2) vaccination day strategies. In (1), themes emerged regarding commitment to the process from those involved, planning time and space for vaccinations, communication within and between agencies, and flexibility. In (2), themes included vaccinating the most anxious girls first, facilitating peer support, use of distraction techniques, minimising waiting time girls, and support staff. A range of views exists on what constitutes an optimal school-based program. Several findings were identified that should be considered in the development of guidelines for implementing school-based programs. Future research should evaluate how different approaches to acquiring parental consent, and the use of anxiety and fear reduction strategies impact experience and uptake in the school-based setting.

  5. New Strategies Toward Edible Vaccines: An Overview.

    PubMed

    Aryamvally, Anjali; Gunasekaran, Vignesh; Narenthiran, Keerthana Ragavi; Pasupathi, Rathinasabapathi

    2016-04-11

    With the ever growing population, advancements in edible vaccines and related technologies have seen a rise in popularity. Antigenic peptides incorporated into an edible part of a plant can be administered raw as a vaccine. While conventional vaccines have improved the quality of life by drastically reducing the onset of diseases, edible vaccines are able to perform the same with greater accessibility and at an affordable price. Low cost of production, ease of storage, transportation and administration are some of the many reasons behind the push for the development of edible vaccines. This article aims at giving an overview of the different plant systems used to produce vaccines in various experiments, as well as the merits and demerits of using that particular expression system. Further, the article elaborates on the problems faced in the production of edible vaccines and the measures adopted to surpass them. The major obstacle in the process is attaining a sufficiently large concentration of foreign antigen in the plant system. The article discusses various plant expression systems like banana, rice, alfalfa, mushroom, potato, tomato, pea, tobacco, and maize. When these were reviewed, it was found that the inability to produce the desired antigen concentration was one of the primary reasons why edible vaccines sometimes fail to generate the desired level of immune response in the recipient. We conclude with a promising solution to the problem by incorporating nano-technological advancements to the already existing protocols for edible vaccine development.

  6. Rules and tools that improved vaccines for children vaccine-ordering practices in Oregon: a 2010 pilot project.

    PubMed

    Hewett, Rafe; VanCuren, Anne; Trocio, Loralee; Beaudrault, Sara; Gund, Anona; Luther, Mimi; Groom, Holly

    2013-01-01

    This project's objective was to enhance efforts to improve vaccine-ordering efficiencies among targeted clinics using publicly purchased vaccines. Using an assessment of ordering behavior developed by the Centers for Disease Control and Prevention, we selected and trained immunization providers and assessed improvements in ordering behavior by comparing ordering patterns before and after the intervention. A total of 144 Vaccines for Children program providers in Oregon. We assessed 144 providers trained in the Economic Order Quantity process between January and November 2010. INTERVENTION (IF APPLICABLE): Providers were invited to participate in regional trainings. Trainings included assignment of ordering frequency and dissemination of tools to support adherence to the recommended ordering frequency. The percent increase in targeted clinics ordering according to recommended order frequency and the resulting decrease in orders placed, as an outcome of training and ordering tools. Only 35% of targeted providers were ordering according to the recommended ordering frequency before the project began. After completing training, utilizing ordering tools and ordering over a 7-month period, 78% of the targeted clinics were ordering according to the recommended frequency, a 120% increase in the number of clinics ordering with the recommended frequency. At baseline, targeted clinics placed 915 total vaccine orders over a 7-month period. After completing training and participating in the Economic Order Quantity process, only 645 orders were placed, a reduction of 30% . The initiative was successful in reducing the number of orders placed by Vaccines for Children providers in Oregon. A previous effort to reduce ordering, without the use of training or tools, did not achieve the same levels of provider compliance, suggesting that the addition of staff and development of tools were helpful in supporting behavior change and improving providers' ability to adhere to assigned order frequencies. Reducing order frequency results in more efficient vaccine ordering patterns and benefits vaccine distributors, Oregon Immunization Program staff, and provider staff.

  7. Information is in the eye of the beholder: Seeking information on the MMR vaccine through an Internet search engine.

    PubMed

    Yom-Tov, Elad; Fernandez-Luque, Luis

    2014-01-01

    Vaccination campaigns are one of the most important and successful public health programs ever undertaken. People who want to learn about vaccines in order to make an informed decision on whether to vaccinate are faced with a wealth of information on the Internet, both for and against vaccinations. In this paper we develop an automated way to score Internet search queries and web pages as to the likelihood that a person making these queries or reading those pages would decide to vaccinate. We apply this method to data from a major Internet search engine, while people seek information about the Measles, Mumps and Rubella (MMR) vaccine. We show that our method is accurate, and use it to learn about the information acquisition process of people. Our results show that people who are pro-vaccination as well as people who are anti-vaccination seek similar information, but browsing this information has differing effect on their future browsing. These findings demonstrate the need for health authorities to tailor their information according to the current stance of users.

  8. Information is in the eye of the beholder: Seeking information on the MMR vaccine through an Internet search engine

    PubMed Central

    Yom-Tov, Elad; Fernandez-Luque, Luis

    2014-01-01

    Vaccination campaigns are one of the most important and successful public health programs ever undertaken. People who want to learn about vaccines in order to make an informed decision on whether to vaccinate are faced with a wealth of information on the Internet, both for and against vaccinations. In this paper we develop an automated way to score Internet search queries and web pages as to the likelihood that a person making these queries or reading those pages would decide to vaccinate. We apply this method to data from a major Internet search engine, while people seek information about the Measles, Mumps and Rubella (MMR) vaccine. We show that our method is accurate, and use it to learn about the information acquisition process of people. Our results show that people who are pro-vaccination as well as people who are anti-vaccination seek similar information, but browsing this information has differing effect on their future browsing. These findings demonstrate the need for health authorities to tailor their information according to the current stance of users. PMID:25954435

  9. Impact of an Intervention to Use a Measles, Rubella, and Polio Mass Vaccination Campaign to Strengthen Routine Immunization Services in Nepal.

    PubMed

    Wallace, Aaron S; Bohara, Rajendra; Stewart, Steven; Subedi, Giri; Anand, Abhijeet; Burnett, Eleanor; Giri, Jagat; Shrestha, Jagat; Gurau, Suraj; Dixit, Sameer; Rajbhandari, Rajesh; Schluter, W William

    2017-07-01

    The potential to strengthen routine immunization (RI) services through supplementary immunization activities (SIAs) is an important benefit of global measles and rubella elimination and polio eradication strategies. However, little evidence exists on how best to use SIAs to strengthen RI. As part the 2012 Nepal measles-rubella and polio SIA, we developed an intervention package designed to improve RI processes and evaluated its effect on specific RI process measures. The intervention package was incorporated into existing SIA activities and materials to improve healthcare providers' RI knowledge and practices throughout Nepal. In 1 region (Central Region) we surveyed the same 100 randomly selected health facilities before and after the SIA and evaluated the following RI process measures: vaccine safety, RI planning, RI service delivery, vaccine supply chain, and RI data recording practices. Data collection included observations of vaccination sessions, interviews with the primary healthcare provider who administered vaccines at each facility, and administrative record reviews. Pair-matched analytical methods were used to determine whether statistically significant changes in the selected RI process measures occurred over time. After the SIA, significant positive changes were measured in healthcare provider knowledge of adverse events following immunization (11% increase), availability of RI microplans (+17%) and maps (+12%), and awareness of how long a reconstituted measles vial can be used before it must be discarded (+14%). For the SIA, 42% of providers created an SIA high-risk villages list, and >50% incorporated this information into RI outreach session site planning. Significant negative changes occurred in correct knowledge of measles vaccination contraindications (-11%), correct definition for a measles outbreak (-21%), and how to treat a child with a severe adverse event following immunization (-10%). Twenty percent of providers reported cancelling ≥1 RI sessions during the SIA. Many RI process measures were at high proportions (>90%) before the SIA and remained high afterward, including proper vaccine administration techniques, proper vaccine waste management, and availability of vaccine carriers and vaccine registers. Focusing on activities that are easily linked between SIAs and RI services, such as using SIA high-risk village list to strengthen RI microplanning and examining ways to minimize the impact of an SIA on RI session scheduling, should be prioritized when implementing SIAs. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  10. Development of novel vaccines using DNA shuffling and screening strategies.

    PubMed

    Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha

    2004-02-01

    DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.

  11. Analytical technologies for influenza virus-like particle candidate vaccines: challenges and emerging approaches

    PubMed Central

    2013-01-01

    Influenza virus-like particle vaccines are one of the most promising ways to respond to the threat of future influenza pandemics. VLPs are composed of viral antigens but lack nucleic acids making them non-infectious which limit the risk of recombination with wild-type strains. By taking advantage of the advancements in cell culture technologies, the process from strain identification to manufacturing has the potential to be completed rapidly and easily at large scales. After closely reviewing the current research done on influenza VLPs, it is evident that the development of quantification methods has been consistently overlooked. VLP quantification at all stages of the production process has been left to rely on current influenza quantification methods (i.e. Hemagglutination assay (HA), Single Radial Immunodiffusion assay (SRID), NA enzymatic activity assays, Western blot, Electron Microscopy). These are analytical methods developed decades ago for influenza virions and final bulk influenza vaccines. Although these methods are time-consuming and cumbersome they have been sufficient for the characterization of final purified material. Nevertheless, these analytical methods are impractical for in-line process monitoring because VLP concentration in crude samples generally falls out of the range of detection for these methods. This consequently impedes the development of robust influenza-VLP production and purification processes. Thus, development of functional process analytical techniques, applicable at every stage during production, that are compatible with different production platforms is in great need to assess, optimize and exploit the full potential of novel manufacturing platforms. PMID:23642219

  12. Robust real-time cell analysis method for determining viral infectious titers during development of a viral vaccine production process.

    PubMed

    Charretier, Cédric; Saulnier, Aure; Benair, Loïc; Armanet, Corinne; Bassard, Isabelle; Daulon, Sandra; Bernigaud, Bertrand; Rodrigues de Sousa, Emanuel; Gonthier, Clémence; Zorn, Edouard; Vetter, Emmanuelle; Saintpierre, Claire; Riou, Patrice; Gaillac, David

    2018-02-01

    The classical cell-culture methods, such as cell culture infectious dose 50% (CCID 50 ) assays, are time-consuming, end-point assays currently used during the development of a viral vaccine production process to measure viral infectious titers. However, they are not suitable for handling the large number of tests required for high-throughput and large-scale screening analyses. Impedance-based bio-sensing techniques used in real-time cell analysis (RTCA) to assess cell layer biological status in vitro, provide real-time data. In this proof-of-concept study, we assessed the correlation between the results from CCID 50 and RTCA assays and compared time and costs using monovalent and tetravalent chimeric yellow fever dengue (CYD) vaccine strains. For the RTCA assay, Vero cells were infected with the CYD sample and real-time impedance was recorded, using the dimensionless cell index (CI). The CI peaked just after infection and decreased as the viral cytopathic effect occurred in a dose-dependent manner. The time to the median CI (CIT med ) was correlated with viral titers determined by CCID 50 over a range of about 4-5log 10 CCID 50 /ml. This in-house RTCA virus-titration assay was shown to be a robust method for determining real-time viral infectious titers, and could be an alternative to the classical CCID 50 assay during the development of viral vaccine production process. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. The influenza vaccine licensing process.

    PubMed

    Wood, J M; Levandowski, R A

    2003-05-01

    Influenza vaccines are unique because they require a licensing process which includes a procedure for rapid annual updates to vaccine strains. The licensing procedures in the European Union and the USA are described as examples. In the event of an influenza pandemic, vaccines will be required urgently and licensing process should reflect such needs.

  14. Health education lessons learned: the H.A.P.I. Kids Program.

    PubMed

    Sworts, V D; Riccitelli, C N

    1997-09-01

    Challenges exist for effective health communication and health education within diverse populations of the United States. This article addresses the development process for educational materials and lessons learned from the Healthy Asian and Pacific Islander (H.A.P.I.) Kids Program, a vaccination demonstration project funded by the Centers for Disease Control and Prevention to promote catch-up hepatitis B vaccination for older American Asian and Pacific Islander children. Simplicity and a common message were incorporated in multiple strategies to disseminate information to a diverse population. Community representatives from the Cambodian, Hmong, Filipino, Lao, and Vietnamese communities were instrumental in the material development process, which included needs assessment, design, and translation. By making the target community part of the development process, important health messages can be disseminated effectively, carrying great impact to an otherwise hard-to-reach community.

  15. The Future of HIV Vaccine Research and the Role of the Global HIV Vaccine Enterprise

    PubMed Central

    Voronin, Yegor; Manrique, Amapola; Bernstein, Alan

    2010-01-01

    Purpose of review This review covers the role of the Global HIV Vaccine Enterprise (the Enterprise), an alliance of independent organizations committed to development of a safe and effective HIV vaccine. It discussesthe history, impact on the field and future directions and initiatives of the alliance, in the context of recent progress in HIV vaccine research and development. Recent Findings Significant progress has been made in the field since the release of the 2005 Scientific Strategic Plan (The Plan) of the Enterprise. Over the last year, the Enterprise embarked on an impact assessment of the 2005 Planand the development of the 2010 Plan. Enterprise Working Groups identified key priorities in the field, several of which are discussed in this review, including: changing the nature, purpose and process of clinical trials; increasing and facilitating data sharing; and optimizing existing and attracting new resources. Summary This isan important moment in HIV vaccine research. New clinical trial and laboratory results have created new opportunities to advance the search for an HIV vaccineand reinvigorated the field. The Enterprise will publish its 2010 Scientific Strategic Planthis year, providinga framework for setting new priorities and directions, and encouraging new and existing partners to embark on a shared scientific agenda. PMID:20978383

  16. Vaccination against smoking: an annotated agenda for debate. A review of scientific journals, 2001-13.

    PubMed

    Wolters, Anna; de Wert, Guido; van Schayck, Onno C P; Horstman, Klasien

    2014-08-01

    The ongoing development of novel nicotine vaccines makes it urgent to identify the normative questions around this innovative health technology against smoking. A qualitative thematic analysis of peer-reviewed papers on nicotine vaccination published between 2001 and 2013. In the scientific discourse, nicotine vaccination is presented in a neurobiological frame as a potent concept for (long-term) smoking cessation. Nicotine vaccination is also considered a hypothetical strategy to prevent nicotine addiction in minors. Ethical assessments are conducted for the use of nicotine vaccination in public health and clinical medicine. Whereas vaccination for primary prevention is usually associated with public health, the hypothetical case of nicotine prevention in minors is also assessed for individualized protection. Therapeutic and preventive applications are given uneven attention: the classic goal of vaccination (primary prevention in minors) receives methodical consideration and invokes lively debate. The unprecedented use of vaccination, namely smoking cessation, is left largely unattended in the ethical analyses. While health innovations such as nicotine vaccination need broad reflection to guide decisions on their further development and possible future implementations, only a small part of the ethical and social issues of this innovative technology has been discussed. For a debate to come into existence, a 'neurobio-psycho-socio-cultural' frame of smoking and quitting appears fruitful. Important topics for reflection are the human activities and social processes in a vaccine-supported quit attempt, next to respect for individuals, possible harms and questions of (global) justice and research ethics. © 2014 Society for the Study of Addiction.

  17. New approaches for Helicobacter vaccine development--difficulties and progress.

    PubMed

    Jagusztyn-Krynicka, Elzbieta K; Godlewska, Renata

    2008-01-01

    Despite the enormous progress in understanding the process of bacterial pathogenesis and interactions of pathogens with eucaryotic cells the infectious diseases still remain the main cause of human premature deaths. It is now recognized that Helicobacter pylori infects about half of the world's population. Based on results of clinical studies the World Health Organization has assigned H. pylori as a class I carcinogen. The review presents new achievements aimed at construction efficient and safe anti-Helicobacter vaccine. We discuss the new global technologies such as immunoproteomics employed for selecting new candidates for vaccine construction as well as new vaccine delivery systems. The review presents also our knowledge concerning H. pylori interaction with immune system which might facilitate modulation of the host immune system by specific adjuvant included into vaccine.

  18. Lessons from pandemic influenza A(H1N1): the research-based vaccine industry's perspective.

    PubMed

    Abelin, Atika; Colegate, Tony; Gardner, Stephen; Hehme, Norbert; Palache, Abraham

    2011-02-01

    As A(H1N1) influenza enters the post-pandemic phase, health authorities around the world are reviewing the response to the pandemic. To ensure this process enhances future preparations, it is essential that perspectives are included from all relevant stakeholders, including vaccine manufacturers. This paper outlines the contribution of R&D-based influenza vaccine producers to the pandemic response, and explores lessons that can be learned to improve future preparedness. The emergence of 2009 A(H1N1) influenza led to unprecedented collaboration between global health authorities, scientists and manufacturers, resulting in the most comprehensive pandemic response ever undertaken, with a number of vaccines approved for use three months after the pandemic declaration. This response was only possible because of the extensive preparations undertaken during the last decade. During this period, manufacturers greatly increased influenza vaccine production capacity, and estimates suggest a further doubling of capacity by 2014. Producers also introduced cell-culture technology, while adjuvant and whole virion technologies significantly reduced pandemic vaccine antigen content. This substantially increased pandemic vaccine production capacity, which in July 2009 WHO estimated reached 4.9 billion doses per annum. Manufacturers also worked with health authorities to establish risk management plans for robust vaccine surveillance during the pandemic. Individual producers pledged significant donations of vaccine doses and tiered-pricing approaches for developing country supply. Based on the pandemic experience, a number of improvements would strengthen future preparedness. Technical improvements to rapidly select optimal vaccine viruses, and processes to speed up vaccine standardization, could accelerate and extend vaccine availability. Establishing vaccine supply agreements beforehand would avoid the need for complex discussions during a period of intense time pressure. Enhancing international regulatory co-operation and mutual recognition of approvals could accelerate vaccine supply, while maintaining safety standards. Strengthening communications with the public and healthcare workers using new approaches and new channels could help improve vaccine uptake. Finally, increasing seasonal vaccine coverage will be particularly important to extend and sustain pandemic vaccine production capacity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Compensation programs after withdrawal of the recommendation for HPV vaccine in Japan.

    PubMed

    Yuji, Koichiro; Nakada, Haruka

    2016-05-03

    HPV vaccinations were recommended with the backing of a Japanese government subsidy program in 2010, and were included in the National Immunization Program in April 2013. However, the Ministry of Health, Labour, and Welfare withdrew the recommendation for the HPV vaccination in June 2013. We investigated HPV vaccine injury compensation programs for both the national and local governments. Approximately 3.38 million girls were vaccinated, and 2,584 complained of health problems. The majority of these received the vaccine shot as a non-routine vaccination. In total, 98 people developed health problems and applied for assistance from 2011 to 2014, but no cases have been processed since October 2014. Several local governments are providing their own compensation program for cases of vaccine adverse reactions, but the number is extremely low (16 of 1,741 municipalities and 1 of 47 prefectures). The local governments that are providing compensation are largely those where HPV vaccine victim support groups are prominent. The confusion regarding the national program for HPV vaccine injury was caused by the discrepancy between the compensation programs for those vaccinated under the immunization law and for those who received voluntary vaccinations. The establishment of a new compensation program might be key to finding a lasting resolution.

  20. Compensation programs after withdrawal of the recommendation for HPV vaccine in Japan

    PubMed Central

    Yuji, Koichiro; Nakada, Haruka

    2016-01-01

    abstract HPV vaccinations were recommended with the backing of a Japanese government subsidy program in 2010, and were included in the National Immunization Program in April 2013. However, the Ministry of Health, Labour, and Welfare withdrew the recommendation for the HPV vaccination in June 2013. We investigated HPV vaccine injury compensation programs for both the national and local governments. Approximately 3.38 million girls were vaccinated, and 2,584 complained of health problems. The majority of these received the vaccine shot as a non-routine vaccination. In total, 98 people developed health problems and applied for assistance from 2011 to 2014, but no cases have been processed since October 2014. Several local governments are providing their own compensation program for cases of vaccine adverse reactions, but the number is extremely low (16 of 1,741 municipalities and 1 of 47 prefectures). The local governments that are providing compensation are largely those where HPV vaccine victim support groups are prominent. The confusion regarding the national program for HPV vaccine injury was caused by the discrepancy between the compensation programs for those vaccinated under the immunization law and for those who received voluntary vaccinations. The establishment of a new compensation program might be key to finding a lasting resolution. PMID:26513303

  1. The HPV Vaccine: A Comparison of Focus Groups Conducted in South Africa and Ohio Appalachia

    PubMed Central

    Katz, Mira L.

    2013-01-01

    Worldwide, cervical cancer is one of the leading causes of morbidity and mortality among women. Even though women in developing countries account for approximately 85 % of the cervical cancer cases and deaths, disparities in cervical cancer rates are also documented in developed countries like the United States (U.S.). Recently, formative research conducted in the U.S. and developing countries like South Africa have sought to gain a better understanding of the knowledge, beliefs, and attitudes about cervical cancer prevention, HPV, and the acceptance of the HPV vaccine. This study compares findings from two independent focus group studies. One study was conducted in a segregated township in Johannesburg, South Africa (n = 24) and the other study was conducted in Ohio Appalachia (n = 19). The following seven themes emerged during the discussions from both studies: HPV and cervical cancer; health decision making; parent–child communication; healthy children; HPV vaccine costs; sexual abuse; and HPV vaccine education. Findings from both studies indicate the importance of the role of mothers and grandmothers in the health care decision-making process for children and a lack of awareness of HPV and its association with cervical cancer. While there was interest in the HPV vaccine, participants voiced concern about the vaccine’s cost and side effects. Some participants expressed concern that receipt of the HPV vaccine may initiate adolescent sexual behavior. However, other participants suggested that the HPV vaccine may protect young women who may experience sexual abuse. The importance of developing culturally appropriate educational materials and programs about cervical cancer prevention and the HPV vaccine were expressed by participants in both countries. PMID:22930347

  2. Hypothesis: conjugate vaccines may predispose children to autism spectrum disorders.

    PubMed

    Richmand, Brian J

    2011-12-01

    The first conjugate vaccine was approved for use in the US in 1988 to protect infants and young children against the capsular bacteria Haemophilus influenzae type b (Hib). Since its introduction in the US, this vaccine has been approved in most developed countries, including Denmark and Israel where the vaccine was added to their national vaccine programs in 1993 and 1994, respectively. There have been marked increases in the reported prevalence of autism spectrum disorders (ASDs) among children in the US beginning with birth cohorts in the late 1980s and in Denmark and Israel starting approximately 4-5 years later. Although these increases may partly reflect ascertainment biases, an exogenous trigger could explain a significant portion of the reported increases in ASDs. It is hypothesized here that the introduction of the Hib conjugate vaccine in the US in 1988 and its subsequent introduction in Denmark and Israel could explain a substantial portion of the initial increases in ASDs in those countries. The continuation of the trend toward increased rates of ASDs could be further explained by increased usage of the vaccine, a change in 1990 in the recommended age of vaccination in the US from 15 to 2 months, increased immunogenicity of the vaccine through changes in its carrier protein, and the subsequent introduction of the conjugate vaccine for Streptococcus pneumoniae. Although conjugate vaccines have been highly effective in protecting infants and young children from the significant morbidity and mortality caused by Hib and S. pneumoniae, the potential effects of conjugate vaccines on neural development merit close examination. Conjugate vaccines fundamentally change the manner in which the immune systems of infants and young children function by deviating their immune responses to the targeted carbohydrate antigens from a state of hypo-responsiveness to a robust B2 B cell mediated response. This period of hypo-responsiveness to carbohydrate antigens coincides with the intense myelination process in infants and young children, and conjugate vaccines may have disrupted evolutionary forces that favored early brain development over the need to protect infants and young children from capsular bacteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Summary of the NACI Statement on Seasonal Influenza Vaccine for 2017-2018.

    PubMed

    Vaudry, W; Stirling, R

    2017-05-04

    Influenza is a respiratory infection caused primarily by influenza A and B viruses. Vaccination is the most effective way to prevent influenza and its complications. The National Advisory Committee on Immunization (NACI) provides recommendations regarding seasonal influenza vaccines annually to the Public Health Agency of Canada (PHAC). To summarize the NACI recommendations regarding the use of seasonal influenza vaccines for the 2017-2018 influenza season. Annual influenza vaccine recommendations are developed by NACI's Influenza Working Group for consideration and approval by NACI, based on NACI's evidence-based process for developing recommendations. The recommendations include a consideration of the burden of influenza illness and the target populations for vaccination; efficacy and effectiveness, immunogenicity and safety of influenza vaccines; vaccine schedules; and other aspects of influenza immunization. These recommendations are published annually on the Agency's website in the NACI Advisory Committee Statement: Canadian Immunization Guide Chapter on Influenza and Statement on Seasonal Influenza Vaccine (the Statement). The annual statement has been updated for the 2017-2018 influenza season to incorporate recommendations for the use of live attenuated influenza vaccine (LAIV) that were contained in two addenda published after the 2016-2017 statement. These recommendations were 1) that egg-allergic individuals may be vaccinated against influenza using the low ovalbumin-containing LAIV licensed for use in Canada and 2) to continue to recommend the use of LAIV in children and adolescents 2-17 years of age, but to remove the preferential recommendation for its use. NACI continues to recommend annual influenza vaccination for all individuals aged six months and older, with particular focus on people at high risk of influenza-related complications or hospitalization, people capable of transmitting influenza to those at high risk, and others as indicated.

  4. The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis

    PubMed Central

    2014-01-01

    Background In human vaccine manufacturing some pathogens such as Modified Vaccinia Virus Ankara, measles, mumps virus as well as influenza viruses are still produced on primary material derived from embryonated chicken eggs. Processes depending on primary cell culture, however, are difficult to adapt to modern vaccine production. Therefore, we derived previously a continuous suspension cell line, AGE1.CR.pIX, from muscovy duck and established chemically-defined media for virus propagation. Results To better understand vaccine production processes, we developed a stoichiometric model of the central metabolism of AGE1.CR.pIX cells and applied flux variability and metabolic flux analysis. Results were compared to literature dealing with mammalian and insect cell culture metabolism focusing on the question whether cultured avian cells differ in metabolism. Qualitatively, the observed flux distribution of this avian cell line was similar to distributions found for mammalian cell lines (e.g. CHO, MDCK cells). In particular, glucose was catabolized inefficiently and glycolysis and TCA cycle seem to be only weakly connected. Conclusions A distinguishing feature of the avian cell line is that glutaminolysis plays only a minor role in energy generation and production of precursors, resulting in low extracellular ammonia concentrations. This metabolic flux study is the first for a continuous avian cell line. It provides a basis for further metabolic analyses to exploit the biotechnological potential of avian and vertebrate cell lines and to develop specific optimized cell culture processes, e.g. vaccine production processes. PMID:25077436

  5. The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis.

    PubMed

    Lohr, Verena; Hädicke, Oliver; Genzel, Yvonne; Jordan, Ingo; Büntemeyer, Heino; Klamt, Steffen; Reichl, Udo

    2014-07-30

    In human vaccine manufacturing some pathogens such as Modified Vaccinia Virus Ankara, measles, mumps virus as well as influenza viruses are still produced on primary material derived from embryonated chicken eggs. Processes depending on primary cell culture, however, are difficult to adapt to modern vaccine production. Therefore, we derived previously a continuous suspension cell line, AGE1.CR.pIX, from muscovy duck and established chemically-defined media for virus propagation. To better understand vaccine production processes, we developed a stoichiometric model of the central metabolism of AGE1.CR.pIX cells and applied flux variability and metabolic flux analysis. Results were compared to literature dealing with mammalian and insect cell culture metabolism focusing on the question whether cultured avian cells differ in metabolism. Qualitatively, the observed flux distribution of this avian cell line was similar to distributions found for mammalian cell lines (e.g. CHO, MDCK cells). In particular, glucose was catabolized inefficiently and glycolysis and TCA cycle seem to be only weakly connected. A distinguishing feature of the avian cell line is that glutaminolysis plays only a minor role in energy generation and production of precursors, resulting in low extracellular ammonia concentrations. This metabolic flux study is the first for a continuous avian cell line. It provides a basis for further metabolic analyses to exploit the biotechnological potential of avian and vertebrate cell lines and to develop specific optimized cell culture processes, e.g. vaccine production processes.

  6. Nanoparticle-detained toxins for safe and effective vaccination

    NASA Astrophysics Data System (ADS)

    Hu, Che-Ming J.; Fang, Ronnie H.; Luk, Brian T.; Zhang, Liangfang

    2013-12-01

    Toxoid vaccines--vaccines based on inactivated bacterial toxins--are routinely used to promote antitoxin immunity for the treatment and prevention of bacterial infections. Following chemical or heat denaturation, inactivated toxins can be administered to mount toxin-specific immune responses. However, retaining faithful antigenic presentation while removing toxin virulence remains a major challenge and presents a trade-off between efficacy and safety in toxoid development. Here, we show a nanoparticle-based toxin-detainment strategy that safely delivers non-disrupted pore-forming toxins for immune processing. Using erythrocyte membrane-coated nanoparticles and staphylococcal α-haemolysin, we demonstrate effective virulence neutralization via spontaneous particle entrapment. Compared with vaccination with heat-denatured toxin, mice vaccinated with the nanoparticle-detained toxin showed superior protective immunity against toxin-mediated adverse effects. We find that the non-disruptive detoxification approach benefited the immunogenicity and efficacy of toxoid vaccines. We anticipate that this study will open new possibilities in the preparation of antitoxin vaccines against the many virulence factors that threaten public health.

  7. Panel discussion on vaccine development to meet U.S. and international needs. Strategies for reducing the disincentives to HIV vaccine development: description of a successful public-private sector international collaboration.

    PubMed

    Bronnenkant, L

    1994-01-01

    A representative of Finishing Enterprises, the world's largest manufacturer of intrauterine contraceptive devices (IUDs), discusses how to alter the balance of incentives-disincentives to expedite the development of HIV vaccines for international evaluation. Three main disincentives exist for private manufacturers in the United States to develop a new HIV vaccine to be used in developing countries, outside the profitable North American and western European markets: 1) low profit margin because of limited money, time, and resources. Medium and large-sized corporations are more concerned with a high return on their investment owing to stockholder pressure than with the human benefit of that investment. 2) Lengthy regulatory approval process. The current regulatory process in the US is tedious, time-consuming, and costly. 3) Liability risk. The United States is the most litigious society in the world. Suits filed against US corporations involved in drug manufacture incur legal defence costs, which make an already low profit margin HIV vaccine even lower. Finishing Enterprises' IUD program aimed at providing the safest and most effective IUD at an affordable price in a socially responsible way. The Population Council developed the Copper T and retained the patent rights. They and other international health authorities, such as the World Health Organization, conducted or monitored international clinical trials to determine safety and efficacy. Private foundations and public donor agencies funded these activities. When donor agencies committed to volume purchases for their commodity programs, Finishing Enterprises could commit to volume pricing. Whenever high-margin private sector sales occur, Population Council receives a royalty payment. Thus, the disincentives were overcome: 1) Low profit margin was less an issue for a small, private company created specifically to manufacture IUDs and guaranteed volume orders. 2) Lengthy regulatory approval processes were avoided by various international clinical trials, generating international interest in the product. 3) Liability risk was minimized by the variety of safety tests the product underwent.

  8. How Are New Vaccines Prioritized in Low-Income Countries? A Case Study of Human Papilloma Virus Vaccine and Pneumococcal Conjugate Vaccine in Uganda.

    PubMed

    Wallace, Lauren; Kapirir, Lydia

    2017-04-08

    To date, research on priority-setting for new vaccines has not adequately explored the influence of the global, national and sub-national levels of decision-making or contextual issues such as political pressure and stakeholder influence and power. Using Kapiriri and Martin's conceptual framework, this paper evaluates priority setting for new vaccines in Uganda at national and sub-national levels, and considers how global priorities can influence country priorities. This study focuses on 2 specific vaccines, the human papilloma virus (HPV) vaccine and the pneumococcal conjugate vaccine (PCV). This was a qualitative study that involved reviewing relevant Ugandan policy documents and media reports, as well as 54 key informant interviews at the global level and national and sub-national levels in Uganda. Kapiriri and Martin's conceptual framework was used to evaluate the prioritization process. Priority setting for PCV and HPV was conducted by the Ministry of Health (MoH), which is considered to be a legitimate institution. While respondents described the priority setting process for PCV process as transparent, participatory, and guided by explicit relevant criteria and evidence, the prioritization of HPV was thought to have been less transparent and less participatory. Respondents reported that neither process was based on an explicit priority setting framework nor did it involve adequate representation from the districts (program implementers) or publicity. The priority setting process for both PCV and HPV was negatively affected by the larger political and economic context, which contributed to weak institutional capacity as well as power imbalances between development assistance partners and the MoH. Priority setting in Uganda would be improved by strengthening institutional capacity and leadership and ensuring a transparent and participatory processes in which key stakeholders such as program implementers (the districts) and beneficiaries (the public) are involved. Kapiriri and Martin's framework has the potential to guide priority setting evaluation efforts, however, evaluation should be built into the priority setting process a priori such that information on priority setting is gathered throughout the implementation cycle. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  9. What criteria do decision makers in Thailand use to set priorities for vaccine introduction?

    PubMed

    Pooripussarakul, Siriporn; Riewpaiboon, Arthorn; Bishai, David; Muangchana, Charung; Tantivess, Sripen

    2016-08-02

    There is a need to identify rational criteria and set priorities for vaccines. In Thailand, many licensed vaccines are being considering for introduction into the Expanded Program on Immunization; thus, the government has to make decisions about which vaccines should be adopted. This study aimed to set priorities for new vaccines and to facilitate decision analysis. We used a best-worst scaling study for rank-ordering of vaccines. The candidate vaccines were determined by a set of criteria, including burden of disease, target age group, budget impact, side effect, effectiveness, severity of disease, and cost of vaccine. The criteria were identified from a literature review and by in-depth, open-ended interviews with experts. The priority-setting model was conducted among three groups of stakeholders, including policy makers, healthcare professionals and healthcare administrators. The vaccine data were mapped and then calculated for the probability of selection. From the candidate vaccines, the probability of hepatitis B vaccine being selected by all respondents (96.67 %) was ranked first. This was followed, respectively, by pneumococcal conjugate vaccine-13 (95.09 %) and Haemophilus influenzae type b vaccine (90.87 %). The three groups of stakeholders (policy makers, healthcare professionals and healthcare administrators) showed the same ranking trends. Most severe disease, high fever rate and high disease burden showed the highest coefficients for criterion levels being selected by all respondents. This result can be implied that a vaccine which can prevent most severe disease with high disease burden and has low safety has a greater chance of being selected by respondents in this study. The priority setting of vaccines through a multiple-criteria approach could contribute to transparency and accountability in the decision-making process. This is a step forward in the development of an evidence-based approach that meets the need of developing country. The methodology is generalizable but its application to another country would require the criteria as relevant to that country.

  10. Optimization and Validation of ELISA for Pre-Clinical Trials of Influenza Vaccine.

    PubMed

    Mitic, K; Muhandes, L; Minic, R; Petrusic, V; Zivkovic, I

    2016-01-01

    Testing of every new vaccine involves investigation of its immunogenicity, which is based on monitoring its ability to induce specific antibodies in animals. The fastest and most sensitive method used for this purpose is enzyme-linked immunosorbent assay (ELISA). However, commercial ELISA kits with whole influenza virus antigens are not available on the market, and it is therefore essential to establish an adequate assay for testing influenza virusspecific antibodies. We developed ELISA with whole influenza virus strains for the season 2011/2012 as antigens and validated it by checking its specificity, accuracy, linearity, range, precision, and sensitivity. The results show that we developed high-quality ELISA that can be used to test immunogenicity of newly produced seasonal or pandemic vaccines in mice. The pre-existence of validated ELISA enables shortening the time from the process of vaccine production to its use in patients, which is particularly important in the case of a pandemic.

  11. Measuring vaccine confidence: analysis of data obtained by a media surveillance system used to analyse public concerns about vaccines.

    PubMed

    Larson, Heidi J; Smith, David M D; Paterson, Pauline; Cumming, Melissa; Eckersberger, Elisabeth; Freifeld, Clark C; Ghinai, Isaac; Jarrett, Caitlin; Paushter, Louisa; Brownstein, John S; Madoff, Lawrence C

    2013-07-01

    The intensity, spread, and effects of public opinion about vaccines are growing as new modes of communication speed up information sharing, contributing to vaccine hesitancy, refusals, and disease outbreaks. We aimed to develop a new application of existing surveillance systems to detect and characterise early signs of vaccine issues. We also aimed to develop a typology of concerns and a way to assess the priority of each concern. Following preliminary research by The Vaccine Confidence Project, media reports (eg, online articles, blogs, government reports) were obtained using the HealthMap automated data collection system, adapted to monitor online reports about vaccines, vaccination programmes, and vaccine-preventable diseases. Any reports that did not meet the inclusion criteria--any reference to a human vaccine or vaccination campaign or programme that was accessible online--were removed from analysis. Reports were manually analysed for content and categorised by concerns, vaccine, disease, location, and source of report, and overall positive or negative sentiment towards vaccines. They were then given a priority level depending on the seriousness of the reported event and time of event occurrence. We used descriptive statistics to analyse the data collected during a period of 1 year, after refinements to the search terms and processes had been made. We analysed data from 10,380 reports (from 144 countries) obtained between May 1, 2011, and April 30, 2012. 7171 (69%) contained positive or neutral content and 3209 (31%) contained negative content. Of the negative reports, 1977 (24%) were associated with impacts on vaccine programmes and disease outbreaks; 1726 (21%) with beliefs, awareness, and perceptions; 1371 (16%) with vaccine safety; and 1336 (16%) with vaccine delivery programmes. We were able to disaggregate the data by country and vaccine type, and monitor evolution of events over time and location in specific regions where vaccine concerns were high. Real-time monitoring and analysis of vaccine concerns over time and location could help immunisation programmes to tailor more effective and timely strategies to address specific public concerns. Bill & Melinda Gates Foundation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. High-throughput process development of an alternative platform for the production of virus-like particles in Escherichia coli.

    PubMed

    Ladd Effio, Christopher; Baumann, Pascal; Weigel, Claudia; Vormittag, Philipp; Middelberg, Anton; Hubbuch, Jürgen

    2016-02-10

    The production of safe vaccines against untreatable or new diseases has pushed the research in the field of virus-like particles (VLPs). Currently, a large number of commercial VLP-based human vaccines and vaccine candidates are available or under development. A promising VLP production route is the controlled in vitro assembly of virus proteins into capsids. In the study reported here, a high-throughput screening (HTS) procedure was implemented for the upstream process development of a VLP platform in bacterial cell systems. Miniaturized cultivations were carried out in 48-well format in the BioLector system (m2p-Labs, Germany) using an Escherichia coli strain with a tac promoter producing the murine polyomavirus capsid protein (VP1). The screening procedure incorporated micro-scale cultivations, HTS cell disruption by sonication and HTS-compatible analytics by capillary gel electrophoresis. Cultivation temperatures, shaking speeds, induction and medium conditions were varied to optimize the product expression in E. coli. The most efficient system was selected based on an evaluation of soluble and insoluble product concentrations as well as on the percentage of product in the total soluble protein fraction. The optimized system was scaled up to cultivation 2.5L shaker flask scale and purified using an anion exchange chromatography membrane adsorber, followed by a size exclusion chromatography polishing procedure. For proof of concept, purified VP1 capsomeres were assembled under defined buffer conditions into empty capsids and characterized using transmission electron microscopy (TEM). The presented HTS procedure allowed for a fast development of an efficient production process of VLPs in E. coli. Under optimized cultivation conditions, the VP1 product totalled up to 43% of the total soluble protein fraction, yielding 1.63 mg VP1 per mL of applied cultivation medium. The developed production process strongly promotes the murine polyoma-VLP platform, moving towards an industrially feasible technology for new chimeric vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Protective immunity induced by an intranasal multivalent vaccine comprising 10 Lactococcus lactis strains expressing highly prevalent M-protein antigens derived from Group A Streptococcus.

    PubMed

    Wozniak, Aniela; Scioscia, Natalia; García, Patricia C; Dale, James B; Paillavil, Braulio A; Legarraga, Paulette; Salazar-Echegarai, Francisco J; Bueno, Susan M; Kalergis, Alexis M

    2018-04-28

    Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of Streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable and there are more than 200 different M types. We are developing an intranasal live bacterial vaccine comprised of 10 strains of Lactococcus lactis, each expressing one N-terminal fagment of M protein. Live bacterial-vectored vaccines have lower associated costs because of its less complex manufacturing processes compared to protein subunit vaccines. Moreover, intranasal administration does not require syringe or specilized personnel. The evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All of the 10 strains combined in a 10-valent vaccine (Mx10) induced serum and bronchoalveolar lavages IgG titers that ranged from 3 to 10-fold those of unimmunized mice. Survival of Mx10-immunized mice after intranasal challenge with M28 streptococci is significantly higher than unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of Mx10-immunized mice was not significantly different from unimmunized mice. Mx-10 immunized mice were significantly less colonized with S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge compared to unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to the development of broadly protective group A streptococcal vaccines. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  14. Optimal vaccine stockpile design for an eradicated disease: application to polio.

    PubMed

    Tebbens, Radboud J Duintjer; Pallansch, Mark A; Alexander, James P; Thompson, Kimberly M

    2010-06-11

    Eradication of a disease promises significant health and financial benefits. Preserving those benefits, hopefully in perpetuity, requires preparing for the possibility that the causal agent could re-emerge (unintentionally or intentionally). In the case of a vaccine-preventable disease, creation and planning for the use of a vaccine stockpile becomes a primary concern. Doing so requires consideration of the dynamics at different levels, including the stockpile supply chain and transmission of the causal agent. This paper develops a mathematical framework for determining the optimal management of a vaccine stockpile over time. We apply the framework to the polio vaccine stockpile for the post-eradication era and present examples of solutions to one possible framing of the optimization problem. We use the framework to discuss issues relevant to the development and use of the polio vaccine stockpile, including capacity constraints, production and filling delays, risks associated with the stockpile, dynamics and uncertainty of vaccine needs, issues of funding, location, and serotype dependent behavior, and the implications of likely changes over time that might occur. This framework serves as a helpful context for discussions and analyses related to the process of designing and maintaining a stockpile for an eradicated disease. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Nanoengineering of vaccines using natural polysaccharides.

    PubMed

    Cordeiro, Ana Sara; Alonso, María José; de la Fuente, María

    2015-11-01

    Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity. The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.

    PubMed

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2017-03-14

    Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of these gene interaction networks identified top ranked E. coli genes and 6 INO interaction types (e.g., regulation and gene expression). Vaccine-related E. coli gene-gene interaction network was constructed using ontology-based literature mining strategy, which identified important E. coli vaccine genes and their interactions with other genes through specific interaction types.

  17. Human transcriptome response to immunization with live-attenuated Venezuelan equine encephalitis virus vaccine (TC-83): Analysis of whole blood.

    PubMed

    Erwin-Cohen, Rebecca A; Porter, Aimee I; Pittman, Phillip R; Rossi, Cynthia A; DaSilva, Luis

    2017-01-02

    Venezuelan equine encephalitis virus (VEEV) is an important human and animal alphavirus pathogen transmitted by mosquitoes. The virus is endemic in Central and South America, but has also caused equine outbreaks in southwestern areas of the United States. In an effort to better understand the molecular mechanisms of the development of immunity to this important pathogen, we performed transcriptional analysis from whole, unfractionated human blood of patients who had been immunized with the live-attenuated vaccine strain of VEEV, TC-83. We compared changes in the transcriptome between naïve individuals who were mock vaccinated with saline to responses of individuals who received TC-83. Significant transcriptional changes were noted at days 2, 7, and 14 following vaccination. The top canonical pathways revealed at early and intermediate time points (days 2 and 7) included the involvement of the classic interferon response, interferon-response factors, activation of pattern recognition receptors, and engagement of the inflammasome. By day 14, the top canonical pathways included oxidative phosphorylation, the protein ubiquitination pathway, natural killer cell signaling, and B-cell development. Biomarkers were identified that differentiate between vaccinees and control subjects, at early, intermediate, and late stages of the development of immunity as well as markers which were common to all 3 stages following vaccination but distinct from the sham-vaccinated control subjects. The study represents a novel examination of molecular processes that lead to the development of immunity against VEEV in humans and which may be of value as diagnostic targets, to enhance modern vaccine design, or molecular correlates of protection.

  18. Characteristics of a new meningococcal serogroup B vaccine, bivalent rLP2086 (MenB-FHbp; Trumenba®).

    PubMed

    Gandhi, Ashesh; Balmer, Paul; York, Laura J

    2016-08-01

    Neisseria meningitidis is a common cause of bacterial meningitis, often leading to permanent sequelae or death. N. meningitidis is classified into serogroups based on the composition of the bacterial capsular polysaccharide; the 6 major disease-causing serogroups are designated A, B, C, W, X, and Y. Four of the 6 disease-causing serogroups (A, C, Y, and W) can be effectively prevented with available quadrivalent capsular polysaccharide protein conjugate vaccines; however, capsular polysaccharide conjugate vaccines are not effective against meningococcal serogroup B (MnB). There is no vaccine available for serogroup X. The public health need for an effective serogroup B vaccine is evident, as MnB is the most common cause of meningococcal disease in the United States and is responsible for almost half of all cases in persons aged 17 to 22 years. In fact, serogroup B meningococci were responsible for the recent meningococcal disease outbreaks on college campuses. However, development of a suitable serogroup B vaccine has been challenging, as serogroup B polysaccharide-based vaccines were found to be poorly immunogenic. Vaccine development for MnB focused on identifying potential outer membrane protein targets that elicit broadly protective immune responses across strains from the vast number of proteins that exist on the bacterial surface. Human factor H binding protein (fHBP; also known as LP2086), a conserved surface-exposed bacterial lipoprotein, was identified as a promising vaccine candidate. Two recombinant protein-based serogroup B vaccines that contain fHBP have been successfully developed and licensed in the United States under an accelerated approval process: bivalent rLP2086 (MenB-FHbp; Trumenba®) and 4CMenB (MenB-4 C; Bexsero®). This review will focus on bivalent rLP2086 only, including vaccine components, mechanism of action, and potential coverage across serogroup B strains in the United States.

  19. Decision support in vaccination policies.

    PubMed

    Piso, B; Wild, C

    2009-10-09

    Looking across boarders reveals that the national immunization programs of various countries differ in their vaccination schedules and decisions regarding the implementation and funding of new vaccines. The aim of this review is to identify decision aids and crucial criteria for a rational decision-making process on vaccine introduction and to develop a theoretical framework for decision-making based on available literature. Systematic literature search supplemented by hand-search. We identified five published decision aids for vaccine introduction and program planning in industrialized countries. Their comparison revealed an overall similarity with some differences in the approach as well as criteria. Burden of disease and vaccine characteristics play a key role in all decision aids, but authors vary in their views on the significance of cost-effectiveness analyses. Other relevant factors that should be considered before vaccine introduction are discussed to highly differing extents. These factors include the immunization program itself as well as its conformity with other programs, its feasibility, acceptability, and equity, as well as ethical, legal and political considerations. Assuming that the most comprehensive framework possible will not provide a feasible tool for decision-makers, we suggest a stepwise procedure. Though even the best rational approach and most comprehensive evaluation is limited by remaining uncertainties, frameworks provide at least a structured approach to evaluate the various aspects of vaccine implementation decision-making. This process is essential in making consistently sound decisions and will facilitate the public's confidence in the decision and its realization.

  20. Modulation of autophagy as a strategy for development of new vaccine candidates against tuberculosis.

    PubMed

    Flores-Valdez, Mario Alberto; Segura-Cerda, Cristian Alfredo; Gaona-Bernal, Jorge

    2018-05-01

    Effective prevention of tuberculosis (Tb) would undoubtedly be of paramount relevance in the control of its global burden, which resulted in more than 6 million new cases in 2016. Research aimed to improve the current vaccine, Bacillus Calmette- Guérin (BCG), or directed to develop new candidates, has taken into account the interaction between the host and Mycobacterium tuberculosis (Mtb). Recently, autophagy, an intracellular process of the host, has been shown to act as a mechanism that contributes to bacilli clearance in vitro and in vivo. Stimulation of autophagy, if correctly balanced, is an approach that has the potential to enhance the immune response of the host, and offers new avenues for developing immunogens that may give an improved protection upon immunization, given that in fact, some recent rBCG vaccine candidates have been shown to modulate autophagy. In this Discussion, we analyze the role of autophagy in the context of mycobacterial infection, its modulation via mycobacterial elements, and the management of host response as an alternative to develop new, hopefully improved, Tb-vaccine candidates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Formative research and development of an evidence-based communication strategy: the introduction of Vi typhoid fever vaccine among school-aged children in Karachi, Pakistan.

    PubMed

    Pach, Alfred; Tabbusam, Ghurnata; Khan, M Imran; Suhag, Zamir; Hussain, Imtiaz; Hussain, Ejaz; Mumtaz, Uzma; Haq, Inam Ul; Tahir, Rehman; Mirani, Amjad; Yousafzai, Aisha; Sahastrabuddhe, Sushant; Ochiai, R Leon; Soofi, Sajid; Clemens, John D; Favorov, Michael O; Bhutta, Zulfiqar A

    2013-01-01

    The authors conducted formative research (a) to identify stakeholders' concerns related to typhoid fever and the need for disease information and (b) to develop a communication strategy to inform stakeholders and address their concerns and motivate for support of a school-based vaccination program in Pakistan. Data were collected during interactive and semi-structured focus group discussions and interviews, followed by a qualitative analysis and multidisciplinary consultative process to identify an effective social mobilization strategy comprised of relevant media channels and messages. The authors conducted 14 focus group discussions with the parents of school-aged children and their teachers, and 13 individual interviews with school, religious, and political leaders. Parents thought that typhoid fever was a dangerous disease, but were unsure of their children's risk. They were interested in vaccination and were comfortable with a school-based vaccination if conducted under the supervision of trained and qualified staff. Teachers and leaders needed information on typhoid fever, the vaccine, procedures, and sponsors of the vaccination program. Meetings were considered the best form of information dissemination, followed by printed materials and mass media. This study shows how qualitative research findings can be translated into an effective social mobilization and communication approach. The findings of the research indicated the importance of increasing awareness of typhoid fever and the benefits of vaccination against the disease. Identification and dissemination of relevant, community-based disease and vaccination information will increase demand and use of vaccination.

  2. Impact on CDC Guideline Compliance After Incorporating Pharmacy in a Pneumococcal Vaccination Screening Process.

    PubMed

    Pickren, Elizabeth; Crane, Brad

    2016-12-01

    Background: Centers for Disease Control and Prevention (CDC) guidelines for pneumococcal vaccinations were updated in 2014. Given the complexity of the guidelines and the fact that hospitals are no longer required to keep records for pneumococcal vaccinations, many hospitals are determining whether to continue this service. Objective: The primary objective of this study was to determine the impact on compliance with the revised pneumococcal vaccination guidelines from the CDC after involving pharmacy in the screening and selection processes. Secondary objectives were to determine the impact of the new process on inappropriate vaccination duplications, the time spent by pharmacy on assessments, and financial outcomes. Methods: This institutional review board (IRB)-approved, retrospective, cohort study examined all patients who received a pneumococcal vaccination from January to February 2016 after implementing a new process whereby pharmacy performed pneumococcal vaccination screening and selection (intervention group). These patients were compared to patients who received a pneumococcal vaccination from January to February 2015 (control group). Results: Of 274 patients who received a pneumococcal vaccine, 273 were included in the study. Compliance to CDC guidelines increased from 42% to 97%. Noncompliant duplications decreased from 16% to 2%. In the intervention group, labor cost for assessments and expenditure for vaccines increased. For Medicare patients, the increased reimbursement balanced the increased expenditure in the intervention group. Conclusions: Involving pharmacy in the pneumococcal vaccine screening and selection process improves compliance to CDC guidelines, but further clinical and financial analysis is needed to determine financial sustainability of the new process.

  3. Succeeding in New Vaccine Introduction: Lessons Learned From the Introduction of Inactivated Poliovirus Vaccine in Cameroon, Kenya, and Nigeria

    PubMed Central

    Snidal, Sarah; Saidu, Yauba; Ojumu, Abiola; Ngatia, Antony; Bagana, Murtala; Mutuku, Faith; Sobngwi, Joelle; Efe-Aluta, Oniovo; Roper, Julia; LeTallec, Yann; Kang’ethe, Alice

    2017-01-01

    Abstract Introducing a new vaccine is a large-scale endeavor that can face many challenges, resulting in introduction delays and inefficiencies. The development of national task teams and tools, such as prelaunch trackers, for the introduction of new vaccines (hereafter, “new vaccine introductions” [NVIs]) can help countries implement robust project management systems, front-load critical preparatory activities, and ensure continuous communication around vaccine supply and financing. In addition, implementing postlaunch assessments to take rapid corrective action accelerates the uptake of the new vaccines. NVIs can provide an opportunity to strengthen routine immunization, through strengthening program management systems or by reinforcing local immunization managers’ abilities, among others. This article highlights key lessons learned during the introduction of inactivated poliovirus vaccine in 3 countries that would make future NVIs more successful. The article concludes by considering how the Immunization Systems Management Group of the Global Polio Eradication Initiative has been useful to the NVI process and how such global structures could be further enhanced. PMID:28838156

  4. Addressing a Yellow Fever Vaccine Shortage - United States, 2016-2017.

    PubMed

    Gershman, Mark D; Angelo, Kristina M; Ritchey, Julian; Greenberg, David P; Muhammad, Riyadh D; Brunette, Gary; Cetron, Martin S; Sotir, Mark J

    2017-05-05

    Recent manufacturing problems resulted in a shortage of the only U.S.-licensed yellow fever vaccine. This shortage is expected to lead to a complete depletion of yellow fever vaccine available for the immunization of U.S. travelers by mid-2017. CDC, the Food and Drug Administration (FDA), and Sanofi Pasteur are collaborating to ensure a continuous yellow fever vaccine supply in the United States. As part of this collaboration, Sanofi Pasteur submitted an expanded access investigational new drug (eIND) application to FDA in September 2016 to allow for the importation and use of an alternative yellow fever vaccine manufactured by Sanofi Pasteur France, with safety and efficacy comparable to the U.S.-licensed vaccine; the eIND was accepted by FDA in October 2016. The implementation of this eIND protocol included developing a systematic process for selecting a limited number of clinic sites to provide the vaccine. CDC and Sanofi Pasteur will continue to communicate with the public and other stakeholders, and CDC will provide a list of locations that will be administering the replacement vaccine at a later date.

  5. Pandemic influenza A (H1N1) 2009 vaccination in children: a UK perspective.

    PubMed

    de Whalley, Philip C S; Pollard, Andrew J

    2013-03-01

    Pandemic H1N1 influenza infection was common in the UK in 2009 and children were particularly vulnerable. Most cases were mild or subclinical, but there was significant mortality, predominantly in those with pre-existing disease. Despite the rapid development of monovalent pandemic vaccines, and the fast-tracked approval process, these products were not available for large-scale use until the end of the second wave of infection. Vaccine uptake was relatively low, both among children and health-care workers. The monovalent pandemic vaccines and the 2010/2011 trivalent seasonal influenza vaccines were immunogenic and effective, and they probably reduced the impact of the third wave of infection. Vaccines containing novel adjuvants enabled antigen sparing, but safety concerns could limit the future use of these adjuvanted influenza vaccines in children. Public perceptions that the threat of the pandemic was exaggerated by the authorities, and concerns about vaccine safety, might prompt an inadequate response to the next influenza pandemic, potentially compromising public health. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  6. The live-attenuated yellow fever vaccine 17D induces broad and potent T cell responses against several viral proteins in Indian rhesus macaques--implications for recombinant vaccine design.

    PubMed

    Mudd, Philip A; Piaskowski, Shari M; Neves, Patricia C Costa; Rudersdorf, Richard; Kolar, Holly L; Eernisse, Christopher M; Weisgrau, Kim L; de Santana, Marlon G Veloso; Wilson, Nancy A; Bonaldo, Myrna C; Galler, Ricardo; Rakasz, Eva G; Watkins, David I

    2010-09-01

    The yellow fever vaccine 17D (YF17D) is one of the most effective vaccines. Its wide use and favorable safety profile make it a prime candidate for recombinant vaccines. It is believed that neutralizing antibodies account for a large measure of the protection afforded to YF17D-vaccinated individuals, however cytotoxic T lymphocyte (CTL) responses have been described in the setting of YF17D vaccination. YF17D is an ssRNA flavivirus that is translated as a full-length polyprotein, several domains of which pass into the lumen of the endoplasmic reticulum (ER). The processing and presentation machinery for MHC class I-restricted CTL responses favor cytoplasmic peptides that are transported into the ER by the transporter associated with antigen presentation proteins. In order to inform recombinant vaccine design, we sought to determine if YF17D-induced CTL responses preferentially targeted viral domains that remain within the cytoplasm. We performed whole YF17D proteome mapping of CTL responses in six Indian rhesus macaques vaccinated with YF17D using overlapping YF17D peptides. We found that the ER luminal E protein was the most immunogenic viral protein followed closely by the cytoplasmic NS3 and NS5 proteins. These results suggest that antigen processing and presentation in this model system is not preferentially affected by the subcellular location of the viral proteins that are the source of CTL epitopes. The data also suggest potential immunogenic regions of YF17D that could serve as the focus of recombinant T cell vaccine development.

  7. Optimizing manufacturing and composition of a TLR4 nanosuspension: physicochemical stability and vaccine adjuvant activity

    PubMed Central

    2013-01-01

    Background Nanosuspensions are an important class of delivery system for vaccine adjuvants and drugs. Previously, we developed a nanosuspension consisting of the synthetic TLR4 ligand glucopyranosyl lipid adjuvant (GLA) and dipalmitoyl phosphatidylcholine (DPPC). This nanosuspension is a clinical vaccine adjuvant known as GLA-AF. We examined the effects of DPPC supplier, buffer composition, and manufacturing process on GLA-AF physicochemical and biological activity characteristics. Results DPPC from different suppliers had minimal influence on physicochemical and biological effects. In general, buffered compositions resulted in less particle size stability compared to unbuffered GLA-AF. Microfluidization resulted in rapid particle size reduction after only a few passes, and 20,000 or 30,000 psi processing pressures were more effective at reducing particle size and recovering the active component than 10,000 psi. Sonicated and microfluidized batches maintained good particle size and chemical stability over 6 months, without significantly altering in vitro or in vivo bioactivity of GLA-AF when combined with a recombinant malaria vaccine antigen. Conclusions Microfluidization, compared to water bath sonication, may be an effective manufacturing process to improve the scalability and reproducibility of GLA-AF as it advances further in the clinical development pathway. Various sources of DPPC are suitable to manufacture GLA-AF, but buffered compositions of GLA-AF do not appear to offer stability advantages over the unbuffered composition. PMID:24359024

  8. Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana

    PubMed Central

    Pua, Teen-Lee; Chan, Xiao Ying; Loh, Hwei-San; Omar, Abdul Rahman; Yusibov, Vidadi; Musiychuk, Konstantin; Hall, Alexandra C.; Coffin, Megan V.; Shoji, Yoko; Chichester, Jessica A.; Bi, Hong; Streatfield, Stephen J.

    2017-01-01

    ABSTRACT Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance. PMID:27929750

  9. Development of an interactive social media tool for parents with concerns about vaccines.

    PubMed

    Shoup, Jo Ann; Wagner, Nicole M; Kraus, Courtney R; Narwaney, Komal J; Goddard, Kristin S; Glanz, Jason M

    2015-06-01

    Describe a process for designing, building, and evaluating a theory-driven social media intervention tool to help reduce parental concerns about vaccination. We developed an interactive web-based tool using quantitative and qualitative methods (e.g., survey, focus groups, individual interviews, and usability testing). Survey results suggested that social media may represent an effective intervention tool to help parents make informed decisions about vaccination for their children. Focus groups and interviews revealed four main themes for development of the tool: Parents wanted information describing both benefits and risks of vaccination, transparency of sources of information, moderation of the tool by an expert, and ethnic and racial diversity in the visual display of people. Usability testing showed that parents were satisfied with the usability of the tool but had difficulty with performing some of the informational searches. Based on focus groups, interviews, and usability evaluations, we made additional revisions to the tool's content, design, functionality, and overall look and feel. Engaging parents at all stages of development is critical when designing a tool to address concerns about childhood vaccines. Although this can be both resource- and time-intensive, the redesigned tool is more likely to be accepted and used by parents. Next steps involve a formal evaluation through a randomized trial. © 2014 Society for Public Health Education.

  10. Antitumor Activity of Human Hydatid Cyst Fluid in a Murine Model of Colon Cancer

    PubMed Central

    Russo, Sofía; Berois, Nora; Fernández, Gabriel; Freire, Teresa; Osinaga, Eduardo

    2013-01-01

    This study evaluates the antitumor immune response induced by human hydatic cyst fluid (HCF) in an animal model of colon carcinoma. We found that anti-HCF antibodies were able to identify cell surface and intracellular antigens in CT26 colon cancer cells. In prophylactic tumor challenge experiments, HCF vaccination was found to be protective against tumor formation for 40% of the mice (P = 0.01). In the therapeutic setting, HCF vaccination induced tumor regression in 40% of vaccinated mice (P = 0.05). This vaccination generated memory immune responses that protected surviving mice from tumor rechallenge, implicating the development of an adaptive immune response in this process. We performed a proteomic analysis of CT26 antigens recognized by anti-HCF antibodies to analyze the immune cross-reactivity between E. granulosus (HCF) and CT26 colon cancer cells. We identified two proteins: mortalin and creatine kinase M-type. Interestingly, CT26 mortalin displays 60% homology with E. granulosus hsp70. In conclusion, our data demonstrate the capacity of HCF vaccination to induce antitumor immunity which protects from tumor growth in an animal model. This new antitumor strategy could open new horizons in the development of highly immunogenic anticancer vaccines. PMID:24023528

  11. Unknown Risks: Parental Hesitation about Vaccination.

    PubMed

    Blaisdell, Laura L; Gutheil, Caitlin; Hootsmans, Norbert A M; Han, Paul K J

    2016-05-01

    This qualitative study of a select sample of vaccine-hesitant parents (VHPs) explores perceived and constructed personal judgments about the risks and uncertainties associated with vaccines and vaccine-preventable diseases (VPDs) and how these subjective risk judgments influence parents' decisions about childhood vaccination. The study employed semistructured focus group interviews with 42 VHPs to elicit parents' perceptions and thought processes regarding the risks associated with vaccination and nonvaccination, the sources of these perceptions, and their approach to decision making about vaccination for their children. VHPs engage in various reasoning processes and tend to perceive risks of vaccination as greater than the risks of VPDs. At the same time, VHPs engage in other reasoning processes that lead them to perceive ambiguity in information about the harms of vaccination-citing concerns about the missing, conflicting, changing, or otherwise unreliable nature of information. VHPs' refusal of vaccination may reflect their aversion to both the risk and ambiguity they perceive to be associated with vaccination. Mitigating this vaccine hesitancy likely requires reconstructing the risks and ambiguities associated with vaccination-a challenging task that requires providing parents with meaningful evidence-based information on the known risks of vaccination versus VPDs and explicitly acknowledging the risks that remain truly unknown. © The Author(s) 2015.

  12. [Analysis of the evidence on the efficacy and safety of CYD-TDV dengue vaccine and its potential licensing and implementation through Mexico's Universal Vaccination Program].

    PubMed

    Hernández-Ávila, Mauricio; Lazcano-Ponce, Eduardo; Hernández-Ávila, Juan Eugenio; Alpuche-Aranda, Celia M; Rodríguez-López, Mario Henry; García-García, Lourdes; Madrid-Marina, Vicente; López Gatell-Ramírez, Hugo; Lanz-Mendoza, Humberto; Martínez-Barnetche, Jesús; Díaz-Ortega, José Luis; Ángeles-Llerenas, Angélica; Barrientos-Gutiérrez, Tonatiuh; Bautista-Arredondo, Sergio; Santos-Preciado, José Ignacio

    2016-01-01

    Dengue is a major global public health problem affecting Latin America and Mexico Prevention and control measures, focusing on epidemiological surveillance and vector control, have been partially effective and costly, thus, the development of a vaccine against dengue has created great expectations among health authorities and scientific communities worldwide. The CYD-TDV dengue vaccine produced by Sanofi-Pasteur is the only dengue vaccine evaluated in phase 3 controlled clinical trials. Notwithstanding the significant contribution to the development of a vaccine against dengue, the three phase 3 clinical studies of CYD-TDV and the meta-analysis of the long-term follow up of those studies, have provided evidence that this vaccine exhibited partial vaccine efficacy to protect against virologically confirmed dengue and lead to four considerations: a) adequate vaccine efficacy against dengue virus (DENV) infections 3 and 4, less vaccine efficacy against DENV 1 and no protection against infection by DENV 2; b) decreased vaccine efficacy in dengue seronegative individuals at the beginning of the vaccination; c) 83% and 90% protection against hospitalizations and severe forms of dengue, respectively, at 25 months follow-up; and d) increased hospitalization for dengue in the vaccinated group, in children under nine years of age at the time of vaccination, detected since the third year of follow-up. The benefit of the CYD-TDV vaccine can be summarized in the protection against infection by DENV 3 and 4, as well as protection for hospitalizations and severe cases in people over nine years, who have had previous dengue infection, working mainly as a booster. In this review we identified elements on efficacy and safety of this vaccine that must be taken into account in the licensing process and potential inclusion in the national vaccination program of Mexico. The available scientific evidence on the CYD-TDV vaccine shows merits, but also leads to relevant questions that should be answered to properly assess the safety profile of the product and the target populations of potential benefit. In this regard we consider it would be informative to complete the 6-year follow-up after starting vaccination, according to the company's own study protocol recommended by the World Health Organization. As with any new vaccine, the potential licensing and implementation of the CYD-TDV as part of Mexico's vaccination program, requires a clear definition of the balance between the expected benefits and risks. Particularly with a vaccine with variable efficacy and some signs of risk, in the probable case of licensing, the post-licensed period must involve the development of detailed protocols to immediately identify risks or any health event associated with vaccination.

  13. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.

    PubMed

    Comber, Joseph D; Philip, Ramila

    2014-05-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.

  14. Researching and Respecting the Intricacies of Isolated Communities

    PubMed Central

    Blumling, Amy A.; Thomas, Tami L.; Stephens, Dionne P.

    2014-01-01

    Purpose Conducting research in a rural area can be challenging for nurses for a variety of different reasons. The task at hand can be especially difficult when it involves discussing a sensitive topic, such as Human Papillomavirus (HPV) vaccination. This study was conducted to describe parental perceptions of the HPV vaccine in rural areas, while simultaneously describing a method for engaging in successful nursing research in rural areas. Methods A team of nurse researchers completed a planned process to first understand rural culture in southeastern Georgia, and then more specifically, the families living in these three separate counties. This process initially involved developing a connection and working relationship with key community leaders, such as school principals. Following this, researchers worked on establishing rapport and trust with local parents and research participants themselves. Qualitative methods were then used to collect focus group and interview data on parental views of HPV, HPV vaccination, and HPV-related cancers. Findings Results indicated that parents had little knowledge of the HPV vaccine in rural Georgia, including misconceptions that the vaccine is for females only. In addition, many parents continually voiced the concern that the HPV vaccine would promote promiscuity in their children. Conclusions Providing consistent, timely, and open communication with the community members was crucial throughout the entire research process. This focused approach with respect to total community, culture, and religious value is essential in conducting research. Future studies conducted in rural areas should focus on specific intervention points that improve Parental HPV knowledge. PMID:24817833

  15. Clarification of vaccines: An overview of filter based technology trends and best practices.

    PubMed

    Besnard, Lise; Fabre, Virginie; Fettig, Michael; Gousseinov, Elina; Kawakami, Yasuhiro; Laroudie, Nicolas; Scanlan, Claire; Pattnaik, Priyabrata

    2016-01-01

    Vaccines are derived from a variety of sources including tissue extracts, bacterial cells, virus particles, recombinant mammalian, yeast and insect cell produced proteins and nucleic acids. The most common method of vaccine production is based on an initial fermentation process followed by purification. Production of vaccines is a complex process involving many different steps and processes. Selection of the appropriate purification method is critical to achieving desired purity of the final product. Clarification of vaccines is a critical step that strongly impacts product recovery and subsequent downstream purification. There are several technologies that can be applied for vaccine clarification. Selection of a harvesting method and equipment depends on the type of cells, product being harvested, and properties of the process fluids. These techniques include membrane filtration (microfiltration, tangential-flow filtration), centrifugation, and depth filtration (normal flow filtration). Historically vaccine harvest clarification was usually achieved by centrifugation followed by depth filtration. Recently membrane based technologies have gained prominence in vaccine clarification. The increasing use of single-use technologies in upstream processes necessitated a shift in harvest strategies. This review offers a comprehensive view on different membrane based technologies and their application in vaccine clarification, outlines the challenges involved and presents the current state of best practices in the clarification of vaccines. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Robustness testing in pharmaceutical freeze-drying: inter-relation of process conditions and product quality attributes studied for a vaccine formulation.

    PubMed

    Schneid, Stefan C; Stärtzel, Peter M; Lettner, Patrick; Gieseler, Henning

    2011-01-01

    The recent US Food and Drug Administration (FDA) legislation has introduced the evaluation of the Design Space of critical process parameters in manufacturing processes. In freeze-drying, a "formulation" is expected to be robust when minor deviations of the product temperature do not negatively affect the final product quality attributes. To evaluate "formulation" robustness by investigating the effect of elevated product temperature on product quality using a bacterial vaccine solution. The vaccine solution was characterized by freeze-dry microscopy to determine the critical formulation temperature. A conservative cycle was developed using the SMART™ mode of a Lyostar II freeze dryer. Product temperature was elevated to imitate intermediate and aggressive cycle conditions. The final product was analyzed using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Karl Fischer, and modulated differential scanning calorimetry (MDSC), and the life cell count (LCC) during accelerated stability testing. The cakes processed at intermediate and aggressive conditions displayed larger pores with microcollapse of walls and stronger loss in LCC than the conservatively processed product, especially during stability testing. For all process conditions, a loss of the majority of cells was observed during storage. For freeze-drying of life bacterial vaccine solutions, the product temperature profile during primary drying appeared to be inter-related to product quality attributes.

  17. Vaccine development: From concept to early clinical testing.

    PubMed

    Cunningham, Anthony L; Garçon, Nathalie; Leo, Oberdan; Friedland, Leonard R; Strugnell, Richard; Laupèze, Béatrice; Doherty, Mark; Stern, Peter

    2016-12-20

    In the 21st century, an array of microbiological and molecular allow antigens for new vaccines to be specifically identified, designed, produced and delivered with the aim of optimising the induction of a protective immune response against a well-defined immunogen. New knowledge about the functioning of the immune system and host pathogen interactions has stimulated the rational design of vaccines. The design toolbox includes vaccines made from whole pathogens, protein subunits, polysaccharides, pathogen-like particles, use of viral/bacterial vectors, plus adjuvants and conjugation technology to increase and broaden the immune response. Processes such as recombinant DNA technology can simplify the complexity of manufacturing and facilitate consistent production of large quantities of antigen. Any new vaccine development is greatly enhanced by, and requires integration of information concerning: 1. Pathogen life-cycle & epidemiology. Knowledge of pathogen structure, route of entry, interaction with cellular receptors, subsequent replication sites and disease-causing mechanisms are all important to identify antigens suitable for disease prevention. The demographics of infection, specific risk groups and age-specific infection rates determine which population to immunise, and at what age. 2. Immune control & escape. Interactions between the host and pathogen are explored, with determination of the relative importance of antibodies, T-cells of different types and innate immunity, immune escape strategies during infection, and possible immune correlates of protection. This information guides identification and selection of antigen and the specific immune response required for protection. 3. Antigen selection & vaccine formulation. The selected antigen is formulated to remain suitably immunogenic and stable over time, induce an immune response that is likely to be protective, plus be amenable to eventual scale-up to commercial production. 4. Vaccine preclinical & clinical testing. The candidate vaccine must be tested for immunogenicity, safety and efficacy in preclinical and appropriately designed clinical trials. This review considers these processes using examples of differing pathogenic challenges, including human papillomavirus, malaria, and ebola. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Interactive learning and action: realizing the promise of synthetic biology for global health.

    PubMed

    Betten, A Wieke; Roelofsen, Anneloes; Broerse, Jacqueline E W

    2013-09-01

    The emerging field of synthetic biology has the potential to improve global health. For example, synthetic biology could contribute to efforts at vaccine development in a context in which vaccines and immunization have been identified by the international community as being crucial to international development efforts and, in particular, the millennium development goals. However, past experience with innovations shows that realizing a technology's potential can be difficult and complex. To achieve better societal embedding of synthetic biology and to make sure it reaches its potential, science and technology development should be made more inclusive and interactive. Responsible research and innovation is based on the premise that a broad range of stakeholders with different views, needs and ideas should have a voice in the technological development and deployment process. The interactive learning and action (ILA) approach has been developed as a methodology to bring societal stakeholders into a science and technology development process. This paper proposes an ILA in five phases for an international effort, with national case studies, to develop socially robust applications of synthetic biology for global health, based on the example of vaccine development. The design is based on results of a recently initiated ILA project on synthetic biology; results from other interactive initiatives described in the literature; and examples of possible applications of synthetic biology for global health that are currently being developed.

  19. A bioinformatics roadmap for the human vaccines project.

    PubMed

    Scheuermann, Richard H; Sinkovits, Robert S; Schenkelberg, Theodore; Koff, Wayne C

    2017-06-01

    Biomedical research has become a data intensive science in which high throughput experimentation is producing comprehensive data about biological systems at an ever-increasing pace. The Human Vaccines Project is a new public-private partnership, with the goal of accelerating development of improved vaccines and immunotherapies for global infectious diseases and cancers by decoding the human immune system. To achieve its mission, the Project is developing a Bioinformatics Hub as an open-source, multidisciplinary effort with the overarching goal of providing an enabling infrastructure to support the data processing, analysis and knowledge extraction procedures required to translate high throughput, high complexity human immunology research data into biomedical knowledge, to determine the core principles driving specific and durable protective immune responses.

  20. Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy.

    PubMed

    Fang, Ronnie H; Kroll, Ashley V; Zhang, Liangfang

    2015-11-04

    Immunotherapeutic approaches for treating cancer overall have been receiving a considerable amount of interest due to the recent approval of several clinical formulations. Among the different modalities, anticancer vaccination acts by training the body to endogenously generate a response against tumor cells. However, despite the large amount of work that has gone into the development of such vaccines, the near absence of clinically approved formulations highlights the many challenges facing those working in the field. The generation of potent endogenous anticancer responses poses unique challenges due to the similarity between cancer cells and normal, healthy cells. As researchers continue to tackle the limited efficacy of vaccine formulations, fresh and novel approaches are being sought after to address many of the underlying problems. Here the application of nanoparticle technology towards the development of anticancer vaccines is discussed. Specifically, there is a focus on the benefits of using such strategies to manipulate antigen presenting cells (APCs), which are essential to the vaccination process, and how nanoparticle-based platforms can be rationally engineered to elicit appropriate downstream immune responses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Deinococcus Mn2+-peptide complex: A novel approach to alphavirus vaccine development.

    PubMed

    Gayen, Manoshi; Gupta, Paridhi; Morazzani, Elaine M; Gaidamakova, Elena K; Knollmann-Ritschel, Barbara; Daly, Michael J; Glass, Pamela J; Maheshwari, Radha K

    2017-06-22

    Over the last ten years, Chikungunya virus (CHIKV), an Old World alphavirus has caused numerous outbreaks in Asian and European countries and the Americas, making it an emerging pathogen of great global health importance. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, on the other hand, has been developed as a bioweapon in the past due to its ease of preparation, aerosol dispersion and high lethality in aerosolized form. Currently, there are no FDA approved vaccines against these viruses. In this study, we used a novel approach to develop inactivated vaccines for VEEV and CHIKV by applying gamma-radiation together with a synthetic Mn-decapeptide-phosphate complex (MnDpPi), based on manganous-peptide-orthophosphate antioxidants accumulated in the extremely radiation-resistant bacterium Deinococcus radiodurans. Classical gamma-irradiated vaccine development approaches are limited by immunogenicity-loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus-inactivation. However, addition of MnDpPi during irradiation process selectively protects proteins, but not the nucleic acids, from the radiation-induced oxidative damage, as required for safe and efficacious vaccine development. Previously, this approach was used to develop a bacterial vaccine. In the present study, we show that this approach can successfully be applied to protecting mice against viral infections. Irradiation of VEEV and CHIKV in the presence of MnDpPi resulted in substantial epitope preservation even at supra-lethal doses of gamma-rays (50,000Gy). Irradiated viruses were found to be completely inactivated and safe in vivo (neonatal mice). Upon immunization, VEEV inactivated in the presence of MnDpPi resulted in drastically improved protective efficacy. Thus, the MnDpPi-based gamma-inactivation approach described here can readily be applied to developing vaccines against any pathogen of interest in a fast and cost-effective manner. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Challenges for the registration of vaccines in emerging countries: Differences in dossier requirements, application and evaluation processes.

    PubMed

    Dellepiane, Nora; Pagliusi, Sonia

    2018-06-07

    The divergence of regulatory requirements and processes in developing and emerging countries contributes to hamper vaccines' registration, and therefore delay access to high-quality, safe and efficacious vaccines for their respective populations. This report focuses on providing insights on the heterogeneity of registration requirements in terms of numbering structure and overall content of dossiers for marketing authorisation applications for vaccines in different areas of the world. While it also illustrates the divergence of regulatory processes in general, as well as the need to avoid redundant reviews, it does not claim to provide a comprehensive view of all processes nor existing facilitating mechanisms, nor is it intended to touch upon the differences in assessments made by different regulatory authorities. This report describes the work analysed by regulatory experts from vaccine manufacturing companies during a meeting held in Geneva in May 2017, in identifying and quantifying differences in the requirements for vaccine registration in three aspects for comparison: the dossier numbering structure and contents, the application forms, and the evaluation procedures, in different countries and regions. The Module 1 of the Common Technical Document (CTD) of 10 countries were compared. Modules 2-5 of the CTDs of two regions and three countries were compared to the CTD of the US FDA. The application forms of eight countries were compared and the registration procedures of 134 importing countries were compared as well. The analysis indicates a high degree of divergence in numbering structure and content requirements. Possible interventions that would lead to significant improvements in registration efficiency include alignment in CTD numbering structure, a standardised model-application form, and better convergence of evaluation procedures. Copyright © 2018.

  3. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara

    PubMed Central

    Jordan, Ingo; Lohr, Verena; Genzel, Yvonne; Reichl, Udo; Sandig, Volker

    2013-01-01

    The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain. PMID:27694766

  4. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara.

    PubMed

    Jordan, Ingo; Lohr, Verena; Genzel, Yvonne; Reichl, Udo; Sandig, Volker

    2013-11-01

    The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain.

  5. Advancing Global Health through Development and Clinical Trials Partnerships: A Randomized, Placebo-Controlled, Double-Blind Assessment of Safety, Tolerability, and Immunogenicity of PfSPZ Vaccine for Malaria in Healthy Equatoguinean Men

    PubMed Central

    Olotu, Ally; Urbano, Vicente; Hamad, Ali; Eka, Martin; Chemba, Mwajuma; Nyakarungu, Elizabeth; Raso, Jose; Eburi, Esther; Mandumbi, Dolores O.; Hergott, Dianna; Maas, Carl D.; Ayekaba, Mitoha O.; Milang, Diosdado N.; Rivas, Matilde R.; Schindler, Tobias; Embon, Oscar M.; Ruben, Adam J.; Saverino, Elizabeth; Abebe, Yonas; KC, Natasha; James, Eric R.; Murshedkar, Tooba; Manoj, Anita; Chakravarty, Sumana; Li, Minglin; Adams, Matthew; Schwabe, Christopher; Segura, J. Luis; Daubenberger, Claudia; Tanner, Marcel; Richie, Thomas L.; Billingsley, Peter F.; Lee Sim, B. Kim; Abdulla, Salim; Hoffman, Stephen L.

    2018-01-01

    Abstract. Equatorial Guinea (EG) has implemented a successful malaria control program on Bioko Island. A highly effective vaccine would be an ideal complement to this effort and could lead to halting transmission and eliminating malaria. Sanaria® PfSPZ Vaccine (Plasmodium falciparum sporozoite Vaccine) is being developed for this purpose. To begin the process of establishing the efficacy of and implementing a PfSPZ Vaccine mass vaccination program in EG, we decided to conduct a series of clinical trials of PfSPZ Vaccine on Bioko Island. Because no clinical trial had ever been conducted in EG, we first successfully established the ethical, regulatory, quality, and clinical foundation for conducting trials. We now report the safety, tolerability, and immunogenicity results of the first clinical trial in the history of the country. Thirty adult males were randomized in the ratio 2:1 to receive three doses of 2.7 × 105 PfSPZ of PfSPZ Vaccine (N = 20) or normal saline placebo (N = 10) by direct venous inoculation at 8-week intervals. The vaccine was safe and well tolerated. Seventy percent, 65%, and 45% of vaccinees developed antibodies to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) by enzyme-linked immunosorbent assay, PfSPZ by automated immunofluorescence assay, and PfSPZ by inhibition of sporozoite invasion assay, respectively. Antibody responses were significantly lower than responses in U.S. adults who received the same dosage regimen, but not significantly different than responses in young adult Malians. Based on these results, a clinical trial enrolling 135 subjects aged 6 months to 65 years has been initiated in EG; it includes PfSPZ Vaccine and first assessment in Africa of PfSPZ-CVac. ClinicalTrials.gov identifier: NCT02418962. PMID:29141739

  6. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    PubMed

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.

  7. Preparing for an influenza pandemic: model of an immunization clinic in an urban family practice

    PubMed Central

    Bourgeois, Nicole; Franke, Carolyn; O’Connor, Shirlee A.; Shaw, Holly; Hum, Susan; Dunn, Sheila

    2011-01-01

    Abstract Problem addressed The surge in patient demand for the H1N1 influenza vaccine during the 2009 pandemic. Objective of the program To facilitate timely delivery of the 2009 H1N1 influenza vaccine to a family practice population while preserving regular clinic function and to create a model of effective vaccination delivery for future outbreaks. Program description An academic family practice in Toronto, Ont, adopted a process-improvement approach and implemented 3 Saturday stand-alone H1N1 vaccination clinics to accommodate increased demand for the vaccine. Medical directives were developed to give nurses the authority to vaccinate patients. Consent forms with eligibility criteria and risks versus benefits sheets were provided to patients in the waiting area to make optimal use of time. The clinic with “appointment blocks” for patients had improved efficiency (ie, fewer bottlenecks from waiting area to vaccination room), which was satisfactory to both staff and patients. Conclusion During a pandemic, when patient demand for vaccination is high, such stand-alone vaccination clinics in conjunction with family practices can deliver vaccines to patients in a timely and acceptable manner while promoting continuity of care. This model requires the commitment of extra staffing resources if regular primary care delivery is to be maintained. PMID:21998244

  8. Theory-based development of an implementation intervention to increase HPV vaccination in pediatric primary care practices.

    PubMed

    Garbutt, Jane M; Dodd, Sherry; Walling, Emily; Lee, Amanda A; Kulka, Katharine; Lobb, Rebecca

    2018-03-13

    The national guideline for use of the vaccine targeting oncogenic strains of the human papillomavirus (HPV) is an evidence-based practice that is poorly implemented in primary care. Recommendations include completion of the vaccine series before the 13th birthday for girls and boys, giving the first dose at the 11- to 12-year-old check-up visit, concurrent with other recommended vaccines. Interventions to increase implementation of this guideline have had little impact, and opportunities to prevent cancer continue to be missed. We used a theory-informed approach to develop a pragmatic intervention for use in primary care settings to increase implementation of the HPV vaccine guideline recommendation. Using a concurrent mixed methods design in 10 primary care practices, we applied the Consolidated Framework for Implementation Research (CFIR) to systematically investigate and characterize factors strongly influencing vaccine use. We then used the Behavior Change Wheel (BCW) and the Theoretical Domains Framework (TDF) to analyze provider behavior and identify behaviors to target for change and behavioral change strategies to include in the intervention. We identified facilitators and barriers to guideline use across the five CFIR domains: most distinguishing factors related to provider characteristics, their perception of the intervention, and their process to deliver the vaccine. Targeted behaviors were for the provider to recommend the HPV vaccine the same way and at the same time as the other adolescent vaccines, to answer parents' questions with confidence, and to implement a vaccine delivery system. To this end, the intervention targeted improving provider's capability (knowledge, communication skills) and motivation (action planning, belief about consequences, social influences) regarding implementing guideline recommendations, and increasing their opportunity to do so (vaccine delivery system). Behavior change strategies included providing information and communication skill training with graded tasks and modeling, feedback of coverage rates, goal setting, and social support. These strategies were combined in an implementation intervention to be delivered using practice facilitation, educational outreach visits, and cyclical small tests of change. Using CFIR, the BCW and the TDF facilitated the development of a pragmatic, multi-component implementation intervention to increase use of the HPV vaccine in the primary care setting.

  9. Clinical development of Ebola vaccines

    PubMed Central

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  10. Ebola vaccine development plan: ethics, concerns and proposed measures.

    PubMed

    Folayan, Morenike Oluwatoyin; Yakubu, Aminu; Haire, Bridget; Peterson, Kristin

    2016-02-08

    The global interest in developing therapies for Ebola infection management and its prevention is laudable. However the plan to conduct an emergency immunization program specifically for healthcare workers using experimental vaccines raises some ethical concerns. This paper shares perspectives on these concerns and suggests how some of them may best be addressed. The recruitment of healthcare workers for Ebola vaccine research has challenges. It could result in coercion of initially dissenting healthcare workers to assist in the management of EVD infected persons due to mistaken beliefs that the vaccine offers protection. It could also affect equity and justice. For example, where people who are not skilled health care professionals but who provide care to patients infected with Ebola (such as in home care settings) are not prioritized for vaccination. The possibility of study participants contracting Ebola infection despite the use of experimental vaccine, and the standard of care they would receive, needs to be addressed clearly, transparently and formalized as part of the ethics review process. Future access to study products in view of current status of the TRIPS agreement needs to be addressed. Finally, broad stakeholder engagement at local, regional and international levels needs to be promoted using available communication channels to engage local, regional and international support. These same concerns are applicable for current and future epidemics. Successful Ebola vaccine development research requires concerted efforts at public dialogue to address misconceptions, equity and justice in participant selection, and honest discussions about risks, benefits and future access. Public dialogue about Ebola vaccine research plans is crucial and should be conducted by trusted locals and negotiated between communities, researchers and ethics committees in research study sites.

  11. Site-specific incorporation of three toll-like receptor 2 targeting adjuvants into semisynthetic, molecularly defined nanoparticles: application to group a streptococcal vaccines.

    PubMed

    Moyle, Peter M; Dai, Wei; Zhang, Yingkai; Batzloff, Michael R; Good, Michael F; Toth, Istvan

    2014-05-21

    Subunit vaccines offer a means to produce safer, more defined vaccines compared to traditional whole microorganism approaches. Subunit antigens, however, exhibit weak immunity, which is normally overcome through coadministration with adjuvants. Enhanced vaccine properties (e.g., improved potency) can be obtained by linking antigen and adjuvant, as observed for synthetic peptide antigens and Toll-like receptor 2 (TLR2) ligands. As few protective peptide antigens have been reported, compared to protein antigens, we sought to extend the utility of this approach to recombinant proteins, while ensuring that conjugation reactions yielded a single, molecularly defined product. Herein we describe the development and optimization of techniques that enable the efficient, site-specific attachment of three synthetic TLR2 ligands (lipid core peptide (LCP), Pam2Cys, and Pam3Cys) onto engineered protein antigens, permitting the selection of optimal TLR2 agonists during the vaccine development process. Using this approach, broadly protective (J14) and population targeted (seven M protein N-terminal antigens) multiantigenic vaccines against group A streptococcus (GAS; Streptococcus pyogenes) were produced and observed to self-assemble in PBS to yield nanoparticules (69, 101, and 123 nm, respectively). All nanoparticle formulations exhibited self-adjuvanting properties, with rapid, persistent, antigen-specific IgG antibody responses elicited toward each antigen in subcutaneously immunized C57BL/6J mice. These antibodies were demonstrated to strongly bind to the cell surface of five GAS serotypes that are not represented by vaccine M protein N-terminal antigens, are among the top 20 circulating strains in developed countries, and are associated with clinical disease, suggesting that these vaccines may elicit broadly protective immune responses.

  12. Vaccinations in migrants and refugees: a challenge for European health systems. A systematic review of current scientific evidence.

    PubMed

    Mipatrini, Daniele; Stefanelli, Paola; Severoni, Santino; Rezza, Giovanni

    2017-03-01

    The decline of immunization rates in countries of origin of migrants and refugees, along with risky conditions during the journey to Europe, may threaten migrants' health. We performed a systematic review of the scientific literature in order to assess the frequency of vaccine preventable diseases, and vaccination coverage among migrants and refugees in Europe. To this end, Medline and Cochrane databases were considered. After the screening and the selection process, 58 papers were included in the review. We focused on the following vaccine-preventable diseases: hepatitis B, measles, rubella, mumps, tetanus, poliomyelitis, pertussis, diphtheria, meningitis, and varicella. The results were presented as a qualitative synthesis. In summary, several studies highlighted that migrants and refugees have lower immunization rates compared to European-born individuals. Firstly, this is due to low vaccination coverage in the country of origin. Then, several problems may limit migrants' access to vaccination in Europe: (i) migrants are used to move around the continent, and many vaccines require multiple doses at regular times; (ii) information on the immunization status of migrants is often lacking; (iii) hosting countries face severe economic crises; (iv) migrants often refuse registration with medical authorities for fear of legal consequences and (v) the lack of coordination among public health authorities of neighboring countries may determine either duplications or lack of vaccine administration. Possible strategies to overcome these problems include tailoring immunization services on the specific needs of the target population, developing strong communication campaigns, developing vaccination registers, and promoting collaboration among public health authorities of European Countries.

  13. Juvenile-specific cathepsin proteases in Fasciola spp.: their characteristics and vaccine efficacies.

    PubMed

    Meemon, Krai; Sobhon, Prasert

    2015-08-01

    Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is one of the most neglected tropical zoonotic diseases. One sustainable control strategy against these infections is the employment of vaccines that target proteins essential for parasites' invasion and nutrition acquiring processes. Cathepsin proteases are the most abundantly expressed proteins in Fasciola spp. that have been tested successfully as vaccines against fasciolosis in experimental as well as large animals because of their important roles in digestion of nutrients, invasion, and migration. Specifically, juvenile-specific cathepsin proteases are the more effective vaccines because they could block the invasion and migration of juvenile parasites whose immune evasion mechanism has not yet been fully developed. Moreover, because of high sequence similarity and identity of cathepsins from juveniles with those of adults, the vaccines can attack both the juvenile and adult stages. In this article, the characteristics and vaccine potentials of juvenile-specific cathepsins, i.e., cathepsins L and B, of Fasciola spp. were reviewed.

  14. The current state of introduction of HPV vaccination into national immunisation schedules in Europe: results of the VENICE 2008 survey.

    PubMed

    Lévy-Bruhl, D; Bousquet, V; King, L A; O'Flanagan, D; Bacci, S; Lopalco, P L; Salmaso, S

    2009-10-01

    Three surveys have been undertaken in European Union (EU) member states since January 2007, within the European Commission funded Vaccine European New Integrated Collaboration Effort (VENICE) project, to monitor the decision status regarding the introduction of human papillomavirus (HPV) vaccination into national immunisation schedules. A web-based questionnaire was developed and completed online by the 28 countries participating in VENICE. According to the last update (31st December 2008), 15 countries have decided to introduce HPV vaccination into their national immunisation schedule, while another six have started the decision-making process with a recommendation favouring introduction. Varying target populations have been selected by the countries which have introduced vaccination. The number of countries which have made a decision or recommendation has increased from 12 to 21 between October 2007 and December 2008. This survey demonstrates the rapidly evolving nature of HPV vaccine introduction in Europe. A further update should be available in the second half of 2009.

  15. 75 FR 61502 - Cooperative Agreement With the Pan American Health Organization for the Development of an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Medical Products and Related Regulatory Processes and Systems in the Americas Region AGENCY: Food and Drug... Health Organization (PAHO) for the development of an information hub in the areas of medical products and related regulatory processes and systems (e.g., including drugs, biologics, vaccines, medical devices, and...

  16. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  17. Malaria vaccine development and how external forces shape it: an overview.

    PubMed

    Lorenz, Veronique; Karanis, Gabriele; Karanis, Panagiotis

    2014-06-30

    The aim of this paper is to analyse the current status and scientific value of malaria vaccine approaches and to provide a realistic prognosis for future developments. We systematically review previous approaches to malaria vaccination, address how vaccine efforts have developed, how this issue may be fixed, and how external forces shape vaccine development. Our analysis provides significant information on the various aspects and on the external factors that shape malaria vaccine development and reveal the importance of vaccine development in our society.

  18. Communication in crisis situations in the process of immunization.

    PubMed

    Ravlija, Jelena; Vasilj, Ivan

    2012-09-01

    Immunization is one of the most effective medical interventions in the prevention of the disease and represents the easiest and most cost-effective investment in health. The strategy of controlling contagious diseases that can be prevented through immunization has a long tradition in B&H. Mandatory immunizations are administered against ten diseases. Although the development of new technologies, the efforts of the pharmaceutical industry, the development of new vaccines provides better vaccines in terms of greater safety and effectiveness it should be pointed out that no vaccine is "absolutely effective and safe", and it will not achieve the immune response in 100% vaccinated, also there are possible side effects and unexpected reactions that could occur. Vaccination is often a media issue because previously unnoticed local, isolated events-side effects and complications of vaccination are now accompanied by media attention as there are now numerous and fast communication channels (internet, e-mail, TV1 etc.) and media evolved from being less "controlled" to more "commercial". Doubt in benefit of vaccination is growing even among health professionals who are expected to provide up-to-date, understandable information, and issue information about immunization benefits and potential risks. It is therefore important for health professionals to be well informed, to be a good source of authoritative, scientific and reasonable advice, and to speak openly about the benefits and risks of vaccination so that consumers fully understand both possible outcomes of vaccination. This takes communication skills, particularly in crisis situations connected with vaccination. Health professionals are thus faced with a changing attitude toward importance of immunization in the social climate where risk is less tolerated than ever before.

  19. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar.

    PubMed

    Caruffo, Mario; Maturana, Carlos; Kambalapally, Swetha; Larenas, Julio; Tobar, Jaime A

    2016-07-01

    Infectious salmon anemia (ISA) is a systemic disease caused by an orthomyxovirus, which has a significant economic impact on the production of Atlantic salmon (Salmo salar). Currently, there are several commercial ISA vaccines available, however, those products are applied through injection, causing stress in the fish and leaving them susceptible to infectious diseases due to the injection process and associated handling. In this study, we evaluated an oral vaccine against ISA containing a recombinant viral hemagglutinin-esterase and a fusion protein as antigens. Our findings indicated that oral vaccination is able to protect Atlantic salmon against challenge with a high-virulence Chilean isolate. The oral vaccination was also correlated with the induction of IgM-specific antibodies. On the other hand, the vaccine was unable to modulate expression of the antiviral related gene Mx, showing the importance of the humoral response to the disease survival. This study provides new insights into fish protection and immune response induced by an oral vaccine against ISA, but also promises future development of preventive solutions or validation of the current existing therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Development of a scaled-down aerobic fermentation model for scale-up in recombinant protein vaccine manufacturing.

    PubMed

    Farrell, Patrick; Sun, Jacob; Gao, Meg; Sun, Hong; Pattara, Ben; Zeiser, Arno; D'Amore, Tony

    2012-08-17

    A simple approach to the development of an aerobic scaled-down fermentation model is presented to obtain more consistent process performance during the scale-up of recombinant protein manufacture. Using a constant volumetric oxygen mass transfer coefficient (k(L)a) for the criterion of a scale-down process, the scaled-down model can be "tuned" to match the k(L)a of any larger-scale target by varying the impeller rotational speed. This approach is demonstrated for a protein vaccine candidate expressed in recombinant Escherichia coli, where process performance is shown to be consistent among 2-L, 20-L, and 200-L scales. An empirical correlation for k(L)a has also been employed to extrapolate to larger manufacturing scales. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The vaccines consistency approach project: an EPAA initiative.

    PubMed

    De Mattia, F; Hendriksen, C; Buchheit, K H; Chapsal, J M; Halder, M; Lambrigts, D; Redhead, K; Rommel, E; Scharton-Kersten, T; Sesardic, T; Viviani, L; Ragan, I

    2015-01-01

    The consistency approach for release testing of established vaccines promotes the use of in vitro, analytical, non-animal based systems allowing the monitoring of quality parameters during the whole production process. By using highly sensitive non-animal methods, the consistency approach has the potential to improve the quality of testing and to foster the 3Rs (replacement, refinement and reduction of animal use) for quality control of established vaccines. This concept offers an alternative to the current quality control strategy which often requires large numbers of laboratory animals. In order to facilitate the introduction of the consistency approach for established human and veterinary vaccine quality control, the European Partnership for Alternatives to Animal Testing (EPAA) initiated a project, the "Vaccines Consistency Approach Project", aiming at developing and validating the consistency approach with stakeholders from academia, regulators, OMCLs, EDQM, European Commission and industry. This report summarises progress since the project's inception.

  2. Dissecting the human immunologic memory for pathogens.

    PubMed

    Zielinski, Christina E; Corti, Davide; Mele, Federico; Pinto, Dora; Lanzavecchia, Antonio; Sallusto, Federica

    2011-03-01

    Studies on immunologic memory in animal models and especially in the human system are instrumental to identify mechanisms and correlates of protection necessary for vaccine development. In this article, we provide an overview of the cellular basis of immunologic memory. We also describe experimental approaches based on high throughput cell cultures, which we have developed to interrogate human memory T cells, B cells, and plasma cells. We discuss how these approaches can provide new tools and information for vaccine design, in a process that we define as 'analytic vaccinology'. © 2011 John Wiley & Sons A/S.

  3. Summary and Recommendations from the National Institute of Allergy and Infectious Diseases (NIAID) Workshop "Gonorrhea Vaccines: the Way Forward".

    PubMed

    Wetzler, Lee M; Feavers, Ian M; Gray-Owen, Scott D; Jerse, Ann E; Rice, Peter A; Deal, Carolyn D

    2016-08-01

    There is an urgent need for the development of an antigonococcal vaccine due to the increasing drug resistance found in this pathogen. The U.S. Centers for Disease Control (CDC) have identified multidrug-resistant gonococci (GC) as among 3 "urgent" hazard-level threats to the U.S. In light of this, on 29 to 30 June 2015, the National Institute for Allergy and Infectious Diseases (NIAID) sponsored a workshop entitled "Gonorrhea Vaccines: the Way Forward." The goal of the workshop was to gather leaders in the field to discuss several key questions on the current status of gonorrhea vaccine research and the path forward to a licensed gonorrhea vaccine. Representatives from academia, industry, U.S. Government agencies, and a state health department were in attendance. This review summarizes each of the 4 scientific sessions and a series of 4 breakout sessions that occurred during the one and a half days of the workshop. Topics raised as high priority for future development included (i) reinvigoration of basic research to understand gonococcal infection and immunity to allow intervention in processes essential for infection; (ii) clinical infection studies to establish parallels and distinctions between in vitro and animal infection models versus natural human genital and pharyngeal infection and to inform in silico modeling of vaccine impact; and (iii) development of an integrated pipeline for preclinical and early clinical evaluation and direct comparisons of potential vaccine antigens and adjuvants and routes of delivery. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Evaluation of vaccines against enteric infections: a clinical and public health research agenda for developing countries

    PubMed Central

    Clemens, John

    2011-01-01

    Enteric infections are a major cause of morbidity and mortality in developing countries. To date, vaccines have played a limited role in public health efforts to control enteric infections. Licensed vaccines exist for cholera and typhoid, but these vaccines are used primarily for travellers; and there are two internationally licensed vaccines for rotavirus, but they are mainly used in affluent countries. The reasons that enteric vaccines are little used in developing countries are multiple, and certainly include financial and political constraints. Also important is the need for more cogent evidence on the performance of enteric vaccines in developing country populations. A partial inventory of research questions would include: (i) does the vaccine perform well in the most relevant settings? (ii) does the vaccine perform well in all epidemiologically relevant age groups? (iii) is there adequate evidence of vaccine safety once the vaccines have been deployed in developing countries? (iv) how effective is the vaccine when given in conjunction with non-vaccine cointerventions? (v) what is the level of vaccine protection against all relevant outcomes? and (vi) what is the expected population level of vaccine protection, including both direct and herd vaccine protective effects? Provision of evidence addressing these questions will help expand the use of enteric vaccines in developing countries. PMID:21893543

  5. A Critical Assessment of Vector Control for Dengue Prevention

    PubMed Central

    Achee, Nicole L.; Gould, Fred; Perkins, T. Alex; Reiner, Robert C.; Morrison, Amy C.; Ritchie, Scott A.; Gubler, Duane J.; Teyssou, Remy; Scott, Thomas W.

    2015-01-01

    Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations. PMID:25951103

  6. Traditional and New Influenza Vaccines

    PubMed Central

    Wong, Sook-San

    2013-01-01

    SUMMARY The challenges in successful vaccination against influenza using conventional approaches lie in their variable efficacy in different age populations, the antigenic variability of the circulating virus, and the production and manufacturing limitations to ensure safe, timely, and adequate supply of vaccine. The conventional influenza vaccine platform is based on stimulating immunity against the major neutralizing antibody target, hemagglutinin (HA), by virus attenuation or inactivation. Improvements to this conventional system have focused primarily on improving production and immunogenicity. Cell culture, reverse genetics, and baculovirus expression technology allow for safe and scalable production, while adjuvants, dose variation, and alternate routes of delivery aim to improve vaccine immunogenicity. Fundamentally different approaches that are currently under development hope to signal new generations of influenza vaccines. Such approaches target nonvariable regions of antigenic proteins, with the idea of stimulating cross-protective antibodies and thus creating a “universal” influenza vaccine. While such approaches have obvious benefits, there are many hurdles yet to clear. Here, we discuss the process and challenges of the current influenza vaccine platform as well as new approaches that are being investigated based on the same antigenic target and newer technologies based on different antigenic targets. PMID:23824369

  7. Influenza vaccination recommended for all adults aged between 50 and 64 years: conceptual basis and methodological limitations.

    PubMed

    Manzoli, L; De Vito, C; Flacco, M E; Marzuillo, C; Boccia, A; Villari, P

    2012-01-01

    In the first half of this year the experts of the Italian Society of Hygiene (SItI), along with those of other National Scientific Societies, agreed with the recommendations made by the USA CDC in 2009, and developed a proposal for a vaccination schedule (Vaccine Schedule for Life), in which influenza vaccination is recommended for all adults aged between 50 and 64 years. In the National Plan for Vaccinal Prevention 2012-2014, which was published just before the issue of the SItI Calendar but concluded earlier (end of 2011), influenza vaccination is recommended "only" for all persons > or = 65 years or included in one of the many at-risk categories. The issue is controversial and has generated considerable debate at national and international level. This short note discusses the logical processes and the scientific evidence in support or against the decision to extend the influenza vaccination. The Authors conclude that the epidemiological approach used by SItI experts is appropriate. In any case, further studies on the topic are strongly needed, and their results should be taken into account in the drafting of future vaccination schedules.

  8. Computational design of hepatitis C vaccines using empirical fitness landscapes and population dynamics

    NASA Astrophysics Data System (ADS)

    Hart, Gregory; Ferguson, Andrew

    Hepatitis C virus (HCV) afflicts 170 million people and kills 350,000 annually. Vaccination offers the most realistic and cost effective hope of controlling this epidemic. Despite 25 years of research, no vaccine is available. A major obstacle is the virus' extreme genetic variability and rapid mutational escape from immune pressure. Improvements in the vaccine design process are urgently needed. Coupling data mining and maximum entropy inference, we have developed a computational approach to translate sequence databases into empirical fitness landscapes. These landscapes explicitly connect viral genotype to phenotypic fitness and reveal vulnerable targets that can be exploited to rationally design vaccines. These landscapes represent the mutational ''playing field'' over which the virus evolves. We have integrated them with agent-based models of the viral mutational and host immune response, establishing a data-driven multi-scale immune simulator. We have used this simulator to perform in silico screening of HCV immunogens to rationally design vaccines to both cripple viral fitness and block escape. By systematically identifying a small number of promising vaccine candidates, these models can accelerate the search for a vaccine by massively reducing the experimental search space.

  9. Guidelines for evaluating the efficacy and safety of live anticoccidial vaccines, and obtaining approval for their use in chickens and turkeys.

    PubMed

    Chapman, H D; Roberts, B; Shirley, M W; Williams, R B

    2005-08-01

    These guidelines are intended to aid those engaged in poultry research in the design, implementation and interpretation of laboratory, floor-pen and field studies for the assessment of the efficacy and safety of live anticoccidial vaccines for immunization of chickens and turkeys against Eimeria species. In addition to efficacy and safety requirements, manufacture, quality control and licensing considerations are discussed. The guidelines do not address subunit vaccines comprising non-viable material, but many of the principles described will be relevant to such vaccines if they are developed in the future. Guidelines are available in some countries for avian vaccines of bacterial or viral origin but specific standards for anticoccidial vaccines in poultry have not, as far as we know, been produced. Information is provided on general requirements of registration authorities (based upon regulations applicable in the European Union and the USA) for obtaining marketing authorizations for vaccines. These guidelines may assist poultry specialists in providing specific information for administrators involved in the decision-making process leading to registration of new vaccines, and are intended to facilitate the worldwide adoption of consistent, standard procedures.

  10. Safety of plant-made pharmaceuticals: product development and regulatory considerations based on case studies of two autologous human cancer vaccines.

    PubMed

    Tusé, Daniel

    2011-03-01

    Guidelines issued by regulatory agencies for the development of plant-made pharmaceutical (PMP) products provide criteria for product manufacturing and characterization, safety determination, containment and mitigation of environmental risks. Features of plant-made products do not always enable an easy fit within the criteria subscribed to by regulators. The unconventional nature of plant-based manufacturing processes and peculiarities of plant biology relative to that of traditional biological production systems have led to special considerations in the regulatory scrutiny of PMP. Presented in this review are case studies of two plant-made autologous (patient-specific) cancer vaccines, the nature of which introduced challenges to conventional and standardized development and preclinical evaluation routes. The rationale presented to FDA by the sponsors of each vaccine to build consensus and obtain variances to existing guidelines is discussed. While development of many plant-made biologics can be accomplished within the existing regulatory framework, the development of specialized products can be defended with rational arguments based on strong science.

  11. Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development

    DOE PAGES

    He, Wei; Felderman, Martina; Evans, Angela C.; ...

    2017-07-24

    Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, andmore » protein misfolding. For this study, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP–tNLP). The cell-free expressed mMOMP–tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP–tNLP complex in a 1-ml cell-free reaction. The mMOMP–tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP–tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.« less

  12. Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Wei; Felderman, Martina; Evans, Angela C.

    Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, andmore » protein misfolding. For this study, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP–tNLP). The cell-free expressed mMOMP–tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP–tNLP complex in a 1-ml cell-free reaction. The mMOMP–tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP–tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.« less

  13. Avian influenza pandemic preparedness: developing prepandemic and pandemic vaccines against a moving target

    PubMed Central

    Singh, Neetu; Pandey, Aseem; Mittal, Suresh K.

    2010-01-01

    The unprecedented global spread of highly pathogenic avian H5N1 influenza viruses within the past ten years and their extreme lethality to poultry and humans has underscored their potential to cause an influenza pandemic. Combating the threat of an impending H5N1 influenza pandemic will require a combination of pharmaceutical and nonpharmaceutical intervention strategies. The emergence of the H1N1 pandemic in 2009 emphasised the unpredictable nature of a pandemic influenza. Undoubtedly, vaccines offer the most viable means to combat a pandemic threat. Current egg-based influenza vaccine manufacturing strategies are unlikely to be able to cater to the huge, rapid global demand because of the anticipated scarcity of embryonated eggs in an avian influenza pandemic and other factors associated with the vaccine production process. Therefore, alternative, egg-independent vaccine manufacturing strategies should be evaluated to supplement the traditional egg-derived influenza vaccine manufacturing. Furthermore, evaluation of dose-sparing strategies that offer protection with a reduced antigen dose will be critical for pandemic influenza preparedness. Development of new antiviral therapeutics and other, nonpharmaceutical intervention strategies will further supplement pandemic preparedness. This review highlights the current status of egg-dependent and egg-independent strategies against an avian influenza pandemic. PMID:20426889

  14. Process Evaluation of an Intervention to Increase Provision of Adolescent Vaccines at School Health Centers

    ERIC Educational Resources Information Center

    Golden, Shelley D.; Moracco, Kathryn E.; Feld, Ashley L.; Turner, Kea L.; DeFrank, Jessica T.; Brewer, Noel T.

    2014-01-01

    Background: Vaccination programs in school health centers (SHCs) may improve adolescent vaccine coverage. We conducted a process evaluation of an intervention to increase SHC-located vaccination to better understand the feasibility and challenges of such interventions. Method: Four SHCs participated in an intervention to increase provision of…

  15. The yellow fever 17D virus as a platform for new live attenuated vaccines.

    PubMed

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms.

  16. Development of a sandwich ELISA for the quantification of enterovirus 71.

    PubMed

    Ma, Shujun; Mao, Qunying; Liang, Zhenglun; Zhang, Cuijuan; Yang, Wenxing; Sun, Zhe; Zhang, Haijiang; Shen, Xinliang; Bi, Shengli; Sun, Le

    2014-05-01

    Since 2008, enterovirus 71 (EV71) has been responsible for high-mortality seasonal epidemics of hand, foot and mouth disease in China. Currently many groups in the world are in the process of developing EV71 vaccines to combat this deadly disease. We have developed three EV71-specific monoclonal antibodies, and in this study we report the establishment of a fast and cost-effective sandwich ELISA kit for measurement of virus concentration in EV71 vaccines using a pair of mouse anti-EV71 monoclonal antibodies. The system is specific for EV71 virus, with no cross-reactivity to coxsackievirus A16, H1N1, rabies, and hepatitis A. Using a reference EV71 vaccine standard, the sensitivity of the assay kit was determined to be 0.82 U/ml, with a linear range between 3.75 and 120 U/ml.

  17. The yellow fever 17D virus as a platform for new live attenuated vaccines

    PubMed Central

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms. PMID:24553128

  18. National Immunization Program: Computerized System as a tool for new challenges

    PubMed Central

    Sato, Ana Paula Sayuri

    2015-01-01

    The scope and coverage of the Brazilian Immunization Program can be compared with those in developed countries because it provides a large number of vaccines and has a considerable coverage. The increasing complexity of the program brings challenges regarding its development, high coverage levels, access equality, and safety. The Immunization Information System, with nominal data, is an innovative tool that can more accurately monitor these indicators and allows the evaluation of the impact of new vaccination strategies. The main difficulties for such a system are in its implementation process, training of professionals, mastering its use, its constant maintenance needs and ensuring the information contained remain confidential. Therefore, encouraging the development of this tool should be part of public health policies and should also be involved in the three spheres of government as well as the public and private vaccination services. PMID:26176746

  19. Current status of rotavirus vaccines.

    PubMed

    Wang, Ching-Min; Chen, Shou-Chien; Chen, Kow-Tong

    2015-11-01

    Rotaviruses remain the major cause of childhood diarrheal disease worldwide and of diarrheal deaths of infants and children in developing countries. The huge burden of childhood rotavirus-related diarrhea in the world continues to drive the remarkable pace of vaccine development. Research articles were searched using terms "rotavirus" and "rotavirus vaccine" in MEDLINE and PubMed. Articles not published in the English language, articles without abstracts, and opinion articles were excluded from the review. After preliminary screening, all articles were reviewed and synthesized to provide an overview of current vaccines and vaccination programs. In this review of the global rotavirus vaccines and vaccination programs, the principles of rotavirus vaccine development and the efficacy of the currently licensed vaccines from both developed and developing countries were summarized. Rotavirus is a common cause of diarrhea in children in both developed and developing countries. Rotavirus vaccination is a cost-effective measure to prevent rotavirus diarrhea.

  20. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shustov, Alexandr V.; Frolov, Ilya, E-mail: ivfrolov@UAB.ed

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable ofmore » producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.« less

  1. Current status of flavivirus vaccines.

    PubMed

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  2. Development of a Salmonella cross-protective vaccine for food animal production systems.

    PubMed

    Heithoff, Douglas M; House, John K; Thomson, Peter C; Mahan, Michael J

    2015-01-01

    Intensive livestock production is associated with increased Salmonella exposure, transmission, animal disease, and contamination of food and water supplies. Modified live Salmonella enterica vaccines that lack a functional DNA adenine methylase (Dam) confer cross-protection to a diversity of salmonellae in experimental models of murine, avian, ovine, and bovine models of salmonellosis. However, the commercial success of any vaccine is dependent upon the therapeutic index, the ratio of safety/efficacy. Herein, secondary virulence-attenuating mutations targeted to genes involved in intracellular and/or systemic survival were introduced into Salmonella dam vaccines to screen for vaccine candidates that were safe in the animal and the environment, while maintaining the capacity to confer cross-protective immunity to pathogenic salmonellae serotypes. Salmonella dam mgtC, dam sifA, and dam spvB vaccine strains exhibited significantly improved vaccine safety as evidenced by the failure to give rise to virulent revertants during the infective process, contrary to the parental Salmonella dam vaccine. Further, these vaccines exhibited a low grade persistence in host tissues that was associated with reduced vaccine shedding, reduced environmental persistence, and induction of cross-protective immunity to pathogenic serotypes derived from infected livestock. These data indicate that Salmonella dam double mutant vaccines are suitable for commercial applications against salmonellosis in livestock production systems. Reducing pre-harvest salmonellae load through vaccination will promote the health and productivity of livestock and reduce contamination of livestock-derived food products, while enhancing overall food safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  4. Dendritic cell based vaccines: progress in immunotherapy studies for prostate cancer.

    PubMed

    Ragde, Haakon; Cavanagh, William A; Tjoa, Benjamin A

    2004-12-01

    No effective treatment is currently available for metastatic prostate cancer. Dendritic cell (DC) based cancer vaccine research has emerged from the laboratories to human clinical trials. We describe progress in the development of DC based prostate cancer vaccine. The literature was reviewed for major contributions to a growing number of studies that demonstrate the potential of DC based immunotherapeutics for prostate cancer. Background topics relating to DC based immunotherapy theory and practice are also addressed. DCs have been recognized as the most efficient antigen presenting cells that have the capacity to initiate naive T cell response in vitro and in vivo. During their differentiation and maturation pathways, dendritic cells can efficiently capture, process and present antigens for T cell activation. These characteristics make DC an attractive choice as the cellular adjuvant for cancer vaccines. Advances in DC generation, loading, and maturation methodologies have made it possible to generate clinical grade vaccines for various human trials. More than 100 DC vaccine trials, including 7 studies of patients with advanced prostate cancer have been reported to date. These vaccines were generally well tolerated with no significant adverse toxicity reported. Clinical responders have been identified in these studies. The new prospects opened by DC based vaccines for prostate cancer are fascinating. When compared to conventional treatments, DC vaccinations have few side effects. Improvements in patient selection, vaccine delivery strategies, immune monitoring and vaccine manufacturing will be crucial in moving DC based prostate cancer vaccines closer to the clinics.

  5. Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines.

    PubMed

    Jordan, Ingo; John, Katrin; Höwing, Kristin; Lohr, Verena; Penzes, Zoltán; Gubucz-Sombor, Erzsébet; Fu, Yan; Gao, Peng; Harder, Timm; Zádori, Zoltán; Sandig, Volker

    2016-01-01

    Veterinary vaccines contribute to food security, interrupt zoonotic transmissions, and help to maintain overall health in livestock. Although vaccines are usually cost-effective, their adoption depends on a multitude of factors. Because poultry vaccines are usually given to birds with a short life span, very low production cost per dose is one important challenge. Other hurdles are to ensure a consistent and reliable supply of very large number of doses, and to have flexible production processes to accommodate a range of different pathogens and dosage requirements. Most poultry vaccines are currently being produced on primary avian cells derived from chicken or waterfowl embryos. This production system is associated with high costs, logistic complexities, rigid intervals between harvest and production, and supply limitations. We investigated whether the continuous cell lines Cairina retina and CR.pIX may provide a substrate independent of primary cell cultures or embryonated eggs. Viruses examined for replication in these cell lines are strains associated with, or contained in vaccines against egg drop syndrome, Marek's disease, Newcastle disease, avian influenza, infectious bursal disease and Derzsy's disease. Each of the tested viruses required the development of unique conditions for replication that are described here and can be used to generate material for in vivo efficacy studies and to accelerate transfer of the processes to larger production volumes.

  6. Working towards dengue as a vaccine-preventable disease: challenges and opportunities.

    PubMed

    Shrivastava, Ambuj; Tripathi, Nagesh K; Dash, Paban K; Parida, Manmohan

    2017-10-01

    Dengue is an emerging viral disease that affects the human population around the globe. Recent advancements in dengue virus research have opened new avenues for the development of vaccines against dengue. The development of a vaccine against dengue is a challenging task because any of the four serotypes of dengue viruses can cause disease. The development of a dengue vaccine aims to provide balanced protection against all the serotypes. Several dengue vaccine candidates are in the developmental stages such as inactivated, live attenuated, recombinant subunit, and plasmid DNA vaccines. Area covered: The authors provide an overview of the progress made in the development of much needed dengue vaccines. The authors include their expert opinion and their perspectives for future developments. Expert opinion: Human trials of a live attenuated tetravalent chimeric vaccine have clearly demonstrated its potential as a dengue vaccine. Other vaccine candidate molecules such as DENVax, a recombinant chimeric vaccine andTetraVax, are at different stages of development at this time. The authors believe that the novel strategies for testing and improving the immune response of vaccine candidates in humans will eventually lead to the development of a successful dengue vaccine in future.

  7. Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development.

    PubMed

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format.

  8. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    PubMed Central

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format. PMID:22505817

  9. Biophysical characterization of influenza virus subpopulations using field flow fractionation and multiangle light scattering: correlation of particle counts, size distribution and infectivity.

    PubMed

    Wei, Ziping; McEvoy, Matt; Razinkov, Vladimir; Polozova, Alla; Li, Elizabeth; Casas-Finet, Jose; Tous, Guillermo I; Balu, Palani; Pan, Alfred A; Mehta, Harshvardhan; Schenerman, Mark A

    2007-09-01

    Adequate biophysical characterization of influenza virions is important for vaccine development. The influenza virus vaccines are produced from the allantoic fluid of developing chicken embryos. The process of viral replication produces a heterogeneous mixture of infectious and non-infectious viral particles with varying states of aggregation. The study of the relative distribution and behavior of different subpopulations and their inter-correlation can assist in the development of a robust process for a live virus vaccine. This report describes a field flow fractionation and multiangle light scattering (FFF-MALS) method optimized for the analysis of size distribution and total particle counts. The FFF-MALS method was compared with several other methods such as transmission electron microscopy (TEM), atomic force microscopy (AFM), size exclusion chromatography followed by MALS (SEC-MALS), quantitative reverse transcription polymerase chain reaction (RT Q-PCR), median tissue culture dose (TCID(50)), and the fluorescent focus assay (FFA). The correlation between the various methods for determining total particle counts, infectivity and size distribution is reported. The pros and cons of each of the analytical methods are discussed.

  10. Vaccine technologies: From whole organisms to rationally designed protein assemblies.

    PubMed

    Karch, Christopher P; Burkhard, Peter

    2016-11-15

    Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Separation of porcine parvovirus from bovine serum albumin using PEG-salt aqueous two-phase system.

    PubMed

    Vijayaragavan, K Saagar; Zahid, Amna; Young, Jonathan W; Heldt, Caryn L

    2014-09-15

    Vaccine production faces a challenge in adopting conventional downstream processing steps that can efficiently purify large viral particles. Some major issues that plague vaccine purification are purity, potency, and quality. The industry currently considers 30% as an acceptable virus recovery for a vaccine purification process, including all downstream processes, whereas antibody recovery from CHO cell culture is generally around 80-85%. A platform technology with an improved virus recovery would revolutionize vaccine production. In a quest to fulfill this goal, we have been exploring aqueous two-phase systems (ATPSs) as an optional mechanism to purify virus. ATPS has been unable to gain wide implementation mainly due to loss of virus infectivity, co-purification of proteins, and difficulty of polymer recycling. Non-enveloped viruses are chemically resistant enough to withstand the high polymer and salt concentrations that are required for effective ATPS separations. We used infectious porcine parvovirus (PPV), a non-enveloped, DNA virus as a model virus to test and develop an ATPS separation method. We successfully tackled two of the three main disadvantages of ATPS previously stated; we achieved a high infectious yield of 64% in a PEG-citrate ATPS process while separating out the main contaminate protein, bovine serum albumin (BSA). The most dominant forces in the separation were biomolecule charge, virus surface hydrophobicity, and the ATPS surface tension. Highly hydrophobic viruses are likely to benefit from the discovered ATPS for high-purity vaccine production and ease of implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy.

    PubMed

    Bennett, Jason W; Yadava, Anjali; Tosh, Donna; Sattabongkot, Jetsumon; Komisar, Jack; Ware, Lisa A; McCarthy, William F; Cowden, Jessica J; Regules, Jason; Spring, Michele D; Paolino, Kristopher; Hartzell, Joshua D; Cummings, James F; Richie, Thomas L; Lumsden, Joanne; Kamau, Edwin; Murphy, Jittawadee; Lee, Cynthia; Parekh, Falgunee; Birkett, Ashley; Cohen, Joe; Ballou, W Ripley; Polhemus, Mark E; Vanloubbeeck, Yannick F; Vekemans, Johan; Ockenhouse, Christian F

    2016-02-01

    A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15 μg, 30 μg, or 60 μg respectively of VMP001, all formulated in 500 μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.

  13. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy

    PubMed Central

    Bennett, Jason W.; Yadava, Anjali; Tosh, Donna; Sattabongkot, Jetsumon; Komisar, Jack; Ware, Lisa A.; McCarthy, William F.; Cowden, Jessica J.; Regules, Jason; Spring, Michele D.; Paolino, Kristopher; Hartzell, Joshua D.; Cummings, James F.; Richie, Thomas L.; Lumsden, Joanne; Kamau, Edwin; Murphy, Jittawadee; Lee, Cynthia; Parekh, Falgunee; Birkett, Ashley; Cohen, Joe; Ballou, W. Ripley; Polhemus, Mark E.; Vanloubbeeck, Yannick F.; Vekemans, Johan; Ockenhouse, Christian F.

    2016-01-01

    Background A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. Methods We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15μg, 30μg, or 60μg respectively of VMP001, all formulated in 500μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. Results The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. Significance This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials. PMID:26919472

  14. Leptin-based Adjuvants: An Innovative Approach to Improve Vaccine Response

    PubMed Central

    White, Sarah J.; Taylor, Matthew J.; Hurt, Ryan; Jensen, Michael D.; Poland, Gregory A.

    2013-01-01

    Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥ 30 kg/m2) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin’s role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. PMID:23370154

  15. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Policy making for vaccine use as a driver of vaccine innovation and development in the developed world.

    PubMed

    Seib, Katherine; Pollard, Andrew J; de Wals, Philippe; Andrews, Ross M; Zhou, Fangjun; Hatchett, Richard J; Pickering, Larry K; Orenstein, Walter A

    2017-03-07

    In the past 200years, vaccines have had unmistakable impacts on public health including declines in morbidity and mortality, most markedly in economically-developed countries. Highly engineered vaccines including vaccines for conditions other than infectious diseases are expected to dominate future vaccine development. We examine immunization vaccine policy as a driver of vaccine innovation and development. The pathways to recommendation for use of licensed vaccines in the US, UK, Canada and Australia have been similar, including: expert review of disease epidemiology, disease burden and severity; vaccine immunogenicity, efficacy and safety; programmatic feasibility; public demand; and increasingly cost-effectiveness. Other attributes particularly important in development of future vaccines are likely to include: duration of immunity for improved vaccines such as pertussis; a greater emphasis on optimizing community protection rather than direct protection only; programmatic implementation, feasibility, improvements (as in the case of development of a universal influenza vaccine); public concerns/confidence/fears related to outbreak pathogens like Ebola and Zika virus; and major societal burden for combating hard to treat diseases like HIV and antimicrobial resistant pathogens. Driving innovation and production of future vaccines faces enormous economic hurdles as available approaches, technologies and regulatory pathways become more complex. As such, cost-mitigating strategies and focused, aligned efforts (by governments, private organizations, and private-public partnerships) will likely be needed to continue to spur major advances in vaccine technologies and development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Perspectives of young Chinese Singaporean women on seeking and processing information to decide about vaccinating against human papillomavirus.

    PubMed

    Basnyat, Iccha; Lim, Cheryl

    2017-07-06

    Human papillomavirus (HPV) vaccination uptake in Singapore is low among young women. Low uptake has been found to be linked to low awareness. Thus, this study aimed to understand active and passive vaccine information-seeking behavior. Furthermore, guided by the Elaboration Likelihood Model (ELM), this study examined young women's (aged 21-26 years) processing of information they acquired in their decision to get vaccinated. ELM postulates that information processing could be through the central (i.e., logic-based) or peripheral (i.e., heuristic-based) route. Twenty-six in-depth interviews were conducted from January to March 2016. Data were analyzed using thematic analysis. Two meta-themes-information acquisition and vaccination decision-revealed the heuristic-based information processing was employed. These young women acquired information passively within their social network and actively in healthcare settings. However, they used heuristic cues, such as closeness and trust, to process the information. Similarly, vaccination decisions revealed that women relied on heuristic cues, such as sense of belonging and validation among peers and source credibility and likability in medical settings, in their decision to get vaccinated. The findings of this study highlight that intervention efforts should focus on strengthening social support among personal networks to increase the uptake of the vaccine.

  18. Methods for addressing "innocent bystanders" when evaluating safety of concomitant vaccines.

    PubMed

    Wang, Shirley V; Abdurrob, Abdurrahman; Spoendlin, Julia; Lewis, Edwin; Newcomer, Sophia R; Fireman, Bruce; Daley, Matthew F; Glanz, Jason M; Duffy, Jonathan; Weintraub, Eric S; Kulldorff, Martin

    2018-04-01

    The need to develop methods for studying the safety of childhood immunization schedules has been recognized by the Institute of Medicine and Department of Health and Human Services. The recommended childhood immunization schedule includes multiple vaccines in a visit. A key concern is safety of concomitant (same day) versus separate day vaccination. This paper addresses a methodological challenge for observational studies using a self-controlled design to investigate the safety of concomitant vaccination. We propose a process for distinguishing which of several concomitantly administered vaccines is responsible for increased risk of an adverse event while adjusting for confounding due to relationships between effect modifying risk factors and concomitant vaccine combinations. We illustrate the approach by re-examining the known increase in risk of seizure 7 to 10 days after measles-mumps-rubella (MMR) vaccination and evaluating potential independent or modifying effects of other vaccines. Initial analyses suggested that DTaP had both an independent and potentiating effect on seizure. After accounting for the relationship between age at vaccination and vaccine combination, there was little evidence for increased risk of seizure with same day administration of DTaP and MMR; incidence rate ratio, 95% confidence interval 1.2 (0.9-1.6), P value = θ.226. We have shown that when using a self-controlled design to investigate safety of concomitant vaccination, it can be critically important to adjust for time-invariant effect modifying risk factors, such as age at time of vaccination, which are structurally related to vaccination patterns due to recommended immunization schedules. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis

    PubMed Central

    Ramezanpour, Bahar; Pronker, Esther S.; Kreijtz, Joost H.C.M.; Osterhaus, Albert D.M.E.; Claassen, E.

    2015-01-01

    A quantitative method is presented to rank strengths, weaknesses, opportunities, and threats (SWOT) of modified vaccinia virus Ankara (MVA) as a platform for pre-pandemic and pandemic influenza vaccines. Analytic hierarchy process (AHP) was applied to achieve pairwise comparisons among SWOT factors in order to prioritize them. Key opinion leaders (KOLs) in the influenza vaccine field were interviewed to collect a unique dataset to evaluate the market potential of this platform. The purpose of this study, to evaluate commercial potential of the MVA platform for the development of novel generation pandemic influenza vaccines, is accomplished by using a SWOT and AHP combined analytic method. Application of the SWOT–AHP model indicates that its strengths are considered more important by KOLs than its weaknesses, opportunities, and threats. Particularly, the inherent immunogenicity capability of MVA without the requirement of an adjuvant is the most important factor to increase commercial attractiveness of this platform. Concerns regarding vector vaccines and anti-vector immunity are considered its most important weakness, which might lower public health value of this platform. Furthermore, evaluation of the results of this study emphasizes equally important role that threats and opportunities of this platform play. This study further highlights unmet needs in the influenza vaccine market, which could be addressed by the implementation of the MVA platform. Broad use of MVA in clinical trials shows great promise for this vector as vaccine platform for pre-pandemic and pandemic influenza and threats by other respiratory viruses. Moreover, from the results of the clinical trials seem that MVA is particularly attractive for development of vaccines against pathogens for which no, or only insufficiently effective vaccines, are available. PMID:26048779

  20. Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis.

    PubMed

    Ramezanpour, Bahar; Pronker, Esther S; Kreijtz, Joost H C M; Osterhaus, Albert D M E; Claassen, E

    2015-08-20

    A quantitative method is presented to rank strengths, weaknesses, opportunities, and threats (SWOT) of modified vaccinia virus Ankara (MVA) as a platform for pre-pandemic and pandemic influenza vaccines. Analytic hierarchy process (AHP) was applied to achieve pairwise comparisons among SWOT factors in order to prioritize them. Key opinion leaders (KOLs) in the influenza vaccine field were interviewed to collect a unique dataset to evaluate the market potential of this platform. The purpose of this study, to evaluate commercial potential of the MVA platform for the development of novel generation pandemic influenza vaccines, is accomplished by using a SWOT and AHP combined analytic method. Application of the SWOT-AHP model indicates that its strengths are considered more important by KOLs than its weaknesses, opportunities, and threats. Particularly, the inherent immunogenicity capability of MVA without the requirement of an adjuvant is the most important factor to increase commercial attractiveness of this platform. Concerns regarding vector vaccines and anti-vector immunity are considered its most important weakness, which might lower public health value of this platform. Furthermore, evaluation of the results of this study emphasizes equally important role that threats and opportunities of this platform play. This study further highlights unmet needs in the influenza vaccine market, which could be addressed by the implementation of the MVA platform. Broad use of MVA in clinical trials shows great promise for this vector as vaccine platform for pre-pandemic and pandemic influenza and threats by other respiratory viruses. Moreover, from the results of the clinical trials seem that MVA is particularly attractive for development of vaccines against pathogens for which no, or only insufficiently effective vaccines, are available. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus

    PubMed Central

    Yeaman, Michael R.; Filler, Scott G.; Schmidt, Clint S.; Ibrahim, Ashraf S.; Edwards, John E.; Hennessey, John P.

    2014-01-01

    Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S. aureus. PMID:25309545

  2. Development of a cross-cultural HPV community engagement model within Scotland.

    PubMed

    Carnegie, Elaine; Whittaker, Anne; Gray Brunton, Carol; Hogg, Rhona; Kennedy, Catriona; Hilton, Shona; Harding, Seeromanie; Pollock, Kevin G; Pow, Janette

    2017-06-01

    To examine cultural barriers and participant solutions regarding acceptance and uptake of the human papillomavirus (HPV) vaccine from the perspective of Black African, White-Caribbean, Arab, Indian, Bangladeshi and Pakistani young people. In total, 40 young people from minority ethnic communities in Scotland took part in a qualitative study, involving seven focus groups and four paired interviews, to explore their views and experiences of the HPV vaccine. Using critical discursive psychology, the analysis focused on young people's accounts of barriers and enablers to information, access and uptake of the HPV vaccination programme. Participants suggested innovative strategies to tackle intergenerational concerns, information design and accessibility, and public health communications across diverse contexts. A cross-cultural community engagement model was developed, embracing diversity and contradiction across different ethnic groups. This included four inter-related strategies: providing targeted and flexible information for young people, vaccine provision across the life-course, intergenerational information and specific cross-cultural communications. This is the first HPV cross-cultural model inductively derived from accounts of young people from different ethnic communities. We recommend public health practitioners and policymakers consider using the processes and strategies within this model to increase dialogue around public engagement, awareness and receptivity towards HPV vaccination.

  3. Heat-shock proteins as dendritic cell-targeting vaccines – getting warmer

    PubMed Central

    McNulty, Shaun; Colaco, Camilo A; Blandford, Lucy E; Bailey, Christopher R; Baschieri, Selene; Todryk, Stephen

    2013-01-01

    Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by antigen internalization, processing and presentation. An improved understanding of the interaction of hsp with DC has driven the development of numerous hsp-containing vaccines, designed to deliver antigens directly to DC. Studies in mice have shown that for cancers, such vaccines generate impressive immune responses and protection from tumour challenge. However, translation to human use, as for many experimental immunotherapies, has been slow partly because of the need to perform trials in patients with advanced cancers, where demonstration of efficacy is challenging. Recently, the properties of hsp have been used for development of prophylactic vaccines against infectious diseases including tuberculosis and meningitis. These hsp-based vaccines, in the form of pathogen-derived hsp–antigen complexes, or recombinant hsp combined with selected antigens in vitro, offer an innovative approach against challenging diseases where broad antigen coverage is critical. PMID:23551234

  4. HIV vaccine development: would more (public) money bring quicker results?

    PubMed

    Winsbury, R

    1999-01-01

    Globally, $200-250 million/year are devoted to HIV vaccine research. Most of those funds pay for basic research rather than product development. Moreover, most of the funds are aimed at the HIV strain commonly found in the US and Europe, and not at the strains common to Africa and other developing countries. While US President Bill Clinton set in 1997 a 10-year target for the development of an HIV vaccine, that target date is looking increasingly unlikely. International vaccine and pharmaceutical companies typically drive vaccine research and development. However, concern over the ultimate profitability of developing and marketing an HIV vaccine, and the fear of major litigation should an eventual vaccine go awry have caused such firms to shy away from investing large amounts of money into HIV vaccine development. These companies somehow have to be attracted back into the field. A World Bank special task force is slated to present its report by mid-1999 on possible funding mechanisms to promote HIV vaccine development. It remains to be resolved whether public funds could and should be used, perhaps through a pooled international vaccine development fund. 2 new International AIDS Vaccine Initiative projects are described.

  5. Vaccines against poverty

    PubMed Central

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  6. Vaccine Development for Zika Virus-Timelines and Strategies.

    PubMed

    Durbin, Anna P

    2016-09-01

    Zika virus is a mosquito-borne Flavivirus that spread rapidly through South and Central America in 2015 to 2016. Microcephaly has been causally associated with Zika virus infection during pregnancy and the World Health Organization declared Zika virus as a Public Health Emergency of International Concern. To address this crisis, many groups have expressed their commitment to developing a Zika virus vaccine. Different strategies for Zika virus vaccine development are being considered including recombinant live attenuated vaccines, purified inactivated vaccines (PIVs), DNA vaccines, and viral vectored vaccines. Important to Zika virus vaccine development will be the target group chosen for vaccination and which end point(s) is chosen for efficacy determination. The first clinical trials of Zika virus vaccine candidates will begin in Q3/4 2016 but the pathway to licensure for a Zika virus vaccine is expected to take several years. Efforts are ongoing to accelerate Zika virus vaccine development and evaluation with the ultimate goal of reducing time to licensure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Universal fungal vaccines

    PubMed Central

    Hamad, Mawieh

    2012-01-01

    The complex nature of fungal pathogens, the intricate host-pathogen relationship and the health status of subjects in need of antifungal vaccination continue to hamper efforts to develop fungal vaccines for clinical use. That said, the rise of the universal vaccine concept is hoped to revive fungal vaccine research by expanding the pool of vaccine candidates worthy of clinical evaluation. It can do so through antigenic commonality-based screening for vaccine candidates from a wide range of pathogens and by reassessing the sizable collection of already available experimental and approved vaccines. Development of experimental vaccines protective against multiple fungal pathogens is evidence of the utility of this concept in fungal vaccine research. However, universal fungal vaccines are not without difficulties; for instance, development of vaccines with differential effectiveness is an issue that should be addressed. Additionally, rationalizing the development of universal fungal vaccines on health or economic basis could be contentious. Herein, universal fungal vaccines are discussed in terms of their potential usefulness and possible drawbacks. PMID:22922769

  8. Impact of imitation processes on the effectiveness of ring vaccination.

    PubMed

    Wells, Chad R; Tchuenche, Jean M; Meyers, Lauren Ancel; Galvani, Alison P; Bauch, Chris T

    2011-11-01

    Ring vaccination can be a highly effective control strategy for an emerging disease or in the final phase of disease eradication, as witnessed in the eradication of smallpox. However, the impact of behavioural dynamics on the effectiveness of ring vaccination has not been explored in mathematical models. Here, we analyze a series of stochastic models of voluntary ring vaccination. Contacts of an index case base vaccinating decisions on their own individual payoffs to vaccinate or not vaccinate, and they can also imitate the behaviour of other contacts of the index case. We find that including imitation changes the probability of containment through ring vaccination considerably. Imitation can cause a strong majority of contacts to choose vaccination in some cases, or to choose non-vaccination in other cases-even when the equivalent solution under perfectly rational (non-imitative) behaviour yields mixed choices. Moreover, imitation processes can result in very different outcomes in different stochastic realizations sampled from the same parameter distributions, by magnifying moderate tendencies toward one behaviour or the other: in some realizations, imitation causes a strong majority of contacts not to vaccinate, while in others, imitation promotes vaccination and reduces the number of secondary infections. Hence, the effectiveness of ring vaccination can depend significantly and unpredictably on imitation processes. Therefore, our results suggest that risk communication efforts should be initiated early in an outbreak when ring vaccination is to be applied, especially among subpopulations that are heavily influenced by peer opinions.

  9. The global fight to develop antipoverty vaccines in the anti-vaccine era.

    PubMed

    Hotez, Peter J

    2018-02-02

    Antipoverty vaccines are the vaccines targeting a group of approximately 20 neglected tropical diseases (NTDs), as currently defined by the World Health Organization (WHO). The "antipoverty" moniker refers to the fact that NTDs trap populations in poverty due to their chronic and deleterious effects on child intellect and worker productivity. Therefore, NTD vaccines can be expected to promote both global health and economic advancement. Unfortunately, antipoverty vaccine development has lagged behind vaccines for major childhood infections and pandemic threats, despite evidence for their cost-effectiveness and cost-savings. Currently, the only licensed vaccines for NTDs include those for yellow fever, dengue, and rabies, although several other NTD vaccines for hookworm disease, schistosomiasis, leishmaniasis, and Zika and Ebola virus infections are in different stages of clinical development, while others are at the preclinical development stage. With the exception of the viral NTD vaccines there so far has been minimal industry interest in the antipoverty vaccines, leaving their development to a handful of non-profit product development partnerships. The major scientific and geopolitical hurdles to antipoverty vaccine development are discussed, including a rising antivaccine ("antivax") movement now entering highly populated low- and middle-income countries.

  10. Assessment of an optimized manufacturing process for inactivated quadrivalent influenza vaccine: a phase III, randomized, double-blind, safety and immunogenicity study in children and adults.

    PubMed

    Claeys, Carine; Drame, Mamadou; García-Sicilia, José; Zaman, Khalequ; Carmona, Alfonso; Tran, Phu My; Miranda, Mariano; Martinón-Torres, Federico; Thollot, Franck; Horn, Michael; Schwarz, Tino F; Behre, Ulrich; Merino, José M; Sadowska-Krawczenko, Iwona; Szymański, Henryk; Schu, Peter; Neumeier, Elisabeth; Li, Ping; Jain, Varsha K; Innis, Bruce L

    2018-04-18

    GSK has modified the licensed monovalent bulk manufacturing process for its split-virion inactivated quadrivalent influenza vaccine (IIV4) to harmonize the process among different strains, resulting in an increased number of finished vaccine doses, while compensating for the change from inactivated trivalent influenza vaccine (IIV3) to IIV4. To confirm the manufacturing changes do not alter the profile of the vaccine, a clinical trial was conducted to compare IIV4 made by the currently licensed process with a vaccine made by the new (investigational) process (IIV4-I). The main objectives were to compare the reactogenicity and safety of IIV4-I versus IIV4 in all age groups, and to demonstrate the non-inferiority of the hemagglutination-inhibition (HI) antibody responses based on the geometric mean titer ratio of IIV4-I versus IIV4 in children. The Phase III, randomized, double-blind, multinational study included three cohorts: adults (18-49 years; N = 120), children (3-17 years; N = 821), and infants (6-35 months; N = 940). Eligible subjects in each cohort were randomized 1:1 to receive IIV4-I or IIV4. Both vaccines contained 15 μg of hemagglutinin antigen for each of the four seasonal virus strains. Adults and vaccine-primed children received one dose of vaccine, and vaccine-unprimed children received two doses of vaccine 28 days apart. All children aged ≥9 years were considered to be vaccine-primed and received one dose of vaccine. The primary immunogenicity objective of the study was met in demonstrating immunogenic non-inferiority of IIV4-I versus IIV4 in children. The IIV4-I was immunogenic against all four vaccine strains in each age cohort. The reactogenicity and safety profile of IIV4-I was similar to IIV4 in each age cohort, and there was no increase in the relative risk of fever (≥38 °C) with IIV4-I versus IIV4 within the 7-day post-vaccination period in infants (1.06; 95% Confidence Interval: 0.75, 1.50; p = 0.786). The study demonstrated that in adults, children, and infants, the IIV4-I made using an investigational manufacturing process was immunogenic with a reactogenicity and safety profile that was similar to licensed IIV4. These results support that the investigational process used to manufacture IIV4-I is suitable to replace the current licensed process. ClinicalTrials.gov: NCT02207413 ; trial registration date: August 4, 2014.

  11. Suspension culture process for H9N2 avian influenza virus (strain Re-2).

    PubMed

    Wang, Honglin; Guo, Suying; Li, Zhenguang; Xu, Xiaoqin; Shao, Zexiang; Song, Guicai

    2017-10-01

    H9N2 avian influenza virus has caused huge economic loss for the Chinese poultry industry since it was first identified. Vaccination is frequently used as a control method for the disease. Meanwhile suspension culture has become an important tool for the development of influenza vaccines. To optimize the suspension culture conditions for the avian influenza H9N2 virus (Re-2 strain) in Madin-Darby Canine Kidney (MDCK) cells, we studied the culture conditions for cell growth and proliferation parameters for H9N2 virus replication. MDCK cells were successfully cultured in suspension, from a small scale to industrial levels of production, with passage time and initial cell density being optimized. The influence of pH on the culture process in the reactor has been discussed and the process parameters for industrial production were explored via amplification of the 650L reactor. Subsequently, we cultivated cells at high cell density and harvested high amounts of virus, reaching 10log2 (1:1024). Furthermore an animal experiment was conducted to detect antibody. Compared to the chicken embryo virus vaccine, virus cultured from MDCK suspension cells can produce a higher amount of antibodies. The suspension culture process is simple and cost efficient, thus providing a solid foundation for the realization of large-scale avian influenza vaccine production.

  12. MALVAC 2012 scientific forum: accelerating development of second-generation malaria vaccines

    PubMed Central

    2012-01-01

    The World Health Organization (WHO) convened a malaria vaccines committee (MALVAC) scientific forum from 20 to 21 February 2012 in Geneva, Switzerland, to review the global malaria vaccine portfolio, to gain consensus on approaches to accelerate second-generation malaria vaccine development, and to discuss the need to update the vision and strategic goal of the Malaria Vaccine Technology Roadmap. This article summarizes the forum, which included reviews of leading Plasmodium falciparum vaccine candidates for pre-erythrocytic vaccines, blood-stage vaccines, and transmission-blocking vaccines. Other major topics included vaccine candidates against Plasmodium vivax, clinical trial site capacity development in Africa, trial design considerations for a second-generation malaria vaccine, adjuvant selection, and regulatory oversight functions including vaccine licensure. PMID:23140365

  13. Advances & challenges in leptospiral vaccine development.

    PubMed

    Bashiru, Garba; Bahaman, Abdul Rani

    2018-01-01

    Considerable progress has been made in the field of leptospiral vaccines development since its first use as a killed vaccine in guinea pigs. Despite the fact that the immunity conferred is restricted to serovars with closely related lipopolysaccharide antigen, certain vaccines have remained useful, especially in endemic regions, for the protection of high-risk individuals. Other conventional vaccines such as the live-attenuated vaccine and lipopolysaccharide (LPS) vaccine have not gained popularity due to the reactive response that follows their administration and the lack of understanding of the pathogenesis of leptospirosis. With the recent breakthrough and availability of complete genome sequences of Leptospira, development of novel vaccine including recombinant protein vaccine using reverse vaccinology approaches has yielded encouraging results. However, factors hindering the development of effective leptospiral vaccines include variation in serovar distribution from region to region, establishment of renal carrier status following vaccination and determination of the dose and endpoint titres acceptable as definitive indicators of protective immunity. In this review, advancements and progress made in LPS-based vaccines, killed- and live-attenuated vaccines, recombinant peptide vaccines and DNA vaccines against leptospirosis are highlighted.

  14. Delivering vaccines to the people who need them most

    PubMed Central

    Barocchi, Michèle Anne; Rappuoli, Rino

    2015-01-01

    Thanks to the Global Alliance for Vaccines and Immunization (GAVI), the Vaccine Fund and the Bill & Melinda Gates Foundation, the global health community has made enormous progress in providing already existing vaccines to developing countries. However, there still exists a gap to develop vaccines for which there is no market in the Western world, owing to low economic incentives for the private sector to justify the investments necessary for vaccine development. In many cases, industry has the technologies, but lacks the impetus to direct resources to develop these vaccine products. The present emergency with the Ebola vaccine provides us an excellent example where a vaccine was feasible several years ago, but the global health community waited for a humanitarian disaster to direct efforts and resources to develop this vaccine. In the beginning of 2015, the first large-scale trials of two experimental vaccines against Ebola virus disease have begun in West Africa. During the past few years, several institutions have dedicated efforts to the development of vaccines against diseases present only in low-income countries. These include the International Vaccine Institute, the Novartis Vaccines Institute for Global Health, the Hilleman Institute, the Sabin Vaccine Institute and the Infectious Disease Research Institute. Nevertheless, solving this problem requires a more significant global effort than that currently invested. These efforts include a clear policy, global coordination of funds dedicated to the development of neglected disease and an agreement on regulatory strategies and incentives for the private sector. PMID:25964460

  15. [Diphtheria in the military forces: lessons and current status of prophylaxis, prospects of epidemiological control process].

    PubMed

    Belov, A B; Ogarkov, P I

    2014-01-01

    We analyzed the epidemiological situation of diphtheria in the world and in Russia and experience of mass vaccination of military personnel and civil population with diphtheria toxoid for the last 50 years. Early diagnosis of diphtheria in military personnel has a prognostic value. Authors described the peculiarities of epidemiological process of diphtheria in military personnel in 80-90 years of 20th century and organizational aspects of mass vaccination with diphtheria toxoid. Authors analyzed current problems of epidemiology and prophylaxis of diphtheria in military personnel and civil population and possible developments. According to long-term prognosis authors mentioned the increase of morbidity and came to conclusion that it is necessary enhance the epidemiological surveillance. Authors presented prospect ways of improvement of vaccination and rational approaches to immunization of military personnel under positive long-term epidemiological situation.

  16. Consensus document on the approach to children with allergic reactions after vaccination or allergy to vaccine components.

    PubMed

    Echeverría-Zudaire, Luis A; Ortigosa-del Castillo, Luis; Alonso-Lebrero, Elena; Álvarez-García, Francisco J; Cortés-Álvarez, Nuria; García-Sánchez, Nuria; Martorell-Aragonés, Antonio

    2015-01-01

    Vaccinations are one of the main public health tools for the control of vaccine-preventable diseases. If a child is identified as having had an allergic reaction to a vaccine, subsequent immunisations will probably be suspended - with the risks such a decision implies. The incidence of severe allergic reactions is very low, ranging between 0.5 and 1 cases/100,000 doses. Rather than the vaccine antigens as such, the causes of allergic reactions to vaccines are often residual protein components of the manufacturing process such as gelatine or egg, and less commonly yeasts or latex. Most vaccine reactions are mild and circumscribed to the injection site; although in some cases severe anaphylactic reactions can be observed. If an immediate-type allergic reaction is suspected at vaccination, or if a child with allergy to some of the vaccine components is scheduled for vaccination, a correct diagnosis of the possible allergic process must be made. The usual vaccine components must be known in order to determine whether vaccination can be safely performed. Copyright © 2015 SEICAP. Published by Elsevier Espana. All rights reserved.

  17. Scientific challenges and opportunities in developing novel vaccines for the emerging and developing markets: New Technologies in Emerging Markets, October 16th-18th 2012, World Vaccine Congress, Lyon.

    PubMed

    Kochhar, Sonali

    2013-04-01

    Vaccines have had a major role in enhancing the quality of life and increasing life expectancy. Despite these successes and the development of new vaccine technologies, there remain multiple infectious diseases including AIDS, malaria and tuberculosis that require effective prophylactic vaccines. New and traditional technologies have a role in the development and delivery of the new vaccine candidates. The scientific challenges, opportunities and funding models for developing vaccines for low resource settings are highlighted here.

  18. Vaccine safety monitoring systems in developing countries: an example of the Vietnam model.

    PubMed

    Ali, Mohammad; Rath, Barbara; Thiem, Vu Dinh

    2015-01-01

    Only few health intervention programs have been as successful as vaccination programs with respect to preventing morbidity and mortality in developing countries. However, the success of a vaccination program is threatened by rumors and misunderstanding about the risks of vaccines. It is short-sighted to plan the introduction of vaccines into developing countries unless effective vaccine safety monitoring systems are in place. Such systems that track adverse events following immunization (AEFI) is currently lacking in most developing countries. Therefore, any rumor may affect the entire vaccination program. Public health authorities should implement the safety monitoring system of vaccines, and disseminate safety issues in a proactive mode. Effective safety surveillance systems should allow for the conduct of both traditional and alternative epidemiologic studies through the use of prospective data sets. The vaccine safety data link implemented in Vietnam in mid-2002 indicates that it is feasible to establish a vaccine safety monitoring system for the communication of vaccine safety in developing countries. The data link provided the investigators an opportunity to evaluate AEFI related to measles vaccine. Implementing such vaccine safety monitoring system is useful in all developing countries. The system should be able to make objective and clear communication regarding safety issues of vaccines, and the data should be reported to the public on a regular basis for maintaining their confidence in vaccination programs.

  19. Safety and immunogenicity of a modified process hepatitis B vaccine in healthy neonates.

    PubMed

    Minervini, Gianmaria; McCarson, Barbara J; Reisinger, Keith S; Martin, Jason C; Stek, Jon E; Atkins, Barbara M; Nadig, Karin B; Liska, Vladimir; Schödel, Florian P; Bhuyan, Prakash K

    2012-02-14

    A manufacturing process using a modified adjuvant was developed to optimize the consistency and immunogenicity for recombinant hepatitis B vaccine (control: RECOMBIVAX-HB™). This modified process hepatitis B vaccine (mpHBV), which was previously shown to have an acceptable safety and immunogenicity profile in young adults, has now been studied in newborn infants. Healthy 1-10-day-old neonates (N=566) received 3 intramuscular doses (5μg hepatitis B surface antigen [HBsAg] per dose) of either mpHBV or control at Day 1, and Months 1 and 6. Serum antibody to HBsAg (anti-HBs) was assayed at Month 7 (1 month Postdose 3). Anti-HBs geometric mean titers (GMTs) and seroprotection rates (SPRs) (% of subjects with an anti-HBs titer ≥10mIU/mL) were compared at Month 7. After each dose, injection-site adverse experiences (AEs) and axillary temperatures were recorded for 5 days; systemic AEs were recorded for Days 1-14. Month 7 SPR was 97.9% for the mpHBV group and 98.9% for the control. The GMT was 843.7mIU/mL for the mpHBV group and 670.1mIU/mL for the control. The GMT ratio (mpHBV/control) was 1.26 (95% confidence interval [CI]: 0.94, 1.69), meeting the prespecified non-inferiority criteria. The percentages of subjects reporting any AE, injection-site AEs, or systemic AEs were similar across the 2 vaccination groups. There were no serious AEs. The safety profile of mpHBV was comparable to that of the control vaccine. The geometric mean antibody titer for mpHBV was higher than control vaccine in this infant population, but the difference did not meet the predefined statistical criterion for superiority. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Outer membrane vesicles as platform vaccine technology

    PubMed Central

    Stork, Michiel; van der Ley, Peter

    2015-01-01

    Abstract Outer membrane vesicles (OMVs) are released spontaneously during growth by many Gram‐negative bacteria. They present a range of surface antigens in a native conformation and have natural properties like immunogenicity, self‐adjuvation and uptake by immune cells which make them attractive for application as vaccines against pathogenic bacteria. In particular with Neisseria meningitidis, they have been investigated extensively and an OMV‐containing meningococcal vaccine has recently been approved by regulatory agencies. Genetic engineering of the OMV‐producing bacteria can be used to improve and expand their usefulness as vaccines. Recent work on meningitis B vaccines shows that OMVs can be modified, such as for lipopolysaccharide reactogenicity, to yield an OMV product that is safe and effective. The overexpression of crucial antigens or simultaneous expression of multiple antigenic variants as well as the expression of heterologous antigens enable expansion of their range of applications. In addition, modifications may increase the yield of OMV production and can be combined with specific production processes to obtain high amounts of well‐defined, stable and uniform OMV particle vaccine products. Further improvement can facilitate the development of OMVs as platform vaccine product for multiple applications. PMID:26912077

  1. Designing the Expanded Programme on Immunisation (EPI) as a service: Prioritising patients over administrative logic.

    PubMed

    McKnight, Jacob; Holt, Douglas B

    2014-01-01

    Expanded Programme on Immunisation (EPI) vaccination rates remain well below herd immunity in regions of many countries despite huge international resources devoted to both financing and access. We draw upon service marketing theory, organisational sociology, development anthropology and cultural consumer research to conduct an ethnographic study of vaccination delivery in Jimma Zone, Ethiopia - one such region. We find that Western public health sector policies are dominated by an administrative logic. Critical failures in delivery are produced by a system that obfuscates the on-the-ground problems that mothers face in trying to vaccinate their children, while instead prioritising administrative processes. Our ethnographic analysis of 83 mothers who had not vaccinated their children reveals key barriers to vaccination from a 'customer' perspective. While mothers value vaccination, it is a 'low involvement' good compared to the acute daily needs of a subsistence life. The costs imposed by poor service - such as uncaring staff with class hostilities, unpredictable and missed schedules and long waits - are too much and so they forego the service. Our service design framework illuminates specific service problems from the mother's perspective and points towards simple service innovations that could improve vaccination rates in regions that have poor uptake.

  2. Enterovirus 71: a whole virion inactivated enterovirus 71 vaccine.

    PubMed

    Zhou, Yang; Li, Jing-Xin; Jin, Peng-Fei; Wang, Yu-Xiao; Zhu, Feng-Cai

    2016-07-01

    Enterovirus A71 (EV71) is the predominant causative agent of hand, foot, and mouth disease (HFMD), which is often associated with severe cases and even deaths. EV71-associated epidemics have emerged as a serious threat to public health, particularly in the Asia-Pacific region. We searched PubMed using the terms 'enterovirus 71', 'hand, foot, and mouth disease', and 'vaccine', with no date or language restrictions for all publications before April 27, 2016. Among various vaccine candidates, the alum-adjuvant inactivated EV71 vaccines are most promising. Three alum-adjuvant inactivated EV71 vaccines developed by mainland China showed high efficacy, good immunogenicity persistence and acceptable safety profiles in clinical trials. Recently, two of these EV71 vaccines have been approved for marketing in China and the other one is undergoing the review process of licensure. In this manuscript, we summarized previous study results as well as discussed the regulatory affairs and post-market surveillances issues. Expert commentary: The marketing of EV71 vaccines is a milestone in the controlling of HFMD. International clinical trials are needed to further assess the efficacy and cross-immunogenicity. Establishing a sensitive pathogen monitoring system would be essential to monitor the variation of genotypes and control HFMD epidemics.

  3. Monodisperse, Uniformly-Shaped Particles for Controlled Respiratory Vaccine Delivery

    NASA Astrophysics Data System (ADS)

    Fromen, Catherine Ann

    The majority of the world's most infectious diseases occur at the air-tissue interface called the mucosa, including HIV/AIDS, tuberculosis, measles, and bacterial or viral gut and respiratory infections. Despite this, vaccines have generally been developed for the systemic immune system and fail to provide protection at the mucosal site. Vaccine delivery directly to the lung mucosa could provide superior lung protection for many infectious diseases, such as TB or influenza, as well as systemic and therapeutic vaccines for diseases such as Dengue fever, asthma, or cancer. Specifically, precision engineered biomaterials are believed to offer tremendous opportunities for a new generation of vaccines. The goal of this approach is to leverage naturally occurring processes of the immune system to produce memory responses capable of rapidly destroy virulent pathogens without harmful exposure. Considerable knowledge of biomaterial properties and their interaction with the immune system of the lung is required for successful translation. The overall goal of this work was to fabricate and characterize nano- and microparticles using the Particle Replication In Non-wetting Templates (PRINT) fabrication technique and optimize them as pulmonary vaccine carriers. (Abstract shortened by ProQuest.).

  4. Live-vaccinia virus encapsulation in pH-sensitive polymer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal release.

    PubMed

    Kern, Aurelie; Zhou, Chensheng W; Jia, Feng; Xu, Qiaobing; Hu, Linden T

    2016-08-31

    The incidence of Lyme disease has continued to rise despite attempts to control its spread. Vaccination of zoonotic reservoirs of human pathogens has been successfully used to decrease the incidence of rabies in raccoons and foxes. We have previously reported on the efficacy of a vaccinia virus vectored vaccine to reduce carriage of Borrelia burgdorferi in reservoir mice and ticks. One potential drawback to vaccinia virus vectored vaccines is the risk of accidental infection of humans. To reduce this risk, we developed a process to encapsulate vaccinia virus with a pH-sensitive polymer that inactivates the virus until it is ingested and dissolved by stomach acids. We demonstrate that the vaccine is inactive both in vitro and in vivo until it is released from the polymer. Once released from the polymer by contact with an acidic pH solution, the virus regains infectivity. Vaccination with coated vaccinia virus confers protection against B. burgdorferi infection and reduction in acquisition of the pathogen by naïve feeding ticks. Copyright © 2016. Published by Elsevier Ltd.

  5. Influenza vaccines based on virus-like particles

    PubMed Central

    Kang, Sang-Moo; Song, Jae-Min; Quan, Fu-Shi; Compans, Richard W.

    2009-01-01

    The simultaneous expression of structural proteins of virus can produce virus-like particles (VLPs) by a self-assembly process in a viral life cycle even in the absence of genomic material. Taking an advantage of structural and morphological similarities of VLPs to native virions, VLPs have been suggested as a promising platform for new viral vaccines. In the light of a pandemic threat, influenza VLPs have been recently developed as a new generation of non-egg based cell culture-derived vaccine candidates against influenza infection. Animals vaccinated with VLPs containing hemagglutinin (HA) or HA and neuraminidase (NA) were protected from morbidity and mortality resulting from lethal influenza infections. Influenza VLPs serve as an excellent model system of an enveloped virus for understanding the properties of VLPs in inducing protective immunity. In this review, we briefly describe the characteristics of influenza VLPs assembled with a lipid bilayer containing glycoproteins, and summarize the current progress on influenza VLPs as an alternative vaccine candidate against seasonal as well as pandemic influenza viruses. In addition, the protective immune correlates induced by vaccination with influenza VLPs are discussed. PMID:19374929

  6. Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice.

    PubMed

    Altenburg, A F; Magnusson, S E; Bosman, F; Stertman, L; de Vries, R D; Rimmelzwaan, G F

    2017-10-01

    Because of the high variability of seasonal influenza viruses and the eminent threat of influenza viruses with pandemic potential, there is great interest in the development of vaccines that induce broadly protective immunity. Most probably, broadly protective influenza vaccines are based on conserved proteins, such as nucleoprotein (NP). NP is a vaccine target of interest as it has been shown to induce cross-reactive antibody and T cell responses. Here we tested and compared various NP-based vaccine preparations for their capacity to induce humoral and cellular immune responses to influenza virus NP. The immunogenicity of protein-based vaccine preparations with Matrix-M™ adjuvant as well as recombinant viral vaccine vector modified Vaccinia virus Ankara (MVA) expressing the influenza virus NP gene, with or without modifications that aim at optimization of CD8 + T cell responses, was addressed in BALB/c mice. Addition of Matrix-M™ adjuvant to NP wild-type protein-based vaccines significantly improved T cell responses. Furthermore, recombinant MVA expressing the influenza virus NP induced strong antibody and CD8 + T cell responses, which could not be improved further by modifications of NP to increase antigen processing and presentation. © 2017 British Society for Immunology.

  7. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus.

    PubMed

    Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang

    2016-01-18

    Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate's protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development.

  8. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus

    PubMed Central

    Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang

    2016-01-01

    Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate’s protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development. PMID:26777545

  9. European Vaccine Initiative: lessons from developing malaria vaccines.

    PubMed

    Geels, Mark J; Imoukhuede, Egeruan B; Imbault, Nathalie; van Schooten, Harry; McWade, Terry; Troye-Blomberg, Marita; Dobbelaer, Roland; Craig, Alister G; Leroy, Odile

    2011-12-01

    For over 10 years, the European Vaccine Initiative (EVI; European Malaria Vaccine Initiative until 2009) has contributed to the development of 24 malaria candidate vaccine antigens with 13 vaccine candidates being advanced into Phase I clinical trials, two of which have been transitioned for further clinical development in sub-Saharan Africa. Since its inception the EVI organization has operated as a funding agency, but with a clear service-oriented strategy. The scientific successes and difficulties encountered during these years and how these efforts have led to standardization and harmonization in vaccine development through large-scale European consortia are discussed. In the future, the EVI will remain instrumental in the pharmaceutical and clinical development of vaccines against 'diseases of poverty' with a continued focus on malaria. EVI will continue to focus on funding and managing preclinical evaluation up to Phase I/II clinical trials and strengthening the vaccine-development infrastructure in Europe, albeit with a global orientation.

  10. An updated methodology to review developing-country vaccine manufacturer viability.

    PubMed

    Luter, Nicholas; Kumar, Ritu; Hozumi, Dai; Lorenson, Tina; Larsen, Shannon; Gowda, Bhavya; Batson, Amie

    2017-07-05

    In 1997, Milstien, Batson, and Meaney published "A Systematic Method for Evaluating the Potential Viability of Local Vaccine Producers." The paper identified characteristics of successful vaccine manufacturers and developed a viability framework to evaluate their performance. This paper revisits the original study after two decades to determine the ability of the framework to predict manufacturer success. By reconstructing much of the original dataset and conducting in-depth interviews, the authors developed informed views on the continued viability of manufacturers in low- and middle-income country markets. Considering the marked changes in the market and technology landscape since 1997, the authors find the viability framework to be predictive and a useful lens through which to evaluate manufacturer success or failure. Of particular interest is how incumbent and potentially new developing-country vaccine manufacturers enter and sustain production in competitive international markets and how they integrate (or fail to integrate) new technology into the production process. Ultimately, most manufacturers will need to meet global quality standards to be viable. As governments and donors consider investments in vaccine producers, the updated viability factors will be a useful tool in evaluating the prospects of manufacturers over the mid to long term. The paper emphasizes that while up-front investments are important, other critical factors-including investments in a national regulatory authority, manufacturer independence, and ability to adapt and adopt new technology-are necessary to ensure viability. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Development and Regulation of Novel Influenza Virus Vaccines: A United States Young Scientist Perspective.

    PubMed

    Khurana, Surender

    2018-04-27

    Vaccination against influenza is the most effective approach for reducing influenza morbidity and mortality. However, influenza vaccines are unique among all licensed vaccines as they are updated and administered annually to antigenically match the vaccine strains and currently circulating influenza strains. Vaccine efficacy of each selected influenza virus vaccine varies depending on the antigenic match between circulating strains and vaccine strains, as well as the age and health status of the vaccine recipient. Low vaccine effectiveness of seasonal influenza vaccines in recent years provides an impetus to improve current seasonal influenza vaccines, and for development of next-generation influenza vaccines that can provide broader, long-lasting protection against both matching and antigenically diverse influenza strains. This review discusses a perspective on some of the issues and formidable challenges facing the development and regulation of the next-generation influenza vaccines.

  12. Expression, purification and re folding of a self-assembling protein nanoparticle (SAPN) malaria vaccine

    PubMed Central

    Guo, Qin; Dasgupta, Debleena; Doll, Tais A.P.F.; Burkhard, Peter; Lanar, David E.

    2013-01-01

    There are many ways to present antigens to the immune system. We have used a repetitive antigen display technology that relies on the self-assembly of 60 protein chains into a spherical self-assembling protein nanoparticle (SAPN) to develop a vaccine against Plasmodium falciparum malaria. The protein sequence contains selected B- and T-cell epitopes of the circumsporozoite protein of P. falciparum (PfCSP) and, when assembled into a nanoparticle induces strong, long-lived and protective immune responses against the PfCSP. Here we describe the conditions needed for promoting self-assembly of a P. falciparum vaccine nanoparticle, PfCSP-KMY-SAPN, and note pitfalls that may occur when determining conditions for other SAPN vaccines. Attention was paid to selecting processes that were amenable to scale up and cGMP manufacturing. PMID:23548672

  13. European union regulatory developments for new vaccine adjuvants and delivery systems.

    PubMed

    Sesardic, Dorothea; Dobbelaer, Roland

    2004-06-23

    Interest in vaccine adjuvants and new delivery systems has grown rapidly over the past few years. New vaccine candidates have emerged, which, because of their poor immunogenicity, rely on adjuvants to improve their presentation and targeting and to potentiate their protective immune response. Better understandings of the mechanisms of action, together with logistic and economical considerations have resulted in an explosion of technologies. However, there have been few new registered products for human use, and antigens incorporated into immunostimulating reconstituted influenza virosomes have only relatively recently been licensed in European Union (EU) countries. Influenza vaccine, adjuvanted with water in oil emulsion containing squalene (adjuvant MF59C1) is now also approved. Although current EU regulations focus on traditional adjuvants, notably aluminium and calcium salts, advances have been made in regulatory considerations. The European agency for the evaluation of medicinal products, through its working parties, is actively drafting guidance on requirements for the evaluation of new adjuvants in vaccines. This paper summarises the new developments in EU regulatory aspects relevant to adjuvant quality at development stages, during the manufacturing process, and at the final bulk stage of adjuvant with antigen, and also summarises regulatory expectation regarding safety at pre-clinical and clinical stages. The paper highlights the regulatory concerns and existing bottlenecks that have led to slow approval of new technologies.

  14. Outcomes, Approaches, and Challenges to Developing and Passing a Countywide Mandatory Vaccination Policy: St. Louis County's Experience with Hepatitis A Vaccine for Food Service Personnel.

    PubMed

    Rebmann, Terri; Wilson, Kristin D; Loux, Travis; Iqbal, Ayesha Z; Peters, Eleanor B; Peavler, Olivia

    2016-01-01

    In the early 1990s, St. Louis County had multiple foodservice worker-related hepatitis A outbreaks uncontrolled by standard outbreak interventions. Restaurant interest groups and the general public applied political pressure to local public health officials for more stringent interventions, including a mandatory vaccination policy. Local health departments can enact mandatory vaccination policies, but this has rarely been done. The study objectives were to describe the approach used to pass a mandatory vaccination policy at the local jurisdiction level and illustrate the outcome from this ordinance 15 years later. A case study design was used. In-depth, semi-structured interviews using guided questions were conducted in spring, 2015, with six key informants who had direct knowledge of the mandatory vaccination policy process. Meeting minutes and/or reports were also analyzed. A Poisson distribution analysis was used to calculate the rate of outbreaks before and after mandatory vaccination policy implementation. The policy appears to have reduced the number of hepatitis A outbreaks, lowering the morbidity and economic burden in St. Louis County. The lessons learned by local public health officials in passing a mandatory hepatitis A vaccination policy are important and relevant in today's environment. The experience and lessons learned may assist other local health departments when faced with the potential need for mandatory policies for any vaccine preventable disease.

  15. Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG.

    PubMed

    Reglinski, Mark; Lynskey, Nicola N; Choi, Yoon Jung; Edwards, Robert J; Sriskandan, Shiranee

    2016-04-01

    Despite over a century of research and the careful scrutiny of many promising targets, there is currently no vaccine available for the prevention of Streptococcus pyogenes infection. Through analysis of the protective, anti-streptococcal components of pooled human immunoglobulin, we previously identified ten highly conserved and invariant S. pyogenes antigens that contribute to anti-streptococcal immunity in the adult population. We sought to emulate population immunity to S. pyogenes through a process of active vaccination, using the antigens targeted by pooled human immunoglobulin. Seven targets were produced recombinantly and mixed to form a multicomponent vaccine (Spy7). Vaccinated mice were challenged with S. pyogenes isolates representing four globally relevant serotypes (M1, M3, M12 and M89) using an established model of invasive disease. Vaccination with Spy7 stimulated the production of anti-streptococcal antibodies, and limited systemic dissemination of M1 and M3 S. pyogenes from an intramuscular infection focus. Vaccination additionally attenuated disease severity due to M1 S. pyogenes as evidenced by reduction in weight loss, and modulated cytokine release. Spy7 vaccination successfully stimulated the generation of protective anti-streptococcal immunity in vivo. Identification of reactive antigens using pooled human immunoglobulin may represent a novel route to vaccine discovery for extracellular bacteria. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG

    PubMed Central

    Reglinski, Mark; Lynskey, Nicola N.; Choi, Yoon Jung; Edwards, Robert J.; Sriskandan, Shiranee

    2016-01-01

    Summary Objectives Despite over a century of research and the careful scrutiny of many promising targets, there is currently no vaccine available for the prevention of Streptococcus pyogenes infection. Through analysis of the protective, anti-streptococcal components of pooled human immunoglobulin, we previously identified ten highly conserved and invariant S. pyogenes antigens that contribute to anti-streptococcal immunity in the adult population. We sought to emulate population immunity to S. pyogenes through a process of active vaccination, using the antigens targeted by pooled human immunoglobulin. Methods Seven targets were produced recombinantly and mixed to form a multicomponent vaccine (Spy7). Vaccinated mice were challenged with S. pyogenes isolates representing four globally relevant serotypes (M1, M3, M12 and M89) using an established model of invasive disease. Results Vaccination with Spy7 stimulated the production of anti-streptococcal antibodies, and limited systemic dissemination of M1 and M3 S. pyogenes from an intramuscular infection focus. Vaccination additionally attenuated disease severity due to M1 S. pyogenes as evidenced by reduction in weight loss, and modulated cytokine release. Conclusion Spy7 vaccination successfully stimulated the generation of protective anti-streptococcal immunity in vivo. Identification of reactive antigens using pooled human immunoglobulin may represent a novel route to vaccine discovery for extracellular bacteria. PMID:26880087

  17. Outcomes, Approaches, and Challenges to Developing and Passing a Countywide Mandatory Vaccination Policy: St. Louis County's Experience with Hepatitis A Vaccine for Food Service Personnel

    PubMed Central

    Rebmann, Terri; Wilson, Kristin D.; Loux, Travis; Iqbal, Ayesha Z.; Peters, Eleanor B.; Peavler, Olivia

    2016-01-01

    In the early 1990s, St. Louis County had multiple foodservice worker-related hepatitis A outbreaks uncontrolled by standard outbreak interventions. Restaurant interest groups and the general public applied political pressure to local public health officials for more stringent interventions, including a mandatory vaccination policy. Local health departments can enact mandatory vaccination policies, but this has rarely been done. The study objectives were to describe the approach used to pass a mandatory vaccination policy at the local jurisdiction level and illustrate the outcome from this ordinance 15 years later. A case study design was used. In-depth, semi-structured interviews using guided questions were conducted in spring, 2015, with six key informants who had direct knowledge of the mandatory vaccination policy process. Meeting minutes and/or reports were also analyzed. A Poisson distribution analysis was used to calculate the rate of outbreaks before and after mandatory vaccination policy implementation. The policy appears to have reduced the number of hepatitis A outbreaks, lowering the morbidity and economic burden in St. Louis County. The lessons learned by local public health officials in passing a mandatory hepatitis A vaccination policy are important and relevant in today's environment. The experience and lessons learned may assist other local health departments when faced with the potential need for mandatory policies for any vaccine preventable disease. PMID:29546151

  18. A quantitative risk assessment of exposure to adventitious agents in a cell culture-derived subunit influenza vaccine.

    PubMed

    Gregersen, Jens-Peter

    2008-06-19

    A risk-assessment model has demonstrated the ability of a new cell culture-based vaccine manufacturing process to reduce the level of any adventitious agent to a million-fold below infectious levels. The cell culture-derived subunit influenza vaccine (OPTAFLU), Novartis Vaccines and Diagnostics) is produced using Madin-Darby canine kidney (MDCK) cells to propagate seasonal viral strains, as an alternative to embryonated chicken-eggs. As only a limited range of mammalian viruses can grow in MDCK cells, similar to embryonated eggs, MDCK cells can act as an effective filter for a wide range of adventitious agents that might be introduced during vaccine production. However, the introduction of an alternative cell substrate (for example, MDCK cells) into a vaccine manufacturing process requires thorough investigations to assess the potential for adventitious agent risk in the final product, in the unlikely event that contamination should occur. The risk assessment takes into account the entire manufacturing process, from initial influenza virus isolation, through to blending of the trivalent subunit vaccine and worst-case residual titres for the final vaccine formulation have been calculated for >20 viruses or virus families. Maximum residual titres for all viruses tested were in the range of 10(-6) to 10(-16) infectious units per vaccine dose. Thus, the new cell culture-based vaccine manufacturing process can reduce any adventitious agent to a level that is unable to cause infection.

  19. Workshop report: Malaria vaccine development in Europe--preparing for the future.

    PubMed

    Viebig, Nicola K; D'Alessio, Flavia; Draper, Simon J; Sim, B Kim Lee; Mordmüller, Benjamin; Bowyer, Paul W; Luty, Adrian J F; Jungbluth, Stefan; Chitnis, Chetan E; Hill, Adrian V S; Kremsner, Peter; Craig, Alister G; Kocken, Clemens H M; Leroy, Odile

    2015-11-17

    The deployment of a safe and effective malaria vaccine will be an important tool for the control of malaria and the reduction in malaria deaths. With the launch of the 2030 Malaria Vaccine Technology Roadmap, the malaria community has updated the goals and priorities for the development of such a vaccine and is now paving the way for a second phase of malaria vaccine development. During a workshop in Brussels in November 2014, hosted by the European Vaccine Initiative, key players from the European, North American and African malaria vaccine community discussed European strategies for future malaria vaccine development in the global context. The recommendations of the European malaria community should guide researchers, policy makers and funders of global health research and development in fulfilling the ambitious goals set in the updated Malaria Vaccine Technology Roadmap. Copyright © 2015.

  20. Delivering vaccines to the people who need them most.

    PubMed

    Barocchi, Michèle Anne; Rappuoli, Rino

    2015-06-19

    Thanks to the Global Alliance for Vaccines and Immunization (GAVI), the Vaccine Fund and the Bill & Melinda Gates Foundation, the global health community has made enormous progress in providing already existing vaccines to developing countries. However, there still exists a gap to develop vaccines for which there is no market in the Western world, owing to low economic incentives for the private sector to justify the investments necessary for vaccine development. In many cases, industry has the technologies, but lacks the impetus to direct resources to develop these vaccine products. The present emergency with the Ebola vaccine provides us an excellent example where a vaccine was feasible several years ago, but the global health community waited for a humanitarian disaster to direct efforts and resources to develop this vaccine. In the beginning of 2015, the first large-scale trials of two experimental vaccines against Ebola virus disease have begun in West Africa. During the past few years, several institutions have dedicated efforts to the development of vaccines against diseases present only in low-income countries. These include the International Vaccine Institute, the Novartis Vaccines Institute for Global Health, the Hilleman Institute, the Sabin Vaccine Institute and the Infectious Disease Research Institute. Nevertheless, solving this problem requires a more significant global effort than that currently invested. These efforts include a clear policy, global coordination of funds dedicated to the development of neglected disease and an agreement on regulatory strategies and incentives for the private sector. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Progress and challenges in TB vaccine development

    PubMed Central

    Voss, Gerald; Casimiro, Danilo; Neyrolles, Olivier; Williams, Ann; Kaufmann, Stefan H.E.; McShane, Helen; Hatherill, Mark; Fletcher, Helen A

    2018-01-01

    The Bacille Calmette Guerin (BCG) vaccine can provide decades of protection against tuberculosis (TB) disease, and although imperfect, BCG is proof that vaccine mediated protection against TB is a possibility. A new TB vaccine is, therefore, an inevitability; the question is how long will it take us to get there? We have made substantial progress in the development of vaccine platforms, in the identification of antigens and of immune correlates of risk of TB disease. We have also standardized animal models to enable head-to-head comparison and selection of candidate TB vaccines for further development.  To extend our understanding of the safety and immunogenicity of TB vaccines we have performed experimental medicine studies to explore route of administration and have begun to develop controlled human infection models. Driven by a desire to reduce the length and cost of human efficacy trials we have applied novel approaches to later stage clinical development, exploring alternative clinical endpoints to prevention of disease outcomes. Here, global leaders in TB vaccine development discuss the progress made and the challenges that remain. What emerges is that, despite scientific progress, few vaccine candidates have entered clinical trials in the last 5 years and few vaccines in clinical trials have progressed to efficacy trials. Crucially, we have undervalued the knowledge gained from our “failed” trials and fostered a culture of risk aversion that has limited new funding for clinical TB vaccine development. The unintended consequence of this abundance of caution is lack of diversity of new TB vaccine candidates and stagnation of the clinical pipeline. We have a variety of new vaccine platform technologies, mycobacterial antigens and animal and human models.  However, we will not encourage progression of vaccine candidates into clinical trials unless we evaluate and embrace risk in pursuit of vaccine development. PMID:29568497

  2. Progress and challenges in TB vaccine development.

    PubMed

    Voss, Gerald; Casimiro, Danilo; Neyrolles, Olivier; Williams, Ann; Kaufmann, Stefan H E; McShane, Helen; Hatherill, Mark; Fletcher, Helen A

    2018-01-01

    The Bacille Calmette Guerin (BCG) vaccine can provide decades of protection against tuberculosis (TB) disease, and although imperfect, BCG is proof that vaccine mediated protection against TB is a possibility. A new TB vaccine is, therefore, an inevitability; the question is how long will it take us to get there? We have made substantial progress in the development of vaccine platforms, in the identification of antigens and of immune correlates of risk of TB disease. We have also standardized animal models to enable head-to-head comparison and selection of candidate TB vaccines for further development.  To extend our understanding of the safety and immunogenicity of TB vaccines we have performed experimental medicine studies to explore route of administration and have begun to develop controlled human infection models. Driven by a desire to reduce the length and cost of human efficacy trials we have applied novel approaches to later stage clinical development, exploring alternative clinical endpoints to prevention of disease outcomes. Here, global leaders in TB vaccine development discuss the progress made and the challenges that remain. What emerges is that, despite scientific progress, few vaccine candidates have entered clinical trials in the last 5 years and few vaccines in clinical trials have progressed to efficacy trials. Crucially, we have undervalued the knowledge gained from our "failed" trials and fostered a culture of risk aversion that has limited new funding for clinical TB vaccine development. The unintended consequence of this abundance of caution is lack of diversity of new TB vaccine candidates and stagnation of the clinical pipeline. We have a variety of new vaccine platform technologies, mycobacterial antigens and animal and human models.  However, we will not encourage progression of vaccine candidates into clinical trials unless we evaluate and embrace risk in pursuit of vaccine development.

  3. Activism needed for vaccines to reach South.

    PubMed

    1998-06-30

    An AIDS vaccine remains the only feasible strategy for curbing the spread of HIV infection in resource-poor developing countries because of its low cost and logistic simplicity. However, the pace of vaccine development has been slowed by difficulties persuading pharmaceutical companies to invest time and money in such research. These companies do not perceive a financial advantage to vaccine development. The International AIDS Vaccine Initiative is attempting to create a market for an AIDS vaccine. It is also urging developing countries to develop their own vaccines so they have intellectual property rights. Any advances in this area will require political pressure from community activists.

  4. Human Vaccines & Immunotherapeutics: News

    PubMed Central

    Riedmann, Eva M

    2013-01-01

    Vaccinating boys against HPV to reduce cancer rates across the sexes New melanoma vaccine contains natural product from marine sponges Impact of Hib conjugate vaccines in developing countries Electronic Health Records to keep track of immunization status Pregnant women urged to get whooping cough vaccination New nano-coating developed to preserve vaccines Alternative approach to creating a universal flu vaccine New modular vaccine design: MAPS technology PMID:24051387

  5. Genetic engineering of live attenuated influenza viruses.

    PubMed

    Jin, Hong; Chen, Zhongying; Liu, Jonathan; Kemble, George

    2012-01-01

    The first live attenuated influenza vaccine (LAIV) was licensed in the USA in 2003; it is a trivalent vaccine composed of two type A (H1N1 and H3N2) and one type B influenza virus each at 10(7) fluorescent focus units (FFU). Each influenza vaccine strain is a reassortant virus that contains the hemagglutinin (HA) and neuraminidase (NA) gene segments from a wild-type influenza virus and the six internal protein gene segments from a master donor virus (MDV) of either cold-adapted A/Ann Arbor/6/60 or B/Ann Arbor/1/66. MDV confers the cold-adapted, temperature-sensitive, and attenuation phenotypes to the vaccine strains. The reassortant vaccine seeds are currently produced by reverse genetics and amplified in specific pathogen-free (SPF) 9-11 days old embryonated chicken eggs for manufacture. In addition, MDCK cell culture manufacture processes have been developed to produce LAIV for research use and with modifications for clinical and/or commercial grade material production.

  6. Virus vaccines: principles and prospects.

    PubMed Central

    Melnick, J. L.

    1989-01-01

    The present status of vaccination for controlling viral diseases is reviewed, and the needs and directions for future investigations are discussed. A survey of viral vaccines now in use has shown that knowledge about the viral agents and about the hosts' responses to infection was essential for their development. The steps needed to demonstrate the efficacy and safety of a viral vaccine are summarized; the final requirement for a successful vaccine is that it be administered in proper dosage and potency to the target populations. After general remarks on the proper use of current vaccines there follows an overview of various developments in creating new vaccines, along with the predicted time-frames for their coming into general use. Topics considered include vaccines to be administered locally at the portal of entry, subunit vaccines, viruses attenuated by genetic manipulation, use of viral vectors, vaccines developed by means of recombinant DNA, synthetic peptides, and anti-idiotype vaccines, as well as new vaccines being developed by more conventional methods. PMID:2663217

  7. History of vaccination.

    PubMed

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  8. Vaccine safety evaluation: Practical aspects in assessing benefits and risks.

    PubMed

    Di Pasquale, Alberta; Bonanni, Paolo; Garçon, Nathalie; Stanberry, Lawrence R; El-Hodhod, Mostafa; Tavares Da Silva, Fernanda

    2016-12-20

    Vaccines are different from most medicines in that they are administered to large and mostly healthy populations including infants and children, so there is a low tolerance for potential risks or side-effects. In addition, the long-term benefits of immunisation in reducing or eliminating infectious diseases may induce complacency due to the absence of cases. However, as demonstrated in recent measles outbreaks in Europe and United States, reappearance of the disease occurs as soon as vaccine coverage falls. Unfounded vaccine scares such as those associating the combined measles-mumps-rubella vaccine with autism, and whole-cell pertussis vaccines with encephalopathy, can also have massive impacts, resulting in reduced vaccine uptake and disease resurgence. The safety assessment of vaccines is exhaustive and continuous; beginning with non-clinical evaluation of their individual components in terms of purity, stability and sterility, continuing throughout the clinical development phase and entire duration of use of the vaccine; including post-approval. The breadth and depth of safety assessments conducted at multiple levels by a range of independent organizations increases confidence in the rigour with which any potential risks or side-effects are investigated and managed. Industry, regulatory agencies, academia, the medical community and the general public all play a role in monitoring vaccine safety. Within these stakeholder groups, the healthcare professional and vaccine provider have key roles in the prevention, identification, investigation and management of adverse events following immunisation (AEFI). Guidelines and algorithms aid in determining whether AEFI may have been caused by the vaccine, or whether it is coincidental to it. Healthcare providers are encouraged to rigorously investigate AEFIs and to report them via local reporting processes. The ultimate objective for all parties is to ensure vaccines have a favourable benefit-risk profile. Copyright © 2016. Published by Elsevier Ltd.

  9. Leptin-based adjuvants: an innovative approach to improve vaccine response.

    PubMed

    White, Sarah J; Taylor, Matthew J; Hurt, Ryan T; Jensen, Michael D; Poland, Gregory A

    2013-03-25

    Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥30 kg/m(2)) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin's role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Australian model of immunization advice and vaccine funding.

    PubMed

    Nolan, Terry M

    2010-04-19

    The Australian Government has implemented new arrangements for public funding of vaccines over the past 5 years. By utilising the standard Pharmaceutical Benefits Advisory Committee (PBAC) application process, whether for funding under the National Immunisation Program Schedule (NIP) or under the Pharmaceutical Benefits Scheme (PBS), a predictable and transparent process for vaccine funding recommendations has been established. This process uses the high-level technical resources available through the Australian Technical Advisory Group on Immunisation (ATAGI) to ensure that both vaccine manufacturers and the PBAC are optimally informed about all relevant aspects of population benefits and delivery of vaccines. ATAGI has a long-standing and mutually beneficial dialogue with State and Territory Governments, providers, and vaccine manufacturers to ensure that pipeline awareness, supply issues, and all relevant scientific and clinical details are well understood. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Predictors to parental knowledge about childhood immunisation/EPI vaccines in two health districts in Cameroon prior to the introduction of 13-valent Pneumococcal Conjugate Vaccines (PCV-13)

    PubMed Central

    Libwea, John Njuma; Kobela, Marie; Ollgren, Jukka; Emah, Irene; Tchio, Robert; Nohynek, Hanna

    2014-01-01

    Introduction Pneumonia is vaccine-preventable, but the increasing death toll resulting from the disease in Sub-Saharan Africa is alarming. Several factors account for vaccine failing to reach every child, besides incomplete vaccine coverage. Most of these include the perceptions of parents/guardians and healthcare providers. Previous studies on the introduction of new vaccines have focused on experimental trials, coverage figures and vaccine efficacy in developed countries. Little is known on the factors which may hinder the implementation process despite the huge challenges this may encounter in developing countries. This study described the knowledge, attitude and practices (KAP) of parents/guardians on pneumonia and immunisations/EPI vaccines; identify predictive parental socio-economic/demographic characteristics that of good knowledge on pneumonia infections, routine EPI vaccines and the PCV-13. Finally, the study described health center personnel perceptions about immunisations. Methods The WHO's immunisation coverage cluster survey design was used, involving parents/guardians (n = 205) of children aged 0-59 months and health centre personnel (n = 13) directly concerned with vaccination activities between July-September 2010 in two health districts in Yaounde, Cameroon. Descriptive statistics and multivariate logistic models were used to analyse the parental/guardian data while the health personnel data was only analysed descriptively using SPSS version 17.0. Results Only 19% of the parents/guardians were aware of the availability of the PCV-13. Logistic modelling identified important associations between parental socio-economic/demographic factors and good knowledge on pneumonia disease burden and prevention. Conclusion According to parents/guardians a short and clear message on the dangers of pneumonia and the need for prevention provided to parents/guardians during sensitisation/out-reach campaigns and use of social network avenues would be primordial, if the PCV-13 is to reach every child. PMID:25396013

  12. Vector-based genetically modified vaccines: Exploiting Jenner's legacy.

    PubMed

    Ramezanpour, Bahar; Haan, Ingrid; Osterhaus, Ab; Claassen, Eric

    2016-12-07

    The global vaccine market is diverse while facing a plethora of novel developments. Genetic modification (GM) techniques facilitate the design of 'smarter' vaccines. For many of the major infectious diseases of humans, like AIDS and malaria, but also for most human neoplastic disorders, still no vaccines are available. It may be speculated that novel GM technologies will significantly contribute to their development. While a promising number of studies is conducted on GM vaccines and GM vaccine technologies, the contribution of GM technology to newly introduced vaccines on the market is disappointingly limited. In this study, the field of vector-based GM vaccines is explored. Data on currently available, actually applied, and newly developed vectors is retrieved from various sources, synthesised and analysed, in order to provide an overview on the use of vector-based technology in the field of GM vaccine development. While still there are only two vector-based vaccines on the human vaccine market, there is ample activity in the fields of patenting, preclinical research, and different stages of clinical research. Results of this study revealed that vector-based vaccines comprise a significant part of all GM vaccines in the pipeline. This study further highlights that poxviruses and adenoviruses are among the most prominent vectors in GM vaccine development. After the approval of the first vectored human vaccine, based on a flavivirus vector, vaccine vector technology, especially based on poxviruses and adenoviruses, holds great promise for future vaccine development. It may lead to cheaper methods for the production of safe vaccines against diseases for which no or less perfect vaccines exist today, thus catering for an unmet medical need. After the introduction of Jenner's vaccinia virus as the first vaccine more than two centuries ago, which eventually led to the recent eradication of smallpox, this and other viruses may now be the basis for constructing vectors that may help us control other major scourges of mankind. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Design and performance prediction of solar adsorption cooling for mobile vaccine refrigerator

    NASA Astrophysics Data System (ADS)

    Djubaedah, Euis; Taufan, Andi; Ratnasari, Nadhira; Fahrizal, Adjie; Hamidi, Qayyum; Nasruddin

    2017-03-01

    Adsorption cooling is a process that uses a drop-in pressure caused by the adsorption of adsorbate by adsorbent. Adsorption process creates a pressure drop which can bring down the temperature to the intended condition. This approach can be used in vaccine transportation as the vaccines need to be stored at low temperatures (2°C to 8°C for preserving vaccines). The pressure decrease can be obtained by adsorption water in zeolites and can also produce the temperature drop in the main chamber. The adsorption process of water will decrease until reaching saturation condition. Heat is needed to keep the system continuous as it starts a desorption process. From the simulation using MATLAB, it is found that the mobile vaccine refrigerator can reach the temperature of 2°C in 180 seconds with the amount of cooling power generated is up to 1530 W. The insulation can hold the allowable temperature range inside the vaccine cabin for 15.6795 hours.

  14. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    PubMed

    Golden, Joseph W; Josleyn, Matthew; Mucker, Eric M; Hung, Chien-Fu; Loudon, Peter T; Wu, T C; Hooper, Jay W

    2012-01-01

    Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  15. Side-by-Side Comparison of Gene-Based Smallpox Vaccine with MVA in Nonhuman Primates

    PubMed Central

    Golden, Joseph W.; Josleyn, Matthew; Mucker, Eric M.; Hung, Chien-Fu; Loudon, Peter T.; Wu, T. C.; Hooper, Jay W.

    2012-01-01

    Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA. PMID:22860117

  16. Exploring racial influences on flu vaccine attitudes and behavior: Results of a national survey of White and African American adults.

    PubMed

    Quinn, Sandra Crouse; Jamison, Amelia; Freimuth, Vicki S; An, Ji; Hancock, Gregory R; Musa, Donald

    2017-02-22

    Racial disparities in adult flu vaccination rates persist with African Americans falling below Whites in vaccine acceptance. Although the literature has examined traditional variables including barriers, access, attitudes, among others, there has been virtually no examination of the extent to which racial factors including racial consciousness, fairness, and discrimination may affect vaccine attitudes and behaviors. We contracted with GfK to conduct an online, nationally representative survey with 819 African American and 838 White respondents. Measures included risk perception, trust, vaccine attitudes, hesitancy and confidence, novel measures on racial factors, and vaccine behavior. There were significant racial differences in vaccine attitudes, risk perception, trust, hesitancy and confidence. For both groups, racial fairness had stronger direct effects on the vaccine-related variables with more positive coefficients associated with more positive vaccine attitudes. Racial consciousness in a health care setting emerged as a more powerful influence on attitudes and beliefs, particularly for African Americans, with higher scores on racial consciousness associated with lower trust in the vaccine and the vaccine process, higher perceived vaccine risk, less knowledge of flu vaccine, greater vaccine hesitancy, and less confidence in the flu vaccine. The effect of racial fairness on vaccine behavior was mediated by trust in the flu vaccine for African Americans only (i.e., higher racial fairness increased trust in the vaccine process and thus the probability of getting a flu vaccine). The effect of racial consciousness and discrimination for African Americans on vaccine uptake was mediated by perceived vaccine risk and flu vaccine knowledge. Racial factors can be a useful new tool for understanding and addressing attitudes toward the flu vaccine and actual vaccine behavior. These new concepts can facilitate more effective tailored and targeted vaccine communications. Copyright © 2016. Published by Elsevier Ltd.

  17. Tools and approaches to ensure quality of vaccines throughout the cold chain.

    PubMed

    Kartoglu, Umit; Milstien, Julie

    2014-07-01

    The Expanded Program on Immunization was designed 40 years ago for two types of vaccines: those that are heat stable but freeze sensitive and those that are stable to freezing but heat labile. A cold chain was developed for transport and storage of such vaccines and established in all countries, despite limited access to resources and electricity in the poorest areas. However, cold chain problems occur in all countries. Recent changes to vaccines and vaccine handling include development and introduction of new vaccines with a wide range of characteristics, improvement of heat stability of several basic vaccines, observation of vaccine freezing as a real threat, development of regulatory pathways for both vaccine development and the supply chain, and emergence of new temperature monitoring devices that can pinpoint and avoid problems. With such tools, public health groups have now encouraged development of vaccines labeled for use in flexible cold chains and these tools should be considered for future systems.

  18. Tools and approaches to ensure quality of vaccines throughout the cold chain

    PubMed Central

    Kartoglu, Umit; Milstien, Julie

    2014-01-01

    The Expanded Program on Immunization was designed 40 years ago for two types of vaccines: those that are heat stable but freeze sensitive and those that are stable to freezing but heat labile. A cold chain was developed for transport and storage of such vaccines and established in all countries, despite limited access to resources and electricity in the poorest areas. However, cold chain problems occur in all countries. Recent changes to vaccines and vaccine handling include development and introduction of new vaccines with a wide range of characteristics, improvement of heat stability of several basic vaccines, observation of vaccine freezing as a real threat, development of regulatory pathways for both vaccine development and the supply chain, and emergence of new temperature monitoring devices that can pinpoint and avoid problems. With such tools, public health groups have now encouraged development of vaccines labeled for use in flexible cold chains and these tools should be considered for future systems. PMID:24865112

  19. Global Vaccine and Immunization Research Forum: Opportunities and challenges in vaccine discovery, development, and delivery.

    PubMed

    Ford, Andrew Q; Touchette, Nancy; Hall, B Fenton; Hwang, Angela; Hombach, Joachim

    2016-03-18

    The World Health Organization, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, and the Bill & Melinda Gates Foundation convened the first Global Vaccine and Immunization Research Forum (GVIRF) in March 2014. This first GVIRF aimed to track recent progress of the Global Vaccine Action Plan research and development agenda, identify opportunities and challenges, promote partnerships in vaccine research, and facilitate the inclusion of all stakeholders in vaccine research and development. Leading scientists, vaccine developers, and public health officials from around the world discussed scientific and technical challenges in vaccine development, research to improve the impact of immunization, and regulatory issues. This report summarizes the discussions and conclusions from the forum participants. Copyright © 2016. Published by Elsevier Ltd.. All rights reserved.

  20. Dry-Coated Live Viral Vector Vaccines Delivered by Nanopatch Microprojections Retain Long-Term Thermostability and Induce Transgene-Specific T Cell Responses in Mice

    PubMed Central

    Pearson, Frances E.; McNeilly, Celia L.; Crichton, Michael L.; Primiero, Clare A.; Yukiko, Sally R.; Fernando, Germain J. P.; Chen, Xianfeng; Gilbert, Sarah C.; Hill, Adrian V. S.; Kendall, Mark A. F.

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara – two vectors under evaluation for the delivery of malaria antigens to humans – were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8+ T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates. PMID:23874462

  1. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  2. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice.

    PubMed

    Pearson, Frances E; McNeilly, Celia L; Crichton, Michael L; Primiero, Clare A; Yukiko, Sally R; Fernando, Germain J P; Chen, Xianfeng; Gilbert, Sarah C; Hill, Adrian V S; Kendall, Mark A F

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.

  3. Design and optimization of a chromatographic purification process for Streptococcus pneumoniae serotype 23F capsular polysaccharide by a Design of Experiments approach.

    PubMed

    Ji, Yu; Tian, Yang; Ahnfelt, Mattias; Sui, Lili

    2014-06-27

    Multivalent pneumococcal vaccines were used worldwide to protect human beings from pneumococcal diseases. In order to eliminate the toxic organic solutions used in the traditional vaccine purification process, an alternative chromatographic process for Streptococcus pneumoniae serotype 23F capsular polysaccharide (CPS) was proposed in this study. The strategy of Design of Experiments (DoE) was introduced into the process development to solve the complicated design procedure. An initial process analysis was given to review the whole flowchart, identify the critical factors of chromatography through FMEA and chose the flowthrough mode due to the property of the feed. A resin screening study was then followed to select candidate resins. DoE was utilized to generate a resolution IV fractional factorial design to further compare candidates and narrow down the design space. After Capto Adhere was selected, the Box-Behnken DoE was executed to model the process and characterize all effects of factors on the responses. Finally, Monte Carlo simulation was used to optimize the process, test the chosen optimal conditions and define the control limit. The results of three scale-up runs at set points verified the DoE and simulation predictions. The final results were well in accordance with the EU pharmacopeia requirements: Protein/CPS (w/w) 1.08%; DNA/CPS (w/w) 0.61%; the phosphorus content 3.1%; the nitrogen 0.315% and the Methyl-pentose percentage 47.9%. Other tests of final pure CPS also met the pharmacopeia specifications. This alternative chromatographic purification process for pneumococcal vaccine without toxic organic solvents was successfully developed by the DoE approach and proved scalability, robustness and suitability for large scale manufacturing. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Gavi's Transition Policy: Moving From Development Assistance To Domestic Financing Of Immunization Programs.

    PubMed

    Kallenberg, Judith; Mok, Wilson; Newman, Robert; Nguyen, Aurélia; Ryckman, Theresa; Saxenian, Helen; Wilson, Paul

    2016-02-01

    Gavi, the Vaccine Alliance, was created in 2000 to accelerate the introduction of new and underused vaccines in lower-income countries. The period 2000-15 was marked by the rapid uptake of new vaccines in more than seventy countries eligible for Gavi support. To stay focused on the poorest countries, Gavi's support phases out after countries' gross national income per capita surpasses a set threshold, which requires governments to assume responsibility for the continued financing of vaccines introduced with Gavi support. Gavi's funding will end in the period 2016-20 for nineteen countries that have exceeded the eligibility threshold. To avoid disrupting lifesaving immunization programs and to ensure the long-term sustainable impact of Gavi's investments, it is vital that governments succeed in transitioning from development assistance to domestic financing of immunization programs. This article discusses some of the challenges facing countries currently transitioning out of Gavi support, how Gavi's policies have evolved to help manage the risks involved in this process, and the lessons learned from this experience. Project HOPE—The People-to-People Health Foundation, Inc.

  5. Standardization and assessment of cell culture media quantities in roller poly ethylene terephthalate bottles employed in the industrial rabies viral vaccine production.

    PubMed

    Jagannathan, S; Chaansha, S; Rajesh, K; Santhiya, T; Charles, C; Venkataramana, K N

    2009-09-15

    Vero cells are utilized for production of rabies vaccine. This study deals with the optimize quantity media require for the rabies vaccine production in the smooth roller surface. The rabies virus (Pasteur vaccine strain) is infected to monolayer of the various experimented bottles. To analyze the optimal quantity of media for the production of rabies viral harvest during the process of Vero cell derived rabies vaccine. The trials are started from 200 to 400 mL (PTARV-1, PTARV-2, PTARV-3, PTARV-4 and PTARV-5). The samples are taken in an appropriate time intervals for analysis of In Process Quality Control (IPQC) tests. The collected viral harvests are further processed to rabies vaccine in a pilot level and in addition to scale up an industrial level. Based on the evaluation the PTARV-2 (250 mL) show highly encouraging results for the Vero cell derived rabies vaccine production.

  6. Vaccines against enteric infections for the developing world.

    PubMed

    Czerkinsky, Cecil; Holmgren, Jan

    2015-06-19

    Since the first licensure of the Sabin oral polio vaccine more than 50 years ago, only eight enteric vaccines have been licensed for four disease indications, and all are given orally. While mucosal vaccines offer programmatically attractive tools for facilitating vaccine deployment, their development remains hampered by several factors: -limited knowledge regarding the properties of the gut immune system during early life; -lack of mucosal adjuvants, limiting mucosal vaccine development to live-attenuated or killed whole virus and bacterial vaccines; -lack of correlates/surrogates of mucosal immune protection; and -limited knowledge of the factors contributing to oral vaccine underperformance in children from developing countries. There are now reasons to believe that the development of safe and effective mucosal adjuvants and of programmatically sound intervention strategies could enhance the efficacy of current and next-generation enteric vaccines, especially in lesser developed countries which are often co-endemic for enteric infections and malnutrition. These vaccines must be safe and affordable for the world's poorest, confer long-term protection and herd immunity, and must be able to contain epidemics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Vaccines against enteric infections for the developing world

    PubMed Central

    Czerkinsky, Cecil; Holmgren, Jan

    2015-01-01

    Since the first licensure of the Sabin oral polio vaccine more than 50 years ago, only eight enteric vaccines have been licensed for four disease indications, and all are given orally. While mucosal vaccines offer programmatically attractive tools for facilitating vaccine deployment, their development remains hampered by several factors: —limited knowledge regarding the properties of the gut immune system during early life;—lack of mucosal adjuvants, limiting mucosal vaccine development to live-attenuated or killed whole virus and bacterial vaccines;—lack of correlates/surrogates of mucosal immune protection; and—limited knowledge of the factors contributing to oral vaccine underperformance in children from developing countries.There are now reasons to believe that the development of safe and effective mucosal adjuvants and of programmatically sound intervention strategies could enhance the efficacy of current and next-generation enteric vaccines, especially in lesser developed countries which are often co-endemic for enteric infections and malnutrition. These vaccines must be safe and affordable for the world's poorest, confer long-term protection and herd immunity, and must be able to contain epidemics. PMID:25964464

  8. Tuberculosis vaccine development: recent progress.

    PubMed

    Orme, I M; McMurray, D N; Belisle, J T

    2001-03-01

    Recent years have seen a renewed effort to develop new vaccines against tuberculosis. As a result, several promising avenues of research have developed, including the production of recombinant vaccines, auxotrophic vaccines, DNA vaccines and subunit vaccines. In this article we briefly review this work, as well as consider the pros and cons of the animal models needed to test these new vaccines. Screening to date has been carried out in mouse and guinea pig models, which have been used to obtain basic information such as the effect of the vaccine on bacterial load, and whether the vaccine can prevent or reduce lung pathology. The results to date lead us to be optimistic that new candidate vaccines could soon be considered for evaluation in clinical trials.

  9. Roads to the development of improved pertussis vaccines paved by immunology

    PubMed Central

    Brummelman, Jolanda; Wilk, Mieszko M.; Han, Wanda G.H.; van Els, Cécile A.C.M.; Mills, Kingston H.G.

    2015-01-01

    Current acellular pertussis vaccines have various shortcomings, which may contribute to their suboptimal efficacy and waning immunity in vaccinated populations. This calls for the development of new pertussis vaccines capable of inducing long-lived protective immunity. Immunization with whole cell pertussis vaccines and natural infection with Bordetella pertussis induce distinct and more protective immune responses when compared with immunization with acellular pertussis vaccines. Therefore, the immune responses induced with whole cell vaccine or after infection can be used as a benchmark for the development of third-generation vaccines against pertussis. Here, we review the literature on the immunology of B. pertussis infection and vaccination and discuss the lessons learned that will help in the design of improved pertussis vaccines. PMID:26347400

  10. Rhodococcus equi (Prescottella equi) vaccines; the future of vaccine development.

    PubMed

    Giles, C; Vanniasinkam, T; Ndi, S; Barton, M D

    2015-09-01

    For decades researchers have been targeting prevention of Rhodococcus equi (Rhodococcus hoagui/Prescottella equi) by vaccination and the horse breeding industry has supported the ongoing efforts by researchers to develop a safe and cost effective vaccine to prevent disease in foals. Traditional vaccines including live, killed and attenuated (physical and chemical) vaccines have proved to be ineffective and more modern molecular-based vaccines including the DNA plasmid, genetically attenuated and subunit vaccines have provided inadequate protection of foals. Newer, bacterial vector vaccines have recently shown promise for R. equi in the mouse model. This article describes the findings of key research in R. equi vaccine development and looks at alternative methods that may potentially be utilised. © 2014 EVJ Ltd.

  11. Application of pharmacogenomics to vaccines

    PubMed Central

    Poland, Gregory A; Ovsyannikova, Inna G; Jacobson, Robert M

    2009-01-01

    The field of pharmacogenomics and pharmacogenetics provides a promising science base for vaccine research and development. A broad range of phenotype/genotype data combined with high-throughput genetic sequencing and bioinformatics are increasingly being integrated into this emerging field of vaccinomics. This paper discusses the hypothesis of the ‘immune response gene network’ and genetic (and bioinformatic) strategies to study associations between immune response gene polymorphisms and variations in humoral and cellular immune responses to prophylactic viral vaccines, such as measles–mumps–rubella, influenza, HIV, hepatitis B and smallpox. Immunogenetic studies reveal promising new vaccine targets by providing a better understanding of the mechanisms by which gene polymorphisms may influence innate and adaptive immune responses to vaccines, including vaccine failure and vaccine-associated adverse events. Additional benefits from vaccinomic studies include the development of personalized vaccines, the development of novel vaccines and the development of novel vaccine adjuvants. PMID:19450131

  12. A review of vaccine development and research for industry animals in Korea

    PubMed Central

    Lee, Nak-Hyung; Lee, Jung-Ah; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo

    2012-01-01

    Vaccination has proven to be the most cost-effective strategy for controlling a wide variety of infectious diseases in humans and animals. For the last decade, veterinary vaccines have been substantially developed and demonstrated their effectiveness against many diseases. Nevertheless, new vaccines are greatly demanded to effectively control newly- and re-emerging pathogens in livestock. However, development of veterinary vaccines is a challenging task, in part, due to a variety of pathogens, hosts, and the uniqueness of host-susceptibility to each pathogen. Therefore, novel concepts of vaccines should be explored to overcome the limitation of conventional vaccines. There have been greatly advanced in the completion of genomic sequencing of pathogens, the application of comparative genomic and transcriptome analysis. This would facilitate to open opportunities up to investigate a new generation of vaccines; recombinant subunit vaccine, virus-like particle, DNA vaccine, and vector-vehicle vaccine. Currently, such types of vaccines are being actively explored against various livestock diseases, affording numerous advantages over conventional vaccines, including ease of production, immunogenicity, safety, and multivalency in a single shot. In this articles, the authors present the current status of the development of veterinary vaccines at large as well as research activities conducted in Korea. PMID:23596575

  13. Vaccines against human diarrheal pathogens

    PubMed Central

    Böhles, Nathalie; Böhles, Nathalie; Busch, Kim; Busch, Kim; Hensel, Michael; Hensel, Michael

    2014-01-01

    Worldwide, nearly 1.7 billion people per year contract diarrheal infectious diseases (DID) and almost 760 000 of infections are fatal. DID are a major problem in developing countries where poor sanitation prevails and food and water may become contaminated by fecal shedding. Diarrhea is caused by pathogens such as bacteria, protozoans and viruses. Important diarrheal pathogens are Vibrio cholerae, Shigella spp. and rotavirus, which can be prevented with vaccines for several years. The focus of this review is on currently available vaccines against these three pathogens, and on development of new vaccines. Currently, various types of vaccines based on traditional (killed, live attenuated, toxoid or conjugate vaccines) and reverse vaccinology (DNA/mRNA, vector, recombinant subunit, plant vaccines) are in development or already available. Development of new vaccines demands high levels of knowledge, experience, budget, and time, yet promising new vaccines often fail in preclinical and clinical studies. Efficacy of vaccination also depends on the route of delivery, and mucosal immunization in particular is of special interest for preventing DID. Furthermore, adjuvants, delivery systems and other vaccine components are essential for an adequate immune response. These aspects will be discussed in relation to the improvement of existing and development of new vaccines against DID. PMID:24861668

  14. Prioritizing vaccines for developing world diseases.

    PubMed

    Saul, Allan; O'Brien, Katherine L

    2017-01-20

    A major disparity in the burden of health will need to be addressed to achieve the "Grand Convergence" by 2035. In particular people living in low and middle income countries have a much higher burden of infectious diseases. Although vaccines have been very effective in reducing the global burden of infectious disease, there are no registered vaccines to address 60% of the current burden of infectious disease, especially in developing countries. Thus there is a pressing need for new vaccines and for prioritizing vaccine development given that resources for developing new vaccines are strictly limited. As part of the GLOBAL HEALTH 2035: Mission Grand Convergence meeting one working group assessed the SMART vaccine algorithm as a mechanism for prioritizing vaccine development for diseases of priority in the developing world. In particular, the working group considered which criteria in the standard SMART set were considered "key" criteria and whether other criteria should be considered, when prioritizing vaccines for this important set of countries. Copyright © 2016. Published by Elsevier Ltd.

  15. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome

    PubMed Central

    Jiang, Shibo; Bottazzi, Maria Elena; Du, Lanying; Lustigman, Sara; Tseng, Chien-Te Kent; Curti, Elena; Jones, Kathryn; Zhan, Bin; Hotez, Peter J

    2013-01-01

    A subunit vaccine, RBD-S, is under development to prevent severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV), which is classified by the US NIH as a category C pathogen. This vaccine is comprised of a recombinant receptor-binding domain (RBD) of the SARS-CoV spike (S) protein and formulated on alum, together with a synthetic glucopyranosyl lipid A. The vaccine would induce neutralizing antibodies without causing Th2-type immunopathology. Vaccine development is being led by the nonprofit product development partnership; Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development in collaboration with two academic partners (the New York Blood Center and University of Texas Medical Branch); an industrial partner (Immune Design Corporation); and Walter Reed Army Institute of Research. A roadmap for the product development of the RBD-S SARS vaccine is outlined with a goal to manufacture the vaccine for clinical testing within the next 5 years. PMID:23252385

  16. A fresh injection of interest for vaccines.

    PubMed

    1998-02-01

    In recent years, HIV/AIDS funding has gone largely to prevention measures, drug therapy for people who are already infected with HIV, and basic related science. HIV/AIDS vaccine development has been of only low priority, and almost no effort is targeted toward vaccines appropriate for use in developing countries. A vaccine, however, is theoretically the only way to end the epidemic. An attempt was made at the Abidjan AIDS Conference to reinvigorate the AIDS vaccine research program, but because the potential market for such a vaccine is in the poorer developing countries, it will be difficult to convince the pharmaceutical industry to renew investment in vaccine research. Pharmaceutical companies see no profit potential in vaccine development and marketing. The World Bank's suggestion on how to encourage the pharmaceutical industry to invest again in vaccine research is discussed. The gp120(E) vaccine is undergoing an early-stage trial in Thailand, and another trial is scheduled for later in 1998 in Uganda. However, none of the 25 possible vaccine types which have been developed in the laboratory and tested for safety on humans has gone into efficacy trials. Experts calculate that even if more intensive work were to begin now, a vaccine could not become generally available before 2005, due to the 8-year product evaluation cycle. Whether a vaccine based upon one HIV subtype will be effective against other subtypes, and the need for governments and donors to invest in the development of a vaccine are discussed.

  17. Virus Characterization by FFF-MALS Assay

    NASA Astrophysics Data System (ADS)

    Razinkov, Vladimer

    2009-03-01

    Adequate biophysical characterization of influenza virions is important for vaccine development. The influenza virus vaccines are produced from the allantoic fluid of developing chicken embryos. The process of viral replication produces a heterogeneous mixture of infectious and non-infectious viral particles with varying states of aggregation. The study of the relative distribution and behavior of different subpopulations and their inter-correlation can assist in the development of a robust process for a live virus vaccine. This report describes a field flow fractionation and multiangle light scattering (FFF-MALS) method optimized for the analysis of size distribution and total particle counts. A method using a combination of asymmetric flow field-flow fractionation (AFFFF) and multiangle light scattering (MALS) techniques has been shown to improve the estimation of virus particle counts and the amount of aggregated virus in laboratory samples. The FFF-MALS method was compared with several other methods such as transmission electron microscopy (TEM), atomic force microscopy (AFM), size exclusion chromatography followed by MALS (SEC-MALS), quantitative reverse transcription polymerase chain reaction (RT Q-PCR), median tissue culture dose (TCID(50)), and the fluorescent focus assay (FFA). The correlation between the various methods for determining total particle counts, infectivity and size distribution is reported. The pros and cons of each of the analytical methods are discussed.

  18. A practical approach for exploration and modeling of the design space of a bacterial vaccine cultivation process.

    PubMed

    Streefland, M; Van Herpen, P F G; Van de Waterbeemd, B; Van der Pol, L A; Beuvery, E C; Tramper, J; Martens, D E; Toft, M

    2009-10-15

    A licensed pharmaceutical process is required to be executed within the validated ranges throughout the lifetime of product manufacturing. Changes to the process, especially for processes involving biological products, usually require the manufacturer to demonstrate that the safety and efficacy of the product remains unchanged by new or additional clinical testing. Recent changes in the regulations for pharmaceutical processing allow broader ranges of process settings to be submitted for regulatory approval, the so-called process design space, which means that a manufacturer can optimize his process within the submitted ranges after the product has entered the market, which allows flexible processes. In this article, the applicability of this concept of the process design space is investigated for the cultivation process step for a vaccine against whooping cough disease. An experimental design (DoE) is applied to investigate the ranges of critical process parameters that still result in a product that meets specifications. The on-line process data, including near infrared spectroscopy, are used to build a descriptive model of the processes used in the experimental design. Finally, the data of all processes are integrated in a multivariate batch monitoring model that represents the investigated process design space. This article demonstrates how the general principles of PAT and process design space can be applied for an undefined biological product such as a whole cell vaccine. The approach chosen for model development described here, allows on line monitoring and control of cultivation batches in order to assure in real time that a process is running within the process design space.

  19. New Vaccines for the World's Poorest People.

    PubMed

    Hotez, Peter J; Bottazzi, Maria Elena; Strych, Ulrich

    2016-01-01

    The 2000 Millennium Development Goals helped stimulate the development of life-saving childhood vaccines for pneumococcal and rotavirus infections while greatly expanding coverage of existing vaccines. However, there remains an urgent need to develop new vaccines for HIV/AIDS, malaria, and tuberculosis, as well as for respiratory syncytial virus and those chronic and debilitating (mostly parasitic) infections known as neglected tropical diseases (NTDs). The NTDs represent the most common diseases of people living in extreme poverty and are the subject of this review. The development of NTD vaccines, including those for hookworm infection, schistosomiasis, leishmaniasis, and Chagas disease, is being led by nonprofit product development partnerships (PDPs) working in consortia of academic and industrial partners, including vaccine manufacturers in developing countries. NTD vaccines face unique challenges with respect to their product development and manufacture, as well as their preclinical and clinical testing. We emphasize global efforts to accelerate the development of NTD vaccines and some of the hurdles to ensuring their availability to the world's poorest people.

  20. Pertussis vaccination and whooping cough: and now what?

    PubMed

    Guiso, Nicole

    2014-10-01

    Pertussis or whooping cough is a respiratory disease caused by Bordetella pertussis or Bordetella parapertussis that are only known to infect humans. This severe and acute respiratory disease presents epidemic cycles and became a vaccine-preventable disease in the 1940s/1950s when developed countries introduced vaccination. The first type of vaccine developed against this disease was a whole-cell pertussis (wP) vaccine containing inactivated B. pertussis bacteria. Most developed countries produced their own vaccine and given the pediatric nature of the disease at the time of licensure, infants and toddlers were the primary targets and were thus massively vaccinated. The characterization of few virulence factors produced by B. pertussis enabled the development of second-generation pertussis vaccines called the acellular pertussis (aP) vaccines. These only contain 1-5 purified, detoxified B. pertussis proteins and were first introduced in Japan around 30 years ago. Australia, Europe and North America introduced aP vaccines approximately 15 years later, which replaced wP vaccines since then.

  1. Logistical constraints lead to an intermediate optimum in outbreak response vaccination

    PubMed Central

    Shea, Katriona; Ferrari, Matthew

    2018-01-01

    Dynamic models in disease ecology have historically evaluated vaccination strategies under the assumption that they are implemented homogeneously in space and time. However, this approach fails to formally account for operational and logistical constraints inherent in the distribution of vaccination to the population at risk. Thus, feedback between the dynamic processes of vaccine distribution and transmission might be overlooked. Here, we present a spatially explicit, stochastic Susceptible-Infected-Recovered-Vaccinated model that highlights the density-dependence and spatial constraints of various diffusive strategies of vaccination during an outbreak. The model integrates an agent-based process of disease spread with a partial differential process of vaccination deployment. We characterize the vaccination response in terms of a diffusion rate that describes the distribution of vaccination to the population at risk from a central location. This generates an explicit trade-off between slow diffusion, which concentrates effort near the central location, and fast diffusion, which spreads a fixed vaccination effort thinly over a large area. We use stochastic simulation to identify the optimum vaccination diffusion rate as a function of population density, interaction scale, transmissibility, and vaccine intensity. Our results show that, conditional on a timely response, the optimal strategy for minimizing outbreak size is to distribute vaccination resource at an intermediate rate: fast enough to outpace the epidemic, but slow enough to achieve local herd immunity. If the response is delayed, however, the optimal strategy for minimizing outbreak size changes to a rapidly diffusive distribution of vaccination effort. The latter may also result in significantly larger outbreaks, thus suggesting a benefit of allocating resources to timely outbreak detection and response. PMID:29791432

  2. Challenges and opportunities for meningococcal vaccination in the developing world.

    PubMed

    Shaker, Rouba; Fayad, Danielle; Dbaibo, Ghassan

    2018-05-04

    Meningococcal disease continues to be a life threatening infection with high morbidity and mortality even in appropriately treated patients. Meningococcal vaccination plays a major role in the control of the disease; however, implementing vaccination remains problematic in the developing world. The objective of this review is to identify the challenges facing the use of meningococcal vaccines in the developing world in order to discuss the opportunities and available solutions to improve immunization in these countries. Inadequate epidemiologic information necessary to implement vaccination and financial challenges predominate. Multiple measures are needed to achieve the successful implementation of meningococcal conjugate vaccination programs that protect against circulating serogroups in developing countries including enhanced surveillance systems, financial support and aid through grants, product development partnerships that are the end result of effective collaboration and communication between different interdependent stakeholders to develop affordable vaccines, and demonstration of the cost-effectiveness of new meningococcal vaccines.

  3. Monitoring of health care personnel employee and occupational health immunization program practices in the United States.

    PubMed

    Carrico, Ruth M; Sorrells, Nikka; Westhusing, Kelly; Wiemken, Timothy

    2014-01-01

    Recent studies have identified concerns with various elements of health care personnel immunization programs, including the handling and management of the vaccine. The purpose of this study was to assess monitoring processes that support evaluation of the care of vaccines in health care settings. An 11-question survey instrument was developed for use in scripted telephone surveys. State health departments in all 50 states in the United States and the District of Columbia were the target audience for the surveys. Data from a total of 47 states were obtained and analyzed. No states reported an existing monitoring process for evaluation of health care personnel immunization programs in their states. Our assessment indicates that vaccine evaluation processes for health care facilities are rare to nonexistent in the United States. Identifying existing practice gaps and resultant opportunities for improvements may be an important safety initiative that protects patients and health care personnel. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  4. Achieving an HIV vaccine: the need for an accelerated national campaign.

    PubMed

    Marlink, R

    1997-11-01

    The development of an effective HIV vaccine has become a crucial national healthcare goal. To develop a worldwide AIDS vaccine, an international collaboration with developing countries is needed. The global approach rationale is threefold: millions of lives can be saved, a vaccine preparation can be tested more rapidly and economically among populations with high rates of infections; and the HIV epidemic comprises at least ten different subtypes. Although a number of barriers to the successful development of an HIV vaccine exist, the polio vaccine can be used as an example to show researchers how to overcome the obstacles. Jonas Salk, the polio vaccine developer, used killed whole virus in a technique that critics argued would not be fully effective. However, the Salk vaccine reduced polio-related paralysis by 72 percent, while the more effective Sabin oral vaccine did not become available until several years later. The lesson to be learned is that any percent of effectiveness is better than nothing, and researchers should not abandon uncertain HIV vaccine development efforts because they believe a better solution may develop in the future. The existence of traditional research should not preclude the development of new solutions that might prove more effective. For example, in the case of polio, the March of Dimes campaign pushed both the Salk and Sabin vaccines despite the skepticism of many academic research groups.

  5. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    PubMed Central

    Van Regenmortel, Marc H. V.

    2018-01-01

    Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066

  6. Epidemiologic evidence for a causal relation between vaccination and fibrosarcoma tumorigenesis in cats.

    PubMed

    Kass, P H; Barnes, W G; Spangler, W L; Chomel, B B; Culbertson, M R

    1993-08-01

    Within the past 2 years, a putative causal relationship has been reported between vaccination against rabies and the development of fibrosarcomas at injection sites in cats. A retrospective study was undertaken, involving 345 cats with fibrosarcomas diagnosed between January 1991 and May 1992, to assess the causal hypothesis. Cats with fibrosarcomas developing at body locations where vaccines are typically administered (n = 185) were compared with controls (n = 160) having fibrosarcomas at locations not typically used for vaccination. In cats receiving FeLV vaccination within 2 years of tumorigenesis, the time between vaccination and tumor development was significantly (P = 0.005) shorter for tumors developing at sites where vaccines are typically administered than for tumors at other sites. Univariate analysis, adjusted for age, revealed associations between FeLV vaccination (odds ratio [OR] = 2.82; 95% confidence interval [CI] = 1.54 to 5.15), rabies vaccination at the cervical/interscapular region (OR = 2.09; 95% CI = 1.01 to 4.31), and rabies vaccination at the femoral region (OR = 1.83; 95% CI = 0.65 to 5.10) with fibrosarcoma development at the vaccination site within 1 year of vaccination. Multivariate analysis, adjusted for age and other vaccines, also revealed increased risks after FeLV (OR = 5.49; 95% CI = 1.98 to 15.24) and rabies (OR = 1.99; 95% CI = 0.72 to 5.54) vaccination.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Development of a cross-cultural HPV community engagement model within Scotland

    PubMed Central

    Carnegie, Elaine; Whittaker, Anne; Gray Brunton, Carol; Hogg, Rhona; Kennedy, Catriona; Hilton, Shona; Harding, Seeromanie; Pollock, Kevin G; Pow, Janette

    2017-01-01

    Objective: To examine cultural barriers and participant solutions regarding acceptance and uptake of the human papillomavirus (HPV) vaccine from the perspective of Black African, White-Caribbean, Arab, Indian, Bangladeshi and Pakistani young people. Methods: In total, 40 young people from minority ethnic communities in Scotland took part in a qualitative study, involving seven focus groups and four paired interviews, to explore their views and experiences of the HPV vaccine. Using critical discursive psychology, the analysis focused on young people’s accounts of barriers and enablers to information, access and uptake of the HPV vaccination programme. Results: Participants suggested innovative strategies to tackle intergenerational concerns, information design and accessibility, and public health communications across diverse contexts. A cross-cultural community engagement model was developed, embracing diversity and contradiction across different ethnic groups. This included four inter-related strategies: providing targeted and flexible information for young people, vaccine provision across the life-course, intergenerational information and specific cross-cultural communications. Conclusion: This is the first HPV cross-cultural model inductively derived from accounts of young people from different ethnic communities. We recommend public health practitioners and policymakers consider using the processes and strategies within this model to increase dialogue around public engagement, awareness and receptivity towards HPV vaccination. PMID:28596618

  8. Characterization of a Novel Fusion Protein from IpaB and IpaD of Shigella spp. and Its Potential as a Pan-Shigella Vaccine

    PubMed Central

    Martinez-Becerra, Francisco J.; Chen, Xiaotong; Dickenson, Nicholas E.; Choudhari, Shyamal P.; Harrison, Kelly; Clements, John D.; Picking, William D.; Van De Verg, Lillian L.; Walker, Richard I.

    2013-01-01

    Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process development, we have evaluated a vaccine design that incorporates both of these previously tested Shigella antigens into a single polypeptide chain. To determine if this fusion protein (DB fusion) retains the antigenic and protective capacities of IpaB and IpaD, we immunized mice with the DB fusion and compared the immune response to that elicited by the IpaB/IpaD combination vaccine. Purification of the DB fusion required coexpression with IpgC, the IpaB chaperone, and after purification it maintained the highly α-helical characteristics of IpaB and IpaD. The DB fusion also induced comparable immune responses and retained the ability to protect mice against Shigella flexneri and S. sonnei in the lethal pulmonary challenge. It also offered limited protection against S. dysenteriae challenge. Our results show the feasibility of generating a protective Shigella vaccine comprised of the DB fusion. PMID:24060976

  9. A practical approach to pancreatic cancer immunotherapy using resected tumor lysate vaccines processed to express α-gal epitopes

    PubMed Central

    Miyoshi, Eiji; Eguchi, Hidetoshi; Nagano, Hiroaki; Matsunami, Katsuyoshi; Nagaoka, Satoshi; Yamada, Daisaku; Asaoka, Tadafumi; Noda, Takehiro; Wada, Hiroshi; Kawamoto, Koichi; Goto, Kunihito; Taniyama, Kiyomi; Mori, Masaki; Doki, Yuichiro

    2017-01-01

    Objectives Single-agent immunotherapy is ineffective against poorly immunogenic cancers, including pancreatic ductal adenocarcinoma (PDAC). The aims of this study were to demonstrate the feasibility of production of novel autologous tumor lysate vaccines from resected PDAC tumors, and verify vaccine safety and efficacy. Methods Fresh surgically resected tumors obtained from human patients were processed to enzymatically synthesize α-gal epitopes on the carbohydrate chains of membrane glycoproteins. Processed membranes were analyzed for the expression of α-gal epitopes and the binding of anti-Gal, and vaccine efficacy was assessed in vitro and in vivo. Results Effective synthesis of α-gal epitopes was demonstrated after processing of PDAC tumor lysates from 10 different patients, and tumor lysates readily bound an anti-Gal monoclonal antibody. α-gal(+) PDAC tumor lysate vaccines elicited strong antibody production against multiple tumor-associated antigens and activated multiple tumor-specific T cells. The lysate vaccines stimulated a robust immune response in animal models, resulting in tumor suppression and a significant improvement in survival without any adverse events. Conclusions Our data suggest that α-gal(+) PDAC tumor lysate vaccination may be a practical and effective new immunotherapeutic approach for treating pancreatic cancer. PMID:29077749

  10. A practical approach to pancreatic cancer immunotherapy using resected tumor lysate vaccines processed to express α-gal epitopes.

    PubMed

    Furukawa, Kenta; Tanemura, Masahiro; Miyoshi, Eiji; Eguchi, Hidetoshi; Nagano, Hiroaki; Matsunami, Katsuyoshi; Nagaoka, Satoshi; Yamada, Daisaku; Asaoka, Tadafumi; Noda, Takehiro; Wada, Hiroshi; Kawamoto, Koichi; Goto, Kunihito; Taniyama, Kiyomi; Mori, Masaki; Doki, Yuichiro

    2017-01-01

    Single-agent immunotherapy is ineffective against poorly immunogenic cancers, including pancreatic ductal adenocarcinoma (PDAC). The aims of this study were to demonstrate the feasibility of production of novel autologous tumor lysate vaccines from resected PDAC tumors, and verify vaccine safety and efficacy. Fresh surgically resected tumors obtained from human patients were processed to enzymatically synthesize α-gal epitopes on the carbohydrate chains of membrane glycoproteins. Processed membranes were analyzed for the expression of α-gal epitopes and the binding of anti-Gal, and vaccine efficacy was assessed in vitro and in vivo. Effective synthesis of α-gal epitopes was demonstrated after processing of PDAC tumor lysates from 10 different patients, and tumor lysates readily bound an anti-Gal monoclonal antibody. α-gal(+) PDAC tumor lysate vaccines elicited strong antibody production against multiple tumor-associated antigens and activated multiple tumor-specific T cells. The lysate vaccines stimulated a robust immune response in animal models, resulting in tumor suppression and a significant improvement in survival without any adverse events. Our data suggest that α-gal(+) PDAC tumor lysate vaccination may be a practical and effective new immunotherapeutic approach for treating pancreatic cancer.

  11. Perspectives for Developing New Tuberculosis Vaccines Derived from the Pathogenesis of Tuberculosis: I. Basic Principles, II. Preclinical Testing, and III. Clinical Testing

    PubMed Central

    Dannenberg, Arthur M.; Dey, Bappaditya

    2013-01-01

    Part I. Basic Principles. TB vaccines cannot prevent establishment of the infection. They can only prevent an early pulmonary tubercle from developing into clinical disease. A more effective new vaccine should optimize both cell-mediated immunity (CMI) and delayed-type hypersensitivity (DTH) better than any existing vaccine. The rabbit is the only laboratory animal in which all aspects of the human disease can be reproduced: namely, the prevention of most primary tubercles, the arrestment of most primary tubercles, the formation of the tubercle’s solid caseous center, the liquefaction of this center, the formation of cavities and the bronchial spread of the disease. In liquefied caseum, virulent tubercle bacilli can multiply extracellularly, especially in the liquefied caseum next to the inner wall of a cavity where oxygen is plentiful. The bacilli in liquefied caseum cannot be reached by the increased number of activated macrophages produced by TB vaccines. Therefore, new TB vaccines will have little or no effect on the extracellular bacillary growth within liquefied caseum. TB vaccines can only increase the host’s ability to stop the development of new TB lesions that arise from the bronchial spread of tubercle bacilli from the cavity to other parts of the lung. Therefore, effective TB vaccines do not prevent the reactivation of latent TB. Such vaccines only control (or reduce) the number of metastatic lesions that result after the primary TB lesion was reactivated by the liquefaction process. (Note: the large number of tubercle bacilli growing extracellularly in liquefied caseum gives rise to mutations that enable antimicrobial resistance—which is a major reason why TB still exists today). Part II. Preclinical Testing. The counting of grossly visible tubercles in the lungs of rabbits after the inhalation of virulent human-type tubercle bacilli is the most pertinent preclinical method to assess the efficacy of new TB vaccines (because an effective vaccine will stop the growth of developing tubercles before while they are still microscopic in size). Unfortunately, rabbits are rarely used in preclinical vaccine trials, despite their relative ease of handling and human-like response to this infection. Mice do not generate an effective DTH response, and guinea pigs do not generate an effective CMI response. Only the rabbits and most humans can establish the proper amount of DTH and CMI that is necessary to contain this infection. Therefore, rabbits should be included in all pre-clinical testing of new TB vaccines. New drugs (and/or immunological procedures) to reduce liquefaction and cavity formation are urgently needed. A simple intradermal way to select such drugs or procedures is described herein. Part III. Clinical Testing. Vaccine trials would be much more precise if the variations in human populations (listed herein) were taken into consideration. BCG and successful new TB vaccines should always increase host resistance to TB in naive subjects. This is a basic immunological principle. The efficacies of new and old TB vaccines are often not recognized, because these variations were not identified in the populations evaluated. PMID:26343850

  12. Vaccine supply, demand, and policy: a primer.

    PubMed

    Muzumdar, Jagannath M; Cline, Richard R

    2009-01-01

    To provide an overview of supply and demand issues in the vaccine industry and the policy options that have been implemented to resolve these issues. Medline, Policy File, and International Pharmaceutical Abstracts were searched to locate academic journal articles. Other sources reviewed included texts on the topics of vaccine history and policy, government agency reports, and reports from independent think tanks. Keywords included vaccines, immunizations, supply, demand, and policy. Search criteria were limited to English language and human studies. Articles pertaining to vaccine demand, supply, and public policy were selected and reviewed for inclusion. By the authors. Vaccines are biologic medications, therefore making their development and production more difficult and costly compared with "small-molecule" drugs. Research and development costs for vaccines can exceed $800 million, and development may require 10 years or more. Strict manufacturing regulations and facility upgrades add to these costs. Policy options to increase and stabilize the supply of vaccines include those aimed at increasing supply, such as government subsidies for basic vaccine research, liability protection for manufacturers, and fast-track approval for new vaccines. Options to increase vaccine demand include advance purchase commitments, government stockpiles, and government financing for select populations. High development costs and multiple barriers to entry have led to a decline in the number of vaccine manufacturers. Although a number of vaccine policies have met with mixed success in increasing the supply of and demand for vaccines, a variety of concerns remain, including developing vaccines for complex pathogens and increasing immunization rates with available vaccines. New policy innovations such as advance market commitments and Medicare Part D vaccine coverage have been implemented and may aid in resolving some of the problems in the vaccine industry.

  13. Vaccination of rhesus macaques with the anthrax vaccine adsorbed vaccine produces a serum antibody response that effectively neutralizes receptor-bound protective antigen in vitro.

    PubMed

    Clement, Kristin H; Rudge, Thomas L; Mayfield, Heather J; Carlton, Lena A; Hester, Arelis; Niemuth, Nancy A; Sabourin, Carol L; Brys, April M; Quinn, Conrad P

    2010-11-01

    Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA to the target cell surface, furin cleavage, toxin complex formation, and binding/translocation of ATx into the cell). To evaluate ATx neutralization by anti-AVA antibodies, we developed two low-temperature LTx neutralization activity (TNA) assays that distinguish antibody blocking before and after binding of PA to target cells (noncomplexed [NC] and receptor-bound [RB] TNA assays). These assays were used to investigate anti-PA antibody responses in AVA-vaccinated rhesus macaques (Macaca mulatta) that survived an aerosol challenge with Bacillus anthracis Ames spores. Results showed that macaque anti-AVA sera neutralized LTx in vitro, even when PA was prebound to cells. Neutralization titers in surviving versus nonsurviving animals and between prechallenge and postchallenge activities were highly correlated. These data demonstrate that AVA stimulates a myriad of antibodies that recognize multiple neutralizing epitopes and confirm that change, loss, or occlusion of epitopes after PA is processed from PA83 to PA63 at the cell surface does not significantly affect in vitro neutralizing efficacy. Furthermore, these data support the idea that the full-length PA83 monomer is an appropriate immunogen for inclusion in next-generation anthrax vaccines.

  14. A qualitative study of the coverage of influenza vaccination on Dutch news sites and social media websites.

    PubMed

    Lehmann, Birthe A; Ruiter, Robert A C; Kok, Gerjo

    2013-06-05

    Information about influenza and the effectiveness of vaccination against influenza is largely available on the Internet, and may influence individual decision making about participation in future influenza vaccination rounds. E-health information has often been found to be inaccurate, or even to contradict Health Authority recommendations, especially when it concerns controversial topics. By means of an online media monitoring programme, Dutch news sites and social media websites were scanned for the Dutch counterparts of the terms influenza, vaccination, vaccine and epidemic during February, March and April 2012. Data were processed with QSR NVivo 8.0 and analysed using a general inductive approach. Three overarching themes were found in both media sources: (1) the (upcoming) influenza epidemic, (2) general information regarding the virus, its prevention and treatment, and (3) uncertainty and mistrust regarding influenza vaccination. Social media tended to report earlier on developments such as the occurrence of an influenza epidemic. The greatest difference was that in social media, influenza was not considered to be a serious disease, and more opposition to the flu shot was expressed in social media, as compared to news media. News media and social media discussed the same topics regarding influenza, but differed in message tone. Whereas news media reports tended to be more objective and non-judgmental, social media more critically evaluated the harmfulness of influenza and the necessity of the flu shot. Media may influence decision making and behaviours of Internet users and may thereby influence the success of vaccination campaigns and recommendations made by health authorities. Social media may be more of a problem in this sense, since it is neither controlled nor censored. Future research should investigate the actual impact of Internet media on the influenza decision making process of its users.

  15. Emergency response vaccines--a challenge for the public sector and the vaccine industry.

    PubMed

    Milstien, Julie; Lambert, Scott

    2002-11-22

    In partnership with industry, WHO has developed a number of strategies to facilitate access to vaccines recommended for use in national immunization programs. These strategies have been necessitated by the increasing fragility of vaccine supply for developing markets. The potential global spread of epidemic disease has made it imperative to expand these efforts. A new concept is proposed, that of essential vaccines, defined as "vaccines of public health importance that should be accessible to all people at risk". Essential vaccines will include emergency response vaccines that have become important due to resurgent outbreaks, threatening global pandemics, and situations where a global emergency immunization response may be needed. While some of the approaches already developed will be applicable to emergency response vaccines, other novel approaches requiring public sector intervention will be necessary. Procurement, financing and allocation of these emergency response vaccines, if left to governments or private individuals based on ability to pay, will threaten equitable access. The challenge will be to ensure development of and equitable access to these vaccines while not threatening the already fragile supply of other essential vaccines.

  16. Proteomic contributions to our understanding of vaccine and immune responses

    PubMed Central

    Galassie, Allison C.; Link, Andrew J.

    2015-01-01

    Vaccines are one of the greatest public health successes; yet, due to the empirical nature of vaccine design, we have an incomplete understanding of how the genes and proteins induced by vaccines contribute to the development of both protective innate and adaptive immune responses. While the advent of genomics has enabled new vaccine development and facilitated understanding of the immune response, proteomics identifies potentially new vaccine antigens with increasing speed and sensitivity. In addition, as proteomics is complementary to transcriptomic approaches, a combination of both approaches provides a more comprehensive view of the immune response after vaccination via systems vaccinology. This review details the advances that proteomic strategies have made in vaccine development and reviews how proteomics contributes to the development of a more complete understanding of human vaccines and immune responses. PMID:26172619

  17. Chinese vaccine products go global: vaccine development and quality control.

    PubMed

    Xu, Miao; Liang, Zhenglun; Xu, Yinghua; Wang, Junzhi

    2015-05-01

    Through the continuous efforts of several generations, China has become one of the few countries in the world that is capable of independently addressing all the requirements by the Expanded Program on Immunization. Regulatory science is applied to continuously improve the vaccine regulatory system. Passing the prequalification by WHO has allowed Chinese vaccine products to go global. Chinese vaccine products not only secure disease prevention and control domestically but also serve the needs for international public health. This article describes the history of Chinese vaccine development, the current situation of Chinese vaccine industry and its contribution to the prevention and control of infectious diseases. We also share our experience of national quality control and vaccine regulation during the past decades. China's experience in vaccine development and quality control can benefit other countries and regions worldwide, including the developing countries.

  18. Journey to vaccination: a protocol for a multinational qualitative study.

    PubMed

    Wheelock, Ana; Miraldo, Marisa; Parand, Anam; Vincent, Charles; Sevdalis, Nick

    2014-01-31

    In the past two decades, childhood vaccination coverage has increased dramatically, averting an estimated 2-3 million deaths per year. Adult vaccination coverage, however, remains inconsistently recorded and substandard. Although structural barriers are known to limit coverage, social and psychological factors can also affect vaccine uptake. Previous qualitative studies have explored beliefs, attitudes and preferences associated with seasonal influenza (flu) vaccination uptake, yet little research has investigated how participants' context and experiences influence their vaccination decision-making process over time. This paper aims to provide a detailed account of a mixed methods approach designed to understand the wider constellation of social and psychological factors likely to influence adult vaccination decisions, as well as the context in which these decisions take place, in the USA, the UK, France, India, China and Brazil. We employ a combination of qualitative interviewing approaches to reach a comprehensive understanding of the factors influencing vaccination decisions, specifically seasonal flu and tetanus. To elicit these factors, we developed the journey to vaccination, a new qualitative approach anchored on the heuristics and biases tradition and the customer journey mapping approach. A purposive sampling strategy is used to select participants who represent a range of key sociodemographic characteristics. Thematic analysis will be used to analyse the data. Typical journeys to vaccination will be proposed. Vaccination uptake is significantly influenced by social and psychological factors, some of which are under-reported and poorly understood. This research will provide a deeper understanding of the barriers and drivers to adult vaccination. Our findings will be published in relevant peer-reviewed journals and presented at academic conferences. They will also be presented as practical recommendations at policy and industry meetings and healthcare professionals' forums. This research was approved by relevant local ethics committees.

  19. Journey to vaccination: a protocol for a multinational qualitative study

    PubMed Central

    Wheelock, Ana; Miraldo, Marisa; Parand, Anam; Vincent, Charles; Sevdalis, Nick

    2014-01-01

    Introduction In the past two decades, childhood vaccination coverage has increased dramatically, averting an estimated 2–3 million deaths per year. Adult vaccination coverage, however, remains inconsistently recorded and substandard. Although structural barriers are known to limit coverage, social and psychological factors can also affect vaccine uptake. Previous qualitative studies have explored beliefs, attitudes and preferences associated with seasonal influenza (flu) vaccination uptake, yet little research has investigated how participants’ context and experiences influence their vaccination decision-making process over time. This paper aims to provide a detailed account of a mixed methods approach designed to understand the wider constellation of social and psychological factors likely to influence adult vaccination decisions, as well as the context in which these decisions take place, in the USA, the UK, France, India, China and Brazil. Methods and analysis We employ a combination of qualitative interviewing approaches to reach a comprehensive understanding of the factors influencing vaccination decisions, specifically seasonal flu and tetanus. To elicit these factors, we developed the journey to vaccination, a new qualitative approach anchored on the heuristics and biases tradition and the customer journey mapping approach. A purposive sampling strategy is used to select participants who represent a range of key sociodemographic characteristics. Thematic analysis will be used to analyse the data. Typical journeys to vaccination will be proposed. Ethics and dissemination Vaccination uptake is significantly influenced by social and psychological factors, some of which are under-reported and poorly understood. This research will provide a deeper understanding of the barriers and drivers to adult vaccination. Our findings will be published in relevant peer-reviewed journals and presented at academic conferences. They will also be presented as practical recommendations at policy and industry meetings and healthcare professionals’ forums. This research was approved by relevant local ethics committees. PMID:24486678

  20. Low vaccination coverage of Greek Roma children amid economic crisis: national survey using stratified cluster sampling.

    PubMed

    Papamichail, Dimitris; Petraki, Ioanna; Arkoudis, Chrisoula; Terzidis, Agis; Smyrnakis, Emmanouil; Benos, Alexis; Panagiotopoulos, Takis

    2017-04-01

    Research on Roma health is fragmentary as major methodological obstacles often exist. Reliable estimates on vaccination coverage of Roma children at a national level and identification of risk factors for low coverage could play an instrumental role in developing evidence-based policies to promote vaccination in this marginalized population group. We carried out a national vaccination coverage survey of Roma children. Thirty Roma settlements, stratified by geographical region and settlement type, were included; 7-10 children aged 24-77 months were selected from each settlement using systematic sampling. Information on children's vaccination coverage was collected from multiple sources. In the analysis we applied weights for each stratum, identified through a consensus process. A total of 251 Roma children participated in the study. A vaccination document was presented for the large majority (86%). We found very low vaccination coverage for all vaccines. In 35-39% of children 'minimum vaccination' (DTP3 and IPV2 and MMR1) was administered, while 34-38% had received HepB3 and 31-35% Hib3; no child was vaccinated against tuberculosis in the first year of life. Better living conditions and primary care services close to Roma settlements were associated with higher vaccination indices. Our study showed inadequate vaccination coverage of Roma children in Greece, much lower than that of the non-minority child population. This serious public health challenge should be systematically addressed, or, amid continuing economic recession, the gap may widen. Valid national estimates on important characteristics of the Roma population can contribute to planning inclusion policies. © The Author 2016. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  1. Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design.

    PubMed

    Kazi, Ada; Chuah, Candy; Majeed, Abu Bakar Abdul; Leow, Chiuan Herng; Lim, Boon Huat; Leow, Chiuan Yee

    2018-03-12

    Immunoinformatics plays a pivotal role in vaccine design, immunodiagnostic development, and antibody production. In the past, antibody design and vaccine development depended exclusively on immunological experiments which are relatively expensive and time-consuming. However, recent advances in the field of immunological bioinformatics have provided feasible tools which can be used to lessen the time and cost required for vaccine and antibody development. This approach allows the selection of immunogenic regions from the pathogen genomes. The ideal regions could be developed as potential vaccine candidates to trigger protective immune responses in the hosts. At present, epitope-based vaccines are attractive concepts which have been successfully trailed to develop vaccines which target rapidly mutating pathogens. In this article, we provide an overview of the current progress of immunoinformatics and their applications in the vaccine design, immune system modeling and therapeutics.

  2. [Rabies vaccines: Current status and prospects for development].

    PubMed

    Starodubova, E S; Preobrazhenskaia, O V; Kuzmenko, Y V; Latanova, A A; Yarygina, E I; Karpov, V L

    2015-01-01

    Rabies is an infectious disease among humans and animals that remains incurable, despite its longstanding research history. The only way to prevent the disease is prompt treatment, including vaccination as an obligatory component and administration of antirabies immunoglobulin as a supplement. Since the first antirabies vaccination performed in the 19th century, a large number of different rabies vaccines have been developed. Progress in molecular biology and biotechnology enabled the development of effective and safe technologies of vaccine production. Currently, new-generation vaccines are being developed based on recombinant rabies virus strains or on the production of an individual recombinant rabies antigen-glycoprotein (G protein), either as a component of nonpathogenic viruses, or in plants, or in the form of DNA vaccines. In this review, the main modern trends in the development of rabies vaccines have been discussed.

  3. The global roadmap for advancing development of vaccines against sexually transmitted infections: Update and next steps.

    PubMed

    Gottlieb, Sami L; Deal, Carolyn D; Giersing, Birgitte; Rees, Helen; Bolan, Gail; Johnston, Christine; Timms, Peter; Gray-Owen, Scott D; Jerse, Ann E; Cameron, Caroline E; Moorthy, Vasee S; Kiarie, James; Broutet, Nathalie

    2016-06-03

    In 2014, the World Health Organization, the US National Institutes of Health, and global technical partners published a comprehensive roadmap for development of new vaccines against sexually transmitted infections (STIs). Since its publication, progress has been made in several roadmap activities: obtaining better epidemiologic data to establish the public health rationale for STI vaccines, modeling the theoretical impact of future vaccines, advancing basic science research, defining preferred product characteristics for first-generation vaccines, and encouraging investment in STI vaccine development. This article reviews these overarching roadmap activities, provides updates on research and development of individual vaccines against herpes simplex virus, Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum, and discusses important next steps to advance the global roadmap for STI vaccine development. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  4. Recommendations for safe vaccination in children at the risk of taking allergic reactions to vaccine components

    PubMed

    2018-04-01

    Vaccines are one of the most important advances in medicine as a public health tool for the control of immunopreventable diseases. Occasionally, adverse reactions may occur. If a child has a reaction to a vaccine, it is likely to disrupt his immunization schedule with risks to himself and the community. This establishes the importance of correctly diagnosing a possible allergy and defining appropriate behavior. Allergic reactions to vaccines may be due to the immunogenic component, to the residual proteins in the manufacturing process and to antimicrobial agents, stabilizers, preservatives and any other element used in the manufacturing process. Vaccination should be a priority in the entire child population, so this document describes particular situations of allergic children to minimize the risk of immunizations and achieve safe vaccination.

  5. Good Manufacturing Practices production and analysis of a DNA vaccine against dental caries.

    PubMed

    Yang, Ya-ping; Li, Yu-hong; Zhang, Ai-hua; Bi, Lan; Fan, Ming-wen

    2009-11-01

    To prepare a clinical-grade anti-caries DNA vaccine pGJA-P/VAX and explore its immune effect and protective efficacy against a cariogenic bacterial challenge. A large-scale industrial production process was developed under Good Manufacturing Practices (GMP) by combining and optimizing common unit operations such as alkaline lysis, precipitation, endotoxin removal and column chromatography. Quality controls of the purified bulk and final lyophilized vaccine were conducted according to authoritative guidelines. Mice and gnotobiotic rats were intranasally immunized with clinical-grade pGJA-P/VAX with chitosan. Antibody levels of serum IgG and salivary SIgA were assessed by an enzyme-linked immunosorbent assay (ELISA), and caries activity was evaluated by the Keyes method. pGJA-P/VAX and pVAX1 prepared by a laboratory-scale commercial kit were used as controls. The production process proved to be scalable and reproducible. Impurities including host protein, residual RNA, genomic DNA and endotoxin in the purified plasmid were all under the limits of set specifications. Intranasal vaccination with clinical-grade pGJA-P/VAX induced higher serum IgG and salivary SIgA in both mice and gnotobiotic rats. While in the experimental caries model, the enamel (E), dentinal slight (Ds), and dentinal moderate (Dm) caries lesions were reduced by 21.1%, 33.0%, and 40.9%, respectively. The production process under GMP was efficient in preparing clinical-grade pGJA-P/VAX with high purity and intended effectiveness, thus facilitating future clinical trials for the anti-caries DNA vaccine.

  6. Ensuring the optimal safety of licensed vaccines: a perspective of the vaccine research, development, and manufacturing companies.

    PubMed

    Kanesa-thasan, Niranjan; Shaw, Alan; Stoddard, Jeffrey J; Vernon, Thomas M

    2011-05-01

    Vaccine safety is increasingly a focus for the general public, health care providers, and vaccine manufacturers, because the efficacy of licensed vaccines is accepted as a given. Commitment to ensuring safety of all vaccines, including childhood vaccines, is addressed by the federal government, academia, and industry. Safety activities conducted by the vaccine research, development, and manufacturing companies occur at all stages of product development, from selection and formulation of candidate vaccines through postlicensure studies and surveillance of adverse-event reports. The contributions of multiple interacting functional groups are required to execute these tasks through the life cycle of a product. We describe here the safeguards used by vaccine manufacturers, including specific examples drawn from recent experience, and highlight some of the current challenges. Vaccine-risk communication becomes a critical area for partnership of vaccine companies with government, professional associations, and nonprofit advocacy groups to provide information on both benefits and risks of vaccines. The crucial role of the vaccine companies in ensuring the optimal vaccine-safety profile, often overlooked, will continue to grow with this dynamic arena.

  7. Protocol for the Production of a Vaccine Against Argentinian Hemorrhagic Fever.

    PubMed

    Ambrosio, Ana María; Mariani, Mauricio Andrés; Maiza, Andrea Soledad; Gamboa, Graciela Susana; Fossa, Sebastián Edgardo; Bottale, Alejando Javier

    2018-01-01

    Argentinian hemorrhagic Fever (AHF) is a febrile, acute disease caused by Junín virus (JUNV), a member of the Arenaviridae. Different approaches to obtain an effective antigen to prevent AHF using complete live or inactivated virus, as well as molecular constructs, have reached diverse development stages. This chapter refers to JUNV live attenuated vaccine strain Candid #1, currently used in Argentina to prevent AHF. A general standardized protocol used at Instituto Nacional de Enfermedades Virales Humanas (Pergamino, Pcia. Buenos Aires, Argentina) to manufacture the tissue culture derived Candid #1 vaccine is described. Intermediate stages like viral seeds and cell culture bank management, bulk vaccine manufacture, and finished product processing are also separately presented in terms of Production and Quality Control/Quality Assurance requirements, under the Adminitracion Nacional de Medicamentos, Alimentos y Tecnología Medica (ANMAT), the Argentine national regulatory authority.

  8. Room Temperature Stabilization of Oral, Live Attenuated Salmonella enterica serovar Typhi-Vectored Vaccines

    PubMed Central

    Ohtake, Satoshi; Martin, Russell; Saxena, Atul; Pham, Binh; Chiueh, Gary; Osorio, Manuel; Kopecko, Dennis; Xu, DeQi; Lechuga-Ballesteros, David; Truong-Le, Vu

    2011-01-01

    Foam drying, a modified freeze drying process, was utilized to produce a heat-stable, live attenuated Salmonella Typhi ‘Ty21a’ bacterial vaccine. Ty21a vaccine was formulated with pharmaceutically approved stabilizers, including sugars, plasticizers, amino acids, and proteins. Growth media and harvesting conditions of the bacteria were also studied to enhance resistance to desiccation stress encountered during processing as well as subsequent storage at elevated temperatures. The optimized Ty21a vaccine, formulated with trehalose, methionine, and gelatin, demonstrated stability for approximately 12 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1log10 CFU) and no loss in titer at 4 and 25°C following storage for the same duration. Furthermore, the foam dried Ty21a elicited a similar immunogenic response in mice as well as protection in challenge studies compared to Vivotif™, the commercial Ty21a vaccine. The enhanced heat stability of the Ty21a oral vaccine, or Ty21a derivatives expressing foreign antigens (e.g. anthrax), could mitigate risks of vaccine potency loss during long term storage, shipping, delivery to geographical areas with warmer climates or during emergency distribution following a bioterrorist attack. Because the foam drying process is conducted using conventional freeze dryers and can be readily implemented at any freeze drying manufacturing facility, this technology appears ready and appropriate for large scale processing of foam dried vaccines. PMID:21300096

  9. Vaccines and Thimerosal

    MedlinePlus

    ... as a vaccine is being prepared for administration. Contamination by germs in a vaccine could cause severe local reactions, serious illness or death. In some vaccines, preservatives, including thimerosal, are added during the manufacturing process to prevent germ growth. The human body ...

  10. Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides.

    PubMed

    Kavanagh, Brian; Ko, Andrew; Venook, Alan; Margolin, Kim; Zeh, Herbert; Lotze, Michael; Schillinger, Brian; Liu, Weihong; Lu, Ying; Mitsky, Peggie; Schilling, Marta; Bercovici, Nadege; Loudovaris, Maureen; Guillermo, Roy; Lee, Sun Min; Bender, James; Mills, Bonnie; Fong, Lawrence

    2007-10-01

    Developing a process to generate dendritic cells (DCs) applicable for multicenter trials would facilitate cancer vaccine development. Moreover, targeting multiple antigens with such a vaccine strategy could enhance the efficacy of such a treatment approach. We performed a phase 1/2 clinical trial administering a DC-based vaccine targeting multiple tumor-associated antigens to patients with advanced colorectal cancer (CRC). A qualified manufacturing process was used to generate DC from blood monocytes using granulocyte macrophage colony-stimulating factor and IL-13, and matured for 6 hours with Klebsiella-derived cell wall fraction and interferon-gamma (IFN-gamma). DCs were also loaded with 6 HLA-A*0201 binding peptides derived from carcinoembryonic antigen (CEA), MAGE, and HER2/neu, as well as keyhole limpet hemocyanin protein and pan-DR epitope peptide. Four planned doses of 35x10(6) cells were administered intradermally every 3 weeks. Immune response was assessed by IFN-gamma enzyme-linked immunosorbent spot (ELISPOT). Matured DC possessed an activated phenotype and could prime T cells in vitro. In the trial, 21 HLA-A2+ patients were apheresed, 13 were treated with the vaccine, and 11 patients were evaluable. No significant treatment-related toxicity was reported. T-cell responses to a CEA-derived peptide were detected by ELISPOT in 3 patients. T cells induced to CEA possessed high avidity T-cell receptors. ELISPOT after in vitro restimulation detected responses to multiple peptides in 2 patients. All patients showed progressive disease. This pilot study in advanced CRC patients demonstrates DC-generated granulocyte macrophage colony-stimulating factor and IL-13 matured with Klebsiella-derived cell wall fraction and IFN-gamma can induce immune responses to multiple tumor-associated antigens in patients with advanced CRC.

  11. Cysteine Depletion Causes Oxidative Stress and Triggers Outer Membrane Vesicle Release by Neisseria meningitidis; Implications for Vaccine Development

    PubMed Central

    van de Waterbeemd, Bas; Zomer, Gijsbert; van den IJssel, Jan; van Keulen, Lonneke; Eppink, Michel H.; van der Ley, Peter; van der Pol, Leo A.

    2013-01-01

    Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV), which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (±1500 human doses per liter cultivation). Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteine-dependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis. PMID:23372704

  12. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.

    PubMed

    Renukaradhya, Gourapura J; Narasimhan, Balaji; Mallapragada, Surya K

    2015-12-10

    Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A simple method for measuring porcine circovirus 2 whole virion particles and standardizing vaccine formulation.

    PubMed

    Zanotti, Cinzia; Amadori, Massimo

    2015-03-01

    Porcine Circovirus 2 (PCV2) is involved in porcine circovirus-associated disease, that causes great economic losses to the livestock industry worldwide. Vaccination against PCV2 proved to be very effective in reducing disease occurrence and it is currently performed on a large scale. Starting from a previous model concerning Foot-and Mouth Disease Virus antigens, we developed a rapid and simple method to quantify PCV2 whole virion particles in inactivated vaccines. This procedure, based on sucrose gradient analysis and fluorometric evaluation of viral genomic content, allows for a better standardization of the antigen payload in vaccine batches. It also provides a valid indication of virion integrity. Most important, such a method can be applied to whole virion vaccines regardless of the production procedures, thus enabling meaningful comparisons on a common basis. In a future batch consistency approach to PCV2 vaccine manufacture, our procedure represents a valuable tool to improve in-process controls and to guarantee conformity of the final product with passmarks for approval. This might have important repercussions in terms of reduced usage of animals for vaccine batch release, in the framework of the current 3Rs policy. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  14. A flow-through chromatography process for influenza A and B virus purification.

    PubMed

    Weigel, Thomas; Solomaier, Thomas; Peuker, Alessa; Pathapati, Trinath; Wolff, Michael W; Reichl, Udo

    2014-10-01

    Vaccination is still the most efficient measure to protect against influenza virus infections. Besides the seasonal wave of influenza, pandemic outbreaks of bird or swine flu represent a high threat to human population. With the establishment of cell culture-based processes, there is a growing demand for robust, economic and efficient downstream processes for influenza virus purification. This study focused on the development of an economic flow-through chromatographic process avoiding virus strain sensitive capture steps. Therefore, a three-step process consisting of anion exchange chromatography (AEC), Benzonase(®) treatment, and size exclusion chromatography with a ligand-activated core (LCC) was established, and tested for purification of two influenza A virus strains and one influenza B virus strain. The process resulted in high virus yields (≥68%) with protein contamination levels fulfilling requirements of the European Pharmacopeia for production of influenza vaccines for human use. DNA was depleted by ≥98.7% for all strains. The measured DNA concentrations per dose were close to the required limits of 10ng DNA per dose set by the European Pharmacopeia. In addition, the added Benzonase(®) could be successfully removed from the product fraction. Overall, the presented downstream process could potentially represent a simple, robust and economic platform technology for production of cell culture-derived influenza vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Rotavirus vaccine RIX4414 (Rotarix™): a pharmacoeconomic review of its use in the prevention of rotavirus gastroenteritis in developing countries.

    PubMed

    Plosker, Greg L

    2011-11-01

    This article provides an overview of the clinical profile of rotavirus vaccine RIX4414 (Rotarix™) in the prevention of rotavirus gastroenteritis (RVGE) in developing countries, followed by a comprehensive review of pharmacoeconomic analyses with the vaccine in low- and middle-income countries. RVGE is associated with significant morbidity and mortality among children <5 years of age in developing countries. The protective efficacy of a two-dose oral series of rotavirus vaccine RIX4414 has been demonstrated in several well designed clinical trials conducted in developing countries, and the 'real-world' effectiveness of the vaccine has also been shown in naturalistic and case-control trials after the introduction of universal vaccination programmes with RIX4414 in Latin American countries. The WHO recommends universal rotavirus vaccination programmes for all countries. Numerous modelled cost-effectiveness analyses have been conducted with rotavirus vaccine RIX4414 across a wide range of low- and middle-income countries. Although data sources and assumptions varied across studies, results of the analyses consistently showed that the introduction of the vaccine as part of a national vaccination programme would be very (or highly) cost effective compared with no rotavirus vaccination programme, according to widely used cost-effectiveness thresholds for developing countries. Vaccine price was not known at the time the analyses were conducted and had to be estimated. In sensitivity analyses, rotavirus vaccine RIX4414 generally remained cost effective at the highest of a range of possible vaccine prices considered. Despite these favourable results, decisions regarding the implementation of universal vaccination programmes with RIX4414 may also be contingent on budgetary and other factors, underscoring the importance of subsidized vaccination programmes for poor countries through the GAVI Alliance (formerly the Global Alliance for Vaccines and Immunization).

  16. Vaccine chronicle in Japan.

    PubMed

    Nakayama, Tetsuo

    2013-10-01

    The concept of immunization was started in Japan in 1849 when Jenner's cowpox vaccine seed was introduced, and the current immunization law was stipulated in 1948. There have been two turning points for amendments to the immunization law: the compensation remedy for vaccine-associated adverse events in 1976, and the concept of private vaccination in 1994. In 1992, the regional Court of Tokyo, not the Supreme Court, decided the governmental responsibility on vaccine-associated adverse events, which caused the stagnation of vaccine development. In 2010, many universal vaccines became available as the recommended vaccines, but several vaccines, including mumps, zoster, hepatitis B, and rota vaccines, are still voluntary vaccines, not universal routine applications. In this report, immunization strategies and vaccine development are reviewed for each vaccine item and future vaccine concerns are discussed.

  17. A Research Agenda for Malaria Eradication: Vaccines

    PubMed Central

    2011-01-01

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of “vaccines that interrupt malaria transmission” (VIMT), which includes not only “classical” transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented. PMID:21311586

  18. A research agenda for malaria eradication: vaccines.

    PubMed

    2011-01-25

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of "vaccines that interrupt malaria transmission" (VIMT), which includes not only "classical" transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.

  19. Challenges of Vaccine Development for Zika Virus.

    PubMed

    Blackman, Marcia A; Kim, In-Jeong; Lin, Jr-Shiuan; Thomas, Stephen J

    2018-03-01

    The emergence of outbreaks of Zika virus (ZIKV) in Brazil in 2015 was associated with devastating effects on fetal development and prompted a world health emergency and multiple efforts to generate an effective vaccine against infection. There are now more than 40 vaccine candidates in preclinical development and six in clinical trials. Despite similarities with other flaviviruses to which successful vaccines have been developed, such as yellow fever virus and Japanese Encephalitis virus, there are unique challenges to the development and clinical trials of a vaccine for ZIKV.

  20. New approaches in oral rotavirus vaccines.

    PubMed

    Kuate Defo, Zenas; Lee, Byong

    2016-05-01

    Rotavirus is the leading cause of severe dehydrating diarrhea worldwide, and affects primarily developing nations, in large part because of the inaccessibility of vaccines and high rates of mortality present therein. At present, there exist two oral rotaviral vaccines, Rotarix™ and RotaTeq™. These vaccines are generally effective in their actions: however, associated costs often stymie their effectiveness, and they continue to be associated with a slight risk of intussusception. While different programs are being implemented worldwide to enhance vaccine distribution and monitor vaccine administration for possible intussusception in light of recent WHO recommendation, another major problem persists: that of the reduced efficacy of the existing rotaviral vaccines in developing countries over time. The development of new oral rotavirus vaccine classes - live-attenuated vaccines, virus-like particles, lactic acid bacteria-containing vaccines, combination therapy with immunoglobulins, and biodegradable polymer-encapsulated vaccines - could potentially circumvent these problems.

  1. Development of Streptococcus agalactiae vaccines for tilapia.

    PubMed

    Liu, Guangjin; Zhu, Jielian; Chen, Kangming; Gao, Tingting; Yao, Huochun; Liu, Yongjie; Zhang, Wei; Lu, Chengping

    2016-12-21

    Vaccination is a widely accepted and effective method to prevent most pathogenic diseases in aquaculture. Various species of tilapia, especially Nile tilapia Oreochromis niloticus, are farmed worldwide because of their high consumer demand. Recently, the tilapia-breeding industry has been hampered by outbreaks of Streptococcus agalactiae infection, which cause high mortality and huge economic losses. Many researchers have attempted to develop effective S. agalactiae vaccines for tilapia. This review provides a summary of the different kinds of S. agalactiae vaccines for tilapia that have been developed recently. Among the various vaccine types, inactivated S. agalactiae vaccines showed superior protection efficiency when compared with live attenuated, recombinant and DNA vaccines. With respect to vaccination method, injecting the vaccine into tilapia provided the most effective immunoprotection. Freund's incomplete adjuvant appeared to be suitable for tilapia vaccines. Other factors, such as immunization duration and number, fish size and challenge dose, also influenced the vaccine efficacy.

  2. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fangye; Zhou, Jian; Ma, Lei

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process hasmore » been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.« less

  3. Automated production of plant-based vaccines and pharmaceuticals.

    PubMed

    Wirz, Holger; Sauer-Budge, Alexis F; Briggs, John; Sharpe, Aaron; Shu, Sudong; Sharon, Andre

    2012-12-01

    A fully automated "factory" was developed that uses tobacco plants to produce large quantities of vaccines and other therapeutic biologics within weeks. This first-of-a-kind factory takes advantage of a plant viral vector technology to produce specific proteins within the leaves of rapidly growing plant biomass. The factory's custom-designed robotic machines plant seeds, nurture the growing plants, introduce a viral vector that directs the plant to produce a target protein, and harvest the biomass once the target protein has accumulated in the plants-all in compliance with Food and Drug Administration (FDA) guidelines (e.g., current Good Manufacturing Practices). The factory was designed to be time, cost, and space efficient. The plants are grown in custom multiplant trays. Robots ride up and down a track, servicing the plants and delivering the trays from the lighted, irrigated growth modules to each processing station as needed. Using preprogrammed robots and processing equipment eliminates the need for human contact, preventing potential contamination of the process and economizing the operation. To quickly produce large quantities of protein-based medicines, we transformed a laboratory-based biological process and scaled it into an industrial process. This enables quick, safe, and cost-effective vaccine production that would be required in case of a pandemic.

  4. Preparing for human papillomavirus vaccine introduction in Kenya: implications from focus-group and interview discussions with caregivers and opinion leaders in Western Kenya.

    PubMed

    Friedman, Allison L; Oruko, Kelvin O; Habel, Melissa A; Ford, Jessie; Kinsey, Jennine; Odhiambo, Frank; Phillips-Howard, Penelope A; Wang, Susan A; Collins, Tabu; Laserson, Kayla F; Dunne, Eileen F

    2014-08-16

    Cervical cancer claims the lives of 275,000 women each year; most of these deaths occur in low-or middle-income countries. In Kenya, cervical cancer is the leading cause of cancer-related mortality among women of reproductive age. Kenya's Ministry of Public Health and Sanitation has developed a comprehensive strategy to prevent cervical cancer, which includes plans for vaccinating preteen girls against human papillomavirus (HPV) by 2015. To identify HPV vaccine communication and mobilization needs, this research sought to understand HPV vaccine-related perceptions and concerns of male and female caregivers and community leaders in four rural communities of western Kenya. We conducted five focus groups with caregivers (n = 56) and 12 key-informant interviews with opinion leaders to explore cervical cancer-related knowledge, attitudes and beliefs, as well as acceptability of HPV vaccination for 9-12 year-old girls. Four researchers independently reviewed the data and developed codes based on questions in interview guides and topics that emerged organically, before comparing and reconciling results through a group consensus process. Cervical cancer was not commonly recognized, though it was understood generally in terms of its symptoms. By association with cancer and genital/reproductive organs, cervical cancer was feared and stigmatized. Overall acceptability of a vaccine that prevents cervical cancer was high, so long as it was endorsed by trusted agencies and communities were sensitized first. Some concerns emerged related to vaccine safety (e.g., impact on fertility), program intent, and health equity. For successful vaccine introduction in Kenya, there is a need for communication and mobilization efforts to raise cervical cancer awareness; prompt demand for vaccination; address health equity concerns and stigma; and minimize potential resistance. Visible endorsement by government leaders and community influencers can provide reassurance of the vaccine's safety, efficacy and benefits for girls and communities. Involvement of community leadership, parents and champions may also be critical for combatting stigma and making cervical cancer relevant to Kenyan communities. These findings underscore the need for adequate planning and resources for information, education and communication prior to vaccine introduction. Specific recommendations for communication and social-marketing strategies are made.

  5. Reverse Vaccinology: Developing Vaccines in the Era of Genomics

    PubMed Central

    Sette, Alessandro; Rappuoli, Rino

    2012-01-01

    The sequence of microbial genomes made all potential antigens of each pathogen available for vaccine development. This increased by orders of magnitude potential vaccine targets in bacteria, parasites, and large viruses and revealed virtually all their CD4+ and CD8+ T cell epitopes. The genomic information was first used for the development of a vaccine against serogroup B meningococcus, and it is now being used for several other bacterial vaccines. In this review, we will first summarize the impact that genome sequencing has had on vaccine development, and then we will analyze how the genomic information can help further our understanding of immunity to infection or vaccination and lead to the design of better vaccines by diving into the world of T cell immunity. PMID:21029963

  6. Dengue vaccines: recent developments, ongoing challenges and current candidates

    PubMed Central

    McArthur, Monica A.; Sztein, Marcelo B.; Edelman, Robert

    2013-01-01

    Summary Dengue is among the most prevalent and important arbovirus diseases of humans. In order to effectively control this rapidly spreading disease, control of the vector mosquito and a safe and efficacious vaccine are critical. Despite considerable efforts, the development of a successful vaccine has remained elusive. Multiple factors have complicated the creation of a successful vaccine, not the least of which are the complex, immune-mediated responses against four antigenically distinct serotypes necessitating a tetravalent vaccine providing long lasting protective immunity. Despite the multiple impediments, there are currently many promising vaccine candidates in pre-clinical and clinical development. Here we review the recent advances in dengue virus vaccine development and briefly discuss the challenges associated with the use of these vaccines as a public health tool. PMID:23984962

  7. Malaria vaccine research and development: the role of the WHO MALVAC committee

    PubMed Central

    2013-01-01

    The WHO Malaria Vaccine Advisory Committee (MALVAC) provides advice to WHO on strategic priorities, activities and technical issues related to global efforts to develop vaccines against malaria. MALVAC convened a series of meetings to obtain expert, impartial consensus views on the priorities and best practice for vaccine-related research and development strategies. The technical areas covered during these consultations included: guidance on clinical trial design for candidate sporozoite and asexual blood stage vaccines; measures of efficacy of malaria vaccines in Phase IIb and Phase III trials; standardization of immunoassays; the challenges of developing assays and designing trials for interventions against malaria transmission; modelling impact of anti-malarial interventions; whole organism malaria vaccines, and Plasmodium vivax vaccine-related research and evaluation. These informed discussions and opinions are summarized here to provide guidance on harmonization of strategies to help ensure high standards of practice and comparability between centres and the outcome of vaccine trials. PMID:24112689

  8. Microneedle and mucosal delivery of influenza vaccines

    PubMed Central

    Kang, Sang-Moo; Song, Jae-Min; Kim, Yeu-Chun

    2017-01-01

    In recent years with the threat of pandemic influenza and other public health needs, alternative vaccination methods other than intramuscular immunization have received great attention. The skin and mucosal surfaces are attractive sites probably because of both non-invasive access to the vaccine delivery and unique immunological responses. Intradermal vaccines using a microinjection system (BD Soluvia) and intranasal vaccines (FluMist) are licensed. As a new vaccination method, solid microneedles have been developed using a simple device that may be suitable for self-administration. Because coated micorneedle influenza vaccines are administered in the solid state, developing formulations maintaining the stability of influenza vaccines is an important issue to be considered. Marketable microneedle devices and clinical trials remain to be developed. Other alternative mucosal routes such as oral and intranasal delivery systems are also attractive for inducing cross protective mucosal immunity but effective non-live mucosal vaccines remain to be developed. PMID:22697052

  9. Production and dose determination of the Infection and Treatment Method (ITM) Muguga cocktail vaccine used to control East Coast fever in cattle.

    PubMed

    Patel, Ekta; Mwaura, Stephen; Kiara, Henry; Morzaria, Subhash; Peters, Andrew; Toye, Philip

    2016-03-01

    The Infection and Treatment Method (ITM) of vaccination against the apicomplexan parasite Theileria parva has been used since the early 1970s and is still the only commercially available vaccine to combat the fatal bovine disease, East Coast fever (ECF). The disease is tick-transmitted and results in annual economic losses of at least $300 million per year. While this vaccine technology has been available for over 40 years, few attempts have been made to standardize the production process and characterize the vaccine. The latest batch was produced in early 2008 at the International Livestock Research Institute (ILRI). The vaccine production involves the use of cattle free from parasites routinely monitored throughout the production process, and a pathogen-free tick colony. This paper describes the protocol used in the recent production, and the process improvements, including improved quality control tools, that had not been employed in previous ITM productions. The paper also describes the processes involved in determining the appropriate field dose, which involved a three-step in vivo study with various dilutions of the vaccine stabilate. The vaccine was shown to be safe and viable after production, and a suitable field dose was identified as 1 ml of a 1:100 dilution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Vaccines as Epidemic Insurance

    PubMed Central

    Pauly, Mark V.

    2017-01-01

    This paper explores the relationship between the research for and development of vaccines against global pandemics and insurance. It shows that development in advance of pandemics of a portfolio of effective and government-approved vaccines does have some insurance properties: it requires incurring costs that are certain (the costs of discovering, developing, and testing vaccines) in return for protection against large losses (if a pandemic treatable with one of the vaccines occurs) but also with the possibility of no benefit (from a vaccine against a disease that never reaches the pandemic stage). It then argues that insurance against the latter event might usefully be offered to organizations developing vaccines, and explores the benefits of insurance payments to or on behalf of countries who suffer from unpredictable pandemics. These ideas are then related to recent government, industry, and philanthropic efforts to develop better policies to make vaccines against pandemics available on a timely basis. PMID:29076995

  11. Vaccines as Epidemic Insurance.

    PubMed

    Pauly, Mark V

    2017-10-27

    This paper explores the relationship between the research for and development of vaccines against global pandemics and insurance. It shows that development in advance of pandemics of a portfolio of effective and government-approved vaccines does have some insurance properties: it requires incurring costs that are certain (the costs of discovering, developing, and testing vaccines) in return for protection against large losses (if a pandemic treatable with one of the vaccines occurs) but also with the possibility of no benefit (from a vaccine against a disease that never reaches the pandemic stage). It then argues that insurance against the latter event might usefully be offered to organizations developing vaccines, and explores the benefits of insurance payments to or on behalf of countries who suffer from unpredictable pandemics. These ideas are then related to recent government, industry, and philanthropic efforts to develop better policies to make vaccines against pandemics available on a timely basis.

  12. Overcoming challenges to sustainable immunization financing: early experiences from GAVI graduating countries

    PubMed Central

    Hecht, Robert; Kaddar, Miloud; Schmitt, Sarah; Ryckman, Theresa; Cornejo, Santiago

    2015-01-01

    Over the 5-year period ending in 2018, 16 countries with a combined birth cohort of over 6 million infants requiring life-saving immunizations are scheduled to transition (graduate) from outside financial and technical support for a number of their essential vaccines. This support has been provided over the past decade by the GAVI Alliance. Will these 16 countries be able to continue to sustain these vaccination efforts? To address this issue, GAVI and its partners are supporting transition planning, entailing country assessments of readiness to graduate and intensive dialogue with national officials to ensure a smooth transition process. This approach was piloted in Bhutan, Republic of Congo, Georgia, Moldova and Mongolia in 2012. The pilot showed that graduating countries are highly heterogeneous in their capacity to assume responsibility for their immunization programmes. Although all possess certain strengths, each country displayed weaknesses in some of the following areas: budgeting for vaccine purchase, national procurement practices, performance of national regulatory agencies, and technical capacity for vaccine planning and advocacy. The 2012 pilot experience further demonstrated the value of transition planning processes and tools. As a result, GAVI has decided to continue with transition planning in 2013 and beyond. As the graduation process advances, GAVI and graduating countries should continue to contribute to global collective thinking about how developing countries can successfully end their dependence on donor aid and achieve self-sufficiency. PMID:24510369

  13. Influenza Vaccine Research funded by the European Commission FP7-Health-2013-Innovation-1 project.

    PubMed

    Liu, Heng; Frijlink, Henderik W; Huckriede, Anke; van Doorn, Eva; Schmidt, Ed; Leroy, Odile; Rimmelzwaan, Guus; McCullough, Keneth; Whelan, Mike; Hak, Eelko

    2016-11-21

    Due to influenza viruses continuously displaying antigenic variation, current seasonal influenza vaccines must be updated annually to include the latest predicted strains. Despite all the efforts put into vaccine strain selection, vaccine production, testing, and administration, the protective efficacy of seasonal influenza vaccines is greatly reduced when predicted vaccine strains antigenically mismatch with the actual circulating strains. Moreover, preparing for a pandemic outbreak is a challenge, because it is unpredictable which strain will cause the next pandemic. The European Commission has funded five consortia on influenza vaccine development under the Seventh Framework Programme for Research and Technological Development (FP7) in 2013. The call of the EU aimed at developing broadly protective influenza vaccines. Here we review the scientific strategies used by the different consortia with respect to antigen selection, vaccine delivery system, and formulation. The issues related to the development of novel influenza vaccines are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The National Childhood Vaccine Injury Act: A Chance for Families.

    ERIC Educational Resources Information Center

    Gage, Jack; And Others

    1989-01-01

    The article describes the National Childhood Vaccine Injury Act which provides for recovery awards for vaccine-related injuries caused by diphtheria, pertussis, tetanus, polio, measles, mumps, and rubella vaccines. A Vaccine Injury Table lists types of disabilities covered and time periods for first symptoms. The claims process, legal assistance,…

  15. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  16. The Immunogenicity and Safety of CYD-Tetravalent Dengue Vaccine (CYD-TDV) in Children and Adolescents: A Systematic Review.

    PubMed

    Agarwal, Raksheeth; Wahid, Mardiastuti H; Yausep, Oliver E; Angel, Sharon H; Lokeswara, Angga W

    2017-01-01

    to assess the immunogenicity and safety of CYD-tetravalent dengue vaccine (CYD-TDV) in children. comprehensive literature searches were conducted on various databases. Randomized-controlled trials on children with CYD-TDV as intervention were selected based on inclusion and exclusion criteria. Data extracted from selected trials included safety of vaccine and immunogenicity in terms of Geometric Mean Titres (GMT) of antibodies.   six clinical trials were selected based on preset criteria. GMT values were obtained using 50% Plaque Reduction Neutralization Test (PRNT) and safety was semi-quantitatively assessed based on adverse effects. Additional data processing was done to obtain a better understanding on the trends among the studies. The results showed that the groups vaccinated with CYD-TDV showed higher immunogenicity against dengue virus antigens than the control groups. Safety results were satisfactory in all trials, and most severe side effects were unrelated to the vaccine. CYD-TDV is both effective and safe for patients in endemic regions. This gives promise for further development and large-scale research on this vaccine to assess its efficacy in decreasing dengue prevalence, and its pervasive implementation in endemic countries, such as Indonesia.

  17. Computational design of hepatitis C vaccines using maximum entropy models and population dynamics

    NASA Astrophysics Data System (ADS)

    Hart, Gregory; Ferguson, Andrew

    Hepatitis C virus (HCV) afflicts 170 million people and kills 350,000 annually. Vaccination offers the most realistic and cost effective hope of controlling this epidemic. Despite 20 years of research, no vaccine is available. A major obstacle is the virus' extreme genetic variability and rapid mutational escape from immune pressure. Improvements in the vaccine design process are urgently needed. Coupling data mining with spin glass models and maximum entropy inference, we have developed a computational approach to translate sequence databases into empirical fitness landscapes. These landscapes explicitly connect viral genotype to phenotypic fitness and reveal vulnerable targets that can be exploited to rationally design immunogens. Viewing these landscapes as the mutational ''playing field'' over which the virus is constrained to evolve, we have integrated them with agent-based models of the viral mutational and host immune response dynamics, establishing a data-driven immune simulator of HCV infection. We have employed this simulator to perform in silico screening of HCV immunogens. By systematically identifying a small number of promising vaccine candidates, these models can accelerate the search for a vaccine by massively reducing the experimental search space.

  18. Memory T cells and vaccines.

    PubMed

    Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W

    2003-01-17

    T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.

  19. Conserved Elements Vaccine for HIV | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) developed a DNA vaccine using conserved elements of HIV-1 Gag, administered in a prime-boost vaccination protocol. Two of the HIV Gag CE DNA vectors have been tested in a rhesus macaque model. Priming with the Gag CE vaccine and boosting with full length Gag DNA showed increased immune responses when compared to vaccination with Gag alone. Researchers seek licensing and/or co-development research collaborations for development this DNA vaccine.

  20. 78 FR 52776 - Documents to Support Submission of an Electronic Common Technical Document; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... obtain the documents at either http://www.fda.gov/Drugs/DevelopmentApprovalProcess/FormsSubmission...BloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm . Dated: August 20, 2013...

  1. 76 FR 66311 - Draft Documents To Support Submission of an Electronic Common Technical Document; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    .../DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/ucm253101.htm , http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm , or http...

  2. 78 FR 10181 - Documents To Support Submission of an Electronic Common Technical Document; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... obtain the documents at either http://www.fda.gov/Drugs/DevelopmentApprovalProcess/FormsSubmission...BloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm . Dated: February 8, 2013...

  3. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease

    PubMed Central

    Enjuanes, Luis; DeDiego, Marta L.; Álvarez, Enrique; Deming, Damon; Sheahan, Tim; Baric, Ralph

    2009-01-01

    An important effort has been performed after the emergence of severe acute respiratory syndrome (SARS) epidemic in 2003 to diagnose and prevent virus spreading. Several types of vaccines have been developed including inactivated viruses, subunit vaccines, virus-like particles (VLPs), DNA vaccines, heterologous expression systems, and vaccines derived from SARS-CoV genome by reverse genetics. This review describes several aspects essential to develop SARS-CoV vaccines, such as the correlates of protection, virus serotypes, vaccination side effects, and bio-safeguards that can be engineered into recombinant vaccine approaches based on the SARS-CoV genome. The production of effective and safe vaccines to prevent SARS has led to the development of promising vaccine candidates, in contrast to the design of vaccines for other coronaviruses, that in general has been less successful. After preclinical trials in animal models, efficacy and safety evaluation of the most promising vaccine candidates described has to be performed in humans. PMID:17416434

  4. Military vaccines in today's environment.

    PubMed

    Schmaljohn, Connie S; Smith, Leonard A; Friedlander, Arthur M

    2012-08-01

    The US military has a long and highly distinguished record of developing effective vaccines against pathogens that threaten the armed forces. Many of these vaccines have also been of significant benefit to civilian populations around the world. The current requirements for force protection include vaccines against endemic disease threats as well as against biological warfare or bioterrorism agents, to include novel or genetically engineered threats. The cost of vaccine development and the modern regulatory requirements for licensing vaccines have strained the ability of the program to maintain this broad mission. Without innovative vaccine technologies, streamlined regulatory strategies, and coordinating efforts for use in civilian populations where appropriate, the military vaccine development program is in jeopardy.

  5. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease.

    PubMed

    Seid, Christopher A; Jones, Kathryn M; Pollet, Jeroen; Keegan, Brian; Hudspeth, Elissa; Hammond, Molly; Wei, Junfei; McAtee, C Patrick; Versteeg, Leroy; Gutierrez, Amanda; Liu, Zhuyun; Zhan, Bin; Respress, Jonathan L; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J

    2017-03-04

    A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.

  6. Bridging the Gap Between Validation and Implementation of Non-Animal Veterinary Vaccine Potency Testing Methods

    PubMed Central

    Dozier, Samantha; Brown, Jeffrey; Currie, Alistair

    2011-01-01

    Simple Summary Many vaccines are tested for quality in experiments that require the use of large numbers of animals in procedures that often cause significant pain and distress. Newer technologies have fostered the development of vaccine quality control tests that reduce or eliminate the use of animals, but the availability of these newer methods has not guaranteed their acceptance by regulators or use by manufacturers. We discuss a strategic approach that has been used to assess and ultimately increase the use of non-animal vaccine quality tests in the U.S. and U.K. Abstract In recent years, technologically advanced high-throughput techniques have been developed that replace, reduce or refine animal use in vaccine quality control tests. Following validation, these tests are slowly being accepted for use by international regulatory authorities. Because regulatory acceptance itself has not guaranteed that approved humane methods are adopted by manufacturers, various organizations have sought to foster the preferential use of validated non-animal methods by interfacing with industry and regulatory authorities. After noticing this gap between regulation and uptake by industry, we began developing a paradigm that seeks to narrow the gap and quicken implementation of new replacement, refinement or reduction guidance. A systematic analysis of our experience in promoting the transparent implementation of validated non-animal vaccine potency assays has led to the refinement of our paradigmatic process, presented here, by which interested parties can assess the local regulatory acceptance of methods that reduce animal use and integrate them into quality control testing protocols, or ensure the elimination of peripheral barriers to their use, particularly for potency and other tests carried out on production batches. PMID:26486625

  7. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease

    PubMed Central

    Jones, Kathryn M.; Keegan, Brian; Hudspeth, Elissa; Hammond, Molly; Wei, Junfei; McAtee, C. Patrick; Versteeg, Leroy; Gutierrez, Amanda; Liu, Zhuyun; Zhan, Bin; Respress, Jonathan L.; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J.

    2017-01-01

    ABSTRACT A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies. PMID:27737611

  8. Recent progress in GM-CSF-based cancer immunotherapy.

    PubMed

    Yan, Wan-Lun; Shen, Kuan-Yin; Tien, Chun-Yuan; Chen, Yu-An; Liu, Shih-Jen

    2017-03-01

    Cancer immunotherapy is a growing field. GM-CSF, a potent cytokine promoting the differentiation of myeloid cells, can also be used as an immunostimulatory adjuvant to elicit antitumor immunity. Additionally, GM-CSF is essential for the differentiation of dendritic cells, which are responsible for processing and presenting tumor antigens for the priming of antitumor cytotoxic T lymphocytes. Some strategies have been developed for GM-CSF-based cancer immunotherapy in clinical practice: GM-CSF monotherapy, GM-CSF-secreting cancer cell vaccines, GM-CSF-fused tumor-associated antigen protein-based vaccines, GM-CSF-based DNA vaccines and GM-CSF combination therapy. GM-CSF also contributes to the regulation of immunosuppression in the tumor microenvironment. This review provides recommendations regarding GM-CSF-based cancer immunotherapy.

  9. Identifying ethical issues in the development of vaccines and in vaccination.

    PubMed

    Johari, Veena

    2017-01-01

    Vaccines are a widely accepted public health intervention. They are also a profitable tool for pharmaceutical companies manufacturing vaccines. There are many vaccines in the pipeline, for various diseases, or as combination vaccines for several diseases. However, there is also a growing concern about vaccines and the manner in which they are developed and approved by the authorities. Approvals are fast tracked and adverse events and serious adverse events following vaccination are seldom reported once the vaccine gets its marketing approval. Thus, vaccines have been clouded with many controversies and their use as a public health tool to prevent diseases is constantly under challenge.

  10. [Better vaccinations - new approaches for targeted immunomodulation in healthy and immunosuppressed].

    PubMed

    Balmer, Maria L; Berger, Christoph T

    2014-01-01

    Infectious diseases are the main cause of mortality and morbidity worldwide. The development of successful vaccines is thus one of the major achievements in medical history and may have saved more lives than antibiotics. Whereas the first vaccines were developed in a rather empiric way, new insights into the immunological mechanisms of a successful vaccine response allow modifications of the generally used vaccination protocols and are a prerequisite for the generation of vaccines against new pathogens such as HIV, malaria, dengue virus and others. The aim of effective vaccine development is an avirulent, non-invasive, non-replicating vaccine, which induces long-lived, pathogen-specific immune responses. The addition of adjuvants, modifications of the dose, dose interval and application route can improve antibody-titers and cellular immune responses and thus improve vaccination outcome. On the other hand primary or secondary immunodeficiency leads to an increased susceptibility for infectious diseases and impaired immune responses to vaccinations. These patients should be vaccinated with dead vaccines, whereas live vaccines are generally contraindicated. Here we summarize current and future approaches to enhance vaccine induced immune responses and highlight some of the issues of vaccinations in immunosuppressed individuals.

  11. Low vaccination coverage of Greek Roma children amid economic crisis: national survey using stratified cluster sampling

    PubMed Central

    Petraki, Ioanna; Arkoudis, Chrisoula; Terzidis, Agis; Smyrnakis, Emmanouil; Benos, Alexis; Panagiotopoulos, Takis

    2017-01-01

    Abstract Background: Research on Roma health is fragmentary as major methodological obstacles often exist. Reliable estimates on vaccination coverage of Roma children at a national level and identification of risk factors for low coverage could play an instrumental role in developing evidence-based policies to promote vaccination in this marginalized population group. Methods: We carried out a national vaccination coverage survey of Roma children. Thirty Roma settlements, stratified by geographical region and settlement type, were included; 7–10 children aged 24–77 months were selected from each settlement using systematic sampling. Information on children’s vaccination coverage was collected from multiple sources. In the analysis we applied weights for each stratum, identified through a consensus process. Results: A total of 251 Roma children participated in the study. A vaccination document was presented for the large majority (86%). We found very low vaccination coverage for all vaccines. In 35–39% of children ‘minimum vaccination’ (DTP3 and IPV2 and MMR1) was administered, while 34–38% had received HepB3 and 31–35% Hib3; no child was vaccinated against tuberculosis in the first year of life. Better living conditions and primary care services close to Roma settlements were associated with higher vaccination indices. Conclusions: Our study showed inadequate vaccination coverage of Roma children in Greece, much lower than that of the non-minority child population. This serious public health challenge should be systematically addressed, or, amid continuing economic recession, the gap may widen. Valid national estimates on important characteristics of the Roma population can contribute to planning inclusion policies. PMID:27694159

  12. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae.

    PubMed

    O'Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David

    2015-01-01

    Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni.

  13. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae

    PubMed Central

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David

    2015-01-01

    Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni. PMID:25715048

  14. The comparative evaluation of expanded national immunization policies in Korea using an analytic hierarchy process.

    PubMed

    Shin, Taeksoo; Kim, Chun-Bae; Ahn, Yang-Heui; Kim, Hyo-Youl; Cha, Byung Ho; Uh, Young; Lee, Joo-Heon; Hyun, Sook-Jung; Lee, Dong-Han; Go, Un-Yeong

    2009-01-29

    The purpose of this paper is to propose new evaluation criteria and an analytic hierarchy process (AHP) model to assess the expanded national immunization programs (ENIPs) and to evaluate two alternative health care policies. One of the alternative policies is that private clinics and hospitals would offer free vaccination services to children and the other of them is that public health centers would offer these free vaccination services. Our model to evaluate the ENIPs was developed using brainstorming, Delphi techniques, and the AHP model. We first used the brainstorming and Delphi techniques, as well as literature reviews, to determine 25 criteria with which to evaluate the national immunization policy; we then proposed a hierarchical structure of the AHP model to assess ENIPs. By applying the proposed AHP model to the assessment of ENIPs for Korean immunization policies, we show that free vaccination services should be provided by private clinics and hospitals rather than public health centers.

  15. Vaccines, inspiring innovation in health.

    PubMed

    Pagliusi, Sonia; Dennehy, Maureen; Kim, Hun

    2018-05-19

    This report covers the topics of pandemics, epidemics and partnerships, including regulatory convergence initiatives, new technologies and novel vaccines, discussed by leading public and private sector stakeholders at the 18th Annual General Meeting (AGM) of the Developing Countries Vaccine Manufacturers' Network (DCVMN). Contributions of Gavi and the vaccine industry from emerging countries to the growing global vaccine market, by improving the supply base from manufacturers in developing countries and contributing to 58% of doses, were highlighted. The Coalition for Epidemic Preparedness Innovations (CEPI), the International Vaccine Institute (IVI) and others reported on new strategies to ensure speedy progress in preclinical and clinical development of innovative vaccines for future MERS, Zika or other outbreak response. Priorities for vaccine stockpiling, to assure readiness during emergencies and to prevent outbreaks due to re-emerging diseases such as yellow fever, cholera and poliomyelitis, were outlined. The role of partnerships in improving global vaccine access, procurement and immunization coverage, and shared concerns were reviewed. The World Health Organization (WHO) and other international collaborating partners provided updates on the Product, Price and Procurement database, the prequalification of vaccines, the control of neglected tropical diseases, particularly the new rabies elimination initiative, and regulatory convergence proposals to accelerate vaccine registration in developing countries. Updates on supply chain innovations and novel vaccine platforms were presented. The discussions enabled members and partners to reflect on efficiency of research & development, supply chain tools and trends in packaging technologies improving delivery of existing vaccines, and allowing a deeper understanding of the current public-health objectives, industry financing, and global policies, required to ensure optimal investments, alignment and stability of vaccine supply in developing countries. Copyright © 2018. Published by Elsevier Ltd.

  16. The Meningitis Vaccine Project.

    PubMed

    LaForce, F Marc; Konde, Kader; Viviani, Simonetta; Préziosi, Marie-Pierre

    2007-09-03

    Epidemic meningococcal meningitis is an important public health problem in sub-Saharan Africa. Current control measures rely on reactive immunizations with polysaccharide (PS) vaccines that do not induce herd immunity and are of limited effectiveness in those under 2 years of age. Conversely, polysaccharide conjugate vaccines are effective in infants and have consistently shown an important effect on decreasing carriage, two characteristics that facilitate disease control. In 2001 the Meningitis Vaccine Project (MVP) was created as a partnership between PATH and the World Health Organization (WHO) with the goal of eliminating meningococcal epidemics in Africa through the development, licensure, introduction, and widespread use of conjugate meningococcal vaccines. Since group A Neisseria meningitidis (N. meningitidis) is the dominant pathogen causing epidemic meningitis in Africa MVP is developing an affordable (US$ 0.40 per dose) meningococcal A (Men A) conjugate vaccine through an innovative international partnership that saw transfer of a conjugation and fermentation technology to a developing country vaccine manufacturer. A Phase 1 study of the vaccine in India has shown that the product is safe and immunogenic. Phase 2 studies have begun in Africa, and a large demonstration study of the conjugate vaccine is envisioned for 2008-2009. After extensive consultations with African public health officials a vaccine introduction plan has been developed that includes introduction of the Men A conjugate vaccine into standard Expanded Programme on Immunization (EPI) schedules but also emphasizes mass vaccination of 1-29 years old to induce herd immunity, a strategy that has been shown to be highly effective when the meningococcal C (Men C) conjugate vaccine was introduced in several European countries. The MVP model is a clear example of the usefulness of a "push mechanism" to finance the development of a needed vaccine for the developing world.

  17. Immunization update and hot topics in clinical immunology: how does this relate to my practice?

    PubMed

    Bellanti, Joseph A

    2006-01-01

    The prevention of infectious diseases by the use of vaccines represents one of medicine's greatest triumphs during the 20th century. This era has witnessed the global eradication of smallpox as a result of Jennerian cowpox vaccination, the elimination of paralytic poliomyelitis from the western hemisphere, and within 5-10 years the anticipated eradication of poliomyelitis worldwide as a result of the poliovirus vaccines. Next slated for worldwide eradication is measles, the great killer of infants and children, which each year extracts a global mortality of one million victims. Throughout the 20th century the percutaneous (i.e., subcutaneous or intramuscular) route has almost exclusively been the preferred way to administer vaccines. However, as a result of several important scientific discoveries made during the 20th century, including new tissue-culturing techniques, the development of recombinant DNA technology, and genetic sequencing, a whole new generation of tailor-made modern vaccines has become available, including DNA vaccines and transgenic plant vaccines. Moreover, it became apparent that alternative routes of administration of vaccines, such as by aerosol immunization might be more appropriate and more effective than immunization via the parenteral route. The overall success in vaccine development, however, has not been without cost. For every new vaccine that has been developed, an adverse effect has been seen. Thus, although modern vaccines are extremely safe and effective, they are neither completely safe nor completely effective. The goal of vaccine development, therefore, is to achieve the highest degree of protection and the lowest rate of adverse effects. This paper describes some of the recent advances in vaccine development and will focus on some hot topics relating to the recent development and use of respiratory aerosolized vaccines.

  18. Parasite Carbohydrate Vaccines.

    PubMed

    Jaurigue, Jonnel A; Seeberger, Peter H

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma , and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.

  19. Parasite Carbohydrate Vaccines

    PubMed Central

    Jaurigue, Jonnel A.; Seeberger, Peter H.

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases—malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development. PMID:28660174

  20. Advances and challenges in malaria vaccine development.

    PubMed

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

Top