Sample records for vaccine elicits protective

  1. DNA vaccination elicits protective immune responses against pandemic and classic swine influenza viruses in pigs.

    PubMed

    Gorres, J Patrick; Lager, Kelly M; Kong, Wing-Pui; Royals, Michael; Todd, John-Paul; Vincent, Amy L; Wei, Chih-Jen; Loving, Crystal L; Zanella, Eraldo L; Janke, Bruce; Kehrli, Marcus E; Nabel, Gary J; Rao, Srinivas S

    2011-11-01

    Swine influenza is a highly contagious viral infection in pigs that significantly impacts the pork industry due to weight loss and secondary infections. There is also the potential of a significant threat to public health, as was seen in 2009 when the pandemic H1N1 influenza virus strain emerged from reassortment events among avian, swine, and human influenza viruses within pigs. As classic and pandemic H1N1 strains now circulate in swine, an effective vaccine may be the best strategy to protect the pork industry and public health. Current inactivated-virus vaccines available for swine influenza protect only against viral strains closely related to the vaccine strain, and egg-based production of these vaccines is insufficient to respond to large outbreaks. DNA vaccines are a promising alternative since they can potentially induce broad-based protection with more efficient production methods. In this study we evaluated the potentials of monovalent and trivalent DNA vaccine constructs to (i) elicit both humoral and gamma interferon (IFN-γ) responses and (ii) protect pigs against viral shedding and lung disease after challenge with pandemic H1N1 or classic swine H1N1 influenza virus. We also compared the efficiency of a needle-free vaccine delivery method to that of a conventional needle/syringe injection. We report that DNA vaccination elicits robust serum antibody and cellular responses after three immunizations and confers significant protection against influenza virus challenge. Needle-free delivery elicited improved antibody responses with the same efficiency as conventional injection and should be considered for development as a practical alternative for vaccine administration.

  2. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus.

    PubMed

    Friedrich, Brian M; Beasley, David W C; Rudra, Jai S

    2016-11-04

    A crucial issue in vaccine development is to balance safety with immunogenicity. The low immunogenicity of most subunit antigens warrants a search for adjuvants able to stimulate both cell-mediated and humoral immunity. In recent years, successful applications of nanotechnology and bioengineering in the field of vaccine development have enabled the production of novel adjuvant technologies. In this work, we investigated totally synthetic and supramolecular peptide hydrogels as novel vaccine adjuvants in conjunction with the immunoprotective envelope protein domain III (EIII) of West Nile virus as an immunogen in a mouse model. Our results indicate that, compared to the clinically approved adjuvant alum, peptide hydrogel adjuvanted antigen elicited stronger antibody responses and conferred significant protection against mortality after virus challenge. The high chemical definition and biocompatibility of self-assembling peptide hydrogels makes them attractive as immune adjuvants for the production of subunit vaccines against viral and bacterial infections where antibody-mediated protection is desirable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A nonproliferating parvovirus vaccine vector elicits sustained, protective humoral immunity following a single intravenous or intranasal inoculation.

    PubMed

    Palmer, Gene A; Brogdon, Jennifer L; Constant, Stephanie L; Tattersall, Peter

    2004-02-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.

  4. A Nonproliferating Parvovirus Vaccine Vector Elicits Sustained, Protective Humoral Immunity following a Single Intravenous or Intranasal Inoculation

    PubMed Central

    Palmer, Gene A.; Brogdon, Jennifer L.; Constant, Stephanie L.; Tattersall, Peter

    2004-01-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th1 immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4+ T cells. PMID:14722265

  5. Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague.

    PubMed

    Albrecht, Mark T; Livingston, Brian D; Pesce, John T; Bell, Matt G; Hannaman, Drew; Keane-Myers, Andrea M

    2012-07-06

    Electroporation of DNA vaccines represents a platform technology well positioned for the development of multivalent biodefense vaccines. To evaluate this hypothesis, three vaccine constructs were produced using codon-optimized genes encoding Bacillus anthracis Protective Antigen (PA), and the Yersinia pestis genes LcrV and F1, cloned into pVAX1. A/J mice were immunized on a prime-boost schedule with these constructs using the electroporation-based TriGrid Delivery System. Immunization with the individual pDNA vaccines elicited higher levels of antigen-specific IgG than when used in combination. DNA vaccine effectiveness was proven, the pVAX-PA titers were toxin neutralizing and fully protective against a lethal B. anthracis spore challenge when administered alone or co-formulated with the plague pDNA vaccines. LcrV and F1 pVAX vaccines against plague were synergistic, resulting in 100% survival, but less protective individually and when co-formulated with pVAX-PA. These DNA vaccine responses were Th1/Th2 balanced with high levels of IFN-γ and IL-4 in splenocyte recall assays, contrary to complimentary protein Alum vaccinations displaying a Th2 bias with increased IL-4 and low levels of IFN-γ. These results demonstrate the feasibility of electroporation to deliver and maintain the overall efficacy of an anthrax-plague DNA vaccine cocktail whose individual components have qualitative immunological differences when combined. Published by Elsevier Ltd.

  6. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets.

    PubMed

    Pillet, S; Racine, T; Nfon, C; Di Lenardo, T Z; Babiuk, S; Ward, B J; Kobinger, G P; Landry, N

    2015-11-17

    In March 2013, the Chinese Centre for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A H7N9 virus. Infection with this virus often caused severe pneumonia and acute respiratory distress syndrome resulting in a case fatality rate >35%. The risk of pandemic highlighted, once again, the need for a more rapid and scalable vaccine response capability. Here, we describe the rapid (19 days) development of a plant-derived VLP vaccine based on the hemagglutinin sequence of influenza H7N9 A/Hangzhou/1/2013. The immunogenicity of the H7 VLP vaccine was assessed in mice and ferrets after one or two intramuscular dose(s) with and without adjuvant (alum or GLA-SE™). In ferrets, we also measured H7-specific cell-mediated immunity. The mice and ferrets were then challenged with H7N9 A/Anhui/1/2013 influenza virus. A single immunization with the adjuvanted vaccine elicited a strong humoral response and protected mice against an otherwise lethal challenge. Two doses of unadjuvanted vaccine significantly increased humoral response and resulted in 100% protection with significant reduction of clinical signs leading to nearly asymptomatic infections. In ferrets, a single immunization with the alum-adjuvanted H7 VLP vaccine induced strong humoral and CMI responses with antigen-specific activation of CD3(+) T cells. Compared to animals injected with placebo, ferrets vaccinated with alum-adjuvanted vaccine displayed no weight loss during the challenge. Moreover, the vaccination significantly reduced the viral load in lungs and nasal washes 3 days after the infection. This candidate plant-made H7 vaccine therefore induced protective responses after either one adjuvanted or two unadjuvanted doses. Studies are currently ongoing to better characterize the immune response elicited by the plant-derived VLP vaccines. Regardless, these data are very promising for the rapid production of an immunogenic and protective vaccine against

  7. A Bivalent Heterologous DNA Virus-Like-Particle Prime-Boost Vaccine Elicits Broad Protection against both Group 1 and 2 Influenza A Viruses

    PubMed Central

    Jiang, Wenbo; Wang, Shuangshuang; Chen, Honglin; Ren, Huanhuan; Huang, Xun; Wang, Guiqin; Chen, Ling; Chen, Zhiwei

    2017-01-01

    ABSTRACT Current seasonal influenza vaccines are efficacious when vaccine strains are matched with circulating strains. However, they do not protect antigenic variants and newly emerging pandemic and outbreak strains. Thus, there is a critical need for developing so-called “universal” vaccines that protect against all influenza viruses. In the present study, we developed a bivalent heterologous DNA virus-like particle prime-boost vaccine strategy. We show that mice immunized with this vaccine were broadly protected against lethal challenge from group 1 (H1, H5, and H9) and group 2 (H3 and H7) viruses, with 94% aggregate survival. To determine the immune correlates of protection, we performed passive immunizations and in vitro assays. We show that this vaccine elicited antibody responses that bound HA from group 1 (H1, H2, H5, H6, H8, H9, H11, and H12) and group 2 (H3, H4, H7, H10, H14, and H15) and neutralized homologous and intrasubtypic H5 and H7 and heterosubtypic H1 viruses and hemagglutinin-specific CD4 and CD8 T cell responses. As a result, passive immunization with immune sera fully protected mice against H5, H7, and H1 challenge, whereas with both immune sera and T cells the mice survived heterosubtypic H3 and H9 challenge. Thus, it appears that (i) neutralizing antibodies alone fully protect against homologous and intrasubtypic H5 and H7 and (ii) neutralizing and binding antibodies are sufficient to protect against heterosubtypic H1, (iii) but against heterosubtypic H3 and H9, binding antibodies and T cells are required for complete survival. We believe that this vaccine regimen could potentially be a candidate for a “universal” influenza vaccine. IMPORTANCE Influenza virus infection is global health problem. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. However, these vaccines do not protect antigenic variants and newly emerging pandemic and outbreak strains. Because of this

  8. Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice.

    PubMed

    Lee, John S; Groebner, Jennifer L; Hadjipanayis, Angela G; Negley, Diane L; Schmaljohn, Alan L; Welkos, Susan L; Smith, Leonard A; Smith, Jonathan F

    2006-11-17

    The development of multiagent vaccines offers the advantage of eliciting protection against multiple diseases with minimal inoculations over a shorter time span. We report here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease, anthrax; a viral disease, Marburg fever; and against a toxin-mediated disease, botulism. The individual VEE replicon particles (VRP) expressed mature 83-kDa protective antigen (MAT-PA) from Bacillus anthracis, the glycoprotein (GP) from Marburg virus (MBGV), or the H(C) fragment from botulinum neurotoxin (BoNT H(C)). CBA/J mice inoculated with a mixture of VRP expressing BoNT H(C) serotype C (BoNT/C H(C)) and MAT-PA were 80% protected from a B. anthracis (Sterne strain) challenge and then 100% protected from a sequential BoNT/C challenge. Swiss mice inoculated with individual VRP or with mixtures of VRP vaccines expressing BoNT H(C) serotype A (BoNT/A H(C)), MAT-PA, and MBGV-GP produced antibody responses specific to the corresponding replicon-expressed protein. Combination of the different VRP vaccines did not diminish the antibody responses measured for Swiss mice inoculated with formulations of two or three VRP vaccines as compared to mice that received only one VRP vaccine. Swiss mice inoculated with VRP expressing BoNT/A H(C) alone or in combination with VRP expressing MAT-PA and MBGV GP, were completely protected from a BoNT/A challenge. These studies demonstrate the utility of combining individual VRP vaccines into multiagent formulations for eliciting protective immune responses to various types of diseases.

  9. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs.

    PubMed

    Cashman, Kathleen A; Wilkinson, Eric R; Wollen, Suzanne E; Shamblin, Joshua D; Zelko, Justine M; Bearss, Jeremy J; Zeng, Xiankun; Broderick, Kate E; Schmaljohn, Connie S

    2017-12-02

    We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment.

  10. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs

    PubMed Central

    Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.

    2017-01-01

    ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337

  11. Molecular Smallpox Vaccine Delivered by Alphavirus Replicons Elicits Protective Immunity in Mice and Non-human Primates

    PubMed Central

    Hooper, Jay W.; Ferro, Anthony M.; Golden, Joseph W.; Silvera, Peter; Dudek, Jeanne; Alterson, Kim; Custer, Max; Rivers, Bryan; Morris, John; Owens, Gary; Smith, Jonathan F.; Kamrud, Kurt I.

    2009-01-01

    Naturally occurring smallpox was eradicated as a result of successful vaccination campaigns during the 1960s and 70s. Because of its highly contagious nature and high mortality rate, smallpox has significant potential as a biological weapon. Unfortunately, the current vaccine for orthopoxviruses is contraindicated for large portions of the population. Thus, there is a need for new, safe, and effective orthopoxvirus vaccines. Alphavirus replicon vectors, derived from strains of Venezuelan equine encephalitis virus, are being used to develop alternatives to the current smallpox vaccine. Here, we demonstrated that virus-like replicon particles (VRP) expressing the vaccinia virus A33R, B5R, A27L, and L1R genes elicited protective immunity in mice comparable to vaccination with live-vaccinia virus. Furthermore, cynomolgus macaques vaccinated with a combination of the four poxvirus VRPs (4pox-VRP) developed antibody responses to each antigen. These antibody responses were able to neutralize and inhibit the spread of both vaccinia virus and monkeypox virus. Macaques vaccinated with 4pox-VRP, flu HA VRP (negative control), or live-vaccinia virus (positive control) were challenged intravenously with 5 × 106 PFU of monkeypox virus 1 month after the second VRP vaccination. Four of the six negative control animals succumbed to monkeypox and the remaining two animals demonstrated either severe or grave disease. Importantly, all 10 macaques vaccinated with the 4pox-VRP vaccine survived without developing severe disease. These findings revealed that a single-boost VRP smallpox vaccine shows promise as a safe alternative to the currently licensed live-vaccinia virus smallpox vaccine. PMID:19833247

  12. Oral vaccination with an adenovirus-vectored vaccine protects against botulism

    PubMed Central

    Chen, Shan; Xu, Qingfu; Zeng, Mingtao

    2013-01-01

    We have previously shown that an adenovirus vectored vaccine delivered intramuscularly or intranasally was effective in protection against botulism in a mouse model. The adenoviral vector encodes a human codon-optimized heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). Here, we evaluate the same vaccine candidate as an oral vaccine against BoNT/C in a mouse model. To elicit protective immunity, the mice were orally vaccinated with a single dose of 1×104 to 1×107 plaque forming units (pfu) of the adenoviral vector. The immune sera, collected six weeks after oral vaccination with 2×107 pfu adenovirus, has shown an ability to neutralize the biological activity of BoNT/C in vitro. Additionally, animals receiving a single dose of 2×106 pfu adenovirus or greater were completely protected against challenge with 100×MLD50 of BoNT/C. The data demonstrated the feasibility to develop an adenovirus-based oral vaccine against botulism. PMID:23295065

  13. Mucosal delivery of a vectored RSV vaccine is safe and elicits protective immunity in rodents and nonhuman primates

    PubMed Central

    Pierantoni, Angiolo; Esposito, Maria Luisa; Ammendola, Virginia; Napolitano, Federico; Grazioli, Fabiana; Abbate, Adele; del Sorbo, Mariarosaria; Siani, Loredana; D’Alise, Anna Morena; Taglioni, Alessandra; Perretta, Gemma; Siccardi, Antonio; Soprana, Elisa; Panigada, Maddalena; Thom, Michelle; Scarselli, Elisa; Folgori, Antonella; Colloca, Stefano; Taylor, Geraldine; Cortese, Riccardo; Nicosia, Alfredo; Capone, Stefania; Vitelli, Alessandra

    2015-01-01

    Respiratory Syncytial Virus (RSV) is a leading cause of severe respiratory disease in infants and the elderly. No vaccine is presently available to address this major unmet medical need. We generated a new genetic vaccine based on chimpanzee Adenovirus (PanAd3-RSV) and Modified Vaccinia Ankara RSV (MVA-RSV) encoding the F, N, and M2-1 proteins of RSV, for the induction of neutralizing antibodies and broad cellular immunity. Because RSV infection is restricted to the respiratory tract, we compared intranasal (IN) and intramuscular (M) administration for safety, immunogenicity, and efficacy in different species. A single IN or IM vaccination completely protected BALB/c mice and cotton rats against RSV replication in the lungs. However, only IN administration could prevent infection in the upper respiratory tract. IM vaccination with MVA-RSV also protected cotton rats from lower respiratory tract infection in the absence of detectable neutralizing antibodies. Heterologous prime boost with PanAd3-RSV and MVA-RSV elicited high neutralizing antibody titers and broad T-cell responses in nonhuman primates. In addition, animals primed in the nose developed mucosal IgA against the F protein. In conclusion, we have shown that our vectored RSV vaccine induces potent cellular and humoral responses in a primate model, providing strong support for clinical testing. PMID:26015988

  14. Cross-protection elicited by primary and booster vaccinations against Japanese encephalitis: a two-year follow-up study.

    PubMed

    Erra, Elina O; Askling, Helena Hervius; Yoksan, Sutee; Rombo, Lars; Riutta, Jukka; Vene, Sirkka; Lindquist, Lars; Vapalahti, Olli; Kantele, Anu

    2013-12-17

    The inactivated Vero cell-derived vaccine (JE-VC, IXIARO) has replaced the traditional mouse brain-derived preparations (JE-MB) in travelers' vaccinations against Japanese encephalitis. We showed recently that a single JE-VC dose efficiently boosts immunity in JE-MB-primed vaccinees, and that JE-VC elicits cross-protective immunity against non-vaccine genotypes, including the emerging genotype I. While these studies only provided short-term data, the present investigation evaluates the longevity of seroprotection in the same volunteers. The study comprised 48 travelers who had received (1) JE-VC primary series, (2) JE-MB primary series followed by a single JE-VC booster dose, or (3) JE-MB primary series and a single JE-MB booster dose. Serum samples were collected two years after the last vaccine dose, and evaluated with the plaque-reduction neutralization test against seven Japanese encephalitis virus strains representing genotypes I-IV. PRNT50 titers ≥ 10 were considered protective. Two years after the primary series with JE-VC, 87-93% of the vaccinees proved to be cross-protected against test strains representing genotypes II-IV and 73% against those of genotype I. After a single homologous or heterologous booster dose to JE-MB-primed subjects, the two-year seroprotection rates against genotype I-IV strains were 89-100%. After JE-VC primary series, seroprotection appeared to wane first against genotype I. The first booster should not be delayed beyond two years. In JE-MB-primed subjects, a single JE-VC booster provided cross-protective immunity against genotype I-IV strains in almost all vaccinees, suggesting an interval of two years or even longer for the second booster. These data further support the use of a single JE-VC dose for boosting JE-MB immunity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response.

    PubMed

    Tzeng, Stephany Y; McHugh, Kevin J; Behrens, Adam M; Rose, Sviatlana; Sugarman, James L; Ferber, Shiran; Langer, Robert; Jaklenec, Ana

    2018-05-21

    Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule-based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. Copyright © 2018 the Author(s). Published by PNAS.

  16. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response

    PubMed Central

    Tzeng, Stephany Y.; McHugh, Kevin J.; Behrens, Adam M.; Rose, Sviatlana; Sugarman, James L.; Ferber, Shiran; Jaklenec, Ana

    2018-01-01

    Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule–based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. PMID:29784798

  17. T-cell-mediated cross-strain protective immunity elicited by prime-boost vaccination with a live attenuated influenza vaccine.

    PubMed

    Li, Junwei; Arévalo, Maria T; Chen, Yanping; Chen, Shan; Zeng, Mingtao

    2014-10-01

    Antigenic drift and shift of influenza viruses require frequent reformulation of influenza vaccines. In addition, seasonal influenza vaccines are often mismatched to the epidemic influenza strains. This stresses the need for a universal influenza vaccine. BALB/c mice were vaccinated with the trivalent live attenuated (LAIV; FluMist) or inactivated (TIV; FluZone) influenza vaccines and challenged with PR8 (H1N1), FM/47 (H1N1), or HK/68 (H3N2) influenza virus. Cytokines and antibody responses were tested by ELISA. Furthermore, different LAIV dosages were applied in BALB/c mice. LAIV vaccinated mice were also depleted of T-cells and challenged with PR8 virus. LAIV induced significant protection against challenge with the non-vaccine strain PR8 influenza virus. Furthermore, protective immunity against PR8 was dose-dependent. Of note, interleukin 2 and interferon gamma cytokine secretion in the lung alveolar fluid were significantly elevated in mice vaccinated with LAIV. Moreover, T-cell depletion of LAIV vaccinated mice compromised protection, indicating that T-cell-mediated immunity is required. In contrast, passive transfer of sera from mice vaccinated with LAIV into naïve mice failed to protect against PR8 challenge. Neutralization assays in vitro confirmed that LAIV did not induce cross-strain neutralizing antibodies against PR8 virus. Finally, we showed that three doses of LAIV also provided protection against challenge with two additional heterologous viruses, FM/47 and HK/68. These results support the potential use of the LAIV as a universal influenza vaccine under a prime-boost vaccination regimen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain.

    PubMed

    Raymond, Donald D; Stewart, Shaun M; Lee, Jiwon; Ferdman, Jack; Bajic, Goran; Do, Khoi T; Ernandes, Michael J; Suphaphiphat, Pirada; Settembre, Ethan C; Dormitzer, Philip R; Del Giudice, Giuseppe; Finco, Oretta; Kang, Tae Hyun; Ippolito, Gregory C; Georgiou, George; Kepler, Thomas B; Haynes, Barton F; Moody, M Anthony; Liao, Hua-Xin; Schmidt, Aaron G; Harrison, Stephen C

    2016-12-01

    For broad protection against infection by viruses such as influenza or HIV, vaccines should elicit antibodies that bind conserved viral epitopes, such as the receptor-binding site (RBS). RBS-directed antibodies have been described for both HIV and influenza virus, and the design of immunogens to elicit them is a goal of vaccine research in both fields. Residues in the RBS of influenza virus hemagglutinin (HA) determine a preference for the avian or human receptor, α-2,3-linked sialic acid and α-2,6-linked sialic acid, respectively. Transmission of an avian-origin virus between humans generally requires one or more mutations in the sequences encoding the influenza virus RBS to change the preferred receptor from avian to human, but passage of a human-derived vaccine candidate in chicken eggs can select for reversion to avian receptor preference. For example, the X-181 strain of the 2009 new pandemic H1N1 influenza virus, derived from the A/California/07/2009 isolate and used in essentially all vaccines since 2009, has arginine at position 226, a residue known to confer preference for an α-2,3 linkage in H1 subtype viruses; the wild-type A/California/07/2009 isolate, like most circulating human H1N1 viruses, has glutamine at position 226. We describe, from three different individuals, RBS-directed antibodies that recognize the avian-adapted H1 strain in current influenza vaccines but not the circulating new pandemic 2009 virus; Arg226 in the vaccine-strain RBS accounts for the restriction. The polyclonal sera of the three donors also reflect this preference. Therefore, when vaccines produced from strains that are never passaged in avian cells become widely available, they may prove more capable of eliciting RBS-directed, broadly neutralizing antibodies than those produced from egg-adapted viruses, extending the established benefits of current seasonal influenza immunizations.

  19. Vaccination with recombinant adenoviruses expressing Ebola virus glycoprotein elicits protection in the interferon alpha/beta receptor knock-out mouse.

    PubMed

    O'Brien, Lyn M; Stokes, Margaret G; Lonsdale, Stephen G; Maslowski, David R; Smither, Sophie J; Lever, Mark S; Laws, Thomas R; Perkins, Stuart D

    2014-03-01

    The resistance of adult immunocompetent mice to infection with ebolaviruses has led to the development of alternative small animal models that utilise immunodeficient mice, for example the interferon α/β receptor knock-out mouse (IFNR(-/-)). IFNR(-/-) mice have been shown to be susceptible to infection with ebolaviruses by multiple routes but it is not known if this murine model is suitable for testing therapeutics that rely on the generation of an immune response for efficacy. We have tested recombinant adenovirus vectors for their ability to protect IFNR(-/-) mice from challenge with Ebola virus and have analysed the humoral response generated after immunisation. The recombinant vaccines elicited good levels of protection in the knock-out mouse and the antibody response in IFNR(-/-) mice was similar to that observed in vaccinated wild-type mice. These results indicate that the IFNR(-/-) mouse is a relevant small animal model for studying ebolavirus-specific therapeutics. Copyright © 2014. Published by Elsevier Inc.

  20. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Linxiao; Valentine, Jenny L.; Huang, Chung-Jr

    The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. In this paper, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Usingmore » this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS–specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Finally, given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens.« less

  1. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies

    DOE PAGES

    Chen, Linxiao; Valentine, Jenny L.; Huang, Chung-Jr; ...

    2016-06-06

    The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. In this paper, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Usingmore » this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS–specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Finally, given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens.« less

  2. Inactivated coxsackievirus A10 experimental vaccines protect mice against lethal viral challenge.

    PubMed

    Shen, Chaoyun; Liu, Qingwei; Zhou, Yu; Ku, Zhiqiang; Wang, Lili; Lan, Ke; Ye, Xiaohua; Huang, Zhong

    2016-09-22

    Coxsackievirus A10 (CVA10) has become one of the major causative agents of hand, foot and mouth disease (HFMD). It is now recognized that CVA10 should be targeted for vaccine development. We report here that β-propiolactone inactivated whole-virus based CVA10 vaccines can elicit protective immunity in mice. We prepared two inactivated CVA10 experimental vaccines derived from the prototype strain CVA10/Kowalik and from a clinical isolate CVA10/S0148b, respectively. Immunization with the experimental vaccines elicited CVA10-specific serum antibodies in mice. The antisera from vaccinated mice could potently neutralize in vitro infection with either homologous or heterologous CVA10 strains. Importantly, passive transfer of the anti-CVA10 sera protected recipient mice against CVA10/Kowalik or CVA10/S0148b infections. Moreover, active immunization with the inactivated vaccines also conferred protection against homologous and heterologous infections in mice. Collectively, our results demonstrate the proof-of-concept for inactivated whole-virus based CVA10 vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza

    PubMed Central

    Patterson, Dustin P.; Rynda-Apple, Agnieszka; Harmsen, Ann L.; Harmsen, Allen G.; Douglas, Trevor

    2013-01-01

    Here we present a biomimetic strategy towards nanoparticle design for controlled immune response through encapsulation of conserved internal influenza proteins on the interior of virus like particles (VLPs) to direct CD8+ cytotoxic T cell protection. Programmed encapsulation and sequestration of the conserved nucleoprotein (NP) from influenza on the interior of a VLP, derived from the bacteriophage P22, results in a vaccine that provides multi-strain protection against 100 times lethal doses of influenza in an NP specific CD8+ T cell-dependent manner. VLP assembly and encapsulation of the immunogenic NP cargo protein is the result of a genetically programmed self-assembly making this strategy amendable to the quick production of vaccines to rapidly emerging pathogens. Addition of adjuvants or targeting molecules were not required for eliciting the protective response. PMID:23540530

  4. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection

    PubMed Central

    Mike, Laura A.; Smith, Sara N.; Sumner, Christopher A.; Eaton, Kathryn A.; Mobley, Harry L. T.

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) is the primary cause of uncomplicated urinary tract infections (UTIs). Whereas most infections are isolated cases, 1 in 40 women experience recurrent UTIs. The rise in antibiotic resistance has complicated the management of chronic UTIs and necessitates new preventative strategies. Currently, no UTI vaccines are approved for use in the United States, and the development of a highly effective vaccine remains elusive. Here, we have pursued a strategy for eliciting protective immunity by vaccinating with small molecules required for pathogenesis, rather than proteins or peptides. Small iron-chelating molecules called siderophores were selected as antigens to vaccinate against UTI for this vaccine strategy. These pathogen-associated stealth siderophores evade host immune defenses and enhance bacterial virulence. Previous animal studies revealed that vaccination with siderophore receptor proteins protects against UTI. The poor solubility of these integral outer-membrane proteins in aqueous solutions limits their practical utility. Because their cognate siderophores are water soluble, we hypothesized that these bacterial-derived small molecules are prime vaccine candidates. To test this hypothesis, we immunized mice with siderophores conjugated to an immunogenic carrier protein. The siderophore–protein conjugates elicited an adaptive immune response that targeted bacterial stealth siderophores and protected against UTI. Our study has identified additional antigens suitable for a multicomponent UTI vaccine and highlights the potential use of bacterial-derived small molecules as antigens in vaccine therapies. PMID:27821778

  5. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection.

    PubMed

    Mike, Laura A; Smith, Sara N; Sumner, Christopher A; Eaton, Kathryn A; Mobley, Harry L T

    2016-11-22

    Uropathogenic Escherichia coli (UPEC) is the primary cause of uncomplicated urinary tract infections (UTIs). Whereas most infections are isolated cases, 1 in 40 women experience recurrent UTIs. The rise in antibiotic resistance has complicated the management of chronic UTIs and necessitates new preventative strategies. Currently, no UTI vaccines are approved for use in the United States, and the development of a highly effective vaccine remains elusive. Here, we have pursued a strategy for eliciting protective immunity by vaccinating with small molecules required for pathogenesis, rather than proteins or peptides. Small iron-chelating molecules called siderophores were selected as antigens to vaccinate against UTI for this vaccine strategy. These pathogen-associated stealth siderophores evade host immune defenses and enhance bacterial virulence. Previous animal studies revealed that vaccination with siderophore receptor proteins protects against UTI. The poor solubility of these integral outer-membrane proteins in aqueous solutions limits their practical utility. Because their cognate siderophores are water soluble, we hypothesized that these bacterial-derived small molecules are prime vaccine candidates. To test this hypothesis, we immunized mice with siderophores conjugated to an immunogenic carrier protein. The siderophore-protein conjugates elicited an adaptive immune response that targeted bacterial stealth siderophores and protected against UTI. Our study has identified additional antigens suitable for a multicomponent UTI vaccine and highlights the potential use of bacterial-derived small molecules as antigens in vaccine therapies.

  6. Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis.

    PubMed

    Carpenter, Stephen M; Yang, Jason D; Lee, Jinhee; Barreira-Silva, Palmira; Behar, Samuel M

    2017-11-01

    Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice.

  7. Immunization-elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability

    PubMed Central

    Zhao, Xuelian; Howell, Katie A.; He, Shihua; Brannan, Jennifer M.; Wec, Anna Z.; Davidson, Edgar; Turner, Hannah L.; Chiang, Chi-I; Lei, Lin; Fels, J. Maximilian; Vu, Hong; Shulenin, Sergey; Turonis, Ashley N.; Kuehne, Ana I.; Liu, Guodong; Ta, Mi; Wang, Yimeng; Sundling, Christopher; Xiao, Yongli; Spence, Jennifer S.; Doranz, Benjamin J.; Holtsberg, Frederick W.; Ward, Andrew B.; Chandran, Kartik; Dye, John M.; Qiu, Xiangguo; Li, Yuxing; Aman, M. Javad

    2018-01-01

    Summary While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N-terminus of the ebolavirus glycoproteins (GP) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails. PMID:28525756

  8. Toward selective elicitation of TH1-controlled vaccination responses: vaccine applications of bacterial surface layer proteins.

    PubMed

    Jahn-Schmid, B; Messner, P; Unger, F M; Sleytr, U B; Scheiner, O; Kraft, D

    1996-01-26

    Bacterial surface layer proteins have been utilized as combined vaccine carrier/adjuvants and offer a number of advantages in these applications. The crystalline protein arrays contain functional groups in precisely defined orientations for coupling of haptens. Conventional applications of S-layer vaccines do not cause observable trauma or side effects. Depending on the nature of the S-layer preparations, antigenic conjugates will induce immune responses of a predominantly cellular or predominantly humoral nature. Immune responses to S-layer-hapten conjugates are also observed following oral/nasal application. In the present contribution, the status of investigations with S-layer conjugates in three main immunological projects is reviewed. In a project aimed at immunotherapy of cancer, conjugates of S-layer with small, tumor-associated oligosaccharides have been found to elicit hapten-specific DTH responses. An enlarged program of chemical synthesis has now been initiated to prepare a complete set of mucin-derived, tumor-associated oligosaccharides and their chemically modified analogues for elicitation of cell-mediated immune responses to certain tumors in humans. In another application, oligosaccharides derived from capsules of Streptococcus pneumoniae type 8 have been linked to S-layer proteins and have been found to elicit protective antibody responses in animals. Most recently, allergen S-layer conjugates have been prepared with the intention to suppress the TH2-directed, IgE-mediated allergic responses to Bet nu 1, the major allergen of birch pollen. In the former two applications, the S-layer vaccine technology appears to offer the versatility needed to direct vaccination responses toward predominant control by TH1 or TH2 lymphocytes to meet the different therapeutic or prophylactic requirements in each case. In the third application, work has progressed to a preliminary stage only.

  9. Recombinant Zika virus envelope protein elicited protective immunity against Zika virus in immunocompetent mice

    PubMed Central

    Liu, Zhihua; Li, Min; Liu, Haitao

    2018-01-01

    Zika virus (ZIKV) has caused great public concerns due to its recent large outbreaks and a close association with microcephaly in fetus and Guillain-Barre syndrome in adults. Rapid development of vaccines against ZIKV is a public health priority. To this end, we have constructed and purified recombinant ZIKV envelope protein using both prokaryotic and eukaryotic expression systems, and then tested their immunogenicity and protective efficacy in immune competent mice. Both protein immunogens elicited humoral and cellular immune responses, and protected immune competent mice from ZIKV challenge in vivo. These products could be further evaluated either as stand-alone vaccine candidate, or used in a prime-and-boost regimen with other forms of ZIKV vaccine. PMID:29590178

  10. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi

    PubMed Central

    Gupta, Shivali; Garg, Nisha J.

    2015-01-01

    In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFNγ+ and TFNα+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease. PMID:25951312

  11. Protective immunity against tularemia provided by an adenovirus-vectored vaccine expressing Tul4 of Francisella tularensis.

    PubMed

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-03-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, of F. tularensis LVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 10(7) PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD(50)) F. tularensis LVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain of F. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 of F. tularensis LVS.

  12. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins.

    PubMed

    DeBuysscher, Blair L; Scott, Dana; Marzi, Andrea; Prescott, Joseph; Feldmann, Heinz

    2014-05-07

    Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks. In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies. Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection. The rVSV vectors expressing Nipah virus G or F are prime candidates for new 'emergency vaccines' to be utilized for NiV outbreak management. Published by Elsevier Ltd.

  13. Pneumococcal conjugate vaccine provides early protective antibody responses in children after related and unrelated allogeneic hematopoietic stem cell transplantation.

    PubMed

    Meisel, Roland; Kuypers, Lisa; Dirksen, Uta; Schubert, Ralf; Gruhn, Bernd; Strauss, Gabriele; Beutel, Karin; Groll, Andreas H; Duffner, Ulrich; Blütters-Sawatzki, Renate; Holter, Wolfgang; Feuchtinger, Tobias; Grüttner, Hans-Peter; Schroten, Horst; Zielen, Stefan; Ohmann, Christian; Laws, Hans-Jürgen; Dilloo, Dagmar

    2007-03-15

    Following allogeneic hematopoietic stem cell transplantation (alloHSCT), children are at risk of life-threatening pneumococcal infections. Whereas vaccination with polysaccharide vaccines fails to elicit protective immunity in most alloHSC transplant recipients, pneumococcal conjugate vaccines may effectively prevent invasive disease by eliciting T-cell-dependent antibody responses. Here, we report safety and immunogenicity in 53 children immunized with a regimen of 3 consecutive doses of a heptavalent pneumococcal conjugate vaccine (7vPCV) in monthly intervals starting 6 to 9 months after alloHSCT. Immunization was well tolerated with no vaccine-related serious adverse events. Serologic response rates evaluable in 43 patients ranged from 41.9% to 86.0% and 58.1% to 93.0% after 2 and 3 vaccinations, respectively, with 55.8% and 74.4% of patients achieving protective antibody levels to all 7 vaccine serotypes. Our study provides the first evidence that vaccination with 7vPCV is safe and elicits protective antipneumococcal antibody responses in pediatric recipients of related or unrelated donor alloHSC transplants within the first year following transplantation. This trial was registered at www.clinicaltrials.gov as NCT00169728.

  14. Complex Immune Correlates of Protection in HIV-1 Vaccine Efficacy Trials

    PubMed Central

    Tomaras, Georgia D.; Plotkin, Stanley A.

    2016-01-01

    Summary Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate—thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine. PMID:28133811

  15. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins

    PubMed Central

    DeBuysscher, Blair L.; Scott, Dana; Marzi, Andrea; Prescott, Joseph; Feldmann, Heinz

    2016-01-01

    Background Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks. Methods In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies. Results Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection. Conclusions The rVSV vectors expressing Nipah virus G or F are prime candidates for new ‘emergency vaccines’ to be utilized for NiV outbreak management. PMID:24631094

  16. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs.

    PubMed

    Blignaut, Belinda; Visser, Nico; Theron, Jacques; Rieder, Elizabeth; Maree, Francois F

    2011-04-01

    Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South African Territories (SAT) type viruses, which exist as distinct genetic and antigenic variants in different geographical regions. A cross-serotype chimeric virus, vKNP/SAT2, was engineered by replacing the external capsid-encoding region (1B-1D/2A) of an infectious cDNA clone of the SAT2 vaccine strain, ZIM/7/83, with that of SAT1 virus KNP/196/91. The vKNP/SAT2 virus exhibited comparable infection kinetics, virion stability and antigenic profiles to the KNP/196/91 parental virus, thus indicating that the functions provided by the capsid can be readily exchanged between serotypes. As these qualities are necessary for vaccine manufacturing, high titres of stable chimeric virus were obtained. Chemically inactivated vaccines, formulated as double-oil-in-water emulsions, were produced from intact 146S virion particles of both the chimeric and parental viruses. Inoculation of guinea pigs with the respective vaccines induced similar antibody responses. In order to show compliance with commercial vaccine requirements, the vaccines were evaluated in a full potency test. Pigs vaccinated with the chimeric vaccine produced neutralizing antibodies and showed protection against homologous FMDV challenge, albeit not to the same extent as for the vaccine prepared from the parental virus. These results provide support that chimeric vaccines containing the external capsid of field isolates can be successfully produced and that they induce protective immune responses in FMD host species.

  17. Structure-based design of broadly protective group a streptococcal M protein-based vaccines.

    PubMed

    Dale, James B; Smeesters, Pierre R; Courtney, Harry S; Penfound, Thomas A; Hohn, Claudia M; Smith, Jeremy C; Baudry, Jerome Y

    2017-01-03

    A major obstacle to the development of broadly protective M protein-based group A streptococcal (GAS) vaccines is the variability within the N-terminal epitopes that evoke potent bactericidal antibodies. The concept of M type-specific protective immune responses has recently been challenged based on the observation that multivalent M protein vaccines elicited cross-reactive bactericidal antibodies against a number of non-vaccine M types of GAS. Additionally, a new "cluster-based" typing system of 175M proteins identified a limited number of clusters containing closely related M proteins. In the current study, we used the emm cluster typing system, in combination with computational structure-based peptide modeling, as a novel approach to the design of potentially broadly protective M protein-based vaccines. M protein sequences (AA 16-50) from the E4 cluster containing 17 emm types of GAS were analyzed using de novo 3-D structure prediction tools and the resulting structures subjected to chemical diversity analysis to identify sequences that were the most representative of the 3-D physicochemical properties of the M peptides in the cluster. Five peptides that spanned the range of physicochemical attributes of all 17 peptides were used to formulate synthetic and recombinant vaccines. Rabbit antisera were assayed for antibodies that cross-reacted with E4 peptides and whole bacteria by ELISA and for bactericidal activity against all E4GAS. The synthetic vaccine rabbit antisera reacted with all 17 E4M peptides and demonstrated bactericidal activity against 15/17 E4GAS. A recombinant hybrid vaccine containing the same E4 peptides also elicited antibodies that cross-reacted with all E4M peptides. Comprehensive studies using structure-based design may result in a broadly protective M peptide vaccine that will elicit cluster-specific and emm type-specific antibody responses against the majority of clinically relevant emm types of GAS. Copyright © 2016 Elsevier Ltd. All

  18. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge

    PubMed Central

    Mooney, Alaina J.; Gabbard, Jon D.; Li, Zhuo; Dlugolenski, Daniel A.; Johnson, Scott K.

    2017-01-01

    ABSTRACT Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  19. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    PubMed

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  20. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    PubMed

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    PubMed

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  2. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    PubMed

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models

    PubMed Central

    Fitzpatrick, Collin J.; Suschak, John J.; Richards, Michelle J.; Badger, Catherine V.; Six, Carolyn M.; Martin, Jacqueline D.; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W.; Schmaljohn, Connie S.

    2017-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7–10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV. PMID:28922426

  4. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models.

    PubMed

    Garrison, Aura R; Shoemaker, Charles J; Golden, Joseph W; Fitzpatrick, Collin J; Suschak, John J; Richards, Michelle J; Badger, Catherine V; Six, Carolyn M; Martin, Jacqueline D; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W; Schmaljohn, Connie S

    2017-09-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7-10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.

  5. Oral vaccination with LcrV from Yersinia pestis KIM delivered by live attenuated Salmonella enterica serovar Typhimurium elicits a protective immune response against challenge with Yersinia pseudotuberculosis and Yersinia enterocolitica.

    PubMed

    Branger, Christine G; Torres-Escobar, Ascención; Sun, Wei; Perry, Robert; Fetherston, Jacqueline; Roland, Kenneth L; Curtiss, Roy

    2009-08-27

    The use of live recombinant attenuated Salmonella vaccines (RASV) synthesizing Yersinia proteins is a promising approach for controlling infection by Yersinia species. In this study, we constructed attenuated Salmonella strains which synthesize a truncated form of LcrV, LcrV196 and evaluated the immune response and protective efficacy elicited by these strains in mice against two other major species of Yersinia: Yersinia pseudotuberculosis and Yersinia enterocolitica. Surprisingly, we found that the RASV strain alone was sufficient to afford nearly full protection against challenge with Y. pseudotuberculosis, indicating the likelihood that Salmonella produces immunogenic cross-protective antigens. In contrast, lcrV196 expression was required for protection against challenge with Y. enterocolitica strain 8081, but was not sufficient to achieve significant protection against challenge with Y. enterocolitica strain WA, which expressed a divergent form of lcrV. Nevertheless, we are encouraged by these findings to continue pursuing our long-term goal of developing a single vaccine to protect against all three human pathogenic species of Yersinia.

  6. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep.

    PubMed

    Faburay, Bonto; Lebedev, Maxim; McVey, D Scott; Wilson, William; Morozov, Igor; Young, Alan; Richt, Juergen A

    2014-10-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species.

  7. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    PubMed Central

    Lebedev, Maxim; McVey, D. Scott; Wilson, William; Morozov, Igor; Young, Alan

    2014-01-01

    Abstract Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species. PMID:25325319

  8. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d{sub 3}) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d{sub 3}. In addition, bothmore » sCD4-gp120 and sCD4-gp120-mC3d{sub 3} bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d{sub 3} or sCD4-gp120-mC3d{sub 3} elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d{sub 3}-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d{sub 3} had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.« less

  9. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1.

    PubMed

    Bower, Joseph F; Green, Thomas D; Ross, Ted M

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.

  10. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine

    PubMed Central

    Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine. PMID:27223692

  11. Protective efficacy of Zika vaccine in AG129 mouse model

    PubMed Central

    Sumathy, K.; Kulkarni, Bharathi; Gondu, Ravi Kumar; Ponnuru, Sampath Kumar; Bonguram, Nagaraju; Eligeti, Rakesh; Gadiyaram, Sindhuja; Praturi, Usha; Chougule, Bhushan; Karunakaran, Latha; Ella, Krishna M.

    2017-01-01

    Zika virus (ZIKV) is a mosquito-borne flavivirus that causes asymptomatic infection or presents only mild symptoms in majority of those infected. However, vaccination for ZIKV is a public health priority due to serious congenital and neuropathological abnormalities observed as a sequelae of the virus infection in the recent epidemics. We have developed an inactivated virus vaccine with the African MR 766 strain. Here we show that two doses of the vaccine provided 100% efficacy against mortality and disease following challenge with homotypic MR 766 and the heterotypic FSS 13025 ZIKV strains in the Type I and Type II interferon deficient AG129 mice. Two doses of the vaccine elicited high titer of neutralizing antibodies in Balb/c mice, and the vaccine antisera conferred protection against virus challenge in passively immunized mice. The studies were useful to rationalize vaccine doses for protective efficacy. Furthermore, the vaccine antisera neutralized the homotypic and heterotypic ZIKV strains in vitro with equivalent efficiency. Our study suggests a single ZIKV serotype, and that the development of an effective vaccine may not be limited by the choice of virus strain. PMID:28401907

  12. Protective efficacy of Zika vaccine in AG129 mouse model.

    PubMed

    Sumathy, K; Kulkarni, Bharathi; Gondu, Ravi Kumar; Ponnuru, Sampath Kumar; Bonguram, Nagaraju; Eligeti, Rakesh; Gadiyaram, Sindhuja; Praturi, Usha; Chougule, Bhushan; Karunakaran, Latha; Ella, Krishna M

    2017-04-12

    Zika virus (ZIKV) is a mosquito-borne flavivirus that causes asymptomatic infection or presents only mild symptoms in majority of those infected. However, vaccination for ZIKV is a public health priority due to serious congenital and neuropathological abnormalities observed as a sequelae of the virus infection in the recent epidemics. We have developed an inactivated virus vaccine with the African MR 766 strain. Here we show that two doses of the vaccine provided 100% efficacy against mortality and disease following challenge with homotypic MR 766 and the heterotypic FSS 13025 ZIKV strains in the Type I and Type II interferon deficient AG129 mice. Two doses of the vaccine elicited high titer of neutralizing antibodies in Balb/c mice, and the vaccine antisera conferred protection against virus challenge in passively immunized mice. The studies were useful to rationalize vaccine doses for protective efficacy. Furthermore, the vaccine antisera neutralized the homotypic and heterotypic ZIKV strains in vitro with equivalent efficiency. Our study suggests a single ZIKV serotype, and that the development of an effective vaccine may not be limited by the choice of virus strain.

  13. Evidence for single-dose protection by the bivalent HPV vaccine-Review of the Costa Rica HPV vaccine trial and future research studies.

    PubMed

    Kreimer, Aimée R; Herrero, Rolando; Sampson, Joshua N; Porras, Carolina; Lowy, Douglas R; Schiller, John T; Schiffman, Mark; Rodriguez, Ana Cecilia; Chanock, Stephen; Jimenez, Silvia; Schussler, John; Gail, Mitchell H; Safaeian, Mahboobeh; Kemp, Troy J; Cortes, Bernal; Pinto, Ligia A; Hildesheim, Allan; Gonzalez, Paula

    2018-01-20

    The Costa Rica Vaccine Trial (CVT), a phase III randomized clinical trial, provided the initial data that one dose of the HPV vaccine could provide durable protection against HPV infection. Although the study design was to administer all participants three doses of HPV or control vaccine, 20% of women did not receive the three-dose regimens, mostly due to involuntary reasons unrelated to vaccination. In 2011, we reported that a single dose of the bivalent HPV vaccine could be as efficacious as three doses of the vaccine using the endpoint of persistent HPV infection accumulated over the first four years of the trial; findings independently confirmed in the GSK-sponsored PATRICIA trial. Antibody levels after one dose, although lower than levels elicited by three doses, were 9-times higher than levels elicited by natural infection. Importantly, levels remained essentially constant over at least seven years, suggesting that the observed protection provided by a single dose might be durable. Much work has been done to assure these non-randomized findings are valid. Yet, the group of recipients who received one dose of the bivalent HPV vaccine in the CVT and PATRICIA trials was small and not randomly selected nor blinded to the number of doses received. The next phase of research is to conduct a formal randomized, controlled trial to evaluate the protection afforded by a single dose of HPV vaccine. Complementary studies are in progress to bridge our findings to other populations, and to further document the long-term durability of antibody response following a single dose. Published by Elsevier Ltd.

  14. Recombinant Yellow Fever Viruses Elicit CD8+ T Cell Responses and Protective Immunity against Trypanosoma cruzi

    PubMed Central

    Nogueira, Raquel Tayar; Nogueira, Alanderson Rocha; Pereira, Mirian Claudia Souza; Rodrigues, Maurício Martins; Neves, Patrícia Cristina da Costa; Galler, Ricardo; Bonaldo, Myrna Cristina

    2013-01-01

    Chagas’ disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8+ T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8+ cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general. PMID:23527169

  15. Recombinant yellow fever viruses elicit CD8+ T cell responses and protective immunity against Trypanosoma cruzi.

    PubMed

    Nogueira, Raquel Tayar; Nogueira, Alanderson Rocha; Pereira, Mirian Claudia Souza; Rodrigues, Maurício Martins; Neves, Patrícia Cristina da Costa; Galler, Ricardo; Bonaldo, Myrna Cristina

    2013-01-01

    Chagas' disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8(+) T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8(+) cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general.

  16. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses.

    PubMed

    Carter, Donald M; Darby, Christopher A; Johnson, Scott K; Carlock, Michael A; Kirchenbaum, Greg A; Allen, James D; Vogel, Thorsten U; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold; Ross, Ted M

    2017-12-15

    Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  17. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Johnson, Scott K.; Carlock, Michael A.; Kirchenbaum, Greg A.; Allen, James D.; Vogel, Thorsten U.; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold

    2017-01-01

    ABSTRACT Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  18. Nonreplicating Influenza A Virus Vaccines Confer Broad Protection against Lethal Challenge

    PubMed Central

    Baz, Mariana; Boonnak, Kobporn; Paskel, Myeisha; Santos, Celia; Powell, Timothy; Townsend, Alain

    2015-01-01

    ABSTRACT New vaccine technologies are being investigated for their ability to elicit broadly cross-protective immunity against a range of influenza viruses. We compared the efficacies of two intranasally delivered nonreplicating influenza virus vaccines (H1 and H5 S-FLU) that are based on the suppression of the hemagglutinin signal sequence, with the corresponding H1N1 and H5N1 cold-adapted (ca) live attenuated influenza virus vaccines in mice and ferrets. Administration of two doses of H1 or H5 S-FLU vaccines protected mice and ferrets from lethal challenge with homologous, heterologous, and heterosubtypic influenza viruses, and two doses of S-FLU and ca vaccines yielded comparable effects. Importantly, when ferrets immunized with one dose of H1 S-FLU or ca vaccine were challenged with the homologous H1N1 virus, the challenge virus failed to transmit to naive ferrets by the airborne route. S-FLU technology can be rapidly applied to any emerging influenza virus, and the promising preclinical data support further evaluation in humans. PMID:26489862

  19. A dual purpose universal influenza vaccine candidate confers protective immunity against anthrax.

    PubMed

    Arévalo, Maria T; Li, Junwei; Diaz-Arévalo, Diana; Chen, Yanping; Navarro, Ashley; Wu, Lihong; Yan, Yongyong; Zeng, Mingtao

    2017-03-01

    Preventive influenza vaccines must be reformulated annually because of antigen shift and drift of circulating influenza viral strains. However, seasonal vaccines do not always match the circulating strains, and there is the ever-present threat that avian influenza viruses may adapt to humans. Hence, a universal influenza vaccine is needed to provide protective immunity against a broad range of influenza viruses. We designed an influenza antigen consisting of three tandem M2e repeats plus HA2, in combination with a detoxified anthrax oedema toxin delivery system (EFn plus PA) to enhance immune responses. The EFn-3×M2e-HA2 plus PA vaccine formulation elicited robust, antigen-specific, IgG responses; and was protective against heterologous influenza viral challenge when intranasally delivered to mice three times. Moreover, use of the detoxified anthrax toxin system as an adjuvant had the additional benefit of generating protective immunity against anthrax. Hence, this novel vaccine strategy could potentially address two major emerging public health and biodefence threats. © 2016 John Wiley & Sons Ltd.

  20. Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection.

    PubMed

    Fouts, Timothy R; Bagley, Kenneth; Prado, Ilia J; Bobb, Kathryn L; Schwartz, Jennifer A; Xu, Rong; Zagursky, Robert J; Egan, Michael A; Eldridge, John H; LaBranche, Celia C; Montefiori, David C; Le Buanec, Hélène; Zagury, Daniel; Pal, Ranajit; Pavlakis, George N; Felber, Barbara K; Franchini, Genoveffa; Gordon, Shari; Vaccari, Monica; Lewis, George K; DeVico, Anthony L; Gallo, Robert C

    2015-03-03

    A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.

  1. Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection

    PubMed Central

    Fouts, Timothy R.; Bagley, Kenneth; Prado, Ilia J.; Bobb, Kathryn L.; Schwartz, Jennifer A.; Xu, Rong; Zagursky, Robert J.; Egan, Michael A.; Eldridge, John H.; LaBranche, Celia C.; Montefiori, David C.; Le Buanec, Hélène; Zagury, Daniel; Pal, Ranajit; Pavlakis, George N.; Felber, Barbara K.; Franchini, Genoveffa; Gordon, Shari; Vaccari, Monica; Lewis, George K.; DeVico, Anthony L.; Gallo, Robert C.

    2015-01-01

    A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation. PMID:25681373

  2. Recombinant raccoon pox vaccine protects mice against lethal plague

    USGS Publications Warehouse

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7×104 LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague.

  3. Immunogenicity and Protection Efficacy of Subunit-based Smallpox Vaccines Using Variola Major Antigens

    PubMed Central

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2008-01-01

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on the VARV antigen sequences to induce immunity against poxvirus infection. PMID:17950773

  4. Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens.

    PubMed

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2008-02-05

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on VARV antigen sequences to induce immunity against poxvirus infection.

  5. Combination of Two Candidate Subunit Vaccine Antigens Elicits Protective Immunity to Ricin and Anthrax Toxin in Mice

    PubMed Central

    Vance, David J.; Rong, Yinghui; Brey, Robert N.; Mantis, Nicholas J.

    2014-01-01

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population. PMID:25475957

  6. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    PubMed

    Meseda, Clement A; Atukorale, Vajini; Kuhn, Jordan; Schmeisser, Falko; Weir, Jerry P

    2016-01-01

    The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA

  7. Protection by universal influenza vaccine is mediated by memory CD4 T cells.

    PubMed

    Valkenburg, Sophie A; Li, Olive T W; Li, Athena; Bull, Maireid; Waldmann, Thomas A; Perera, Liyanage P; Peiris, Malik; Poon, Leo L M

    2018-07-05

    There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4 + T cells, whereby depletion of CD4 + T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4 + T cells were needed for early antibody production and CD8 + T cell recall responses. Furthermore, influenza-specific CD4 + T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4 + and CD8 + T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Killed but metabolically active Bacillus anthracis vaccines induce broad and protective immunity against anthrax.

    PubMed

    Skoble, Justin; Beaber, John W; Gao, Yi; Lovchik, Julie A; Sower, Laurie E; Liu, Weiqun; Luckett, William; Peterson, Johnny W; Calendar, Richard; Portnoy, Daniel A; Lyons, C Rick; Dubensky, Thomas W

    2009-04-01

    Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.

  9. A novel inactivated enterovirus 71 vaccine can elicit cross-protective immunity against coxsackievirus A16 in mice.

    PubMed

    Yang, Lisheng; Liu, Yajing; Li, Shuxuan; Zhao, Huan; Lin, Qiaona; Yu, Hai; Huang, Xiumin; Zheng, Qingbing; Cheng, Tong; Xia, Ningshao

    2016-11-21

    Hand, foot, and mouth disease (HFMD) is a highly contagious disease that mainly affects infants and children. Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major pathogens of HFMD. Two EV71 vaccines were recently licensed in China and the administration of the EV71 vaccines is believed to significantly reduce the number of HFMD-related severe or fatal cases. However, a monovalent EV71 vaccine cannot cross-protect against CA16 infection, this may result in that it cannot effectively control the overall HFMD epidemic. In this study, a chimeric EV71, whose VP1/210-225 epitope was replaced by that of CA16, was constructed using a reverse genetics technique to produce a candidate EV71/CA16 bivalent vaccine strain. The chimeric EV71 was infectious and showed similar growth characteristics as its parental strain. The replacement of the VP1/210-225 epitope did not significantly affect the antigenicity and immunogenicity of EV71. More importantly, the chimeric EV71 could induce protective immunity against both EV71 and CA16, and protect neonatal mice against either EV71 or CA16 lethal infections, the chimeric EV71 constructed in this study was shown to be a feasible and promising candidate bivalent vaccine against both EV71 and CA16. The construction of a chimeric enterovirus also provides an alternative platform for broad-spectrum HFMD vaccines development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Recombinant Hepatitis C Virus Envelope Glycoprotein Vaccine Elicits Antibodies Targeting Multiple Epitopes on the Envelope Glycoproteins Associated with Broad Cross-Neutralization

    PubMed Central

    Wong, Jason Alexander Ji-Xhin; Bhat, Rakesh; Hockman, Darren; Logan, Michael; Chen, Chao; Levin, Aviad; Frey, Sharon E.; Belshe, Robert B.; Tyrrell, D. Lorne

    2014-01-01

    ABSTRACT Although effective hepatitis C virus (HCV) antivirals are on the horizon, a global prophylactic vaccine for HCV remains elusive. The diversity of the virus is a major concern for vaccine development; there are 7 major genotypes of HCV found globally. Therefore, a successful vaccine will need to protect against HCV infection by all genotypes. Despite the diversity, many monoclonal antibodies (MAbs) with broadly cross-neutralizing activity have been described, suggesting the presence of conserved epitopes that can be targeted to prevent infection. Similarly, a vaccine comprising recombinant envelope glycoproteins (rE1E2) derived from the genotype 1a HCV-1 strain has been shown to be capable of eliciting cross-neutralizing antibodies in guinea pigs, chimpanzees, and healthy human volunteers. In order to investigate the basis for this cross-neutralization, epitope mapping of anti-E1E2 antibodies present within antisera from goats and humans immunized with HCV-1 rE1E2 was conducted through peptide mapping and competition studies with a panel of cross-neutralizing MAbs targeting various epitopes within E1E2. The immunized-goat antiserum was shown to compete with the binding of all MAbs tested (AP33, HC33.4, HC84.26, 1:7, AR3B, AR4A, AR5A, IGH526, and A4). Antisera showed the best competition against HC84.26 and AR3B and the weakest competition against AR4A. Furthermore, antisera from five immunized human vaccinees were shown to compete with five preselected MAbs (AP33, AR3B, AR4A, AR5A, and IGH526). These data show that immunization with HCV-1 rE1E2 elicits antibodies targeting multiple cross-neutralizing epitopes. Our results further support the use of such a vaccine antigen to induce cross-genotype neutralization. IMPORTANCE An effective prophylactic vaccine for HCV is needed for optimal control of the disease burden. The high diversity of HCV has posed a challenge for developing vaccines that elicit neutralizing antibodies for protection against infection

  11. Single N277A substitution in C2 of simian immunodeficiency virus envelope influences vaccine-elicited CD4i neutralizing and anti-V2 antibody responses.

    PubMed

    Tang, Xian; Guo, Jia; Cheng, Lin; Sun, Caijun; Liu, Li; Zuo, Teng; Wang, Hui; Chen, Ling; Zhang, Linqi; Chen, Zhiwei

    2017-05-02

    An effective HIV vaccine remains elusive, and immunogens capable of eliciting protective host humoral immunity have not yet been identified. Although HIV/SIV infections result in the abundant production of CD4-induced (CD4i) antibodies (Abs), these Abs are not protective due to steric restrictions following gp120 binding to CD4 on target cells. Here we report that both DNA- and vaccinia-based vaccines encoding SIV mac239 gp160 readily elicited high levels of CD4i Abs in experimental animals. We identified a highly conserved N-linked glycosylation site N277 in the C2 region which strongly affected the immunogenicity of the CD4i Ab domain. Moreover, a single N277A substitution significantly enhanced the immunogenicity of the V2 domain yielding higher titers and frequency of anti-V2 Ab responses as determined by ELISA and yeast antigen display mapping, respectively. Importantly, immune sera elicited by the N277A-mutated gp160 exhibited elevated antibody-dependent cellular cytotoxicity (ADCC) activity. ADCC activity correlated positively with the anti-V2 Ab titer yet, inversely with CD4i Ab titer. Thus, we identified a determinant of the CD4i domain that might affect vaccine-elicited anti-V2 Ab and ADCC responses to SIV mac239 . Our findings may have implications for design of immunogens to direct B cell recognition in the development of an Ab-based HIV vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Combination of two candidate subunit vaccine antigens elicits protective immunity to ricin and anthrax toxin in mice.

    PubMed

    Vance, David J; Rong, Yinghui; Brey, Robert N; Mantis, Nicholas J

    2015-01-09

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Antigen-specific B memory cell responses to lipopolysaccharide (LPS) and invasion plasmid antigen (Ipa) B elicited in volunteers vaccinated with live-attenuated Shigella flexneri 2a vaccine candidates

    PubMed Central

    Simon, J.K.; Wahid, R.; Maciel, M.; Picking, W.L.; Kotloff, K.L.; Levine, M.M.; Sztein, M.B.

    2013-01-01

    We evaluated B memory responses in healthy adult volunteers who received one oral dose of live-attenuated Shigella flexneri 2a vaccine. LPS-specific BM cells increased from a median of 0 at baseline to 20 spot forming cells (SFC)/106 expanded cells following vaccination (p = 0.008). A strong correlation was found between post-vaccination anti-LPS BM cell counts and peak serum anti-LPS IgG titers (rs = 0.95, p = 0.0003). Increases in BM specific for IpaB approaching significance were also observed. In sum, oral vaccination with live-attenuated S. flexneri 2a elicits BM cells to LPS and IpaB, suggesting that BM responses to Shigella antigens should be further studied as a suitable surrogate of protection in shigellosis. PMID:19022324

  14. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    PubMed

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  15. A Candidate H1N1 Pandemic Influenza Vaccine Elicits Protective Immunity in Mice

    PubMed Central

    Steitz, Julia; Barlow, Peter G.; Hossain, Jaber; Kim, Eun; Okada, Kaori; Kenniston, Tom; Rea, Sheri; Donis, Ruben O.; Gambotto, Andrea

    2010-01-01

    Background In 2009 a new pandemic disease appeared and spread globally. The recent emergence of the pandemic influenza virus H1N1 first isolated in Mexico and USA raised concerns about vaccine availability. We here report our development of an adenovirus-based influenza H1N1 vaccine tested for immunogenicity and efficacy to confer protection in animal model. Methods We generated two adenovirus(Ad5)-based influenza vaccine candidates encoding the wildtype or a codon-optimized hemagglutinin antigen (HA) from the recently emerged swine influenza isolate A/California/04/2009 (H1N1)pdm. After verification of antigen expression, immunogenicity of the vaccine candidates were tested in a mouse model using dose escalations for subcutaneous immunization. Sera of immunized animals were tested in microneutalization and hemagglutination inhibition assays for the presence of HA-specific antibodies. HA-specific T-cells were measured in IFNγ Elispot assays. The efficiency of the influenza vaccine candidates were evaluated in a challenge model by measuring viral titer in lung and nasal turbinate 3 days after inoculation of a homologous H1N1 virus. Conclusions/Significance A single immunization resulted in robust cellular and humoral immune response. Remarkably, the intensity of the immune response was substantially enhanced with codon-optimized antigen, indicating the benefit of manipulating the genetic code of HA antigens in the context of recombinant influenza vaccine design. These results highlight the value of advanced technologies in vaccine development and deployment in response to infections with pandemic potential. Our study emphasizes the potential of an adenoviral-based influenza vaccine platform with the benefits of speed of manufacture and efficacy of a single dose immunization. PMID:20463955

  16. Yersinia pestis caf1 variants and the limits of plague vaccine protection.

    PubMed

    Quenee, Lauriane E; Cornelius, Claire A; Ciletti, Nancy A; Elli, Derek; Schneewind, Olaf

    2008-05-01

    Yersinia pestis, the highly virulent agent of plague, is a biological weapon. Strategies that prevent plague have been sought for centuries, and immunization with live, attenuated (nonpigmented) strains or subunit vaccines with F1 (Caf1) antigen is considered effective. We show here that immunization with live, attenuated strains generates plague-protective immunity and humoral immune responses against F1 pilus antigen and LcrV. Y. pestis variants lacking caf1 (F1 pili) are not only fully virulent in animal models of bubonic and pneumonic plague but also break through immune responses generated with live, attenuated strains or F1 subunit vaccines. In contrast, immunization with purified LcrV, a protein at the tip of type III needles, generates protective immunity against the wild-type and the fully virulent caf1 mutant strain, in agreement with the notion that LcrV can elicit vaccine protection against both types of virulent plague strains.

  17. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques

    PubMed Central

    2013-01-01

    Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113

  18. Characteristics of memory B cells elicited by a highly efficacious HPV vaccine in subjects with no pre-existing immunity.

    PubMed

    Scherer, Erin M; Smith, Robin A; Simonich, Cassandra A; Niyonzima, Nixon; Carter, Joseph J; Galloway, Denise A

    2014-10-01

    Licensed human papillomavirus (HPV) vaccines provide near complete protection against the types of HPV that most commonly cause anogenital and oropharyngeal cancers (HPV 16 and 18) when administered to individuals naive to these types. These vaccines, like most other prophylactic vaccines, appear to protect by generating antibodies. However, almost nothing is known about the immunological memory that forms following HPV vaccination, which is required for long-term immunity. Here, we have identified and isolated HPV 16-specific memory B cells from female adolescents and young women who received the quadrivalent HPV vaccine in the absence of pre-existing immunity, using fluorescently conjugated HPV 16 pseudoviruses to label antigen receptors on the surface of memory B cells. Antibodies cloned and expressed from these singly sorted HPV 16-pseudovirus labeled memory B cells were predominantly IgG (>IgA>IgM), utilized diverse variable genes, and potently neutralized HPV 16 pseudoviruses in vitro despite possessing only average levels of somatic mutation. These findings suggest that the quadrivalent HPV vaccine provides an excellent model for studying the development of B cell memory; and, in the context of what is known about memory B cells elicited by influenza vaccination/infection, HIV-1 infection, or tetanus toxoid vaccination, indicates that extensive somatic hypermutation is not required to achieve potent vaccine-specific neutralizing antibody responses.

  19. A Live-Attenuated HSV-2 ICP0 − Virus Elicits 10 to 100 Times Greater Protection against Genital Herpes than a Glycoprotein D Subunit Vaccine

    PubMed Central

    Halford, William P.; Püschel, Ringo; Gershburg, Edward; Wilber, Andrew; Gershburg, Svetlana; Rakowski, Brandon

    2011-01-01

    Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0 − virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0 − virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein. PMID:21412438

  20. Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope

    PubMed Central

    Kilgore, Katie M.; Murphy, Megan K.; Burton, Samantha L.; Wetzel, Katherine S.; Smith, S. Abigail; Xiao, Peng; Reddy, Sharmila; Francella, Nicholas; Sodora, Donald L.; Silvestri, Guido; Cole, Kelly S.; Villinger, Francois; Robinson, James E.; Pulendran, Bali; Hunter, Eric; Collman, Ronald G.; Amara, Rama R.

    2015-01-01

    ABSTRACT Antibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the

  1. Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines

    PubMed Central

    Marcelin, Glendie; Sandbulte, Matthew R.; Webby, Richard J.

    2012-01-01

    SUMMARY Vaccines are instrumental in controlling the burden of influenza virus infection in humans and animals. Antibodies raised against both major viral surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), can contribute to protective immunity. Vaccine-induced HA antibodies have been characterized extensively, and they generally confer protection by blocking the attachment and fusion of a homologous virus onto host cells. Though not as well characterized, some functions of NA antibodies in influenza vaccine-mediated immunity have been recognized for many years. In this review we summarize the case for NA antibodies in influenza vaccine-mediated immunity. In the absence of well-matched HA antibodies, NA antibodies can provide varying degrees of protection against disease. NA proteins of seasonal influenza vaccines have been shown in some instances to elicit serum antibodies with cross-reactivity to avian- and swine-origin influenza strains, in addition to HA drift variants. NA-mediated immunity has been linked to [i] conserved NA epitopes amongst otherwise antigenically distinct strains, partly attributable to the segmented influenza viral genome; [ii] inhibition of NA enzymatic activity; and [iii] the NA content in vaccine formulations. There is potential to enhance the effectiveness of existing and future influenza vaccines by focusing greater attention on the antigenic characteristics and potency of the NA protein. PMID:22438243

  2. Are licensed canine parvovirus (CPV2 and CPV2b) vaccines able to elicit protection against CPV2c subtype in puppies?: A systematic review of controlled clinical trials.

    PubMed

    Hernández-Blanco, Beatriz; Catala-López, Ferrán

    2015-10-22

    Severe gastroenteritis caused by canine parvovirus type 2 (CPV2) is a serious life-threatening disease in puppies less than 4-months of age. The emergence of new variants has provoked some concern about the cross-protection elicited by licensed canine parvovirus modified-live type 2 (CPV2) and type 2b (CPV2b) vaccines against the most recent subtype CPV2c. A systematic review was carried out to assess the efficacy of commercial vaccines. We conducted a literature search of Pub Med/MEDLINE from January 1990 to May 2014. This was supplemented by hand-searching of related citations and searches in Google/Google Scholar. Controlled clinical trials in which vaccinated puppies were challenged with CPV2c virus were evaluated. Reporting of outcome measures and results for vaccine efficacy were critically appraised through a variety of clinical signs, serological tests, virus shedding and the ability to overcome maternally derived antibodies (MDA) titres. Six controlled clinical trials were included in the review. In most cases, the results of the selected studies reported benefits in terms of clinical signs, serological tests and virus shedding. However, MDA interference was not considered or evaluated in 5 of the selected trials. No accurate definitions of baseline healthy status and/or clinical outcomes were provided. Methods of randomization, allocation concealment and blinding were usually poorly reported. As a result of the limited number of included studies matching the inclusion criteria, the small sample sizes, short follow-up and the methodological limitations observed, it was not possible to reach a final conclusion regarding the cross-protection of licensed CPV2 and CPV2b vaccines against the subtype 2c in puppies. Further and specifically designed trials are required in order to elucidate whether cross-protection is acquired from licensed CPV vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

    PubMed

    Warimwe, George M; Gesharisha, Joseph; Carr, B Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K; Al-dubaib, Musaad A; Brun, Alejandro; Gilbert, Sarah C; Nene, Vishvanath; Hill, Adrian V S

    2016-02-05

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.

  4. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    PubMed

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    PubMed Central

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  6. Antigen-specific B memory cell responses to lipopolysaccharide (LPS) and invasion plasmid antigen (Ipa) B elicited in volunteers vaccinated with live-attenuated Shigella flexneri 2a vaccine candidates.

    PubMed

    Simon, J K; Wahid, R; Maciel, M; Picking, W L; Kotloff, K L; Levine, M M; Sztein, M B

    2009-01-22

    We evaluated B memory responses in healthy adult volunteers who received one oral dose of live-attenuated Shigella flexneri 2a vaccine. LPS-specific B(M) cells increased from a median of 0 at baseline to 20 spot forming cells (SFC)/10(6) expanded cells following vaccination (p=0.008). A strong correlation was found between post-vaccination anti-LPS B(M) cell counts and peak serum anti-LPS IgG titers (rs=0.95, p=0.0003). Increases in B(M) specific for IpaB approaching significance were also observed. In sum, oral vaccination with live-attenuated S. flexneri 2a elicits B(M) cells to LPS and IpaB, suggesting that B(M) responses to Shigella antigens should be further studied as a suitable surrogate of protection in shigellosis.

  7. Anthrax vaccine recipients lack antibody against the loop neutralizing determinant: A protective neutralizing epitope from Bacillus anthracis protective antigen.

    PubMed

    Oscherwitz, Jon; Quinn, Conrad P; Cease, Kemp B

    2015-05-11

    Epitope-focused immunogens can elicit antibody against the loop neutralizing determinant (LND), a neutralizing epitope found within the 2β2-2β3 loop of protective antigen (PA), which can protect rabbits from high-dose inhalation challenge with Bacillus anthracis Ames strain. Interestingly, data suggests that this epitope is relatively immunosilent in rabbits and non-human primates immunized with full length PA. To determine whether the LND is immunosilent among humans vaccinated with PA, we screened antisera from AVA- or placebo-vaccinees from a clinical trial for antibody reactive with the LND. AVA-vaccinee sera had significant PA-specific antibody compared to placebo-vaccinee sera; however, sera from the two cohorts were indistinguishable with regard to the frequency of individuals with antibody specific for the LND. AVA-vaccinees have a low frequency of antibody reactive with the LND. As with rabbits and non-human primates, the elicitation of LND-specific antibody in humans appears to require immunization with an epitope-focused vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Yeast-produced recombinant virus-like particles of coxsackievirus A6 elicited protective antibodies in mice.

    PubMed

    Zhou, Yu; Shen, Chaoyun; Zhang, Chao; Zhang, Wei; Wang, Lili; Lan, Ke; Liu, Qingwei; Huang, Zhong

    2016-08-01

    Coxsackievirus A6 (CA6) has recently emerged as the predominant pathogen of hand, foot and mouth disease (HFMD), causing significant morbidity in children and adults. The increasing prevalence of CA6 infection and its associated disease burden underscore the need for effective CA6 vaccines. However, CA6 grows poorly in cultured cells, making it difficult to develop inactivated whole-virus or live attenuated vaccines. Here we report the development of a recombinant virus-like particle (VLP) based CA6 vaccine. CA6 VLPs were produced in Pichia pastoris yeast transformed with a vector encoding both P1 and 3CD proteins of CA6. Immunization with CA6 VLPs elicited CA6-specific serum antibodies in mice. Passive transfer of anti-VLP antisera protected recipient mice against lethal CA6 challenge. Collectively, these results demonstrate that CA6 VLPs represent a viable CA6 vaccine candidate which warrants further preclinical and clinical development. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of protective efficacy of three novel H3N2 canine influenza vaccines.

    PubMed

    Tu, Liqing; Zhou, Pei; Li, Lutao; Li, Xiuzhen; Hu, Renjun; Jia, Kun; Sun, Lingshuang; Yuan, Ziguo; Li, Shoujun

    2017-11-17

    Canine influenza virus (CIV) has the potential risk to spread in different areas and dog types. Thus, there is a growing need to develop an effective vaccine to control CIV disease. Here, we developed three vaccine candidates: 1) a recombinant pVAX1 vector expressing H3N2 CIV hemagglutinin (pVAX1-HA); 2) a live attenuated canine adenovirus type 2 expressing H3N2 CIV hemagglutinin (rCAV2-HA); and 3) an inactivated H3N2 CIV (A/canine/Guangdong/01/2006 (H3N2)). Mice received an initial intramuscular immunization that followed two booster injections at 2 and 4 weeks post-vaccination (wpv). The splenic lymphocytes were collected to assess the immune responses at 6 wpv. The protective efficacy was evaluated by challenging H3N2 CIV after vaccination (at 6 wpv). Our results demonstrated that all three vaccine candidates elicited cytokine and antibody responses in mice. The rCAV2-HA vaccine and the inactivated vaccine generated efficient protective efficacy in mice, whereas limited protection was provided by the pVAX1-HA DNA vaccine. Therefore, both the rCAV2-HA live recombinant virus and the inactivated CIV could be used as potential novel vaccines against H3N2CIV. This study provides guidance for choosing the most appropriate vaccine for the prevention and control of CIV disease.

  10. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores.

    PubMed

    Chichester, Jessica A; Manceva, Slobodanka D; Rhee, Amy; Coffin, Megan V; Musiychuk, Konstantin; Mett, Vadim; Shamloul, Moneim; Norikane, Joey; Streatfield, Stephen J; Yusibov, Vidadi

    2013-03-01

    The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our launch vector-based plant transient expression system. Using this system, we have successfully engineered, expressed, purified and characterized full-length PA (pp-PA83) in Nicotiana benthamiana plants using agroinfiltration. This plant-produced antigen elicited high toxin neutralizing antibody titers in mice and rabbits after two vaccine administrations with Alhydrogel. In addition, immunization with this vaccine candidate protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. The vaccine effects were dose-dependent and required the presence of Alhydrogel adjuvant. In addition, the vaccine antigen formulated with Alhydrogel was stable and retained immunogenicity after two-week storage at 4°C, the conditions intended for clinical use. These results support the testing of this vaccine candidate in human volunteers and the utility of our plant expression system for the production of a recombinant anthrax vaccine.

  11. Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies

    PubMed Central

    deCamp, Allan; Hraber, Peter; Bailer, Robert T.; Seaman, Michael S.; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K.; Zolla-Pazner, Susan; LaBranche, Celia C.; Mascola, John R.; Korber, Bette T.

    2014-01-01

    . Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine. PMID:24352443

  12. Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies.

    PubMed

    deCamp, Allan; Hraber, Peter; Bailer, Robert T; Seaman, Michael S; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K; Zolla-Pazner, Susan; LaBranche, Celia C; Mascola, John R; Korber, Bette T; Montefiori, David C

    2014-03-01

    broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.

  13. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.

    PubMed

    Derbise, Anne; Hanada, Yuri; Khalifé, Manal; Carniel, Elisabeth; Demeure, Christian E

    2015-01-01

    No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral

  14. Experimental immunization of cats with a recombinant rabies-canine adenovirus vaccine elicits a long-lasting neutralizing antibody response against rabies.

    PubMed

    Hu, R L; Liu, Y; Zhang, S F; Zhang, F; Fooks, A R

    2007-07-20

    During the past decade, human rabies caused by cats has ranked the second highest in China. Several recombinant rabies vaccines have been developed for dogs. However, seldom have these vaccines been assessed or used in cats. In this trial, we report the experimental immunization of a recombinant canine adenovirus-rabies vaccine, CAV-2-E3Delta-RGP, in cats. Thirty cats were inoculated with the recombinant vaccine intramuscularly, orally and intranasally, respectively. Safety and efficacy studies were undertaken using the fluorescent antibody virus neutralization (FAVN) test and evaluated. Results showed that this recombinant vaccine is safe for cats as demonstrated by the three different routes of administration. The vaccine stimulated an efficient humoral response in the vaccinated cats when 10(8.5)PFU/ml of the recombinant vaccine was injected intramuscularly in a single dose. The neutralizing antibody level increased above 0.5IU/ml at 4 weeks after the vaccination. The mean antibody level ranged from 0.96+/-0.26 to 4.47+/-1.57IU/ml among individuals, and the antibody levels were elicited for at least 12 months. After this period, the immunized cats survived the challenge of CVS-24 and an obvious anemnestic and protective immune response was stimulated after the challenge. The immune response occurred later than the inactivated vaccine and the overall antibody level in the vaccinated cats was lower, but it was sufficient to confer protection of cats against infection. This demonstrated that a single, intramuscular dose of CAV-2-E3Delta-RGP stimulated a long-lasting protective immune response in cats and suggested that CAV-2-E3Delta-RGP could be considered as a potential rabies vaccine candidate for cats.

  15. Immunogenicity against Far Eastern and Siberian subtypes of tick-borne encephalitis (TBE) virus elicited by the currently available vaccines based on the European subtype: systematic review and meta-analysis.

    PubMed

    Domnich, Alexander; Panatto, Donatella; Arbuzova, Eva Klementievna; Signori, Alessio; Avio, Ulderico; Gasparini, Roberto; Amicizia, Daniela

    2014-01-01

    Tick-borne encephalitis (TBE) virus, which is usually divided into European, Far Eastern and Siberian subtypes, is a serious public health problem in several European and Asian countries. Vaccination is the most effective measure to prevent TBE; cross-subtype protection elicited by the TBE vaccines is biologically plausible since all TBE virus subtypes are closely related. This manuscript systematically explores available data on the cross-subtype immunogenicity elicited by the currently available Western vaccines based on the European subtype. Completed immunization course of 3 doses of both Western vaccines determined very high seroconversion/seropositivity rates against both Far Eastern and Siberian subtypes among previously flavivirus-naïve subjects. All but one study found no statistically significant difference in titers of neutralizing antibodies against strains belonging to homologous and heterologous subtypes. Pooled analysis of randomized controlled trials on head-to-head comparison of immunogenicity of Western and Russian TBE vaccines did not reveal differences in seroconversion rates against Far Eastern isolates in either hemagglutination inhibition (risk ratio = 0.98, p = 0.83) or enzyme-linked immunosorbent (risk ratio = 0.95, p = 0.44) assays after 2 vaccine doses. This suggests that, in regions where a heterogeneous TBE virus population circulates, vaccines based on the European subtype may be used alongside vaccines based on the Far Eastern subtype. Studies on the field effectiveness of TBE vaccines and investigation of vaccination failures, especially in countries where different subtypes co-circulate, will further elucidate TBE vaccination-induced cross-subtype protection.

  16. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies.

    PubMed

    Ahmed, Yousuf; Tian, Meijuan; Gao, Yong

    2017-09-12

    The extreme HIV diversity posts a great challenge on development of an effective anti-HIV vaccine. To solve this problem, it is crucial to discover an appropriate immunogens and strategies that are able to prevent the transmission of the diverse viruses that are circulating in the world. Even though there have been a number of broadly neutralizing anti-HIV antibodies (bNAbs) been discovered in recent years, induction of such antibodies to date has only been observed in HIV-1 infection. Here, in this mini review, we review the progress in development of HIV vaccine in eliciting broad immune response, especially production of bNAbs, discuss possible strategies, such as polyvalent sequential vaccination, that facilitates B cell maturation leading to bNAb response.

  17. Evaluation of protective efficacy of three novel H3N2 canine influenza vaccines

    PubMed Central

    Li, Lutao; Li, Xiuzhen; Hu, Renjun; Jia, Kun; Sun, Lingshuang; Yuan, Ziguo; Li, Shoujun

    2017-01-01

    Canine influenza virus (CIV) has the potential risk to spread in different areas and dog types. Thus, there is a growing need to develop an effective vaccine to control CIV disease. Here, we developed three vaccine candidates: 1) a recombinant pVAX1 vector expressing H3N2 CIV hemagglutinin (pVAX1-HA); 2) a live attenuated canine adenovirus type 2 expressing H3N2 CIV hemagglutinin (rCAV2-HA); and 3) an inactivated H3N2 CIV (A/canine/Guangdong/01/2006 (H3N2)). Mice received an initial intramuscular immunization that followed two booster injections at 2 and 4 weeks post-vaccination (wpv). The splenic lymphocytes were collected to assess the immune responses at 6 wpv. The protective efficacy was evaluated by challenging H3N2 CIV after vaccination (at 6 wpv). Our results demonstrated that all three vaccine candidates elicited cytokine and antibody responses in mice. The rCAV2-HA vaccine and the inactivated vaccine generated efficient protective efficacy in mice, whereas limited protection was provided by the pVAX1-HA DNA vaccine. Therefore, both the rCAV2-HA live recombinant virus and the inactivated CIV could be used as potential novel vaccines against H3N2CIV. This study provides guidance for choosing the most appropriate vaccine for the prevention and control of CIV disease. PMID:29228675

  18. Protective effect of a polyvalent influenza DNA vaccine in pigs.

    PubMed

    Karlsson, Ingrid; Borggren, Marie; Rosenstierne, Maiken Worsøe; Trebbien, Ramona; Williams, James A; Vidal, Enric; Vergara-Alert, Júlia; Foz, David Solanes; Darji, Ayub; Sisteré-Oró, Marta; Segalés, Joaquim; Nielsen, Jens; Fomsgaard, Anders

    2018-01-01

    Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle-free delivery method, we have recently demonstrated a polyvalent influenza DNA vaccine that induces a broad immune response, including both humoral and cellular immunity. To investigate the protection of our polyvalent influenza DNA vaccine approach in a pig challenge study. By intradermal needle-free delivery to the skin, we immunized pigs with two different doses (500μg and 800μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated. Two weeks following immunization, the pigs were challenged with the 2009 pandemic H1N1 virus. When challenged with 2009 pandemic H1N1, 0/5 vaccinated pigs (800μg DNA) became infected whereas 5/5 unvaccinated control pigs were infected. The pigs vaccinated with the low dose (500μg DNA) were only partially protected. The DNA vaccine elicited binding-, hemagglutination inhibitory (HI) - as well as cross-reactive neutralizing antibody activity and neuraminidase inhibiting antibodies in the immunized pigs, in a dose-dependent manner. The present data, together with the previously demonstrated immunogenicity of our influenza DNA vaccine, indicate that naked DNA vaccine technology provides a strong approach for the development of improved pig vaccines, applying realistic low doses of DNA and a convenient delivery method for mass vaccination. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Extended protection capabilities of an immature dendritic-cell targeting malaria sporozoite vaccine.

    PubMed

    Luo, Kun; Zavala, Fidel; Gordy, James; Zhang, Hong; Markham, Richard B

    2017-04-25

    Mouse studies evaluating candidate malaria vaccines have typically examined protective efficacy over the relatively short time frames of several weeks after the final of multiple immunizations. The current study examines the protective ability in a mouse model system of a novel protein vaccine construct in which the adjuvant polyinosinic polycytidilic acid (poly(I:C)) is used in combination with a vaccine in which the immature dendritic cell targeting chemokine, macrophage inflammatory protein 3 alpha (MIP3α), is fused to the circumsporozoite protein (CSP) of Plasmodium falciparum (P. falciparum). Two vaccinations, three weeks apart, elicited extraordinarily high, MIP3α-dependent antibody responses. MIP3α was able to target the vaccine to the CCR6 receptor found predominantly on immature dendritic cells and significantly enhanced the cellular influx at the vaccination site. At three and 23 weeks after the final of two immunizations, mice were challenged by intravenous injection of 5×10 3 transgenic Plasmodium berghei sporozoites expressing P. falciparum CSP, a challenge dose approximately one order of magnitude greater than that which is encountered after mosquito bite in the clinical setting. A ninety-seven percent reduction in liver sporozoite load was observed at both time points, 23 weeks being the last time point tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prolonged intervals during Mycobacterium tuberculosis subunit vaccine boosting contributes to eliciting immunity mediated by central memory-like T cells.

    PubMed

    Bai, Chunxiang; He, Juanjuan; Niu, Hongxia; Hu, Lina; Luo, Yanping; Liu, Xun; Peng, Liang; Zhu, Bingdong

    2018-05-01

    It is believed that central memory T cells (T CM ) provide long-term protection against tuberculosis (TB). However, the effects of TB subunit vaccine immunization schedule, especially the vaccination intervals, on T cell immune memory is still unclear. In this study, mice were immunized with fusion protein ESAT6-Ag85B-MPT64 (190-198)-Mtb8.4-Rv2626c (LT70) based subunit vaccine three times according to the following schedules: ① 0, 3rd and 6th week respectively (0-3-6w), ② 0, 4th and 12th week (0-4-12w), and ③ 0, 4th and 24th week (0-4-24w). We found that both schedules of 0-4-12w and 0-4-24w induced higher level of antigen specific IL-2, IFN-γ and TNF-α than 0-3-6w immunization. Among them, 0-4-12w induced the highest level of IL-2, which is a key cytokine mainly produced by T CM . Moreover, by cultured IFN-γ ELISPOT and cell proliferation assay etc., we found that the vaccination schedule of 0-4-12w elicited higher numbers of T CM like cells, stronger T CM - mediated immune responses and higher protective efficacy against M. bovis BCG challenge than 0-3-6w did. It suggests that prolonging the vaccination interval of TB subunit vaccine to some extent contributes to inducing more abundant T CM like cells and providing stronger immune protection against mycobacteria infection. Copyright © 2018. Published by Elsevier Ltd.

  1. Rational development of a protective P. vivax vaccine evaluated with transgenic rodent parasite challenge models

    PubMed Central

    Salman, Ahmed M.; Montoya-Díaz, Eduardo; West, Heather; Lall, Amar; Atcheson, Erwan; Lopez-Camacho, Cesar; Ramesar, Jai; Bauza, Karolis; Collins, Katharine A.; Brod, Florian; Reis, Fernando; Pappas, Leontios; González-Cerón, Lilia; Janse, Chris J.; Hill, Adrian V. S.; Khan, Shahid M.; Reyes-Sandoval, Arturo

    2017-01-01

    Development of a protective and broadly-acting vaccine against the most widely distributed human malaria parasite, Plasmodium vivax, will be a major step towards malaria elimination. However, a P. vivax vaccine has remained elusive by the scarcity of pre-clinical models to test protective efficacy and support further clinical trials. In this study, we report the development of a highly protective CSP-based P. vivax vaccine, a virus-like particle (VLP) known as Rv21, able to provide 100% sterile protection against a stringent sporozoite challenge in rodent models to malaria, where IgG2a antibodies were associated with protection in absence of detectable PvCSP-specific T cell responses. Additionally, we generated two novel transgenic rodent P. berghei parasite lines, where the P. berghei csp gene coding sequence has been replaced with either full-length P. vivax VK210 or the allelic VK247 csp that additionally express GFP-Luciferase. Efficacy of Rv21 surpassed viral-vectored vaccination using ChAd63 and MVA. We show for the first time that a chimeric VK210/247 antigen can elicit high level cross-protection against parasites expressing either CSP allele, which provide accessible and affordable models suitable to support the development of P. vivax vaccines candidates. Rv21 is progressing to GMP production and has entered a path towards clinical evaluation. PMID:28417968

  2. Protection against Experimental Cryptococcosis following Vaccination with Glucan Particles Containing Cryptococcus Alkaline Extracts.

    PubMed

    Specht, Charles A; Lee, Chrono K; Huang, Haibin; Tipper, Donald J; Shen, Zu T; Lodge, Jennifer K; Leszyk, John; Ostroff, Gary R; Levitz, Stuart M

    2015-12-22

    yeast cell walls composed mainly of β-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains of C. neoformans and C. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens. Copyright © 2015 Specht et al.

  3. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model.

    PubMed

    Guilbride, D Lys; Gawlinski, Pawel; Guilbride, Patrick D L

    2010-05-19

    Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications for accelerated local eliminations of malaria, and significantly increases potential for eradication.

  4. Development of vaccines against meningococcal disease.

    PubMed

    Jódar, Luis; Feavers, Ian M; Salisbury, David; Granoff, Dan M

    2002-04-27

    Neisseria meningitidis is a major cause of bacterial meningitis and sepsis. Polysaccharide-protein conjugate vaccines for prevention of group C disease have been licensed in Europe. Such vaccines for prevention of disease caused by groups A (which is associated with the greatest disease burden worldwide), Y, and W135 are being developed. However, conventional approaches to develop a vaccine for group B strains, which are responsible for most cases in Europe and the USA, have been largely unsuccessful. Capsular polysaccharide-based vaccines can elicit autoantibodies to host polysialic acid, whereas the ability of most non-capsular antigens to elicit broad-based immunity is limited by their antigenic diversity. Many new membrane proteins have been discovered during analyses of genomic sequencing data. These antigens are highly conserved and, in mice, elicit serum bactericidal antibodies, which are the serological hallmark of protective immunity in man. Therefore, there are many promising new vaccine candidates, and improved prospects for development of a broadly protective vaccine for group B disease, and for control of all meningococcal disease.

  5. Immunogenicity against Far Eastern and Siberian subtypes of tick-borne encephalitis (TBE) virus elicited by the currently available vaccines based on the European subtype: Systematic review and meta-analysis

    PubMed Central

    Domnich, Alexander; Panatto, Donatella; Arbuzova, Eva Klementievna; Signori, Alessio; Avio, Ulderico; Gasparini, Roberto; Amicizia, Daniela

    2014-01-01

    Tick-borne encephalitis (TBE) virus, which is usually divided into European, Far Eastern and Siberian subtypes, is a serious public health problem in several European and Asian countries. Vaccination is the most effective measure to prevent TBE; cross-subtype protection elicited by the TBE vaccines is biologically plausible since all TBE virus subtypes are closely related. This manuscript systematically explores available data on the cross-subtype immunogenicity elicited by the currently available Western vaccines based on the European subtype. Completed immunization course of 3 doses of both Western vaccines determined very high seroconversion/seropositivity rates against both Far Eastern and Siberian subtypes among previously flavivirus-naïve subjects. All but one study found no statistically significant difference in titers of neutralizing antibodies against strains belonging to homologous and heterologous subtypes. Pooled analysis of randomized controlled trials on head-to-head comparison of immunogenicity of Western and Russian TBE vaccines did not reveal differences in seroconversion rates against Far Eastern isolates in either hemagglutination inhibition (risk ratio = 0.98, p = 0.83) or enzyme-linked immunosorbent (risk ratio = 0.95, p = 0.44) assays after 2 vaccine doses. This suggests that, in regions where a heterogeneous TBE virus population circulates, vaccines based on the European subtype may be used alongside vaccines based on the Far Eastern subtype. Studies on the field effectiveness of TBE vaccines and investigation of vaccination failures, especially in countries where different subtypes co-circulate, will further elucidate TBE vaccination-induced cross-subtype protection. PMID:25483679

  6. Enhanced protective immune response to PCV2 subunit vaccine by co-administration of recombinant porcine IFN-γ in mice.

    PubMed

    Wang, Yi-Ping; Liu, Dan; Guo, Long-Jun; Tang, Qing-Hai; Wei, Yan-Wu; Wu, Hong-Li; Liu, Jian-Bo; Li, Sheng-Bin; Huang, Li-Ping; Liu, Chang-Ming

    2013-01-21

    The capsid (Cap) protein of PCV2 is the major immunogenic protein that is crucial to induce PCV2-specific neutralizing antibodies and protective immunity; thus, it is a suitable target antigen for the research and development of genetically engineered vaccines against PCV2 infection. IFN-γ has exhibited potential efficacy as an immune adjuvant that enhances the immunogenicity of certain vaccines in experimental animal models. In this study, three recombinant proteins: PCV2-Cap protein, porcine IFN-γ (PoIFN-γ), and the fusion protein (Cap-PoIFN-γ) of PCV2-Cap protein and PoIFN-γ were respectively expressed in the baculovirus system, and analyzed by Western blot and indirect ELISA. Additionally, we evaluated the enhancement of the protective immune response to the Cap protein-based PCV2 subunit vaccine elicited by co-administration of PoIFN-γ in mice. Vaccination of mice with the PCV2-Cap+PoIFN-γ vaccine elicited significantly higher levels of PCV2-specific IPMA antibodies, neutralizing antibodies, and lymphocyte proliferative responses compared to the Cap-PoIFN-γ vaccine, the PCV2-Cap vaccine, and LG-strain. Following virulent PCV2 challenge, no viraemia was detected in all immunized groups, and the viral loads in lungs of the PCV2-Cap+PoIFN-γ group were significantly lower compared to the Cap-PoIFN-γ group, the LG-strain group, and the mock group, but slightly lower compared to the PCV2-Cap group. These findings suggested that PoIFN-γ substantially enhanced the protective immune response to the Cap protein-based PCV2 subunit vaccine, and that the PCV2-Cap+PoIFN-γ subunit vaccine potentially serves as an attractive candidate vaccine for the prevention and control of PCV2-associated diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Protection of Chickens against Avian Influenza with Non-Replicating Adenovirus-Vectored Vaccine

    PubMed Central

    Toro, Haroldo; Tang, De-chu C.; Suarez, David L.; Shi, Z.

    2009-01-01

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding an H7 AI hemagglutinin (AdChNY94.H7). Chickens vaccinated in ovo with an Ad vector encoding an AI H5 (AdTW68.H5) previously described, which were subsequently vaccinated intramuscularly with AdChNY94.H7 post-hatch, responded with robust antibody titers against both the H5 and H7 AI proteins. Antibody responses to Ad vector in ovo vaccination follow a dose-response kinetic. The use of a synthetic AI H5 gene codon optimized to match the chicken cell tRNA pool was more potent than the cognate H5 gene. The use of Ad-vectored vaccines to increase resistance of chicken populations against multiple AI strains could reduce the risk of an avian-originating influenza pandemic in humans. PMID:18384919

  8. Calcium phosphate coupled Newcastle disease vaccine elicits humoral and cell mediated immune responses in chickens.

    PubMed

    Koppad, Sanganagouda; Raj, G Dhinakar; Gopinath, V P; Kirubaharan, J John; Thangavelu, A; Thiagarajan, V

    2011-12-01

    Calcium phosphate (CaP) particles were coupled with inactivated Newcastle disease virus (NDV) vaccine. The surface morphology of CaP particles coupled to NDV was found to be spherical, smooth and with a tendency to agglomerate. The mean (± SE) size of CaP particles was found 557.44 ± 18.62 nm. The mean percent encapsulation efficiency of CaP particles coupled to NDV assessed based on total protein content and haemagglutination (HA) activity in eluate was found to be 10.72 ± 0.89 and 12.50 ± 2.09, respectively. The humoral and cell mediated immune responses induced by CaP coupled NDV vaccine were assessed in comparison to a commercial live vaccine (RDV 'F'). CaP coupled NDV vaccine elicited prolonged haemagglutination inhibition (HI) and enzyme linked immunosorbent assay (ELISA) titres in the serum even at fourth and fifth week post-vaccination (PV), unlike RDV 'F' inoculated chickens whose titres declined to insignificant levels by this time. CaP coupled NDV vaccine could stimulate HI antibodies in tracheal washings and tears from second and first week PV, respectively. IgA ELISA antibodies were also seen in tracheal washings of these birds from third week PV and in tears from second week PV. CaP coupled NDV vaccine elicited cell mediated immune responses (CMI) from two to four weeks PV. The stimulation indices obtained after stimulation with specific antigen was not significantly different between CaP coupled antigen and live NDV virus except on first week PV. However, CaP coupled antigen did not cause suppression of lympo proliferation as indicated by statistically similar responses to mitogen, concanavalin A between the two groups. Overall, CaP coupled NDV vaccine elicited stronger and prolonged immune responses in comparison to the commercial live vaccine. No increase in the serum calcium and phosphorous levels were seen in CaP coupled NDV vaccine inoculated chickens. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination

    PubMed Central

    Derbise, Anne; Hanada, Yuri; Khalifé, Manal; Carniel, Elisabeth; Demeure, Christian E.

    2015-01-01

    Background No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. Methodology/Principal Findings The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1—Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. Significance VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection

  10. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    PubMed

    Watson, Alan M; Lam, L K Metthew; Klimstra, William B; Ryman, Kate D

    2016-07-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  11. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells

    PubMed Central

    Lam, L. K. Metthew; Klimstra, William B.

    2016-01-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines. PMID:27463517

  12. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep.

    PubMed

    Faburay, Bonto; Wilson, William C; Gaudreault, Natasha N; Davis, A Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S; Morozov, Igor; McVey, D Scott; Richt, Juergen A

    2016-06-14

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.

  13. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William C.; Gaudreault, Natasha N.; Davis, A. Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S.; Morozov, Igor; McVey, D. Scott; Richt, Juergen A.

    2016-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts. PMID:27296136

  14. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus

    USGS Publications Warehouse

    Emmenegger, E.J.; Kurath, G.

    2008-01-01

    The emergence of spring viremia of carp virus (SVCV) in the United States constitutes a potentially serious alien pathogen threat to susceptible fish stocks in North America. A DNA vaccine with an SVCV glycoprotein (G) gene from a North American isolate was constructed. In order to test the vaccine a challenge model utilizing a specific pathogen-free domestic koi stock and a cold water stress treatment was also developed. We have conducted four trial studies demonstrating that the pSGnc DNA vaccine provided protection in vaccinated fish against challenge at low, moderate, and high virus doses of the homologous virus. The protection was significant (p < 0.05) as compared to fish receiving a mock vaccine construct containing a luciferase reporter gene and to non-vaccinated controls in fish ranging in age from 3 to 14 months. In all trials, the SVCV-G DNA immunized fish were challenged 28-days post-vaccination (546 degree-days) and experienced low mortalities varying from 10 to 50% with relative percent survivals ranging from 50 to 88%. The non-vaccinated controls and mock construct vaccinated fish encountered high cumulative percent mortalities ranging from 70 to 100%. This is the first report of a SVCV DNA vaccine being tested successfully in koi. These experiments prove that the SVCV DNA (pSGnc) vaccine can elicit specific reproducible protection and validates its potential use as a prophylactic vaccine in koi and other vulnerable North American fish stocks.

  15. Vaccination evokes gender-dependent protection against tularemia infection in C57BL/6Tac mice.

    PubMed

    Sunagar, Raju; Kumar, Sudeep; Franz, Brian J; Gosselin, Edmund J

    2016-06-17

    Francisella tularensis (Ft) is a Category A biothreat agent for which there currently is no FDA-approved vaccine. Thus, there is a substantial effort underway to develop an effective tularemia vaccine. While it is well established that gender can significantly impact susceptibility to primary infection, the impact of gender on vaccine efficacy is not well established. Thus, development of a successful vaccine against tularemia will require an understanding of the impact gender has on vaccine-induced protection against this organism. In this study, a role for gender in vaccine-induced protection following Ft challenge is identified for the first time. In the present study, mucosal vaccination with inactivated Ft (iFt) LVS elicited gender-based protection in C57BL/6Tac mice against respiratory challenge with Ft LVS. Specifically, vaccinated male mice were more susceptible to subsequent Ft LVS challenge. This increased susceptibility in male mice correlated with increased bacterial burden, increased tissue inflammation, and increased proinflammatory cytokine production late in post-challenge infection. In contrast, improved survival of iFt-vaccinated female mice correlated with reduced bacterial burden and enhanced levels of Ft-specific Abs in serum and broncho-alveolar lavage (BAL) fluid post-challenge. Furthermore, vaccination with a live attenuated vaccine consisting of an Ft LVS superoxide dismutase (SodB) mutant, which has proven efficacious against the highly virulent Ft SchuS4 strain, demonstrated similar gender bias in protection post-Ft SchuS4 challenge. Of particular significance is the fact that these are the first studies to demonstrate that gender differences impact disease outcome in the case of lethal respiratory tularemia following mucosal vaccination. In addition, these studies further emphasize the fact that gender differences must be a serious consideration in any future tularemia vaccine development studies. Copyright © 2016 Elsevier Ltd. All

  16. Polyvalent Envelope Glycoprotein Vaccine Elicits a Broader Neutralizing Antibody Response but Is Unable To Provide Sterilizing Protection against Heterologous Simian/Human Immunodeficiency Virus Infection in Pigtailed Macaques

    PubMed Central

    Cho, Michael W.; Kim, Young B.; Lee, Myung K.; Gupta, Kailash C.; Ross, Will; Plishka, Ron; Buckler-White, Alicia; Igarashi, Tatsuhiko; Theodore, Ted; Byrum, Russ; Kemp, Chris; Montefiori, David C.; Martin, Malcolm A.

    2001-01-01

    The great difficulty in eliciting broadly cross-reactive neutralizing antibodies (NAbs) against human immunodeficiency virus type 1 (HIV-1) isolates has been attributed to several intrinsic properties of their viral envelope glycoprotein, including its complex quaternary structure, extensive glycosylation, and marked genetic variability. Most previously evaluated vaccine candidates have utilized envelope glycoprotein from a single virus isolate. Here we compare the breadth of NAb and protective immune response following vaccination of pigtailed macaques with envelope protein(s) derived from either single or multiple viral isolates. Animals were challenged with Simian/human immunodeficiency virus strain DH12 (SHIVDH12) following priming with recombinant vaccinia virus(es) expressing gp160(s) and boosting with gp120 protein(s) from (i) LAI, RF, 89.6, AD8, and Bal (Polyvalent); (ii) LAI, RF, 89.6, AD8, Bal, and DH12 (Polyvalent-DH12); (iii) 89.6 (Monovalent-89.6); and (iv) DH12 (Monovalent-DH12). Animals in the two polyvalent vaccine groups developed NAbs against more HIV-1 isolates than those in the two monovalent vaccine groups (P = 0.0054). However, the increased breadth of response was directed almost entirely against the vaccine strains. Resistance to SHIVDH12 strongly correlated with the level of NAbs directed against the virus on the day of challenge (P = 0.0008). Accordingly, the animals in the Monovalent-DH12 and Polyvalent-DH12 vaccine groups were more resistant to the SHIVDH12 challenge than the macaques immunized with preparations lacking a DH12 component (viz. Polyvalent and Monovalent-89.6) (P = 0.039). Despite the absence of any detectable NAb, animals in the Polyvalent vaccine group, but not those immunized with Monovalent-89.6, exhibited markedly lower levels of plasma virus than those in the control group, suggesting a superior cell-mediated immune response induced by the polyvalent vaccine. PMID:11160726

  17. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis.

    PubMed

    Lemieux, Maxime W; Sonzogni-Desautels, Karine; Ndao, Momar

    2017-12-24

    In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between T H 1/T H 2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  18. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis

    PubMed Central

    Lemieux, Maxime W.; Sonzogni-Desautels, Karine; Ndao, Momar

    2017-01-01

    In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries. PMID:29295550

  19. Major role for CD8 T cells in the protection against Toxoplasma gondii following dendritic cell vaccination.

    PubMed

    Guiton, R; Zagani, R; Dimier-Poisson, I

    2009-10-01

    Toxoplasma gondii is the causative agent of toxoplasmosis, a worldwide zoonosis for which an effective vaccine is needed. Vaccination with pulsed dendritic cells is very efficient but their use in a vaccination protocol is unconceivable. Nevertheless, unravelling the induced effector mechanisms is crucial to design new vaccine strategies. We vaccinated CBA/J mice with parasite extract-pulsed dendritic cells, challenged them with T. gondii cysts and carried out in vivo depletion of CD4(+) or CD8(+) T lymphocytes to study the subsequent cellular immune response and protective mechanisms. CD4(+) lymphocytes were poorly implicated either in spleen and mesenteric lymph node (MLN) cytokine secretion or in mice protection. By contrast, the increasing number of intracerebral cysts and depletion of CD8(+) cells were strongly correlated, revealing a prominent role for CD8(+) lymphocytes in the protection of mice. Splenic CD8(+) lymphocytes induce a strong Th1 response controlled by a Th2 response whereas CD8(+) cells from MLNs inhibit both Th1 and Th2 responses. CD8(+) cells are the main effectors following dendritic cell vaccination and Toxoplasma infection while CD4(+) T cells only play a minor role. This contrasts with T. gondii infection which elicits the generation of CD4(+) and CD8(+) T cells that provide protective immunity.

  20. Maternal immunization with a DNA vaccine candidate elicits specific passive protection against post-natal Zika virus infection in immunocompetent BALB/c mice.

    PubMed

    Wang, Ran; Liao, Xianzheng; Fan, Dongying; Wang, Lei; Song, Ji; Feng, Kaihao; Li, Mingyuan; Wang, Peigang; Chen, Hui; An, Jing

    2018-06-07

    Zika virus (ZIKV) infection is closely associated in the fetus with microcephaly and in the adults with Guillain-Barré syndrome and even male infertility. It is an urgent international priority to develop a safe and effective vaccine that offers protection to both women of childbearing age and their children. In this study, female immunocompetent BALB/c mice were immunized with a DNA-based vaccine candidate, pVAX1-ZME, expressing the prM/E protein of ZIKV, and the immunogenicity for maternal mice and the post-natal protection for suckling mice were evaluated. It was found that administration with three doses of 50 μg pVAX1-ZME via in vivo electroporation induced robust ZIKV-specific cellular and long-term humoral immune responses with high and sustained neutralizing activity in adult mice. Moreover, using a maternal immunization protocol, neutralizing antibodies provided specific passive protection against ZIKV infection in neonatal mice and effectively inhibited the growth delay. This vaccine candidate is expected to be further evaluated in higher animals, and maternal vaccination shows great promise for protecting both women of childbearing age and their offspring against post-natal ZIKV infection. The vaccinated mothers and ZIKV-challenged pups provide key insight into Zika vaccine evaluation in an available fully immunocompetent animal model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Refined Live Attenuated Salmonella enterica Serovar Typhimurium and Enteritidis Vaccines Mediate Homologous and Heterologous Serogroup Protection in Mice

    PubMed Central

    Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F.; Galen, James E.; Levine, Myron M.

    2015-01-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. PMID:26351285

  2. Correlates of protection for enteric vaccines.

    PubMed

    Holmgren, Jan; Parashar, Umesh D; Plotkin, Stanley; Louis, Jacques; Ng, Su-Peing; Desauziers, Eric; Picot, Valentina; Saadatian-Elahi, Mitra

    2017-06-08

    An immunological Correlate of Protection (CoP) is an immune response that is statistically interrelated with protection. Identification of CoPs for enteric vaccines would help design studies to improve vaccine performance of licensed vaccines in low income settings, and would facilitate the testing of future vaccines in development that might be more affordable. CoPs are lacking today for most existing and investigational enteric vaccines. In order to share the latest information on CoPs for enteric vaccines and to discuss novel approaches to correlate mucosal immune responses in humans with protection, the Foundation Mérieux organized an international conference of experts where potential CoPs for vaccines were examined using case-studies for both bacterial and viral enteric pathogens. Experts on the panel concluded that to date, all established enteric vaccine CoPs, such as those for hepatitis A, Vi typhoid and poliovirus vaccines, are based on serological immune responses even though these may poorly reflect the relevant gut immune responses or predict protective efficacy. Known CoPs for cholera, norovirus and rotavirus could be considered as acceptable for comparisons of similarly composed vaccines while more work is still needed to establish CoPs for the remaining enteric pathogens and their candidate vaccines. Novel approaches to correlate human mucosal immune responses with protection include the investigation of gut-originating antibody-secreting cells (ASCs), B memory cells and follicular helper T cells from samples of peripheral blood during their recirculation. Copyright © 2017.

  3. Active antitumor immunity elicited by vaccine based on recombinant form of epidermal growth factor receptor.

    PubMed

    Hu, Bing; Wei, Yuquan; Tian, Ling; Zhao, Xia; Lu, You; Wu, Yang; Yao, Bing; Liu, Jiyan; Niu, Ting; Wen, Yanjun; He, Qiuming; Su, Jingmei; Huang, Meijuan; Lou, Yanyan; Luo, Yan; Kan, Bing

    2005-01-01

    Active immunotherapy targeting epidermal growth factor receptor (EGFR) should be another attractive approach to the treatment of EGFR-positive tumors. To test this concept, the authors evaluated the potential immune responses and antitumor activities elicited by dendritic cells pulsed with recombinant ectodomain of mouse EGFR (DC-edMER). Spleen cells isolated from DC-edMER-vaccinated mice showed a high quantity of EGFR-specific antibody-producing cells. EGFR-reactive antibody in sera isolated from vaccinated mice was identified and shown to be effective against tumors in vitro and in vivo by adoptive transfer. DC-edMER vaccine also elicited cytotoxic T-lymphocyte responses that could mediate antitumor effects in vitro and adoptive transfer in vivo. In addition, EGFR-specific cytokines responses were elicited by DC-edMER vaccine. Immunization with DC-edMER resulted in tumor regression and prolonged survival in mice challenged with Lewis lung carcinomas and mammary cancer models. Depletion of CD4+ T lymphocytes could completely abrogate the antitumor activity and EGFR-specific antibody responses, whereas the depletion of CD8+ T lymphocytes showed partial abrogation of the antitumor activity but antibody was still detected. Furthermore, tumor-induced angiogenesis was suppressed in DC-edMER-vaccinated mice or mice treated with antibody adoptive transfer. Taken together, these findings suggest the antitumor immunity could be induced by DC-edMER, which may involve both humoral and cellular immunity, and may provide insight into the treatment of EGFR-positive tumors through the induction of active immunity against EGFR.

  4. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses

    PubMed Central

    Muller, David A.; Pearson, Frances E.; Fernando, Germain J.P.; Agyei-Yeboah, Christiana; Owens, Nick S.; Corrie, Simon R.; Crichton, Michael L.; Wei, Jonathan C.J.; Weldon, William C.; Oberste, M. Steven; Young, Paul R.; Kendall, Mark A. F.

    2016-01-01

    Polio eradication is progressing rapidly, and the live attenuated Sabin strains in the oral poliovirus vaccine (OPV) are being removed sequentially, starting with type 2 in April 2016. For risk mitigation, countries are introducing inactivated poliovirus vaccine (IPV) into routine vaccination programs. After April 2016, monovalent type 2 OPV will be available for type 2 outbreak control. Because the current IPV is not suitable for house-to-house vaccination campaigns (the intramuscular injections require health professionals), we developed a high-density microprojection array, the Nanopatch, delivered monovalent type 2 IPV (IPV2) vaccine to the skin. To assess the immunogenicity of the Nanopatch, we performed a dose-matched study in rats, comparing the immunogenicity of IPV2 delivered by intramuscular injection or Nanopatch immunisation. A single dose of 0.2 D-antigen units of IPV2 elicited protective levels of poliovirus antibodies in 100% of animals. However, animals receiving IPV2 by IM required at least 3 immunisations to reach the same neutralising antibody titres. This level of dose reduction (1/40th of a full dose) is unprecedented for poliovirus vaccine delivery. The ease of administration coupled with the dose reduction observed in this study points to the Nanopatch as a potential tool for facilitating inexpensive IPV for mass vaccination campaigns. PMID:26911254

  5. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses.

    PubMed

    Muller, David A; Pearson, Frances E; Fernando, Germain J P; Agyei-Yeboah, Christiana; Owens, Nick S; Corrie, Simon R; Crichton, Michael L; Wei, Jonathan C J; Weldon, William C; Oberste, M Steven; Young, Paul R; Kendall, Mark A F

    2016-02-25

    Polio eradication is progressing rapidly, and the live attenuated Sabin strains in the oral poliovirus vaccine (OPV) are being removed sequentially, starting with type 2 in April 2016. For risk mitigation, countries are introducing inactivated poliovirus vaccine (IPV) into routine vaccination programs. After April 2016, monovalent type 2 OPV will be available for type 2 outbreak control. Because the current IPV is not suitable for house-to-house vaccination campaigns (the intramuscular injections require health professionals), we developed a high-density microprojection array, the Nanopatch, delivered monovalent type 2 IPV (IPV2) vaccine to the skin. To assess the immunogenicity of the Nanopatch, we performed a dose-matched study in rats, comparing the immunogenicity of IPV2 delivered by intramuscular injection or Nanopatch immunisation. A single dose of 0.2 D-antigen units of IPV2 elicited protective levels of poliovirus antibodies in 100% of animals. However, animals receiving IPV2 by IM required at least 3 immunisations to reach the same neutralising antibody titres. This level of dose reduction (1/40th of a full dose) is unprecedented for poliovirus vaccine delivery. The ease of administration coupled with the dose reduction observed in this study points to the Nanopatch as a potential tool for facilitating inexpensive IPV for mass vaccination campaigns.

  6. The Vi conjugate typhoid vaccine is safe, elicits protective levels of IgG anti-Vi, and is compatible with routine infant vaccines.

    PubMed

    Thiem, Vu Dinh; Lin, Feng-Ying C; Canh, Do Gia; Son, Nguyen Hong; Anh, Dang Duc; Mao, Nguyen Duc; Chu, Chiayung; Hunt, Steven W; Robbins, John B; Schneerson, Rachel; Szu, Shousun C

    2011-05-01

    Typhoid fever remains a serious problem in developing countries. Current vaccines are licensed for individuals who are 5 years old or older. A conjugate of the capsular polysaccharide (CP) of Salmonella enterica serovar Typhi (Vi) bound to recombinant exoprotein A of Pseudomonas aeruginosa (Vi-rEPA) enhanced Vi immunogenicity and protected 2- to 5-year-olds in Vietnam. In this study, Vi-rEPA was evaluated for use in infants. A total of 301 full-term Vietnamese infants received Expanded Program on Immunization (EPI) vaccines alone or with Vi-rEPA or Haemophilus influenzae type b-tetanus toxoid conjugate (Hib-TT) at 2, 4, and 6 months and Vi-rEPA or Hib-TT alone at 12 months. Infants were visited 6, 24, and 48 h after each injection to monitor adverse reactions. Maternal, cord, and infant sera were assayed for IgG anti-Vi and for IgG antibodies to Hib CP and the diphtheria, tetanus, and pertussis toxins at 7, 12, and 13 months. No vaccine-related serious adverse reactions occurred. In the Vi-rEPA group, the IgG anti-Vi geometric mean (GM) increased from the cord level of 0.66 to 17.4 enzyme-linked immunosorbent assay units (EU) at 7 months, declined to 4.76 EU at 12 months, and increased to 50.1 EU 1 month after the 4th dose (95% of infants had levels of ≥ 3.5 EU, the estimated protective level). Controls had no increase of the IgG anti-Vi GM. Infants with cord anti-Vi levels of <3.5 EU responded with significantly higher IgG anti-Vi levels than those with levels of ≥ 3.5 EU. Anti-diphtheria, -tetanus, and -pertussis toxin levels were similar in all groups. Vi-rEPA was safe, induced protective anti-Vi levels, and was compatible with EPI vaccines, and it can be used in infants. High cord IgG anti-Vi levels partially suppressed infant responses to Vi-rEPA.

  7. A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge

    PubMed Central

    Phoolcharoen, Waranyoo; Dye, John M.; Kilbourne, Jacquelyn; Piensook, Khanrat; Pratt, William D.; Arntzen, Charles J.; Chen, Qiang; Mason, Hugh S.; Herbst-Kralovetz, Melissa M.

    2011-01-01

    Ebola hemorrhagic fever is an acute and often deadly disease caused by Ebola virus (EBOV). The possible intentional use of this virus against human populations has led to design of vaccines that could be incorporated into a national stockpile for biological threat reduction. We have evaluated the immunogenicity and efficacy of an EBOV vaccine candidate in which the viral surface glycoprotein is biomanufactured as a fusion to a monoclonal antibody that recognizes an epitope in glycoprotein, resulting in the production of Ebola immune complexes (EICs). Although antigen–antibody immune complexes are known to be efficiently processed and presented to immune effector cells, we found that codelivery of the EIC with Toll-like receptor agonists elicited a more robust antibody response in mice than did EIC alone. Among the compounds tested, polyinosinic:polycytidylic acid (PIC, a Toll-like receptor 3 agonist) was highly effective as an adjuvant agent. After vaccinating mice with EIC plus PIC, 80% of the animals were protected against a lethal challenge with live EBOV (30,000 LD50 of mouse adapted virus). Surviving animals showed a mixed Th1/Th2 response to the antigen, suggesting this may be important for protection. Survival after vaccination with EIC plus PIC was statistically equivalent to that achieved with an alternative viral vector vaccine candidate reported in the literature. Because nonreplicating subunit vaccines offer the possibility of formulation for cost-effective, long-term storage in biothreat reduction repositories, EIC is an attractive option for public health defense measures. PMID:22143779

  8. PROTECTION AGAINST TYPHOID-LIKE INFECTIONS BY VACCINATION

    PubMed Central

    Nichols, Henry J.; Stimmel, Clarence O.

    1923-01-01

    1. A natural infection of guinea pigs with the "mutton" strain of Bacillus aertrycke was used to test the protective power of vaccination against the typhoid group of infections. 2. Under the conditions of the experiment, complete protection was secured by vaccination with full strength fresh saline vaccine, while 100 per cent of deaths occurred among the controls. 3. The immunity acquired is variable and depends on the number of organisms injected. 4. Vaccine kept 10 to 14 months gave less protection than vaccine 8 months old and under. 5. Saline vaccine was more effective than lipovaccine, sensitized vaccine, or supernatant fluid vaccine. 6. Resuspended vaccine was as effective as the original vaccine. 7. In one experiment, group vaccine, made of typhoid Para A and Para B bacilli, was as effective as the original specific vaccine. PMID:19868790

  9. Evaluation of the persistence of vaccine-induced protection with human vaccines.

    PubMed

    Vidor, E

    2010-01-01

    The persistence of protection induced by vaccines is a key aspect of the implementation of human vaccination policies, particularly for ageing populations. At the time of initial licensure, the duration of protection induced by a vaccine is generally only documented by longitudinal follow up of cohorts of subjects enrolled in the pre-licensure trials over a period of 1-5 years. The follow up of these cohorts provides two types of data: antibody kinetics (or another clinically relevant immunological parameter) over time and the disease incidence. Generally, the latter trials, if implemented during the pre-licensure period, are designed to follow-up cohorts in order to demonstrate vaccine efficacy above the minimal level required for the license. For vaccines already licensed, additional tools exist. The use of immunological surrogate markers of protection is a practical way to monitor the duration of protection. Measuring the persistence of circulating antibodies is widely used in human vaccines. For several vaccines, observed data have allowed the creation of mathematical models to predict the antibody persistence over periods of time longer than those effectively documented. Clinical trials assessing the capacity of the immune system to mount a quick anamnestic response upon re-stimulation a long time after initial priming (measurement of immune memory) is also a tool employed to document the duration of protection. The waning of protection can also be demonstrated by an increase of disease incidence in the subsequent 'time-to-last-vaccine administration' age segments. Seroprevalence studies in a given age group of people that were vaccinated under real-life conditions are another way to document the persistence of protection. Finally, case-control studies in outbreak situations or in situations of persisting endemicity can also be used to document the persistence of the vaccine efficacy. All of these tools are used in the development of new vaccines, and also

  10. Virus-Like Particle Secretion and Genotype-Dependent Immunogenicity of Dengue Virus Serotype 2 DNA Vaccine

    PubMed Central

    Galula, Jedhan U.; Shen, Wen-Fan; Chuang, Shih-Te

    2014-01-01

    ABSTRACT Dengue virus (DENV), composed of four distinct serotypes, is the most important and rapidly emerging arthropod-borne pathogen and imposes substantial economic and public health burdens. We constructed candidate vaccines containing the DNA of five of the genotypes of dengue virus serotype 2 (DENV-2) and evaluated the immunogenicity, the neutralizing (Nt) activity of the elicited antibodies, and the protective efficacy elicited in mice immunized with the vaccine candidates. We observed a significant correlation between the level of in vitro virus-like particle secretion, the elicited antibody response, and the protective efficacy of the vaccines containing the DNA of the different DENV genotypes in immunized mice. However, higher total IgG antibody levels did not always translate into higher Nt antibodies against homologous and heterologous viruses. We also found that, in contrast to previous reports, more than 50% of total IgG targeted ectodomain III (EDIII) of the E protein, and a substantial fraction of this population was interdomain highly neutralizing flavivirus subgroup-cross-reactive antibodies, such as monoclonal antibody 1B7-5. In addition, the lack of a critical epitope(s) in the Sylvatic genotype virus recognized by interdomain antibodies could be the major cause of the poor protection of mice vaccinated with the Asian 1 genotype vaccine (pVD2-Asian 1) from lethal challenge with virus of the Sylvatic genotype. In conclusion, although the pVD2-Asian 1 vaccine was immunogenic, elicited sufficient titers of Nt antibodies against all DENV-2 genotypes, and provided 100% protection against challenge with virus of the homologous Asian 1 genotype and virus of the heterologous Cosmopolitan genotype, it is critical to monitor the potential emergence of Sylvatic genotype viruses, since vaccine candidates under development may not protect vaccinated humans from these viruses. IMPORTANCE Five genotype-specific dengue virus serotype 2 (DENV-2) DNA vaccine

  11. Refined live attenuated Salmonella enterica serovar Typhimurium and Enteritidis vaccines mediate homologous and heterologous serogroup protection in mice.

    PubMed

    Tennant, Sharon M; Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F; Galen, James E; Levine, Myron M

    2015-12-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Oral vaccination with salmonella simultaneously expressing Yersinia pestis F1 and V antigens protects against bubonic and pneumonic plague.

    PubMed

    Yang, Xinghong; Hinnebusch, B Joseph; Trunkle, Theresa; Bosio, Catharine M; Suo, Zhiyong; Tighe, Mike; Harmsen, Ann; Becker, Todd; Crist, Kathryn; Walters, Nancy; Avci, Recep; Pascual, David W

    2007-01-15

    The gut provides a large area for immunization enabling the development of mucosal and systemic Ab responses. To test whether the protective Ags to Yersinia pestis can be orally delivered, the Y. pestis caf1 operon, encoding the F1-Ag and virulence Ag (V-Ag) were cloned into attenuated Salmonella vaccine vectors. F1-Ag expression was controlled under a promoter from the caf1 operon; two different promoters (P), PtetA in pV3, PphoP in pV4, as well as a chimera of the two in pV55 were tested. F1-Ag was amply expressed; the chimera in the pV55 showed the best V-Ag expression. Oral immunization with Salmonella-F1 elicited elevated secretory (S)-IgA and serum IgG titers, and Salmonella-V-Ag(pV55) elicited much greater S-IgA and serum IgG Ab titers than Salmonella-V-Ag(pV3) or Salmonella-V-Ag(pV4). Hence, a new Salmonella vaccine, Salmonella-(F1+V)Ags, made with a single plasmid containing the caf1 operon and the chimeric promoter for V-Ag allowed the simultaneous expression of F1 capsule and V-Ag. Salmonella-(F1+V)Ags elicited elevated Ab titers similar to their monotypic derivatives. For bubonic plague, mice dosed with Salmonella-(F1+V)Ags and Salmonella-F1-Ag showed similar efficacy (>83% survival) against approximately 1000 LD(50) Y. pestis. For pneumonic plague, immunized mice required immunity to both F1- and V-Ags because the mice vaccinated with Salmonella-(F1+V)Ags protected against 100 LD(50) Y. pestis. These results show that a single Salmonella vaccine can deliver both F1- and V-Ags to effect both systemic and mucosal immune protection against Y. pestis.

  13. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection.

    PubMed

    Yuan, Xuefeng; Teng, Xindong; Jing, Yukai; Ma, Jilei; Tian, Maopeng; Yu, Qi; Zhou, Lei; Wang, Ruibo; Wang, Weihua; Li, Li; Fan, Xionglin

    2015-12-01

    Tuberculosis (TB) remains one of the most menacing infectious diseases, although attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine has been widely used to protect children against primary TB. There are increasing evidences that rapid growing and dormant Mycobacterium tuberculosis (M. tuberculosis) coexist in vivo after infection. However, BCG vaccine only elicits cell-mediated immune responses to secretory antigens expressed by rapid growing pathogen. BCG vaccine is thus unable to thwart the reactivation of latent tuberculosis infection (LTBI), and its protection wanes over age after neonatal immunization. In order to extend its ability for a durable protection, a novel recombinant BCG (rBCG) strain, named rBCG::XB, was constructed by overexpressing immunodominant multistage antigens of Ag85B and HspX, which are expressed by both rapid replicating and dormant M. tuberculosis. Long-term protective effect and immunogenicity of rBCG::XB were compared with the parental BCG in vaccinated C57BL/6 mice. Our results demonstrated that rBCG::XB provided the stronger and long-lasting protection against M. tuberculosis H37Rv intranasal infection than BCG. The rBCG::XB not only elicited the more durable multistage antigen-specific CD4(+)Th1-biased immune responses and specific polyfunctional CD4(+)T cells but also augmented the CD8(+) CTL effects against Ag85B in vivo. In particular, higher levels of CD4(+) TEM and CD8(+) TCM cells, dominated by IL2(+) CD4(+) and CD8(+) TCM cells, were obtained in the spleen of rBCG::XB vaccinated mice. Therefore, our findings indicate that rBCG::XB is a promising candidate to improve the efficacy of BCG.

  14. Vaccines against leptospirosis.

    PubMed

    Adler, Ben

    2015-01-01

    Vaccines against leptospirosis followed within a year of the first isolation of Leptospira, with the first use of a killed whole cell bacterin vaccine in guinea pigs published in 1916. Since then, bacterin vaccines have been used in humans, cattle, swine, and dogs and remain the only vaccines licensed at the present time. The immunity elicited is restricted to serovars with related lipopolysaccharide (LPS) antigen. Likewise, vaccines based on LPS antigens have clearly demonstrated protection in animal models, which is also at best serogroup specific. The advent of leptospiral genome sequences has allowed a reverse vaccinology approach for vaccine development. However, the use of inadequate challenge doses and inappropriate statistical analysis invalidates many of the claims of protection with recombinant proteins.

  15. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Min; Guangxi Center for Animal Disease Control and Prevention, Nanning 530001; College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AALmore » and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.« less

  16. Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage.

    PubMed

    Xu, Kun; Song, Yufeng; Dai, Lianpan; Zhang, Yongli; Lu, Xuancheng; Xie, Yijia; Zhang, Hangjie; Cheng, Tao; Wang, Qihui; Huang, Qingrui; Bi, Yuhai; Liu, William J; Liu, Wenjun; Li, Xiangdong; Qin, Chuan; Shi, Yi; Yan, Jinghua; Zhou, Dongming; Gao, George F

    2018-03-15

    The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control. IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M

  17. Vaccination with human amniotic epithelial cells confer effective protection in a murine model of Colon adenocarcinoma.

    PubMed

    Tabatabaei, M; Mosaffa, N; Ghods, R; Nikoo, S; Kazemnejad, S; Khanmohammadi, M; Mirzadeghan, E; Mahmoudi, A R; Bolouri, M R; Falak, R; Keshavarzi, B; Ramezani, M; Zarnani, A H

    2018-04-01

    As a prophylactic cancer vaccine, human amniotic membrane epithelial cells (hAECs) conferred effective protection in a murine model of colon cancer. The immunized mice mounted strong cross-protective CTL and antibody responses. Tumor burden was significantly reduced in tumor-bearing mice after immunization with hAECs. Placental cancer immunotherapy could be a promising approach for primary prevention of cancer. In spite of being the star of therapeutic strategies for cancer treatment, the results of immunotherapeutic approaches are still far from expectations. In this regard, primary prevention of cancer using prophylactic cancer vaccines has gained considerable attention. The immunologic similarities between cancer development and placentation have helped researchers to unravel molecular mechanisms responsible for carcinogenesis and to take advantage of stem cells from reproductive organs to elicit robust anti-cancer immune responses. Here, we showed that vaccination of mice with human amniotic membrane epithelial cells (hAECs) conferred effective protection against colon cancer and led to expansion of systemic and splenic cytotoxic T cell population and induction of cross-protective cytotoxic responses against tumor cells. Vaccinated mice mounted tumor-specific Th1 responses and produced cross-reactive antibodies against cell surface markers of cancer cells. Tumor burden was also significantly reduced in tumor-bearing mice immunized with hAECs. Our findings pave the way for potential future application of hAECs as an effective prophylactic cancer vaccine. © 2017 UICC.

  18. Reproducing SIVΔnef vaccine correlates of protection: trimeric gp41 antibody concentrated at mucosal front lines

    PubMed Central

    Voss, James E.; Macauley, Matthew S.; Rogers, Kenneth A.; Villinger, Francois; Duan, Lijie; Shang, Liang; Fink, Elizabeth A.; Andrabi, Raiees; Colantonio, Arnaud D.; Robinson, James E.; Johnson, R. Paul; Burton, Dennis R.; Haase, Ashley T.

    2016-01-01

    Vaccination with SIVmac239Δnef provides robust protection against subsequent challenge with wild type SIV, but safety issues have precluded designing an HIV-1 vaccine based on a live attenuated virus concept. Safe immunogens and adjuvants that could reproduce identified immune correlates of SIVmac239Δnef protection therefore offer an alternative path for development of an HIV vaccine. Here we describe SIV envelope trimeric gp41 (gp41t) immunogens based on a protective correlate of antibodies to gp41t concentrated on the path of virus entry by the neonatal Fc receptor (FcRn) in cervical vaginal epithelium. We developed a gp41t immunogen-MPLA adjuvant liposomal nanoparticle for intra-muscular immunization and a gp41t-Fc immunogen for intranasal immunization for pilot studies in mice, rabbits, and rhesus macaques. Repeated immunizations to mimic persistent antigen exposure in infection elicited gp41t antibodies in rhesus macaques that were detectable in FcRn+ cervical vaginal epithelium, thus recapitulating one key feature of SIVmac239Δnef vaccinated and protected animals. While this strategy did not reproduce the system of local production of antibody in SIVmac239Δnef-vaccinated animals, passive immunization experiments supported the concept that sufficiently high levels of antibody can be concentrated by the FcRn at mucosal frontlines, thus setting the stage for assessing protection against vaginal challenge by gp41t immunization. PMID:27428745

  19. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    PubMed

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  20. A hydrogen peroxide-inactivated virus vaccine elicits humoral and cellular immunity and protects against lethal West Nile virus infection in aged mice.

    PubMed

    Pinto, Amelia K; Richner, Justin M; Poore, Elizabeth A; Patil, Pradnya P; Amanna, Ian J; Slifka, Mark K; Diamond, Michael S

    2013-02-01

    West Nile virus (WNV) is an emerging pathogen that is now the leading cause of mosquito-borne and epidemic encephalitis in the United States. In humans, a small percentage of infected individuals develop severe neuroinvasive disease, with the greatest relative risk being in the elderly and immunocompromised, two populations that are difficult to immunize effectively with vaccines. While inactivated and subunit-based veterinary vaccines against WNV exist, currently there is no vaccine or therapy available to prevent or treat human disease. Here, we describe the generation and preclinical efficacy of a hydrogen peroxide (H(2)O(2))-inactivated WNV Kunjin strain (WNV-KUNV) vaccine as a candidate for further development. Both young and aged mice vaccinated with H(2)O(2)-inactivated WNV-KUNV produced robust adaptive B and T cell immune responses and were protected against stringent and lethal intracranial challenge with a heterologous virulent North American WNV strain. Our studies suggest that the H(2)O(2)-inactivated WNV-KUNV vaccine is safe and immunogenic and may be suitable for protection against WNV infection in vulnerable populations.

  1. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    NASA Astrophysics Data System (ADS)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  2. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine.

    PubMed

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine.

  3. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine

    PubMed Central

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine. PMID:26435066

  4. Vaccines. An Ebola whole-virus vaccine is protective in nonhuman primates.

    PubMed

    Marzi, Andrea; Halfmann, Peter; Hill-Batorski, Lindsay; Feldmann, Friederike; Shupert, W Lesley; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro

    2015-04-24

    Zaire ebolavirus is the causative agent of the current outbreak of hemorrhagic fever disease in West Africa. Previously, we showed that a whole Ebola virus (EBOV) vaccine based on a replication-defective EBOV (EBOVΔVP30) protects immunized mice and guinea pigs against lethal challenge with rodent-adapted EBOV. Here, we demonstrate that EBOVΔVP30 protects nonhuman primates against lethal infection with EBOV. Although EBOVΔVP30 is replication-incompetent, we additionally inactivated the vaccine with hydrogen peroxide; the chemically inactivated vaccine remained antigenic and protective in nonhuman primates. EBOVΔVP30 thus represents a safe, efficacious, whole-EBOV vaccine candidate that differs from other EBOV vaccine platforms in that it presents all viral proteins and the viral RNA to the host immune system, which might contribute to protective immune responses. Copyright © 2015, American Association for the Advancement of Science.

  5. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    PubMed Central

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability

  6. Immunology of Gut Mucosal Vaccines

    PubMed Central

    Pasetti, Marcela F.; Simon, Jakub K.; Sztein, Marcelo B.; Levine, Myron M.

    2011-01-01

    Summary Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines. PMID:21198669

  7. Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge.

    PubMed

    Gowen, Brian B; Bailey, Kevin W; Scharton, Dionna; Vest, Zachery; Westover, Jonna B; Skirpstunas, Ramona; Ikegami, Tetsuro

    2013-05-01

    Rift Valley fever virus (RVFV) causes severe disease in humans and livestock. There are currently no approved antivirals or vaccines for the treatment or prevention of RVF disease in humans. A major virulence factor of RVFV is the NSs protein, which inhibits host transcription including the interferon (IFN)-β gene and promotes the degradation of dsRNA-dependent protein kinase, PKR. We analyzed the efficacy of the live-attenuated MP-12 vaccine strain and MP-12 variants that lack the NSs protein as post-exposure vaccinations. Although parental MP-12 failed to elicit a protective effect in mice challenged with wild-type (wt) RVFV by the intranasal route, significant protection was demonstrated by vaccination with MP-12 strains lacking NSs when they were administered at 20-30 min post-exposure. Viremia and virus replication in liver, spleen and brain were also inhibited by post-exposure vaccination with MP-12 lacking NSs. The protective effect was mostly lost when vaccination was delayed 6 or 24 h after intranasal RVFV challenge. When mice were challenged subcutaneously, efficacy of MP-12 lacking NSs was diminished, most likely due to more rapid dissemination of wt RVFV. Our findings suggest that post-exposure vaccination with MP-12 lacking NSs may be developed as a novel post-exposure treatment to prevent RVF. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    PubMed

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; Robinson, H.; Wang, R.

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  10. Intradermal Vaccination With Adjuvanted Ebola Virus Soluble Glycoprotein Subunit Vaccine by Microneedle Patches Protects Mice Against Lethal Ebola Virus Challenge.

    PubMed

    Liu, Ying; Ye, Ling; Lin, Fang; Gomaa, Yasmine; Flyer, David; Carrion, Ricardo; Patterson, Jean L; Prausnitz, Mark R; Smith, Gale; Glenn, Gregory; Wu, Hua; Compans, Richard W; Yang, Chinglai

    2018-06-08

    In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.

  11. Protection of calves by a prefusion-stabilized bovine RSV F vaccine.

    PubMed

    Zhang, Baoshan; Chen, Lei; Silacci, Chiara; Thom, Michelle; Boyington, Jeffrey C; Druz, Aliaksandr; Joyce, M Gordon; Guzman, Efrain; Kong, Wing-Pui; Lai, Yen-Ting; Stewart-Jones, Guillaume B E; Tsybovsky, Yaroslav; Yang, Yongping; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R; Corti, Davide; Lanzavecchia, Antonio; Taylor, Geraldine; Kwong, Peter D

    2017-03-08

    Bovine respiratory syncytial virus, a major cause of respiratory disease in calves, is closely related to human RSV, a leading cause of respiratory disease in infants. Recently, promising human RSV-vaccine candidates have been engineered that stabilize the metastable fusion (F) glycoprotein in its prefusion state; however, the absence of a relevant animal model for human RSV has complicated assessment of these vaccine candidates. Here, we use a combination of structure-based design, antigenic characterization, and X-ray crystallography to translate human RSV F stabilization into the bovine context. A "DS2" version of bovine respiratory syncytial virus F with subunits covalently fused, fusion peptide removed, and pre-fusion conformation stabilized by cavity-filling mutations and intra- and inter-protomer disulfides was recognized by pre-fusion-specific antibodies, AM14, D25, and MPE8, and elicited bovine respiratory syncytial virus-neutralizing titers in calves >100-fold higher than those elicited by post-fusion F. When challenged with a heterologous bovine respiratory syncytial virus, virus was not detected in nasal secretions nor in respiratory tract samples of DS2-immunized calves; by contrast bovine respiratory syncytial virus was detected in all post-fusion- and placebo-immunized calves. Our results demonstrate proof-of-concept that DS2-stabilized RSV F immunogens can induce highly protective immunity from RSV in a native host with implications for the efficacy of prefusion-stabilized F vaccines in humans and for the prevention of bovine respiratory syncytial virus in calves.

  12. Immunization of a wild koala population with a recombinant Chlamydia pecorum Major Outer Membrane Protein (MOMP) or Polymorphic Membrane Protein (PMP) based vaccine: New insights into immune response, protection and clearance.

    PubMed

    Desclozeaux, Marion; Robbins, Amy; Jelocnik, Martina; Khan, Shahneaz Ali; Hanger, Jon; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Timms, Peter

    2017-01-01

    We assessed the effects of two different single-dose anti-Chlamydia pecorum (C. pecorum) vaccines (containing either Major Outer Membrane Protein (3MOMP) or Polymorphic Membrane Protein (Pmp) as antigens) on the immune response of a group of wild koalas. Both vaccines elicited a systemic humoral response as seen by the production of anti-chlamydial IgG antibodies in more than 90% of vaccinated koalas. A mucosal immune response was also observed, with an increase in Chlamydia-specific mucosal IgG and/or IgA antibodies in some koalas post-vaccination. Both vaccines elicited a cell-mediated immune response as measured by the production of the cytokines IFN-γ and IL-17 post-vaccination. To determine the level of protection provided by the vaccines under natural conditions we assessed C. pecorum infection loads and chlamydial disease status of all vaccinated koalas pre- and post-vaccination, compared to a non-vaccinated cohort from the same habitat. The MOMP vaccinated koalas that were infected on the day of vaccination showed significant clearance of their infection at 6 months post-vaccination. In contrast, the number of new infections in the PMP vaccine was similar to the control group, with some koalas progressing to disease. Genotyping of the ompA gene from the C. pecorum strains infecting the vaccinated animals, identified genetic variants of ompA-F genotype and a new genotype ompA-O. We found that those animals that were the least well protected became infected with strains of C. pecorum not covered by the vaccine. In conclusion, a single dose vaccine formulated with either recombinant PmpG or MOMP can elicit both cell-mediated and humoral (systemic and mucosal) immune responses, with the MOMP vaccine showing clearance of infection in all infected koalas. Although the capability of our vaccines to stimulate an adaptive response and be protective needs to be fully evaluated, this work illustrates the necessity to combine epitopes most relevant to a large panel of

  13. Recombinant bacille Calmette-Guerin coexpressing Ag85b, CFP10, and interleukin-12 elicits effective protection against Mycobacterium tuberculosis.

    PubMed

    Chen, Yih-Yuan; Lin, Chih-Wei; Huang, Wei-Feng; Chang, Jia-Ru; Su, Ih-Jen; Hsu, Chih-Hao; Cheng, Han-Yin; Hsu, Shu-Ching; Dou, Horng-Yunn

    2017-02-01

    The tuberculosis (TB) pandemic remains a leading cause of human morbidity and mortality, despite widespread use of the only licensed anti-TB vaccine, bacille Calmette-Guerin (BCG). The protective efficacy of BCG in preventing pulmonary TB is highly variable; therefore, an effective new vaccine is urgently required. In the present study, we assessed the ability of novel recombinant BCG vaccine (rBCG) against Mycobacterium tuberculosis by using modern immunological methods. Enzyme-linked immunospot assays demonstrated that the rBCG vaccine, which coexpresses two mycobacterial antigens (Ag85B and CFP10) and human interleukin (IL)-12 (rBCG2) elicits greater interferon-γ (IFN-γ) release in the mouse lung and spleen, compared to the parental BCG. In addition, rBCG2 triggers a Th1-polarized response. Our results also showed that rBCG2 vaccination significantly limits M. tuberculosis H37Rv multiplication in macrophages. The rBCG2 vaccine surprisingly induces significantly higher tumor necrosis factor-α (TNF-α) production by peripheral blood mononuclear cells that were exposed to a nonmycobacterial stimulus, compared to the parental BCG. In this study, we demonstrated that the novel rBCG2 vaccine may be a promising candidate vaccine against M. tuberculosis infection. Copyright © 2014. Published by Elsevier B.V.

  14. Immune responses and protective efficacy of the gene vaccine expressing Ag85B and ESAT6 fusion protein from Mycobacterium tuberculosis.

    PubMed

    Chang-hong, Shi; Xiao-wu, Wang; Hai, Zhang; Ting-fen, Zhang; Li-Mei, Wang; Zhi-kai, Xu

    2008-04-01

    Genetic immunity is a new promising approach for the development of novel tuberculosis vaccines. In this study, it is shown that DNA vaccines expressing the fusion protein of antigen 85B (Ag85B) and early secreted antigenic target 6-kDa antigen (ESAT6) can induce high levels of specific IgG2a antibody subtype in the mice. With the prolongation of postimmunization time, the levels of IgG2a antibody decrease gradually. Although a high-level specific IgG2a antibody subtype is also elicited by classical BCG, the ratio of antibody subtypes IgG2a to IgG1 changes 4 weeks after immunization, and IgG1 is gradually shifted to the main antibody subtype. DNA vaccines also elicit cellular immunity as shown by specific spleen lymphocytes proliferation to Ag85B or ESAT6 protein and the production of high levels of IFN-gamma and IL-2, which is similar to that elicited by BCG. Vaccination of mice with DNA vaccines expressing the fusion protein Ag85B-ESAT6 results in a significant level of protection against the subsequent high-dose challenge with virulent Mycobacterium tuberculosis (MTB) H37Rv. Dramatic reduction in the number of MTB colony-forming units in the spleens and lungs is observed. Pathological examination showed that recombinant plasmid and BCG groups have only minor damage and organizational structures that are kept relatively complete, while in the control group, spleens and lungs are damaged seriously. Therefore, although the reducing degree of mycobacterial loads in the organ of mice immunized with recombinant plasmid is not more than that of BCG, through the analysis of pathological changes, we may conclude that the protective effect provided by DNA vaccine expressing the Ag85B-ESAT6 fusion protein is equivalent to that afforded by the classical BCG.

  15. Antibodies to the A27 protein of vaccinia virus neutralize and protect against infection but represent a minor component of Dryvax vaccine--induced immunity.

    PubMed

    He, Yong; Manischewitz, Jody; Meseda, Clement A; Merchlinsky, Michael; Vassell, Russell A; Sirota, Lev; Berkower, Ira; Golding, Hana; Weiss, Carol D

    2007-10-01

    The smallpox vaccine Dryvax, which consists of replication-competent vaccinia virus, elicits antibodies that play a major role in protection. Several vaccinia proteins generate neutralizing antibodies, but their importance for protection is unknown. We investigated the potency of antibodies to the A27 protein of the mature virion in neutralization and protection experiments and the contributions of A27 antibodies to Dryvax-induced immunity. Using a recombinant A27 protein (rA27), we confirmed that A27 contains neutralizing determinants and that vaccinia immune globulin (VIG) derived from Dryvax recipients contains reactivity to A27. However, VIG neutralization was not significantly reduced when A27 antibodies were removed, and antibodies elicited by an rA27 enhanced the protection conferred by VIG in passive transfer experiments. These findings demonstrate that A27 antibodies do not represent the major fraction of neutralizing activity in VIG and suggest that immunity may be augmented by vaccines and immune globulins that include strong antibody responses to A27.

  16. Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination.

    PubMed

    de Alencar, Bruna C G; Persechini, Pedro M; Haolla, Filipe A; de Oliveira, Gabriel; Silverio, Jaline C; Lannes-Vieira, Joseli; Machado, Alexandre V; Gazzinelli, Ricardo T; Bruna-Romero, Oscar; Rodrigues, Mauricio M

    2009-10-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-gamma) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8(+) T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-gamma or IFN-gamma/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-gamma in the presence of highly cytotoxic T cells. Vaccinated IFN-gamma-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-gamma in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.

  17. An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice.

    PubMed

    Pasquevich, Karina A; Ibañez, Andrés E; Coria, Lorena M; García Samartino, Clara; Estein, Silvia M; Zwerdling, Astrid; Barrionuevo, Paula; Oliveira, Fernanda S; Seither, Christine; Warzecha, Heribert; Oliveira, Sergio C; Giambartolomei, Guillermo H; Cassataro, Juliana

    2011-01-14

    As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays

  18. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine

    PubMed Central

    Teng, Xindong; Tian, Maopeng; Li, Jianrong; Tan, Songwei; Yuan, Xuefeng; Yu, Qi; Jing, Yukai; Zhang, Zhiping; Yue, Tingting; Zhou, Lei; Fan, Xionglin

    2015-01-01

    Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8+ epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6′-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4+ Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ+ CD8+ T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8+ T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine. PMID:25905680

  19. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine.

    PubMed

    Teng, Xindong; Tian, Maopeng; Li, Jianrong; Tan, Songwei; Yuan, Xuefeng; Yu, Qi; Jing, Yukai; Zhang, Zhiping; Yue, Tingting; Zhou, Lei; Fan, Xionglin

    2015-01-01

    Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8(+) epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6'-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4(+) Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ(+) CD8(+) T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8(+) T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine.

  20. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection.

    PubMed

    Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M

    2009-09-18

    Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development.

  1. An Interleukin 12 Adjuvanted Herpes Simplex Virus 2 DNA Vaccine Is More Protective Than a Glycoprotein D Subunit Vaccine in a High-Dose Murine Challenge Model.

    PubMed

    Bagley, Kenneth C; Schwartz, Jennifer A; Andersen, Hanne; Eldridge, John H; Xu, Rong; Ota-Setlik, Ayuko; Geltz, Joshua J; Halford, William P; Fouts, Timothy R

    2017-04-01

    Vaccination is a proven intervention against human viral diseases; however, success against Herpes Simplex Virus 2 (HSV-2) remains elusive. Most HSV-2 vaccines tested in humans to date contained just one or two immunogens, such as the virion attachment receptor glycoprotein D (gD) and/or the envelope fusion protein, glycoprotein B (gB). At least three factors may have contributed to the failures of subunit-based HSV-2 vaccines. First, immune responses directed against one or two viral antigens may lack sufficient antigenic breadth for efficacy. Second, the antibody responses elicited by these vaccines may have lacked necessary Fc-mediated effector functions. Third, these subunit vaccines may not have generated necessary protective cellular immune responses. We hypothesized that a polyvalent combination of HSV-2 antigens expressed from a DNA vaccine with an adjuvant that polarizes immune responses toward a T helper 1 (Th1) phenotype would compose a more effective vaccine. We demonstrate that delivery of DNA expressing full-length HSV-2 glycoprotein immunogens by electroporation with the adjuvant interleukin 12 (IL-12) generates substantially greater protection against a high-dose HSV-2 vaginal challenge than a recombinant gD subunit vaccine adjuvanted with alum and monophosphoryl lipid A (MPL). Our results further show that DNA vaccines targeting optimal combinations of surface glycoproteins provide better protection than gD alone and provide similar survival benefits and disease symptom reductions compared with a potent live attenuated HSV-2 0ΔNLS vaccine, but that mice vaccinated with HSV-2 0ΔNLS clear the virus much faster. Together, our data indicate that adjuvanted multivalent DNA vaccines hold promise for an effective HSV-2 vaccine, but that further improvements may be required.

  2. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    PubMed Central

    Sridhar, Saranya; Brokstad, Karl A.; Cox, Rebecca J.

    2015-01-01

    Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection. PMID:26343192

  3. Mucosal Immunity and Protective Efficacy of Intranasal Inactivated Influenza Vaccine Is Improved by Chitosan Nanoparticle Delivery in Pigs.

    PubMed

    Dhakal, Santosh; Renu, Sankar; Ghimire, Shristi; Shaan Lakshmanappa, Yashavanth; Hogshead, Bradley T; Feliciano-Ruiz, Ninoshkaly; Lu, Fangjia; HogenEsch, Harm; Krakowka, Steven; Lee, Chang Won; Renukaradhya, Gourapura J

    2018-01-01

    Annually, swine influenza A virus (SwIAV) causes severe economic loss to swine industry. Currently used inactivated SwIAV vaccines administered by intramuscular injection provide homologous protection, but limited heterologous protection against constantly evolving field viruses, attributable to the induction of inadequate levels of mucosal IgA and cellular immune responses in the respiratory tract. A novel vaccine delivery platform using mucoadhesive chitosan nanoparticles (CNPs) administered through intranasal (IN) route has the potential to elicit strong mucosal and systemic immune responses in pigs. In this study, we evaluated the immune responses and cross-protective efficacy of IN chitosan encapsulated inactivated SwIAV vaccine in pigs. Killed SwIAV H1N2 (δ-lineage) antigens (KAg) were encapsulated in chitosan polymer-based nanoparticles (CNPs-KAg). The candidate vaccine was administered twice IN as mist to nursery pigs. Vaccinates and controls were then challenged with a zoonotic and virulent heterologous SwIAV H1N1 (γ-lineage). Pigs vaccinated with CNPs-KAg exhibited an enhanced IgG serum antibody and mucosal secretory IgA antibody responses in nasal swabs, bronchoalveolar lavage (BAL) fluids, and lung lysates that were reactive against homologous (H1N2), heterologous (H1N1), and heterosubtypic (H3N2) influenza A virus strains. Prior to challenge, an increased frequency of cytotoxic T lymphocytes, antigen-specific lymphocyte proliferation, and recall IFN-γ secretion by restimulated peripheral blood mononuclear cells in CNPs-KAg compared to control KAg vaccinates were observed. In CNPs-KAg vaccinated pigs challenged with heterologous virus reduced severity of macroscopic and microscopic influenza-associated pulmonary lesions were observed. Importantly, the infectious SwIAV titers in nasal swabs [days post-challenge (DPC) 4] and BAL fluid (DPC 6) were significantly ( p  < 0.05) reduced in CNPs-KAg vaccinates but not in KAg vaccinates when compared to

  4. Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques.

    PubMed

    Livingston, Brian D; Little, Stephen F; Luxembourg, Alain; Ellefsen, Barry; Hannaman, Drew

    2010-01-22

    DNA vaccination is a promising immunization strategy that could be applied in the development of vaccines for a variety of prophylactic and therapeutic indications. Utilizing anthrax protective antigen as a model antigen, we demonstrate that electroporation mediated delivery enhanced the immunogenicity of DNA vaccines in nonhuman primates over 100-fold as compared to conventional intramuscular injection. Two administrations of a DNA vaccine with electroporation elicited anthrax toxin neutralizing antibody responses in 100% of rhesus macaques. Toxin neutralizing antibodies were sustained for the nearly 1-year study duration and were correlated with protection against subsequent lethal Bacillus anthracis spore challenge. Collectively, electroporation mediated DNA vaccination conferred protection comparable to that observed following vaccination with an FDA approved anthrax vaccine.

  5. How advances in immunology provide insight into improving vaccine efficacy

    PubMed Central

    Slifka, Mark K.; Amanna, Ian

    2014-01-01

    Vaccines represent one of the most compelling examples of how biomedical research has improved society by saving lives and dramatically reducing the burden of infectious disease. Despite the importance of vaccinology, we are still in the early stages of understanding how the best vaccines work and how we can achieve better protective efficacy through improved vaccine design. Most successful vaccines have been developed empirically, but recent advances in immunology are beginning to shed new light on the mechanisms of vaccine-mediated protection and development of long-term immunity. Although natural infection will often elicit lifelong immunity, almost all current vaccines require booster vaccination in order to achieve durable protective humoral immune responses, regardless of whether the vaccine is based on infection with replicating live-attenuated vaccine strains of the specific pathogen or whether they are derived from immunization with inactivated, non-replicating vaccines or subunit vaccines. The form of the vaccine antigen (e.g., soluble or particulate/aggregate) appears to play an important role in determining immunogenicity and the interactions between dendritic cells, B cells and T cells in the germinal center are likely to dictate the magnitude and duration of protective immunity. By learning how to optimize these interactions, we may be able to elicit more effective and long-lived immunity with fewer vaccinations. PMID:24709587

  6. Vaccination with a modified-live bovine viral diarrhea virus (BVDV) type 1a vaccine completely protected calves against challenge with BVDV type 1b strains.

    PubMed

    Xue, Wenzhi; Mattick, Debra; Smith, Linda; Umbaugh, Jerry; Trigo, Emilio

    2010-12-10

    Vaccination plays a significant role in the control of bovine viral diarrhea virus (BVDV) infection and spread. Recent studies revealed that type 1b is the predominant BVDV type 1 subgenotype, representing more than 75% of field isolates of BVDV-1. However, nearly all current, commercially available BVDV type 1 vaccines contain BVDV-1a strains. Previous studies have indicated that anti-BVDV sera, induced by BVDV-1a viruses, show less neutralization activity to BVDV-1b isolates than type 1a. Therefore, it is critically important to evaluate BVDV-1a vaccines in their ability to prevent BVDV-1b infection in calves. In current studies, calves were vaccinated subcutaneously, intradermally or intranasally with a single dose of a multivalent, modified-live viral vaccine containing a BVDV-1a strain, and were challenged with differing BVDV-1b strains to determine the efficacy and duration of immunity of the vaccine against these heterologous virus strains. Vaccinated calves, in all administration routes, were protected from respiratory disease caused by the BVDV-1b viruses, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding and greater white blood cell counts than non-vaccinated control animals. The BVDV-1a vaccine elicited efficacious protection in calves against each BVDV-1b challenge strain, with a duration of immunity of at least 6 months. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Protective immunity induced by the vaccination of recombinant Proteus mirabilis OmpA expressed in Pichia pastoris.

    PubMed

    Zhang, Yongbing; Yang, Shifa; Dai, Xiumei; Liu, Liping; Jiang, Xiaodong; Shao, Mingxu; Chi, Shanshan; Wang, Chuanwen; Yu, Cuilian; Wei, Kai; Zhu, Ruiliang

    2015-01-01

    Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0μg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A Promising Listeria-Vectored Vaccine Induces Th1-Type Immune Responses and Confers Protection Against Tuberculosis.

    PubMed

    Yin, Yuelan; Lian, Kai; Zhao, Dan; Tao, Chengwu; Chen, Xiang; Tan, Weijun; Wang, Xiaobo; Xu, Zhengzhong; Hu, Maozhi; Rao, Yan; Zhou, Xiaohui; Pan, Zhiming; Zhang, Xiaoming; Jiao, Xin'an

    2017-01-01

    Deaths associated with tuberculosis (TB) is rising and accounted for 1.4 million deaths in 2015 many of which were due to drug-resistant bacteria. Vaccines represent an important medical intervention, but the current Bacilli Calmette-Guerin (BCG) vaccine is not ideal for the protection of teenagers and adults. Therefore, a safe and effective vaccine is urgently needed. In this study, we designed a novel vaccine using an attenuated Listeria monocytogenes strain carrying fusion antigen FbpB-ESAT-6 (rLM) and characterized its safety and protective efficacy against Mycobacterium tuberculosis ( M.tb ) infection in mice. Compared to the wild type strain yzuLM4 and parental strain LMΔ actA/plcB (LM1-2), the virulence of rLM was significantly reduced as judged by its infectious kinetics and LD 50 dose. Further characterization of intravenous immunization showed that prime-boost vaccination significantly increased the levels of Th1 cytokines (IFN-γ, IL-17, and IL-6), and enhanced cytotoxic T lymphocyte (CTL) CTLs activity, suggesting that rLM could elicit potent Th1/Th17 responses. More importantly, rLM significantly conferred the protection against M.tb H37Rv challenge. Collectively, our findings indicated that rLM is a novel and useful tool to prevent M.tb infection, and can be potentially be used to boost BCG-primed immunity.

  9. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Honda; R Wang; W Kong

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  10. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    PubMed Central

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  11. Japanese encephalitis virus replicon-based vaccine expressing enterovirus-71 epitope confers dual protection from lethal challenges.

    PubMed

    Huang, Yi-Ting; Liao, Jia-Teh; Yen, Li-Chen; Chang, Yung-Kun; Lin, Yi-Ling; Liao, Ching-Len

    2015-09-11

    To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle. We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge. Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.

  12. Oral vaccination with different antigens from Yersinia pestis KIM delivered by live attenuated Salmonella typhimurium elicits a protective immune response against plague.

    PubMed

    Branger, Christine G; Fetherston, Jacqueline D; Perry, Robert D; Curtiss, Roy

    2007-01-01

    The use of live recombinant Salmonella attenuated vaccine (RASV) encoding Yersinia proteins is a promising new approach for the vaccination against Yersinia pestis. We have tested the efficacy of 2 proteins, Psn and a portion of LcrV in protecting mice against virulent Yersinia pestis challenge. To remove the immunosuppressive properties of LcrV protein, the lcrV gene, without the TLR2 receptor sequence, was cloned into a beta-lactamase secretion vector. Immunizations were performed with RSAV expressing LcrV or Psn. Challenge with a virulent Y. pestis strain was performed 4 weeks after the last immunization. Our results show that the truncated LcrV protein delivered by RASV is sufficient to afford a full protective immune response in a mouse model of bubonic plague and the Psn protein afforded partial protection in a non-optimized system. This finding should facilitate the design and development of a new generation of vaccines against Y. pestis.

  13. Oral Fluids as a Live-Animal Sample Source for Evaluating Cross-Reactivity and Cross-Protection following Intranasal Influenza A Virus Vaccination in Pigs

    PubMed Central

    Hughes, Holly R.; Vincent, Amy L.; Brockmeier, Susan L.; Gauger, Phillip C.; Pena, Lindomar; Santos, Jefferson; Braucher, Douglas R.

    2015-01-01

    In North American swine, there are numerous antigenically distinct H1 influenza A virus (IAV) variants currently circulating, making vaccine development difficult due to the inability to formulate a vaccine that provides broad cross-protection. Experimentally, live-attenuated influenza virus (LAIV) vaccines demonstrate increased cross-protection compared to inactivated vaccines. However, there is no standardized assay to predict cross-protection following LAIV vaccination. Hemagglutination-inhibiting (HI) antibody in serum is the gold standard correlate of protection following IAV vaccination. LAIV vaccination does not induce a robust serum HI antibody titer; however, a local mucosal antibody response is elicited. Thus, a live-animal sample source that could be used to evaluate LAIV immunogenicity and cross-protection is needed. Here, we evaluated the use of oral fluids (OF) and nasal wash (NW) collected after IAV inoculation as a live-animal sample source in an enzyme-linked immunosorbent assay (ELISA) to predict cross-protection in comparison to traditional serology. Both live-virus exposure and LAIV vaccination provided heterologous protection, though protection was greatest against more closely phylogenetically related viruses. IAV-specific IgA was detected in NW and OF samples and was cross-reactive to representative IAV from each H1 cluster. Endpoint titers of cross-reactive IgA in OF from pigs exposed to live virus was associated with heterologous protection. While LAIV vaccination provided significant protection, LAIV immunogenicity was reduced compared to live-virus exposure. These data suggest that OF from pigs inoculated with wild-type IAV, with surface genes that match the LAIV seed strain, could be used in an ELISA to assess cross-protection and the antigenic relatedness of circulating and emerging IAV in swine. PMID:26291090

  14. Preclinical development of a vaccine 'against smoking'.

    PubMed

    Cerny, E H; Lévy, R; Mauel, J; Mpandi, M; Mutter, M; Henzelin-Nkubana, C; Patiny, L; Tuchscherer, G; Cerny, T

    2002-10-01

    Nicotine is the main culprit for dependence on tobacco-containing products, which in turn are a major etiologic factor for cardiovascular diseases and cancer. This publication describes a vaccine, which elicits antibodies against nicotine. The antibodies in the blood stream intercept the nicotine molecule on its way to its receptors and greatly diminish the nicotine influx to the brain shortly after smoking. The nicotine molecule is chemically linked to cholera toxin B as a carrier protein in order to induce antibodies. The potential to elicit antibodies after subcutaneous as well as intranasal immunization is evaluated. In order to simulate realistic conditions, nicotine pumps delivering the nicotine equivalent of 5 packages of cigarettes for 4 weeks are implanted into the mice 1 week prior to vaccination. The protective effect of the vaccine is measured 5 weeks after vaccination by comparing the influx of radiolabeled nicotine in the brains of vaccinated and non-vaccinated animals 5 min after challenge with the nicotine equivalent of 2 cigarettes. The polyclonal antibodies induced by the vaccine show a mean avidity of 1.8 x 10(7) l/Mol. Subcutaneous immunization elicits high antibody levels of the IgG class, and significant IgA antibody levels in the saliva of vaccinated mice can be found after intranasal vaccination. The protective effect also in the animals with implanted nicotine pumps is significant: less than 10% of radiolabeled nicotine found in the brains of non-vaccinated animals can be found in the brains of vaccinated animals. These data provide credible evidence that a vaccine can break the vicious circle between smoking and instant gratification by intercepting the nicotine molecule. Astonishingly, there is no sign of exhaustion of specific antibodies even under extreme conditions, which makes it highly unlikely that a smoker can overcome the protective effect of the vaccine by smoking more. Finally, the high titers of specific antibodies after 1 year

  15. Characterization and Epitope Mapping of the Polyclonal Antibody Repertoire Elicited by Ricin Holotoxin-Based Vaccination

    PubMed Central

    Cohen, Ofer; Mechaly, Adva; Sabo, Tamar; Alcalay, Ron; Aloni-Grinstein, Ronit; Seliger, Nehama; Kronman, Chanoch

    2014-01-01

    Ricin, one of the most potent and lethal toxins known, is classified by the Centers for Disease Control and Prevention (CDC) as a select agent. Currently, there is no available antidote against ricin exposure, and the most promising therapy is based on neutralizing antibodies elicited by active vaccination or that are given passively. The aim of this study was to characterize the repertoire of anti-ricin antibodies generated in rabbits immunized with ricin toxoid. These anti-ricin antibodies exhibit an exceptionally high avidity (thiocyanate-based avidity index, 9 M) toward ricin and an apparent affinity of 1 nM. Utilizing a novel tissue culture-based assay that enables the determination of ricin activity within a short time period, we found that the anti-ricin antibodies also possess a very high neutralizing titer. In line with these findings, these antibodies conferred mice with full protection against pulmonary ricinosis when administered as a passive vaccination. Epitope mapping analysis using phage display random peptide libraries revealed that the polyclonal serum contains four immunodominant epitopes, three of which are located on the A subunit and one on the B subunit of ricin. Only two of the four epitopes were found to have a significant role in ricin neutralization. To the best of our knowledge, this is the first work that characterizes these immunological aspects of the polyclonal response to ricin holotoxin-based vaccination. These findings provide useful information and a possible strategy for the development and design of an improved ricin holotoxin-based vaccine. PMID:25209559

  16. Characterization and epitope mapping of the polyclonal antibody repertoire elicited by ricin holotoxin-based vaccination.

    PubMed

    Cohen, Ofer; Mechaly, Adva; Sabo, Tamar; Alcalay, Ron; Aloni-Grinstein, Ronit; Seliger, Nehama; Kronman, Chanoch; Mazor, Ohad

    2014-11-01

    Ricin, one of the most potent and lethal toxins known, is classified by the Centers for Disease Control and Prevention (CDC) as a select agent. Currently, there is no available antidote against ricin exposure, and the most promising therapy is based on neutralizing antibodies elicited by active vaccination or that are given passively. The aim of this study was to characterize the repertoire of anti-ricin antibodies generated in rabbits immunized with ricin toxoid. These anti-ricin antibodies exhibit an exceptionally high avidity (thiocyanate-based avidity index, 9 M) toward ricin and an apparent affinity of 1 nM. Utilizing a novel tissue culture-based assay that enables the determination of ricin activity within a short time period, we found that the anti-ricin antibodies also possess a very high neutralizing titer. In line with these findings, these antibodies conferred mice with full protection against pulmonary ricinosis when administered as a passive vaccination. Epitope mapping analysis using phage display random peptide libraries revealed that the polyclonal serum contains four immunodominant epitopes, three of which are located on the A subunit and one on the B subunit of ricin. Only two of the four epitopes were found to have a significant role in ricin neutralization. To the best of our knowledge, this is the first work that characterizes these immunological aspects of the polyclonal response to ricin holotoxin-based vaccination. These findings provide useful information and a possible strategy for the development and design of an improved ricin holotoxin-based vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Neutralizing Antibodies Elicited by a Novel Detoxified Pneumolysin Derivative, PlyD1, Provide Protection against Both Pneumococcal Infection and Lung Injury

    PubMed Central

    Salha, Danielle; Szeto, Jason; Myers, Lisa; Claus, Carol; Sheung, Anthony; Tang, Mei; Ljutic, Belma; Hanwell, David; Ogilvie, Karen; Ming, Marin; Messham, Benjamin; van den Dobbelsteen, Germie; Hopfer, Robert; Ochs, Martina M.

    2012-01-01

    Streptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers and in vitro neutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia. PMID:22473606

  18. Neutralizing antibodies elicited by a novel detoxified pneumolysin derivative, PlyD1, provide protection against both pneumococcal infection and lung injury.

    PubMed

    Salha, Danielle; Szeto, Jason; Myers, Lisa; Claus, Carol; Sheung, Anthony; Tang, Mei; Ljutic, Belma; Hanwell, David; Ogilvie, Karen; Ming, Marin; Messham, Benjamin; van den Dobbelsteen, Germie; Hopfer, Robert; Ochs, Martina M; Gallichan, Scott

    2012-06-01

    Streptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers and in vitro neutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia.

  19. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficientmore » in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.« less

  20. New Vaccines Help Protect You

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues New Vaccines Help Protect You Past Issues / Fall 2006 Table ... this page please turn Javascript on. Important new vaccines have recently been approved for use and are ...

  1. Protective immunity in mice achieved with dry powder formulation and alternative delivery of plague F1-V vaccine.

    PubMed

    Huang, Joanne; D'Souza, Ajit J; Alarcon, Jason B; Mikszta, John A; Ford, Brandi M; Ferriter, Matthew S; Evans, Michelle; Stewart, Todd; Amemiya, Kei; Ulrich, Robert G; Sullivan, Vincent J

    2009-05-01

    The potential use of Yersinia pestis as a bioterror agent is a great concern. Development of a stable powder vaccine against Y. pestis and administration of the vaccine by minimally invasive methods could provide an alternative to the traditional liquid formulation and intramuscular injection. We evaluated a spray-freeze-dried powder vaccine containing a recombinant F1-V fusion protein of Y. pestis for vaccination against plaque in a mouse model. Mice were immunized with reconstituted spray-freeze-dried F1-V powder via intramuscular injection, microneedle-based intradermal delivery, or noninvasive intranasal administration. By intramuscular injection, the reconstituted powder induced serum antibody responses and provided protection against lethal subcutaneous challenge with 1,000 50% lethal doses of Y. pestis at levels equivalent to those elicited by unprocessed liquid formulations (70 to 90% protection). The feasibility of intradermal and intranasal delivery of reconstituted powder F1-V vaccine was also demonstrated. Overall, microneedle-based intradermal delivery was shown to be similar in efficacy to intramuscular injection, while intranasal administration required an extra dose of vaccine to achieve similar protection. In addition, the results suggest that seroconversion against F1 may be a better predictor of protection against Y. pestis challenge than seroconversion against either F1-V or V. In summary, we demonstrate the preclinical feasibility of using a reconstituted powder F1-V formulation and microneedle-based intradermal delivery to provide protective immunity against plague in a mouse model. Intranasal delivery, while feasible, was less effective than injection in this study. The potential use of these alternative delivery methods and a powder vaccine formulation may result in substantial health and economic benefits.

  2. An oral microjet vaccination system elicits antibody production in rabbits.

    PubMed

    Aran, Kiana; Chooljian, Marc; Paredes, Jacobo; Rafi, Mohammad; Lee, Kunwoo; Kim, Allison Y; An, Jeanny; Yau, Jennifer F; Chum, Helen; Conboy, Irina; Murthy, Niren; Liepmann, Dorian

    2017-03-08

    Noninvasive immunization technologies have the potential to revolutionize global health by providing easy-to-administer vaccines at low cost, enabling mass immunizations during pandemics. Existing technologies such as transdermal microneedles are costly, deliver drugs slowly, and cannot generate mucosal immunity, which is important for optimal immunity against pathogens. We present a needle-free microjet immunization device termed MucoJet, which is a three-dimensional microelectromechanical systems-based drug delivery technology. MucoJet is administered orally, placed adjacent to the buccal tissue within the oral cavity, and uses a self-contained gas-generating chemical reaction within its two-compartment plastic housing to produce a high-pressure liquid jet of vaccine. We show that the vaccine jet ejected from the MucoJet device is capable of penetrating the buccal mucosal layer in silico, in porcine buccal tissue ex vivo, and in rabbits in vivo. Rabbits treated with ovalbumin by MucoJet delivery have antibody titers of anti-ovalbumin immunoglobulins G and A in blood serum and buccal tissue, respectively, that are three orders of magnitude higher than rabbits receiving free ovalbumin delivered topically by a dropper in the buccal region. MucoJet has the potential to accelerate the development of noninvasive oral vaccines, given its ability to elicit antibody production that is detectable locally in the buccal tissue and systemically via the circulation. Copyright © 2017, American Association for the Advancement of Science.

  3. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges.

    PubMed

    Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2015-01-01

    Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.

  4. Antibody response of sandhill and whooping cranes to an eastern equine encephalitis virus vaccine

    USGS Publications Warehouse

    Clark, G.G.; Dein, F.J.; Crabbs, C.L.; Carpenter, J.W.; Watts, D.M.

    1987-01-01

    As a possible strategy to protect whooping cranes (Grus americana) from fatal eastern equine encephalitis (EEE) viral infection, studies were conducted to determine the immune response of this species and sandhill cranes (Grus canadensis) to a formalin-inactivated EEE viral vaccine. Viral-specific neutralizing antibody was elicited in both species after intramuscular (IM) vaccination. Subcutaneous and intravenous routes of vaccination failed to elicit detectable antibody in sandhill cranes. Among the IM vaccinated cranes, the immune response was characterized by nondetectable or low antibody titers that waned rapidly following primary exposure to the vaccine. However, one or more booster doses consistently elicited detectable antibody and/or increased antibody titers in the whooping cranes. In contrast, cranes with pre-existing EEE viral antibody, apparently induced by natural infection, exhibited a rapid increase and sustained high-antibody titers. Even though EEE virus vaccine induced neutralizing antibody and produced no adverse side effects, further studies will be required to determine the protective efficacy of the antibody.

  5. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    PubMed

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Oral Fluids as a Live-Animal Sample Source for Evaluating Cross-Reactivity and Cross-Protection following Intranasal Influenza A Virus Vaccination in Pigs.

    PubMed

    Hughes, Holly R; Vincent, Amy L; Brockmeier, Susan L; Gauger, Phillip C; Pena, Lindomar; Santos, Jefferson; Braucher, Douglas R; Perez, Daniel R; Loving, Crystal L

    2015-10-01

    In North American swine, there are numerous antigenically distinct H1 influenza A virus (IAV) variants currently circulating, making vaccine development difficult due to the inability to formulate a vaccine that provides broad cross-protection. Experimentally, live-attenuated influenza virus (LAIV) vaccines demonstrate increased cross-protection compared to inactivated vaccines. However, there is no standardized assay to predict cross-protection following LAIV vaccination. Hemagglutination-inhibiting (HI) antibody in serum is the gold standard correlate of protection following IAV vaccination. LAIV vaccination does not induce a robust serum HI antibody titer; however, a local mucosal antibody response is elicited. Thus, a live-animal sample source that could be used to evaluate LAIV immunogenicity and cross-protection is needed. Here, we evaluated the use of oral fluids (OF) and nasal wash (NW) collected after IAV inoculation as a live-animal sample source in an enzyme-linked immunosorbent assay (ELISA) to predict cross-protection in comparison to traditional serology. Both live-virus exposure and LAIV vaccination provided heterologous protection, though protection was greatest against more closely phylogenetically related viruses. IAV-specific IgA was detected in NW and OF samples and was cross-reactive to representative IAV from each H1 cluster. Endpoint titers of cross-reactive IgA in OF from pigs exposed to live virus was associated with heterologous protection. While LAIV vaccination provided significant protection, LAIV immunogenicity was reduced compared to live-virus exposure. These data suggest that OF from pigs inoculated with wild-type IAV, with surface genes that match the LAIV seed strain, could be used in an ELISA to assess cross-protection and the antigenic relatedness of circulating and emerging IAV in swine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference.

    PubMed

    Ross, Anna Laura; Bråve, Andreas; Scarlatti, Gabriella; Manrique, Amapola; Buonaguro, Luigi

    2010-05-01

    The search for an HIV/AIDS vaccine is steadily moving ahead, generating and validating new concepts in terms of novel vectors for antigen delivery and presentation, new vaccine and adjuvant strategies, alternative approaches to design HIV-1 antigens for eliciting protective cross-neutralising antibodies, and identification of key mechanisms in HIV infection and modulation of the immune system. All these different perspectives are contributing to the unprecedented challenge of developing a protective HIV-1 vaccine. The high scientific value of this massive effort is its great impact on vaccinology as a whole, providing invaluable scientific information for the current and future development of new preventive vaccine as well as therapeutic knowledge-based infectious-disease and cancer vaccines. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine

    PubMed Central

    Ahmad, Gul; Zhang, Weidong; Torben, Workineh; Haskins, Chad; Diggs, Sue; Noor, Zahid; Le, Loc

    2009-01-01

    Advent of an effective schistosome vaccine would contribute significantly toward reducing the disease spectrum and transmission of schistosomiasis. We have targeted a functionally important antigen, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective and antifecundity potentials, and important role in the immune evasion process. In this study, we report that using two vaccination approaches (prime boost and recombinant protein), Sm-p80-based vaccine formulation(s) confer up to 70% reduction in worm burden in mice. Animals immunized with the vaccine exhibited a decrease in egg production by up to 75%. The vaccine elicited strong immune responses that included IgM, IgA, and IgG (IgG1, IgG2a, IgG2b, and IgG3) in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced Th1 and Th17 response enhancing cytokines. These results again emphasize the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis. PMID:19809833

  9. A Bivalent Anthrax–Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis

    PubMed Central

    Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen; Moayeri, Mahtab; Kirtley, Michelle L.; Fitts, Eric C.; Andersson, Jourdan A.; Lawrence, William S.; Leppla, Stephen H.; Chopra, Ashok K.; Rao, Venigalla B.

    2017-01-01

    Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis, the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis, in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis, demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis. This bivalent anthrax–plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats. PMID:28694806

  10. A Bivalent Anthrax-Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis.

    PubMed

    Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen; Moayeri, Mahtab; Kirtley, Michelle L; Fitts, Eric C; Andersson, Jourdan A; Lawrence, William S; Leppla, Stephen H; Chopra, Ashok K; Rao, Venigalla B

    2017-01-01

    Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis , the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis , in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel ® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis , demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis . This bivalent anthrax-plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats.

  11. Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity.

    PubMed

    Monath, Thomas P; Lee, Cynthia K; Julander, Justin G; Brown, Alicja; Beasley, David W; Watts, Douglas M; Hayman, Edward; Guertin, Patrick; Makowiecki, Joseph; Crowell, Joseph; Levesque, Philip; Bowick, Gavin C; Morin, Merribeth; Fowler, Elizabeth; Trent, Dennis W

    2010-05-14

    In the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age <9 months and >60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide. The inactivated vaccine was highly immunogenic in mice, hamsters, and cynomolgus macaques. After a single dose in hamsters and macaques, neutralizing antibody titers were similar to those elicited by the live 17D vaccine (YF-VAX, Sanofi Pasteur). After two doses of inactivated vaccine, neutralizing antibody titers in hamsters were significantly higher than after a single dose of YF-VAX [geometric mean titer (GMT) 20,480 vs. 1940, respectively (P<0.001, ANOVA)]. Hamsters given a single dose or two doses of inactivated vaccine or a single dose of YF-VAX were fully protected against hepatitis, viremia, weight loss and death after challenge with YF virus (Jimenez strain). A clinical trial of the inactivated vaccine (XRX-001) has been initiated. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Novel Catanionic Surfactant Vesicle Vaccines Protect against Francisella tularensis LVS and Confer Significant Partial Protection against F. tularensis Schu S4 Strain

    PubMed Central

    Richard, Katharina; Mann, Barbara J.; Stocker, Lenea; Barry, Eileen M.; Qin, Aiping; Cole, Leah E.; Hurley, Matthew T.; Ernst, Robert K.; Michalek, Suzanne M.; Stein, Daniel C.; DeShong, Philip

    2014-01-01

    Francisella tularensis is a Gram-negative immune-evasive coccobacillus that causes tularemia in humans and animals. A safe and efficacious vaccine that is protective against multiple F. tularensis strains has yet to be developed. In this study, we tested a novel vaccine approach using artificial pathogens, synthetic nanoparticles made from catanionic surfactant vesicles that are functionalized by the incorporation of either F. tularensis type B live vaccine strain (F. tularensis LVS [LVS-V]) or F. tularensis type A Schu S4 strain (F. tularensis Schu S4 [Schu S4-V]) components. The immunization of C57BL/6 mice with “bare” vesicles, which did not express F. tularensis components, partially protected against F. tularensis LVS, presumably through activation of the innate immune response, and yet it failed to protect against the F. tularensis Schu S4 strain. In contrast, immunization with LVS-V fully protected mice against intraperitoneal (i.p.) F. tularensis LVS challenge, while immunization of mice with either LVS-V or Schu S4-V partially protected C57BL/6 mice against an intranasal (i.n.) F. tularensis Schu S4 challenge and significantly increased the mean time to death for nonsurvivors, particularly following the i.n. and heterologous (i.e., i.p./i.n.) routes of immunization. LVS-V immunization, but not immunization with empty vesicles, elicited high levels of IgG against nonlipopolysaccharide (non-LPS) epitopes that were increased after F. tularensis LVS challenge and significantly increased early cytokine production. Antisera from LVS-V-immunized mice conferred passive protection against challenge with F. tularensis LVS. Together, these data indicate that functionalized catanionic surfactant vesicles represent an important and novel tool for the development of a safe and effective F. tularensis subunit vaccine and may be applicable for use with other pathogens. PMID:24351755

  13. Immunogenicity and Protective Efficacy of the DAR-901 Booster Vaccine in a Murine Model of Tuberculosis

    PubMed Central

    Lahey, Timothy; Laddy, Dominick; Hill, Krystal; Schaeffer, Jacqueline; Hogg, Alison; Keeble, James; Dagg, Belinda; Ho, Mei Mei; Arbeit, Robert D.; von Reyn, C. Fordham

    2016-01-01

    Background The development of a novel tuberculosis vaccine is a leading global health priority. SRL172, an inactivated, whole-cell mycobacterial vaccine, was safe, immunogenic and reduced the incidence of culture-confirmed tuberculosis in a phase III trial in HIV-infected and BCG immunized adults in Tanzania. Here we describe the immunogenicity and protective efficacy of DAR-901, a booster vaccine against tuberculosis manufactured from the same seed strain using a new scalable method. Methods We evaluated IFN-γ responses by ELISpot and antibody responses by enzyme linked immunosorbent assay in C57BL/6 and BALB/c mice after three doses of DAR-901. In an aerosol challenge model, we evaluated the protective efficacy of the DAR-901 booster in C57BL/6 mice primed with BCG and boosted with two doses of DAR-901 at 4 dosage levels in comparison with homologous BCG boost. Results DAR-901 vaccination elicited IFN-γ responses to mycobacterial antigen preparations derived from both DAR-901 and Mycobacterium tuberculosis. DAR-901 immunization enhanced antibody responses to DAR-901 but not Mycobacterium tuberculosis lysate or purified protein derivative. Among animals primed with BCG, boosting with DAR-901 at 1 mg provided greater protection against aerosol challenge than a homologous BCG boost (lungs P = 0.036, spleen P = 0.028). Conclusions DAR-901 induces cellular and humoral immunity and boosts protection from M. tuberculosis compared to a homologous BCG boost. PMID:27997597

  14. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin

    PubMed Central

    Schultheis, Katherine; Schaefer, Hubert; Yung, Bryan S.; Oh, Janet; Muthumani, Karuppiah; Humeau, Laurent; Broderick, Kate E.

    2016-01-01

    The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site. PMID:27894716

  15. VP2 (PTA motif) encoding DNA vaccine confers protection against lethal challenge with infectious pancreatic necrosis virus (IPNV) in trout.

    PubMed

    Ahmadivand, Sohrab; Soltani, Mehdi; Behdani, Mahdi; Evensen, Øystein; Alirahimi, Ehsan; Soltani, Elahe; Hassanzadeh, Reza; Ashrafi-Helan, Javad

    2018-02-01

    IPNV in Atlantic salmon is represented by various strains with different virulence and immunogenicity linked to various motifs of the VP2 capsid. IPNV variant with P 217 , T 221 , A 247 (PTA) motif is found to be avirulent in Atlantic salmon, but virulent in rainbow trout, and other salmonid species. This study describes a DNA vaccine delivered intramuscularly encoding the VP2 protein of infectious pancreatic necrosis virus (IPNV) with PTA motif that confers high protection in rainbow trout (Oncorhynchus mykiss). Intramuscular injection of 2, 5 and 10 μg of DNA (pcDNA3.1-VP2) in rainbow trout fry (4-5 g), confers relative protection of 75-83% in the different vaccine groups at 30 days post vaccination (450° days). The VP2 gene is expressed in spleen, kidney, muscle and liver at day 30 post-vaccination (RT-PCR), and IFN-1 and Mx-1 mRNA are upregulated at early time post vaccination, and so also for IgM, IgT, CD4 and CD8 in the head kidney of vaccinated fish compared to controls, 15 and 30 days post vaccination. Significant increase of serum anti-IPNV antibodies was found 30-90 days post-vaccination that was correlated with protection levels. Mortality corresponded with viral VP4 gene expression were significantly decreased in vaccinated and challenged fish. This shows for the first time that a VP2-encoding DNA vaccine delivered intramuscularly elicits a high level of protection alongside with high levels of circulating antibodies in rainbow trout and a lowered viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. H5N1 vaccines in humans

    PubMed Central

    Baz, Mariana; Luke, Catherine J; Cheng, Xing; Jin, Hong; Subbarao, Kanta

    2013-01-01

    The spread of highly pathogenic avian H5N1 influenza viruses since 1997 and their virulence for poultry and humans has raised concerns about their potential to cause an influenza pandemic. Vaccines offer the most viable means to combat a pandemic threat. However, it will be a challenge to produce, distribute and implement a new vaccine if a pandemic spreads rapidly. Therefore, efforts are being undertaken to develop pandemic vaccines that use less antigen and induce cross-protective and long-lasting responses, that can be administered as soon as a pandemic is declared or possibly even before, in order to prime the population and allow for a rapid and protective antibody response. In the last few years, several vaccine manufacturers have developed candidate pandemic and pre-pandemic vaccines, based on reverse genetics and have improved the immunogenicity by formulating these vaccines with different adjuvants. Some of the important and consistent observations from clinical studies with H5N1 vaccines are as follows: two doses of inactivated vaccine are generally necessary to elicit the level of immunity required to meet licensure criteria, less antigen can be used if an oil-in-water adjuvant is included, in general antibody titers decline rapidly but can be boosted with additional doses of vaccine and if high titers of antibody are elicited, cross-reactivity against other clades is observed. Prime-boost strategies elicit a more robust immune response. In this review, we discuss data from clinical trials with a variety of H5N1 influenza vaccines. We also describe studies conducted in animal models to explore the possibility of reassortment between pandemic live attenuated vaccine candidates and seasonal influenza viruses, since this is an important consideration for the use of live vaccines in a pandemic setting. PMID:23726847

  17. CoVaccine HT™ adjuvant is superior to Freund's adjuvants in eliciting antibodies against the endogenous alarmin HMGB1.

    PubMed

    Lakhan, Nerissa; Stevens, Natalie E; Diener, Kerrilyn R; Hayball, John D

    2016-12-01

    Adjuvants are used to enhance the immune response against specific antigens for the production of antibodies, with the choice of adjuvant most critical for poorly immunogenic and self-antigens. This study quantitatively and qualitatively evaluated CoVaccine HT™ and Freund's adjuvants for eliciting therapeutic ovine polyclonal antibodies targeting the endogenous alarmin, high mobility group box-1 (HMGB1). Sheep were immunised with HMGB1 protein in CoVaccine HT™ or Freund's adjuvants, with injection site reactions and antibody titres periodically assessed. The binding affinity of antibodies for HMGB1 and their neutralisation activity was determined in-vitro, with in vivo activity confirmed using a murine model of endotoxemia. Results indicated that CoVaccine HT™ elicited significantly higher antibody tires with stronger affinity and more functional potency than antibodies induced with Freund's adjuvants. These studies provide evidence that CoVaccine HT™ is superior to Freund's adjuvants for the production of antibodies to antigens with low immunogenicity and supports the use of this alternative adjuvant for clinical and experimental use antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs.

    PubMed

    de Melo, Andréa Barbosa; Nascimento, Eduardo J M; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P; Sidney, John; Sette, Alessandro; Montenegro, Silvia M L; Marques, Ernesto T A

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4(+) and CD8(+) T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines.

  19. T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs

    PubMed Central

    de Melo, Andréa Barbosa; Nascimento, Eduardo J. M.; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P.; Sidney, John; Sette, Alessandro; Montenegro, Silvia M. L.; Marques, Ernesto T. A.

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, “promiscuous” T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. PMID:23383350

  20. A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates.

    PubMed

    Baker, Sarah M; Davitt, Christopher J H; Motyka, Natalya; Kikendall, Nicole L; Russell-Lodrigue, Kasi; Roy, Chad J; Morici, Lisa A

    2017-12-09

    Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immunization with multivalent outer membrane vesicles (OMV) derived from B. pseudomallei provide significant protection against pneumonic melioidosis. Given that many virulence determinants are highly conserved between the two species, we sought to determine if the B. pseudomallei OMV vaccine could cross-protect against B. mallei . We immunized C57Bl/6 mice and rhesus macaques with B. pseudomallei OMVs and subsequently challenged animals with aerosolized B. mallei . Immunization with B. pseudomallei OMVs significantly protected mice against B. mallei and the protection observed was comparable to that achieved with a live attenuated vaccine. OMV immunization induced the production of B.mallei- specific serum IgG and a mixed Th1/Th17 CD4 and CD8 T cell response in mice. Additionally, immunization of rhesus macaques with B. pseudomallei OMVs provided protection against glanders and induced B.mallei -specific serum IgG in non-human primates. These results demonstrate the ability of the multivalent OMV vaccine platform to elicit cross-protection against closely-related intracellular pathogens and to induce robust humoral and cellular immune responses against shared protective antigens.

  1. A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates

    PubMed Central

    Davitt, Christopher J. H.; Motyka, Natalya; Kikendall, Nicole L.; Roy, Chad J.

    2017-01-01

    Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immunization with multivalent outer membrane vesicles (OMV) derived from B. pseudomallei provide significant protection against pneumonic melioidosis. Given that many virulence determinants are highly conserved between the two species, we sought to determine if the B. pseudomallei OMV vaccine could cross-protect against B. mallei. We immunized C57Bl/6 mice and rhesus macaques with B. pseudomallei OMVs and subsequently challenged animals with aerosolized B. mallei. Immunization with B. pseudomallei OMVs significantly protected mice against B. mallei and the protection observed was comparable to that achieved with a live attenuated vaccine. OMV immunization induced the production of B.mallei-specific serum IgG and a mixed Th1/Th17 CD4 and CD8 T cell response in mice. Additionally, immunization of rhesus macaques with B. pseudomallei OMVs provided protection against glanders and induced B.mallei-specific serum IgG in non-human primates. These results demonstrate the ability of the multivalent OMV vaccine platform to elicit cross-protection against closely-related intracellular pathogens and to induce robust humoral and cellular immune responses against shared protective antigens. PMID:29232837

  2. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  3. Enhanced Immune Response and Protective Effects of Nano-chitosan-based DNA Vaccine Encoding T Cell Epitopes of Esat-6 and FL against Mycobacterium Tuberculosis Infection

    PubMed Central

    Feng, Ganzhu; Jiang, Qingtao; Xia, Mei; Lu, Yanlai; Qiu, Wen; Zhao, Dan; Lu, Liwei; Peng, Guangyong; Wang, Yingwei

    2013-01-01

    Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice. PMID:23637790

  4. Immunogenicity and Protective Efficacy in Mice and Hamsters of a β-Propiolactone Inactivated Whole Virus SARS-CoV Vaccine

    PubMed Central

    Roberts, Anjeanette; Lamirande, Elaine W.; Vogel, Leatrice; Baras, Benoît; Goossens, Geneviève; Knott, Isabelle; Chen, Jun; Ward, Jerrold M.; Vassilev, Ventzislav

    2010-01-01

    Abstract The immunogenicity and efficacy of β-propiolactone (BPL) inactivated whole virion SARS-CoV (WI-SARS) vaccine was evaluated in BALB/c mice and golden Syrian hamsters. The vaccine preparation was tested with or without adjuvants. Adjuvant Systems AS01B and AS03A were selected and tested for their capacity to elicit high humoral and cellular immune responses to WI-SARS vaccine. We evaluated the effect of vaccine dose and each adjuvant on immunogenicity and efficacy in mice, and the effect of vaccine dose with or without the AS01B adjuvant on the immunogenicity and efficacy in hamsters. Efficacy was evaluated by challenge with wild-type virus at early and late time points (4 and 18 wk post-vaccination). A single dose of vaccine with or without adjuvant was poorly immunogenic in mice; a second dose resulted in a significant boost in antibody levels, even in the absence of adjuvant. The use of adjuvants resulted in higher antibody titers, with the AS01B-adjuvanted vaccine being slightly more immunogenic than the AS03A-adjuvanted vaccine. Two doses of WI-SARS with and without Adjuvant Systems were highly efficacious in mice. In hamsters, two doses of WI-SARS with and without AS01B were immunogenic, and two doses of 2 μg of WI-SARS with and without the adjuvant provided complete protection from early challenge. Although antibody titers had declined in all groups of vaccinated hamsters 18 wk after the second dose, the vaccinated hamsters were still partially protected from wild-type virus challenge. Vaccine with adjuvant provided better protection than non-adjuvanted WI-SARS vaccine at this later time point. Enhanced disease was not observed in the lungs or liver of hamsters following SARS-CoV challenge, regardless of the level of serum neutralizing antibodies. PMID:20883165

  5. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    PubMed Central

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-01-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive. PMID:26587315

  6. Production of EV71 vaccine candidates

    PubMed Central

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-01-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211–225 of VP1 formulated with Freund’s adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the

  7. Production of EV71 vaccine candidates.

    PubMed

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-12-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211-225 of VP1 formulated with Freund's adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the most

  8. Vaccine approaches conferring cross-protection against influenza viruses

    PubMed Central

    Vemula, Sai V.; Sayedahmed, Ekramy E; Sambhara, Suryaprakash; Mittal, Suresh K.

    2018-01-01

    Introduction Annual vaccination is one of the most efficient and cost-effective strategies to prevent and control influenza epidemics. Most of currently available influenza vaccines are strong inducer of antibody responses against viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), but are poor inducers of cell-mediated immune responses against conserved internal proteins. Moreover, due to the high variability of viral surface proteins because of antigenic drift or antigenic shift, many of the currently licensed vaccines confer little or no protection against drift or shift variants. Areas covered Next generation influenza vaccines that can induce humoral immune responses to receptor-binding epitopes as well as broadly neutralizing conserved epitopes, and cell-mediated immune responses against highly conserved internal proteins would be effective against variant viruses as well as a novel pandemic influenza until circulating strain-specific vaccines become available. Here we discuss vaccine approaches that have potential to provide broad spectrum protection against influenza viruses. Expert opinion Based on current progress in defining cross-protective influenza immunity, it seems that the development of a universal influenza vaccine is feasible. It would revolutionize the strategy for influenza pandemic preparedness, and significantly impact the shelf-life and protection efficacy of seasonal influenza vaccines. PMID:28925296

  9. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin.

    PubMed

    Schultheis, Katherine; Schaefer, Hubert; Yung, Bryan S; Oh, Janet; Muthumani, Karuppiah; Humeau, Laurent; Broderick, Kate E; Smith, Trevor R F

    2017-01-03

    The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    USDA-ARS?s Scientific Manuscript database

    Central memory T cells (Tcm’s) and polyfunctional CD4 T responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by ...

  11. Protective immune response against Toxoplasma gondii elicited by a novel yeast-based vaccine with microneme protein 16.

    PubMed

    Wang, Long-Jiang; Xiao, Ting; Xu, Chao; Li, Jin; Liu, Gong-Zhen; Yin, Kun; Cui, Yong; Wei, Qing-Kuan; Huang, Bing-Cheng; Sun, Hui

    2018-06-22

    Toxoplasma gondii is an obligate intracellular protozoan that can invade all eukaryotic cells and infect all warm-blood animals, causing the important zoonosis toxoplasmosis. Invasion of host cells is the key step necessary for T. gondii to complete its life cycle and microneme proteins play an important role in attachment and invasion of host cells. Microneme protein 16 (TgMIC16) is a new protective protein in T. gondii and belongs to transmembrane microneme proteins (TM-MIC). The TM-MICs are released onto the parasite's surface as complexes capable of interacting with host cell receptors. In the present study, we expressed the TgMIC16 protein on the surface of Saccharomyce cerevisiae (pCTCON2-TgMIC16/EBY100) and evaluated it as a potential vaccine for BALB/c mice against challenge infection with the RH strain of T. gondii. We immunized BALB/c mice both orally and intraperitoneally. After three immunizations, the immune response was evaluated by measuring antibody levels, lymphocyte proliferative responses, percentages of CD4 + and CD8 + T lymphocytes, cytokine production, and the survival times of challenged mice. The results showed that the pCTCON2-TgMIC16/EBY100 vaccine stimulated humoral and cellular immune responses. In addition, mice immunized with the pCTCON2-TgMIC16/EBY100 vaccine showed increased survival times compared with non-immunized controls. In summary, TgMIC16 displayed on the cell surface of S. cerevisiae could be used as potential vaccine against toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route.

    PubMed

    Ravindran, Rajesh; Maji, Mithun; Ali, Nahid

    2012-01-01

    The development of a long-term protective subunit vaccine against visceral leishmaniasis depends on antigens and adjuvants that can induce an appropriate immune response. The immunization of leishmanial antigens alone shows limited efficacy in the absence of an appropriate adjuvant. Earlier we demonstrated sustained protection against Leishmania donovani with leishmanial antigens entrapped in cationic liposomes through an intraperitoneal route. However, this route is not applicable for human administration. Herein, we therefore evaluated the immune response and protection induced by liposomal soluble leishmanial antigen (SLA) formulated with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) through a subcutaneous route. Subcutaneous immunization of BALB/c mice with SLA entrapped in liposomes or with MPL-TDM elicited partial protection against experimental visceral leishmaniasis. In contrast, liposomal SLA adjuvanted with MPL-TDM induced significantly higher levels of protection in liver and spleen in BALB/c mice challenged 10 days post-vaccination. Protection conferred by this formulation was sustained up to 12 weeks of immunization, and infection was controlled for at least 4 months of the challenge, similar to liposomal SLA immunization administered intraperitoneally. An analysis of cellular immune responses of liposomal SLA + MPL-TDM immunized mice demonstrated the induction of IFN-γ and IgG2a antibody production not only 10 days or 12 weeks post-vaccination but also 4 months after the challenge infection and a down regulation of IL-4 production after infection. Moreover, long-term immunity elicited by this formulation was associated with IFN-γ production also by CD8⁺ T cells. Taken together, our results suggest that liposomal SLA + MPL-TDM represent a good vaccine formulation for the induction of durable protection against L. donovani through a human administrable route.

  13. Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines.

    PubMed

    Lee, Yu-Na; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Kang, Sang-Moo

    2015-10-01

    Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to develop effective vaccines and vaccination strategies conferring a broad range of cross protection. The extracellular domain of M2 (M2e) is highly conserved among human influenza A viruses and has been utilized to develop new vaccines inducing cross protection against different subtypes of influenza A virus. However, immune mechanisms of cross protection by M2e-based vaccines still remain to be fully elucidated. Here, we review immune correlates and mechanisms conferring cross protection by M2e-based vaccines. Molecular and cellular immune components that are known to be involved in M2 immune-mediated protection include antibodies, B cells, T cells, alveolar macrophages, Fc receptors, complements, and natural killer cells. Better understanding of protective mechanisms by immune responses induced by M2e vaccination will help facilitate development of broadly cross protective vaccines against influenza A virus.

  14. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice.

    PubMed

    Elhaik Goldman, Shirin; Dotan, Shahar; Talias, Amir; Lilo, Amit; Azriel, Shalhevet; Malka, Itay; Portnoi, Maxim; Ohayon, Ariel; Kafka, Daniel; Ellis, Ronald; Elkabets, Moshe; Porgador, Angel; Levin, Ditza; Azhari, Rosa; Swiatlo, Edwin; Ling, Eduard; Feldman, Galia; Tal, Michael; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2016-04-01

    Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1

  15. Isolation of an attenuated myxoma virus field strain that can confer protection against myxomatosis on contacts of vaccinates.

    PubMed

    Bárcena, J; Pagès-Manté, A; March, R; Morales, M; Ramírez, M A; Sánchez-Vizcaíno, J M; Torres, J M

    2000-01-01

    Twenty MV strains obtained from a survey of field strains currently circulating throughout Spain were analyzed for their virulence and horizontal spreading among rabbits by contact transmission. A virus strain with suitable characteristics to be used as a potential vaccine against myxomatosis in wild rabbit populations was selected. Following inoculation, the selected MV strain elicited high levels of MV specific antibodies and induced protection of rabbits against a virulent MV challenge. Furthermore, the attenuated MV was transmitted to 9 out of 16 uninoculated rabbits by contact, inducing protection against myxomatosis.

  16. Mucosal vaccination with recombinant poxvirus vaccines protects ferrets against symptomatic CDV infection.

    PubMed

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    1999-01-28

    Canine distemper virus (CDV) infection of ferrets causes a disease characterized by fever, erythema, conjunctivitis and leukocytopenia, similar clinically to measles except for the fatal neurologic sequelae of CDV. We vaccinated juvenile ferrets twice at 4-week intervals by the intranasal or intraduodenal route with attenuated vaccinia (NYVAC) or canarypox virus (ALVAC) constructs containing the CDV hemagglutinin and fusion genes. Controls were vaccinated with the same vectors expressing rabies glycoprotein. Animals were challenged intranasally 4 weeks after the second vaccination with virulent CDV. Body weights, white blood cell (WBC) counts and temperatures were monitored and ferrets were observed daily for clinical signs of infection. WBCs were assayed for the presence of viral RNA by RT-PCR. Intranasally vaccinated animals survived challenge with no virologic or clinical evidence of infection. Vaccination by the intraduodenal route did not provide complete protection. All control animals developed typical distemper. Ferrets can be effectively protected against distemper by mucosal vaccination with poxvirus vaccines.

  17. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    PubMed Central

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline; Karlsson, Ingrid; Krog, Jesper S; Williams, James A; Fomsgaard, Anders

    2015-01-01

    The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations, was compared with intradermal needle injection followed by electroporation. We report that when our DNA vaccine is expressed by the new vectors and delivered to the skin with the needle-free device in the rabbit model, it can elicit an antibody response with the same titers as a conventional vector with intradermal electroporation. The needle-free delivery is already in use for traditional protein vaccines in pigs but should be considered as a practical alternative for the mass administration of broadly protective influenza DNA vaccines. PMID:25746201

  18. Characterization of cross protection of Swine-Origin Influenza Virus (S-OIV) H1N1 and reassortant H5N1 influenza vaccine in BALB/c mice given a single-dose vaccination

    PubMed Central

    2013-01-01

    Background Influenza virus has antigen drift and antigen shift effect, vaccination with some influenza vaccine might not induce sufficient immunity for host to the threat of other influenza virus strains. S-OIV H1N1 and H5N1 influenza vaccines in single-dose immunization were evaluated in mice for cross protection to the challenge of A/California/7/2009 H1N1 or NIBRG-14 H5N1 virus. Results Both H1N1 and H5N1 induced significant homologous IgG, HAI, and microneutralization antibody responses in the mice, while only vaccines plus adjuvant produced significant heterogeneous IgG and HAI antibody responses. Both alum and MPLA adjuvants significantly reduced the S-OIV H1N1 vaccine dose required to elicit protective HAI antibody titers from 0.05 μg to 0.001 μg. Vaccines alone did not protect mice from challenge with heterogeneous influenza virus, while H5N1 vaccine plus alum and MPLA adjuvants did. Mouse body weight loss was also less significant in the presence of adjuvant than in the vaccine without adjuvant. Furthermore, both H1N1 and H5N1 lung viral titers of immunized mice were significantly reduced post challenge with homologous viruses. Conclusion Only in the presence of MPLA adjuvant could the H5N1 vaccine significantly reduce mouse lung viral titers post H1N1 virus challenge, and not vice versa. MPLA adjuvant induced cross protection with a single dose vaccination to the challenge of heterogeneous influenza virus in mice. Lung viral titer seemed to be a better indicator compared to IgG, neutralization antibody, and HAI titer to predict survival of mice infected with influenza virus. PMID:23517052

  19. Ricin-Holotoxin-Based Vaccines: Induction of Potent Ricin-Neutralizing Antibodies.

    PubMed

    Sabo, Tamar; Kronman, Chanoch; Mazor, Ohad

    2016-01-01

    Ricin is one of the most potent and lethal toxins known to which there is no available antidote. Currently, the most promising therapy is based on neutralizing antibodies elicited by active vaccination or given passively. Here, detailed protocols are provided for the production of two ricin holotoxin-based vaccines: monomerized subunit-based vaccine, and a formaldehyde-based ricin toxoid vaccine. Both vaccines were found to be stable with no toxic activity reversion even after long-term storage while eliciting high anti-ricin antibody titers possessing a potent neutralizing activity. The use of these vaccines is highly suitable for both the production of sera that can be used in passive protection experiments and immunization aimed to isolate potent anti-ricin monoclonal antibodies.

  20. Protective Efficacy of an Inactive Vaccine Based on the LY02 Isolate against Acute Haemophilus parasuis Infection in Piglets.

    PubMed

    Li, Xiao-Hua; Zhao, Guo-Zhen; Qiu, Long-Xin; Dai, Ai-Ling; Wu, Wang-Wei; Yang, Xiao-Yan

    2015-01-01

    Haemophilus parasuis can cause Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. The current prevention of Glässer's disease is mainly based on the inactive vaccines; however, the protective efficacy usually fails in heterogeneous or homologous challenges. Here, the predominant lineage of H. parasuis (LY02 strain) in Fujian province, China, characterized as serovar 5, was used to evaluate the protective immunity against acute H. parasuis infection in piglets after inactivation. Following challenging with H. parasuis, only mild lesions in the pigs immunized with the killed vaccine were observed, whereas the typical symptoms of Glässer's disease presented in the nonimmunized piglets. A strong IgG immune response was induced by the inactive vaccine. CD4(+) and CD8(+) T lymphocyte levels were increased, indicating the potent cellular immune responses were elicited. The significantly high levels of IL-2, IL-4, TGF-β, and IFN-γ in sera from pigs immunized with this killed vaccine suggested that the mixed Th1 and Th2 immune responses were induced, associated with the high protection against H. parasuis infection compared to the nonimmunized animals. This study indicated that the inactivated LY02 strain of H. parasuis could serve as a potential vaccine candidate to prevent the prevalence of H. parasuis in Fujian province, China.

  1. An interferon inducing porcine reproductive and respiratory syndrome virus vaccine candidate elicits protection against challenge with the heterologous virulent type 2 strain VR-2385 in pigs.

    PubMed

    Fontanella, Eve; Ma, Zexu; Zhang, Yanjin; de Castro, Alessandra M M G; Shen, Huigang; Halbur, Patrick G; Opriessnig, Tanja

    2017-01-03

    Achieving consistent protection by vaccinating pigs against porcine reproductive and respiratory syndrome virus (PRRSV) remains difficult. Recently, an interferon-inducing PRRSV vaccine candidate strain A2MC2 was demonstrated to be attenuated and induced neutralizing antibodies. The objective of this study was to determine the efficacy of passage 90 of A2MC2 (A2P90) to protect pigs against challenge with moderately virulent PRRSV strain VR-2385 (92.3% nucleic acid identity with A2MC2) and highly virulent atypical PRRSV MN184 (84.5% nucleic acid identity with A2MC2). Forty 3-week old pigs were randomly assigned to five groups including a NEG-CONTROL group (non-vaccinated, non-challenged), VAC-VR2385 (vaccinated, challenged with strain VR-2385), VR2385 (challenged with strain VR-2385), VAC-MN184 (vaccinated, challenged with strain MN184) and a MN184 group (challenged with MN184 virus). Vaccination was done at 3weeks of age followed by challenge at 8weeks of age. No viremia was detectable in any of the vaccinated pigs; however, by the time of challenge, 15/16 vaccinated pigs had seroconverted based on ELISA and had neutralizing antibodies against a homologous strain with titers ranging from 8 to 128. Infection with VR-2385 resulted in mild-to-moderate clinical disease and lesions. For VR-2385 infected pigs, vaccination significantly lowered PRRSV viremia and nasal shedding by 9days post challenge (dpc), significantly reduced macroscopic lung lesions, and significantly increased the average daily weight gain compared to the non-vaccinated pigs. Infection with MN184 resulted in moderate-to-severe clinical disease and lesions regardless of vaccination status; however, vaccinated pigs had significantly less nasal shedding by dpc 5 compared to non-vaccinated pigs. Under the study conditions, the A2P90 vaccine strain was attenuated without detectable shedding, improved weight gain, and offered protection to the pigs challenged with VR-2385 by reduction of virus load and

  2. Protection against Streptococcus suis Serotype 2 Infection Using a Capsular Polysaccharide Glycoconjugate Vaccine

    PubMed Central

    Calzas, Cynthia; Shiao, Tze Chieh; Neubauer, Axel; Kempker, Jennifer; Roy, René; Gottschalk, Marcelo

    2016-01-01

    Streptococcus suis serotype 2 is an encapsulated bacterium and one of the most important bacterial pathogens in the porcine industry. Despite decades of research for an efficient vaccine, none is currently available. Based on the success achieved with other encapsulated pathogens, a glycoconjugate vaccine strategy was selected to elicit opsonizing anti-capsular polysaccharide (anti-CPS) IgG antibodies. In this work, glycoconjugate prototypes were prepared by coupling S. suis type 2 CPS to tetanus toxoid, and the immunological features of the postconjugation preparations were evaluated in vivo. In mice, experiments evaluating three different adjuvants showed that CpG oligodeoxyribonucleotide (ODN) induces very low levels of anti-CPS IgM antibodies, while the emulsifying adjuvants Stimune and TiterMax Gold both induced high levels of IgGs and IgM. Dose-response trials comparing free CPS with the conjugate vaccine showed that free CPS is nonimmunogenic independently of the dose used, while 25 μg of the conjugate preparation was optimal in inducing high levels of anti-CPS IgGs postboost. With an opsonophagocytosis assay using murine whole blood, sera from immunized mice showed functional activity. Finally, the conjugate vaccine showed immunogenicity and induced protection in a swine challenge model. When conjugated and administered with emulsifying adjuvants, S. suis type 2 CPS is able to induce potent IgM and isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and protection against a lethal challenge in vivo, all features of a T cell-dependent response. This study represents a proof of concept for the potential of glycoconjugate vaccines in veterinary medicine applications against invasive bacterial infections. PMID:27113360

  3. An attenuated duck plague virus (DPV) vaccine induces both systemic and mucosal immune responses to protect ducks against virulent DPV infection.

    PubMed

    Huang, Juan; Jia, Renyong; Wang, Mingshu; Shu, Bing; Yu, Xia; Zhu, Dekang; Chen, Shun; Yin, Zhongqiong; Chen, Xiaoyue; Cheng, Anchun

    2014-04-01

    Duck plague (DP) is a severe disease caused by DP virus (DPV). Control of the disease is recognized as one of the biggest challenges in avian medicine. Vaccination is an efficient way to control DPV, and an attenuated vaccine is the main routine vaccine. The attenuated DPV vaccine strain CHa is a modified live vaccine, but the systemic and mucosal immune responses induced by this vaccine have been poorly understood. In this study, the immunogenicity and efficacy of the vaccine were evaluated after subcutaneous immunization of ducks. CD4(+) and CD8(+) T cells were counted by flow cytometry, and humoral and mucosal Ig antibodies were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that high levels of T cells and Ig antibodies were present postimmunization and that there were more CD4(+) T cells than CD8(+) T cells. Titers of humoral IgG were higher than those of humoral IgA. Local IgA was found in each sample, whereas local IgG was found only in the spleen, thymus, bursa of Fabricius, harderian gland, liver, bile, and lung. In a protection assay, the attenuated DPV vaccine completely protected ducks against 1,000 50% lethal doses (LD50) of the lethal DPV strain CHv via oral infection. These data suggest that this subcutaneous vaccine elicits sufficient systemic and mucosal immune responses against lethal DPV challenge to be protective in ducks. This study provides broad insights into understanding the immune responses to the attenuated DPV vaccine strain CHa through subcutaneous immunization in ducks.

  4. Evaluation of the protective immunogencity of the N, P, M, NV and G proteins of infectious hematopoietic necrosis virus in rainbow trout Oncorhynchus mykiss using DNA vaccines

    USGS Publications Warehouse

    Corbeil, S.; LaPatra, S.E.; Anderson, E.D.; Jones, J.; Vincent, B.; Hsu, Ya Li; Kurath, G.

    1999-01-01

    The protective immunogenicity of the nucleoprotein (N), phosphoprotein (P), matrix protein (M), non-virion protein (NV) and glycoprotein (G) of the rhabdovirus infectious hematopoietic necrosis virus (IHNV) was assessed in rainbow trout using DNA vaccine technology. DNA vaccines were produced by amplifying and cloning the viral genes in the plasmid pCDNA 3.1. The protective immunity elicited by each vaccine was evaluated through survival of immunized fry after challenge with live virus. Neutralizing antibody titers were also determined in vaccinated rainbow troutOncorhynchus mykiss fry (mean weight 2 g) and 150 g sockeye salmon Oncorhynchus nerka. The serum from the 150 g fish was also used in passive immunization studies with naïve fry. Our results showed that neither the internal structural proteins (N, P and M) nor the NV protein of IHNV induced protective immunity in fry or neutralizing antibodies in fry and 150 g fish when expressed by a DNA vaccine construct. The G protein, however, did confer significant protection in fry up to 80 d post-immunization and induced protective neutralizing antibodies. We are currently investigating the role of different arms of the fish immune system that contribute to the high level of protection against IHNV seen in vaccinated fish.

  5. A novel vaccine p846 encoding Rv3615c, Mtb10.4, and Rv2660c elicits robust immune response and alleviates lung injury induced by Mycobacterium infection.

    PubMed

    Kong, Hongmei; Dong, Chunsheng; Xiong, Sidong

    2014-01-01

    Development of effective anti-tuberculosis (TB) vaccines is one of the important steps to improve control of TB. Cell-mediated immune response significantly affects the control of M. tuberculosis infection. Thus, vaccines able to elicit strong cellular immune response hold special advantages against TB. In this study, three well-defined mycobacterial antigens (Rv3615c, Mtb10.4 [Rv0228], and Rv2660c) were engineered as a novel triple-antigen fusion DNA vaccine p846. The p846 vaccine consists of a high density of CD4(+) and CD8(+) T-cell epitopes. Intramuscular immunization of p846 induced robust T cells mediated immune response comparable to that of bacillus Calmette-Guérin (BCG) vaccination but more effective than that of individual antigen vaccination. After mycobacterial challenge, p846 immunization decreased bacterial burden at least 15-fold compared with individual antigen-based vaccination. Notably, the lungs of mice immunized with p846 exhibited fewer inflammatory cell infiltrates and less damage than those of control group mice. Our data demonstrate that the potential of p846 vaccine to protect against TB and the feasibility of this design strategy for further TB vaccine development.

  6. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates.

    PubMed

    Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland

    2018-01-01

    The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a

  7. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates

    PubMed Central

    Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D.; Patterson, Jean L.; Mire, Chad E.; Geisbert, Thomas W.; Hooper, Jay W.; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke

    2018-01-01

    The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a

  8. Identification of a defined linear epitope in the OspA protein of the Lyme disease spirochetes that elicits bactericidal antibody responses: Implications for vaccine development.

    PubMed

    Izac, Jerilyn R; Oliver, Lee D; Earnhart, Christopher G; Marconi, Richard T

    2017-05-31

    The lipoprotein OspA is produced by the Lyme disease spirochetes primarily in unfed ticks. OspA production is down-regulated by the blood meal and it is not produced in mammals except for possible transient production during late stage infection in patients with Lyme arthritis. Vaccination with OspA elicits antibody (Ab) that can target spirochetes in the tick midgut during feeding and inhibit transmission to mammals. OspA was the primary component of the human LYMErix™ vaccine. LYMErix™ was available from 1998 to 2002 but then pulled from the market due to declining sales as a result of unsubstantiated concerns about vaccination induced adverse events and poor efficacy. It was postulated that a segment of OspA that shares sequence similarity with a region in human LFA-1 and may trigger putative autoimmune events. While evidence supporting such a link has not been demonstrated, most efforts to move forward with OspA as a vaccine component have sought to eliminate this region of concern. Here we identify an OspA linear epitope localized within OspA amino acid residues 221-240 (OspA 221-240 ) that lacks the OspA region suggested to elicit autoimmunity. A peptide consisting of residues 221-240 was immunogenic in mice. Ab raised against OspA 221-240 peptide surface labeled B. burgdorferi in IFAs and displayed potent Ab mediated-complement dependent bactericidal activity. BLAST analyses identified several variants of OspA 221-240 and a closely related sequence in OspB. It is our hypothesis that integration of the OspA 221-240 epitope into a multivalent-OspC based chimeric epitope based vaccine antigen (chimeritope) could result in a subunit vaccine that protects against Lyme disease through synergistic mechanisms. Copyright © 2017. Published by Elsevier Ltd.

  9. Safety and Efficacy of Neonatal Vaccination

    PubMed Central

    Demirjian, Alicia; Levy, Ofer

    2009-01-01

    Newborns have an immature immune system that renders them at high risk for infection while simultaneously reducing responses to most vaccines, thereby posing challenges in protecting this vulnerable population. Nevertheless, certain vaccines, such as Bacillus Calmette Guérin (BCG) and Hepatitis B vaccine (HBV), do demonstrate safety and some efficacy at birth, providing proof of principal that certain antigen-adjuvant combinations are able to elicit protective neonatal responses. Moreover, birth is a major point of healthcare contact globally meaning that effective neonatal vaccines achieve high population penetration. Given the potentially significant benefit of vaccinating at birth, availability of a broader range of more effective neonatal vaccines is an unmet medical need and a public health priority. This review focuses on safety and efficacy of neonatal vaccination in humans as well as recent research employing novel approaches to enhance the efficacy of neonatal vaccination. PMID:19089811

  10. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    PubMed

    Mann, Alex J; Noulin, Nicolas; Catchpole, Andrew; Stittelaar, Koert J; de Waal, Leon; Veldhuis Kroeze, Edwin J B; Hinchcliffe, Michael; Smith, Alan; Montomoli, Emanuele; Piccirella, Simona; Osterhaus, Albert D M E; Knight, Alastair; Oxford, John S; Lapini, Giulia; Cox, Rebecca; Lambkin-Williams, Rob

    2014-01-01

    We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and

  11. Protection and mechanism of action of a novel human respiratory syncytial virus vaccine candidate based on the extracellular domain of small hydrophobic protein

    PubMed Central

    Schepens, Bert; Sedeyn, Koen; Vande Ginste, Liesbeth; De Baets, Sarah; Schotsaert, Michael; Roose, Kenny; Houspie, Lieselot; Van Ranst, Marc; Gilbert, Brian; van Rooijen, Nico; Fiers, Walter; Piedra, Pedro; Saelens, Xavier

    2014-01-01

    Infections with human respiratory syncytial virus (HRSV) occur globally in all age groups and can have devastating consequences in young infants. We demonstrate that a vaccine based on the extracellular domain (SHe) of the small hydrophobic (SH) protein of HRSV, reduced viral replication in challenged laboratory mice and in cotton rats. We show that this suppression of viral replication can be transferred by serum and depends on a functional IgG receptor compartment with a major contribution of FcγRI and FcγRIII. Using a conditional cell depletion method, we provide evidence that alveolar macrophages are involved in the protection by SHe-specific antibodies. HRSV-infected cells abundantly express SH on the cell surface and are likely the prime target of the humoral immune response elicited by SHe-based vaccination. Finally, natural infection of humans and experimental infection of mice or cotton rats does not induce a strong immune response against HRSV SHe. Using SHe as a vaccine antigen induces immune protection against HRSV by a mechanism that differs from the natural immune response and from other HRSV vaccination strategies explored to date. Hence, HRSV vaccine candidates that aim at inducing protective neutralizing antibodies or T-cell responses could be complemented with a SHe-based antigen to further improve immune protection. PMID:25298406

  12. Inactivated infectious bronchitis virus vaccine encapsulated in chitosan nanoparticles induces mucosal immune responses and effective protection against challenge.

    PubMed

    Lopes, Priscila Diniz; Okino, Cintia Hiromi; Fernando, Filipe Santos; Pavani, Caren; Casagrande, Viviane Mariguela; Lopez, Renata F V; Montassier, Maria de Fátima Silva; Montassier, Helio José

    2018-05-03

    Avian infectious bronchitis virus (IBV) is one of the most important viral diseases of poultry. The mucosa of upper respiratory tract, specially the trachea, is the primary replication site for this virus. However, conventional inactivate IBV vaccines usually elicit reduced mucosal immune responses and local protection. Thus, an inactivated IBV vaccine containing BR-I genotype strain encapsulated in chitosan nanoparticles (IBV-CS) was produced by ionic gelation method to be administered by oculo-nasal route to chickens. IBV-CS vaccine administered alone resulted in markedly mucosal immune responses, characterized by high levels of anti-IBV IgA isotype antibodies and IFNγ gene expression at 1dpi. The association of live attenuated Massachusetts IBV and IBV-CS vaccine also induced strong mucosal immune responses, though a switch from IgA isotype to IgG was observed, and IFNγ gene expression peak was late (at 5 dpi). Efficacy of IBV-CS was evaluated by tracheal ciliostasis analysis, histopathology examination, and viral load determination in the trachea and kidney. The results indicated that IBV-CS vaccine administered alone or associated with a live attenuated heterologous vaccine induced both humoral and cell-mediated immune responses at the primary site of viral replication, and provided an effective protection against IBV infection at local (trachea) and systemic (kidney) sites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Immune mechanisms associated with enhanced influenza A virus disease versus cross-protection in vaccinated pigs.

    USDA-ARS?s Scientific Manuscript database

    Vaccine associated enhanced respiratory disease (VAERD) has been described in pigs vaccinated with whole-inactivated influenza virus (WIV) following infection with heterologous influenza A virus (IAV). WIV vaccination elicits production of cross-reactive, non-neutralizing antibody to the challenge I...

  14. CD4+ T Cells Mediate Aspergillosis Vaccine Protection.

    PubMed

    Diaz-Arevalo, Diana; Kalkum, Markus

    2017-01-01

    Adaptive effector CD4 + T cells play essential roles in the defense against fungal infections, especially against invasive aspergillosis (IA). Such protective CD4 + T cells can be generated through immunization with specialized antifungal vaccines, as has been demonstrated for pulmonary Aspergillus fumigatus infections in mouse experiments. Adaptive transfer of fungal antigen-specific CD4 + T cells conferred protection onto non-immunized naive mice, an experimental approach that could potentially become a future treatment option for immunosuppressed IA patients, focusing on the ultimate goal to improve their otherwise dim chances for survival. Here, we describe the different techniques to analyze CD4 + T cell immune responses after immunization with a recombinant fungal protein. We present three major methods that are used to analyze the role of CD4 + T cells in protection against A. fumigatus challenge. They include (1) transplantation of CD4 + T cells from vaccinated mice into immunosuppressed naive mice, observing increasing protection of the cell recipients, (2) depletion of CD4 + T cells from vaccinated mice, which abolishes vaccine protection, and (3) T cell proliferation studies following stimulation with overlapping synthetic peptides or an intact protein vaccine. The latter can be used to validate immunization status and to identify protective T cell epitopes in vaccine antigens. In the methods detailed here, we used versions of the well-studied Asp f3 protein expressed in a bacterial host, either as the intact full length protein or its N-terminally truncated version, comprised of residues 15-168. However, these methods are generally applicable and can well be adapted to study other protein-based subunit vaccines.

  15. Design and Characterization of a Computationally Optimized Broadly Reactive Hemagglutinin Vaccine for H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Lefoley, Bradford C.; Crevar, Corey J.; Alefantis, Timothy; Oomen, Raymond; Anderson, Stephen F.; Strugnell, Tod; Cortés-Garcia, Guadalupe; Vogel, Thorsten U.; Parrington, Mark; Kleanthous, Harold

    2016-01-01

    ABSTRACT One of the challenges of developing influenza A vaccines is the diversity of antigenically distinct isolates. Previously, a novel hemagglutinin (HA) for H5N1 influenza was derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This COBRA HA elicited a broad antibody response against H5N1 isolates from different clades. We now report the development and characterization of a COBRA-based vaccine for both seasonal and pandemic H1N1 influenza virus isolates. Nine prototype H1N1 COBRA HA proteins were developed and tested in mice using a virus-like particle (VLP) format for the elicitation of broadly reactive, functional antibody responses and protection against viral challenge. These candidates were designed to recognize H1N1 viruses isolated within the last 30 years. In addition, several COBRA candidates were designed based on sequences of H1N1 viruses spanning the past 100 years, including modern pandemic H1N1 isolates. Four of the 9 H1N1 COBRA HA proteins (X1, X3, X6, and P1) had the broadest hemagglutination inhibition (HAI) activity against a panel of 17 H1N1 viruses. These vaccines were used in cocktails or prime-boost combinations. The most effective regimens that both elicited the broadest HAI response and protected mice against a pandemic H1N1 challenge were vaccines that contained the P1 COBRA VLP and either the X3 or X6 COBRA VLP vaccine. These mice had little or no detectable viral replication, comparable to that observed with a matched licensed vaccine. This is the first report describing a COBRA-based HA vaccine strategy that elicits a universal, broadly reactive, protective response against seasonal and pandemic H1N1 isolates. IMPORTANCE Universal influenza vaccine approaches have the potential to be paradigm shifting for the influenza vaccine field, with the goal of replacing the current standard of care with broadly cross-protective vaccines. We have used COBRA technology to develop an HA head

  16. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  17. Evaluation of smallpox vaccines using variola neutralization.

    PubMed

    Damon, Inger K; Davidson, Whitni B; Hughes, Christine M; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Frey, Sharon E; Newman, Frances; Belshe, Robert B; Yan, Lihan; Karem, Kevin

    2009-08-01

    The search for a 'third'-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific 'in vitro' activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination.

  18. An experimental vaccine against Aeromonas hydrophila can induce protection in rainbow trout, Oncorhynchus mykiss (Walbaum)

    USGS Publications Warehouse

    LaPatra, S.E.; Plant, K.P.; Alcorn, S.; Ostland, V.; Winton, J.

    2010-01-01

    A candidate vaccine against Aeromonas hydrophila in rainbow trout, Oncorhynchus mykiss, was developed using a bacterial lysate. To test the strength of protection, A. hydrophila challenge models were compared using injection into both the intraperitoneal (IP) cavity and the dorsal sinus (DS) with selected doses of live bacteria washed in saline or left untreated. Unlike the IP route, injection into the DS with either saline washed or unwashed cells resulted in consistent cumulative mortality and a dose response that could be used to establish a standard challenge having an LD50 of approximately 3 × 107 colony forming units per fish. Survivors of the challenge suffered significantly lower mortality upon re-challenge than naïve fish, suggesting a high level of acquired resistance was elicited by infection. Passive immunization using serum from hyper-immunized fish also resulted in significantly reduced mortality indicating protection can be transferred and that some portion of resistance may be antibody mediated. Vaccination of groups of rainbow trout with A. hydrophila lysate resulted in significant protection against a high challenge dose but only when injected along with Freund’s complete adjuvant. At a low challenge dose, mortality in all groups was low, but the bacterial lysate alone appeared to offer some protection.

  19. Subdoses of 17DD yellow fever vaccine elicit equivalent virological/immunological kinetics timeline.

    PubMed

    Campi-Azevedo, Ana Carolina; de Almeida Estevam, Paula; Coelho-Dos-Reis, Jordana Grazziela; Peruhype-Magalhães, Vanessa; Villela-Rezende, Gabriela; Quaresma, Patrícia Flávia; Maia, Maria de Lourdes Sousa; Farias, Roberto Henrique Guedes; Camacho, Luiz Antonio Bastos; Freire, Marcos da Silva; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando Carvalho; Lima, Sheila Maria Barbosa; Nogueira, Rita Maria Ribeiro; Silva Sá, Gloria Regina; Hokama, Darcy Akemi; de Carvalho, Ricardo; Freire, Ricardo Aguiar Villanova; Filho, Edson Pereira; Leal, Maria da Luz Fernandes; Homma, Akira; Teixeira-Carvalho, Andréa; Martins, Reinaldo Menezes; Martins-Filho, Olindo Assis

    2014-07-15

    The live attenuated 17DD Yellow Fever vaccine is one of the most successful prophylactic interventions for controlling disease expansion ever designed and utilized in larger scale. However, increase on worldwide vaccine demands and manufacturing restrictions urge for more detailed dose sparing studies. The establishment of complementary biomarkers in addition to PRNT and Viremia could support a secure decision-making regarding the use of 17DD YF vaccine subdoses. The present work aimed at comparing the serum chemokine and cytokine kinetics triggered by five subdoses of 17DD YF Vaccine. Neutralizing antibody titers, viremia, cytokines and chemokines were tested on blood samples obtained from eligible primary vaccinees. The results demonstrated that a fifty-fold lower dose of 17DD-YF vaccine (587 IU) is able to trigger similar immunogenicity, as evidenced by significant titers of anti-YF PRNT. However, only subdoses as low as 3,013 IU elicit viremia kinetics with an early peak at five days after primary vaccination equivalent to the current dose (27,476 IU), while other subdoses show a distinct, lower in magnitude and later peak at day 6 post-vaccination. Although the subdose of 587 IU is able to trigger equivalent kinetics of IL-8/CXCL-8 and MCP-1/CCL-2, only the subdose of 3,013 IU is able to trigger similar kinetics of MIG/CXCL-9, pro-inflammatory (TNF, IFN-γ and IL-2) and modulatory cytokines (IL-5 and IL-10). The analysis of serum biomarkers IFN-γ and IL-10, in association to PRNT and viremia, support the recommendation of use of a ten-fold lower subdose (3,013 IU) of 17DD-YF vaccine.

  20. Dissecting polyclonal vaccine-induced humoral immunity against HIV using Systems Serology

    PubMed Central

    Chung, Amy W.; Kumar, Manu P.; Arnold, Kelly B.; Yu, Wen Han; Schoen, Matthew K.; Dunphy, Laura J.; Suscovich, Todd J.; Frahm, Nicole; Linde, Caitlyn; Mahan, Alison E.; Hoffner, Michelle; Streeck, Hendrik; Ackerman, Margaret E.; McElrath, M. Juliana; Schuitemaker, Hanneke; Pau, Maria G.; Baden, Lindsey R.; Kim, Jerome H.; Michael, Nelson L.; Barouch, Dan H.; Lauffenburger, Douglas A.; Alter, Galit

    2017-01-01

    While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc-functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine-trials. Each vaccine regimen induced a unique humoral “Fc-fingerprint”. Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive. PMID:26544943

  1. Detoxified Endotoxin Vaccine (J5dLPS/OMP) Protects Mice Against Lethal Respiratory Challenge with Francisella tularensis SchuS4

    PubMed Central

    Gregory, Stephen H.; Chen, Wilbur H.; Mott, Stephanie; Palardy, John E.; Parejo, Nicholas A.; Heninger, Sara; Anderson, Christine A.; Artenstein, Andrew W.; Opal, Steven M.; Cross, Alan S.

    2010-01-01

    Francisella tularensis is a category A select agent. J5dLPS/OMP is a novel vaccine construct consisting of detoxified, O-polysaccharide side chain-deficient, lipopolysaccharide non-covalently complexed with the outer membrane protein of N. meningitidis group B. Immunization elicits hightiter polyclonal antibodies specific for the highly-conserved epitopes expressed within the glycolipid core that constitutes gram-negative bacteria (e.g., F. tularensis). Mice immunized intranasally with J5dLPS/OMP exhibited protective immunity to intratracheal challenge with the live vaccine strain, as well as the highly-virulent SchuS4 strain, of F. tularensis. The efficacy of J5dLPS/OMP vaccine suggests its potential utility in immunizing the general population against several different gram-negative select agents concurrently. PMID:20170768

  2. Blood Interferon Signatures Putatively Link Lack of Protection Conferred by the RTS,S Recombinant Malaria Vaccine to an Antigen-specific IgE Response

    PubMed Central

    Rinchai, Darawan; Presnell, Scott; Vidal, Marta; Dutta, Sheetij; Chauhan, Virander; Cavanagh, David; Moncunill, Gemma; Dobaño, Carlota; Chaussabel, Damien

    2017-01-01

    Malaria remains a major cause of mortality and morbidity worldwide. Progress has been made in recent years with the development of vaccines that could pave the way towards protection of hundreds of millions of exposed individuals. Here we used a modular repertoire approach to re-analyze a publically available microarray blood transcriptome dataset monitoring the response to malaria vaccination. We report the seminal identification of interferon signatures in the blood of subjects on days 1, 3 and 14 following administration of the third dose of the RTS,S recombinant malaria vaccine. These signatures at day 1 correlate with protection, and at days 3 and 14 to susceptibility to subsequent challenge of study subjects with live parasites. In addition we putatively link the decreased abundance of interferon-inducible transcripts observed at days 3 and 14 post-vaccination with the elicitation of an antigen-specific IgE response in a subset of vaccine recipients that failed to be protected by the RTS,S vaccine. Furthermore, profiling of antigen-specific levels of IgE in a Mozambican cohort of malaria-exposed children vaccinated with RTS,S identified an association between elevated baseline IgE levels and subsequent development of naturally acquired malaria infection during follow up. Taken together these findings warrant further investigation of the role of antigen-specific IgE in conferring susceptibility to malaria infection. PMID:28883910

  3. Options and obstacles for designing a universal influenza vaccine.

    PubMed

    Jang, Yo Han; Seong, Baik Lin

    2014-08-18

    Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine.

  4. Options and Obstacles for Designing a Universal Influenza Vaccine

    PubMed Central

    Jang, Yo Han; Seong, Baik Lin

    2014-01-01

    Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine. PMID:25196381

  5. Computationally Optimized Broadly Reactive Hemagglutinin Elicits Hemagglutination Inhibition Antibodies against a Panel of H3N2 Influenza Virus Cocirculating Variants

    PubMed Central

    Wong, Terianne M.; Allen, James D.; Bebin-Blackwell, Anne-Gaelle; Carter, Donald M.; Alefantis, Timothy; DiNapoli, Joshua; Kleanthous, Harold

    2017-01-01

    circulated between 2004 and 2007. Three of the H3N2 COBRA vaccines recognized all of the cocirculating strains during this era, but the chosen wild-type vaccine strains were not able to elicit antibodies with HAI activity against these cocirculating strains. Therefore, the COBRA vaccines have the ability to elicit protective antibodies against not only the dominant vaccine strains but also minor circulating strains that can evolve into the dominant vaccine strains in the future. PMID:28978710

  6. Potentiation of the humoral immune response elicited by a commercial vaccine against bovine respiratory disease by Enterococcus faecalis CECT7121.

    PubMed

    Díaz, A M; Almozni, B; Molina, M A; Sparo, M D; Manghi, M A; Canellada, A M; Castro, M S

    2018-04-10

    Vaccination against pathogens involved in bovine respiratory disease (BRD) is a useful tool to reduce the risk of this disease however, it has been observed that the commercially available vaccines only partially prevent the infections caused by Pasteurella multocida and Mannheimia haemolytica. Therefore, it is recommended to search for new adjuvant strategies to minimise the economic impact of this respiratory syndrome. A possibility to improve the conventional vaccine response is to modulate the immune system with probiotics, since there is accumulating evidence that certain immunomodulatory strains administered around the time of vaccination can potentiate the immune response. Considering veterinary vaccines are frequently tested in murine models, we have developed an immunisation schedule in BALB/c mice that allows us to study the immune response elicited by BRD vaccine. In order to evaluate a potential strategy to enhance vaccine efficacy, the adjuvant effect of Enterococcus faecalis CECT7121 on the murine specific humoral immune response elicited by a commercial vaccine against BRD was studied. Results indicate that the intragastric administration of E. faecalis CECT7121 was able to induce an increase in the specific antibody titres against the bacterial components of the BRD vaccines (P. multocida and M. haemolytica). The quality of the humoral immune response, in terms of antibody avidity, was also improved. Regarding the cellular immune response, although the BRD vaccination induced a low specific secretion of cytokines in the spleen cell culture supernatants, E. faecalis CECT7121-treated mice showed higher interferon-γ production than immunised control mice. Our results allowed us to conclude that the administration of E. faecalis CECT7121 could be employed as an adjuvant strategy to potentiate humoral immune responses.

  7. CD8+ T-cell mediated anti-malaria protection induced by malaria vaccines; assessment of hepatic CD8+ T cells by SCBC assay.

    PubMed

    Zhou, Jing; Kaiser, Alaina; Ng, Colin; Karcher, Rachel; McConnell, Tim; Paczkowski, Patrick; Fernandez, Cristina; Zhang, Min; Mackay, Sean; Tsuji, Moriya

    2017-07-03

    Malaria is a severe infectious disease with relatively high mortality, thus having been a scourge of humanity. There are a few candidate malaria vaccines that have shown a protective efficacy in humans against malaria. One of the candidate human malaria vaccines, which is based on human malaria sporozoites and called PfSPZ Vaccine, has been shown to protect a significant proportion of vaccine recipients from getting malaria. PfSPZ Vaccine elicits a potent response of hepatic CD8+ T cells that are specific for malaria antigens in non-human primates. To further characterize hepatic CD8+ T cells induced by the sporozoite-based malaria vaccine in a mouse model, we have used a cutting-edge Single-cell Barcode (SCBC) assay, a recently emerged approach/method for investigating the nature of T-cells responses during infection or cancer. Using the SCBC technology, we have identified a population of hepatic CD8+ T cells that are polyfunctional at a single cell level only in a group of vaccinated mice upon malaria challenge. The cytokines/chemokines secreted by these polyfunctional CD8+ T-cell subsets include MIP-1α, RANTES, IFN-γ, and/or IL-17A, which have shown to be associated with protective T-cell responses against certain pathogens. Therefore, a successful induction of such polyfunctional hepatic CD8+ T cells may be a key to the development of effective human malaria vaccine. In addition, the SCBC technology could provide a new level of diagnostic that will allow for a more accurate determination of vaccine efficacy.

  8. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture

    PubMed Central

    Rajão, Daniela S.; Pérez, Daniel R.

    2018-01-01

    Influenza virus infections pose a significant threat to public health due to annual seasonal epidemics and occasional pandemics. Influenza is also associated with significant economic losses in animal production. The most effective way to prevent influenza infections is through vaccination. Current vaccine programs rely heavily on the vaccine's ability to stimulate neutralizing antibody responses to the hemagglutinin (HA) protein. One of the biggest challenges to an effective vaccination program lies on the fact that influenza viruses are ever-changing, leading to antigenic drift that results in escape from earlier immune responses. Efforts toward overcoming these challenges aim at improving the strength and/or breadth of the immune response. Novel vaccine technologies, the so-called universal vaccines, focus on stimulating better cross-protection against many or all influenza strains. However, vaccine platforms or manufacturing technologies being tested to improve vaccine efficacy are heterogeneous between different species and/or either tailored for epidemic or pandemic influenza. Here, we discuss current vaccines to protect humans and animals against influenza, highlighting challenges faced to effective and uniform novel vaccination strategies and approaches. PMID:29467737

  9. A Bivalent Typhoid Live Vector Vaccine Expressing both Chromosome- and Plasmid-Encoded Yersinia pestis Antigens Fully Protects against Murine Lethal Pulmonary Plague Infection

    PubMed Central

    Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.

    2014-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120

  10. Thermostable Cross-Protective Subunit Vaccine against Brucella Species

    PubMed Central

    Barabé, Nicole D.; Grigat, Michelle L.; Lee, William E.; Poirier, Robert T.; Jager, Scott J.; Berger, Bradley J.

    2014-01-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 105 CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  11. Thermostable cross-protective subunit vaccine against Brucella species.

    PubMed

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Cellular Immune Responses to Nine Mycobacterium tuberculosis Vaccine Candidates following Intranasal Vaccination

    PubMed Central

    Sable, Suraj B.; Cheruvu, Mani; Nandakumar, Subhadra; Sharma, Sunita; Bandyopadhyay, Kakali; Kellar, Kathryn L.; Posey, James E.; Plikaytis, Bonnie B.; Amara, Rama Rao; Shinnick, Thomas M.

    2011-01-01

    Background The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. Methods and Principal Findings In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study. Conclusion and Significance Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis. PMID:21799939

  13. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone.

    PubMed

    Li, Xiao-Feng; Dong, Hao-Long; Wang, Hong-Jiang; Huang, Xing-Yao; Qiu, Ye-Feng; Ji, Xue; Ye, Qing; Li, Chunfeng; Liu, Yang; Deng, Yong-Qiang; Jiang, Tao; Cheng, Gong; Zhang, Fu-Chun; Davidson, Andrew D; Song, Ya-Jun; Shi, Pei-Yong; Qin, Cheng-Feng

    2018-02-14

    The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.

  14. The challenge of developing a herpes simplex virus 2 vaccine

    PubMed Central

    Dropulic, Lesia K; Cohen, Jeffrey I

    2013-01-01

    HSV infections are prevalent worldwide. A vaccine to prevent genital herpes would have a significant impact on this disease. Several vaccines have shown promise in animal models; however, so far these have not been successful in human clinical studies. Prophylactic HSV vaccines to prevent HSV infection or disease have focused primarily on eliciting antibody responses. Potent antibody responses are needed to result in sufficiently high levels of virus-specific antibody in the genital tract. Therapeutic vaccines that reduce recurrences need to induce potent T-cell responses at the site of infection. With the increasing incidence of HSV-1 genital herpes, an effective herpes vaccine should protect against both HSV-1 and HSV-2. Novel HSV vaccines, such as replication-defective or attenuated viruses, have elicited humoral and cellular immune responses in preclinical studies. These vaccines and others hold promise in future clinical studies. PMID:23252387

  15. The Contribution of Systemic and Pulmonary Immune Effectors to Vaccine-Induced Protection from H5N1 Influenza Virus Infection

    PubMed Central

    Lau, Yuk-Fai; Wright, Amber R.

    2012-01-01

    Live attenuated influenza vaccines (LAIVs) are effective in providing protection against influenza challenge in animal models and in preventing disease in humans. We previously showed that LAIVs elicit a range of immune effectors and that successful induction of pulmonary cellular and humoral immunity in mice requires pulmonary replication of the vaccine virus. An upper respiratory tract immunization (URTI) model was developed in mice to mimic the human situation, in which the vaccine virus does not replicate in the lower respiratory tract, allowing us to assess the protective efficacy of an H5N1 LAIV against highly pathogenic H5N1 virus challenge in the absence of significant pulmonary immunity. Our results show that, after one dose of an H5N1 LAIV, pulmonary influenza-specific lymphocytes are the main contributors to clearance of challenge virus from the lungs and that contributions of influenza-specific enzyme-linked immunosorbent assay (ELISA) antibodies in serum and splenic CD8+ T cells were negligible. Complete protection from H5N1 challenge was achieved after two doses of H5N1 LAIV and was associated with maturation of the antibody response. Although passive transfer of sera from mice that received two doses of vaccine prevented lethality in naive recipients following challenge, the mice showed significant weight loss, with high pulmonary titers of the H5N1 virus. These data highlight the importance of mucosal immunity in mediating optimal protection against H5N1 infection. Understanding the requirements for effective induction and establishment of these protective immune effectors in the respiratory tract paves the way for a more rational and effective vaccine approach in the future. PMID:22379093

  16. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis.

    PubMed

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2017-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world's population with latent Mtb infection (LTBI), and 5-10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  17. [Acellular vaccines (DTPa/dTpa) against whooping cough, protection duration].

    PubMed

    Rigo-Medrano, M Vicenta; Mendoza-García, José L; Gimeno-Gascón, Adelina; Roda-Ramón, Jorge; Cremades-Bernabeú, Israel; Antequera-Rodríguez, Pedro; Alcalá-Minagorre, Pedro J; Ortiz-de la Tabla, Victoria; Rodríguez-Díaz, Juan Carlos

    2016-01-01

    An increase in whooping cough in most of the developed countries has been detected in the last decade. To determine whether the administration of dTpa vaccine instead of DTPa fifth dose is contributing to the appearance of these cases. A descriptive study based on cases of whooping cough reported during an epidemic period in the city of Alicante in the first 5 months of 2014. Only pertussis cases confirmed by PCR were included in the study, and only those vaccinated with 5 doses were included in the analysis of the period of protection. A total of 104 cases of pertussis confirmed by PCR were reported, with 85 cases (82%) having had 5 doses of vaccine. The mean time and standard deviation (SD) of protection was 2.1±1.1 years with dTpa, and 5.1±1.5 years with DTPa (p<.001). In the protection, adjusted for age, it was observed that, after 3 years, only 47.6% of people vaccinated with dTpa were still protected, while people vaccinated with DTPa were 100% protected (P<.001). This study found that people who were properly vaccinated against pertussis and received their last re-vaccination dose with dTpa had a shorter period of protection than those who were vaccinated with DTPa. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  18. Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease.

    PubMed

    Richner, Justin M; Jagger, Brett W; Shan, Chao; Fontes, Camila R; Dowd, Kimberly A; Cao, Bin; Himansu, Sunny; Caine, Elizabeth A; Nunes, Bruno T D; Medeiros, Daniele B A; Muruato, Antonio E; Foreman, Bryant M; Luo, Huanle; Wang, Tian; Barrett, Alan D; Weaver, Scott C; Vasconcelos, Pedro F C; Rossi, Shannan L; Ciaramella, Giuseppe; Mysorekar, Indira U; Pierson, Theodore C; Shi, Pei-Yong; Diamond, Michael S

    2017-07-13

    The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Protective immunity against influenza in HLA-A2 transgenic mice by modified vaccinia virus Ankara vectored vaccines containing internal influenza proteins.

    PubMed

    Di Mario, Giuseppina; Sciaraffia, Ester; Facchini, Marzia; Gubinelli, Francesco; Soprana, Elisa; Panigada, Maddalena; Bernasconi, Valentina; Garulli, Bruno; Siccardi, Antonio; Donatelli, Isabella; Castrucci, Maria R

    2017-03-01

    The emergence of novel strains of influenza A viruses with hemagglutinins (HAs) that are antigenically distinct from those circulating in humans, and thus have pandemic potential, pose concerns and call for the development of more broadly protective influenza vaccines. In the present study, modified vaccinia virus Ankara (MVA) encoding internal influenza antigens were evaluated for their immunogenicity and ability to protect HLA-A2.1 transgenic (AAD) mice from infection with influenza viruses. MVAs expressing NP (MVA-NP), M1 (MVA-M1) or polymerase PB1 (MVA-PB1) of A/California/4/09 (CA/09) virus were generated and used to immunize AAD mice. Antibodies and CD8+T cell responses were assessed by ELISA and ELISPOT, respectively, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. CD8+T cells specific to immunodominant and subdominant epitopes on the internal influenza proteins were elicited by MVA-based vectors in AAD mice, whereas influenza-specific antibodies were detected only in MVA-NP-immunized mice. Both M1- and NP-based MVA vaccines, regardless of whether they were applied individually or in combination, conferred protection against lethal influenza virus challenge. Our data further emphasize the promising potential of MVA vector expressing internal antigens toward the development of a universal influenza vaccine.

  20. Evaluation of smallpox vaccines using variola neutralization

    PubMed Central

    Damon, Inger K.; Davidson, Whitni B.; Hughes, Christine M.; Olson, Victoria A.; Smith, Scott K.; Holman, Robert C.; Frey, Sharon E.; Newman, Frances; Belshe, Robert B.; Yan, Lihan; Karem, Kevin

    2009-01-01

    The search for a ‘third’-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific ‘in vitro’ activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination. PMID:19339477

  1. Transcutaneous immunization with tetanus toxoid and mutants of Escherichia coli heat-labile enterotoxin as adjuvants elicits strong protective antibody responses.

    PubMed

    Tierney, Rob; Beignon, Anne-Sophie; Rappuoli, Rino; Muller, Sylviane; Sesardic, Dorothea; Partidos, Charalambos D

    2003-09-01

    In this study, the adjuvanticity of 2 nontoxic derivatives (LTK63 and LTR72) of heat-labile enterotoxin of Escherichia coli (LT) was evaluated and was compared with that of a cytosine phosphodiester-guanine (CpG) motif, after transcutaneous immunization with tetanus toxoid (TT). TT plus LTR72 elicited the strongest antibody responses, compared with those elicited by the other vaccines (TT, TT plus LTK63, TT plus CpG, and TT plus LTK63 plus CpG); it neutralized the toxin and conferred full protection after passive transfer in mice. Preexisting immunity to LT mutants did not adversely affect their adjuvant potency. Both LTK63 and LTR72 promoted the induction of IgG1 antibodies. In contrast, mice receiving either CpG motif alone or CpG motif plus LTK63 produced strong IgG2a anti-TT antibody responses. Overall, these findings demonstrate that mutants of enterotoxins with reduced toxicity are effective adjuvants for transcutaneous immunization.

  2. Salmonella DNA Adenine Methylase Mutants Confer Cross-Protective Immunity

    PubMed Central

    Heithoff, Douglas M.; Enioutina, Elena Y.; Daynes, Raymond A.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts. PMID:11598044

  3. A Recombinant Viral Hemorrhagic Septicemia Virus Genotype IVb Glycoprotein Produced in Cabbage Looper Larvae Trichoplusia ni Elicits Antibody Response and Protection in Muskellunge.

    PubMed

    Standish, Isaac; Faisal, Mohamed

    2017-06-01

    The Novirhabdovirus viral hemorrhagic septicemia virus (VHSV) genotype IVb has caused serious fish kills and become endemic throughout the Great Lakes basin of North America. This is troublesome since there are no protective vaccines currently approved against this deadly disease even though recombinant technology has become increasingly common. Herein, we explored the production of a recombinant VHSV-IVb glycoprotein, believed to be important for virus infectivity, and determined its ability to elicit protection against challenge with the wild virus strain. A recombinant baculovirus containing a 5' 6x polyhistidine tag embedded in the VHSV-IVb G gene was used to infect the larvae of the cabbage looper Trichoplusia ni. A sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of affinity-purified protein yielded apparent VHSV-IVb glycoprotein at the expected molecular weight of ~65 kDa. The recombinant protein (rG) was used successfully in coating microtiter plate wells in an indirect enzyme-linked immunosorbent assay (ELISA), and positive anti-VHSV-IVb antibodies in Muskellunge Esox masquinongy were capable of binding to both the rG and purified whole VHSV-IVb, indicating epitope resemblance. In addition, the rG elicited a protective response in Muskellunge during a VHSV-IVb immersion challenge, resulting in 80% relative percent survival. Our results demonstrate that cabbage looper larvae can serve as an excellent production system for apparently conformationally correct viral glycoprotein. The incorporation of a polyhistidine tag facilitates obtaining highly purified protein in a relatively high concentration, which has potential in the development of an efficacious subunit vaccine against this deadly virus. Received September 11, 2016; accepted March 10, 2017.

  4. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli.

    PubMed

    Maddux, Jacob T; Stromberg, Zachary R; Curtiss Iii, Roy; Mellata, Melha

    2017-01-01

    Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC) strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP) is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV) strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428) containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337) was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428) synthesized the major pilin (EcpA) and tip pilus adhesin (EcpD) on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337) without ECP or χ9558(pYA4428) with ECP, produced anti- Salmonella LPS and anti- E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit an

  5. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    PubMed

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-09

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  7. Induction of partial immunity in both males and females is sufficient to protect females against sexual transmission of Chlamydia.

    PubMed

    O'Meara, C P; Armitage, C W; Kollipara, A; Andrew, D W; Trim, L; Plenderleith, M B; Beagley, K W

    2016-07-01

    Sexually transmitted Chlamydia trachomatis causes infertility, and because almost 90% of infections are asymptomatic, a vaccine is required for its eradication. Mathematical modeling studies have indicated that a vaccine eliciting partial protection (non-sterilizing) may prevent Chlamydia infection transmission, if administered to both sexes before an infection. However, reducing chlamydial inoculum transmitted by males and increasing infection resistance in females through vaccination to elicit sterilizing immunity has yet to be investigated experimentally. Here we show that a partially protective vaccine (chlamydial major outer membrane protein (MOMP) and ISCOMATRIX (IMX) provided sterilizing immunity against sexual transmission between immunized mice. Immunizing male or female mice before an infection reduced chlamydial burden and disease development, but did not prevent infection. However, infection and inflammatory disease responsible for infertility were absent in 100% of immunized female mice challenged intravaginally with ejaculate collected from infected immunized males. In contrast to the sterilizing immunity generated following recovery from a previous chlamydial infection, protective immunity conferred by MOMP/IMX occurred independent of resident memory T cells. Our results demonstrate that vaccination of males or females can further protect the opposing sex, whereas vaccination of both sexes can synergize to elicit sterilizing immunity against Chlamydia sexual transmission.

  8. Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity

    PubMed Central

    VanBlargan, Laura A.

    2016-01-01

    SUMMARY The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies. PMID:27784796

  9. Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice

    PubMed Central

    Corvo, Laura; Garde, Esther; Ramírez, Laura; Iniesta, Virginia; Bonay, Pedro; Gómez-Nieto, Carlos; González, Víctor M.; Martín, M. Elena; Alonso, Carlos; Coelho, Eduardo A. F.; Barral, Aldina; Barral-Netto, Manoel

    2015-01-01

    Background Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Methodology/Principal Findings Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. Conclusion/Significance The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis. PMID:25955652

  10. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    PubMed Central

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P.; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2018-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI), and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection. PMID:29379507

  11. Smallpox DNA Vaccine Protects Nonhuman Primates Against Lethal Monkeypox

    DTIC Science & Technology

    2004-05-01

    skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting of four...administered to the skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting...vaccine to protect rhesus macaques from severe monkeypox. MATERIALS AND METHODS Viruses and cells. The VACV Connaught vaccine strain (derived from the New

  12. Virus replicon particles expressing porcine reproductive and respiratory syndrome virus proteins elicit immune priming but do not confer protection from viremia in pigs.

    PubMed

    Eck, Melanie; Durán, Margarita García; Ricklin, Meret E; Locher, Samira; Sarraseca, Javier; Rodríguez, María José; McCullough, Kenneth C; Summerfield, Artur; Zimmer, Gert; Ruggli, Nicolas

    2016-02-19

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.

  13. THE EFFECT OF HEMOPHILUS INFLUENZAE SUIS VACCINES ON SWINE INFLUENZA

    PubMed Central

    Shope, Richard E.

    1937-01-01

    Either living or heat-killed H. influenzae suis vaccines, given intramuscularly to swine, elicit an immune response capable of modifying the course of a later swine influenza infection. The protection afforded is only partial and is in no way comparable to the complete immunity afforded by swine influenza virus vaccines. PMID:19870654

  14. A Malaria Vaccine Based on the Polymorphic Block 2 Region of MSP-1 that Elicits a Broad Serotype-Spanning Immune Response

    PubMed Central

    Cowan, Graeme J. M.; Creasey, Alison M.; Dhanasarnsombut, Kelwalin; Thomas, Alan W.; Remarque, Edmond J.; Cavanagh, David R.

    2011-01-01

    Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen. PMID:22073118

  15. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections.

    PubMed

    Whitacre, David C; Espinosa, Diego A; Peters, Cory J; Jones, Joyce E; Tucker, Amy E; Peterson, Darrell L; Zavala, Fidel P; Milich, David R

    2015-01-01

    In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x10(6)) and provided 80-100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.

  16. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage].

    PubMed

    Maksiutov, R A; Shchelkunov, S N

    2011-01-01

    Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.

  17. Formulation in DDA-MPLA-TDB Liposome Enhances the Immunogenicity and Protective Efficacy of a DNA Vaccine against Mycobacterium tuberculosis Infection

    PubMed Central

    Tian, Maopeng; Zhou, Zijie; Tan, Songwei; Fan, Xionglin; Li, Longmeng; Ullah, Nadeem

    2018-01-01

    Despite the vaccine Mycobacterium bovis Bacillus Calmette–Guérin is used worldwide, tuberculosis (TB) remains the first killer among infectious diseases. An effective vaccine is urgently required. DNA vaccine has shown prophylactic as well as therapeutic effects against TB, while its weak immunogenicity hinders the application. As a strong inducer of Th1-biased immune response, DMT, consisting of dimethyldioctadecylammonium (DDA) and two pattern recognition receptor agonists monophosphoryl lipid A and trehalose 6,6′-dibehenate (TDB), was a newly developed liposomal adjuvant. To elucidate the action mechanism of DMT and improve immunological effects induced by DNA vaccine, a new recombinant eukaryotic expression plasmid pCMFO that secretes the fusion of four multistage antigens (Rv2875, Rv3044, Rv2073c, and Rv0577) of Mycobacterium tuberculosis was constructed. pCMFO/DDA and pCMFO/DMT complexes were then prepared and their physicochemical properties were analyzed. The immunogenicity and protection against M. tuberculosis infection in vaccinated C57BL/6 mice were compared. Formulation of DNA and two agonists into the DDA liposome decreased zeta potential but increased the stability of storage, which resulted in a slower and longer-lasting release of DNA from the DNA–DMT complex than the DNA–DDA liposome. Besides Th1-biased responses, pCMFO/DMT vaccinated mice elicited more significantly CFMO-specific IL2+ TCM cell responses in the spleen and provided an enhanced and persistent protection against M. tuberculosis aerosol infection, compared to pCMFO/DDA and pCMFO groups. Therefore, the adjuvant DMT can release DNA and agonists slowly, which might attribute to the improved protection of DMT adjuvanted vaccines. pCMFO/DMT, a very promising TB vaccine, warrants for further preclinical and clinical trials. PMID:29535714

  18. Brucellosis vaccines for livestock.

    PubMed

    Goodwin, Zakia I; Pascual, David W

    2016-11-15

    Brucellosis is a livestock disease responsible for fetal loss due to abortions. Worldwide, this disease has profound economic and social impact by reducing the ability of livestock producers to provide an adequate supply of disease-free meat and dairy products. In addition to its presence in domesticated animals, brucellosis is harbored in a number of wildlife species creating new disease reservoirs, which adds to the difficulty of eradicating this disease. Broad and consistent use of the available vaccines would contribute in reducing the incidence of brucellosis. Unfortunately, this practice is not common. In addition, the current brucellosis vaccines cannot provide sterilizing immunity, and in certain circumstances, vaccinated livestock are not protected against co-mingling Brucella-infected wildlife. Given that these vaccines are inadequate for conferring complete protection for some vaccinated livestock, alternatives are being sought, and these include genetic modifications of current vaccines or their reformulations. Alternatively, many groups have sought to develop new vaccines. Subunit vaccines, delivered as a combination of soluble vaccine plus adjuvant or the heterologous expression of Brucella epitopes by different vaccine vectors are currently being tested. New live attenuated Brucella vaccines are also being developed and tested in their natural hosts. Yet, what is rarely considered is the route of vaccination which could improve vaccine efficacy. Since Brucella infections are mostly transmitted mucosally, mucosal delivery of a vaccine has the potential of eliciting a more robust protective immune response for improved efficacy. Hence, this review will examine these questions and provide the status of new vaccines for livestock brucellosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Early protection of puppies against canine parvovirus: a comparison of two vaccines.

    PubMed

    McCaw, D L; Tate, D; Dubovi, E J; Johnson, J C

    1997-01-01

    Client-owned puppies randomly were assigned to receive one of two commercially available polyvalent vaccines. The response to the parvovirus portion of each vaccine was evaluated by determining antibody titers by hemagglutination inhibition. Significant differences were found between titers produced by the vaccines. Puppies vaccinated with one of the products had a more desirable result as demonstrated by a protective antibody titer after the first vaccination (p of 0.005), a protective antibody titer at a younger age (p of 0.02), a protective antibody titer by 12 weeks of age (p of 0.001), and a protective antibody titer by 16 weeks of age (p of 0.05). Puppies vaccinated with this product also had significantly higher titers at each sampling after vaccination.

  20. Delta inulin-derived adjuvants that elicit Th1 phenotype following vaccination reduces respiratory syncytial virus lung titers without a reduction in lung immunopathology.

    PubMed

    Wong, Terianne M; Petrovsky, Nikolai; Bissel, Stephanie J; Wiley, Clayton A; Ross, Ted M

    2016-08-02

    Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infections resulting in bronchiolitis and even mortality in the elderly and young children/infants. Despite the impact of this virus on human health, no licensed vaccine exists. Unlike many other viral infections, RSV infection or vaccination does not induce durable protective antibodies in humans. In order to elicit high titer, neutralizing antibodies against RSV, we investigated the use of the adjuvant Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles, to enhance antibody titers following vaccination. BALB/c mice were vaccinated intramuscularly with live RSV as a vaccine antigen in combination with one of two formulations of Advax™. Advax-1 was comprised of the standard delta inulin adjuvant and Advax-2 was formulated delta inulin plus CpG oligodendronucleotides (ODNs). An additional group of mice were either mock vaccinated, immunized with vaccine only, or administered vaccine plus Imject Alum. Following 3 vaccinations, mice had neutralizing antibody titers that correlated with reduction in viral titers in the lungs. Advax-1 significantly enhanced serum RSV-specific IgG1 levels at week 6 indicative of a Th2 response, similar to titers in mice administered vaccine plus Imject Alum. In contrast, mice vaccinated with vaccine plus Advax-2 had predominately IgG2a titers indicative of a Th1 response that was maintained during the entire study. Interestingly, regardless of which Advax TM adjuvant was used, the neutralizing titers were similar between groups, but the viral lung titers were significantly lower (∼10E+3pfu/g) in mice administered vaccine with either Advax TM adjuvant compared to mice administered adjuvants only. The lung pathology in vaccinated mice with Advax TM was similar to Imject Alum. Overall, RSV vaccine formulated with Advax TM had high neutralizing antibody titers with low lung viral titers, but exacerbated lung pathology compared

  1. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    PubMed

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results

  2. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    PubMed Central

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising

  3. A synthetic peptide vaccine directed against the 2ß2-2ß3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Yu, Fen; Cease, Kemp B

    2010-09-15

    The current vaccines for anthrax in the United States and United Kingdom are efficacious in the two most accepted animal models of inhalation anthrax, nonhuman primates and rabbits, but require extensive immunization protocols. We previously demonstrated that a linear determinant in domain 2 of Bacillus anthracis protective Ag (PA) is a potentially important target for an epitope-specific vaccine for anthrax, as Abs specific for this site, referred to as the loop-neutralizing determinant (LND), neutralize lethal toxin in vitro, yet are virtually absent in PA-immunized rabbits. In this study, we evaluated the immunogenicity and protective efficacy in rabbits of multiple antigenic peptides (MAPs) consisting of aa 304-319 from the LND of PA colinearly synthesized at the C terminus (T-B MAP) or N terminus (B-T MAP) with a heterologous T cell epitope from Plasmodium falciparum. Immunogenicity studies demonstrated that both MAPs elicited toxin-neutralizing Ab in rabbits. To evaluate the MAPs as potential anthrax vaccines, we immunized groups of rabbits (n = 7) with each MAP in Freund's adjuvant and then exposed all rabbits to a 200-LD(50) challenge with aerosolized spores of B. anthracis Ames strain. All seven rabbits immunized with the B-T MAP and 89% (six of seven) of rabbits immunized with the T-B MAP survived the spore challenge. Corollary studies with reference sera from human vaccinees immunized with rPA or anthrax vaccine absorbed and nonhuman primates immunized with PA revealed no detectable Ab with specificity for the LND. We conclude that a synthetic peptide vaccine targeting the LND would be a potentially efficacious vaccine for anthrax.

  4. Progress toward the Development of a NEAT Protein Vaccine for Anthrax Disease

    PubMed Central

    Balderas, Miriam A.; Nguyen, Chinh T. Q.; Terwilliger, Austen; Keitel, Wendy A.; Iniguez, Angelina; Torres, Rodrigo; Palacios, Frederico; Goulding, Celia W.

    2016-01-01

    Bacillus anthracis is a sporulating Gram-positive bacterium that is the causative agent of anthrax and a potential weapon of bioterrorism. The U.S.-licensed anthrax vaccine is made from an incompletely characterized culture supernatant of a nonencapsulated, toxigenic strain (anthrax vaccine absorbed [AVA]) whose primary protective component is thought to be protective antigen (PA). AVA is effective in protecting animals and elicits toxin-neutralizing antibodies in humans, but enthusiasm is dampened by its undefined composition, multishot regimen, recommended boosters, and potential for adverse reactions. Improving next-generation anthrax vaccines is important to safeguard citizens and the military. Here, we report that vaccination with recombinant forms of a conserved domain (near-iron transporter [NEAT]), common in Gram-positive pathogens, elicits protection in a murine model of B. anthracis infection. Protection was observed with both Freund's and alum adjuvants, given subcutaneously and intramuscularly, respectively, with a mixed composite of NEATs. Protection correlated with an antibody response against the NEAT domains and a decrease in the numbers of bacteria in major organs. Anti-NEAT antibodies promote opsonophagocytosis of bacilli by alveolar macrophages. To guide the development of inactive and safe NEAT antigens, we also report the crystal structure of one of the NEAT domains (Hal) and identify critical residues mediating its heme-binding and acquisition activity. These results indicate that we should consider NEAT proteins in the development of an improved antianthrax vaccine. PMID:27647868

  5. Progress toward the Development of a NEAT Protein Vaccine for Anthrax Disease.

    PubMed

    Balderas, Miriam A; Nguyen, Chinh T Q; Terwilliger, Austen; Keitel, Wendy A; Iniguez, Angelina; Torres, Rodrigo; Palacios, Frederico; Goulding, Celia W; Maresso, Anthony W

    2016-12-01

    Bacillus anthracis is a sporulating Gram-positive bacterium that is the causative agent of anthrax and a potential weapon of bioterrorism. The U.S.-licensed anthrax vaccine is made from an incompletely characterized culture supernatant of a nonencapsulated, toxigenic strain (anthrax vaccine absorbed [AVA]) whose primary protective component is thought to be protective antigen (PA). AVA is effective in protecting animals and elicits toxin-neutralizing antibodies in humans, but enthusiasm is dampened by its undefined composition, multishot regimen, recommended boosters, and potential for adverse reactions. Improving next-generation anthrax vaccines is important to safeguard citizens and the military. Here, we report that vaccination with recombinant forms of a conserved domain (near-iron transporter [NEAT]), common in Gram-positive pathogens, elicits protection in a murine model of B. anthracis infection. Protection was observed with both Freund's and alum adjuvants, given subcutaneously and intramuscularly, respectively, with a mixed composite of NEATs. Protection correlated with an antibody response against the NEAT domains and a decrease in the numbers of bacteria in major organs. Anti-NEAT antibodies promote opsonophagocytosis of bacilli by alveolar macrophages. To guide the development of inactive and safe NEAT antigens, we also report the crystal structure of one of the NEAT domains (Hal) and identify critical residues mediating its heme-binding and acquisition activity. These results indicate that we should consider NEAT proteins in the development of an improved antianthrax vaccine. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. A recombinant subunit vaccine for bovine RSV and Histophilus somni protects calves against dual pathogen challenge.

    PubMed

    Gershwin, Laurel J; Behrens, Nicole E; McEligot, Heather A; Carvallo-Chaigneau, Francisco R; Crum, Lauren T; Gunnarson, Brianna M; Corbeil, Lynette B

    2017-04-04

    Bovine respiratory syncytial virus (BRSV) and Histophilus somni synergize to cause respiratory disease in cattle. These pathogens cause enhanced disease during dual-infection and an IgE response to antigens of H. somni in dual-infected but not singly infected calves. Vaccines containing whole inactivated BRSV or H. somni have been associated with IgE responses A vaccine strategy that avoids stimulation of IgE antibodies would provide superior protection from dual infection. We hypothesized that a subunit vaccine consisting of the nucleoprotein (NP) from BRSV and the recombinant antigen IbpA DR2 (a surface antigen of H. somni with two toxic fic motifs) in Quil A adjuvant would elicit protection without disease enhancement. Three groups of calves were vaccinated twice with either: Formalin inactivated BRSV (FI) plus Somnivac®, NP & IbpA DR2 plus Quil A or Quil A alone, followed by BRSV and H. somni challenge. Clinical scores and antibody levels (to whole pathogens and to the subunits) were evaluated. Lungs were examined at necropsy on day 23 after infection. Clinical scores were significantly greatest for the FI & Somnivac® group and both clinical scores and lung pathology were lowest for the subunit group. All calves shed BRSV in nasal secretions. FI & Somnivac® induced IgE antibodies to H. somni and BRSV, but not to NP or DR2. The subunit vaccine did not induce an IgE antibody response to IbpA DR2 antigen and induced little IgE to H. somni. It did not induce an IgG antibody response to BRSV and H. somni, but stimulated production of IgG antibodies against the subunits. In summary, the subunit vaccine, consisting of the BRSV NP and H. somni IbpA DR2 in Quil A, protected against severe clinical signs and decreased lung pathology but did not prevent viral shedding. Importantly it prevented synergistic disease expression in response to dual infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice

    PubMed Central

    Wang, Jiong; Hilchey, Shannon P.; DeDiego, Marta; Perry, Sheldon; Hyrien, Ollivier; Nogales, Aitor; Garigen, Jessica; Amanat, Fatima; Huertas, Nelson; Krammer, Florian; Martinez-Sobrido, Luis; Topham, David J.; Treanor, John J.; Sangster, Mark Y.

    2018-01-01

    Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity. PMID:29641537

  8. Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice.

    PubMed

    Wang, Jiong; Hilchey, Shannon P; DeDiego, Marta; Perry, Sheldon; Hyrien, Ollivier; Nogales, Aitor; Garigen, Jessica; Amanat, Fatima; Huertas, Nelson; Krammer, Florian; Martinez-Sobrido, Luis; Topham, David J; Treanor, John J; Sangster, Mark Y; Zand, Martin S

    2018-01-01

    Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity.

  9. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    PubMed

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice.

    PubMed

    Caillet, Catherine; Piras, Fabienne; Bernard, Marie-Clotilde; de Montfort, Aymeric; Boudet, Florence; Vogel, Frederick R; Hoffenbach, Agnès; Moste, Catherine; Kusters, Inca

    2010-04-19

    Pandemic influenza vaccines have been manufactured using the A/California/07/2009 (H1N1) strain as recommended by the World Health Organization. We evaluated in mice the immunogenicity of pandemic (H1N1) 2009 vaccine and the impact of prior vaccination against seasonal trivalent influenza vaccines (TIV) on antibody responses against pandemic (H1N1) 2009. In naïve mice, a single dose of unadjuvanted H1N1 vaccine (3 microg of HA) was shown to elicit hemagglutination inhibition (HI) antibody titers >40, a titer associated with protection in humans against seasonal influenza. A second vaccine dose of pandemic (H1N1) 2009 vaccine strongly increased these titers, which were consistently higher in mice previously primed with TIV than in naïve mice. At a low immunization dose (0.3 microg of HA), the AF03-adjuvanted vaccine elicited higher HI antibody titers than the corresponding unadjuvanted vaccines in both naïve and TIV-primed animals, suggesting a potential for antigen dose-sparing. These results are in accordance with the use in humans of a split-virion inactivated pandemic (H1N1) 2009 vaccine formulated with or without AF03 adjuvant to protect children and young adults against influenza A (H1N1) 2009 infection. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Noninvasive vaccination against infectious diseases.

    PubMed

    Zheng, Zhichao; Diaz-Arévalo, Diana; Guan, Hongbing; Zeng, Mingtao

    2018-04-06

    The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.

  12. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus.

    PubMed

    Dunham, Stephen P; Bruce, Jennifer; Klein, Dieter; Flynn, J Norman; Golder, Matthew C; MacDonald, Susan; Jarrett, Oswald; Neil, James C

    2006-11-30

    Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.

  13. Vaccines against human papillomavirus infections: protection against cancer, genital warts or both?

    PubMed

    Joura, E A; Pils, S

    2016-12-01

    Since 2006, three vaccines against infections and disease caused by human papillomavirus (HPV) became available in Europe-in 2006 a quadrivalent HPV 6/11/16/18 vaccine, in 2007 a bivalent HPV 16/18 vaccine and in 2015 a nonavalent HPV 6/11/16/18/31/33/45/52/58 vaccine. HPV 16 and 18 are the most oncogenic HPV strains, causing about 70% of cervical and other HPV-related cancers, HPV 6 and 11 cause 85% of all genital warts. The additional types of the polyvalent vaccine account for about 20% of invasive cervical cancer and >35% of pre-cancer. The potential differences between these vaccines caused some debate. All three vaccines give a robust and long-lasting protection against the strains in the various vaccines. The promise of cross-protection against other types (i.e. HPV 31/33/45) and hence a broader cancer protection was not fulfilled because these observations were confounded by the vaccine efficacy against the vaccine types. Furthermore, cross-protection was not consistent over various studies, not durable and not consistently seen in the real world experience. The protection against disease caused by oncogenic HPV strains was not compromised by the protection against low-risk types causing genital warts. The most effective cancer protection to date can be expected by the nonavalent vaccine, data indicate a 97% efficacy against cervical and vulvovaginal pre-cancer caused by these nine HPV types. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Vaccines against malaria-still a long way to go.

    PubMed

    Matuschewski, Kai

    2017-08-01

    Several species of Plasmodium cause a broad spectrum of human disease that range from nausea and fever to severe anemia, cerebral malaria, and multiorgan failure. In malaria-endemic countries, continuous exposure to Plasmodium sporozoite inoculations and subsequent blood infections elicit only partial and short-lived immunity, which gradually develops over many years of parasite exposure and multiple clinical episodes. The ambitious goal of malaria vaccinology over the past 70 years has been to develop an immunization strategy that mounts protection superior to naturally acquired immunity. Herein, three principal concepts in evidence-based malaria vaccine development are compared. Feasible leads are typically stand-alone subunit vaccine approaches that block Plasmodium parasite life cycle progression or parasite/host interactions, and they constitute the majority of candidates in preclinical research and early clinical testing. Integrated approaches incorporate malaria antigen(s) into licensed or emerging pediatric vaccine formulations. This strategy can complement the malaria control portfolio even if the antimalarial component is only partially effective and has led to the development of the only candidate vaccine to date, namely RTS,S-AS01. Experimental whole parasite vaccine approaches have been repeatedly shown to elicit sterile and lasting protection against identical parasite strains, but mass production, proof of broad protection against different parasite strains, and routes of vaccine delivery remain significant translational road blocks. Global access to an effective and affordable malaria vaccine will critically depend on innovative translational research that builds on a better molecular understanding of Plasmodium biology and host immunity. © 2017 Federation of European Biochemical Societies.

  15. Maternal Vaccination With a Monocomponent Pertussis Toxoid Vaccine Is Sufficient to Protect Infants in a Baboon Model of Whooping Cough.

    PubMed

    Kapil, Parul; Papin, James F; Wolf, Roman F; Zimmerman, Lindsey I; Wagner, Leslie D; Merkel, Tod J

    2018-03-28

    Bordetella pertussis is a human pathogen responsible for serious respiratory illness. The disease is most severe in infants too young to be vaccinated with most hospitalizations and deaths occurring within this age group. The Advisory Committee on Immunization Practices recommended immunization of pregnant women to protect infants from birth until their first vaccination at 6-8 weeks of age. We previously demonstrated that maternal vaccination with licensed acellular pertussis vaccines protected newborn baboons from disease. We hypothesized that protection was due to toxin-neutralizing, maternal anti-pertussis toxin antibodies and predicted that maternal vaccination with a pertussis toxoid (PTx)-only vaccine would protect newborns from disease. Infant baboons born to unvaccinated mothers or mothers vaccinated with a PTx-only vaccine were challenged with B. pertussis at 5 weeks of age and followed for infection and signs of disease. Although all challenged infants were heavily colonized, the infant baboons born to mothers vaccinated with PTx-only vaccine were free from clinical disease following exposure to B. pertussis. In contrast, disease was observed in infants born to unvaccinated mothers. Our results demonstrated that maternal vaccination with a PTx-only vaccine is sufficient to protect newborn baboons from disease following exposure to pertussis.

  16. Protective Vaccination against Papillomavirus-Induced Skin Tumors under Immunocompetent and Immunosuppressive Conditions: A Preclinical Study Using a Natural Outbred Animal Model

    PubMed Central

    Vinzón, Sabrina E.; Braspenning-Wesch, Ilona; Müller, Martin; Geissler, Edward K.; Nindl, Ingo; Gröne, Hermann-Josef

    2014-01-01

    Certain cutaneous human papillomaviruses (HPVs), which are ubiquitous and acquired early during childhood, can cause a variety of skin tumors and are likely involved in the development of non-melanoma skin cancer, especially in immunosuppressed patients. Hence, the burden of these clinical manifestations demands for a prophylactic approach. To evaluate whether protective efficacy of a vaccine is potentially translatable to patients, we used the rodent Mastomys coucha that is naturally infected with Mastomys natalensis papillomavirus (MnPV). This skin type papillomavirus induces not only benign skin tumours, such as papillomas and keratoacanthomas, but also squamous cell carcinomas, thereby allowing a straightforward read-out for successful vaccination in a small immunocompetent laboratory animal. Here, we examined the efficacy of a virus-like particle (VLP)-based vaccine on either previously or newly established infections. VLPs raise a strong and long-lasting neutralizing antibody response that confers protection even under systemic long-term cyclosporine A treatment. Remarkably, the vaccine completely prevents the appearance of benign as well as malignant skin tumors. Protection involves the maintenance of a low viral load in the skin by an antibody-dependent prevention of virus spread. Our results provide first evidence that VLPs elicit an effective immune response in the skin under immunocompetent and immunosuppressed conditions in an outbred animal model, irrespective of the infection status at the time of vaccination. These findings provide the basis for the clinical development of potent vaccination strategies against cutaneous HPV infections and HPV-induced tumors, especially in patients awaiting organ transplantation. PMID:24586150

  17. Characterization and protective efficacy in an animal model of a novel truncated rotavirus VP8 subunit parenteral vaccine candidate.

    PubMed

    Xue, Miaoge; Yu, Linqi; Che, Yaojian; Lin, Haijun; Zeng, Yuanjun; Fang, Mujin; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2015-05-21

    The cell-attachment protein VP8* of rotavirus is a potential candidate parenteral vaccine. However, the yield of full-length VP8 protein (VP8*, residues 1-231) expressed in Escherichia coli was low, and a truncated VP8 protein (ΔVP8*, residues 65-231) cannot elicit efficient protective immunity in a mouse model. In this study, tow novel truncated VP8 proteins, VP8-1 (residues 26-231) and VP8-2 (residues 51-231), were expressed in E. coli and evaluated for immunogenicity and protective efficacy, compared with VP8* and ΔVP8*. As well as ΔVP8*, the protein VP8-1 and VP8-2 were successfully expressed in high yield and purified in homogeneous dimeric forms, while the protein VP8* was expressed with lower yield and prone to aggregation and degradation in solution. Although the immunogenicity of the protein VP8*, VP8-1, VP8-2 and ΔVP8* was comparable, immunization of VP8* and VP8-1 elicited significantly higher neutralizing antibody titers than that of VP8-2 and ΔVP8* in mice. Furthermore, when assessed using a mouse maternal antibody model, the efficacy of VP8-1 to protect against rotavirus-induced diarrhea in pups was comparable to that of VP8*, both were dramatically higher than that of VP8-2 and ΔVP8*. Taken together, the novel truncated protein VP8-1, with increased yield, improved homogeneity and high protective efficacy, is a viable candidate for further development of a parenterally administrated prophylactic vaccine against rotavirus infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Immunologic and Virologic Mechanisms for Partial Protection from Intravenous Challenge by an Integration-Defective SIV Vaccine

    PubMed Central

    Wang, Chu; Jiang, Chunlai; Gao, Nan; Zhang, Kaikai; Liu, Donglai; Wang, Wei; Cong, Zhe; Qin, Chuan; Ganusov, Vitaly V.; Ferrari, Guido; LaBranche, Celia; Montefiori, David C.; Kong, Wei; Yu, Xianghui; Gao, Feng

    2017-01-01

    The suppression of viral loads and identification of selection signatures in non-human primates after challenge are indicators for effective human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) vaccines. To mimic the protective immunity elicited by attenuated SIV vaccines, we developed an integration-defective SIV (idSIV) vaccine by inactivating integrase, mutating sequence motifs critical for integration, and inserting the cytomegalovirus (CMV) promoter for more efficient expression in the SIVmac239 genome. Chinese rhesus macaques were immunized with idSIV DNA and idSIV particles, and the cellular and humoral immune responses were measured. After the intravenous SIVmac239 challenge, viral loads were monitored and selection signatures in viral genomes from vaccinated monkeys were identified by single genome sequencing. T cell responses, heterologous neutralization against tier-1 viruses, and antibody-dependent cellular cytotoxicity (ADCC) were detected in idSIV-vaccinated macaques post immunization. After challenge, the median peak viral load in the vaccine group was significantly lower than that in the control group. However, this initial viral control did not last as viral set-points were similar between vaccinated and control animals. Selection signatures were identified in Nef, Gag, and Env proteins in vaccinated and control macaques, but these signatures were different, suggesting selection pressure on viruses from vaccine-induced immunity in the vaccinated animals. Our results showed that the idSIV vaccine exerted some pressure on the virus population early during the infection but future modifications are needed in order to induce more potent immune responses. PMID:28574482

  19. Influence of the Co-Administration of Heptavalent Conjugate Vaccine PCV7-TT on the Immunological Response Elicited by VA-MENGOC-BC® and Heberpenta®-L in Rabbits.

    PubMed

    Espinosa-Viñals, Carlos; García-Rivera, Dagmar; Rodríguez Noda, Laura; Amador Gómez, Aylín; Nicot, Milagros; Valle, Orialys; Núñez, Juan F; Martin, Yanet; Santana, Darielys; Valdés, Yury; Vérez Bencomo, Vicente

    2017-05-01

    Finlay Vaccine Institute is developing a new heptavalent conjugate vaccine against Streptococcus pneumoniae. As infants are the target population, PCV7-TT will be necessarily co-administered with other vaccines, and then, the interactions represent a concern. The aim of this work is to evaluate the possible immunological interferences in rabbits as animal experimental model. Rabbits were immunized with Heberpenta®-L, VA-MENGOC-BC®, and PCV7-TT. Blood samples were taken fourteen days after final immunization for obtaining sera. Antibody responses to all antigens were evaluated by indirect ELISA. Functional responses against diphtheria and tetanus toxoid were done by in vivo seroneutralization assay. No interference was observed by PCV7-TT over the humoral response against diphtheria toxoid and meningococcal antigens (p > 0.05). A nonstatistically significant reduction (p > 0.05) was observed in the case of the humoral response against Haemophilus influenzae type b oligosaccharide. Concomitant administration of Heberpenta®-L and PCV7-TT increased twice the antibody titers as well as the protective activity against tetanus toxoid, but no statistical differences were found. The co-administration did not induce a reduction in the percent of responders against pneumococcal polysaccharides contained in PCV7-TT vaccine. Concomitant administration of PCV7-TT did not induce interferences over the evaluated antigens of Heberpenta®-L and VA-MENGOC-BC®. Also, no interference was observed on the immune response elicited by PCV7-TT. These preclinical results suggest that PCV7-TT will not result in a serious problem over the immune response elicited by the licensed vaccines Heberpenta®-L and VA-MENGOC-BC®. However, the clinical interference could be strictly studied during clinical trials in infants.

  20. A Single Vaccination with an Improved Nonspreading Rift Valley Fever Virus Vaccine Provides Sterile Immunity in Lambs

    PubMed Central

    Oreshkova, Nadia; van Keulen, Lucien; Kant, Jet; Moormann, Rob J. M.; Kortekaas, Jeroen

    2013-01-01

    Rift Valley fever virus (RVFV) is an important pathogen that affects ruminants and humans. Recently we developed a vaccine based on nonspreading RVFV (NSR) and showed that a single vaccination with this vaccine protects lambs from viremia and clinical signs. However, low levels of viral RNA were detected in the blood of vaccinated lambs shortly after challenge infection. These low levels of virus, when present in a pregnant ewe, could potentially infect the highly susceptible fetus. We therefore aimed to further improve the efficacy of the NSR vaccine. Here we report the expression of Gn, the major immunogenic protein of the virus, from the NSR genome. The resulting NSR-Gn vaccine was shown to elicit superior CD8 and CD4-restricted memory responses and improved virus neutralization titers in mice. A dose titration study in lambs revealed that the highest vaccination dose of 106.3 TCID50/ml protected all lambs from clinical signs and viremia. The lambs developed neutralizing antibodies within three weeks after vaccination and no anamnestic responses were observed following challenge. The combined results suggest that sterile immunity was achieved by a single vaccination with the NSR-Gn vaccine. PMID:24167574

  1. Laser microporation of the skin: prospects for painless application of protective and therapeutic vaccines

    PubMed Central

    Scheiblhofer, Sandra; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    Introduction: In contrast to muscle and subcutaneous tissue, the skin is easily accessible and provides unique immunological properties. Increasing knowledge about the complex interplay of skin-associated cell types in the development of cutaneous immune responses has fueled efforts to target the skin for vaccination as well as for immunotherapy. Areas covered: This review provides an overview on skin layers and their resident immunocompetent cell types. Advantages and shortcomings of standard methods and innovative technologies to circumvent the outermost skin barrier are addressed. Studies employing fractional skin ablation by infrared lasers for cutaneous delivery of drugs, as well as high molecular weight molecules such as protein antigens or antibodies, are reviewed, and laserporation is introduced as a versatile transcutaneous vaccination platform. Specific targeting of the epidermis or the dermis by different laser settings, the resulting kinetics of uptake and transport and the immune response types elicited are discussed, and the potential of this transcutaneous delivery platform for allergen-specific immunotherapy is demonstrated. Expert opinion: Needle-free and painless vaccination approaches have the potential to replace standard methods due to their improved safety and optimal patient compliance. The use of fractional laser devices for stepwise ablation of skin layers might be advantageous for both vaccination against microbial pathogens, as well as immunotherapeutic approaches, such as allergen-specific immunotherapy. Thorough investigation of the underlying immunological mechanisms will help to provide the knowledge for a rational design of transcutaneous protective/therapeutic vaccines. PMID:23425032

  2. Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates.

    PubMed

    Laughlin, Richard C; Drake, Kenneth L; Morrill, John C; Adams, L Garry

    2016-01-01

    Rift Valley fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVF vaccine, authentic recombinant MP-12 (arMP-12). From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with arMP-12. While the serology and protective response induced by arMP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood of vaccinated calves over a time course of 21 days before and after vaccination with arMP-12. The time course RNAs were sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to the vaccine induced immune response and its regulation. Additional bioinformatic analyses identified a correlative relationship between specific host immune response genes and protective immunity prior to the detection of protective serum neutralizing antibody responses. These results contribute an important proof of concept for identifying molecular and genetic components underlying the immune response to RVF vaccination and protection prior to serologic detection.

  3. Novel Synthetic (Poly)Glycerolphosphate-Based Antistaphylococcal Conjugate Vaccine

    PubMed Central

    Chen, Quanyi; Dintaman, Jay; Lees, Andrew; Sen, Goutam; Schwartz, David; Shirtliff, Mark E.; Park, Saeyoung; Lee, Jean C.; Mond, James J.

    2013-01-01

    Staphylococcal infections are a major source of global morbidity and mortality. Currently there exists no antistaphylococcal vaccine in clinical use. Previous animal studies suggested a possible role for purified lipoteichoic acid as a vaccine target for eliciting protective IgG to several Gram-positive pathogens. Since the highly conserved (poly)glycerolphosphate backbone of lipoteichoic acid is a major antigenic target of the humoral immune system during staphylococcal infections, we developed a synthetic method for producing glycerol phosphoramidites to create a covalent 10-mer of (poly)glycerolphosphate for potential use in a conjugate vaccine. We initially demonstrated that intact Staphylococcus aureus elicits murine CD4+ T cell-dependent (poly)glycerolphosphate-specific IgM and IgG responses in vivo. Naive mice immunized with a covalent conjugate of (poly)glycerolphosphate and tetanus toxoid in alum plus CpG-oligodeoxynucleotides produced high secondary titers of serum (poly)glycerolphosphate-specific IgG. Sera from immunized mice enhanced opsonophagocytic killing of live Staphylococcus aureus in vitro. Mice actively immunized with the (poly)glycerolphosphate conjugate vaccine showed rapid clearance of staphylococcal bacteremia in vivo relative to mice similarly immunized with an irrelevant conjugate vaccine. In contrast to purified, natural lipoteichoic acid, the (poly)glycerolphosphate conjugate vaccine itself exhibited no detectable inflammatory activity. These data suggest that a synthetic (poly)glycerolphosphate-based conjugate vaccine will contribute to active protection against extracellular Gram-positive pathogens expressing this highly conserved backbone structure in their membrane-associated lipoteichoic acid. PMID:23649092

  4. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis.

    PubMed

    Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A; Lozza, Laura; Saikali, Philippe; Sander, Leif E; Vogelzang, Alexis; Kaufmann, Stefan H E; Kupz, Andreas

    2016-11-22

    Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (T RM ) cells have been implicated in protective immune responses against viral infections, but the role of T RM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and T RM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4 + T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8 + T cells displayed prototypical T RM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. BCG remains the only licensed vaccine against TB. Parenterally administered BCG has variable efficacy against pulmonary TB, and thus, improved prevention strategies and a more refined understanding of correlates of vaccine protection are required. Induction of memory T cells has been shown to be essential for protective TB vaccines. Mimicking the natural infection route by mucosal vaccination has been known to generate superior protection against TB in animal models; however, the

  5. Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models.

    PubMed

    Tian, Jing-Hui; Glenn, Gregory; Flyer, David; Zhou, Bin; Liu, Ye; Sullivan, Eddie; Wu, Hua; Cummings, James F; Elllingsworth, Larry; Smith, Gale

    2017-07-24

    Clostridium difficile is the number one cause of nosocomial antibiotic-associated diarrhea in developed countries. Historically, pathogenesis was attributed two homologous glucosylating toxins, toxin-A (TcdA) and toxin-B (TcdB). Over the past decade, however, highly virulent epidemic strains of C. difficile (B1/NAP1/027) have emerged and are linked to an increase in morbidity and mortality. Increased virulence is attributed to multiple factors including: increased production of A- and B-toxins; production of binary toxin (CDT); and the emergence of more toxic TcdB variants (TcdB (027) ). TcdB (027) is more cytotoxicity to cells; causes greater tissue damage and toxicity in animals; and is antigenically distinct from historical TcdB (TcdB (003) ). Broadly protective vaccines and therapeutic antibody strategies, therefore, may target TcdA, TcdB variants and CDT. To facilitate the generation of multivalent toxin-based C. difficile vaccines and therapeutic antibodies, we have generated fusion proteins constructed from the receptor binding domains (RBD) of TcdA, TcdB (003) , TcdB (027) and CDT. Herein, we describe the development of a trivalent toxin (T-toxin) vaccine (CDTb/TcdB (003) /TcdA) and quadravalent toxin (Q-toxin) vaccine (CDTb/TcB (003) /TcdA/TcdB (027) ) fusion proteins that retain the protective toxin neutralizing epitopes. Active immunization of mice or hamsters with T-toxin or Q-toxin fusion protein vaccines elicited the generation of toxin neutralizing antibodies to each of the toxins. Hamsters immunized with the Q-toxin vaccine were broadly protected against spore challenge with historical C. difficile 630 (toxinotype 0/ribotype 003) and epidemic NAP1 (toxinotype III/ribotype 027) strains. Fully human polyclonal antitoxin IgG was produced by immunization of transgenic bovine with these fusion proteins. In passive transfer studies, mice were protected against lethal toxin challenge. Hamsters treated with human antitoxin IgG were completely protected when

  6. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery

    PubMed Central

    Best, Simon R.; Peng, Shiwen; Juang, Chi-Mou; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.; Pai, Sara I.

    2009-01-01

    DNA vaccines are an attractive approach to eliciting antigen-specific immunity. Intracellular targeting of tumor antigens through its linkage to immunostimulatory molecules such as calreticulin (CRT) can improve antigen processing and presentation through the MHC Class I pathway and increase cytotoxic CD8+ T cell production. However, even with these enhancements, the efficacy of such immunotherapeutic strategies is dependent on the identification of an effective route and method of DNA administration. Electroporation and gene gun-mediated particle delivery are leading methods of DNA vaccine delivery that can generate protective and therapeutic levels of immune responses in experimental models. In this study, we perform a head-to-head comparison of three methods of vaccination – conventional intramuscular injection, electroporation mediated intramuscular delivery, and epidermal gene gun-mediated particle delivery - in the ability to generate antigen specific cytotoxic CD8+ T cell responses as well as anti-tumor immune responses against an HPV-16 E7 expressing tumor cell line using the pNGVL4a-CRT/E7(detox) DNA vaccine. Vaccination via electroporation generated the highest number of E7-specific cytotoxic CD8+ T cells, which correlated to improved outcomes in the treatment of growing tumors. In addition, we demonstrate that electroporation results in significantly higher levels of circulating protein compared to gene gun or intramuscular vaccination, which likely enhances calreticulin’s role as a local tumor anti-angiogenesis agent. We conclude that electroporation is a promising method for delivery of HPV DNA vaccines and should be considered for DNA vaccine delivery in human clinical trials. PMID:19622402

  7. Protective immunity of a modified-live cyprinid herpesvirus 3 vaccine in koi (Cyprinus carpio koi) 13 months after vaccination.

    PubMed

    O'Connor, Matthew R; Farver, Thomas B; Malm, Kirsten V; Yun, Susan C; Marty, Gary D; Salonius, Kira; Dishon, Arnon; Weber, E P Scott

    2014-10-01

    To evaluate the long-term protective immunity of a cyprinid herpesvirus 3 (CyHV3) vaccine in naïve koi (Cyprinus carpio koi). 72 koi. Procedures-Vaccinated koi (n = 36) and unvaccinated control koi (36) were challenge exposed to a wild-type CyHV3 strain (KHVp8 F98-50) 13 months after vaccination. The CyHV3 vaccine provided substantial protective immunity against challenge exposure. The proportional mortality rate was less in vaccinated koi (13/36 [36%]) than in unvaccinated koi (36/36 [100%]). For koi that died during the experiment, mean survival time was significantly greater in vaccinated than in unvaccinated fish (17 vs 10 days). The CyHV3 vaccine provided substantial protective immunity against challenge exposure with CyHV3 13 months after vaccination. This provided evidence that koi can be vaccinated annually with the CyHV3 vaccine to significantly reduce mortality and morbidity rates associated with CyHV3 infection.

  8. Chemoprophylaxis with sporozoite immunization in P. knowlesi rhesus monkeys confers protection and elicits sporozoite-specific memory T cells in the liver

    PubMed Central

    Spring, Michele D.; Yongvanitchit, Kosol; Kum-Arb, Utaiwan; Limsalakpetch, Amporn; Im-Erbsin, Rawiwan; Ubalee, Ratawan; Vanachayangkul, Pattaraporn; Remarque, Edmond J.; Angov, Evelina; Smith, Philip L.; Saunders, David L.

    2017-01-01

    Whole malaria sporozoite vaccine regimens are promising new strategies, and some candidates have demonstrated high rates of durable clinical protection associated with memory T cell responses. Little is known about the anatomical distribution of memory T cells following whole sporozoite vaccines, and immunization of nonhuman primates can be used as a relevant model for humans. We conducted a chemoprophylaxis with sporozoite (CPS) immunization in P. knowlesi rhesus monkeys and challenged via mosquito bites. Half of CPS immunized animals developed complete protection, with a marked delay in parasitemia demonstrated in the other half. Antibody responses to whole sporozoites, CSP, and AMA1, but not CelTOS were detected. Peripheral blood T cell responses to whole sporozoites, but not CSP and AMA1 peptides were observed. Unlike peripheral blood, there was a high frequency of sporozoite-specific memory T cells observed in the liver and bone marrow. Interestingly, sporozoite-specific CD4+ and CD8+ memory T cells in the liver highly expressed chemokine receptors CCR5 and CXCR6, both of which are known for liver sinusoid homing. The majority of liver sporozoite-specific memory T cells expressed CD69, a phenotypic marker of tissue-resident memory (TRM) cells, which are well positioned to rapidly control liver-stage infection. Vaccine strategies that aim to elicit large number of liver TRM cells may efficiently increase the efficacy and durability of response against pre-erythrocytic parasites. PMID:28182750

  9. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    PubMed

    Mire, Chad E; Geisbert, Joan B; Marzi, Andrea; Agans, Krystle N; Feldmann, Heinz; Geisbert, Thomas W

    2013-01-01

    Ebola virus (EBOV) causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV) or Zaire ebolavirus (ZEBOV) challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV) using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV), or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine vectors employed

  10. Protective immunity against nervous necrosis virus in convict grouper Epinephelus septemfasciatus following vaccination with virus-like particles produced in yeast Saccharomyces cerevisiae.

    PubMed

    Wi, Ga Ram; Hwang, Jee Youn; Kwon, Mun-Gyeong; Kim, Hyoung Jin; Kang, Hyun Ah; Kim, Hong-Jin

    2015-05-15

    Infection with nervous necrosis virus (NNV) causes viral nervous necrosis, which inflicts serious economic losses in marine fish cultivation. Virus-like particles (VLPs) are protein complexes consisting of recombinant virus capsid proteins, whose shapes are similar to native virions. VLPs are considered a novel vaccine platform because they are not infectious and have the ability to induce neutralizing antibodies efficiently. However, there have been few studies of protective immune responses employing virus challenge following immunization with NNV VLPs, and this is important for evaluating the utility of the vaccine. In the present study, we produced red-spotted grouper (Epinephelus akaara) NNV (RGNNV) VLPs in Saccharomyces cerevisiae and investigated protective immune responses in convict grouper (Epinephelus septemfasciatus) following intraperitoneal injection and oral immunization with the RGNNV VLPs. The parenterally administered VLPs elicited neutralizing antibody with high efficacy, and provided the fish with full protection against RGNNV challenge: 100% of the immunized fish survived compared with only 37% of the control fish receiving phosphate-buffered saline. RGNNV VLPs administered orally provoked neutralizing antibody systemically and conferred protective immunity against virus challenge: however only 57% of the fish survived. Our results demonstrate that RGNNV VLP produced in yeast has great potential as vaccine in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    PubMed Central

    Dong, Li-Li; Tang, Ru; Zhai, Yu-Jia; Malla, Tejsu; Hu, Kai

    2017-01-01

    AIM To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK), when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. PMID:29181304

  12. Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new perspective.

    PubMed

    Renukaradhya, Gourapura J; Dwivedi, Varun; Manickam, Cordelia; Binjawadagi, Basavaraj; Benfield, David

    2012-06-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically important infectious disease of swine. Constant emergence of variant strains of PRRS virus (PPRSV) and virus-mediated immune evasion followed by viral persistence result in increased incidence and recurrence of PRRS in swine herds. Current live and killed PRRSV vaccines administered by a parenteral route are ineffective in inducing complete protection. Thus, new approaches in design and delivery of PRRSV vaccines are needed to reduce the disease burden of the swine industry. Induction of an effective mucosal immunity to several respiratory pathogens by direct delivery of a vaccine to mucosal sites has proven to be effective in a mouse model. However, there are challenges in eliciting mucosal immunity to PRRS due to our limited understanding of safe and potent mucosal adjuvants, which could potentiate the mucosal immune response to PRRSV. The purpose of this review is to discuss methods for induction of protective mucosal immune responses in the respiratory tract of pigs. The manuscript also discusses how PRRSV modulates innate, adaptive and immunoregulatory responses at both mucosal and systemic sites of infected and/or vaccinated pigs. This information may help in the design of innovative mucosal vaccines to elicit superior cross-protective immunity against divergent field strains of PRRSV.

  13. Impact of genetic changes, pathogenicity and antigenicity on Enterovirus- A71 vaccine development.

    PubMed

    Yee, Pinn Tsin Isabel; Laa Poh, Chit

    2017-06-01

    Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice

    PubMed Central

    Pinzon-Charry, Alberto; McPhun, Virginia; Kienzle, Vivian; Hirunpetcharat, Chakrit; Engwerda, Christian; McCarthy, James; Good, Michael F.

    2010-01-01

    Development of a vaccine that targets blood-stage malaria parasites is imperative if we are to sustainably reduce the morbidity and mortality caused by this infection. Such a vaccine should elicit long-lasting immune responses against conserved determinants in the parasite population. Most blood-stage vaccines, however, induce protective antibodies against surface antigens, which tend to be polymorphic. Cell-mediated responses, on the other hand, offer the theoretical advantage of targeting internal antigens that are more likely to be conserved. Nonetheless, few of the current blood-stage vaccine candidates are able to harness vigorous T cell immunity. Here, we present what we believe to be a novel blood-stage whole-organism vaccine that, by combining low doses of killed parasite with CpG-oligodeoxynucleotide (CpG-ODN) adjuvant, was able to elicit strong and cross-reactive T cell responses in mice. Our data demonstrate that immunization of mice with 1,000 killed parasites in CpG-ODN engendered durable and cross-strain protection by inducing a vigorous response that was dependent on CD4+ T cells, IFN-γ, and nitric oxide. If applicable to humans, this approach should facilitate the generation of robust, cross-reactive T cell responses against malaria as well as antigen availability for vaccine manufacture. PMID:20628205

  15. Leaky vaccines protect highly exposed recipients at a lower rate: implications for vaccine efficacy estimation and sieve analysis.

    PubMed

    Edlefsen, Paul T

    2014-01-01

    "Leaky" vaccines are those for which vaccine-induced protection reduces infection rates on a per-exposure basis, as opposed to "all-or-none" vaccines, which reduce infection rates to zero for some fraction of subjects, independent of the number of exposures. Leaky vaccines therefore protect subjects with fewer exposures at a higher effective rate than subjects with more exposures. This simple observation has serious implications for analysis methodologies that rely on the assumption that the vaccine effect is homogeneous across subjects. We argue and show through examples that this heterogeneous vaccine effect leads to a violation of the proportional hazards assumption, to incomparability of infected cases across treatment groups, and to nonindependence of the distributions of the competing failure processes in a competing risks setting. We discuss implications for vaccine efficacy estimation, correlates of protection analysis, and mark-specific efficacy analysis (also known as sieve analysis).

  16. Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds

    PubMed Central

    Madani, Navid; Princiotto, Amy M.; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B.; Liao, Hua-Xin; Moody, M. Anthony; Phad, Ganesh E.; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B.; Karlsson Hedestam, Gunilla B.; Haynes, Barton

    2016-01-01

    ABSTRACT The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in

  17. Protecting patients, protecting healthcare workers: a review of the role of influenza vaccination

    PubMed Central

    Music, T

    2012-01-01

    MUSIC T. (2012) A review of the role the role of influenza vaccination in protecting patients, protecting healthcare workers the role of influenza vaccination. International Nursing Review59, 161–167 Aim: Many health authorities recommend routine influenza vaccination for healthcare workers (HCWs), and during the 2009 A (H1N1) pandemic, the World Health Organization (WHO) recommended immunization of all HCWs worldwide. As this remains an important area of policy debate, this paper examines the case for vaccination, the role of local guidelines, barriers to immunization and initiatives to increase uptake. Background: Seasonal influenza is a major threat to public health, causing up to 1 million deaths annually. Extensive evidence supports the vaccination of priority groups, including HCWs. Immunization protects HCWs themselves, and their vulnerable patients from nosocomial influenza infections. In addition, influenza can disrupt health services and impact healthcare organizations financially. Immunization can reduce staff absences, offer cost savings and provide economic benefits. Methods: This paper reviews official immunization recommendations and HCW vaccination studies, including a recent International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) survey of 26 countries from each region of the world. Results: HCW immunization is widely recommended and supported by the WHO. In the IFPMA study, 88% of countries recommended HCW vaccination, and 61% supported this financially (with no correlation to country development status). Overall, coverage can be improved, and research shows that uptake may be impacted by lack of conveniently available vaccines and misconceptions regarding vaccine safety/efficacy and influenza risk. Conclusions: Many countries recommend HCW vaccination against influenza. In recent years, there has been an increased uptake rate among HCWs in some countries, but not in others. Several initiatives can increase coverage

  18. Impact of vaccine herd-protection effects in cost-effectiveness analyses of childhood vaccinations. A quantitative comparative analysis.

    PubMed

    Holubar, Marisa; Stavroulakis, Maria Christina; Maldonado, Yvonne; Ioannidis, John P A; Contopoulos-Ioannidis, Despina

    2017-01-01

    Inclusion of vaccine herd-protection effects in cost-effectiveness analyses (CEAs) can impact the CEAs-conclusions. However, empirical epidemiologic data on the size of herd-protection effects from original studies are limited. We performed a quantitative comparative analysis of the impact of herd-protection effects in CEAs for four childhood vaccinations (pneumococcal, meningococcal, rotavirus and influenza). We considered CEAs reporting incremental-cost-effectiveness-ratios (ICERs) (per quality-adjusted-life-years [QALY] gained; per life-years [LY] gained or per disability-adjusted-life-years [DALY] avoided), both with and without herd protection, while keeping all other model parameters stable. We calculated the size of the ICER-differences without vs with-herd-protection and estimated how often inclusion of herd-protection led to crossing of the cost-effectiveness threshold (of an assumed societal-willingness-to-pay) of $50,000 for more-developed countries or X3GDP/capita (WHO-threshold) for less-developed countries. We identified 35 CEA studies (20 pneumococcal, 4 meningococcal, 8 rotavirus and 3 influenza vaccines) with 99 ICER-analyses (55 per-QALY, 27 per-LY and 17 per-DALY). The median ICER-absolute differences per QALY, LY and DALY (without minus with herd-protection) were $15,620 (IQR: $877 to $48,376); $54,871 (IQR: $787 to $115,026) and $49 (IQR: $15 to $1,636) respectively. When the target-vaccination strategy was not cost-saving without herd-protection, inclusion of herd-protection always resulted in more favorable results. In CEAs that had ICERs above the cost-effectiveness threshold without herd-protection, inclusion of herd-protection led to crossing of that threshold in 45% of the cases. This impacted only CEAs for more developed countries, as all but one CEAs for less developed countries had ICERs below the WHO-cost-effectiveness threshold even without herd-protection. In several analyses, recommendation for the adoption of the target

  19. Impact of vaccine herd-protection effects in cost-effectiveness analyses of childhood vaccinations. A quantitative comparative analysis

    PubMed Central

    Maldonado, Yvonne; Ioannidis, John P. A.; Contopoulos-Ioannidis, Despina

    2017-01-01

    Background Inclusion of vaccine herd-protection effects in cost-effectiveness analyses (CEAs) can impact the CEAs-conclusions. However, empirical epidemiologic data on the size of herd-protection effects from original studies are limited. Methods We performed a quantitative comparative analysis of the impact of herd-protection effects in CEAs for four childhood vaccinations (pneumococcal, meningococcal, rotavirus and influenza). We considered CEAs reporting incremental-cost-effectiveness-ratios (ICERs) (per quality-adjusted-life-years [QALY] gained; per life-years [LY] gained or per disability-adjusted-life-years [DALY] avoided), both with and without herd protection, while keeping all other model parameters stable. We calculated the size of the ICER-differences without vs with-herd-protection and estimated how often inclusion of herd-protection led to crossing of the cost-effectiveness threshold (of an assumed societal-willingness-to-pay) of $50,000 for more-developed countries or X3GDP/capita (WHO-threshold) for less-developed countries. Results We identified 35 CEA studies (20 pneumococcal, 4 meningococcal, 8 rotavirus and 3 influenza vaccines) with 99 ICER-analyses (55 per-QALY, 27 per-LY and 17 per-DALY). The median ICER-absolute differences per QALY, LY and DALY (without minus with herd-protection) were $15,620 (IQR: $877 to $48,376); $54,871 (IQR: $787 to $115,026) and $49 (IQR: $15 to $1,636) respectively. When the target-vaccination strategy was not cost-saving without herd-protection, inclusion of herd-protection always resulted in more favorable results. In CEAs that had ICERs above the cost-effectiveness threshold without herd-protection, inclusion of herd-protection led to crossing of that threshold in 45% of the cases. This impacted only CEAs for more developed countries, as all but one CEAs for less developed countries had ICERs below the WHO-cost-effectiveness threshold even without herd-protection. In several analyses, recommendation for the

  20. Low-dose intradermal and intramuscular vaccination against hepatitis B.

    PubMed

    Bryan, J P; Sjogren, M H; Perine, P L; Legters, L J

    1992-03-01

    Hepatitis B and its sequelae are global problems preventable by immunization. Expense limits the use of hepatitis B vaccines, but low-dose intradermal immunization has been evaluated as a cost-saving strategy in numerous studies. With few exceptions, low-dose intradermal plasma-derived vaccines have elicited protective levels of antibody in 82%-100% of young healthy adults--a proportion similar to that noted with full-dose regimens; peak levels of antibody to hepatitis B surface antigen (HBsAg) are lower with reduced doses, however. Although children respond well to low-dose intradermal immunization, this procedure is technically difficult in neonates and should not be used for those born to HBsAg-positive mothers. For persons at high risk, antibody to HBsAg must be assessed after immunization to determine the need for a booster dose. A fourth dose 1-2 years after the initial series substantially increases antibody concentrations. In low intradermal doses, recombinant vaccine elicits lower rates of seroconversion than plasma-derived vaccine. However, low intramuscular doses of recombinant vaccine give favorable results. In short, low-dose intradermal or intramuscular immunization offers protection against hepatitis B at significant savings and may be useful for mass immunization of populations at high risk.

  1. Consumption of baits containing raccoon pox-based plague vaccines protects black-tailed prairie dogs (Cynomys ludovicianus).

    PubMed

    Rocke, Tonie E; Pussini, Nicola; Smith, Susan R; Williamson, Judy; Powell, Bradford; Osorio, Jorge E

    2010-01-01

    Baits containing recombinant raccoon poxvirus (RCN) expressing plague antigens (fraction 1 [F1] and a truncated form of the V protein-V307) were offered for voluntary consumption several times over the course of several months to a group of 16 black-tailed prairie dogs (Cynomys ludovicianus). For comparison, another group of prairie dogs (n = 12) was injected subcutaneously (SC) (prime and boost) with 40 microg of F1-V fusion protein absorbed to alum, a vaccine-adjuvant combination demonstrated to elicit immunity to plague in mice and other mammals. Control animals received baits containing RCN without the inserted antigen (n = 8) or injected diluent (n = 7), and as there was no difference in their survival rates by Kaplan-Meier analysis, all of them were combined into one group in the final analysis. Mean antibody titers to Yersinia pestis F1 and V antigen increased (p < 0.05) in the vaccinated groups compared to controls, but titers were significantly higher (p < 0.0001) in those receiving injections of F1-V fusion protein than in those orally vaccinated with RCN-based vaccine. Interestingly, upon challenge with approximately 70,000 cfu of virulent Y. pestis, oral vaccination resulted in survival rates that were significantly higher (p = 0.025) than the group vaccinated by injection with F1-V fusion protein and substantially higher (p < 0.0001) than the control group. These results demonstrate that oral vaccination of prairie dogs using RCN-based plague vaccines provides significant protection against challenge at dosages that simulate simultaneous delivery of the plague bacterium by numerous flea bites.

  2. Plant-Produced Subunit Vaccine Candidates against Yellow Fever Induce Virus Neutralizing Antibodies and Confer Protection against Viral Challenge in Animal Models.

    PubMed

    Tottey, Stephen; Shoji, Yoko; Jones, R Mark; Chichester, Jessica A; Green, Brian J; Musiychuk, Konstantin; Si, Huaxin; Manceva, Slobodanka D; Rhee, Amy; Shamloul, Moneim; Norikane, Joey; Guimarães, Rosane C; Caride, Elena; Silva, Andrea N M R; Simões, Marisol; Neves, Patricia C C; Marchevsky, Renato; Freire, Marcos S; Streatfield, Stephen J; Yusibov, Vidadi

    2018-02-01

    Yellow fever (YF) is a viral disease transmitted by mosquitoes and endemic mostly in South America and Africa with 20-50% fatality. All current licensed YF vaccines, including YF-Vax ® (Sanofi-Pasteur, Lyon, France) and 17DD-YFV (Bio-Manguinhos, Rio de Janeiro, Brazil), are based on live attenuated virus produced in hens' eggs and have been widely used. The YF vaccines are considered safe and highly effective. However, a recent increase in demand for YF vaccines and reports of rare cases of YF vaccine-associated fatal adverse events have provoked interest in developing a safer YF vaccine that can be easily scaled up to meet this increased global demand. To this point, we have engineered the YF virus envelope protein (YFE) and transiently expressed it in Nicotiana benthamiana as a stand-alone protein (YFE) or as fusion to the bacterial enzyme lichenase (YFE-LicKM). Immunogenicity and challenge studies in mice demonstrated that both YFE and YFE-LicKM elicited virus neutralizing (VN) antibodies and protected over 70% of mice from lethal challenge infection. Furthermore, these two YFE-based vaccine candidates induced VN antibody responses with high serum avidity in nonhuman primates and these VN antibody responses were further enhanced after challenge infection with the 17DD strain of YF virus. These results demonstrate partial protective efficacy in mice of YFE-based subunit vaccines expressed in N. benthamiana . However, their efficacy is inferior to that of the live attenuated 17DD vaccine, indicating that formulation development, such as incorporating a more suitable adjuvant, may be required for product development.

  3. Measurements of Immune Responses for Establishing Correlates of Vaccine Protection Against HIV

    PubMed Central

    Burgers, Wendy A.; Manrique, Amapola; McKinnon, Lyle R.; Reynolds, Matthew R.; Rolland, Morgane; Blish, Catherine; Chege, Gerald K.; Curran, Rhonda; Fischer, William; Herrera, Carolina; Sather, D. Noah

    2012-01-01

    Abstract Well-defined correlates of protective immunity are an essential component of rational vaccine development. Despite years of basic science and three HIV vaccine efficacy trials, correlates of immunological protection from HIV infection remain undefined. In December 2010, a meeting of scientists engaged in basic and translational work toward developing HIV-1 vaccines was convened. The goal of this meeting was to discuss current opportunities and optimal approaches for defining correlates of protection, both for ongoing and future HIV-1 vaccine candidates; specific efforts were made to engage young scientists. We discuss here the highlights from the meeting regarding the progress made and the way forward for a protective HIV-1 vaccine. PMID:21861777

  4. Protective effects of vaccines against Bordetella parapertussis in a mouse intranasal challenge model.

    PubMed

    Komatsu, Eiji; Yamaguchi, Fuminori; Eguchi, Masahiro; Watanabe, Mineo

    2010-06-17

    Bordetella parapertussis causes typical whooping cough, as does Bordetella pertussis. However, current commercial vaccines are ineffective against B. parapertussis. In an effort to develop vaccines that are effective in protecting against both B. pertussis and B. parapertussis, we examined the protective effects of vaccines prepared from whole-cells and from recombinant proteins derived from B. parapertussis in a mouse intranasal challenge model. We confirmed current pertussis vaccines did not induce protective immunity against B. parapertussis in the mouse model. A whole-cell vaccine prepared from B. parapertussis induced protective immunity against B. parapertussis but not against B. pertussis, suggesting a combination of a current pertussis vaccine with a whole-cell parapertussis vaccine might prevent whooping cough caused by both species of Bordetella. We also found that filamentous hemagglutinin was a protective antigen of B. parapertussis. Our observations should lead to the development of new pertussis vaccines that can control the two prevalent forms of whooping cough.

  5. Towards Identifying Protective B-Cell Epitopes: The PspA Story.

    PubMed

    Khan, Naeem; Jan, Arif T

    2017-01-01

    Pneumococcal surface protein A (PspA) is one of the most abundant cell surface protein of Streptococcus pneumoniae ( S. pneumoniae ). PspA variants are structurally and serologically diverse and help evade complement-mediated phagocytosis of S. pneumoniae , which is essential for its survival in the host. PspA is currently been screened for employment in the generation of more effective (serotype independent) vaccine to overcome the limitations of polysaccharide based vaccines, providing serotype specific immune responses. The cross-protection eliciting regions of PspA localize to the α-helical and proline rich regions. Recent data indicate significant variation in the ability of antibodies induced against the recombinant PspA variants to recognize distinct S. pneumoniae strains. Hence, screening for the identification of the topographical repertoire of B-cell epitopes that elicit cross-protective immune response seems essential in the engineering of a superior PspA-based vaccine. Herein, we revisit epitope identification in PspA and the utility of hybridoma technology in directing the identification of protective epitope regions of PspA that can be used in vaccine research.

  6. Influenza Virus Vaccine Based on the Conserved Hemagglutinin Stalk Domain

    PubMed Central

    Steel, John; Lowen, Anice C.; Wang, Taia T.; Yondola, Mark; Gao, Qinshan; Haye, Kester; García-Sastre, Adolfo; Palese, Peter

    2010-01-01

    ABSTRACT Although highly effective in the general population when well matched to circulating influenza virus strains, current influenza vaccines are limited in their utility due to the narrow breadth of protection they provide. The strain specificity of vaccines presently in use mirrors the exquisite specificity of the neutralizing antibodies that they induce, that is, antibodies which bind to the highly variable globular head domain of hemagglutinin (HA). Herein, we describe the construction of a novel immunogen comprising the conserved influenza HA stalk domain and lacking the globular head. Vaccination of mice with this headless HA construct elicited immune sera with broader reactivity than those obtained from mice immunized with a full-length HA. Furthermore, the headless HA vaccine provided full protection against death and partial protection against disease following lethal viral challenge. Our results suggest that the response induced by headless HA vaccines is sufficiently potent to warrant their further development toward a universal influenza virus vaccine. PMID:20689752

  7. Community Immunity: How Vaccines Protect Us All

    MedlinePlus

    ... Issues Subscribe October 2011 Print this issue Community Immunity How Vaccines Protect Us All Send us your ... This type of protection is known as “community immunity” or “herd immunity.” When enough of the community ...

  8. Protein- and DNA-based anthrax toxin vaccines confer protection in guinea pigs against inhalational challenge with Bacillus cereus G9241.

    PubMed

    Palmer, John; Bell, Matt; Darko, Christian; Barnewall, Roy; Keane-Myers, Andrea

    2014-11-01

    In the past decade, several Bacillus cereus strains have been isolated from otherwise healthy individuals who succumbed to bacterial pneumonia presenting symptoms resembling inhalational anthrax. One strain was indistinguishable from B. cereus G9241, previously cultured from an individual who survived a similar pneumonia-like illness and which was shown to possess a complete set of plasmid-borne anthrax toxin-encoding homologs. The finding that B. cereus G9241 pathogenesis in mice is dependent on pagA1-derived protective antigen (PA) synthesis suggests that an anthrax toxin-based vaccine may be effective against this toxin-encoding B. cereus strain. Dunkin Hartley guinea pigs were immunized with protein- and DNA-based anthrax toxin-based vaccines, immune responses were evaluated and survival rates were calculated after lethal aerosol exposure with B. cereus G9241 spores. Each vaccine induced seroconversion with the protein immunization regimen eliciting significantly higher serum levels of antigen-specific antibodies at the prechallenge time-point compared with the DNA-protein prime-boost immunization schedule. Complete protection against lethal challenge was observed in all groups with a detectable prechallenge serum titer of toxin neutralizing antibodies. For the first time, we demonstrated that the efficacy of fully defined anthrax toxin-based vaccines was protective against lethal B. cereus G9241 aerosol challenge in the guinea pig animal model. Published 2014. This article is a US Government work and is in the public domain in the USA.

  9. Duration of protection of pentavalent rotavirus vaccination in Nicaragua.

    PubMed

    Patel, Manish; Pedreira, Cristina; De Oliveira, Lucia Helena; Umaña, Jazmina; Tate, Jacqueline; Lopman, Ben; Sanchez, Edmundo; Reyes, Martha; Mercado, Juan; Gonzalez, Alcides; Perez, Maria Celina; Balmaceda, Angel; Andrus, Jon; Parashar, Umesh

    2012-08-01

    To evaluate the duration of protection of pentavaent rotavirus vaccine (RV5) against rotavirus hospitalizations in Nicaragua, a developing country in Central America. We conducted a case-control study at 4 hospitals from 2007 through 2010, including 1016 children hospitalized with laboratory-confirmed rotavirus diarrhea, 4930 controls with nonrotavirus diarrhea (ie, "test-negative"), and 5627 controls without diarrhea. All cases and controls were aged ≥ 6 months and born after August 2006. Outcomes included odds of antecedent vaccination between case-patients and controls, and effectiveness of vaccination (1 - adjusted odds ratio [OR] × 100). Duration of protection was assessed by comparing effectiveness among children aged <1 year compared with ≥ 1 year. Indicators of socioeconomic conditions and nonrotavirus vaccination (oral polio vaccine and diphtheria/tetanus/pertussis/hepatitis A/hepatitis B) for test-negative controls were more comparable to the rotavirus case-patients than nondiarrhea controls. RV5 vaccination was associated with a significantly lower risk of rotavirus hospitalization by using test-negative controls (OR: 0.55; 95% confidence interval [CI]: 0.41-0.74) and nondiarrhea controls (OR: 0.30; 95% CI: 0.22-0.40). Risk of rotavirus hospitalization was twofold lower among RV5 vaccinated children aged <1 year (OR: 0.36; 95% CI: 0.22-0.57) compared with RV5 vaccinated children aged ≥ 1 year (OR: 0.70; 95% CI: 0.47-1.05). RV5 provided good protection against severe rotavirus disease in Nicaragua during the first year of life, when most severe and fatal rotavirus disease in developing countries occurs. However, the decline in protection with age warrants monitoring of disease among older children and consideration of a booster dose evaluation at the end of infancy.

  10. Single-dose Live Oral Cholera Vaccine CVD 103-HgR Protects Against Human Experimental Infection With Vibrio cholerae O1 El Tor.

    PubMed

    Chen, Wilbur H; Cohen, Mitchell B; Kirkpatrick, Beth D; Brady, Rebecca C; Galloway, David; Gurwith, Marc; Hall, Robert H; Kessler, Robert A; Lock, Michael; Haney, Douglas; Lyon, Caroline E; Pasetti, Marcela F; Simon, Jakub K; Szabo, Flora; Tennant, Sharon; Levine, Myron M

    2016-06-01

    No licensed cholera vaccine is presently available in the United States. Cholera vaccines available in other countries require 2 spaced doses. A single-dose cholera vaccine that can rapidly protect short-notice travelers to high-risk areas and help control explosive outbreaks where logistics render 2-dose immunization regimens impractical would be a major advance.PXVX0200, based on live attenuated Vibrio cholerae O1 classical Inaba vaccine strain CVD 103-HgR, elicits seroconversion of vibriocidal antibodies (a correlate of protection) within 10 days of a single oral dose. We investigated the protection conferred by this vaccine in a human cholera challenge model. Consenting healthy adult volunteers, 18-45 years old, were randomly allocated 1:1 to receive 1 oral dose of vaccine (approximately 5 × 10(8) colony-forming units [CFU]) or placebo in double-blind fashion. Volunteers ingested approximately 1 × 10(5) CFU of wild-type V. cholerae O1 El Tor Inaba strain N16961 10 days or 3 months after vaccination and were observed on an inpatient research ward for stool output measurement and management of hydration. The vaccine was well tolerated, with no difference in adverse event frequency among 95 vaccinees vs 102 placebo recipients. The primary endpoint, moderate (≥3.0 L) to severe (≥5.0 L) diarrheal purge, occurred in 39 of 66 (59.1%) placebo controls but only 2 of 35 (5.7%) vaccinees at 10 days (vaccine efficacy, 90.3%; P < .0001) and 4 of 33 (12.1%) vaccinees at 3 months (vaccine efficacy, 79.5%; P < .0001). The significant vaccine efficacy documented 10 days and 3 months after 1 oral dose of PXVX0200 supports further development as a single-dose cholera vaccine. NCT01895855. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    PubMed Central

    Li, Yi-Ping; Kang, Hye Na; Babiuk, Lorne A; Liu, Qiang

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-γ secreting cells, and cytotoxic T lymphocyte assays. RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations. PMID:17131474

  12. Approved but non-funded vaccines: accessing individual protection.

    PubMed

    Scheifele, David W; Ward, Brian J; Halperin, Scott A; McNeil, Shelly A; Crowcroft, Natasha S; Bjornson, Gordean

    2014-02-07

    Funded immunization programs are best able to achieve high participation rates, optimal protection of the target population, and indirect protection of others. However, in many countries public funding of approved vaccines can be substantially delayed, limited to a portion of the at-risk population or denied altogether. In these situations, unfunded vaccines are often inaccessible to individuals at risk, allowing potentially avoidable morbidity and mortality to continue to occur. We contend that private access to approved but unfunded vaccines should be reconsidered and encouraged, with recognition that individuals have a prerogative to take advantage of a vaccine of potential benefit to them whether it is publicly funded or not. Moreover, numbers of "approved but unfunded" vaccines are likely to grow because governments will not be able to fund all future vaccines of potential benefit to some citizens. New strategies are needed to better use unfunded vaccines even though the net benefits will fall short of those of funded programs. Canada, after recent delays funding several new vaccine programs, has developed means to encourage private vaccine use. Physicians are required to inform relevant patients about risks and benefits of all recommended vaccines, publicly funded or not. Likewise, some provincial public health departments now recommend and promote both funded and unfunded vaccines. Pharmacists are key players in making unfunded vaccines locally available. Professional organizations are contributing to public and provider education about unfunded vaccines (e.g. herpes zoster, not funded in any province). Vaccine companies are gaining expertise with direct-to-consumer advertising. However, major challenges remain, such as making unfunded vaccines more available to low-income families and overcoming public expectations that all vaccines will be provided cost-free, when many other recommended personal preventive measures are user-pay. The greatest need is to

  13. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    PubMed

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.

  14. The immunology of smallpox vaccines

    PubMed Central

    Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A

    2010-01-01

    In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization. PMID:19524427

  15. Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle.

    PubMed

    Dulal, Pawan; Wright, Daniel; Ashfield, Rebecca; Hill, Adrian V S; Charleston, Bryan; Warimwe, George M

    2016-04-29

    Development of safe and efficacious vaccines whose potency is unaffected by long-term storage at ambient temperature would obviate major vaccine deployment hurdles and limit wastage associated with breaks in the vaccine cold chain. Here, we evaluated the immunogenicity of a novel chimpanzee adenovirus vectored Rift Valley Fever vaccine (ChAdOx1-GnGc) in cattle, following its thermostabilisation by slow desiccation on glass fiber membranes in the non-reducing sugars trehalose and sucrose. Thermostabilised ChAdOx1-GnGc vaccine stored for 6 months at 25, 37 or 45 ° C elicited comparable Rift Valley Fever virus neutralising antibody titres to those elicited by the 'cold chain' vaccine (stored at -80 ° C throughout) at the same dose, and these were within the range associated with protection against Rift Valley Fever in cattle. The results support the use of sugar-membrane thermostabilised vaccines in target livestock species. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

    PubMed

    Vordermeier, H Martin; Villarreal-Ramos, Bernardo; Cockle, Paul J; McAulay, Martin; Rhodes, Shelley G; Thacker, Tyler; Gilbert, Sarah C; McShane, Helen; Hill, Adrian V S; Xing, Zhou; Hewinson, R Glyn

    2009-08-01

    Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.

  17. Biopolymer encapsulated live influenza virus as a universal CD8+ T cell vaccine against influenza virus.

    PubMed

    Boesteanu, Alina C; Babu, Nadarajan S; Wheatley, Margaret; Papazoglou, Elisabeth S; Katsikis, Peter D

    2010-12-16

    Current influenza virus vaccines primarily elicit antibodies and can be rendered ineffective by antigenic drift and shift. Vaccines that elicit CD8+ T cell responses targeting less variable proteins may function as universal vaccines that have broad reactivity against different influenza virus strains. To generate such a universal vaccine, we encapsulated live influenza virus in a biopolymer and delivered it to mice subcutaneously. This vaccine was safe, induced potent CD8+ T cell immunity and protected mice against heterosubtypic lethal challenge. Safety of subcutaneous (SQ) vaccination was tested in Rag-/-γc-/- double knockout mice which we show cannot control intranasal infection. Biopolymer encapsulation of live influenza virus could be used to develop universal CD8+ T cell vaccines against heterosubtypic and pandemic strains. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge

    PubMed Central

    Magini, Diletta; Giovani, Cinzia; Mangiavacchi, Simona; Maccari, Silvia; Cecchi, Raffaella; Ulmer, Jeffrey B.; De Gregorio, Ennio; Geall, Andrew J.; Brazzoli, Michela; Bertholet, Sylvie

    2016-01-01

    Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM®) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM) and effector memory (TEM) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines. PMID:27525409

  19. Establishing Correlates of Protection for Vaccine Development: Considerations for the Respiratory Syncytial Virus Vaccine Field.

    PubMed

    Kulkarni, Prasad S; Hurwitz, Julia L; Simões, Eric A F; Piedra, Pedro A

    2018-03-01

    Correlates of protection (CoPs) can play a significant role in vaccine development by assisting the selection of vaccine candidates for clinical trials, supporting clinical trial design and implementation, and simplifying tests of vaccine modifications. Because of this important role in vaccine development, it is essential that CoPs be defined by well-designed immunogenicity and efficacy studies, with attention paid to benefits and limitations. The respiratory syncytial virus (RSV) field is unique in that a great deal of information about the humoral response is available from basic research and clinical studies. Polyclonal and monoclonal antibodies have been used routinely in the clinic to protect vulnerable infants from infection, providing a wealth of information about correlations between neutralizing antibodies and disease prevention. Considerations for the establishment of future CoPs to support RSV vaccine development in different populations are therefore discussed.

  20. An Influenza HA and M2e Based Vaccine Delivered by a Novel Attenuated Salmonella Mutant Protects Mice against Homologous H1N1 Infection.

    PubMed

    Hajam, Irshad A; Lee, John H

    2017-01-01

    Attenuated Salmonella strains constitute a promising technology for the development of a more efficient multivalent protein based vaccines. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the H1N1 hemagglutinin (HA) and the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strain exhibited efficient HA and M2e protein expressions and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we showed that the mice vaccinated with a Salmonella strain expressing HA and M2e protein antigens, respectively, induced significant production of HA and M2e-specific serum IgG1 and IgG2a responses, and of anti-HA interferon-γ producing T cells. Furthermore, immunization with Salmonella-HA-M2e-based vaccine via different routes provided protection in 66.66% orally, 100% intramuscularly, and 100% intraperitoneally immunized mice against the homologous H1N1 virus while none of the animals survived treated with either the PBS or the Salmonella carrying empty expression vector. Ex vivo stimulated dendritic cells (DCs) with heat killed Salmonella expressing HA demonstrated that DCs play an important role in the elicitation of HA-specific humoral immune responses in mice. In summary, Salmonella -HA-M2e-based vaccine elicits efficient antigen-specific humoral and cellular immune responses, and provides significant immune protection against a highly pathogenic H1N1 influenza virus.

  1. The role of anti-NHba antibody in bactericidal activity elicited by the meningococcal serogroup B vaccine, MenB-4C.

    PubMed

    Partridge, Elizabeth; Lujan, Eduardo; Giuntini, Serena; Vu, David M; Granoff, Dan M

    2017-07-24

    MenB-4C (Bexsero®) is a multicomponent serogroup B meningococcal vaccine. For vaccine licensure, efficacy was inferred from serum bactericidal antibody (SBA) against three antigen-specific indicator strains. The bactericidal role of antibody to the fourth vaccine antigen, Neisserial Heparin binding antigen (NHba), is incompletely understood. We identified nine adults immunized with two or three doses of MenB-4C who had sufficient volumes of sera and >3-fold increases in SBA titer against a strain with high NHba expression, which was mismatched with the other three MenB-4C antigens that elicit SBA. Using 1month-post-immunization sera we measured the effect of depletion of anti-NHba and/or anti-Factor H binding protein (FHbp) antibodies on SBA. Against three strains matched with the vaccine only for NHba, depletion of anti-NHba decreased SBA titers by an average of 43-79% compared to mock-adsorbed sera (P<0.05). Despite expression of sub-family A FHbp (mismatched with the sub-family B vaccine antigen), depletion of anti-FHbp antibodies also decreased SBA by 45-64% (P<0.05). Depletion of both antibodies decreased SBA by 84-100%. Against a strain with sub-family B FHbp and expression of NHba with 100% identity to the vaccine antigen, depletion of anti-NHba decreased SBA by an average of 26%, compared to mock-adsorbed sera (P<0.0001), and depletion of anti-FHbp antibody decreased SBA by 92% (P<0.0001). Anti-NHba antibody can contribute to SBA elicited by MenB-4C, particularly in concert with anti-FHbp antibody. However, some high NHba-expressing strains are resistant, even with an exact match between the amino acid sequence of the vaccine and strain antigens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Simultaneous Subcutaneous and Intranasal Administration of a CAF01-Adjuvanted Chlamydia Vaccine Elicits Elevated IgA and Protective Th1/Th17 Responses in the Genital Tract

    PubMed Central

    Wern, Jeanette Erbo; Sorensen, Maria Rathmann; Olsen, Anja Weinreich; Andersen, Peter; Follmann, Frank

    2017-01-01

    The selection of any specific immunization route is critical when defining future vaccine strategies against a genital infection like Chlamydia trachomatis (C.t.). An optimal Chlamydia vaccine needs to elicit mucosal immunity comprising both neutralizing IgA/IgG antibodies and strong Th1/Th17 responses. A strategic tool to modulate this immune profile and mucosal localization of vaccine responses is to combine parenteral and mucosal immunizations routes. In this study, we investigate whether this strategy can be adapted into a two-visit strategy by simultaneous subcutaneous (SC) and nasal immunization. Using a subunit vaccine composed of C.t. antigens (Ags) adjuvanted with CAF01, a Th1/Th17 promoting adjuvant, we comparatively evaluated Ag-specific B and T cell responses and efficacy in mice following SC and simultaneous SC and nasal immunization (SIM). We found similar peripheral responses with regard to interferon gamma and IL-17 producing Ag-specific splenocytes and IgG serum levels in both vaccine strategies but in addition, the SIM protocol also led to Ag-specific IgA responses and increased B and CD4+ T cells in the lung parenchyma, and in lower numbers also in the genital tract (GT). Following vaginal infection with C.t., we observed that SIM immunization gave rise to an early IgA response and IgA-secreting plasma cells in the GT in contrast to SC immunization, but we were not able to detect more rapid recruitment of mucosal T cells. Interestingly, although SIM vaccination in general improved mucosal immunity we observed no improved efficacy against genital infection compared to SC, a finding that warrants for further investigation. In conclusion, we demonstrate a novel vaccination strategy that combines systemic and mucosal immunity in a two-visit strategy. PMID:28567043

  3. Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection

    PubMed Central

    Merkel, Tod J; Perera, Pin-Yu; Lee, Gloria M; Verma, Anita; Hiroi, Toyoko; Yokote, Hiroyuki; Waldmann, Thomas A; Perera, Liyanage P

    2013-01-01

    An intense effort has been launched to develop improved anthrax vaccines that confer rapid, long lasting protection preferably with an extended stability profile amenable for stockpiling. Protective antigen (PA)-based vaccines are most favored as immune responses directed against PA are singularly protective, although the actual protective mechanism remains to be unraveled. Herein we show that contrary to the prevailing view, an efficacious PA-based vaccine confers protection against inhalation anthrax by preventing the establishment of a toxin-releasing systemic infection. Equally importantly, antibodies measured by the in vitro lethal toxin neutralization activity assay (TNA) that is considered as a reliable correlate of protection, especially for PA protein-based vaccines adjuvanted with aluminum salts appear to be not absolutely essential for this protective immune response. PMID:23787486

  4. Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection.

    PubMed

    Merkel, Tod J; Perera, Pin-Yu; Lee, Gloria M; Verma, Anita; Hiroi, Toyoko; Yokote, Hiroyuki; Waldmann, Thomas A; Perera, Liyanage P

    2013-09-01

    An intense effort has been launched to develop improved anthrax vaccines that confer rapid, long lasting protection preferably with an extended stability profile amenable for stockpiling. Protective antigen (PA)-based vaccines are most favored as immune responses directed against PA are singularly protective, although the actual protective mechanism remains to be unraveled. Herein we show that contrary to the prevailing view, an efficacious PA-based vaccine confers protection against inhalation anthrax by preventing the establishment of a toxin-releasing systemic infection. Equally importantly, antibodies measured by the in vitro lethal toxin neutralization activity assay (TNA) that is considered as a reliable correlate of protection, especially for PA protein-based vaccines adjuvanted with aluminum salts appear to be not absolutely essential for this protective immune response.

  5. Canine Distemper Virus DNA Vaccination Induces Humoral and Cellular Immunity and Protects against a Lethal Intracerebral Challenge

    PubMed Central

    Sixt, Nathalie; Cardoso, Alicia; Vallier, Agnès; Fayolle, Joël; Buckland, Robin; Wild, T. Fabian

    1998-01-01

    We have studied the immune responses to the two glycoproteins of the Morbillivirus canine distemper virus (CDV) after DNA vaccination of BALB/c mice. The plasmids coding for both CDV hemagglutinin (H) and fusion protein (F) induce high levels of antibodies which persist for more than 6 months. Intramuscular inoculation of the CDV DNA induces a predominantly immunoglobulin G2a (IgG2a) response (Th1 response), whereas gene gun immunization with CDV H evokes exclusively an IgG1 response (Th2 response). In contrast, the CDV F gene elicited a mixed, IgG1 and IgG2a response. Mice vaccinated (by gene gun) with either the CDV H or F DNA showed a class I-restricted cytotoxic lymphocyte response. Immunized mice challenged intracerebrally with a lethal dose of a neurovirulent strain of CDV were protected. However, approximately 30% of the mice vaccinated with the CDV F DNA became obese in the first 2 months following the challenge. This was not correlated with the serum antibody levels. PMID:9765383

  6. Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus.

    PubMed

    Mire, Chad E; Matassov, Demetrius; Geisbert, Joan B; Latham, Theresa E; Agans, Krystle N; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael A; Fenton, Karla A; Clarke, David K; Eldridge, John H; Geisbert, Thomas W

    2015-04-30

    The family Filoviridae contains three genera, Ebolavirus (EBOV), Marburg virus, and Cuevavirus. Some members of the EBOV genus, including Zaire ebolavirus (ZEBOV), can cause lethal haemorrhagic fever in humans. During 2014 an unprecedented ZEBOV outbreak occurred in West Africa and is still ongoing, resulting in over 10,000 deaths, and causing global concern of uncontrolled disease. To meet this challenge a rapid-acting vaccine is needed. Many vaccine approaches have shown promise in being able to protect nonhuman primates against ZEBOV. In response to the current ZEBOV outbreak several of these vaccines have been fast tracked for human use. However, it is not known whether any of these vaccines can provide protection against the new outbreak Makona strain of ZEBOV. One of these approaches is a first-generation recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the ZEBOV glycoprotein (GP) (rVSV/ZEBOV). To address safety concerns associated with this vector, we developed two candidate, further-attenuated rVSV/ZEBOV vaccines. Both attenuated vaccines produced an approximately tenfold lower vaccine-associated viraemia compared to the first-generation vaccine and both provided complete, single-dose protection of macaques from lethal challenge with the Makona outbreak strain of ZEBOV.

  7. Epitope-focused peptide immunogens in human use adjuvants protect rabbits from experimental inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Feldman, Daniel; Yu, Fen; Cease, Kemp B

    2015-01-09

    Anthrax represents a formidable bioterrorism threat for which new, optimized vaccines are required. We previously demonstrated that epitope-focused multiple antigenic peptides or a recombinant protein in Freund's adjuvant can elicit Ab against the loop neutralizing determinant (LND), a cryptic linear neutralizing epitope in the 2ß2-2ß3 loop of protective antigen from Bacillus anthracis, which mediated protection of rabbits from inhalation challenge with B. anthracis Ames strain. However, demonstration of efficacy using human-use adjuvants is required before proceeding with further development of an LND vaccine for testing in non-human primates and humans. To optimize the LND immunogen, we first evaluated the protective efficacy and immune correlates associated with immunization of rabbits with mixtures containing two molecular variants of multiple antigenic peptides in Freunds adjuvant, termed BT-LND(2) and TB-LND(2). TB-LND(2) was then further evaluated for protective efficacy in rabbits employing human-use adjuvants. Immunization of rabbits with TB-LND(2) in human-use adjuvants elicited protection from Ames strain spore challenge which was statistically indistinguishable from that elicited through immunization with protective antigen. All TB-LND(2) rabbits with any detectable serum neutralization prior to challenge were protected from aerosolized spore exposure. Remarkably, rabbits immunized with TB-LND(2) in Alhydrogel/CpG had significant anamnestic increases in post-challenge LND-specific Ab and neutralization titers despite little evidence of spore germination in these rabbits. An LND-specific epitope-focused vaccine may complement PA-based vaccines and may represent a complementary stand-alone vaccine for anthrax. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Stabilization of Influenza Vaccine Enhances Protection by Microneedle Delivery in the Mouse Skin

    PubMed Central

    Yoo, Dae-Goon; Compans, Richard W.; Prausnitz, Mark R.; Kang, Sang-Moo

    2009-01-01

    Background Simple and effective vaccine administration is particularly important for annually recommended influenza vaccination. We hypothesized that vaccine delivery to the skin using a patch containing vaccine-coated microneedles could be an attractive approach to improve influenza vaccination compliance and efficacy. Methodology/Principal Findings Solid microneedle arrays coated with inactivated influenza vaccine were prepared for simple vaccine delivery to the skin. However, the stability of the influenza vaccine, as measured by hemagglutination activity, was found to be significantly damaged during microneedle coating. The addition of trehalose to the microneedle coating formulation retained hemagglutination activity, indicating stabilization of the coated influenza vaccine. For both intramuscular and microneedle skin immunization, delivery of un-stabilized vaccine yielded weaker protective immune responses including viral neutralizing antibodies, protective efficacies, and recall immune responses to influenza virus. Immunization using un-stabilized vaccine also shifted the pattern of antibody isotypes compared to the stabilized vaccine. Importantly, a single microneedle-based vaccination using stabilized influenza vaccine was found to be superior to intramuscular immunization in controlling virus replication as well as in inducing rapid recall immune responses post challenge. Conclusions/Significance The functional integrity of hemagglutinin is associated with inducing improved protective immunity against influenza. Simple microneedle influenza vaccination in the skin produced superior protection compared to conventional intramuscular immunization. This approach is likely to be applicable to other vaccines too. PMID:19779615

  9. A novel Sin Nombre virus DNA vaccine and its inclusion in a candidate pan-hantavirus vaccine against hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS).

    PubMed

    Hooper, Jay W; Josleyn, Matthew; Ballantyne, John; Brocato, Rebecca

    2013-09-13

    Sin Nombre virus (SNV; family Bunyaviridae, genus Hantavirus) causes a hemorrhagic fever known as hantavirus pulmonary syndrome (HPS) in North America. There have been approximately 200 fatal cases of HPS in the United States since 1993, predominantly in healthy working-age males (case fatality rate 35%). There are no FDA-approved vaccines or drugs to prevent or treat HPS. Previously, we reported that hantavirus vaccines based on the full-length M gene segment of Andes virus (ANDV) for HPS in South America, and Hantaan virus (HTNV) and Puumala virus (PUUV) for hemorrhagic fever with renal syndrome (HFRS) in Eurasia, all elicited high-titer neutralizing antibodies in animal models. HFRS is more prevalent than HPS (>20,000 cases per year) but less pathogenic (case fatality rate 1-15%). Here, we report the construction and testing of a SNV full-length M gene-based DNA vaccine to prevent HPS. Rabbits vaccinated with the SNV DNA vaccine by muscle electroporation (mEP) developed high titers of neutralizing antibodies. Furthermore, hamsters vaccinated three times with the SNV DNA vaccine using a gene gun were completely protected against SNV infection. This is the first vaccine of any kind that specifically elicits high-titer neutralizing antibodies against SNV. To test the possibility of producing a pan-hantavirus vaccine, rabbits were vaccinated by mEP with an HPS mix (ANDV and SNV plasmids), or HFRS mix (HTNV and PUUV plasmids), or HPS/HFRS mix (all four plasmids). The HPS mix and HFRS mix elicited neutralizing antibodies predominantly against ANDV/SNV and HTNV/PUUV, respectively. Furthermore, the HPS/HFRS mix elicited neutralizing antibodies against all four viruses. These findings demonstrate a pan-hantavirus vaccine using a mixed-plasmid DNA vaccine approach is feasible and warrants further development. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Protective immunity induced by an intranasal multivalent vaccine comprising 10 Lactococcus lactis strains expressing highly prevalent M-protein antigens derived from Group A Streptococcus.

    PubMed

    Wozniak, Aniela; Scioscia, Natalia; García, Patricia C; Dale, James B; Paillavil, Braulio A; Legarraga, Paulette; Salazar-Echegarai, Francisco J; Bueno, Susan M; Kalergis, Alexis M

    2018-04-28

    Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of Streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable and there are more than 200 different M types. We are developing an intranasal live bacterial vaccine comprised of 10 strains of Lactococcus lactis, each expressing one N-terminal fagment of M protein. Live bacterial-vectored vaccines have lower associated costs because of its less complex manufacturing processes compared to protein subunit vaccines. Moreover, intranasal administration does not require syringe or specilized personnel. The evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All of the 10 strains combined in a 10-valent vaccine (Mx10) induced serum and bronchoalveolar lavages IgG titers that ranged from 3 to 10-fold those of unimmunized mice. Survival of Mx10-immunized mice after intranasal challenge with M28 streptococci is significantly higher than unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of Mx10-immunized mice was not significantly different from unimmunized mice. Mx-10 immunized mice were significantly less colonized with S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge compared to unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to the development of broadly protective group A streptococcal vaccines. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  11. 76 FR 34994 - Vaccine To Protect Children From Anthrax-Public Engagement Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Vaccine To Protect Children From Anthrax--Public.... SUMMARY: The National Biodefense Science Board's (NBSB) Anthrax Vaccine (AV) Working Group (WG) will hold a public engagement workshop on July 7, 2011, to discuss vaccine to protect children from anthrax...

  12. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine.

    PubMed

    Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong

    2014-07-31

    Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Protection of rhesus macaques against inhalational anthrax with a Bacillus anthracis capsule conjugate vaccine.

    PubMed

    Chabot, Donald J; Ribot, Wilson J; Joyce, Joseph; Cook, James; Hepler, Robert; Nahas, Debbie; Chua, Jennifer; Friedlander, Arthur M

    2016-07-25

    The efficacy of currently licensed anthrax vaccines is largely attributable to a single Bacillus anthracis immunogen, protective antigen. To broaden protection against possible strains resistant to protective antigen-based vaccines, we previously developed a vaccine in which the anthrax polyglutamic acid capsule was covalently conjugated to the outer membrane protein complex of Neisseria meningitidis serotype B and demonstrated that two doses of 2.5μg of this vaccine conferred partial protection of rhesus macaques against inhalational anthrax . Here, we demonstrate complete protection of rhesus macaques against inhalational anthrax with a higher 50μg dose of the same capsule conjugate vaccine. These results indicate that B. anthracis capsule is a highly effective vaccine component that should be considered for incorporation in future generation anthrax vaccines. Published by Elsevier Ltd.

  14. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge

    PubMed Central

    Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo

    2016-01-01

    Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105−106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support

  15. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge.

    PubMed

    Konduru, Krishnamurthy; Shurtleff, Amy C; Bradfute, Steven B; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo

    2016-01-01

    Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105-106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support

  16. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge

    DOE PAGES

    Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.; ...

    2016-09-13

    Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulatedmore » with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 10 5–10 6 and neutralizing antibody titers of approximately 10 3 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deletedEBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-lengthGP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc,and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. In conclusion

  17. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.

    Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulatedmore » with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 10 5–10 6 and neutralizing antibody titers of approximately 10 3 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deletedEBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-lengthGP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc,and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. In conclusion

  18. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines.

    PubMed

    Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong

    2017-09-10

    The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Smallpox vaccines: targets of protective immunity

    PubMed Central

    Moss, Bernard

    2011-01-01

    Summary The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second and third generation smallpox vaccines. PMID:21198662

  20. Induction of protective immunity against H1N1 influenza A(H1N1)pdm09 with spray-dried and electron-beam sterilised vaccines in non-human primates.

    PubMed

    Scherließ, Regina; Ajmera, Ankur; Dennis, Mike; Carroll, Miles W; Altrichter, Jens; Silman, Nigel J; Scholz, Martin; Kemter, Kristina; Marriott, Anthony C

    2014-04-17

    Currently, the need for cooled storage and the impossibility of terminal sterilisation are major drawbacks in vaccine manufacturing and distribution. To overcome current restrictions a preclinical safety and efficacy study was conducted to evaluate new influenza A vaccine formulations regarding thermal resistance, resistance against irradiation-mediated damage and storage stability. We evaluated the efficacy of novel antigen stabilizing and protecting solutions (SPS) to protect influenza A(H1N1)pdm09 split virus antigen under experimental conditions in vitro and in vivo. Original or SPS re-buffered vaccine (Pandemrix) was spray-dried and terminally sterilised by irradiation with 25 kGy (e-beam). Antigen integrity was monitored by SDS-PAGE, dynamic light scattering, size exclusion chromatography and functional haemagglutination assays. In vitro screening experiments revealed a number of highly stable compositions containing glycyrrhizinic acid (GA) and/or chitosan. The most stable composition was selected for storage tests and in vivo assessment of seroconversion in non-human primates (Macaca fascicularis) using a prime-boost strategy. Redispersed formulations with original adjuvant were administered intramuscularly. Storage data revealed high stability of protected vaccines at 4°C and 25°C, 60% relative humidity, for at least three months. Animals receiving original Pandemrix exhibited expected levels of seroconversion after 21 days (prime) and 48 days (boost) as assessed by haemagglutination inhibition and microneutralisation assays. Animals vaccinated with spray-dried and irradiated Pandemrix failed to exhibit seroconversion after 21 days whereas spray-dried and irradiated, SPS-protected vaccines elicited similar seroconversion levels to those vaccinated with original Pandemrix. Boost immunisation with SPS-protected vaccine resulted in a strong increase in seroconversion but had only minor effects in animals treated with non SPS-protected vaccine. In conclusion

  1. Serum and mucosal immune responses to an inactivated influenza virus vaccine induced by epidermal powder immunization.

    PubMed

    Chen, D; Periwal, S B; Larrivee, K; Zuleger, C; Erickson, C A; Endres, R L; Payne, L G

    2001-09-01

    Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.

  2. A comparative study of multiple clinical enterovirus 71 isolates and evaluation of cross protection of inactivated vaccine strain FY-23 K-B in vitro.

    PubMed

    Yang, Ting; Li, Hua; Yue, Lei; Song, Xia; Xie, Tianhong; Ma, Shaohui; Meng, Huaqing; Zhang, Ye; He, Xin; Long, Runxiang; Yang, Rong; Luo, Fangyu; Xie, Zhongping; Li, Qihan

    2017-10-26

    Enterovirus 71 (EV71) is one of the causative agents of hand, foot and mouth disease, which mostly affects infants and children and leads to severe neurological diseases. Vaccination offers the best option for disease control. We have screened the virus strain FY-23 K-B, which is used as an inactivated vaccine strain. An important issue in the development of vaccines is whether they provide cross protection against all other strains. We collected and identified 19 clinical EV71 isolates from mainland China, which all belong to the C4 genotype. We established growth curves of the strains in Vero cells, performed genetic analysis, and evaluated the cross protection efficacy through neutralizing assays using antisera from a rabbit, monkey and adult human immunized with the FY-23 K-B vaccine strain. The antisera showed broad cross protection among the C4 subgroup strains and homotype strain. Neutralizing indexes (NIs) among the isolates and homotype strain of antisera varied between 56.2-1995.3 for rabbit, 17.8-42,169.7 for monkey and 31.6-17,782.8 for human, whereas NIs against Coxsackievirus A16 or other enteroviruses were below 10. These results suggested that FY-23 K-B used as an antigen could elicit broad spectrum neutralizing antibodies with cross protective efficacy among C4 genotype strains.

  3. Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines.

    PubMed

    Martinez-Torrecuadrada, Jorge L; Saubi, Narciís; Pagès-Manté, Albert; Castón, José R; Espuña, Enric; Casal, J Ignacio

    2003-07-04

    The immunogenicity and protective capability of several baculovirus-expressed infectious bursal disease virus (IBDV)-derived assemblies as VP2 capsids, VPX tubules and polyprotein (PP)-derived mixed structures, were tested. Four-week-old chickens were immunised subcutaneously with one dose of each particulate antigen. VP2 icosahedral capsids induced the highest neutralising response, followed by PP-derived structures and then VPX tubules. All vaccinated animals were protected when challenged with a very virulent IBDV (vvIBDV) isolate, however the degree of protection is directly correlated with the levels of neutralising antibodies. VP2 capsids elicited stronger protective immunity than tubular structures and 3 micrograms of them were sufficient to confer a total protection comparable to that induced by an inactivated vaccine. Therefore, VP2 capsids represent a suitable candidate recombinant vaccine instead of virus-like particles (VLPs) for IBDV infections. Our results also provide clear evidence that the recombinant IBDV-derived antigens are structure-dependent in order to be efficient as vaccine components.

  4. Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines.

    PubMed

    Martinez-Torrecuadrada, Jorge L; Saubi, Narcis; Pagès-Manté, Albert; Castón, José R; Espuña, Enric; Casal, J Ignacio

    2003-05-16

    The immunogenicity and protective capability of several baculovirus-expressed infectious bursal disease virus (IBDV)-derived assemblies as VP2 capsids, VPX tubules and polyprotein (PP)-derived mixed structures, were tested. Four-week-old chickens were immunised subcutaneously with one dose of each particulate antigen. VP2 icosahedral capsids induced the highest neutralising response, followed by PP-derived structures and then VPX tubules. All vaccinated animals were protected when challenged with a very virulent IBDV (vvIBDV) isolate, however the degree of protection is directly correlated with the levels of neutralising antibodies. VP2 capsids elicited stronger protective immunity than tubular structures and 3& mgr;g of them were sufficient to confer a total protection comparable to that induced by an inactivated vaccine. Therefore, VP2 capsids represent a suitable candidate recombinant vaccine instead of virus-like particles (VLPs) for IBDV infections. Our results also provide clear evidence that the recombinant IBDV-derived antigens are structure-dependent in order to be efficient as vaccine components.

  5. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-The first step toward a rationally designed anthrax vaccine.

    PubMed

    McComb, Ryan C; Martchenko, Mikhail

    2016-01-02

    Anthrax is defined by the Centers for Disease Control and Prevention as a Category A pathogen for its potential use as a bioweapon. Current prevention treatments include Anthrax Vaccine Adsorbed (AVA). AVA is an undefined formulation of Bacillus anthracis culture supernatant adsorbed to aluminum hydroxide. It has an onerous vaccination schedule, is slow and cumbersome to produce and is slightly reactogenic. Next-generation vaccines are focused on producing recombinant forms of anthrax toxin in a well-defined formulation but these vaccines have been shown to lose potency as they are stored. In addition, studies have shown that a proportion of the antibody response against these vaccines is focused on non-functional, non-neutralizing regions of the anthrax toxin while some essential functional regions are shielded from eliciting an antibody response. Rational vaccinology is a developing field that focuses on designing vaccine antigens based on structural information provided by neutralizing antibody epitope mapping, crystal structure analysis, and functional mapping through amino acid mutations. This information provides an opportunity to design antigens that target only functionally important and conserved regions of a pathogen in order to make a more optimal vaccine product. This review provides an overview of the literature related to functional and neutralizing antibody epitope mapping of the Protective Antigen (PA) component of anthrax toxin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed Central

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-01-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines. PMID:8995676

  7. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-02-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines.

  8. Vaccination With a Highly Attenuated Recombinant Vesicular Stomatitis Virus Vector Protects Against Challenge With a Lethal Dose of Ebola Virus

    PubMed Central

    Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.

    2015-01-01

    Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675

  9. Cross-stage immunity for malaria vaccine development.

    PubMed

    Nahrendorf, Wiebke; Scholzen, Anja; Sauerwein, Robert W; Langhorne, Jean

    2015-12-22

    A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Correlates of protection for inactivated enterovirus 71 vaccine: the analysis of immunological surrogate endpoints.

    PubMed

    Zhu, Wenbo; Jin, Pengfei; Li, Jing-Xin; Zhu, Feng-Cai; Liu, Pei

    2017-09-01

    Inactivated Enterovirus 71 (EV71) vaccines showed significant efficacy against the diseases associated with EV71 and a neutralizing antibody (NTAb) titer of 1:16-1:32 was suggested as the correlates of the vaccine protection. This paper aims to further estimate the immunological surrogate endpoints for the protection of inactivated EV71 vaccines and the effect factors. Pre-vaccination NTAb against EV71 at baseline (day 0), post-vaccination NTAb against EV71 at day 56, and the occurrence of laboratory-confirmed EV71-associated diseases during a 24-months follow-up period were collected from a phase 3 efficacy trial of an inactivated EV71 vaccine. We used the mixed-scaled logit model and the absolute sigmoid function by some extensions in continuous models to estimate the immunological surrogate endpoint for the EV71 vaccine protection, respectively. For children with a negative baseline of EV71 NTAb titers, an antibody level of 26.6 U/ml (1:30) was estimated to provide at least a 50% protection for 12 months, and an antibody level of 36.2 U/ml (1:42) may be needed to achieve a 50% protective level of the population for 24 months. Both the pre-vaccination NTAb level and the vaccine protective period could affect the estimation of the immunological surrogate for EV71 vaccine. A post-vaccination NTAb titer of 1:42 or more may be needed for long-term protection. NCT01508247.

  11. Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates.

    PubMed

    Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F

    2018-04-15

    A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.

  12. Oral vaccination of brushtail possums with BCG: Investigation into factors that may influence vaccine efficacy and determination of duration of protection.

    PubMed

    Buddle, B M; Aldwell, F E; Keen, D L; Parlane, N A; Hamel, K L; de Lisle, G W

    2006-10-01

    To determine factors that may influence the efficacy of an oral pelleted vaccine containing Mycobacterium bovis bacille Calmette-Guérin (BCG) to induce protection of brushtail possums against tuberculosis. To determine the duration of protective immunity following oral administration of BCG. In Study 1, a group of possums (n=7) was immunised by feeding 10 pellets containing dead Pasteur BCG, followed 15 weeks later with a single pellet of live Pasteur BCG. At that time, four other groups of possums (n=7 per group) were given a single pellet of live Pasteur BCG orally, a single pellet of live Danish BCG orally, 10 pellets of live Pasteur BCG orally, or a subcutaneous injection of live Pasteur BCG. For the oral pelleted vaccines, BCG was formulated into a lipid matrix, and each pellet contained approximately 107 colony forming units (cfu) of BCG, while the vaccine injected subcutaneously contained 106 cfu of BCG. A sixth, non-vaccinated, group (n=7) served as a control. All possums were challenged by the aerosol route with a low dose of virulent M. bovis 7 weeks after vaccination, and killed 7-8 weeks after challenge. Protection against challenge with M. bovis was assessed from pathological and bacteriological findings. In Study 2, lipid-formulated live Danish BCG was administered orally to three groups of possums (10-11 per group), and these possums were challenged with virulent M. bovis 8, 29 or 54 weeks later. The possums were killed 7 weeks after challenge, to assess protection in comparison to a non-vaccinated group. The results from Study 1 showed that vaccine efficacy was not adversely affected by feeding dead BCG prior to live BCG. Feeding 10 vaccine pellets induced a level of protection similar to feeding a single pellet. Protection was similar when feeding possums a single pellet containing the Pasteur or Danish strains of BCG. All vaccinated groups had significantly reduced pathological changes or bacterial counts when compared to the non-vaccinated group

  13. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    PubMed

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  14. A Single Dose of Modified Vaccinia Ankara expressing Ebola Virus Like Particles Protects Nonhuman Primates from Lethal Ebola Virus Challenge.

    PubMed

    Domi, Arban; Feldmann, Friederike; Basu, Rahul; McCurley, Nathanael; Shifflett, Kyle; Emanuel, Jackson; Hellerstein, Michael S; Guirakhoo, Farshad; Orlandi, Chiara; Flinko, Robin; Lewis, George K; Hanley, Patrick W; Feldmann, Heinz; Robinson, Harriet L; Marzi, Andrea

    2018-01-16

    Ebola virus (EBOV), isolate Makona, was the causative agent of the West African epidemic devastating predominantly Guinea, Liberia and Sierra Leone from 2013-2016. While several experimental vaccine and treatment approaches have been accelerated through human clinical trials, there is still no approved countermeasure available against this disease. Here, we report the construction and preclinical efficacy testing of a novel recombinant modified vaccinia Ankara (MVA)-based vaccine expressing the EBOV-Makona glycoprotein GP and matrix protein VP40 (MVA-EBOV). GP and VP40 form EBOV-like particles and elicit protective immune responses. In this study, we report 100% protection against lethal EBOV infection in guinea pigs after prime/boost vaccination with MVA-EBOV. Furthermore, this MVA-EBOV protected macaques from lethal disease after a single dose or prime/boost vaccination. The vaccine elicited a variety of antibody responses to both antigens, including neutralizing antibodies and antibodies with antibody-dependent cellular cytotoxic activity specific for GP. This is the first report that a replication-deficient MVA vector can confer full protection against lethal EBOV challenge after a single dose vaccination in macaques.

  15. Stable dry powder formulation for nasal delivery of anthrax vaccine.

    PubMed

    Wang, Sheena H; Kirwan, Shaun M; Abraham, Soman N; Staats, Herman F; Hickey, Anthony J

    2012-01-01

    There is a current biodefense interest in protection against anthrax. Here, we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by recombinant protective antigen (rPA) delivered intranasally with a novel mucosal adjuvant, a mast cell activator compound 48/80 (C48/80). The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D(50) = 25 μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by circular dichroism and attenuated total reflectance-Fourier transform infrared spectroscopy, whereas functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unit-dose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over 2 years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by intramuscular immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine or an attractive vaccine platform for other mucosally transmitted diseases. Copyright © 2011 Wiley-Liss, Inc.

  16. Chimeric Rhinoviruses Displaying MPER Epitopes Elicit Anti-HIV Neutralizing Responses

    PubMed Central

    Yi, Guohua; Lapelosa, Mauro; Bradley, Rachel; Mariano, Thomas M.; Dietz, Denise Elsasser; Hughes, Scott; Wrin, Terri; Petropoulos, Chris; Gallicchio, Emilio; Levy, Ronald M.; Arnold, Eddy; Arnold, Gail Ferstandig

    2013-01-01

    Background The development of an effective AIDS vaccine has been a formidable task, but remains a critical necessity. The well conserved membrane-proximal external region (MPER) of the HIV-1 gp41 glycoprotein is one of the crucial targets for AIDS vaccine development, as it has the necessary attribute of being able to elicit antibodies capable of neutralizing diverse isolates of HIV. Methodology/Principle Findings Guided by X-ray crystallography, molecular modeling, combinatorial chemistry, and powerful selection techniques, we designed and produced six combinatorial libraries of chimeric human rhinoviruses (HRV) displaying the MPER epitopes corresponding to mAbs 2F5, 4E10, and/or Z13e1, connected to an immunogenic surface loop of HRV via linkers of varying lengths and sequences. Not all libraries led to viable chimeric viruses with the desired sequences, but the combinatorial approach allowed us to examine large numbers of MPER-displaying chimeras. Among the chimeras were five that elicited antibodies capable of significantly neutralizing HIV-1 pseudoviruses from at least three subtypes, in one case leading to neutralization of 10 pseudoviruses from all six subtypes tested. Conclusions Optimization of these chimeras or closely related chimeras could conceivably lead to useful components of an effective AIDS vaccine. While the MPER of HIV may not be immunodominant in natural infection by HIV-1, its presence in a vaccine cocktail could provide critical breadth of protection. PMID:24039745

  17. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    PubMed

    Moon, James J; Suh, Heikyung; Polhemus, Mark E; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J

    2012-01-01

    The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  18. Accelerating the development of a safe and effective HIV vaccine: HIV vaccine case study for the Decade of Vaccines.

    PubMed

    Koff, Wayne C; Russell, Nina D; Walport, Mark; Feinberg, Mark B; Shiver, John W; Karim, Salim Abdool; Walker, Bruce D; McGlynn, Margaret G; Nweneka, Chidi Victor; Nabel, Gary J

    2013-04-18

    Human immunodeficiency virus (HIV), the etiologic agent that causes AIDS, is the fourth largest killer in the world today. Despite the remarkable achievements in development of anti-retroviral therapies against HIV, and the recent advances in new prevention technologies, the rate of new HIV infections continue to outpace efforts on HIV prevention and control. Thus, the development of a safe and effective vaccine for prevention and control of AIDS remains a global public health priority and the greatest opportunity to eventually end the AIDS pandemic. Currently, there is a renaissance in HIV vaccine development, due in large part to the first demonstration of vaccine induced protection, albeit modest, in human efficacy trials, a generation of improved vaccine candidates advancing in the clinical pipeline, and newly defined targets on HIV for broadly neutralizing antibodies. The main barriers to HIV vaccine development include the global variability of HIV, lack of a validated animal model, lack of correlates of protective immunity, lack of natural protective immune responses against HIV, and the reservoir of infected cells conferred by integration of HIV's genome into the host. Some of these barriers are not unique to HIV, but generic to other variable viral pathogens such as hepatitis C and pandemic influenza. Recommendations to overcome these barriers are presented in this document, including but not limited to expansion of efforts to design immunogens capable of eliciting broadly neutralizing antibodies against HIV, expansion of clinical research capabilities to assess multiple immunogens concurrently with comprehensive immune monitoring, increased support for translational vaccine research, and engaging industry as full partners in vaccine discovery and development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Superior anti-tumor protection and therapeutic efficacy of vaccination with allogeneic and semiallogeneic dendritic cell/tumor cell fusion hybrids for murine colon adenocarcinoma.

    PubMed

    Yasuda, Takashi; Kamigaki, Takashi; Kawasaki, Kentaro; Nakamura, Tetsu; Yamamoto, Masashi; Kanemitsu, Kiyonori; Takase, Shiro; Kuroda, Daisuke; Kim, Yongsik; Ajiki, Tetsuo; Kuroda, Yoshikazu

    2007-07-01

    Cancer immunotherapy by dendritic cell (DC)/tumor cell fusion hybrids (DC/TC hybrids) has been shown to elicit potent anti-tumor effects via the induction of immune responses against multiple tumor-associated antigens. In the present study, we compared the anti-tumor effects of vaccinating Balb/c mice (H-2(d)) with CT26CL25 colon carcinoma cells that had been fused with either syngeneic DCs from Balb/c mice, allogeneic DCs from C57BL/6 mice (H-2(b)) or semiallogeneic DCs from B6D2F1 mice (H-2(b/d)). Preimmunization with either semiallogeneic or allogeneic DC/TC hybrids induced complete protection from tumor challenge, whereas mice preimmunized with syngeneic DC/TC hybrids were only partially protected (75% tumor rejection). The average number of pulmonary metastases after intravenous tumor injection decreased significantly following immunization with semiallogeneic or allogeneic DC/TC hybrids (8.3 +/- 7.9 or 16.3 +/- 3.5, mean +/- SD) relative to syngeneic DC/TC hybrids (67.8 +/- 6.3). These data demonstrate that vaccination with semiallogeneic DC/TC hybrids resulted in the greatest anti-tumor efficacy. Anti-tumor effects showed by in vivo studies were virtually accomplished by the frequency of induced CTLs specific to both gp70 and beta-galactosidase assessed by using pentameric assay. Among the fusion vaccines tested, semiallogeneic DC/TC hybrids induced the highest ratio of Th1 cytokine IFN-gamma to Th2 cytokine IL-10. In addition, allogeneic or semiallogeneic DC/TC hybrids elicited a significantly stronger NK activity than syngeneic DC/TC hybrids. These findings suggest that in clinical settings, DCs derived from a healthy donor (which are generally characterized as more semiallogeneic than allogeneic) may be more capable than autologous DCs of inducing promising anti-tumor effects in vaccinations with DC/TC hybrids.

  20. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    PubMed Central

    Joseph, SK; Ramaswamy, K

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679

  1. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis

    PubMed Central

    Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A.; Lozza, Laura; Saikali, Philippe; Sander, Leif E.; Vogelzang, Alexis; Kupz, Andreas

    2016-01-01

    ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. PMID:27879332

  2. Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine.

    PubMed

    Ferrier-Rembert, Audrey; Drillien, Robert; Tournier, Jean-Nicolas; Garin, Daniel; Crance, Jean-Marc

    2008-03-25

    This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.

  3. Protective activity and immunogenicity of two recombinant anthrax vaccines for veterinary use.

    PubMed

    Fasanella, A; Tonello, F; Garofolo, G; Muraro, L; Carattoli, A; Adone, R; Montecucco, C

    2008-10-23

    In this study, the efficacy of two experimental vaccines against Bacillus anthracis toxinaemia was evaluated in the rabbit model. A recombinant Protective Antigen (rPA) mutant and a trivalent vaccine (TV) composed by the rPA, a inactive mutant of Lethal Factor (mLF-Y728A; E735A) and a inactive mutant of Edema Factor (mEF-K346R), both emulsified with mineral oils, were evaluated for their immunogenicity and protective activity in New Zealand white rabbits. Rabbits vaccinated subcutaneously with rPA and TV rapidly produced high level of anti-PA, anti-LF and anti-EF antibodies, which were still present 6 months later. In the efficacy test, these vaccines protected 100% of rabbits challenged with B. anthracis virulent strain 0843 one week after the vaccination. Moreover, all animals vaccinated twice with rPA and TV, resisted B. anthracis infection 6 months later. Our data indicate that rPA and TV could be good vaccine candidates for inducing protection against B. anthracis infection in target animal host. They could successfully be used in an emergency with simultaneous long-acting antibiotics to halt incubating infections or during an anthrax epidemic.

  4. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001.

    PubMed

    Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia

    2016-11-15

    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost

  5. Use of the mice passive protection test to evaluate the humoral response in goats vaccinated with Sterne 34F2 live spore vaccine.

    PubMed

    Phaswana, P H; Ndumnego, O C; Koehler, S M; Beyer, W; Crafford, J E; van Heerden, H

    2017-09-07

    The Sterne live spore vaccine (34F2) is the most widely used veterinary vaccine against anthrax in animals. Antibody responses to several antigens of Bacillus anthracis have been described with a large focus on those against protective antigen (PA). The focus of this study was to evaluate the protective humoral immune response induced by the live spore anthrax vaccine in goats. Boer goats vaccinated twice (week 0 and week 12) with the Sterne live spore vaccine and naive goats were used to monitor the anti-PA and toxin neutralizing antibodies at week 4 and week 17 (after the second vaccine dose) post vaccination. A/J mice were passively immunized with different dilutions of sera from immune and naive goats and then challenged with spores of B. anthracis strain 34F2 to determine the protective capacity of the goat sera. The goat anti-PA ELISA titres indicated significant sero-conversion at week 17 after the second doses of vaccine (p = 0.009). Mice receiving undiluted sera from goats given two doses of vaccine (twice immunized) showed the highest protection (86%) with only 20% of mice receiving 1:1000 diluted sera surviving lethal challenge. The in vitro toxin neutralization assay (TNA) titres correlated to protection of passively immunized A/J mice against lethal infection with the vaccine strain Sterne 34F2 spores using immune goat sera up to a 1:10 dilution (r s  ≥ 0.522, p = 0.046). This study suggests that the passive mouse protection model could be potentially used to evaluate the protective immune response in livestock animals vaccinated with the current live vaccine and new vaccines.

  6. Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+ T cell responses.

    PubMed

    Bazhan, S I; Karpenko, L I; Ilyicheva, T N; Belavin, P A; Seregin, S V; Danilyuk, N K; Antonets, D V; Ilyichev, A A

    2010-04-01

    Advances in defining HIV-1 CD8+ T cell epitopes and understanding endogenous MHC class I antigen processing enable the rational design of polyepitope vaccines for eliciting broadly targeted CD8+ T cell responses to HIV-1. Here we describe the construction and comparison of experimental DNA vaccines consisting of ten selected HLA-A2 epitopes from the major HIV-1 antigens Env, Gag, Pol, Nef, and Vpr. The immunogenicity of designed gene constructs was assessed after double DNA prime, single vaccinia virus boost immunization of HLA-A2 transgenic mice. We compared a number of parameters including different strategies for fusing ubiquitin to the polyepitope and including spacer sequences between epitopes to optimize proteasome liberation and TAP transport. It was demonstrated that the vaccine construct that induced in vitro the largest number of [peptide-MHC class I] complexes was also the most immunogenic in the animal experiments. This most immunogenic vaccine construct contained the N-terminal ubiquitin for targeting the polyepitope to the proteasome and included both proteasome liberation and TAP transport optimized spacer sequences that flanked the epitopes within the polyepitope construct. The immunogenicity of determinants was strictly related to their affinities for HLA-A2. Our finding supports the concept of rational vaccine design based on detailed knowledge of antigen processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Mosaic vaccines elicit CD8+ T cell responses in monkeys that confer immune coverage of diverse HIV strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Will; Korber, Bette

    2009-01-01

    Creation of a successful HIV vaccine will require the development of a strategy to generate cellular immunity with sufficient cross-clade breadth to deal with the extreme genetic diversity of the virus. Polyvalent mosaic immunogens derived from in silica recombination of natural strains of HIV are designed to induce cellular immune responses that maximally cover the sequence diversity of circulating virus isolates. Immunization of rhesus monkeys with plasmid DNA and recombinant vaccinia virus vaccine constructs expressing either consensus immunogens or polyvalent mosaic immunogens elicited a CD4+ T lymphocyte-biased response with comparably broad epitope-specific total T lymphocyte specificities. However, immunization with themore » mosaic immunogens induced HIV-specific CD8+ T lymphocyte responses with markedly greater depth and breadth. Therefore, the use of polyvalent mosaic immunogens is a promising strategy for a global vaccine for HIV.« less

  8. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine?

    PubMed

    Whitehead, Stephen S

    2016-01-01

    Dengue is caused by four serotype-distinct dengue viruses (DENVs), and developing a multivalent vaccine against dengue has not been straightforward since partial immunity to DENV may predispose to more severe disease upon subsequent DENV infection. The vaccine that is furthest along in development is CYD™, a live attenuated tetravalent vaccine (LATV) produced by Sanofi Pasteur. Although the multi-dose vaccine demonstrated protection against severe dengue, its overall efficacy was limited by DENV serotype, serostatus at vaccination, region and age. The National Institute of Allergy and Infectious Diseases has developed the LATV dengue vaccines TV003/TV005. A single dose of either TV003 or TV005 induced seroconversion to four DENV serotypes in 74-92% (TV003) and 90% (TV005) of flavivirus seronegative adults and elicited near-sterilizing immunity to a second dose of vaccine administered 6-12 months later. The important differences in the structure, infectivity and immune responses to TV003/TV005 are compared with CYD™.

  9. High doses of granulocyte-macrophage colony stimulating factor inhibit antibody responses in rectal secretions and diminish MVA/SIV vaccine protection in TRIM5α restrictive macaques

    PubMed Central

    Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja; Chamcha, Venkateswarlu; Chea, Lynette S.; Kozlowski, Pamela A; LaBranche, Celia C; Chennareddi, Lakshmi; Lawson, Benton; Reddy, Pradeep B. J.; Styles, Tiffany M.; Vanderford, Thomas H; Montefiori, David C; Moss, Bernard; Robinson, Harriet L; Amara, Rama Rao

    2016-01-01

    Here, we test in rhesus macaques the effects of a 500-fold range of an admixed recombinant modified vaccinia Ankara (MVA) expressing rhesus GM-CSF (MVA/GM-CSF) on the immunogenicity and protection elicited by an MVA/simian immunodeficiency macaque 239 (SIVmac239) vaccine. High doses of the MVA/GM-CSF did not affect the levels of systemic Env-specific Ab but did decrease the expression of the gut homing receptor α4β7 on plasmacytoid dendritic cells (p<0.01) and the magnitudes of Env-specific IgA (p=0.01) and IgG (p<0.05) in rectal secretions. The protective effect of the vaccine was evaluated using 12 weekly rectal challenges in rhesus subgrouped by tripartite motif-containing protein 5α (TRIM5α) genotypes that are restrictive or permissive for infection by the challenge virus, SIVsmE660. Eight of 9 TRIM5α-restrictive animals receiving no, or the lowest dose [1×105 plaque forming units (pfu)] of MVA/GM-CSF resisted all 12 challenges. In the comparable TRIM5α-permissive group only 1 of 12 animals resisted all 12 challenges. In the TRIM5α restrictive, but not permissive animals, the number of challenges to infection directly correlated with the magnitudes of Env-specific rectal IgG (r=0.6) and IgA (r=0.6), the avidity of Env-specific serum IgG (r=0.5), and antibody dependent cell-mediated virus inhibition (r=0.6). Titers of neutralizing Ab did not correlate with protection. We conclude that (i) protection elicited by MVA/SIVmac239 is strongly dependent on the presence of the TRIM5α restriction, (ii) in TRIM5α restrictive animals, non-neutralizing Ab responses contribute to protection against SIVsmE660, and (iii) high doses of co-expressed MVA/GM-CSF inhibit mucosal Ab responses and MVA/SIV239-elicited protection. PMID:27683750

  10. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease

    PubMed Central

    Gore, Milind M.

    2017-01-01

    ABSTRACT Japanese encephalitis (JE) is a serious public health concern in most of Asia. The disease is caused by JE virus (JEV), a flavivirus transmitted by Culex mosquitoes. Several vaccines have been developed to control JE in endemic areas as well as to protect travelers and military personnel who visit or are commissioned from non-endemic to endemic areas. The vaccines include inactivated vaccines produced in mouse brain or cell cultures, live attenuated vaccines, and a chimeric vaccine based on the live attenuated yellow fever virus 17D vaccine strain. All the marketed vaccines belong to the JEV genotype III, but have been shown to be efficacious against other genotypes and strains, with varying degrees of cross-neutralization, albeit at levels deemed to be protective. The protective responses have been shown to last three or more years, depending on the type of vaccine and the number of doses. This review presents a brief account of the different JE vaccines, their immunogenicity and protective ability, and the impact of JE vaccines in reducing the burden of disease in endemic countries. PMID:28301270

  11. Smallpox vaccines: targets of protective immunity.

    PubMed

    Moss, Bernard

    2011-01-01

    The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines. Published 2010. This article is a US Government work and is in the public domain in the USA.

  12. A Single-Dose Recombinant Parainfluenza Virus 5-Vectored Vaccine Expressing Respiratory Syncytial Virus (RSV) F or G Protein Protected Cotton Rats and African Green Monkeys from RSV Challenge.

    PubMed

    Wang, Dai; Phan, Shannon; DiStefano, Daniel J; Citron, Michael P; Callahan, Cheryl L; Indrawati, Lani; Dubey, Sheri A; Heidecker, Gwendolyn J; Govindarajan, Dhanasekaran; Liang, Xiaoping; He, Biao; Espeseth, Amy S

    2017-06-01

    Human respiratory syncytial virus (RSV) is a common cause of severe respiratory disease among infants, immunocompromised individuals, and the elderly. No licensed vaccine is currently available. In this study, we evaluated two parainfluenza virus 5 (PIV5)-vectored vaccines expressing RSV F (PIV5/F) or G (PIV5/G) protein in the cotton rat and African green monkey models for their replication, immunogenicity, and efficacy of protection against RSV challenge. Following a single intranasal inoculation, both animal species shed the vaccine viruses for a limited time but without noticeable clinical symptoms. In cotton rats, the vaccines elicited RSV F- or G-specific serum antibodies and conferred complete lung protection against RSV challenge at doses as low as 10 3 PFU. Neither vaccine produced the enhanced lung pathology observed in animals immunized with formalin-inactivated RSV. In African green monkeys, vaccine-induced serum and mucosal antibody responses were readily detected, as well. PIV5/F provided nearly complete protection against RSV infection in the upper and lower respiratory tract at a dose of 10 6 PFU of vaccine. At the same dose levels, PIV5/G was less efficacious. Both PIV5/F and PIV5/G were also able to boost neutralization titers in RSV-preexposed African green monkeys. Overall, our data indicated that PIV5/F is a promising RSV vaccine candidate. IMPORTANCE A safe and efficacious respiratory syncytial virus (RSV) vaccine remains elusive. We tested the recombinant parainfluenza virus 5 (PIV5) vectors expressing RSV glycoproteins for their immunogenicity and protective efficacy in cotton rats and African green monkeys, which are among the best available animal models to study RSV infection. In both species, a single dose of intranasal immunization with PIV5-vectored vaccines was able to produce systemic and local immunity and to protect animals from RSV challenge. The vaccines could also boost RSV neutralization antibody titers in African green monkeys

  13. Recent progress in the development of anthrax vaccines.

    PubMed

    Kaur, Manpreet; Bhatnagar, Rakesh

    2011-12-01

    Bacillus anthracis is the etiological agent of anthrax. Although anthrax is primarily an epizootic disease; humans are at risk for contracting anthrax. The potential use of B. anthracis spores as biowarfare agent has led to immense attention. Prolonged vaccination schedule of current anthrax vaccine and variable protection conferred; often leading to failure of therapy. This highlights the need for alternative anthrax countermeasures. A number of approaches are being investigated to substitute or supplement the existing anthrax vaccines. These relied on expression of Protective antigen (PA), the key protective immunogen; in bacterial or plant systems; or utilization of attenuated strains of B. anthracis for immunization. Few studies have established potential of domain IV of PA for immunization. Other targets including the spore, capsule, S-layer and anthrax toxin components have been investigated for imparting protective immunity. It has been shown that co-immunization of PA with domain I of lethal factor that binds PA resulted in higher antibody responses. Of the epitope based vaccines, the loop neutralizing determinant, in particular; elicited robust neutralizing antibody response and conferred 97% protection upon challenge. DNA vaccination resulted in varying degree of protection and seems a promising approach. Additionally, the applicability of monoclonal and therapeutic antibodies in the treatment of anthrax has also been demonstrated. The recent progress in the direction of anthrax prophylaxis has been evaluated in this review.

  14. Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice.

    PubMed

    Qu, Daofeng; Han, Jianzhong; Du, Aifang

    2013-07-01

    The high incidence and severe damage caused by Toxoplasma gondii infection clearly indicates the need for the development of a vaccine. In this study, we evaluated the immune responses and protection against toxoplasmosis by immunizing ICR mice with a multiantigenic DNA vaccine. To develop the multiantigenic vaccine, two T. gondii antigens, MIC3 and ROP18, selected on the basis of previous studies were chosen. ICR mice were immunized subcutaneously with PBS, empty pcDNA3.1 vector, pMIC3, pROP18, and pROP18-MIC3, respectively. The results of lymphocyte proliferation assay, cytokine, and antibody determinations showed that mice immunized with pROP18-MIC3 elicited stronger humoral and Th1-type cellular immune responses than those immunized with single-gene plasmids, empty plasmid, or phosphate-buffered saline. After a lethal challenge with the highly virulent T. gondii RH strain, a prolonged survival time in pROP18-MIC3-immunized mice was observed in comparison to control groups. Our study indicates that the introduction of multiantigenic DNA vaccine is more powerful and efficient than single-gene vaccine, and deserves further evaluation and development.

  15. An Adjuvanted Herpes Simplex Virus 2 Subunit Vaccine Elicits a T Cell Response in Mice and Is an Effective Therapeutic Vaccine in Guinea Pigs

    PubMed Central

    Skoberne, Mojca; Cardin, Rhonda; Lee, Alexander; Kazimirova, Ana; Zielinski, Veronica; Garvie, Danielle; Lundberg, Amy; Larson, Shane; Bravo, Fernando J.; Bernstein, David I.; Flechtner, Jessica B.

    2013-01-01

    Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4+ and CD8+ T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease. PMID:23365421

  16. Complete Protection against Influenza Virus H1N1 Strain A/PR/8/34 Challenge in Mice Immunized with Non-Adjuvanted Novirhabdovirus Vaccines

    PubMed Central

    Rouxel, Ronan N.; Mérour, Emilie; Biacchesi, Stéphane; Brémont, Michel

    2016-01-01

    Novirhabdoviruses like Viral Hemorrhagic Septicemia Virus (VHSV) and Infectious Hematopoietic Necrosis Virus (IHNV) are fish-infecting Rhabdoviruses belonging to the Mononegavirales order. By reverse genetics, we previously showed that a recombinant VHSV expressing the West Nile Virus (WNV) E glycoprotein could serve as a vaccine platform against WNV. In the current study, we aimed to evaluate the potential of the Novirhabdovirus platform as a vaccine against influenza virus. Recombinant Novirhabdoviruses, rVHSV-HA and rIHNV-HA, expressing at the viral surface the hemagglutinin HA ectodomain were generated and used to immunized mice. We showed that mice immunized with either, rVHSV-HA or rIHNV-HA, elicited a strong neutralizing antibody response against influenza virus. A complete protection was conferred to the immunized mice when challenged with a lethal dose of influenza H1N1 A/PR/8/34 virus. Furthermore we showed that although acting as inert antigen in mice, since naturally inactivated over 20°C, mice immunized with rVHSV-HA or rIHNV-HA in the absence of adjuvant were also completely protected from a lethal challenge. Novirhabdoviruses platform are of particular interest as vaccines for mammals since they are cost effective to produce, relatively easy to generate and very effective to protect immunized animals. PMID:27711176

  17. Lack of Cross-protection against Bordetella holmesii after Pertussis Vaccination

    PubMed Central

    Zhang, Xuqing; Weyrich, Laura S.; Lavine, Jennie S.; Karanikas, Alexia T.

    2012-01-01

    Bordetella holmesii, a species closely related to B. pertussis, has been reported sporadically as a cause of whooping cough–like symptoms. To investigate whether B. pertussis–induced immunity is protective against infection with B. holmesii, we conducted an analysis using 11 human respiratory B. holmesii isolates collected during 2005–2009 from a highly B. pertussis–vaccinated population in Massachusetts. Neither whole-cell (wP) nor acellular (aP) B. pertussis vaccination conferred protection against these B. holmesii isolates in mice. Although T-cell responses induced by wP or aP cross-reacted with B. holmesii, vaccine-induced antibodies failed to efficiently bind B. holmesii. B. holmesii–specific antibodies provided in addition to wP were sufficient to rapidly reduce B. holmesii numbers in mouse lungs. Our findings suggest the established presence of B. holmesii in Massachusetts and that failure to induce cross-reactive antibodies may explain poor vaccine-induced cross-protection. PMID:23092514

  18. Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice.

    PubMed

    Golshani, Maryam; Rafati, Sima; Dashti, Amir; Gholami, Elham; Siadat, Seyed Davar; Oloomi, Mana; Jafari, Anis; Bouzari, Saeid

    2015-06-01

    Brucellosis is the most common bacterial zoonotic disease worldwide and no vaccine is available for the prevention of human brucellosis. In humans, brucellosis is mostly caused by Brucella melitensis and Brucella abortus. The Outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens. In the present study, we evaluated the humoral and cellular immune responses induced by a fusion protein designed based on the Truncated form of Omp31 (TOmp31) and L7-L12 antigens. Vaccination of BALB/c mice with the recombinant fusion protein (rL7/L12-TOmp31) provided the significant protection level against B. melitensis and B. abortus challenge. Moreover, rL7/L12-TOmp31 elicited a strong specific IgG response (higher IgG2a titers) and significant IFN-γ/IL2 production and T-cell proliferation was also observed. The T helper1 (Th1) oriented response persisted for 12 weeks after the first immunization. The rL7/L12-TOmp31 could be a new potential antigen candidate for the development of a subunit vaccine against B. melitensis and B. abortus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Influenza A virus vaccines for swine.

    PubMed

    Vincent, Amy L; Perez, Daniel R; Rajao, Daniela; Anderson, Tavis K; Abente, Eugenio J; Walia, Rasna R; Lewis, Nicola S

    2017-07-01

    Economic losses due to influenza A virus (IAV) infections are substantial and a global problem, ranking among the top three major health challenges in the swine industry. Currently, H1 and H3 subtypes circulate in pigs globally associated with different combinations of N1 and N2 subtypes; however, the origin, gene constellation, and antigenic makeup of IAV vary greatly on different continents. Vaccination is one means of mitigating the effects of IAV disease, and vaccines are most effective if the strains included closely match the currently circulating strains in pigs. Genetic analyses provide panoramic views of the virus landscape at the sequence level and, thus, can aid in the selection of well-matched swine IAV vaccine strains, but is not sufficient alone. Additionally, a major challenge in selecting appropriate swine IAV vaccine strains is the co-circulation of multiple lineages of viruses in the same region, requiring multivalent or broadly cross-reacting antigens. Due to this complex IAV ecology in swine, new vaccination strategies and vaccine platforms are needed. The hemagglutinin (HA) viral protein is the major target of neutralizing antibodies, which are widely considered to be correlated with protection. Virus variants that are not recognized by previously elicited antibodies can render traditional vaccines that primarily elicit humoral responses ineffective, and therefore result in the need for vaccine strain reformulation and re-vaccination. In the future, new vaccine platforms may be on the market that will provide alternative options to those currently available. Nonetheless, a collaborative approach is needed to improve IAV vaccine strain selection for use in swine. Published by Elsevier B.V.

  20. Protecting newborns against pertussis: the value of vaccinating during pregnancy.

    PubMed

    Vilajeliu, Alba; García-Basteiro, Alberto L; Bayas, José M

    2015-01-01

    Resurgence of pertussis has recently been reported in several countries with long-standing pertussis immunization and high vaccination coverage. This situation requires consideration of alternative immunization strategies to protect newborns. In the absence of a vaccine that confers long-lasting immunity, maternal vaccination for pertussis during pregnancy seems to be a safe, immunogenic, effective and accepted strategy to protect infants during the first weeks of life. The existing scientific evidence provides the grounds for pregnant women and healthcare workers to make informed decisions regarding this measure as well as for countries with high pertussis-related infant morbidity and mortality that should consider implementation. Furthermore, this could be a promising strategy to address other vaccine-preventable diseases of pregnancy and the neonatal period.

  1. HIV-1 Cross-Reactive Primary Virus Neutralizing Antibody Response Elicited by Immunization in Nonhuman Primates

    PubMed Central

    Wang, Yimeng; O'Dell, Sijy; Turner, Hannah L.; Chiang, Chi-I; Lei, Lin; Guenaga, Javier; Wilson, Richard; Martinez-Murillo, Paola; Doria-Rose, Nicole; Ward, Andrew B.; Mascola, John R.; Wyatt, Richard T.; Karlsson Hedestam, Gunilla B.

    2017-01-01

    ABSTRACT Elicitation of broadly neutralizing antibody (bNAb) responses is a major goal for the development of an HIV-1 vaccine. Current HIV-1 envelope glycoprotein (Env) vaccine candidates elicit predominantly tier 1 and/or autologous tier 2 virus neutralizing antibody (NAb) responses, as well as weak and/or sporadic cross-reactive tier 2 virus NAb responses with unknown specificity. To delineate the specificity of vaccine-elicited cross-reactive tier 2 virus NAb responses, we performed single memory B cell sorting from the peripheral blood of a rhesus macaque immunized with YU2gp140-F trimers in adjuvant, using JR-FL SOSIP.664, a native Env trimer mimetic, as a sorting probe to isolate monoclonal Abs (MAbs). We found striking genetic and functional convergence of the SOSIP-sorted Ig repertoire, with predominant VH4 or VH5 gene family usage and Env V3 specificity. Of these vaccine-elicited V3-specific MAbs, nearly 20% (6/33) displayed cross-reactive tier 2 virus neutralization, which recapitulated the serum neutralization capacity. Substantial similarities in binding specificity, neutralization breadth and potency, and sequence/structural homology were observed between selected macaque cross-reactive V3 NAbs elicited by vaccination and prototypic V3 NAbs derived from natural infections in humans, highlighting the convergence of this subset of primate V3-specific B cell repertories. Our study demonstrated that cross-reactive primary virus neutralizing B cell lineages could be elicited by vaccination as detected using a standardized panel of tier 2 viruses. Whether these lineages could be expanded to acquire increased breadth and potency of neutralization merits further investigation. IMPORTANCE Elicitation of antibody responses capable of neutralizing diverse HIV-1 primary virus isolates (designated broadly neutralizing antibodies [bNAbs]) remains a high priority for the vaccine field. bNAb responses were so far observed only in response to natural infection within

  2. Vaccine breaks: Outbreaks of myxomatosis on Spanish commercial rabbit farms.

    PubMed

    Dalton, K P; Nicieza, I; de Llano, D; Gullón, J; Inza, M; Petralanda, M; Arroita, Z; Parra, F

    2015-08-05

    Despite the success of vaccination against myxoma virus, myxomatosis remains a problem on rabbit farms throughout Spain and Europe. In this study we set out to evaluate possible causes of myxoma virus (MYXV) vaccine failures addressing key issues with regard to pathogen, vaccine and vaccination strategies. This was done by genetically characterising MYXV field isolates from farm outbreaks, selecting a representative strain for which to assay its virulence and measuring the protective capability of a commercial vaccine against this strain. Finally, we compare methods (route) of vaccine administration under farm conditions and evaluate immune response in vaccinated rabbits. The data presented here show that the vaccine tested is capable of eliciting protection in rabbits that show high levels of seroconversion. However, the number of animals failing to seroconvert following subcutaneous vaccination may leave a large number of rabbits unprotected following vaccine administration. Successful vaccination requires the strict implication of workable, planned, on farm programs. Following this, analysis to confirm seroconversion rates may be advisable. Factors such as the wild rabbit reservoir, control of biting insects and good hygienic practices must be taken into consideration to prevent vaccine failures from occurring. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Assessing different measures of population-level vaccine protection using a case-control study.

    PubMed

    Ali, Mohammad; You, Young Ae; Kanungo, Suman; Manna, Byomkesh; Deen, Jacqueline L; Lopez, Anna Lena; Wierzba, Thomas F; Bhattacharya, Sujit K; Sur, Dipika; Clemens, John D

    2015-11-27

    Case-control studies have not been examined for their utility in assessing population-level vaccine protection in individually randomized trials. We used the data of a randomized, placebo-controlled trial of a cholera vaccine to compare the results of case-control analyses with those of cohort analyses. Cases of cholera were selected from the trial population followed for three years following dosing. For each case, we selected 4 age-matched controls who had not developed cholera. For each case and control, GIS was used to calculate vaccine coverage of individuals in a surrounding "virtual" cluster. Specific selection strategies were used to evaluate the vaccine protective effects. 66,900 out of 108,389 individuals received two doses of the assigned regimen. For direct protection among subjects in low vaccine coverage clusters, we observed 78% (95% CI: 47-91%) protection in a cohort analysis and 84% (95% CI: 60-94%) in case-control analysis after adjusting for confounding factors. Using our GIS-based approach, estimated indirect protection was 52% (95% CI: 10-74%) in cohort and 76% (95% CI: 47-89%) in case control analysis. Estimates of total and overall effectiveness were similar for cohort and case-control analyses. The findings show that case-control analyses of individually randomized vaccine trials may be used to evaluate direct as well as population-level vaccine protection. Copyright © 2015. Published by Elsevier Ltd.

  4. Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys

    PubMed Central

    Letvin, Norman L.; Rao, Srinivas S.; Montefiori, David C.; Seaman, Michael S.; Sun, Yue; Lim, So-Yon; Yeh, Wendy W.; Asmal, Mohammed; Gelman, Rebecca S.; Shen, Ling; Whitney, James B.; Seoighe, Cathal; Lacerda, Miguel; Keating, Sheila; Norris, Philip J.; Hudgens, Michael G.; Gilbert, Peter B.; Buzby, Adam P.; Mach, Linh V.; Zhang, Jinrong; Balachandran, Harikrishnan; Shaw, George M.; Schmidt, Stephen D.; Todd, John-Paul; Dodson, Alan; Mascola, John R.; Nabel, Gary J.

    2013-01-01

    The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was an about one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01–negative monkeys challenged with SIVsmE660, no CD8+ T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4+ T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanism of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies. PMID:21543722

  5. Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys.

    PubMed

    Letvin, Norman L; Rao, Srinivas S; Montefiori, David C; Seaman, Michael S; Sun, Yue; Lim, So-Yon; Yeh, Wendy W; Asmal, Mohammed; Gelman, Rebecca S; Shen, Ling; Whitney, James B; Seoighe, Cathal; Lacerda, Miguel; Keating, Sheila; Norris, Philip J; Hudgens, Michael G; Gilbert, Peter B; Buzby, Adam P; Mach, Linh V; Zhang, Jinrong; Balachandran, Harikrishnan; Shaw, George M; Schmidt, Stephen D; Todd, John-Paul; Dodson, Alan; Mascola, John R; Nabel, Gary J

    2011-05-04

    The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01-negative monkeys challenged with SIVsmE660, no CD8(+) T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4(+) T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.

  6. Evaluation of the Protection Provided by Hepatitis B Vaccination in India.

    PubMed

    Puliyel, Jacob; Naik, Pathik; Puliyel, Ashish; Agarwal, Kishore; Lal, Vandana; Kansal, Nimmi; Nandan, Devki; Tripathi, Vikas; Tyagi, Prashant; Singh, Saroj K; Srivastava, Rajeev; Sharma, Utkarsh; Sreenivas, V

    2018-07-01

    In India, Hepatitis B vaccination is recommended at 6 wk except for hospital-deliveries. The authors examined protection afforded by the birth dose. A case-control study was done. HBsAg and HBcAb were tested in 2671 children, 1 to 5 y and HBsAb was evaluated in a subset of 1413 children. Vaccination history was recorded. Cases were HBsAg carriers. In another analysis, children who got infected (HBsAg and/or HBcAb positive) were considered as cases. Exposed were the unvaccinated. In another analysis, exposed were those vaccinated without the birth dose. The odds ratio (OR) for HBsAg positivity with birth vaccination was 0.35 (95% CI 0.19-0.66); while with vaccination at 6 wk was 0.29 (95%CI 0.14-0.61), both compared to unvaccinated. Birth vaccination has no added protection when compared to the unvaccinated. Unvaccinated children in index study had HBsAg positivity of 4.38%. The number needed to treat (NNT) to prevent one case of HBsAg positivity was 32.6 (95% CI, 20.9 to 73.6). The odds of getting HBV infection was 0.42 (CI 0.25-0.68) with birth dose and 0.49 (CI 0.30-0.82) without the birth dose compared to the unvaccinated. Protective antibody (HBsAb) was present in about 70% of the vaccinated. In the unimmunised, in the first 2 y HBsAb protection was present in 40%. The odds ratio (OR) for HBsAb in the fully vaccinated between 4 and 5 y was 1.4 (95%CI 0.9-2.18) compared to the unvaccinated. The present study lends support to the pragmatic approach of the Government to vaccinate babies born at home starting at 6 wk.

  7. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    PubMed

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  8. Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    PubMed Central

    Bartelt, Luther A.; Bolick, David T.; Kolling, Glynis L.; Zaenker, Edna I.; Lara, Ana M.; Noronha, Francisco Jose; Cowardin, Carrie A.; Moore, John H.; Turner, Jerrold R.; Warren, Cirle A.; Buck, Gregory A.; Guerrant, Richard L.

    2016-01-01

    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. PMID:27467505

  9. Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated Staphylococcal Poly-N-acetyl-beta-(1-6)-glucosamine.

    PubMed

    Maira-Litrán, Tomás; Kropec, Andrea; Goldmann, Donald A; Pier, Gerald B

    2005-10-01

    Staphylococcus aureus and Staphylococcus epidermidis both synthesize the surface polysaccharide poly-N-acetyl-beta-(1-6)-glucosamine (PNAG), which is produced in vitro with a high level (>90%) of the amino groups substituted by acetate. Here, we examined the role of the acetate substituents of PNAG in generating opsonic and protective antibodies. PNAG and a deacetylated form of the antigen (dPNAG; 15% acetylation) were conjugated to the carrier protein diphtheria toxoid (DT) and used to immunize animals. Mice responded in a dose-dependent fashion to both conjugate vaccines, with maximum antibody titers observed at the highest dose and 4 weeks after the last of three weekly immunizations. PNAG-DT and dPNAG-DT vaccines were also very immunogenic in rabbits. Antibodies raised to the conjugate vaccines in rabbits mediated the opsonic killing of various staphylococcal strains, but the specificity of the opsonic killing was primarily to dPNAG, as this antigen inhibited the killing of S. aureus strains by both PNAG- and dPNAG-specific antibodies. Passive immunization of mice with anti-dPNAG-DT rabbit sera showed significant levels of clearance of S. aureus from the blood (54 to 91%) compared to control mice immunized with normal rabbit sera, whereas PNAG-specific antibodies were ineffective at clearing S. aureus. Passive immunization of mice with a goat antiserum raised to the dPNAG-DT vaccine protected against a lethal dose of three different S. aureus strains. Overall, these data show that immunization of animals with a conjugate vaccine of dPNAG elicit antibodies that mediated opsonic killing and protected against S. aureus infection, including capsular polysaccharide types 5 and 8 and an untypable strain.

  10. High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques.

    PubMed

    Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja; Chamcha, Venkatesarlu; Chea, Lynette S; Kozlowski, Pamela A; LaBranche, Celia C; Chennareddi, Lakshmi; Lawson, Benton; Reddy, Pradeep B J; Styles, Tiffany M; Vanderford, Thomas H; Montefiori, David C; Moss, Bernard; Robinson, Harriet L; Amara, Rama Rao

    2016-11-01

    We tested, in rhesus macaques, the effects of a 500-fold range of an admixed recombinant modified vaccinia Ankara (MVA) expressing rhesus GM-CSF (MVA/GM-CSF) on the immunogenicity and protection elicited by an MVA/SIV macaque 239 vaccine. High doses of MVA/GM-CSF did not affect the levels of systemic envelope (Env)-specific Ab, but it did decrease the expression of the gut-homing receptor α4β7 on plasmacytoid dendritic cells (p < 0.01) and the magnitudes of Env-specific IgA (p = 0.01) and IgG (p < 0.05) in rectal secretions. The protective effect of the vaccine was evaluated using 12 weekly rectal challenges in rhesus macaques subgrouped by tripartite motif-containing protein 5α (TRIM5α) genotypes that are restrictive or permissive for infection by the challenge virus SIVsmE660. Eight of nine TRIM5α-restrictive animals receiving no or the lowest dose (1 × 10 5 PFU) of MVA/GM-CSF resisted all 12 challenges. In the comparable TRIM5α-permissive group, only 1 of 12 animals resisted all 12 challenges. In the TRIM5α-restrictive animals, but not in the TRIM5α-permissive animals, the number of challenges to infection directly correlated with the magnitudes of Env-specific rectal IgG (r = +0.6) and IgA (r = +0.6), the avidity of Env-specific serum IgG (r = +0.5), and Ab dependent cell-mediated virus inhibition (r = +0.6). Titers of neutralizing Ab did not correlate with protection. We conclude that 1) protection elicited by MVA/SIVmac239 is strongly dependent on the presence of TRIM5α restriction, 2) nonneutralizing Ab responses contribute to protection against SIVsmE660 in TRIM5α-restrictive animals, and 3) high doses of codelivered MVA/GM-CSF inhibit mucosal Ab responses and the protection elicited by MVA expressing noninfectious SIV macaque 239 virus-like particles. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Nanoparticulated heat-stable (STa) and heat-labile B subunit (LTB) recombinant toxin improves vaccine protection against enterotoxigenic Escherichia coli challenge in mouse.

    PubMed

    Deng, Guangcun; Zeng, Jin; Jian, Minjie; Liu, Wenmiao; Zhang, Zhong; Liu, Xiaoming; Wang, Yujiong

    2013-02-01

    Enterotoxigenic Escherichia coli (ETEC) remains a major cause of diarrheic disease in developing areas, for which there is no effective vaccine available. In this study, we genetically engineered a recombinant heat-stable enterotoxin (STa) coupled to the subunit B of heat-labile enterotoxin (LTB). This fusion protein, STa-LTB, possesses a single amino acid substitution at position 14 of STa. Our data demonstrates that the enterotoxicity of STa in STa-LTB was dramatically reduced. A gelatin nanovaccine candidate was prepared using the purified STa-LTB fusion protein characterized with an entrapment efficiency of 84.88 ± 6.37% and smooth spheres size ranges of 80-200 nm. Antigen-specific antibody responses against STa-LTB and STa in the sera and the intestinal mucus respectively were used to test the immunogenicity of the nanovaccine. This vaccine was further screened in mice by its ability to elicit neutralizing antibodies against STa and protect animals from the challenge with ETEC in mice. The STa-LTB nanoparticles delivered demonstrated a capacity to induce significantly higher and long-lasting antibody responses and increased immune protection against ETEC challenge relative to the control STa-LTB vaccine absorbed in conventional aluminum hydrate salt (p < 0.01). These results warrant the further studies of the development of a novel nanoparticulate vaccine as a broad-spectrum vaccine against ETEC infection. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus

    PubMed Central

    Yeaman, Michael R.; Filler, Scott G.; Schmidt, Clint S.; Ibrahim, Ashraf S.; Edwards, John E.; Hennessey, John P.

    2014-01-01

    Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S

  13. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine.

    PubMed

    Mordmüller, Benjamin; Surat, Güzin; Lagler, Heimo; Chakravarty, Sumana; Ishizuka, Andrew S; Lalremruata, Albert; Gmeiner, Markus; Campo, Joseph J; Esen, Meral; Ruben, Adam J; Held, Jana; Calle, Carlos Lamsfus; Mengue, Juliana B; Gebru, Tamirat; Ibáñez, Javier; Sulyok, Mihály; James, Eric R; Billingsley, Peter F; Natasha, K C; Manoj, Anita; Murshedkar, Tooba; Gunasekera, Anusha; Eappen, Abraham G; Li, Tao; Stafford, Richard E; Li, Minglin; Felgner, Phil L; Seder, Robert A; Richie, Thomas L; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G

    2017-02-23

    A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 10 4 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 10 3 (group I) or 1.28 × 10 4 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 10 4 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.

  14. Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity.

    PubMed

    Lugade, Amit A; Bharali, Dhruba J; Pradhan, Vandana; Elkin, Galina; Mousa, Shaker A; Thanavala, Yasmin

    2013-10-01

    Chitosan nanoparticles were evaluated as a vaccine delivery system for hepatitis B surface antigen (HBsAg) in the absence of adjuvant. Nano-encapsulated HBsAg (HBsAg chitosan-NP) was endocytosed more rapidly and efficiently by dendritic cells compared to soluble HBsAg. FRET analysis demonstrated that intact nanoparticles were taken up by DCs. To determine the immunogenicity of adjuvant-free nano-encapsulated HBsAg, mice were immunized with a single dose of non-encapsulated HBsAg, HBsAg chitosan-NP, or HBsAg alum. Mice immunized with adjuvant-free nanoparticle elicited anti-HBs antibodies at significantly higher titers compared to mice immunized with HBsAg alum. Elevated numbers of BAFF-R(+) B cells and CD138+ plasma cells account for the heightened anti-HBs response in nanoparticle immunized mice. Increases in Tfh cells provide a mechanism for the accumulation of anti-HBs secreting cells. Thus, chitosan nanoparticle vaccines represent a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration. In this study, chitosan nanoparticle vaccines are demonstrated as a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration in a murine model. The authors also demonstrated superior antibody response induction compared with non-encapsulated HBs antigen and HBsAg aluminum. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Multiagent Vaccines Vectored by Venezuelan Equine Encephalitis Virus Replicon Elicits Immune Responses to Marburg Virus and Protection Against Anthrax and Botulinum Neurotoxin in Mice

    DTIC Science & Technology

    2006-01-01

    and protection against anthrax and botulinum neurotoxin in mice John S. Lee a,∗, Jennifer L. Groebner a, Angela G. Hadjipanayis a,1, Diane L. Negley a...botulinum. Vaccine 24:6886 - 6892 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lee, JS Groebner , JL Hadjipanayis

  16. Non-specific Effect of Vaccines: Immediate Protection against Respiratory Syncytial Virus Infection by a Live Attenuated Influenza Vaccine.

    PubMed

    Lee, Young J; Lee, Jeong Y; Jang, Yo H; Seo, Sang-Uk; Chang, Jun; Seong, Baik L

    2018-01-01

    The non-specific effects (NSEs) of vaccines have been discussed for their potential long-term beneficial effects beyond direct protection against a specific pathogen. Cold-adapted, live attenuated influenza vaccine (CAIV) induces local innate immune responses that provide a broad range of antiviral immunity. Herein, we examined whether X-31ca, a donor virus for CAIVs, provides non-specific cross-protection against respiratory syncytial virus (RSV). The degree of RSV replication was significantly reduced when X-31ca was administered before RSV infection without any RSV-specific antibody responses. The vaccination induced an immediate release of cytokines and infiltration of leukocytes into the respiratory tract, moderating the immune perturbation caused by RSV infection. The potency of protection against RSV challenge was significantly reduced in TLR3 -/- TLR7 -/- mice, confirming that the TLR3/7 signaling pathways are necessary for the observed immediate and short-term protection. The results suggest that CAIVs provide short-term, non-specific protection against genetically unrelated respiratory pathogens. The additional benefits of CAIVs in mitigating acute respiratory infections for which vaccines are not yet available need to be assessed in future studies.

  17. An oral Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus delivered by Escherichia coli elicits immune responses in dogs.

    PubMed

    Dahiya, S S; Saini, M; Kumar, P; Gupta, P K

    2011-01-01

    A Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus (CPV) was delivered by Escherichia coli to elicit immune responses. The orally immunized dogs developed CPV-specific serum IgG and virus neutralizing antibody responses. The cellular immune responses analyzed using lymphocyte proliferation test and flow cytometry indicated CPV-specific sensitization of both CD3+CD4+ and CD3+CD8+ lymphocytes. This study demonstrated that the oral CPV DNA vaccine delivered by E. coli can be considered as a promising approach for vaccination of dogs against CPV.

  18. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives

    PubMed Central

    Xu, Yingying; Yuen, Pak-Wai; Lam, Jenny Ka-Wing

    2014-01-01

    Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents. PMID:25014738

  19. Points to consider in the development of a surrogate for efficacy of novel Japanese encephalitis virus vaccines.

    PubMed

    Markoff, L

    2000-05-26

    Although an effective killed virus vaccine to prevent illness due to Japanese encephalitis virus (JEV) infection exists, many authorities recognize that a safe, effective live JEV vaccine is desirable in order to reduce the cost and the number of doses of vaccine required per immunization. A large-scale clinical efficacy trail for such a vaccine would be both unethical and impractical. Therefore, a surrogate for the efficacy of JE vaccines should be established. Detection of virus-neutralizing antibodies in sera of vaccinees could constitute such a surrogate for efficacy. Field studies of vaccinees in endemic areas and studies done in mice already exist to support this concept. Also, titers of virus-neutralizing antibodies are already accepted as a surrogate for the efficacy of yellow fever virus vaccines and for the efficacy of other viral vaccines as well. In developing a correlation between N antibody titers and protection from JEV infection, standard procedures must be validated and adopted for both measuring N antibodies and for testing in animals. A novel live virus vaccine could be tested in the mouse and/or the monkey model of JEV infection to establish a correlation between virus-neutralizing antibodies elicited by the vaccines and protection from encephalitis. In addition, sera of subjects receiving the novel live JEV vaccine in early clinical trials could be passively transferred to mice or monkeys in order to establish the protective immunogenicity of the vaccine in humans. A monkey model for JEV infection was recently established by scientists at WRAIR in the US. From this group, pools of JEV of known infectivity for Rhesus macaques may be obtained for testing of immunity elicited by live JE vaccine virus.

  20. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    PubMed

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  1. Protection against Experimental Cryptococcosis following Vaccination with Glucan Particles Containing Cryptococcus Alkaline Extracts

    PubMed Central

    Lee, Chrono K.; Huang, Haibin; Shen, Zu T.; Lodge, Jennifer K.; Leszyk, John; Ostroff, Gary R.

    2015-01-01

    ABSTRACT A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4+ T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. PMID:26695631

  2. Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus

    PubMed Central

    Herbert, Andrew S.; Kuehne, Ana I.; Barth, James F.; Ortiz, Ramon A.; Nichols, Donald K.; Zak, Samantha E.; Stonier, Spencer W.; Muhammad, Majidat A.; Bakken, Russell R.; Prugar, Laura I.; Olinger, Gene G.; Groebner, Jennifer L.; Lee, John S.; Pratt, William D.; Custer, Max; Kamrud, Kurt I.; Smith, Jonathan F.; Hart, Mary Kate

    2013-01-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine. PMID:23408633

  3. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus.

    PubMed

    Herbert, Andrew S; Kuehne, Ana I; Barth, James F; Ortiz, Ramon A; Nichols, Donald K; Zak, Samantha E; Stonier, Spencer W; Muhammad, Majidat A; Bakken, Russell R; Prugar, Laura I; Olinger, Gene G; Groebner, Jennifer L; Lee, John S; Pratt, William D; Custer, Max; Kamrud, Kurt I; Smith, Jonathan F; Hart, Mary Kate; Dye, John M

    2013-05-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.

  4. Low Dose Vaccination with Attenuated Francisella tularensis Strain SchuS4 Mutants Protects against Tularemia Independent of the Route of Vaccination

    PubMed Central

    Rockx-Brouwer, Dedeke; Chong, Audrey; Wehrly, Tara D.; Child, Robert; Crane, Deborah D.

    2012-01-01

    Tularemia, caused by the Gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia. PMID:22662210

  5. Clostridium perfringens beta toxin DNA prime-protein boost elicits enhanced protective immune response in mice.

    PubMed

    Solanki, Amit Kumar; Bhatia, Bharati; Kaushik, Himani; Deshmukh, Sachin K; Dixit, Aparna; Garg, Lalit C

    2017-07-01

    Clostridium perfringens beta toxin (CPB) is the primary pathogenic factor responsible for necrotic enteritis in sheep, cattle and humans. Owing to rapid progression of the disease, vaccination is the only possible recourse to avoid high mortality in animal farms and huge economic losses. The present study reports evaluation of a cpb gene-based DNA vaccine encoding the beta toxin of C. perfringens with homologous as well as heterologous booster strategy. Immunization strategy employing heterologous booster with heat-inactivated rCPB mounted stronger immune response when compared to that generated by homologous booster. Antibody isotyping and cytokine ELISA demonstrated the immune response to be Th1-biased mixed immune response. While moderate protection of immunized BALB/c and C57BL/6 mice against rCPB challenge was observed with homologous booster strategy, heterologous booster strategy led to complete protection. Thus, beta toxin-based DNA vaccine using the heterologous prime-boosting strategy was able to generate better immune response and conferred greater degree of protection against high of dose rCPB challenge than homologous booster regimen, making it an effective vaccination approach against C. perfringens beta toxin.

  6. Performance of LBSap Vaccine after Intradermal Challenge with L. infantum and Saliva of Lu. longipalpis: Immunogenicity and Parasitological Evaluation

    PubMed Central

    Roatt, Bruno Mendes; Aguiar-Soares, Rodrigo Dian de Oliveira; Vitoriano-Souza, Juliana; Coura-Vital, Wendel; Braga, Samuel Leôncio; Corrêa-Oliveira, Rodrigo; Martins-Filho, Olindo Assis; Teixeira-Carvalho, Andréa; de Lana, Marta; Gontijo, Nelder Figueiredo; Marques, Marcos José; Giunchetti, Rodolfo Cordeiro; Reis, Alexandre Barbosa

    2012-01-01

    In the last decade, the search for new vaccines against canine visceral leishmaniasis has intensified. However, the pattern related to immune protection during long periods after experimental infection in vaccine trials is still not fully understood. Herein, we investigated the immunogenicity and parasitological levels after intradermal challenge with Leishmania infantum plus salivary gland extract in dogs immunized with a vaccine composed of L. braziliensis antigens plus saponin as an adjuvant (LBSap vaccine). The LBSap vaccine elicited higher levels of total anti-Leishmania IgG as well as both IgG1 and IgG2. Furthermore, dogs vaccinated had increased levels of lymphocytes, particularly circulating B cells (CD21+) and both CD4+ and CD8+ T lymphocytes. LBSap also elicited an intense in vitro cell proliferation associated with higher levels of CD4+ T lymphocytes specific for vaccine soluble antigen and soluble lysate of L. infantum antigen even 885 days after experimental challenge. Furthermore, LBSap vaccinated dogs presented high IFN-γ and low IL-10 and TGF-β1 expression in spleen with significant reduction of parasite load in this tissue. Overall, our results validate the potential of LBSap vaccine to protect against L. infantum experimental infection and strongly support further evaluation of efficiency of LBSap against CVL in natural infection conditions. PMID:23189161

  7. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys.

    PubMed

    Barouch, Dan H; Liu, Jinyan; Li, Hualin; Maxfield, Lori F; Abbink, Peter; Lynch, Diana M; Iampietro, M Justin; SanMiguel, Adam; Seaman, Michael S; Ferrari, Guido; Forthal, Donald N; Ourmanov, Ilnour; Hirsch, Vanessa M; Carville, Angela; Mansfield, Keith G; Stablein, Donald; Pau, Maria G; Schuitemaker, Hanneke; Sadoff, Jerald C; Billings, Erik A; Rao, Mangala; Robb, Merlin L; Kim, Jerome H; Marovich, Mary A; Goudsmit, Jaap; Michael, Nelson L

    2012-01-04

    Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIV(SME543) Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIV(MAC251) challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.

  8. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    PubMed

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C., E-mail: ertl@wistar.upenn.edu

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protectsmore » against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.« less

  10. Infant HIV Type 1 gp120 Vaccination Elicits Robust and Durable Anti-V1V2 Immunoglobulin G Responses and Only Rare Envelope-Specific Immunoglobulin A Responses

    PubMed Central

    Fouda, Genevieve G.; Cunningham, Coleen K.; McFarland, Elizabeth J.; Borkowsky, William; Muresan, Petronella; Pollara, Justin; Song, Lin Ye; Liebl, Brooke E.; Whitaker, Kaylan; Shen, Xiaoying; Vandergrift, Nathan A.; Overman, R. Glenn; Yates, Nicole L.; Moody, M. Anthony; Fry, Carrie; Kim, Jerome H.; Michael, Nelson L.; Robb, Merlin; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Liao, Hua-Xin; Haynes, Barton F.; Montefiori, David C.; Ferrari, Guido; Tomaras, Georgia D.; Permar, Sallie R.

    2015-01-01

    Background Infant responses to vaccines can be impeded by maternal antibodies and immune system immaturity. It is therefore unclear whether human immunodeficiency virus type 1 (HIV-1) vaccination would elicit similar responses in adults and infants. Method HIV-1 Env–specific antibody responses were evaluated in 2 completed pediatric vaccine trials. In the Pediatric AIDS Clinical Trials Group (PACTG) 230 protocol, infants were vaccinated with 4 doses of Chiron rgp120 with MF59 (n = 48), VaxGen rgp120 with aluminum hydroxide (alum; n = 49), or placebo (n = 19) between 0 and 20 weeks of age. In PACTG 326, infants received 4 doses of ALVAC-HIV-1/AIDSVAX B/B with alum (n = 9) or placebo (n = 13) between 0 and 12 weeks of age. Results By 52 weeks of age, the majority of maternally acquired antibodies had waned and vaccine Env-specific immunoglobulin G (IgG) responses in vaccinees were higher than in placebo recipients. Chiron vaccine recipients had higher and more-durable IgG responses than VaxGen vaccine recipients or ALVAC/AIDSVAX vaccinees, with vaccine-elicited IgG responses still detectable in 56% of recipients at 2 years of age. Remarkably, at peak immunogenicity, the concentration of anti-V1V2 IgG, a response associated with a reduced risk of HIV-1 acquisition in the RV144 adult vaccine trial, was 22-fold higher in Chiron vaccine recipients, compared with RV144 vaccinees. Conclusion As exemplified by the Chiron vaccine regimen, vaccination of infants against HIV-1 can induce robust, durable Env-specific IgG responses, including anti-V1V2 IgG. PMID:25170104

  11. Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections.

    PubMed

    Zhu, Liangquan; Feng, Yu; Zhang, Ge; Jiang, Hui; Zhang, Zhen; Wang, Nan; Ding, Jiabo; Suo, Xun

    2016-01-12

    Brucellosis is a wide spread zoonotic disease that causes abortion and infertility in mammals and leads to debilitating, febrile illness in humans. Brucella abortus, Brucella melitensis and Brucella suis are the major pathogenic species to humans. Vaccination with live attenuated B. suis strain 2 (S2) vaccine is an essential and critical component in the control of brucellosis in China. The S2 vaccine is very effective in preventing brucellosis in goats, sheep, cattle and swine. However, there are still debates outside of China whether the S2 vaccine is able to provide protection against heterologous virulent Brucella species. We investigated the residual virulence, immunogenicity and protective efficacy of the S2 vaccine in BALB/c mice by determining bacteria persistence in spleen, serum antibody response, cellular immune response and protection against a heterologous virulent challenge. The S2 vaccine was of low virulence as there were no bacteria recovered in spleen four weeks post vaccination. The vaccinated mice developed Brucella-specific IgG in 2-3 weeks, and a burst production of IFN-γ at one week as well as a two-fold increase in TNF-α production. The S2 vaccine protected mice from a virulent challenge by B. melitensis M28, B. abortus 2308 and B. suis S1330, and the S2 vaccinated mice did not develop any clinical signs or tissue damage. Our study demonstrated that the S2 vaccine is of low virulence, stimulates good humoral and cellular immunity and protects animals against infection by heterologous, virulent Brucella species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The delicate balance in genetically engineering live vaccines

    PubMed Central

    Galen, James E.; Curtiss, Roy

    2014-01-01

    Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health. PMID:24370705

  13. In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, Seyyed Mahmoud, E-mail: smebrahimi@shirazu.ac.ir; Research Center of Virus and Vaccine, Baqiyatallah University of Medical Science, P.O.Box 14155-3651, Tehran; Dabaghian, Mehran

    Ideal vaccines against influenza viruses should elicit not only a humoral response, but also a cellular response. Mycobacterium tuberculosis HSP70 (mHSP70) have been found to promote immunogenic APCs function, elicit a strong cytotoxic T lymphocyte (CTL) response, and prevent the induction of tolerance. Moreover, it showed linkage of antigens to the C-terminus of mHSP70 (mHSP70c) can represent them as vaccines resulted in more potent, protective antigen specific responses in the absence of adjuvants or complex formulations. Hence, recombinant fusion protein comprising C-terminus of mHSP70 genetically fused to four tandem repeats of the ectodomain of the conserved influenza matrix protein M2more » (M2e) was expressed in Escherichia coli, purified under denaturing condition, refolding, and then confirmed by SDS-PAGE, respectively. The recombinant fusion protein, 4xM2e.HSP70c, retained its immunogenicity and displayed the protective epitope of M2e by ELISA and FITC assays. A prime-boost administration of 4xM2e.HSP70c formulated in F105 buffer by intramuscular route in mice (Balb/C) provided full protection against lethal dose of mouse-adapted H1N1, H3N2, or H9N2 influenza A isolates from Iran compared to 0-33.34% survival rate of challenged unimmunized and immunized mice with the currently in use conventional vaccines designated as control groups. However, protection induced by immunization with 4xM2e.HSP70c failed to prevent weight loss in challenged mice; they experienced significantly lower weight loss, clinical symptoms and higher lung viral clearance in comparison with protective effects of conventional influenza vaccines in challenged mice. These data demonstrate that C-terminal domain of mHSP70 can be a superior candidate to deliver the adjuvant function in M2e-based influenza A vaccine in order to provide significant protection against multiple influenza A virus strains.« less

  14. A tripartite fusion, FaeG-FedF-LT(192)A2:B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection.

    PubMed

    Ruan, Xiaosai; Liu, Mei; Casey, Thomas A; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT(192)) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT(192)A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT(192)A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT(192)A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrial E. coli strains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea.

  15. Protection of dogs against canine distemper by vaccination with a canarypox virus recombinant expressing canine distemper virus fusion and hemagglutinin glycoproteins.

    PubMed

    Pardo, M C; Bauman, J E; Mackowiak, M

    1997-08-01

    To evaluate the safety and efficacy of a live canarypox virus recombinant-canine distemper virus (CDV) combination vaccine against virulent CDV challenge exposure, and to document lack of interference among the other modified-live virus (MLV) components. 33 specific-pathogen-free (SPF) Beagle pups (7 to 10 weeks old). A canarypox virus recombinant-CDV combination vaccine was tested for safety and efficacy along with MLV components (canine adenovirus type 2, canine coronavirus, canine parainfluenza virus, and canine parvovirus) in 26 SPF Beagle pups. The combination vaccine was rehydrated with either Leptospira canicola-L icterohaemorrhagiae combination bacterin (vaccine 1) or sterile diluent (vaccine 2). An additional group of 7 seronegative SPF pups received the control MLV components devoid of the combination vaccine (vaccine 3). Two vaccinations were administered 21 days apart, either IM or SC. The dose of the combination vaccine used to inoculate these pups was 40 times lower than the recommended commercial dose. At 21 days after the booster vaccination, all pups were challenge exposed with a virulent CDV strain, then were observed for 21 days to record morbidity and mortality. Adverse local or generalized reactions were not induced by vaccinations. All vaccinates seroconverted to CDV. Serum antibody titers to MLV components were not different, with or without inclusion of the combination vaccine. After challenge exposure, morbidity and mortality in vaccinates were 0% (0/26); in control dogs, values were 100% morbidity and 86% mortality (6/7). Brain impression smear slides made from all dogs that did not survive challenge exposure were CDV positive by use of a direct fluorescein isothiocyanate method. The canarypox virus-CDV combination vaccine, administered SC or IM, is a safe product that elicits CDV seroconversion, does not interfere with other vaccine components, and protects vaccinated pups against virulent CDV challenge exposure.

  16. Critical Analysis of Compositions and Protective Efficacies of Oral Killed Cholera Vaccines

    PubMed Central

    2014-01-01

    Two cholera vaccines, sold as Shanchol and Dukoral, are currently available. This review presents a critical analysis of the protective efficacies of these vaccines. Children under 5 years of age are very vulnerable to cholera and account for the highest incidence of cholera cases and more than half of the resulting deaths. Both Shanchol and Dukoral are two-spaced-dose oral vaccines comprising large numbers of killed cholera bacteria. The former contains Vibrio cholerae O1 and O139 cells, and the latter contains V. cholerae O1 cells with the recombinant B subunit of cholera toxin. In a field trial in Kolkata (India), Shanchol, the preferred vaccine, protected 45% of the test subjects in all of the age groups and only 17% of the children under 5 years of age during the first year of surveillance. In a field trial in Peru, two spaced doses of Dukoral offered negative protection in children under 5 years of age and little protection (15%) in vaccinees over 6 years of age during the first year of surveillance. Little is known about Dukoral's long-term protective efficacy. Both of these vaccines have questionable compositions, using V. cholerae O1 strains isolated in 1947 that have been inactivated by heat and formalin treatments that may denature protein. Immunological studies revealed Dukoral's reduced and short-lived efficacy, as measured by several immunological endpoints. Various factors, such as the necessity for multiple doses, poor protection of children under 5 years of age, the requirement of a cold supply chain, production costs, and complex logistics of vaccine delivery, greatly reduce the suitability of either of these vaccines for endemic or epidemic cholera control in resource-poor settings. PMID:25056361

  17. Immunology Update: New Vaccines.

    PubMed

    Starr, S Paul

    2016-11-01

    A new 9-valent human papillomavirus (HPV) vaccine is effective against more cancer-causing HPV types than previous vaccines. HPV vaccine series started with previous vaccines can be completed with the 9-valent vaccine. Two new influenza vaccines are available for adults 65 years and older: a high-dose vaccine and an enhanced adjuvant vaccine. These elicit stronger antibody responses than standard-dose vaccines. Current guidelines specify no preference for the new versus standard-dose vaccines. Two new group B meningococcal vaccines are intended for use during outbreaks and for patients with asplenia, complement deficiencies, frequent occupational meningococcus exposure, or for patients who desire protection from type B meningococcus. These are not substitutes for the quadrivalent vaccine already in use. For pneumococcus, new recommendations state that 13-valent pneumococcal conjugate vaccine (PCV13) should be administered to patients 65 years and older, followed at least 1 year later by the polyvalent pneumococcal polysaccharide vaccine (PPSV23). For patients ages 19 to 64 years with immunocompromise and not previously vaccinated against pneumococcus, administration of these two vaccines should be separated by at least 8 weeks. Rotavirus vaccine is standard for infants at age 2 months. Also, there is a new cholera vaccine approved for use in the United States. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  18. An adenoviral vector expressing lipoprotein A, a major antigen of Mycoplasma mycoides subspecies mycoides, elicits robust immune responses in mice.

    PubMed

    Carozza, Marlène; Rodrigues, Valérie; Unterfinger, Yves; Galea, Sandra; Coulpier, Muriel; Klonjkowski, Bernard; Thiaucourt, François; Totté, Philippe; Richardson, Jennifer

    2015-01-01

    Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides small colony type (MmmSC), is a devastating respiratory disease of cattle. In sub-Saharan Africa, where CBPP is enzootic, live attenuated vaccines are deployed but afford only short-lived protection. In cattle, recovery from experimental MmmSC infection has been associated with the presence of CD4(+) T lymphocytes that secrete interferon gamma in response to MmmSC, and in particular to the lipoprotein A (LppA) antigen. In an effort to develop a better vaccine against CBPP, a viral vector (Ad5-LppA) that expressed LppA was generated from human adenovirus type 5. The LppA-specific immune responses elicited by the Ad5-LppA vector were evaluated in mice, and compared to those elicited by recombinant LppA formulated with a potent adjuvant. Notably, a single administration of Ad5-LppA, but not recombinant protein, sufficed to elicit a robust LppA-specific humoral response. After a booster administration, both vector and recombinant protein elicited strong LppA-specific humoral and cell-mediated responses. Ex vivo stimulation of splenocytes induced extensive proliferation of CD4(+) T cells for mice immunized with vector or protein, and secretion of T helper 1-associated and proinflammatory cytokines for mice immunized with Ad5-LppA. Our study - by demonstrating the potential of a viral-vectored prototypic vaccine to elicit prompt and robust immune responses against a major antigen of MmmSC - represents a first step in developing a recombinant vaccine against CBPP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Infants with low vaccine antibody responses have altered innate cytokine response.

    PubMed

    Surendran, Naveen; Nicolosi, Ted; Pichichero, Michael

    2016-11-11

    We recently identified a population of 10% of infants who respond with sub-protective antibody levels to most routine primary pediatric vaccinations due to altered innate and adaptive immune responses. We term these infants as low vaccine responders (LVRs). Here we report new data showing that TLR7/8 agonist - R848 stimulation of PBMCs of LVR infants elicit significantly lower IFN-α, IL-12p70 and IL-1β, while inducing higher levels of CCL5 (RANTES) compared to normal vaccine responder (NVR) infants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Protection against vaccine preventable diseases in children treated for acute lymphoblastic leukemia.

    PubMed

    de de la Fuente Garcia, Isabel; Coïc, Léna; Leclerc, Jean-Marie; Laverdière, Caroline; Rousseau, Céline; Ovetchkine, Philippe; Tapiéro, Bruce

    2017-02-01

    The objective of this retrospective study was to assess protection against vaccine preventable diseases (VPDs) in children treated for acute lymphoblastic leukemia (ALL). Clinical characteristics and vaccination records were collected. Antibodies against VPDs were measured after completion of chemotherapy and after a booster dose of vaccine. Immunization status of household members was evaluated. Sixty children were included. Median interval between the end of chemotherapy and enrolment in the study was 13 months (range 1-145). At ALL diagnosis, 81.3% of the children were up to date with their vaccination schedule. This proportion decreased to 52.9% at enrolment. Among the parents, 21% were up to date with their immunization schedule and 42% had received seasonal influenza vaccination. After chemotherapy, less than 50% of the patients were seroprotected against tetanus, diphtheria, polio 3, Haemophilus influenzae type b (Hib), and mumps and no more than 80% were seroprotected against polio 1 and 2, measles, rubella, and varicella. After a booster dose of vaccine, the rate of protection increased to over 90% for each of the following antigens: TT, DT, polio 1, Hib, measles, and rubella. Nevertheless, polio 3, mumps, and varicella-zoster virus antibodies titers/concentrations remained below seroprotective thresholds in over 20% of the patients. After chemotherapy for ALL, most of the children were not protected against VPDs. As the majority mounted a robust response to booster vaccines, efforts need to be done to improve protection against VPDs by implementing a systematic vaccine booster schedule. This could also be helped by reinforcing household members' immunization. © 2016 Wiley Periodicals, Inc.

  1. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    PubMed

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  2. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors.

    PubMed

    Dekhtiarenko, Iryna; Ratts, Robert B; Blatnik, Renata; Lee, Lian N; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D; Marandu, Thomas F; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K; Mansouri, Mandana; Meyer, Christine; Lemmermann, Niels A W; Holtappels, Rafaela; Arens, Ramon; Klenerman, Paul; Früh, Klaus; Reddehase, Matthias J; Riemer, Angelika B; Cicin-Sain, Luka

    2016-12-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy.

  3. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors

    PubMed Central

    Blatnik, Renata; Lee, Lian N.; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D.; Marandu, Thomas F.; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K.; Meyer, Christine; Holtappels, Rafaela; Arens, Ramon; Früh, Klaus; Reddehase, Matthias J.; Riemer, Angelika B.; Cicin-Sain, Luka

    2016-01-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy. PMID:27977791

  4. Meningococcal vaccine development--from glycoconjugates against MenACWY to proteins against MenB--potential for broad protection against meningococcal disease.

    PubMed

    Dull, Peter M; McIntosh, E David

    2012-05-30

    Novartis Vaccines has a long-standing research and development interest in the prevention of invasive meningococcal disease. From the initial licensure of the monovalent meningococcal C glycoconjugate vaccine, Menjugate(®), in response to the emergence of a virulent serogroup C ST-11 strain in the United Kingdom to the more recent development and licensure of a quadrivalent meningococcal ACWY glycoconjugate vaccine, Menveo(®), Novartis has a continuing commitment to the development of more effective tools for the control of meningococcal disease. Menveo is now licensed for use in adolescents and adults in over 50 countries and results from phase III studies have shown the vaccine to be well-tolerated and highly immunogenic in infants with vaccination beginning from 2 months of age. The 'holy grail' of meningococcal disease control is a broadly protective vaccine against serogroup B (MenB), preferably a vaccine that protects all age groups including infants. As the serogroup B capsule is poorly immunogenic, efforts over the past 40 years have focused on identifying conserved proteins expressed on the bacterial surface that elicit bactericidal antibodies. Novartis has approached this problem utilizing genomic tools to identify proteins meeting these criteria in a process now known as 'reverse vaccinology'[1]. This process has resulted in a novel multicomponent MenB vaccine (4CMenB) that consists of four major immunogenic components (three subcapsular MenB protein antigens plus outer membrane vesicles (OMVs) which themselves provide multiple subcapsular antigens, the immunodominant one being PorA). These all induce bactericidal antibodies against the antigens that are important in determining the survival, function, and virulence of the meningococci. Phase II studies of 4CMenB have been completed and have demonstrated that the vaccine is highly immunogenic against reference meningococcal strains selected to support licensure. Post-vaccination sera from clinical

  5. Development of a Salmonella cross-protective vaccine for food animal production systems.

    PubMed

    Heithoff, Douglas M; House, John K; Thomson, Peter C; Mahan, Michael J

    2015-01-01

    Intensive livestock production is associated with increased Salmonella exposure, transmission, animal disease, and contamination of food and water supplies. Modified live Salmonella enterica vaccines that lack a functional DNA adenine methylase (Dam) confer cross-protection to a diversity of salmonellae in experimental models of murine, avian, ovine, and bovine models of salmonellosis. However, the commercial success of any vaccine is dependent upon the therapeutic index, the ratio of safety/efficacy. Herein, secondary virulence-attenuating mutations targeted to genes involved in intracellular and/or systemic survival were introduced into Salmonella dam vaccines to screen for vaccine candidates that were safe in the animal and the environment, while maintaining the capacity to confer cross-protective immunity to pathogenic salmonellae serotypes. Salmonella dam mgtC, dam sifA, and dam spvB vaccine strains exhibited significantly improved vaccine safety as evidenced by the failure to give rise to virulent revertants during the infective process, contrary to the parental Salmonella dam vaccine. Further, these vaccines exhibited a low grade persistence in host tissues that was associated with reduced vaccine shedding, reduced environmental persistence, and induction of cross-protective immunity to pathogenic serotypes derived from infected livestock. These data indicate that Salmonella dam double mutant vaccines are suitable for commercial applications against salmonellosis in livestock production systems. Reducing pre-harvest salmonellae load through vaccination will promote the health and productivity of livestock and reduce contamination of livestock-derived food products, while enhancing overall food safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes.

    PubMed

    Jegaskanda, Sinthujan; Mason, Rosemarie D; Andrews, Sarah F; Wheatley, Adam K; Zhang, Ruijun; Reynoso, Glennys V; Ambrozak, David R; Santos, Celia P; Luke, Catherine J; Matsuoka, Yumiko; Brenchley, Jason M; Hickman, Heather D; Talaat, Kawsar R; Permar, Sallie R; Liao, Hua-Xin; Yewdell, Jonathan W; Koup, Richard A; Roederer, Mario; McDermott, Adrian B; Subbarao, Kanta

    2018-05-01

    Pandemic live attenuated influenza vaccines (pLAIV) prime subjects for a robust neutralizing antibody response upon subsequent administration of a pandemic inactivated subunit vaccine (pISV). However, a difference was not detected in H5-specific memory B cells in the peripheral blood between pLAIV-primed and unprimed subjects prior to pISV boost. To investigate the mechanism underlying pLAIV priming, we vaccinated groups of 12 African green monkeys (AGMs) with H5N1 pISV or pLAIV alone or H5N1 pLAIV followed by pISV and examined immunity systemically and in local draining lymph nodes (LN). The AGM model recapitulated the serologic observations from clinical studies. Interestingly, H5N1 pLAIV induced robust germinal center B cell responses in the mediastinal LN (MLN). Subsequent boosting with H5N1 pISV drove increases in H5-specific B cells in the axillary LN, spleen, and circulation in H5N1 pLAIV-primed animals. Thus, H5N1 pLAIV primes localized B cell responses in the MLN that are recalled systemically following pISV boost. These data provide mechanistic insights for the generation of robust humoral responses via prime-boost vaccination. IMPORTANCE We have previously shown that pandemic live attenuated influenza vaccines (pLAIV) prime for a rapid and robust antibody response on subsequent administration of inactivated subunit vaccine (pISV). This is observed even in individuals who had undetectable antibody (Ab) responses following the initial vaccination. To define the mechanistic basis of pLAIV priming, we turned to a nonhuman primate model and performed a detailed analysis of B cell responses in systemic and local lymphoid tissues following prime-boost vaccination with pLAIV and pISV. We show that the nonhuman primate model recapitulates the serologic observations from clinical studies. Further, we found that pLAIVs induced robust germinal center B cell responses in the mediastinal lymph node. Subsequent boosting with pISV in pLAIV-primed animals resulted in

  7. Vaccine-induced protection against anthrax in cheetah (Acinonyx jubatus) and black rhinoceros (Diceros bicornis).

    PubMed

    Turnbull, P C B; Tindall, B W; Coetzee, J D; Conradie, C M; Bull, R L; Lindeque, P M; Huebschle, O J B

    2004-09-03

    Institution of a policy of vaccination in endangered species with a vaccine not previously administered to it cannot be undertaken lightly. This applies even more in the case of cheetah (Acinonyx jubatus) with their unusually monomorphic gene pool and the potential restrictions this places on their immune responses. However, the recently observed mortalities from anthrax in these animals in the Etosha National Park, Namibia, made it imperative to evaluate vaccination. Black rhinoceros (Diceros bicornis), another endangered species in the park, have been vaccinated for over three decades but the effectiveness of this has never been evaluated. Passive protection tests in A/J mice using sera from 12 cheetahs together with enzyme immunoassay indicated that cheetah are able to mount seemingly normal primary and secondary humoral immune responses to the Sterne 34F2 live spore livestock vaccine. Overall protection rates in mice injected with the sera rose and fell in concert with rises and declines in antibody titres, although fine analysis showed that the correlation between titre and protection was complex. Once a high level of protection (96% of mice 1 month after a second booster in the cheetahs) had been achieved, the duration of substantial protection appeared good (60% of the mice 5 months after the second booster). Protection conferred on mice by sera from three of four vaccinated rhino was almost complete, but, obscurely, none of the mice receiving serum from the fourth rhino were protected. Sera from three park lions with naturally acquired high antibody titres, included as controls, also conferred high levels of protection. For the purposes of wildlife management, the conclusions were that vaccination of cheetah with the standard animal anthrax vaccine causes no observable ill effect in the animals and does appear to confer protective immunity. At least one well-separated booster does appear to be desirable. Vaccination of rhino also appears to be justified

  8. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs

    USDA-ARS?s Scientific Manuscript database

    Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South Africa...

  9. Fast vaccine design and development based on correlates of protection (COPs)

    PubMed Central

    van Els, Cécile; Mjaaland, Siri; Næss, Lisbeth; Sarkadi, Julia; Gonczol, Eva; Smith Korsholm, Karen; Hansen, Jon; de Jonge, Jørgen; Kersten, Gideon; Warner, Jennifer; Semper, Amanda; Kruiswijk, Corine; Oftung, Fredrik

    2014-01-01

    New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens. Herein, we focus on the applicability of this approach by reviewing the established and up-coming COPs for influenza in the context of traditional and a wide array of new vaccine concepts. The lessons learnt from this field may be applied more generally to COP-based accelerated vaccine design for emerging infections. PMID:25424803

  10. Malaria vaccines and human immune responses.

    PubMed

    Long, Carole A; Zavala, Fidel

    2016-08-01

    Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission. Published by Elsevier Ltd.

  11. New Kids on the Block: RNA-Based Influenza Virus Vaccines.

    PubMed

    Scorza, Francesco Berlanda; Pardi, Norbert

    2018-04-01

    RNA-based immunization strategies have emerged as promising alternatives to conventional vaccine approaches. A substantial body of published work demonstrates that RNA vaccines can elicit potent, protective immune responses against various pathogens. Consonant with its huge impact on public health, influenza virus is one of the best studied targets of RNA vaccine research. Currently licensed influenza vaccines show variable levels of protection against seasonal influenza virus strains but are inadequate against drifted and pandemic viruses. In recent years, several types of RNA vaccines demonstrated efficacy against influenza virus infections in preclinical models. Additionally, comparative studies demonstrated the superiority of some RNA vaccines over the currently used inactivated influenza virus vaccines in animal models. Based on these promising preclinical results, clinical trials have been initiated and should provide valuable information about the translatability of the impressive preclinical data to humans. This review briefly describes RNA-based vaccination strategies, summarizes published preclinical and clinical data, highlights the roadblocks that need to be overcome for clinical applications, discusses the landscape of industrial development, and shares the authors' personal perspectives about the future of RNA-based influenza virus vaccines.

  12. Immunological correlates for protection against intranasal challenge of Bacillus anthracis spores conferred by a protective antigen-based vaccine in rabbits.

    PubMed

    Weiss, Shay; Kobiler, David; Levy, Haim; Marcus, Hadar; Pass, Avi; Rothschild, Nili; Altboum, Zeev

    2006-01-01

    Correlates between immunological parameters and protection against Bacillus anthracis infection in animals vaccinated with protective antigen (PA)-based vaccines could provide surrogate markers to evaluate the putative protective efficiency of immunization in humans. In previous studies we demonstrated that neutralizing antibody levels serve as correlates for protection in guinea pigs (S. Reuveny et al., Infect. Immun. 69:2888-2893, 2001; H. Marcus et al., Infect. Immun. 72:3471-3477, 2004). In this study we evaluated similar correlates for protection by active and passive immunization of New Zealand White rabbits. Full immunization and partial immunization were achieved by single and multiple injections of standard and diluted doses of a PA-based vaccine. Passive immunization was carried out by injection of immune sera from rabbits vaccinated with PA-based vaccine prior to challenge with B. anthracis spores. Immunized rabbits were challenged by intranasal spore instillation with one of two virulent strains (strains Vollum and ATCC 6605). The immune competence was estimated by measuring the level of total anti-PA antibodies, the neutralizing antibody titers, and the conferred protective immunity. The results indicate that total anti-PA antibody titers greater than 1 x 10(5) conferred protection, whereas lower titers (between 10(4) and 10(5)) provided partial protection but failed to predict protection. Neutralizing antibody titers between 500 and 800 provided partial protection, while titers higher than 1,000 conferred protection. In conclusion, this study emphasizes that regardless of the immunization regimen or the time of challenge, neutralizing antibody titers are better predictors of protection than total anti-PA titers.

  13. Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle

    PubMed Central

    2014-01-01

    Background Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals. The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. Results In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All

  14. Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle.

    PubMed

    Romera, Sonia Alejandra; Puntel, Mariana; Quattrocchi, Valeria; Del Médico Zajac, Paula; Zamorano, Patricia; Blanco Viera, Javier; Carrillo, Consuelo; Chowdhury, Shafiqul; Borca, Manuel V; Sadir, Ana M

    2014-01-08

    Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with

  15. Broad and Cross-Clade CD4+ T-Cell Responses Elicited by a DNA Vaccine Encoding Highly Conserved and Promiscuous HIV-1 M-Group Consensus Peptides

    PubMed Central

    Almeida, Rafael Ribeiro; Rosa, Daniela Santoro; Ribeiro, Susan Pereira; Santana, Vinicius Canato; Kallás, Esper Georges; Sidney, John; Sette, Alessandro; Kalil, Jorge; Cunha-Neto, Edecio

    2012-01-01

    T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4+ T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4+ T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4+ T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IAb and IAd. Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-γ secretion against 11 out of the 27 peptides in BALB/c mice; CD4+ and CD8+ T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4+ and CD8+ T cells, able to simultaneously proliferate and produce IFN-γ and TNF-α, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS. PMID:23028895

  16. Failure of a recombinant fowl poxvirus vaccine containing an avian influenza hemagglutinin gene to provide consistent protection against influenza in chickens preimmunized with a fowl pox vaccine.

    PubMed

    Swayne, D E; Beck, J R; Kinney, N

    2000-01-01

    Vaccines against mildly pathogenic avian influenza (AI) have been used in turkeys within the United States as part of a comprehensive control strategy. Recently, AI vaccines have been used in control programs against highly pathogenic (HP) AI of chickens in Pakistan and Mexico. A recombinant fowl pox-AI hemagglutinin subtype (H) 5 gene insert vaccine has been shown to protect specific-pathogen-free chickens from HP H5 AI virus (AIV) challenge and has been licensed by the USDA for emergency use. The ability of the recombinant fowl pox vaccine to protect chickens preimmunized against fowl pox is unknown. In the current study, broiler breeders (BB) and white leghorn (WL) pullets vaccinated with a control fowl poxvirus vaccine (FP-C) and/or a recombinant fowl poxvirus vaccine containing an H5 hemagglutinin gene insert (FP-HA) were challenged with a HP H5N2 AIV isolated from chickens in Mexico. When used alone, the FP-HA vaccine protected BB and WL chickens from lethal challenge, but when given as a secondary vaccine after a primary FP-C immunization, protection against a HP AIV challenge was inconsistent. Both vaccines protected against virulent fowl pox challenge. This lack of consistent protection against HPAI may limit use to chickens without previous fowl pox vaccinations. In addition, prior exposure to field fowl poxvirus could be expected to limit protection induced by this vaccine.

  17. DNA Vaccine Encoding the Chimeric Form of Schistosoma mansoni Sm-TSP2 and Sm29 Confers Partial Protection against Challenge Infection

    PubMed Central

    Gonçalves de Assis, Natan Raimundo; Batistoni de Morais, Suellen; Figueiredo, Bárbara Castro Pimentel; Ricci, Natasha Delaqua; de Almeida, Leonardo Augusto; da Silva Pinheiro, Carina; Martins, Vicente de Paulo; Oliveira, Sergio Costa

    2015-01-01

    Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2) are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed. PMID:25942636

  18. Cross reactivity of serum antibody responses elicited by DNA vaccines expressing HA antigens from H1N1 subtype influenza vaccines in the past 30 years.

    PubMed

    Almansour, Iman; Chen, Huaiqing; Wang, Shixia; Lu, Shan

    2013-10-01

    In the past three decades, ten H1 subtype influenza vaccines have been recommended for global seasonal flu vaccination. Some of them were used only for one year before being replaced by another H1 flu vaccine while others may be used for up to seven years. While the selection of a new seasonal flu vaccine was based on the escape of a new emerging virus that was not effectively protected by the existing flu formulation, there is limited information on the magnitude and breadth of cross reactivity among H1 subtype virus circulation over a long period. In the current study, HA-expressing DNA vaccines were constructed to express individual HA antigens from H1 subtype vaccines used in the past 30 y. Rabbits naïve to HA antibody responses were immunized with these HA DNA vaccines and the cross reactivity of these sera against HA antigen and related H1 viruses in the same period was studied. Our data indicate that the level of cross reactivity was different for different viral isolates and the key mutations responsible for the cross reactivity may involve only a limited number of residues. Our results provide useful information for the development of improved seasonal vaccines than can achieve broad protection against viruses within the same H1 subtype.

  19. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin.

    PubMed

    Chernokhaeva, L L; Rogova, Yu V; Vorovitch, M F; Romanova, L Iu; Kozlovskaya, L I; Maikova, G B; Kholodilov, I S; Karganova, G G

    2016-04-29

    Tick-borne encephalitis (TBE) circulates widely in the territory of Eurasia with up to 10,000 cases registered annually. The TBE virus (TBEV) includes three main subtypes: European, Siberian and Far-Eastern, and two new Asiatic variants, phylogenetically distant from the others. The inactivated antigen of European or Far-Eastern strains is used in commercial TBE vaccines. A set of 14 TBEV strains, isolated in 1937-2008, with different passage histories, representing all subtypes and variants, was used in this work. The chosen set covers almost all the TBE area. Sera of mice, immunized with the TBE vaccine Moscow, prepared from the TBEV strain Sofjin, were studied in a plaque neutralization test against the set of TBEV strains. The vaccine induced antibodies at a protective titer against all TBEV strains and Omsk hemorrhagic fever virus (OHFV) with Е protein amino acid distances of 0.008-0.069, but not against Powassan virus. We showed that after a course of two immunizations, factors such as the period between vaccinations (1-4 weeks), the challenging virus dose (30-1000 LD50) and terms of challenge (1-4 weeks after the last immunization) did not significantly affect the assessment of protective efficacy of the vaccine in vivo. The protective effect of the TBE vaccine Moscow against the set of TBEV strains and the OHFV was demonstrated in in vivo experiments. TBE vaccine Moscow did not protect mice against 10 LD50 of the Powassan virus. We showed that this range of Е protein amino acid distances between the vaccine strain and challenging virus do not have a decisive impact on the TBE vaccine protective effect in vitro and in vivo. Moreover, the TBE vaccine Moscow induces an immune response protective against a wide range of TBEV variants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Immunity Elicited by an Experimental Vaccine Based on Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein in Piglets

    PubMed Central

    Wang, Jing; Wei, Li; Quan, Rong; Yang, Jiayu; Yan, Xu; Li, Zixuan; She, Ruiping; Hu, Fengjiao; Liu, Jue

    2016-01-01

    In a recent study, we reported that a recombinant protein from fusion expression of flagellin to porcine circovirus type 2 (PCV2) Cap induced robust humoral and cell-mediated immunity that afforded full protection for PCV2 infection using BALB/c mice. Here, we further evaluated the immunogenicity and protection of the recombinant protein using specific pathogen free (SPF) pigs. Twenty-five 3-week-old piglets without passively acquired immunity were divided into 5 groups. All piglets except negative controls were challenged with a virulent PCV2 at 21 days after booster vaccination and necropsied at 21 days post-challenge. Vaccination of piglets with the recombinant protein without adjuvant induced strong humoral and cellular immune responses as observed by high levels of PCV2-specific IgG antibodies and neutralizing antibodies, as well as frequencies of PCV2-specific IFN-γ-secreting cells that conferred good protection against PCV2 challenge, with significant reduced PCV2 viremia, mild lesions, low PCV2 antigen-positive cells, as well as improved body weight gain, comparable to piglets vaccinated with a commercial PCV2 subunit vaccine. These results further demonstrated that the recombinant flagellin-Cap fusion protein is capable of inducing solid protective humoral and cellular immunity when administered to pigs, thereby becoming an effective PCV2 vaccine candidate for control of PCV2 infection. PMID:26848967

  1. Protective Effect of Contemporary Pertussis Vaccines: A Systematic Review and Meta-analysis.

    PubMed

    Fulton, T Roice; Phadke, Varun K; Orenstein, Walter A; Hinman, Alan R; Johnson, Wayne D; Omer, Saad B

    2016-05-01

    Acellular pertussis (aP) and whole-cell (wP) pertussis vaccines are presumed to have similar short-term (<3 years after completion of the primary series) efficacy. However, vaccine effect varies between individual pertussis vaccine formulations, and many originally studied formulations are now unavailable. An updated analysis of the short-term protective effect of pertussis vaccines limited to formulations currently on the market in developed countries is needed. We conducted a systematic review and meta-analysis of published studies that evaluated pertussis vaccine efficacy or effectiveness within 3 years after completion (>3 doses) of a primary series of a currently available aP or wP vaccine formulation. The primary outcome was based on the World Health Organization (WHO) clinical case definitions for pertussis. Study quality was assessed using the approach developed by the Child Health Epidemiology Research Group. We determined overall effect sizes using random-effects meta-analyses, stratified by vaccine (aP or wP) and study (efficacy or effectiveness) type. Meta-analysis of 2 aP vaccine efficacy studies (assessing the 3-component GlaxoSmithKline and 5-component Sanofi-Pasteur formulations) yielded an overall aP vaccine efficacy of 84% (95% confidence interval [CI], 81%-87%). Meta-analysis of 3 wP vaccine effectiveness studies (assessing the Behringwerke, Pasteur/Mérieux, and SmithKline Beecham formulations) yielded an overall wP vaccine effectiveness of 94% (95% CI, 88%-97%) (bothI(2)= 0%). Although all contemporary aP and wP formulations protect against pertussis disease, in this meta-analysis the point estimate for short-term protective effect against WHO-defined pertussis in young children was lower for currently available aP vaccines than wP vaccines. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  2. Recombinant vaccine displaying the loop-neutralizing determinant from protective antigen completely protects rabbits from experimental inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Yu, Fen; Jacobs, Jana L; Cease, Kemp B

    2013-03-01

    We previously showed that a multiple antigenic peptide (MAP) vaccine displaying amino acids (aa) 304 to 319 from the 2β2-2β3 loop of protective antigen was capable of protecting rabbits from an aerosolized spore challenge with Bacillus anthracis Ames strain. Antibodies to this sequence, referred to as the loop-neutralizing determinant (LND), are highly potent at neutralizing lethal toxin yet are virtually absent in rabbit and human protective antigen (PA) antiserum. While the MAP vaccine was protective against anthrax, it contains a single heterologous helper T cell epitope which may be suboptimal for stimulating an outbred human population. We therefore engineered a recombinant vaccine (Rec-LND) containing two tandemly repeated copies of the LND fused to maltose binding protein, with enhanced immunogenicity resulting from the p38/P4 helper T cell epitope from Schistosoma mansoni. Rec-LND was found to be highly immunogenic in four major histocompatibility complex (MHC)-diverse strains of mice. All (7/7) rabbits immunized with Rec-LND developed high-titer antibody, 6 out of 7 developed neutralizing antibody, and all rabbits were protected from an aerosolized spore challenge of 193 50% lethal doses (LD(50)) of the B. anthracis Ames strain. Survivor serum from Rec-LND-immunized rabbits revealed significantly increased neutralization titers and specific activity compared to prechallenge levels yet lacked PA or lethal factor (LF) antigenemia. Control rabbits immunized with PA, which were also completely protected, appeared sterilely immune, exhibiting significant declines in neutralization titer and specific activity compared to prechallenge levels. We conclude that Rec-LND may represent a prototype anthrax vaccine for use alone or potentially combined with PA-containing vaccines.

  3. Smallpox DNA Vaccine Delivered by Novel Skin Electroporation Device Protects Mice Against Intranasal Poxvirus Challenge

    DTIC Science & Technology

    2006-11-27

    response being elicited by microneedle -mediated skin electroporation. 2006 Elsevier Ltd. All rights reserved. i o a p ( c o t t v H f r eywords...localized skin infection containing infectious virus (i.e., ock), the infection can spread to other sites on the body e.g., ocular autoinoculation) or to...plasmid DNA-coated microneedle arrays. Mice vaccinated with the 4pox DNA vaccine mounted robust antibody responses against the four immunogens-of-interest

  4. Infant HIV type 1 gp120 vaccination elicits robust and durable anti-V1V2 immunoglobulin G responses and only rare envelope-specific immunoglobulin A responses.

    PubMed

    Fouda, Genevieve G; Cunningham, Coleen K; McFarland, Elizabeth J; Borkowsky, William; Muresan, Petronella; Pollara, Justin; Song, Lin Ye; Liebl, Brooke E; Whitaker, Kaylan; Shen, Xiaoying; Vandergrift, Nathan A; Overman, R Glenn; Yates, Nicole L; Moody, M Anthony; Fry, Carrie; Kim, Jerome H; Michael, Nelson L; Robb, Merlin; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Liao, Hua-Xin; Haynes, Barton F; Montefiori, David C; Ferrari, Guido; Tomaras, Georgia D; Permar, Sallie R

    2015-02-15

    Infant responses to vaccines can be impeded by maternal antibodies and immune system immaturity. It is therefore unclear whether human immunodeficiency virus type 1 (HIV-1) vaccination would elicit similar responses in adults and infants. HIV-1 Env-specific antibody responses were evaluated in 2 completed pediatric vaccine trials. In the Pediatric AIDS Clinical Trials Group (PACTG) 230 protocol, infants were vaccinated with 4 doses of Chiron rgp120 with MF59 (n=48), VaxGen rgp120 with aluminum hydroxide (alum; n=49), or placebo (n=19) between 0 and 20 weeks of age. In PACTG 326, infants received 4 doses of ALVAC-HIV-1/AIDSVAX B/B with alum (n=9) or placebo (n=13) between 0 and 12 weeks of age. By 52 weeks of age, the majority of maternally acquired antibodies had waned and vaccine Env-specific immunoglobulin G (IgG) responses in vaccinees were higher than in placebo recipients. Chiron vaccine recipients had higher and more-durable IgG responses than VaxGen vaccine recipients or ALVAC/AIDSVAX vaccinees, with vaccine-elicited IgG responses still detectable in 56% of recipients at 2 years of age. Remarkably, at peak immunogenicity, the concentration of anti-V1V2 IgG, a response associated with a reduced risk of HIV-1 acquisition in the RV144 adult vaccine trial, was 22-fold higher in Chiron vaccine recipients, compared with RV144 vaccinees. As exemplified by the Chiron vaccine regimen, vaccination of infants against HIV-1 can induce robust, durable Env-specific IgG responses, including anti-V1V2 IgG. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets.

    PubMed

    Wang, Yuhuan; Azevedo, Marli; Saif, Linda J; Gentsch, Jon R; Glass, Roger I; Jiang, Baoming

    2010-07-26

    Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine. Published by Elsevier Ltd.

  6. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines.

    PubMed

    Cha, Ra Mi; Smith, Diane; Shepherd, Eric; Davis, C Todd; Donis, Ruben; Nguyen, Tung; Nguyen, Hoang Dang; Do, Hoa Thi; Inui, Ken; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary

    2013-10-09

    Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90-100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks. Published by Elsevier Ltd.

  7. Immunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection.

    PubMed

    Reed, Matthew D; Wilder, Julie A; Mega, William M; Hutt, Julie A; Kuehl, Philip J; Valderas, Michelle W; Chew, Lawrence L; Liang, Bertrand C; Squires, Charles H

    2015-01-01

    Protective antigen (PA), one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax). Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively) supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans with either of these vaccines requires several booster shots and occasionally causes adverse injection site reactions. Mutant derivatives of the protective antigen that will not form the anthrax toxins have been described. We have cloned and expressed both mutant (PA SNKE167-ΔFF-315-E308D) and native PA molecules recombinantly and purified them. In this study, both the mutant and native PA molecules, formulated with alum (Alhydrogel), elicited high titers of anthrax toxin neutralizing anti-PA antibodies in New Zealand White rabbits. Both mutant and native PA vaccine preparations protected rabbits from lethal, aerosolized, B. anthracis spore challenge subsequent to two immunizations at doses of less than 1 μg.

  8. Subunit vaccine H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tuberculosis-infected lung.

    PubMed

    Woodworth, J S; Cohen, S B; Moguche, A O; Plumlee, C R; Agger, E M; Urdahl, K B; Andersen, P

    2017-03-01

    The capacity of CD4 T cells to protect against Mycobacterium tuberculosis (Mtb) is governed by their ability to localize to the lung site of infection. Subunit vaccine H56/CAF01, a liposome-adjuvanted fusion protein of Mtb antigens Ag85B, ESAT-6, and Rv2660, conferred durable protection and elicited polyfunctional CD4 T cells that preferentially localized to the lung parenchyma. These lung-resident T cells had reduced KLRG1 and increased CXCR3 expression, an intermediate state of Th1 differentiation that has been associated with Mtb protection. Importantly, KLGR1 - CXCR3 + cells were also enriched in the lung vasculature and peripheral circulation of vaccinated animals, but not controls. Moreover, S1P1R blockade rapidly cleared this population from the blood and adoptive transfer of T cells recovered from the vasculature of vaccinated, but not control, mice efficiently trafficked into the Mtb-infected lung parenchyma. Thus, durable immunity elicited by H56/CAF01 vaccination is associated with the maintenance of circulating CD4 T cells that selectively home to the lung parenchyma.

  9. [Pneumococcal vaccine: protection of adults and reduction of antibiotic resistence by vaccination of children with a conjugated vaccine].

    PubMed

    Pletz, Mathias W

    2011-06-01

    Pneumococcal infections (pneumonia, otitis media, sinusitis, meningitis) are common and usually involve toddlers, immunocompromised and the elderly. Main reservoir of pneumococci is the nasopharyngeal zone of healthy carriers, especially of toddlers. Currently, two types of pneumococcal vaccines are in clinical use, which induce production of antibodies against capsular polysaccharides. The older vaccine consists of pure capsular polysaccharides. It induces a limited immunity, because polysaccharides are poor antigens that stimulate mainly B-cells. In children under two years of age this vaccine is not used, because it does not induce a sufficient immunologic response, presumably because of the immaturity of their immune system. In 2000, a vaccination program with a novel pneumococcal vaccine was launched in the USA. This vaccine contains capsular polysaccharides, that are conjugated with a highly immunogenic protein. It induces both a T cell and B cell response that results in specific humoral and mucosal immunity. U.S. data demonstrate, that serotypes covered by the conjugated vaccine can be reduced in the whole population by vaccination of children being the main reservoir of pneumococci. This so called ,,herd protection" results in a decrease in invasive pneumococcal diseases in vaccinees and non-vaccinees as well as in a reduction of antibiotic resistance rates by reducing resistant pneumococcal cones.

  10. Total Leishmania antigens with Poly(I:C) induce Th1 protective response.

    PubMed

    Sanchez, M V; Eliçabe, R J; Di Genaro, M S; Germanó, M J; Gea, S; García Bustos, M F; Salomón, M C; Scodeller, E A; Cargnelutti, D E

    2017-11-01

    Our proposal was to develop a vaccine based on total Leishmania antigens (TLA) adjuvanted with polyinosinic-polycytidylic acid [Poly(I:C)] able to induce a Th1 response which can provide protection against Leishmania infection. Mice were vaccinated with two doses of TLA-Poly(I:C) administered by subcutaneous route at 3-week interval. Humoral and cellular immune responses induced by the immunization were measured. The protective efficacy of the vaccine was evaluated by challenging mice with infective promastigotes of Leishmania (Leishmania) amazonensis into the footpad. Mice vaccinated with TLA-Poly(I:C) showed a high anti-Leishmania IgG titre, as well as increased IgG1 and IgG2a subclass titres compared with mice vaccinated with the TLA alone. The high IgG2a indicated a Th1 bias response induced by the TLA-Poly(I:C) immunization. Accordingly, the cellular immune response elicited by the formulation was characterized by an increased production of IFN-γ and no significant production of IL-4. The TLA-Poly(I:C) immunization elicited good protection, which was associated with decreased footpad swelling, a lower parasite load and a reduced histopathological alteration in the footpad. Our findings demonstrate a promising vaccine against cutaneous leishmaniasis that is relatively economic and easy to develop and which should be taken into account for preventing leishmaniasis in developing countries. © 2017 John Wiley & Sons Ltd.

  11. Antibody response in cattle after vaccination with inactivated and attenuated rabies vaccines.

    PubMed

    Rodrigues da Silva, A C; Caporale, G M; Gonçalves, C A; Targueta, M C; Comin, F; Zanetti, C R; Kotait, I

    2000-01-01

    Despite the absence of current official reports showing the number of cattle infected by rabies, it is estimated that nearly 30,000 bovines are lost each year in Brazil. In order to minimize the important economic losses, control of the disease is achieved by eliminating bat colonies and by herd vaccination. In this study, we compare the antibody response in cattle elicited by vaccination with an attenuated ERA vaccine (AEvac) and an inactivated-adjuvanted PV (IPVvac) vaccine. The antibody titers were appraised by cell-culture neutralization test and ELISA, and the percentage of seropositivity was ascertained for a period of 180 days. IPVvac elicited complete seropositivity rates from day 30 to day 150, and even on day 180, 87% of the sera showed virus-neutralizing antibody titers (VNA) higher than 0.5IU/ml. There were no significant differences between the VNA titers and seropositivity rates obtained with IPVvac in the two methods tested. AEvac, however, elicited significantly lower titers than those observed in the group receiving inactivated vaccine. In addition, the profiles of antirabies IgG antibodies, evaluated by ELISA, and VNA, appraised by cell-culture neutralization test, were slightly different, when both vaccines were compared.

  12. Vaccination with nontoxic mutant toxic shock syndrome toxin 1 protects against Staphylococcus aureus infection.

    PubMed

    Hu, Dong-Liang; Omoe, Katsuhiko; Sasaki, Sanae; Sashinami, Hiroshi; Sakuraba, Hirotake; Yokomizo, Yuichi; Shinagawa, Kunihiro; Nakane, Akio

    2003-09-01

    To investigate whether vaccination with nontoxic mutant toxic shock syndrome toxin 1 (mTSST-1) can protect against Staphylococcus aureus infection, mice were vaccinated with mTSST-1 and challenged with viable S. aureus. Survival in the mTSST-1-vaccinated group was higher, and bacterial counts in organs were significantly lower than those of control mice. Passive transfer of mTSST-1-specific antibodies also provided protection against S. aureus-induced septic death. Interferon (IFN)-gamma production in the serum samples and spleens from vaccinated mice was significantly decreased compared with that in controls, whereas interleukin-10 titers were significantly higher in vaccinated mice. IFN-gamma and tumor necrosis factor-alpha production in vitro were significantly inhibited by serum samples from mTSST-1-immunized mice but not from control mice. These results suggest that vaccination with mTSST-1 devoid of superantigenic properties provides protection against S. aureus infection and that the protection might be mediated by TSST-1-neutralizing antibodies as well as by the down-regulation of IFN-gamma production.

  13. Cross-protection against Salmonella enteritidis infection in mice. III. Delayed hypersensitivity reaction and clearance of the challenge organism.

    PubMed

    Padmanaban, V D; Mittal, K R

    1979-01-01

    Mice were immunized with live vaccines and with live vaccines with complete adjuvant incorporating Salmonella enteritidis, Salmonella typhi-murium, Salmonella gallinarum or Salmonella pullorum. On the 21st day after vacination, the hypersensitivity reactions elicited by the mice to extracts of the challenge organism (S. enteritidis 5694 SMR) were assessed. The degree of delayed hypersensitivity reaction was compared with the level of protection induced by the vaccine. The role in protection of delayed hypersensitivity is discussed. Clearance of the challenge organism from the liver of previously vaccinated and unvaccinated mice was assessed quantitatively.

  14. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

    PubMed

    Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina

    2016-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  15. A whole-killed, blood-stage lysate vaccine protects against the malaria liver stage.

    PubMed

    Lu, X; Liu, T; Zhu, F; Chen, L; Xu, W

    2017-01-01

    Although the attenuated sporozoite is the most efficient vaccine to prevent infection with the malaria parasite, the limitation of a source of sterile sporozoites greatly hampers its application. In this study, we found that the whole-killed, blood-stage lysate vaccine could confer protection against the blood stage as well as the liver stage. Although the protective immunity induced by the whole-organism vaccine against the blood stage is dependent on parasite-specific CD4 + T-cell responses and antibodies, in mice immunized with the whole-killed, blood-stage lysate vaccine, CD8 + , but not CD4 + effector T-cell responses greatly contributed to protection against the liver stage. Thus, our data suggested that the whole-killed, blood-stage lysate vaccine could be an alternative promising strategy to prevent malaria infection and to reduce the morbidity and mortality of patients with malaria. © 2016 John Wiley & Sons Ltd.

  16. Immunogenicity and clinical protection against equine influenza by gene-based DNA vaccination of ponies

    PubMed Central

    Ault, Alida; Zajac, Alyse M.; Kong, Wing-Pui; Gorres, J. Patrick; Royals, Michael; Wei, Chih-Jen; Bao, Saran; Yang, Zhi-yong; Reedy, Stephanie E.; Sturgill, Tracy L.; Page, Allen E.; Donofrio-Newman, Jennifer; Adams, Amanda A.; Balasuriya, Udeni B.R.; Horohov, David W.; Chambers, Thomas M.; Nabel, Gary J.; Rao, Srinivas S.

    2012-01-01

    Equine influenza A (H3N8) virus is a leading cause of infectious respiratory disease in horses causing widespread morbidity and economic losses. As with influenza in other species, equine influenza strains continuously mutate, requiring constant re-evaluation of current vaccines and development of new vaccines. Current inactivated (killed) vaccines, while efficacious, only offer limited protection against multiple strains and require frequent boosts. Ongoing research into new vaccine technologies, including gene-based vaccines, aims to increase the neutralization potency, breadth, and duration of protective immunity of new or existing vaccines. In these hypothesis-generating experiments, we demonstrate that a DNA vaccine expressing the hemagglutinin protein of equine H3N8 influenza virus generates homologous and heterologous immune responses, and protects against clinical disease and viral replication following homologous H3N8 infection in horses. Furthermore, we demonstrate that a needle-free delivery device is as efficient and effective as conventional parenteral injection using a needle and syringe. The observed trends in this study drive the hypothesis that DNA vaccines offer a safe, effective, and promising alternative approach for veterinary vaccines against influenza, and applicable to combat equine influenza. PMID:22449425

  17. Evaluation of adaptive immune responses and heterologous protection induced by inactivated bluetongue virus vaccines.

    PubMed

    Breard, Emmanuel; Belbis, Guillaume; Viarouge, Cyril; Nomikou, Kyriaki; Haegeman, Andy; De Clercq, Kris; Hudelet, Pascal; Hamers, Claude; Moreau, Francis; Lilin, Thomas; Durand, Benoit; Mertens, Peter; Vitour, Damien; Sailleau, Corinne; Zientara, Stéphan

    2015-01-15

    Eradication of bluetongue virus is possible, as has been shown in several European countries. New serotypes have emerged, however, for which there are no specific commercial vaccines. This study addressed whether heterologous vaccines would help protect against 2 serotypes. Thirty-seven sheep were randomly allocated to 7 groups of 5 or 6 animals. Four groups were vaccinated with commercial vaccines against BTV strains 2, 4, and 9. A fifth positive control group was given a vaccine against BTV-8. The other 2 groups were unvaccinated controls. Sheep were then challenged by subcutaneous injection of either BTV-16 (2 groups) or BTV-8 (5 groups). Taken together, 24/25 sheep from the 4 experimental groups developed detectable antibodies against the vaccinated viruses. Furthermore, sheep that received heterologous vaccines showed significantly reduced viraemia and clinical scores for BTV-16 when compared to unvaccinated controls. Reductions in clinical signs and viraemia among heterologously vaccinated sheep were not as common after challenge with BTV-8. This study shows that heterologous protection can occur, but that it is difficult to predict if partial or complete protection will be achieved following inactivated-BTV vaccination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of size and temperature at vaccination on immunization and protection conferred by a live attenuated Francisella noatunensis immersion vaccine in red hybrid tilapia.

    PubMed

    Soto, Esteban; Brown, Nicholas; Gardenfors, Zackarias O; Yount, Shaun; Revan, Floyd; Francis, Stewart; Kearney, Michael T; Camus, Alvin

    2014-12-01

    Francisella noatunensis subsp. orientalis (Fno) is a pleomorphic, facultative intracellular, Gram-negative, emerging bacterial pathogen of marine and fresh water fish with worldwide distribution. In this study, the efficacy of an attenuated Fno intracellular growth locus C (iglC) mutant was evaluated for use as a live immersion vaccine, when administered to hybrid tilapia at two different stages of growth (5 g fry and 10 g fingerlings) and at two temperatures (25 °C and 30 °C). To determine vaccine efficacy, mortality, days to first death, and Fno genome equivalents (GE) in the spleens of survivors, as well as serum and mucus antibody levels, were evaluated after 30 d in fish challenged with a wild type virulent strain. Both size and temperature at vaccination played an important role in immunization and protection. Fry vaccinated at 25 °C were not protected when compared to non-vaccinated fry at 25 °C (p = 0.870). In contrast, 5 g fry vaccinated at 30 °C were significantly protected compared to non-vaccinated fry at 30 °C (p = 0.038). Although lower mortalities occurred, 10 g fingerlings vaccinated at 25 °C were not protected, compared to non-vaccinated fingerlings at 25 °C (p = 0.328), while, 10 g fingerlings vaccinated at 30 °C were significantly protected, compared to non-vaccinated fingerlings at 30 °C (p = 0.038). Additionally, overall mortality of 5 g fish was significantly higher than in 10 g fish. Mortality was also significantly higher in fish subjected to a 30 to 25 °C temperature change one week prior to challenge, than in fish maintained at the same temperature during vaccination and challenge. This information demonstrates that both temperature and size at vaccination are important factors when implementing immunization prophylaxis in cultured tilapia.

  19. Effective and lesion-free cutaneous influenza vaccination

    PubMed Central

    Wang, Ji; Li, Bo; Wu, Mei X.

    2015-01-01

    The current study details efficient lesion-free cutaneous vaccination via vaccine delivery into an array of micropores in the skin, instead of bolus injection at a single site. Such delivery effectively segregated vaccine-induced inflammation, resulting in rapid resolution of the inflammation, provided that distances between any two micropores were sufficient. When the inoculation site was treated by FDA-approved nonablative fractional laser (NAFL) before insertion of a PR8 model influenza vaccine-packaged, biodegradable microneedle array (MNs), mice displayed vigorous antigen-uptake, eliciting strong Th1-biased immunity. These animals were completely protected from homologous viral challenges, and fully or partially protected from heterologous H1N1 and H3N2 viral challenges, whereas mice receiving MNs alone suffered from severe illnesses or died of similar viral challenges. NAFL-mediated adjuvanicity was ascribed primarily to dsDNA and other “danger” signals released from laser-damaged skin cells. Thus, mice deficient in dsDNA-sensing pathway, but not Toll like receptor (TLR) or inflammasome pathways, showed poor responses to NAFL. Importantly, with this novel approach both mice and swine exhibited strong protective immunity without incurring any appreciable skin irritation, in sharp contrast to the overt skin irritation caused by intradermal injections. The effective lesion-free cutaneous vaccination merits further clinical studies. PMID:25848020

  20. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    USDA-ARS?s Scientific Manuscript database

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  1. Human experimental challenge with enterotoxigenic Escherichia coli elicits immune responses to canonical and novel antigens relevant to vaccine development.

    PubMed

    Chakraborty, Subhra; Randall, Arlo; Vickers, Tim J; Molina, Doug; Harro, Clayton D; DeNearing, Barbara; Brubaker, Jessica; Sack, David A; Bourgeois, A Louis; Felgner, Philip L; Liang, Xiaowu; Mani, Sachin; Wenzel, Heather; Townsend, R Reid; Gilmore, Petra E; Darsley, Michael J; Rasko, David A; Fleckenstein, James M

    2018-05-24

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in the developing world. ETEC vaccinology has been challenged by genetic diversity and heterogeneity of canonical antigens. Examination of the antigenic breadth of immune responses associated with protective immunity could afford new avenues for vaccine development. Antibody lymphocyte supernatants (ALS) and sera from 20 naïve human volunteers challenged with ETEC strain H10407 and from 10 volunteers re-challenged 4-6 weeks later with the same strain (9 of whom were completely protected on re-challenge) were tested against ETEC proteome microarrays containing 957 antigens. ETEC challenge stimulated robust serum and mucosal (ALS) responses to canonical vaccine antigens (CFA/I, and the B subunit of LT) as well as a small number of antigens not presently targeted in ETEC vaccines. These included pathovar-specific secreted proteins (EtpA, EatA) as well as highly conserved E. coli antigens including YghJ, flagellin (FliC), and pertactin-like autotransporter proteins, all of which have previously afforded protection against ETEC infection in preclinical studies. Collectively, studies reported here suggest that immune responses following ETEC infection involve traditional vaccine targets as well as a select number of more recently identified protein antigens that could offer additional avenues for vaccine development for these pathogens.

  2. Oral Vaccination with a DNA Vaccine Encoding Capsid Protein of Duck Tembusu Virus Induces Protection Immunity

    PubMed Central

    Shen, Haoyue; Jia, Renyong; Wang, Mingshu; Chen, Shun; Zhu, Dekang; Liu, Mafeng; Zhao, Xinxin; Yang, Qiao; Wu, Ying; Liu, Yunya; Zhang, Ling; Yin, Zhongqiong; Jing, Bo

    2018-01-01

    The emergence of duck tembusu virus (DTMUV), a new member of the Flavivirus genus, has caused great economical loss in the poultry industry in China. Since the outbreak and spread of DTMUV is hard to control in a clinical setting, an efficient and low-cost oral delivery DNA vaccine SL7207 (pVAX1-C) based on the capsid protein of DTMUV was developed and evaluated in this study. The antigen capsid protein was expressed from the DNA vaccine SL7207 (pVAX1-C), both in vitro and in vivo. The humoral and cellular immune responses in vivo were observed after oral immunization with the SL7207 (pVAX1-C) DNA vaccine. High titers of the specific antibody against the capsid protein and the neutralizing antibody against the DTMUV virus were both detected after inoculation. The ducks were efficiently protected from lethal DTMUV exposure by the SL7207 (pVAX1-C) vaccine in this experiment. Taken together, we demonstrated that the capsid protein of DTMUV possesses a strong immunogenicity against the DTMUV infection. Moreover, an oral delivery of the DNA vaccine SL7207 (pVAX1-C) utilizing Salmonella SL7207 was an efficient way to protect the ducks against DTMUV infection and provides an economic and fast vaccine delivery strategy for a large scale clinical use. PMID:29642401

  3. Stable Dry Powder Formulation for Nasal Delivery of Anthrax Vaccine

    PubMed Central

    Wang, Sheena H.; Kirwan, Shaun M.; Abraham, Soman N.; Staats, Herman F.; Hickey, Anthony J.

    2013-01-01

    There is a current biodefense interest in protection against Anthrax. Here we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by rPA delivered intranasally with a novel mucosal adjuvant, a mast cell activator Compound 48/80. The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D50=25μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by CD and ATR-FTIR, while functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unitdose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over two years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by IM immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine, or an attractive vaccine platform for other mucosally transmitted diseases. PMID:21905034

  4. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice.

    PubMed

    Ulrich, Ricky L; Amemiya, Kei; Waag, David M; Roy, Chad J; DeShazer, David

    2005-03-14

    Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders. Two live attenuated B. mallei strains, a capsule mutant and a branched-chain amino acid auxotroph, were evaluated for use as vaccines against aerosol-initiated glanders in mice. Animals were aerogenically vaccinated and serum samples were obtained before aerosol challenge with a high-dose (>300 times the LD50) of B. mallei ATCC 23344. Mice vaccinated with the capsule mutant developed a Th2-like Ig subclass antibody response and none survived beyond 5 days. In comparison, the auxotrophic mutant elicited a Th1-like Ig subclass antibody response and 25% of the animals survived for 1 month postchallenge. After a low-dose (5 times the LD50) aerosol challenge, the survival rates of auxotroph-vaccinated and unvaccinated animals were 50 and 0%, respectively. Thus, live attenuated strains that promote a Th1-like Ig response may serve as promising vaccine candidates against aerosol infection with B. mallei.

  5. Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations

    PubMed Central

    Kurtz, Sherry L.

    2015-01-01

    A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses. PMID:26269537

  6. Binding of Complement Factor H (FH) Decreases Protective Anti-FH Binding Protein Antibody Responses of Infant Rhesus Macaques Immunized With a Meningococcal Serogroup B Vaccine

    PubMed Central

    Granoff, Dan M.; Costa, Isabella; Konar, Monica; Giuntini, Serena; Van Rompay, Koen K. A.; Beernink, Peter T.

    2015-01-01

    Background. The meningococcal vaccine antigen, factor H (FH)–binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. Methods. To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FHhigh) and, in 6 animals, bound weakly to FHbp (FHbp-FHlow). Results. There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FHhigh macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FHlow macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. Conclusions. Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding. PMID:25676468

  7. Defense from the Group A Streptococcus by active and passive vaccination with the streptococcal hemoprotein receptor.

    PubMed

    Huang, Ya-Shu; Fisher, Morly; Nasrawi, Ziyad; Eichenbaum, Zehava

    2011-06-01

    The worldwide burden of the Group A Streptococcus (GAS) primary infection and sequelae is considerable, although immunization programs with broad coverage of the hyper variable GAS are still missing. We evaluate the streptococcal hemoprotein receptor (Shr), a conserved streptococcal protein, as a vaccine candidate against GAS infection. Mice were immunized intraperitoneally with purified Shr or intranasally with Shr-expressing Lactococcus lactis. The resulting humoral response in serum and secretions was determined. We evaluated protection from GAS infection in mice after active or passive vaccination with Shr, and Shr antiserum was tested for bactericidal activity. A robust Shr-specific immunoglobulin (Ig) G response was observed in mouse serum after intraperitoneal vaccination with Shr. Intranasal immunization elicited both a strong IgG reaction in the serum and a specific IgA reaction in secretions. Shr immunization in both models allowed enhanced protection from systemic GAS challenge. Rabbit Shr antiserum was opsonizing, and mice that were administrated with Shr antiserum prior to the infection demonstrated a significantly higher survival rate than did mice treated with normal rabbit serum. Shr is a promising vaccine candidate that is capable of eliciting bactericidal antibody response and conferring immunity against systemic GAS infection in both passive and active vaccination models.

  8. Modified Vaccinia Ankara Virus Vaccination Provides Long-Term Protection against Nasal Rabbitpox Virus Challenge.

    PubMed

    Jones, Dorothy I; McGee, Charles E; Sample, Christopher J; Sempowski, Gregory D; Pickup, David J; Staats, Herman F

    2016-07-01

    Modified vaccinia Ankara virus (MVA) is a smallpox vaccine candidate. This study was performed to determine if MVA vaccination provides long-term protection against rabbitpox virus (RPXV) challenge, an animal model of smallpox. Two doses of MVA provided 100% protection against a lethal intranasal RPXV challenge administered 9 months after vaccination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Formalin-Inactivated Coxiella burnetii Phase I Vaccine-Induced Protection Depends on B Cells To Produce Protective IgM and IgG

    PubMed Central

    Peng, Ying; Schoenlaub, Laura; Elliott, Alexandra; Mitchell, William; Zhang, Yan

    2013-01-01

    To further understand the mechanisms of formalin-inactivated Coxiella burnetii phase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4+ T cell, or CD8+ T cell deficiency in mice significantly affects the ability of PIV to confer protection against a C. burnetii infection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4+ T cell- or CD8+ T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4+ T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4+ T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibit C. burnetii infection in vivo, but only IgM from PIV-vaccinated CD4+ T cell-deficient mouse sera inhibited C. burnetii infection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection against C. burnetii infection. PMID:23545296

  10. The development of vaccines: how the past led to the future.

    PubMed

    Plotkin, Stanley A; Plotkin, Susan L

    2011-10-03

    The history of vaccine development has seen many accomplishments, but there are still many diseases that are difficult to target, and new technologies are being brought to bear on them. Past successes have been largely due to elicitation of protective antibodies based on predictions made from the study of animal models, natural infections and seroepidemiology. Those predictions have often been correct, as indicated by the decline of many infections for which vaccines have been made over the past 200 years.

  11. Clinical experience with respiratory syncytial virus vaccines.

    PubMed

    Piedra, Pedro A

    2003-02-01

    Respiratory syncytial virus (RSV) infection is at times associated with life-threatening lower respiratory tract illness in infancy. Severe infection during the first year of life may be an important risk factor or indicator for the development of asthma in early childhood. Severe infections primarily occur in healthy infants, and young infants and children with specific risk factors. However, RSV causes respiratory infections in all age groups. Indeed it is now recognized that RSV disease is responsible for significant morbidity and mortality in the geriatric population. RSV infection remains difficult to treat, and prevention is a worldwide goal. For this reason there has been an intensive effort to develop an effective and safe RSV vaccine. Initial infection with RSV affords limited protection to reinfection, yet repeated episodes decrease the risk for lower respiratory tract illness. In the 20 years from 1960 to 1980, trials of several candidate RSV vaccines failed to attain the desired safety and protection against natural infection. Some vaccine types either failed to elicit immunogenicity, as with the live subcutaneous vaccine, or resulted in exaggerated disease on natural exposure to the virus, as with the formalin-inactivated (FI) type. Currently vaccine candidates are being developed based on the molecular virology of RSV. Recent formulations of candidate RSV vaccines have focused on subunit vaccines [such as purified fusion protein (PFP)], subunit vaccines combined with nonspecific immune activating adjuvants, live attenuated vaccines (including cold passaged, temperature-sensitive or cpts mutants), genetically engineered live attenuated vaccines and polypeptide vaccines.

  12. Subunit Rotavirus Vaccine Administered Parenterally to Rabbits Induces Active Protective Immunity

    PubMed Central

    Ciarlet, Max; Crawford, Sue E.; Barone, Christopher; Bertolotti-Ciarlet, Andrea; Ramig, Robert F.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    Virus-like particles (VLPs) are being evaluated as a candidate rotavirus vaccine. The immunogenicity and protective efficacy of different formulations of VLPs administered parenterally to rabbits were tested. Two doses of VLPs (2/6-, G3 2/6/7-, or P[2], G3 2/4/6/7-VLPs) or SA11 simian rotavirus in Freund’s adjuvants, QS-21 (saponin adjuvant), or aluminum phosphate (AlP) were administered. Serological and mucosal immune responses were evaluated in all vaccinated and control rabbits before and after oral challenge with 103 50% infective doses of live P[14], G3 ALA lapine rotavirus. All VLP- and SA11-vaccinated rabbits developed high levels of rotavirus-specific serum and intestinal immunoglobulin G (IgG) antibodies but not intestinal IgA antibodies. SA11 and 2/4/6/7-VLPs afforded similar but much higher mean levels of protection than 2/6/7- or 2/6-VLPs in QS-21. The presence of neutralizing antibodies to VP4 correlated (P < 0.001, r = 0.55; Pearson’s correlation coefficient) with enhanced protection rates, suggesting that these antibodies are important for protection. Although the inclusion of VP4 resulted in higher mean protection levels, high levels of protection (87 to 100%) from infection were observed in individual rabbits immunized with 2/6/7- or 2/6-VLPs in Freund’s adjuvants. Therefore, neither VP7 nor VP4 was absolutely required to achieve protection from infection in the rabbit model when Freund’s adjuvant was used. Our results show that VLPs are immunogenic when administered parenterally to rabbits and that Freund’s adjuvant is a better adjuvant than QS-21. The use of the rabbit model may help further our understanding of the critical rotavirus proteins needed to induce active protection. VLPs are a promising candidate for a parenterally administered subunit rotavirus vaccine. PMID:9765471

  13. Intra-muscular and oral vaccination using a Koi Herpesvirus ORF25 DNA vaccine does not confer protection in common carp (Cyprinus carpio L.).

    PubMed

    Embregts, Carmen W E; Tadmor-Levi, Roni; Veselý, Tomáš; Pokorová, Dagmar; David, Lior; Wiegertjes, Geert F; Forlenza, Maria

    2018-03-19

    Koi Herpes Virus (KHV or Cyprinid Herpesvirus 3, CyHV-3) is among the most threatening pathogens affecting common carp production as well as the highly valuable ornamental koi carp. To date, no effective commercial vaccine is available for worldwide use. A previous study reported that three intramuscular injections with an ORF25-based DNA vaccine, led to the generation of neutralizing antibodies and conferred significant protection against an intraperitoneal challenge with KHV. In the present study, we set out to optimize an ORF25-based DNA vaccination protocol that required fewer injections and would confer protection upon a challenge that better resembled the natural route of infection. To this end, ORF25 was cloned in pcDNA3 either as a soluble protein or as a full-length transmembrane GFP-fusion protein. We tested our ORF25-based DNA vaccines in multiple vaccination trials using different doses, vaccination routes (i.m. injection and oral gavage) and challenge methods (bath and cohabitation). Furthermore, we analysed local and systemic responses to the i.m. injected DNA vaccine through histological and RT-qPCR analysis. We observed a strong protection when fish received three injections of either of the two DNA vaccines. However, this protection was observed only after bath challenge and not after cohabitation challenge. Furthermore, protection was insufficient when fish received one injection only, or received the plasmid orally. The importance of choosing a challenge model that best reflects the natural route of infection and the possibility to include additional antigens in future DNA vaccination strategies against KHV will be discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Potency assay design for adjuvanted recombinant proteins as malaria vaccines.

    PubMed

    Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce

    2006-05-15

    Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.

  15. Early Potent Protection against Heterologous SIVsmE660 Challenge Following Live Attenuated SIV Vaccination in Mauritian Cynomolgus Macaques

    PubMed Central

    Berry, Neil; Ham, Claire; Mee, Edward T.; Rose, Nicola J.; Mattiuzzo, Giada; Jenkins, Adrian; Page, Mark; Elsley, William; Robinson, Mark; Smith, Deborah; Ferguson, Deborah; Towers, Greg; Almond, Neil; Stebbings, Richard

    2011-01-01

    Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system. PMID:21853072

  16. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar.

    PubMed

    Caruffo, Mario; Maturana, Carlos; Kambalapally, Swetha; Larenas, Julio; Tobar, Jaime A

    2016-07-01

    Infectious salmon anemia (ISA) is a systemic disease caused by an orthomyxovirus, which has a significant economic impact on the production of Atlantic salmon (Salmo salar). Currently, there are several commercial ISA vaccines available, however, those products are applied through injection, causing stress in the fish and leaving them susceptible to infectious diseases due to the injection process and associated handling. In this study, we evaluated an oral vaccine against ISA containing a recombinant viral hemagglutinin-esterase and a fusion protein as antigens. Our findings indicated that oral vaccination is able to protect Atlantic salmon against challenge with a high-virulence Chilean isolate. The oral vaccination was also correlated with the induction of IgM-specific antibodies. On the other hand, the vaccine was unable to modulate expression of the antiviral related gene Mx, showing the importance of the humoral response to the disease survival. This study provides new insights into fish protection and immune response induced by an oral vaccine against ISA, but also promises future development of preventive solutions or validation of the current existing therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Polyvalent vaccine approaches to combat HIV-1 diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette; Hraber, Peter Thomas; Wagh, Kshitij

    In this study, a key unresolved challenge for developing an effective HIV-1 vaccine is the discovery of strategies to elicit immune responses that are able to cross-protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV-1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine-elicited T-cell responses, which contribute to the control of HIV-1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novelmore » vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross-reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV-1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage-based design strategies to illustrate how such in-depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.« less

  18. Polyvalent vaccine approaches to combat HIV-1 diversity

    DOE PAGES

    Korber, Bette; Hraber, Peter Thomas; Wagh, Kshitij; ...

    2017-01-30

    In this study, a key unresolved challenge for developing an effective HIV-1 vaccine is the discovery of strategies to elicit immune responses that are able to cross-protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV-1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine-elicited T-cell responses, which contribute to the control of HIV-1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novelmore » vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross-reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV-1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage-based design strategies to illustrate how such in-depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.« less

  19. A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2.

    PubMed

    Tumban, Ebenezer; Peabody, Julianne; Peabody, David S; Chackerian, Bryce

    2011-01-01

    Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin. L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV. VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts.

  20. Vaccinia-based influenza vaccine overcomes previously induced immunodominance hierarchy for heterosubtypic protection.

    PubMed

    Kwon, Ji-Sun; Yoon, Jungsoon; Kim, Yeon-Jung; Kang, Kyuho; Woo, Sunje; Jung, Dea-Im; Song, Man Ki; Kim, Eun-Ha; Kwon, Hyeok-Il; Choi, Young Ki; Kim, Jihye; Lee, Jeewon; Yoon, Yeup; Shin, Eui-Cheol; Youn, Jin-Won

    2014-08-01

    Growing concerns about unpredictable influenza pandemics require a broadly protective vaccine against diverse influenza strains. One of the promising approaches was a T cell-based vaccine, but the narrow breadth of T-cell immunity due to the immunodominance hierarchy established by previous influenza infection and efficacy against only mild challenge condition are important hurdles to overcome. To model T-cell immunodominance hierarchy in humans in an experimental setting, influenza-primed C57BL/6 mice were chosen and boosted with a mixture of vaccinia recombinants, individually expressing consensus sequences from avian, swine, and human isolates of influenza internal proteins. As determined by IFN-γ ELISPOT and polyfunctional cytokine secretion, the vaccinia recombinants of influenza expanded the breadth of T-cell responses to include subdominant and even minor epitopes. Vaccine groups were successfully protected against 100 LD50 challenges with PR/8/34 and highly pathogenic avian influenza H5N1, which contained the identical dominant NP366 epitope. Interestingly, in challenge with pandemic A/Cal/04/2009 containing mutations in the dominant epitope, only the group vaccinated with rVV-NP + PA showed improved protection. Taken together, a vaccinia-based influenza vaccine expressing conserved internal proteins improved the breadth of influenza-specific T-cell immunity and provided heterosubtypic protection against immunologically close as well as distant influenza strains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.